

University of Miskolc

Faculty of Mechanical Engineering and Informatics

Efficiency Analysis and Optimization of Concept

Lattice Reduction Methods

Summary of Ph.D. Dissertation

József Hatvany Doctoral School of Information Science,

Engineering and Technology

Research Area

Applied Computer Science

Research Group

Data and Knowledge Bases

Author: Mohammed Ali Daash Alwersh, M.Sc. in Computer Science

Head Of Doctoral School: Prof. Dr. Jenő Szigeti

Academic Supervisor: Prof. Dr. László Kovács

Miskolc, Hungary 2025

Table of Contents

 II

Table of Contents

TABLE OF CONTENTS.. II
PREFACE ... 1
1. BACKGROUND ... 3

RESEARCH CONTEXT .. 3
PROBLEM STATEMENT ... 3
RESEARCH OBJECTIVES ... 4
SIGNIFICANCE OF THE STUDY .. 4

2. RELATED WORK ON LATTICE REDUCTION ... 4
3. FOUNDATIONAL PILLARS OF THE PROPOSED STRATEGIES .. 5

KERNEL CONCEPTS IN CONCEPT LATTICES ... 5
DIJKSTRA’S ALGORITHM ON CONCEPT LATTICES .. 6

4. CLUSTERING-BASED REDUCTION STRATEGIES FOR FCA ... 7
K-MEANS DIJKSTRA ON LATTICE (KDL) .. 7
K-MEANS VECTOR ON LATTICE (KVL) ... 7
CLUSTERING ALGORITHM... 9
EXPERIMENTAL RESULTS ... 10

5. KERNEL CONCEPTS SELECTION FOR EFFICIENT LATTICE REDUCTION.............................. 13
KERNEL CONCEPT SET APPROACH .. 13
OPTIMIZED GREEDY ALGORITHM FOR DETERMINING A KERNEL CONCEPT SET ... 14
EXPERIMENTAL SETUP AND METHODOLOGY ... 16
EXPERIMENT WITH THE TEACHING ASSISTANT EVALUATION DATASET .. 17

6. MINING KERNEL CONCEPTS: A COST-OPTIMIZED CONCEPT SET GENERATION METHOD... 19
PROPOSED METHOD ... 20
KERNEL SELECTION METHOD ... 21
PRACTICAL APPLICATION IN WORD-LEVEL CONCEPT REPRESENTATION .. 22
ATTRIBUTE REDUCTION .. 24
EXPERIMENTAL EVALUATION .. 25

7. CONTRIBUTIONS.. 28
8. AUTHOR’S PUBLICATIONS .. 30
REFERENCES ... 31

Preface

 1

Preface

This dissertation embodies a focused endeavor in the realm of knowledge engineering,

particularly at the intersection of data mining and Formal Concept Analysis (FCA). Since its

inception in the early 1980s by Rudolf Wille, FCA has been recognized as a powerful

mathematical tool for representing and analyzing the relationships between objects and

attributes within formal contexts. By structuring information into concept lattices, hierarchical

diagrams that capture the relationships between objects and attributes, FCA facilitates the

discovery of meaningful patterns in diverse fields, including software engineering, information

retrieval, e-learning systems, bioinformatics, and beyond.

Yet, as datasets expand in size and complexity, the concept lattices derived from them can

grow exponentially, posing formidable computational and interpretive challenges. Traditional

FCA methods, while theoretically elegant, often become computationally intensive and

cognitively overwhelming, hindering the effective utilization of these structures in large-scale

data analytics. This dissertation addresses these challenges head-on through a series of three

integrated contributions, each representing a strategic step toward more scalable, efficient, and

human-centered FCA methodologies.

A key groundwork is first laid out, establishing several foundational pillars that guide the

methods proposed here. These include the notion of kernel concepts, specially chosen concepts

that serve as anchors for understanding and reducing a concept lattice, alongside an

asymmetrical distance metric that adapts Dijkstra’s algorithm for cost-aware navigation. A

baseline greedy framework for concept selection further sets the stage for the more specialized

methods and cognitively aligned reduction strategies that follow.

The first contribution introduces two novel extensions of the k-means algorithm, K-Means

Dijkstra on Lattice (KDL) and K-Means Vector on Lattice (KVL), to adapt clustering-based

reduction strategies for FCA. KDL leverages the inherent hierarchical structure of categorical

data by incorporating a graph-based distance measure derived from FCA. This ensures that

reductions remain faithful to the underlying conceptual relationships, yielding more

interpretable and structurally consistent lattices. In contrast, KVL transforms formal concepts

into numerical vectors, allowing the application of conventional k-means clustering at scale.

While this vectorization simplifies complexity and improves computational efficiency, careful

consideration is given to preserving lattice quality. Together, KDL and KVL mark an initial

leap toward practical, data-driven lattice reduction that balances complexity management with

interpretability.

Building on these foundations, the second contribution, the Kernel Concept Set (KCS)

approach proposes a frequency- and cost-based strategy for selecting a core subset of concepts.

By determining a kernel that covers the most critical and frequently occurring attributes, KCS

optimizes reduction while maintaining essential structure. This approach goes beyond the first

step’s clustering-centric views, providing a more refined selection mechanism that directly

addresses the trade-off between completeness and efficiency.

Preface

 2

Finally, the third contribution introduces cognitive and linguistic strategies for scalable

concept lattice reduction. Inspired by human language optimization principles, this model

employs a finite “vocabulary” of high-frequency conceptual units (kernel concepts) and an

injective mapping function to ensure each concept is represented uniquely and meaningfully.

By integrating Genetic Algorithms and Simulated Annealing alongside a learning-based

module, the model identifies an optimal kernel subset that minimizes total generation cost, a

measure reflecting both computational and cognitive resources. This interdisciplinary approach

not only reduces lattice size but also aligns the resulting structures with human cognitive

processes, making the reduced lattices both computationally feasible and intuitively

comprehensible.

Collectively, these three contributions form a coherent research trajectory. Starting from

harnessing clustering methods for initial complexity control (KDL and KVL), moving through

a frequency- and cost-informed selection of pivotal concepts (KCS), and culminating in a

linguistically and cognitively oriented optimization framework, this dissertation offers a

comprehensive toolkit for addressing the scalability, efficiency, and interpretability challenges

inherent in FCA.

By fusing computational heuristics, cognitive insights, and linguistic principles into the FCA

reduction process, this work advances FCA from a theoretically compelling method to a

practical, user-aligned analytical framework. It lays the groundwork for broader adoption of

FCA in large-scale data analysis, equipping researchers and practitioners with strategies to

navigate, understand, and ultimately derive more meaningful insights from complex and

voluminous data

 Thesis booklet

 3

1. Background

Research Context

In recent decades, the exponential growth of data across diverse domains such as healthcare,

finance, e-learning, and social media has created a need for increasingly sophisticated methods

to extract, represent, and interpret meaningful patterns. The convergence of data mining,

machine learning, and knowledge engineering has accelerated the search for frameworks that

not only handle vast amounts of information efficiently but also facilitate human understanding

of underlying structures and relationships.

Among these frameworks, Formal Concept Analysis (FCA) has emerged as a

mathematically rigorous and conceptually rich approach for organizing and interpreting

complex datasets [1]. FCA operates by mapping data into a concept lattice, a hierarchy of

formal concepts that encodes relationships between objects and attributes. This structure

supports clustering, knowledge representation, and discovery of dependencies. However, as

datasets increase in size and complexity, the derived lattices can grow exponentially. This leads

to computational demands and interpretability challenges, limiting FCA’s practical use. Large

lattices overwhelm analysts and require significant computational resources. In fields like

bioinformatics or software engineering, where datasets are vast and evolving, this problem is

especially critical [2].

These limitations highlight the urgent need for lattice reduction methods that retain essential

structure and information while discarding redundancies. Such methods make FCA more

computationally efficient and cognitively accessible.

Problem Statement

Despite FCA’s potential, its application is hindered by the exponential growth of formal

concepts, resulting in large and complex lattices. These pose challenges in:

− Computation – high runtime and memory requirements.

− Interpretability – dense lattices that are difficult for analysts to navigate.

− Reliability – oversimplification in some reduction methods, which discard critical

information.

Existing reduction techniques (frequency-based pruning, abstraction mechanisms, etc.) often

lack efficiency, oversimplify the lattice, or fail to improve interpretability. They remain

fragmented and domain-specific, without a unified framework that integrates computational

optimization, cognitive strategies, and systematic concept selection.

Thus, the core problem is to develop robust, scalable, and cognitively aligned lattice

reduction methodologies that:

− Improve computational performance,

− Preserve interpretability and essential relationships, and

− Adapt flexibly to different datasets and application domains.

 Thesis booklet

 4

Research Objectives

The overarching aim of this dissertation is to advance FCA by making lattice reduction more

efficient, scalable, and cognitively accessible. The objectives are:

1. Assess limitations of existing reduction methods in scalability, efficiency, and

interpretability.

2. Enhance computational efficiency by designing methods that scale to high-dimensional

datasets.

3. Preserve structural integrity, ensuring essential hierarchical relationships remain intact.

4. Improve interpretability, using principles inspired by human language efficiency to

identify a minimal, expressive set of core concepts.

5. Empirically validate the proposed methods using standardized metrics and

representative datasets.

Significance of the Study

This research is significant as it enhances both the theoretical and practical dimensions of

Formal Concept Analysis (FCA). Theoretically, it introduces refined reduction methodologies

that address longstanding challenges of computational complexity and interpretability, thereby

advancing the core understanding of FCA’s scalability. Practically, by producing more

manageable and cognitively accessible lattices, the work broadens FCA’s usefulness across

various domains, ranging from knowledge management to data-driven decision-making,

enabling clearer insights from large and complex datasets.

2. Related Work on Lattice Reduction

Since its conception by Wille in 1982 [1], FCA has become a powerful framework for

knowledge extraction and structural data analysis. However, as FCA applications expanded into

domains such as data mining [3], and social network analysis [8], the complexity of the resulting

lattices emerged as a central challenge. Large lattices are often computationally demanding and

cognitively overwhelming, motivating research into reduction techniques.

Redundancy removal methods eliminate unnecessary objects, attributes, or incidences while

ensuring that the reduced lattice remains isomorphic to the original [9]. This includes merging

objects with identical attributes or removing reducible attributes and objects [5]. Other

strategies, such as the discernibility matrix approach [10], identify minimal subsets of attributes

while preserving lattice isomorphism.

Simplification and abstraction methods approximate or restructure lattices to emphasize

essential features, even at the cost of information loss. Examples include clustering

objects/attributes [11], matrix factorization techniques like SVD [12]. Further innovations

involve layered simplifications [13]. A notable abstraction approach is the box lattice [14],

which isolates atomistic elements relevant to classification systems.

Selection-based strategies focus on extracting only the most relevant concepts or attributes

[15]. Among these, the Iceberg Lattice [16] is one of the most influential. It retains only the

“top-most” frequent concepts by applying a minimum support threshold. Formally, for an

attribute set 𝐵 ⊆ 𝑀, its support is defined as:

 Thesis booklet

 5

𝑠𝑢𝑝𝑝(𝐵) =
∣ 𝐵′ ∣

∣ 𝐺 ∣

where 𝐵′ is the set of objects possessing 𝐵𝐵𝐵. If 𝑠𝑢𝑝𝑝(𝐵)≥ 𝑚𝑖𝑛𝑠𝑢𝑝, then 𝐵 is considered

frequent, and frequent concepts form the iceberg lattice. The TITANIC algorithm efficiently

computes these lattices by pruning search space based on support. In the classic MUSHROOM

dataset experiment, the full lattice contained 32,086 concepts, but at 85% support, it reduced to

only the most frequent patterns (e.g., veil type: partial, 100%; veil color: white, 97.62%; gill

attachment: free, 97.43%). Lower thresholds (70%, 55%) revealed more detailed associations.

Thus, the iceberg lattice acts as a multi-resolution tool, balancing scalability and

interpretability.

Beyond reduction, iceberg lattices have become central to knowledge discovery, enabling

association rule mining, non-redundant bases, and efficient visualization of otherwise

intractable datasets. However, they do not consider derivation costs all frequent concepts are

equally retained, even if some are structurally more central than others.

Clustering-based approaches have also been explored [17], adapting methods like k-modes

and its extensions to categorical data and FCA structures. These aim to group related concepts

into fewer representative ones, though challenges remain in integrating FCA’s hierarchical

nature.

Recent research has highlighted the potential of combining cognitive and linguistic

principles such as the principle of least effort and Zipf’s law [18], to optimize lattices not only

computationally but also cognitively, making them more aligned with human information

processing.

3. Foundational Pillars of the Proposed Strategies

As previously surveyed, many concept lattice reduction techniques have pushed the

boundaries of FCA’s applicability. However, critical limitations remain: existing methods often

lack a dynamic understanding of concept interrelations within the lattice and may overlook

derivation ease how readily one concept can be derived from another crucial to both algorithmic

efficiency and semantic clarity. Clustering-based reductions frequently rely on geometric

distance metrics ill-suited to FCA’s relational hierarchy, leading to oversimplified or distorted

structures. To address these challenges, this dissertation proposes strategies grounded in two

core pillars: (1) a kernel concepts framework (KCS) and (2) a Dijkstra-based distance on the

concept lattice.

Kernel Concepts in Concept Lattices

A kernel concept in FCA is a strategically chosen formal concept within a concept lattice

that serves as a pivotal “building block” for efficiently representing and deriving other concepts.

The notion of a kernel concept is introduced in this dissertation as a novel reduction strategy

within Formal Concept Analysis. While the idea draws inspiration from clustering principles,

particularly the use of centroids in K-means, the kernel concept framework uniquely adapts this

principle to the structure of concept lattices. In contrast to frequency-only reductions such as

iceberg lattices [16], kernel concepts combine structural centrality, frequency, and derivation

cost into a unified optimization model. Kernel concepts are deliberately selected based on

 Thesis booklet

 6

additional criteria to minimize overall complexity. Typically, these criteria involve Frequency

(how often or how prominently a concept appears) and Derivation Cost (the effort required to

derive one concept from another).

Formally, let 𝐶 be the set of all formal concepts and 𝐶𝑀 ⊂ 𝐶 a subset limited by size

(capacity) ∣ 𝐶𝑀 ∣= 𝑆𝑐. Each concept in 𝐶𝑀 is a kernel concept. The selection minimizes:

𝑚𝑖𝑛{∑ 𝑓(𝑐) 𝑑(𝐶𝑀, 𝑐)| 𝐶𝑀 ⊂ 𝐶 , |𝐶𝑀| = 𝑆𝑐𝑐 ∈𝐶 },

where:

𝑓(𝑐) indicates how “valuable” or “frequent” a concept 𝑐 is,

𝑑(𝐶𝑀, 𝑐) is the minimal cost to derive concept 𝑐 from any concept in the kernel set 𝐶𝑀.

Thus kernels act as anchor points (centroids) that can approximate or generate all other concepts

with minimal overall cost. Kernel concepts serve as the structural backbone of large lattices;

they reduce computational cost by enabling on-demand derivation of non-kernel concepts; they

provide a balanced criterion beyond frequency alone by incorporating derivation effort; they

improve interpretability and usability by offering navigable anchor points; and they facilitate

downstream analysis (e.g., rule bases, queries) without storing the full lattice.

Dijkstra’s Algorithm on Concept Lattices

 Dijkstra’s algorithm (1959) computes shortest paths in directed, weighted graphs and is

adapted here to measure structure-aware distances within the concept lattice. In this adapted

view, vertices are formal concepts and edges represent hierarchical relations (e.g., the partial

order ≤); weights encode direction (up/down in the lattice), so path costs reflect not only

frequency but also hierarchical effort.

The symbol ℬ(𝐶, <), and its corresponding graph ℋ(𝐶, 𝐸), where 𝐶 represents the set of

formal concepts and 𝐸 denotes the edges signifying hierarchical relationships. Let 𝐶𝑠 and 𝐶𝑒 be

two distinct formal concepts in 𝐶, with 𝐶𝑠 serving as the starting point and 𝐶𝑒 as the endpoint

for the path calculation. Each concept 𝑐 ∈ 𝐶 has an associated cost 𝑑(𝑐) that represents the cost

of reaching 𝑐 from 𝐶𝑠. To differentiate the directionality of traversal along the lattice edges,

two cost parameters are defined: “UpCost” for moving from a concept to a more specific (child)

concept, and “DownCost” for moving from a concept to a more general (parent) concept.

Within this framework, the Dijkstra-based distance measure relies on a priority queue Q,

implemented as a min-heap keyed by 𝑑(𝑐), and a set 𝑉 tracking visited nodes. The cost function

𝑓: 𝐶 × 𝐶 → ℝ ∪ {∞} evaluates the cost of moving from one concept c to an adjacent concept

c′ based on their relation:

𝑓(𝑐, 𝑐′) = {
𝑈𝑝𝐶𝑜𝑠𝑡, 𝑖𝑓 𝑐 ⊇ 𝑐′,

𝐷𝑜𝑤𝑛𝐶𝑜𝑠𝑡, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

Combining these costs over a sequence of concepts forms the basis for calculating the

shortest path. Thus, for all paths (𝑐1, 𝑐2, …, 𝑐𝑛) from 𝐶𝑠 to 𝐶𝑒, the Dijkstra-based distance

measure 𝑑(𝐶𝑠, 𝐶𝑒) selects the path with the minimal cumulative cost:

 Thesis booklet

 7

𝑑(𝐶𝑠, 𝐶𝑒) = 𝑚𝑖𝑛 { ∑ 𝑓(𝑐𝑖, 𝑐𝑖+1)

𝑛−1

𝑖=1

| (𝑐1, 𝑐2, … , 𝑐𝑛) is a path from 𝐶𝑠 to 𝐶𝑒},

Here, the measure 𝑑(𝐶𝑠, 𝐶𝑒) represents the minimal cost required to navigate the lattice from

the starting concept 𝐶𝑠 to the target concept 𝐶𝑒, effectively encapsulating both the structure of

the concept lattice and the directional constraints inherent in the data’s hierarchy.

4. Clustering-Based Reduction Strategies for FCA

K-means Dijkstra on Lattice (KDL)

The K-means Dijkstra on Lattice (KDL) method extends conceptual clustering to

categorical data by integrating FCA with a customized Dijkstra algorithm. This approach

leverages the hierarchical structure of concept lattices to ensure that clustering respects

semantic relationships.

The process begins with converting categorical data into a formal context, represented as a

binary incidence matrix. FCA then derives all formal concepts, forming a hierarchical lattice

that captures attribute-object relationships. To compute distances, directional edge weights are

assigned within the lattice e.g., downward transitions may cost more than upward ones. These

weights are used in a modified Dijkstra’s algorithm to determine the shortest paths (conceptual

distances) between nodes.

Cluster centers, or kernel concepts, are formal concepts that minimize intra-cluster

distances. Given a cluster 𝑆 = {𝑐1, . . . , 𝑐|𝑆|}, the centroid 𝑍 is defined as:

𝑍 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑍∈𝑆 (∑ 𝑑(𝑐𝑖, 𝑍)

|𝑆|

𝑖=1

).

where (𝑐𝑖, 𝑍) is the Dijkstra-based distance. This iterative process continues until centroids

stabilize.

A key strength of KDL lies in the connectivity of the concept lattice: every concept pair is

reachable via some path, ensuring the feasibility of distance computation and enabling high-

quality, interpretable clustering. The method efficiently identifies representative concepts that

preserve both structure and semantics.

K-Means Vector on Lattice (KVL)

The K-means Vector on Lattice (KVL) method transforms categorical data, originally

structured as formal concepts, into concept description vectors that enable the use of classical

numerical clustering. Each concept is represented as a vector where each dimension

 Thesis booklet

 8

corresponds to an attribute; attributes in the intent are given value 1, while others receive their

average frequency across all objects.

Definition (Concept Description Vector):

For a concept 𝑐 = (𝑋, 𝑌) in context = (𝐺, 𝑀, 𝐼), with ∣ 𝑀 ∣= 𝑞 attributes and ∣ 𝐺 ∣= 𝑟

objects, the description vector is:

𝑐𝑌 = (𝑣𝑚1
 , 𝑣𝑚2

 , . . . , 𝑣𝑚𝑞
)

with

𝑣𝑚ℎ
= {

1 𝑖𝑓 𝑚ℎ ∈ 𝐵,

1

𝑟
∑ 𝐼(𝑔𝑗, 𝑚ℎ) 𝑖𝑓 𝑚ℎ ∉ 𝐵, ∀ 𝑔𝑗 ∈ 𝐺,

𝑟

𝑗=1

This ensures attributes in the intent are fully represented, while others capture their dataset

prevalence (see Table 1).

Table 1. Matrix Corresponding to The Relation I

Objects/Attributes 𝒎𝟏 𝒎𝟐 … 𝒎𝒒

𝑔1 𝐼(𝑔1, 𝑚1) 𝐼(𝑔1, 𝑚2) … 𝐼(𝑔1, 𝑚𝑞)

𝑔2 𝐼(𝑔2, 𝑚1) 𝐼(𝑔2, 𝑚2) … 𝐼(𝑔2, 𝑚𝑞)

… … … … …

𝑔𝑟 𝐼(𝑔𝑟, 𝑚1) 𝐼(𝑔𝑟, 𝑚2) … 𝐼(𝑔𝑟, 𝑚𝑞)

Definition . Concept Similarity (CS):

Let

𝑉𝑐1
 = (𝑉𝑐1𝑚1

 , 𝑉𝑐1𝑚2
 , … , 𝑉𝑐1𝑚𝑞

).

and

𝑉𝑐2
 = (𝑉𝑐2𝑚1

 , 𝑉𝑐2𝑚2
 , … , 𝑉𝑐2𝑚𝑞

).

be the concept description vectors of two distinct concepts 𝑐1 and 𝑐2. The Euclidean

distance, which serves as the basis for CS, is given by:

𝐶𝑆(𝑉𝑐1
, 𝑉𝑐2

)=√(𝑉𝑐1𝑚1
 − 𝑉𝑐2𝑚1

)
2

 + (𝑉𝑐1𝑚2
 − 𝑉𝑐2𝑚2

)
2

 + . . . + (𝑉𝑐1𝑚𝑞
− 𝑉𝑐2𝑚𝑞

)
2

 .

Armed with the concept description vectors and the associated similarity measure, we can

apply the classical k-means clustering algorithm. In this process, each concept description

vector is treated as a data point in a q-dimensional space. The algorithm groups these vectors

into 𝑘 clusters such that concepts within the same cluster share greater similarity than those in

 Thesis booklet

 9

different clusters. Each cluster has a centroid 𝑍𝑖, defined as the mean of all concept description

vectors assigned to that cluster:

𝑍𝑖 =
1

|𝑆𝑖|
∑ 𝑉𝑌𝑗

|𝑆𝑖|

𝑗=1

, 𝑉𝑌𝑗
∈ 𝑆𝑖.

where 𝑆𝑖 is the set of concept description vectors in the i-th cluster.

The objective of k-means is to minimize the within-cluster sum of squared distances

(WCSS) from each concept description vector to its corresponding centroid:

Q = ∑ ∑ ||𝑉𝑌𝑗
− 𝑍𝑖||2

|𝑆𝑖|

𝑗=1

𝑘

𝑖=1

,

where:

− 𝑆𝑖 is the set of concept description vectors assigned to the i-th cluster,

− 𝑍𝑖 is the centroid of cluster 𝑖, defined as the mean of all vectors in 𝑆𝑖, and

− ∥⋅∥ denotes the Euclidean norm.

By repeatedly assigning vectors to their nearest centroids (based on the CS measure) and

then recalculating the centroids, the algorithm proceeds until it converges to a stable

configuration, thereby optimally partitioning the concept vectors into coherent, meaningful

clusters.

Clustering Algorithm

The clustering procedure unfolds as follows. Consider a formal context 𝑇 = (𝐺, 𝑀, 𝐼) and

let 𝑉(𝑇) represent the set of all derived concept description vectors. Suppose we aim to form 𝐾

clusters. Initially, randomly select 𝐾 initial centroids, 𝑍𝑡
0= (𝐴𝑡, 𝐵𝑡) for (𝑡 = 1,2, . . . 𝐾), each

corresponding to a preliminary cluster 𝑆𝑡
0= {𝑍𝑡

0}.

Next, assign each concept description vector 𝑣 ∈ 𝑉(𝑇) to the cluster whose current centroid

is nearest to 𝑣 based on the chosen distance measure. After this initial assignment, recompute

each cluster’s centroid by taking the average of all vectors assigned to it, thereby updating each

cluster center.

This reassignment and centroid calculation process is repeated iteratively. In each iteration,

vectors may shift clusters if doing so reduces the overall clustering cost. The process continues

until the cluster memberships and their centroids remain stable across consecutive iterations,

indicating that the algorithm has converged. The algorithm steps are as follows:

Algorithm 2. K-means clustering of concepts

Input: All the description vectors of concepts in 𝑉(𝑇), 𝐾.

Output: The clusters and corresponding centers.

Initialize:

Set 𝑆1
𝑖 ← ∅, 𝑆2

𝑖 ← ∅, ..., 𝑆𝑘
𝑖 ← ∅;

 𝑖 ← 0,

 Thesis booklet

 10

Select initial center vectors of 𝐾 clusters: 𝑍1
𝑖 , 𝑍2

𝑖 ,…, 𝑍𝑘
𝑖 ;

Assignment:
𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑣 ∈ 𝑉(𝑇) 𝑑𝑜:

-Find 𝑡 such that 𝐶𝑆(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒)(𝑣, 𝑍𝑡
𝑖) ≤ 𝐶𝑆(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒)(𝑣, 𝑍𝑗

𝑖), (𝑗 =

1,2, … , 𝑘) then,

𝑣 ∈ 𝑆𝑡
𝑖;

𝐸𝑛𝑑𝐹𝑜𝑟

Centroid Update:

𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑆𝑡
𝑖 𝑑𝑜:

 𝑍𝑡
𝑖+1 =

1

|𝑆𝑡|
∑ 𝑣𝑠 ,

|𝑆𝑡|
𝑠=1 𝑣𝑠 ∈ 𝑆𝑡

 𝑆𝑡
𝑖+1={𝑣 ∈ 𝑉(𝑇)|𝐶𝑆(𝑣, 𝑍𝑡

𝑖+1) ≤ 𝐶𝑆(𝑣, 𝑍𝑗
𝑖+1)}

𝐸𝑛𝑑𝐹𝑜𝑟

Convergence Check:

𝐼𝑓 𝑍𝑡
𝑖=𝑍𝑡

𝑖+1, 𝑆𝑡
𝑖=𝑆𝑡

𝑖+1 , 𝑡 = 1,2, . . . , 𝐾, 𝑡ℎ𝑒𝑛

 Go to “Stop and output the clusters”.

Else:

 𝑖 = 𝑖 + 1,

 Go to “Repeat the assignment step”.

Output: clusters 𝑆1
𝑖 , 𝑆2

𝑖 , ..., 𝑆𝑘
𝑖 and the corresponding centers 𝑍1

𝑖 , 𝑍2
𝑖 , …, 𝑍𝑘

𝑖 .

Once the clustering process is complete and stable clusters are formed, the concept

description vectors in each cluster can be mapped back to their corresponding original concepts

from the formal context. This backward mapping leverages the initial construction of concept

description vectors, ensuring that the clustering results can be interpreted and analyzed in terms

of the actual concepts they represent.

Algorithm 3: Mapping Description Vectors Back to Original Concepts

Input: The clusters 𝑆1
𝑖 , 𝑆2

𝑖 , …, 𝑆𝑘
𝑖 and the corresponding centers 𝑍1

𝑖 , 𝑍2
𝑖 ,…, 𝑍𝑘

𝑖 .

Output: Clusters of original concepts.

Initialize:

For each 𝑡 = 1 to 𝐾, set 𝑁𝑆𝑡 = ∅,
Mapping:

For each vector 𝑣 ∈ 𝑆𝑡
𝑖:

− Retrieve the corresponding original concept 𝑐 associated with vector 𝑣
− Add concept 𝐶 to 𝑁𝑆𝑡

Output: the new clusters 𝑁𝑆1, 𝑁𝑆2, … 𝑁𝑆𝑘, each containing the original concepts.

This approximation and mapping technique enables efficient and interpretable clustering of

concepts within a given context, thereby clarifying the intricate relationships and similarities

among the different concepts.

Experimental Results

The experiments evaluated the effectiveness and scalability of the Dijkstra-Based Distance

Measure and the two clustering approaches: K-means Dijkstra on Lattice (KDL) and K-means

Vector on Lattice (KVL). All algorithms were implemented in Python (3.11) with NetworkX,

scikit-learn, and Matplotlib. Formal concepts were generated using a tailored NextClosure

routine and lattices were constructed with iPred.

Results show that runtime grows with lattice size (Figure 1), while mean distance behaves

non-linearly, sometimes peaking in mid-sized, fragmented lattices (Figure 2). Real datasets

revealed similar patterns (Figures. 3– 4):

 Thesis booklet

 11

− Car Evaluation: large lattice but shorter mean distances due to dense interconnections.

− Balance-Scale & Breast Cancer: fewer concepts but longer paths, reflecting fragmented

lattices.

These findings confirm that the Dijkstra-based measure captures structural coherence, density

effects, and topological differences more robustly than Euclidean alternatives.

Cluster quality was evaluated with the Silhouette Coefficient and Davies–Bouldin Index

(DBI).

− KDL consistently outperformed KVL: higher Silhouette scores (Figure 5) and lower

DBI values (Figure 6).

− Example: On Car Evaluation, KDL achieved a Silhouette of 0.563 vs. 0.106 for KVL.

− This demonstrates that KDL better preserves conceptual structure, while KVL’s vector

simplification sacrifices interpretability.

Figure 5. Silhouette Scores by Dataset and Method

Figure 1. Average Runtime vs. Lattice Size for

Random Contexts

Figure 2. Mean Distance vs. Lattice Size for

Random Contexts

Figure 3. Average Runtime vs. Lattice Size for

Real-World Datasets

Figure 4.. Mean Distance vs. Lattice Size for

Real-World Datasets

 Thesis booklet

 12

Figure 6. DBI Scores by Dataset and Method

Scalability was examined from two perspectives. First, when varying the number of clusters

from 2 to 18 on the Car Evaluation dataset, the KVL method exhibited almost linear growth,

with runtimes remaining efficient between 44 and 52 seconds (Figure 7). In contrast, the KDL

method showed a steep increase, rising from approximately 1,900 seconds for 2 clusters to

nearly 49,600 seconds for 18 clusters (Figure 8). Second, scalability was tested with respect to

the number of formal concepts across four datasets (Balance-Scale, Breast Cancer, Tae, and

Car Evaluation). Here, KVL maintained stable runtimes in the narrow range of 43–46 seconds,

demonstrating strong scalability. On the other hand, KDL performed poorly, with execution

times escalating rapidly and surpassing 2,000 seconds for 8,001 formal concepts (Figures. 9–

10).Summary

− KDL yields conceptually richer clusters by fully exploiting lattice structure, but at high

computational cost.

− KVL offers strong scalability and efficiency, but loses hierarchical nuance.

− Both methods are viable FCA reduction strategies depending on whether the goal is

conceptual fidelity (KDL) or scalability (KVL).

Figure 7. KVL Scalability vs. Cluster Count (Car

Evaluation Dataset with 8001 Concepts)

Figure 8. KVL Scalability with an Increasing

Number of Formal Concepts

Figure 9. KDL Scalability with

Increasing Number of Clusters

Figure 10. KDL Scalability with

Increasing Number of Formal

Concepts

 Thesis booklet

 13

5. Kernel Concepts Selection for Efficient Lattice

Reduction

FCA provides a powerful framework for conceptualization, its derived concept lattices can

become unwieldy, limiting both scalability and insight. Traditional approaches to simplifying

these lattices, be they the removal of redundant elements, structural simplifications, or selective

filtering, can still struggle to accommodate the dynamic, complex nature of many real-world

datasets.

.

Kernel Concept Set Approach

The Kernel Concept Set (KCS) method addresses the inherent complexity of concept

lattices in FCA, particularly when managing extensive lattices where conventional techniques,

such as removing arbitrary elements or selecting objects ad hoc, may overlook critical

structures. KCS focuses on two core attributes of each concept: its frequency and the cost of

deriving one concept from another. Frequency gauges a concept’s prevalence and importance

in the dataset, while the derivation cost assesses the effort required to navigate between

concepts in the lattice.

Central to KCS is the idea of identifying “kernel concepts,” high-frequency concepts

strategically positioned in the lattice. By singling out these pivotal elements, KCS preserves

both structural coherence and meaningful data relationships during lattice simplification.

Furthermore, KCS employs a flexible derivation cost function to measure similarity, thereby

accommodating both the real-world usage level of concepts and their internal structure. This

dual perspective enriches analysis by spotlighting concept clusters and pinpointing the most

essential information within the lattice.

In addition, KCS treats kernel concepts as cluster centroids, making it a powerful clustering

approach for formal concepts. This strategy operates in a general metric space, avoiding the

need for a vector space, and can yield cost savings relative to typical agglomerative methods.

Crucially, KCS not only isolates cluster members but also designates central concepts as cluster

representatives, highlighting the lattice’s crucial “backbone.” Consequently, the KCS method

offers a balanced, efficient means to reduce and interpret large FCA lattices while protecting

the most valuable insights embedded in the data.

Building upon the standard concept lattice model described in Definition 2.5, the Extended

Concept Lattice introduces additional elements to enrich FCA. Specifically, this extension

incorporates two core components:

− A Frequency Value function, reflecting how often each concept appears or how central

it is within the dataset.

− A Derivation Cost function, quantifying the cost or complexity of reaching one concept

from another within the lattice’s structure.

 Thesis booklet

 14

Definition 5.5 (Kernel Concept Set).

An extended lattice 𝔅(𝑑, 𝑓, 𝑑 𝑓) uses these components to identify a Kernel Concept Set 𝐾𝑠
that satisfies the following:

− Capacity Constraint:

|𝐾𝑠| = 𝑆𝑐, where 𝑆𝑐 is a predefined size limit.

− Optimization Constraint:

𝐾𝑠 should minimize the cumulative derivation cost across the lattice. Formally:

𝐾𝑠=𝑎𝑟𝑔𝑚𝑖𝑛𝐾s⊂𝐾{ ∑ 𝑑 𝑓(𝐾s, 𝑐)| |𝐾s| ≤𝑐 ∈𝐾 𝑆𝑐 }.

This enforces an optimal coverage of the concept set using only 𝑆𝑐 kernel concepts.

− Role in Lattice Simplification:

By focusing on these kernel concepts which both appear often (high frequency) and are

strategically positioned (low derivation cost) the approach zeroes in on the lattice’s

structural “backbone.” It thereby condenses the lattice into its most informative subset,

enhancing manageability and preserving core relationships during analysis.

Overall, these definitions provide a systematic framework for extending an FCA concept

lattice with frequency-based prioritization and cost-aware navigation, enabling more powerful

reduction, clustering, and insight extraction in complex or large datasets.

Optimized Greedy Algorithm for Determining a Kernel Concept Set

Optimized Greedy Algorithm (Algorithm 4) efficiently identifies a Kernel Concept Set

(KCS) by selecting a subset of pivotal concepts that minimize total derivation costs across the

lattice. This reduces lattice size and complexity while preserving key structural insights and

interpretability.

Algorithm 4: Optimized Greedy Algorithm

Input:

− Concept Lattice 𝔅 (K, ≤)

− Frequency Value Function 𝑓: 𝐶 → 𝑅+

− Maximum Core Set Size 𝑆𝑐

− Transition Cost: 𝑢𝑝𝑤𝑎𝑟𝑑 ← 2, 𝑑𝑜𝑤𝑛𝑤𝑎𝑟𝑑 ← 1

Output:

− Kernel Concept Set 𝐾𝑠

Algorithm Steps:

1. Initialization:

− Construct the Concept Lattice 𝔅(𝐶, ≤).

 Thesis booklet

 15

− Initialize Kernel Set 𝐾𝑠 as an empty set.

− Assign Frequency Values 𝑓(𝑐) to each concept 𝑐 in the lattice.

2. Ancestors and Descendants Preprocessing:

− For each concept 𝑐 in the lattice, identify its ancestors and descendants.

− Prepare a memoization dictionary to store the minimal derivation costs.

3. Derivation Cost Calculation:

− For each concept 𝑐 in the lattice:

− Use Dijkstra's algorithm to calculate the minimal derivation cost 𝑑 (𝐾𝑠, 𝑐) to every

other concept.

− Store the costs in a structured way for quick retrieval and use memorization to avoid

redundant calculations.

4. Core set identification with Sub-Lattice Optimization:

− Define 𝑆𝑐 as the maximum size for the Kernel set.

− Initialize

𝑏𝑒𝑠𝑡_𝑐𝑜𝑠𝑡 ← ∞, best_candidate ← None.

− Iteratively expand 𝐾𝑠:

− For each candidate concept not in 𝐾𝑠 , construct or retrieve a relevant sub-lattice

Algorithm 5.2.

− Calculate the potential reduction in aggregated derivation cost if the candidate were

added to 𝐾𝑠 .

− Update 𝑏𝑒𝑠𝑡_𝑐𝑜𝑠𝑡 and best_candidate accordingly.

− Add the best_candidate to 𝐾𝑠 and update the cost.

− Continue until ∣𝐾𝑠∣=𝑆𝑐 or no further reduction in cost is possible.

5. Result Analysis:

Return the final 𝐾𝑠 as the kernel concept set that minimizes the aggregated derivation cost while adhering to

the size constraint ∣𝐾𝑠∣=𝑆𝑐.

Algorithmic routines such as sub-lattice construction (presented in Algorithm 5) are crucial

for reducing the size of the problem space:

1. Defining the Sub-Lattice

− Identify a compact subset of concepts (and their interconnections) directly

relevant to the current calculation.

− This subset often centers on the target concept(s) and the kernel set members.

2. Selective Inclusion

− Only nodes (concepts) and edges (relationships) pertinent to the cost evaluation

or kernel set update are included, minimizing overhead.

3. Dynamic Construction

− As the algorithm updates the kernel set or refines potential candidates, sub-

lattices are rebuilt or adjusted to ensure accuracy and relevance.

4. Scalability

− By confining computations to smaller sub-lattices, the method accommodates

lattices of larger overall size without incurring prohibitive computational costs.

Algorithm 5: Steps for Building a Sub-Lattice
1. Initialize Relevant Concepts:

− Start with an empty set to hold all relevant concepts.

− Add the two concepts, 𝐴 and 𝐵, to the relevant concepts set.

2. Add Ancestors and Descendants:

− Include all ancestors of 𝐴 into the relevant concepts set.

− Include all descendants of 𝐴 into the relevant concepts set.

− Repeat the process for node 𝐵, adding both its ancestors and descendants to the relevant concepts set.

3. Create Sub-Lattice:

− Initialize an empty dictionary to represent the sub-lattice.

− For each concept in the relevant concepts set, do the following:

− Initialize an empty list to store the neighbors of the concept.

 Thesis booklet

 16

− Retrieve the list of neighbors from the full lattice dictionary.

− Include a neighbor in the concept's neighbor list only if the neighbor is also in the relevant

concepts set.

− Assign the neighbor list to the concept in the sub-lattice dictionary.

4. Return Sub-Lattice:

− The sub-lattice containing only the relevant concepts and edges is now constructed.

− Return the sub-lattice dictionary.

By applying these optimization methods, the algorithm strategically narrows the scope of

its computations while still preserving a comprehensive view of the lattice. This balanced

approach results in a kernel set that is both cost-effective and representative, exemplifying how

depth and breadth can be maintained in the analysis of large and intricate concept lattices.

Experimental Setup and Methodology

Implementation used Python on macOS (Apple M1, 8 GB RAM, macOS 14.3.1).

Experiments evaluate KCS against K-means Dijkstra on Lattice (KDL) using four real-world

datasets (see Table 2 in your thesis). We assess clustering without labels using Silhouette

Coefficient and Davies–Bouldin Index (DBI).

Across all datasets, KCS consistently surpasses KDL with higher Silhouette and lower DBI,

indicating tighter, better-separated clusters. KCS achieves, for example, 0.406 (Balance-Scale)

and 0.680 (Car Evaluation) in Silhouette, and 1.72 and 1.41 in DBI, respectively. See Figure

11 (Silhouette) and Figure 12 (DBI) for visual comparison.

Why KCS wins. KCS centers clusters around kernel concepts chosen by both frequency

and derivation cost, capturing the lattice’s essential structure. It operates in a general metric

space (no vector conversion), reduces overhead compared to some traditional approaches, and

directly yields cluster hubs (centroids) and memberships.

Figure 11. Silhouette Scores by Dataset and Method.

 Thesis booklet

 17

Figure 12. DBI Scores by Dataset and Method

Using the datasets in Table 2, we compared KCS vs. KDL runtimes as lattice size grows.

Figure 13 shows a marked difference: KDL is acceptable on modest lattices but scales poorly,

while KCS maintains strong efficiency across sizes. Examples: Tae (276 concepts) KDL:

1210.14 s vs. KCS: 9.35 s; Car Evaluation (3596 concepts) KDL: 781,799.93 s vs. KCS:

8,361.93 s.

Figure 13. Comparative Performance Analysis of KCS and KDL Methods Across Diverse Lattice Sizes

Experiment with the Teaching Assistant Evaluation Dataset

The TAE dataset (UCI KDD) records 151 TA assignments with six categorical attributes

(language background, instructor, course type, semester, class size). Transformed to Boolean

form, the formal context has 151 objects × 101 attributes at 0.05 density. Table 5 shows a 10×8

subset; Figure 14 displays the line diagram of the resulting lattice.

Table 5. Formal Context about Subset of Tas Dataset.

C
la

ss
_S

iz
e_

17

En
g_

N
at

_s
pk

_1

En
g_

N
at

_S
pk

_2

Su
m

m
er

_o
r_

Re
gu

la
r_

1

Su
m

m
er

_o
r_

Re
gu

la
r_

2

C
ou

rs
e_

3

C
ou

rs
e_

In
st

ru
ct

or
_1

3

C
o

u
rs

e_
In

st
ru

ct
o

r_
2
3

TA 1 X X X X X

TA 2 X X X X X

 Thesis booklet

 18

TA 3 X X X X X

TA 4 X X X X X

TA 5 X X X X X

TA 6 X X X X X

TA 7 X X X X X

TA 8 X X X X X

TA 9 X X X X X

TA 10 X X X X X

Figure 14. Concept Lattice Derived from the Formal Context of Tae Dataset Table 4.

Applying KCS:

− With 𝑆𝑐=5, KCS selects 14 kernel concepts, total derivation cost 30,808. Two concepts

alone cover 138/151 TAs, surfacing patterns such as non-English-speaking TAs in regular

semesters.

− Increasing to 𝑆𝑐=8% retains those 14 and adds 8 more (22 kernels), reducing cost to

26,768 and revealing finer structure (class sizes, course types, language patterns).

• As 𝑆𝑐 grows from 5% → 20%, cost decreases monotonically (30,808 → 16,132) while

preserving a streamlined structure. See Figure 15.

 Thesis booklet

 19

Figure 15. Trend of Decreasing Derivation Cost with Incremental Expansion of Kernel Set Size (𝑆𝑐)

6. Mining Kernel Concepts: A Cost-Optimized Concept

Set Generation Method

This section introduces a new framework for concept lattice reduction, focusing on an

optimal balance between expressive power and computational feasibility. Unlike conventional

methods that emphasize frequency filters or attribute-based pruning, our model employs a

heuristic and machine learning–assisted strategy to pinpoint a small “kernel” of high-frequency

concepts. These selected kernel concepts form a finite memory structure, with a specialized

mapping function ensuring each concept is uniquely and transparently represented. The method

is further bolstered by a Genetic Algorithm (GA) tasked with optimizing the kernel selection,

aiming to minimize a global generation cost while preserving lattice integrity. Extensive tests

confirm that our GA-based approach outperforms a benchmark Simulated Annealing method

in both speed and scalability. The chapter also demonstrates a linguistic-based cost model for

defining kernel vocabularies, showcasing the versatility of our solution for diverse contexts and

data domains. Our Main Contributions:

− Development of a Novel Reduction Model: We introduce a mechanism that integrates

a derivation cost function with a robust optimization procedure, enabling the

construction of a simplified yet expressive concept lattice.

− Genetic Algorithm with Machine Learning Support: A neural network module predicts

chromosome segment fitness, generating an efficient starting population for the GA,

thus enhancing convergence speed.

− Flexible Probability Distribution for Concept Prioritization: Our system accommodates

various probability distributions 𝑃(𝑠) across concepts, enabling tailored solutions in

domains with different analytical requirements.

− Injective Mapping Function: By ensuring each concept is encoded as a unique word

sequence, the mapping function prevents ambiguity and preserves clarity during lattice

reduction.

Our approach provides multiple benefits that significantly improve both the scalability and

usability of FCA:

 Thesis booklet

 20

− Scalability: Adjustable kernel concept selection through input parameters allows users

to generate compact or more expansive concept sets, matching specific data complexity.

− Approximation of Full Lattice: The resulting kernel concepts effectively approximate

the entire concept lattice, retaining crucial relational patterns while minimizing overall

complexity.

− Enhanced Clarity: The injective mapping function, coupled with the kernel’s high-

frequency elements, yields a more interpretable representation of concepts.

− Cognitive Alignment: Aligning the reduced structure with linguistic and cognitive

principles lowers the mental overhead for understanding and navigating the lattice.

− Adaptability: Configurable memory sets 𝑊𝑀 and selection thresholds facilitate broad

adaptability across various domain-specific vocabularies and semantic demands.

Against this backdrop, the following sections detail the design of our reduction method,

elaborate on the Genetic Algorithm for kernel concept selection, and evaluate the resulting

model through comprehensive experiments.

Proposed Method

To systematically reduce a concept lattice while maintaining both expressiveness and

derivational efficiency, we propose selecting a targeted kernel subset of concepts. Guided by

the compactness and clarity inherent in human language, our method relies on a finite

“memory” of frequently used concepts, applies an injective mapping function to guarantee a

unique representation for each concept, and utilizes optimization algorithms focused on

minimizing overall generation cost. By aligning with cognitive and linguistic principles, this

strategy not only streamlines computational tasks but also enhances the interpretability and

practical utility of the resulting lattice.

We begin by assigning a probability value to every concept in the concept lattice 𝐿 = (𝐶, ≤
), These probabilities form a distribution 𝑝: 𝐶 → [0,1] such that

∑ 𝑝𝑐 = 1
𝑐 ∈𝐶

.

Each probability reflects how frequently a given concept is used. For instance, the concept

“bread” is typically used more often than “petrichor.” In addition to the concept lattice, this

probability distribution serves as an integral part of the input data.

The first step in reducing the concept set relies on probability-based filtering. Specifically,

we introduce a probability threshold 𝑝𝐹. Any concept whose probability value is below this

threshold is removed from consideration, leaving us with the set of frequent concepts,

𝐶𝐹 = {𝑐 ∈ 𝐶| 𝑝(𝑐) ≥ 𝑝𝐹}.

Note that, in general, 𝐶𝐹 does not form a lattice. From 𝐶𝐹, we select a finite subset of

concepts, known as the kernel 𝐶𝑀,

𝐶𝑀 = {𝐶𝑀,1, 𝐶𝑀,2, … , 𝐶𝑀,𝐷} ⊂ 𝐶𝐹, .

 Thesis booklet

 21

where 𝐷 is the size of the kernel set. This finite size is a key attribute: it is chosen based on

the specific requirements of an application and the limitations of available resources, thereby

ensuring representations that are both scalable and manageable. Moreover, the kernel set’s

properties help guarantee its effectiveness and dependability in the model.

The kernel concepts act as special cluster centroids within the target concept set. Clustering,

commonly employed in data analysis, reduces data volume such that subsequent analyses can

target whole clusters rather than individual items, thereby optimizing resource usage. In

particular, conceptual clustering refines standard clustering methods (like k-means or

hierarchical agglomerative clustering) to work with semantic concept domains. In this study,

we use an evolutionary strategy to optimize the positions of the cluster centers.

One application of this kernel concept model lies in refining linguistic concept

representations. In the language model considered here, each kernel concept corresponds to a

single word in the available vocabulary, each of these words is a single-word linguistic unit that

forms the foundation for representing the broader set of concepts.

Kernel Selection Method

Given a kernel set 𝐶𝑀, we define a cost function ℎ𝐶𝑀
:

ℎ𝐶𝑀
: C → ℝ+ .

where,

ℎ𝐶𝑀
(𝑐) = 𝑔({𝑑(𝑐𝑘 ∈ 𝐶𝑀, 𝑐)}).

where 𝑑(𝑐𝑘, 𝑐) represents the cost of deriving a representation of 𝑐 from 𝑐𝑘, and 𝑔 is a

function applied to the set of these distances. A common choice for 𝑔 is the 𝑚𝑖𝑛 function. The

main objective is to identify the kernel that minimizes the overall mapping costs, which is

calculated as

ℎ(𝐶𝑀) = ∑ 𝑝𝑐 ℎ𝐶𝑀
(𝑐)

𝑐 ∈𝐶
.

Additionally, there is a constraint on the size of the kernel set:

|𝐶𝑀| ≤ 𝐾.

where 𝐾 is a predefined integer. Minimizing ℎ(𝐶𝑀) by optimally determining the kernels

𝐶𝑀 is the core goal. Through this approach, we significantly enhance FCA by reducing the

complexity of the concept lattice via a careful selection of key concepts. This, in turn, supports

more efficient knowledge representation and further broadens the potential applications of FCA

across various complex domains.

If, in a particular case, ℎ(𝐶𝑀) is defined as the sum of element-wise costs

ℎ(𝐶𝑀) = ∑ 𝑑(𝑐, 𝑐𝑘)
𝑐𝑘∈𝐶𝑀

.

and taking the following weight value:

 Thesis booklet

 22

𝑤𝑐 = 1,

the problem becomes analogous to the well-known knapsack problem. Specifically, if we

use an indicator variable 𝑥𝑖 to denote whether a concept 𝑐𝑖 is part of the kernel, then the cost

function can be expressed as:

ℎ(𝐶𝑀) = ∑ 𝑝𝑐
𝑐 ∈𝐶

 ∑ 𝑑(𝑐, 𝑖) 𝑥𝑖
𝑖 ∈𝐶

= ∑ (𝑑(𝑐, 𝑖) ∑ 𝑝𝑐)
𝑐∈𝐶

 𝑥𝑖 = ∑ 𝑣𝑖𝑥𝑖
𝑖𝑖 ∈𝐶

,

with a capacity constraint of

∑ 𝑤𝑖𝑥𝑖 ≤ 𝐾
𝑖∈𝐶

.

Since the knapsack problem is NP-complete, we rely on heuristics—Genetic Algorithm

(GA) and Simulated Annealing (SA)—to optimize kernel selection. GA efficiently searches for

near-optimal subsets by balancing exploration with refinement, while SA explores complex

spaces through probabilistic acceptance of neighbor solutions, enabling escape from local

optima and improved results.

Practical Application in Word-Level Concept Representation

In natural language, we use words to describe the concepts that exist in our world. However,

it is evident that not every concept has a dedicated single word; many concepts require more

elaborate descriptions to differentiate them. In this context, words that function as “identifiers”

can be thought of as memory, or kernel concepts. For other concepts, we often rely on a

combination of these memory words when referring to them in conversation. Together with the

kernel set, these additional concepts form the set 𝐶𝐹. As for any remaining concepts, we do not

assign them separate expressions for unique identification. In this work, we utilize the kernel

concept set mining algorithm to tackle the problem of selecting an optimal vocabulary.

To formalize this, let 𝑓 be the mapping function that represents concepts at the word level:

𝑓: 𝐶𝐹 → 𝑊∗.

where 𝑊∗ is the set of all possible word sequences constructed from a finite collection of

words 𝑊. The pool 𝑊 includes the words corresponding to the kernel concepts; we denote 𝑊𝑐

as the word linked to a specific kernel concept 𝑐.

Concerning the cost function ℎ𝐶𝑀
, we take a straightforward approach:

ℎ𝐶𝑀
(𝑐) = |𝑓(𝑐)|,

where |𝑓(𝑐)| indicates the length (in words) of the representation of concept 𝑐. Therefore,

for every 𝑐 ∈ 𝐶𝑀, we have

ℎ𝐶𝑀
(𝑐) = 1.

 Thesis booklet

 23

If we assume 𝐶𝑀 includes all attribute concepts 𝑐𝑎 = ({𝑎}′′, {𝑎}′) and

∀𝑎 ∈ 𝑀: {𝑎} = {𝑎}′′,

then we can specify a unique word-level representation:

𝑓(𝑐) = {𝑓(𝑐𝑘)} ∪ {𝑓(𝑐𝑎)|𝑎 ∈ 𝑎𝑡𝑡𝑟(𝑐) \ 𝑎𝑡𝑡𝑟(𝑐𝑘)} = 𝑊𝑐𝑘
 ∪ {𝑊𝑐𝑎

 |𝑎

∈ 𝑎𝑡𝑡𝑟(𝑐) \ 𝑎𝑡𝑡𝑟(𝑐𝑘)}.

where 𝑐𝑘 denotes the nearest kernel concept to 𝑐, and 𝑎𝑡𝑡𝑟(𝑐) is the set of attributes (the

intent) of 𝑐.

Proposition 1

The above mapping function guarantees an unambiguous representation at the word level.

Example 1

For illustration, consider the Live in Water ontology provided at:

https://upriss.github.io/fca/examples.html. This ontology includes 18 concepts in total. Their

frequencies are compiled in Table A.4 of Appendix A, and the frequency threshold is set at 0.4.

Figure 19 shows the resulting concept lattice; concepts not in 𝐶𝐹 appear with a gray background.

In this scenario, only the “specialization” operation is allowed, so

− 𝑑(𝑐1, 𝑐2) = 1 if is a direct parent of 𝑐2,

− 𝑑(𝑐1, 𝑐2) = ∞ otherwise.

Using these cost settings, the kernel concept mining algorithm yields:

− Kernel concepts: { 8,  9,  15}

− Total cost: 14.66

Within the lattice shown in Figure 7.4, these kernel concept nodes are colored orange.

https://upriss.github.io/fca/examples.html

 Thesis booklet

 24

Figure 19. Structure of the Live in Water Ontology

Attribute Reduction

Although the mapping function introduced above ensures a valid word-level representation,

there might be instances where some elements are redundant. In other words, certain attributes

and words might be superfluous for distinguishing a particular concept, so only a subset of

𝑎𝑡𝑡𝑟(𝑐) ∖ 𝑎𝑡𝑡𝑟(𝑐𝑘) would be needed to create an unambiguous representation. By removing

these unnecessary attributes, we can streamline our overall vocabulary.

The proposed attribute reduction technique uses the attribute relevance test outlined in

Algorithm 7.3. This procedure follows a greedy strategy that identifies redundant attributes in

a loop. Candidate attributes are temporarily deactivated, and we check whether the remaining

attributes in 𝑎𝑡𝑡𝑟(𝑐) ∖ 𝑎𝑡𝑡𝑟(𝑐𝑘) still provide unique sets for all concepts attached to a kernel

concept.

Algorithm 7: Attribute Reduction Algorithm

Input:

 - Concept Lattice: L

 - Kernel Set: P

Output:

 - Reduced 𝑐𝑀 concept set

Procedure:

1. For each kernel concept, gather all items in its cluster along with their respective sets 𝐴(𝑐) = 𝑎𝑡𝑡𝑟(𝑐) ∖ 𝑎𝑡𝑡𝑟(𝑐𝑘).

2. loop on all attributes a ∈ M for relevance test

− For all concepts 𝑐 and for attributes sets in 𝐴(𝑐), we remove 𝑎 from the attribute sets. The result set is denoted by

𝐴′(𝑐).

− We check, whether all sets in 𝐴′(𝑐) are unique or not.

4. . If the reduced set 𝐴′(𝑐) is unique for each concept 𝑐, then we can remove 𝑐 from the kernel set

Example 2

Continuing the Live in Water example, we perform attribute reduction after computing the

“winner” kernel concept for each concept. This computation groups concepts by kernel concept,

forming separate hierarchies whose roots are the kernel concepts. Figure 20 visualizes these

hierarchies.

 Thesis booklet

 25

Figure 20. Structure of the resulted tree structures after selection of the kernel concepts

Figure 21. Word-Level Representation of the Concepts After Attribute Reduction

Next, the algorithm pinpoints redundant attributes, and in this scenario, the attributes

{ 1,  4,  9} are identified as extraneous. With these removed, we obtain a reduced attribute set

and reconstruct the word-level representations of all concepts. Figure 21 illustrates the resulting

representation tree. Here, 𝑊𝑖 denotes the word assigned to each kernel concept, while 𝑤𝑖 stands

for the words of the attribute concepts.

Experimental Evaluation

We implemented the algorithm in Python and ran all experiments on macOS 14.3.1 (Apple

M1, 8 GB RAM). Four UCI datasets Balance Scale, Breast Cancer Wisconsin, Teaching

Assistant Evaluation (Tae), and Car Evaluation were converted to FCA formal contexts by

binarizing categorical variables into Boolean attributes, then used to build their concept lattices

(see Table 2). These datasets differ in size, attribute count, density, and lattice complexity,

providing a comprehensive testbed for performance and scalability. The variation in

objects/attributes and densities stresses the method across both sparse and dense settings,

enabling a robust assessment of scalability, efficiency, and overall effectiveness.

A comprehensive set of experiments evaluated the computational time of the Genetic

Algorithm (GA) and Simulated Annealing (SA) across lattices of varying sizes, differing in

objects, attributes, and densities. An exponential decay distribution P(s) prioritized higher-level

concepts to simulate frequent usage in natural language. Both methods were run under identical

conditions. GA parameters were: population size 100, 50 generations, crossover rate 0.8,

mutation rate 0.05, and tournament size 5. SA parameters were: initial temperature 1500.0, final

 Thesis booklet

 26

temperature 1.0, cooling rate 0.95, and 200 iterations per temperature. Results (Figure 22) show

GA achieves substantial efficiency gains, scaling nearly linearly with lattice size, while SA

grows more steeply. This highlights GA’s stronger scalability and suitability for larger, more

complex lattices.

Figure 22. A Runtime Comparison of Genetic Algorithm (GA) and Simulated Annealing (SA) on Multiple Datasets

This section examines how varying kernel concept sizes (20%, 25%, 30%) affect the Total

Expected Generation Cost in the Car Evaluation dataset (3,542 concepts). Both Genetic

Algorithm (GA) and Simulated Annealing (SA) were tested under consistent parameters.

Results (Table 6, Figure 23) show that as kernel size increases, costs steadily decrease. At 20%,

GA achieved 2.0846 vs. SA’s 2.0932; at 25%, GA 1.9486 vs. SA 1.9612; and at 30%, GA

1.8343 vs. SA 1.8411.

Overall, GA consistently outperformed SA, offering lower costs and demonstrating stronger

scalability. Enlarging kernel size reduced generation costs further, confirming GA’s robustness

and efficiency in simplifying concept lattices while preserving essential structure.

Table 6. Impact of Kernel Concept Size on Optimization Performance of GA and SA

Kernel Concept Size (%) Algorithm Core Concepts Selected Cost of the Kernel

20.0 GA 725 2.08461

20.0 SA 725 2.09324

25.0 GA 901 1.94862

25.0 SA 901 1.96122

30.0 GA 1,077 1.83434

30.0 SA 1,077 1.84108

 Thesis booklet

 27

Figure 23. Variation of Total Generation Cost () with Kernel Concept Size (%) for GA and SA

Figure 24. Average Cost Comparison of GA and SA Across Frequency Distributions

 Thesis booklet

 28

7. Contributions

The main scientific results achieved during the completion of this research are summarized

below in three theses:

Thesis 1

Related Publications: [𝑃1, 𝑃4]

I have introduced two new clustering algorithms for lattice reduction in FCA: K-Means Dijkstra

on Lattice (KDL) and K-Means Vector on Lattice (KVL). Both approaches adapt the standard

k-means clustering framework to the specific structure of concept lattices, where the

relationships between formal concepts are hierarchical rather than purely numerical.

In the case of KDL, the method leverages a Dijkstra-based distance measure that assigns

direction-sensitive costs to lattice traversal, ensuring that concept proximity is measured in

terms of structural and hierarchical effort. This allows clusters to reflect the intrinsic

organization of the lattice, thereby capturing semantic similarity more faithfully.

By contrast, KVL embeds each concept into a vector space representation based on its intent

and attribute frequencies. This transformation enables the direct application of standard k-

means clustering, providing a faster and more computationally scalable alternative while still

preserving meaningful groupings.

Experimental evaluations conducted on benchmark datasets from the UCI Machine Learning

Repository demonstrated that both KDL and KVL improve the balance between fidelity of

conceptual structure and scalability of computation. KDL was shown to be particularly effective

in producing structure-aware clusters, while KVL provided a robust and efficient method for

handling larger datasets. Together, these two algorithms extend FCA into the realm of modern

clustering applications, offering practical solutions for concept lattice reduction.

Thesis 2

Related Publications: [𝑃2, 𝑃1, 𝑃4]

I have introduced the Kernel Concept Set (KCS) approach, a selection-based strategy for

reducing concept lattices by identifying a small but representative subset of formal concepts.

This approach is original to the present research and defines kernel concepts as those that

combine high frequency of occurrence with low derivation cost, making them both semantically

central and computationally efficient.

KCS thus balances two competing objectives: preserving interpretability while reducing

computational complexity. By retaining kernel concepts as structural “anchors,” the lattice can

be effectively approximated without losing essential relationships. This represents a departure

from earlier methods such as iceberg lattices, which rely solely on frequency thresholds and

therefore risk discarding structurally important but less frequent concepts.

Comparative experiments confirmed that KCS yields smaller, more interpretable lattices while

still covering the most significant conceptual structures. Furthermore, the approach enhances

usability by aligning with human cognitive processes of focusing on “core” concepts, making

the reduced lattices easier to visualize and analyze. In this way, KCS offers both theoretical

novelty and practical utility, bridging a gap between efficiency and semantic clarity in lattice

reduction.

 Thesis booklet

 29

Thesis 3

Related Publications: [𝑃3]

I proposed an optimized Genetic Algorithm (GA) solution for mining kernel concepts in FCA.

This method introduces a hybrid strategy where the GA is enhanced by a neural network module

to accelerate fitness evaluation, thereby reducing the computational overhead typically

associated with evolutionary approaches. The genetic optimization process was specifically

tailored to select kernel sets that minimize overall derivation cost while respecting constraints

on set size and interpretability. Through extensive testing on benchmark datasets, the GA-based

method consistently outperformed existing approaches in terms of both efficiency and quality

of selected kernel sets.

Beyond pure efficiency, the method also demonstrated adaptability to application domains such

as computational linguistics, where kernel concepts can be used to represent core semantic

structures in textual data. This illustrates the broader potential of kernel-based reduction beyond

formal lattice theory, highlighting its utility in interdisciplinary research contexts.

Taken together, these three theses establish a coherent research program that advances the state

of the art in Formal Concept Analysis. By introducing two novel clustering methods (KDL and

KVL), formulating the original concept of Kernel Concept Sets, and designing an optimized

evolutionary algorithm for kernel selection, this dissertation provides a comprehensive

framework for scalable and interpretable lattice reduction. The results open pathways for

applying FCA to increasingly complex and large-scale data, bridging theory, computation, and

real-world application.

 Thesis booklet

 30

8. Author’s Publications

Publications Related to the Dissertation

[𝑃1] M. Alwersh and L. Kovács, “K-Means Extensions for Clustering Categorical Data on

Concept Lattice,” International Journal of Advanced Computer Science and

Applications, vol. 14, no. 9, 2023. Scopus Indexed [Q3].

[𝑃2] ALWERSH, Mohammed; KOVÁCS, László. Enhancing Formal Concept Analysis with

the Kernel Concept Set Approach: A Novel Methodology for Efficient Lattice

Reduction. International Journal of Intelligent Engineering & Systems, 2024, 17.4.

Scopus Indexed [Q3].

[𝑃3] L. Kovács and M. Alwersh, “Mining of Kernel Concepts based on Optimization

of Concept Set Generation Costs,” Knowledge and Information Systems,

manuscript submitted for publication and currently under peer review.

Scopus Indexed [Q1].

[𝑃4] M. Alwersh and L. Kovács, “Survey on attribute and concept reduction methods in

formal concept analysis,” Indonesian Journal of Electrical Engineering and Computer

Science, vol. 30, no. 1, pp. 366–387, Apr. 2023, doi: 10.11591/ijeecs.v30.i1.pp366-387.

. Scopus Indexed [Q3].

[𝑃5] ALWERSH, Mohammed; KOVÁCS, László. Fuzzy formal concept analysis:

approaches, applications and issues. Computer Science and Information Technologies,

2022, 3.2: 126-136.

[𝑃6] ALWERSH, Mohammed. Integration of FCA with Fuzzy logic: a

survey. Multidiszciplináris Tudományok, 2021, 11.5: 373-385.

 Thesis booklet

 31

References

[1] R. Wille, “Restructuring lattices theory: an approach on hierarchies of concepts,” 1982, Dordrecht, Holland:

Springer.

[2] S. Roscoe, M. Khatri, A. Voshall, S. Batra, S. Kaur, and J. Deogun, “Formal concept analysis applications

in bioinformatics,” ACM Comput Surv, vol. 55, no. 8, pp. 1–40, 2022.

[3] K. Sumangali and C. A. Kumar, “Critical analysis on open source LMSs using FCA,” International Journal

of Distance Education Technologies (IJDET), vol. 11, no. 4, pp. 97–111, 2013, doi:

10.4018/ijdet.2013100107.

[4] K. Sumangali and C. Aswani Kumar, “Knowledge reduction in formal contexts through CUR matrix

decomposition,” Cybern Syst, vol. 50, no. 5, pp. 465–496, 2019.

[5] R. Ganter and R. Wille, “Formal concept analysis: Mathematical foundations Springer-Verlag Berlin

Germany,” 1999.

[6] J. Poelmans, D. I. Ignatov, S. O. Kuznetsov, and G. Dedene, “Formal concept analysis in knowledge

processing: A survey on applications,” Expert Syst Appl, vol. 40, no. 16, pp. 6538–6560, 2013.

[7] K. Sumangali and C. A. Kumar, “A comprehensive overview on the foundations of formal concept analysis,”

Knowledge Management & E-Learning: An International Journal, vol. 9, no. 4, pp. 512–538, 2017, doi:

10.34105/j.kmel.2017.09.032.

[8] F. Hao, Y. Yang, G. Min, and V. Loia, “Incremental construction of three-way concept lattice for knowledge

discovery in social networks,” Inf Sci (N Y), vol. 578, pp. 257–280, 2021, doi: 10.1016/j.ins.2021.07.031.

[9] J. Medina, “Relating attribute reduction in formal, object-oriented and property-oriented concept lattices,”

Computers & Mathematics with Applications, vol. 64, no. 6, pp. 1992–2002, 2012, doi:

10.1016/j.camwa.2012.03.087.

[10] W. X. Zhang, L. Wei, and J. J. Qi, “Reduction Theory and Approach to Concept Lattice. China Ser,” E

Inform. Sci, vol. 35, pp. 628–639, 2005, doi: 10.1360/122004-104.

[11] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: a review,” ACM computing surveys (CSUR), vol.

31, no. 3, pp. 264–323, 1999.

[12] K. S. K. Cheung and D. Vogel, “Complexity reduction in lattice-based information retrieval,” Inf Retr

Boston, vol. 8, pp. 285–299, 2005.

[13] K. Pang, P. Liu, S. Li, L. Zou, M. Lu, and L. Martínez, “Concept lattice simplification with fuzzy linguistic

information based on three-way clustering,” International Journal of Approximate Reasoning, vol. 154, pp.

149–175, 2023.

[14] A. Körei and S. Radeleczki, “Box elements in a concept lattice,” Contributions to ICFCA, vol. 2006, pp. 41–

56, 2006.

[15] M. Alwersh and L. Kovács, “Survey on attribute and concept reduction methods in formal concept analysis,”

Indonesian Journal of Electrical Engineering and Computer Science, vol. 30, no. 1, pp. 366–387, Apr. 2023,

doi: 10.11591/ijeecs.v30.i1.pp366-387.

[16] G. Stumme, R. Taouil, Y. Bastide, N. Pasquier, and L. Lakhal, “Computing iceberg concept lattices with

titanic,” Data Knowl Eng, vol. 42, no. 2, pp. 189–222, 2002, doi: 10.1016/S0169-023X(02)00057-5.

[17] V. Ganti, J. Gehrke, and R. Ramakrishnan, “CACTUS—clustering categorical data using summaries,” in

Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery and data mining,

1999, pp. 73–83.

[18] S. T. Piantadosi, H. Tily, and E. Gibson, “Word lengths are optimized for efficient communication,”

Proceedings of the National Academy of Sciences, vol. 108, no. 9, pp. 3526–3529, 2011.

[19] S. O. Kuznetsov and S. A. Obiedkov, “Comparing performance of algorithms for generating concept

lattices,” Journal of Experimental & Theoretical Artificial Intelligence, vol. 14, no. 2–3, pp. 189–216, 2002.

[20] F. Beil, M. Ester, and X. Xu, “Frequent term-based text clustering,” in Proceedings of the eighth ACM

SIGKDD international conference on Knowledge discovery and data mining, 2002, pp. 436–442.

[21] R. Poli, M. Healy, and A. Kameas, Theory and applications of ontology: Computer applications. Springer,

2010.

[22] M. Alwersh and L. Kovács, “K-Means Extensions for Clustering Categorical Data on Concept Lattice,”

International Journal of Advanced Computer Science and Applications, vol. 14, no. 9, 2023.

