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Preface 

 

This dissertation embodies a focused endeavor in the realm of knowledge engineering, 

particularly at the intersection of data mining and Formal Concept Analysis (FCA). Since its 

inception in the early 1980s by Rudolf Wille, FCA has been recognized as a powerful 

mathematical tool for representing and analyzing the relationships between objects and 

attributes within formal contexts. By structuring information into concept lattices, hierarchical 

diagrams that capture the relationships between objects and attributes, FCA facilitates the 

discovery of meaningful patterns in diverse fields, including software engineering, information 

retrieval, e-learning systems, bioinformatics, and beyond. 

Yet, as datasets expand in size and complexity, the concept lattices derived from them can 

grow exponentially, posing formidable computational and interpretive challenges. Traditional 

FCA methods, while theoretically elegant, often become computationally intensive and 

cognitively overwhelming, hindering the effective utilization of these structures in large-scale 

data analytics. This dissertation addresses these challenges head-on through a series of three 

integrated contributions, each representing a strategic step toward more scalable, efficient, and 

human-centered FCA methodologies. 

A key groundwork is first laid out, establishing several foundational pillars that guide the 

methods proposed here. These include the notion of kernel concepts, specially chosen concepts 

that serve as anchors for understanding and reducing a concept lattice, alongside an 

asymmetrical distance metric that adapts Dijkstra’s algorithm for cost-aware navigation. A 

baseline greedy framework for concept selection further sets the stage for the more specialized 

methods and cognitively aligned reduction strategies that follow. 

The first contribution introduces two novel extensions of the k-means algorithm, K-Means 

Dijkstra on Lattice (KDL) and K-Means Vector on Lattice (KVL), to adapt clustering-based 

reduction strategies for FCA. KDL leverages the inherent hierarchical structure of categorical 

data by incorporating a graph-based distance measure derived from FCA. This ensures that 

reductions remain faithful to the underlying conceptual relationships, yielding more 

interpretable and structurally consistent lattices. In contrast, KVL transforms formal concepts 

into numerical vectors, allowing the application of conventional k-means clustering at scale. 

While this vectorization simplifies complexity and improves computational efficiency, careful 

consideration is given to preserving lattice quality. Together, KDL and KVL mark an initial 

leap toward practical, data-driven lattice reduction that balances complexity management with 

interpretability. 

Building on these foundations, the second contribution, the Kernel Concept Set (KCS) 

approach proposes a frequency- and cost-based strategy for selecting a core subset of concepts. 

By determining a kernel that covers the most critical and frequently occurring attributes, KCS 

optimizes reduction while maintaining essential structure. This approach goes beyond the first 

step’s clustering-centric views, providing a more refined selection mechanism that directly 

addresses the trade-off between completeness and efficiency. 
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Finally, the third contribution introduces cognitive and linguistic strategies for scalable 

concept lattice reduction. Inspired by human language optimization principles, this model 

employs a finite “vocabulary” of high-frequency conceptual units (kernel concepts) and an 

injective mapping function to ensure each concept is represented uniquely and meaningfully. 

By integrating Genetic Algorithms and Simulated Annealing alongside a learning-based 

module, the model identifies an optimal kernel subset that minimizes total generation cost, a 

measure reflecting both computational and cognitive resources. This interdisciplinary approach 

not only reduces lattice size but also aligns the resulting structures with human cognitive 

processes, making the reduced lattices both computationally feasible and intuitively 

comprehensible. 

Collectively, these three contributions form a coherent research trajectory. Starting from 

harnessing clustering methods for initial complexity control (KDL and KVL), moving through 

a frequency- and cost-informed selection of pivotal concepts (KCS), and culminating in a 

linguistically and cognitively oriented optimization framework, this dissertation offers a 

comprehensive toolkit for addressing the scalability, efficiency, and interpretability challenges 

inherent in FCA. 

By fusing computational heuristics, cognitive insights, and linguistic principles into the FCA 

reduction process, this work advances FCA from a theoretically compelling method to a 

practical, user-aligned analytical framework. It lays the groundwork for broader adoption of 

FCA in large-scale data analysis, equipping researchers and practitioners with strategies to 

navigate, understand, and ultimately derive more meaningful insights from complex and 

voluminous data
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1. Background 

Research Context 

In recent decades, the exponential growth of data across diverse domains such as healthcare, 

finance, e-learning, and social media has created a need for increasingly sophisticated methods 

to extract, represent, and interpret meaningful patterns. The convergence of data mining, 

machine learning, and knowledge engineering has accelerated the search for frameworks that 

not only handle vast amounts of information efficiently but also facilitate human understanding 

of underlying structures and relationships. 

Among these frameworks, Formal Concept Analysis (FCA) has emerged as a 

mathematically rigorous and conceptually rich approach for organizing and interpreting 

complex datasets [1]. FCA operates by mapping data into a concept lattice, a hierarchy of 

formal concepts that encodes relationships between objects and attributes. This structure 

supports clustering, knowledge representation, and discovery of dependencies. However, as 

datasets increase in size and complexity, the derived lattices can grow exponentially. This leads 

to computational demands and interpretability challenges, limiting FCA’s practical use. Large 

lattices overwhelm analysts and require significant computational resources. In fields like 

bioinformatics or software engineering, where datasets are vast and evolving, this problem is 

especially critical [2]. 

These limitations highlight the urgent need for lattice reduction methods that retain essential 

structure and information while discarding redundancies. Such methods make FCA more 

computationally efficient and cognitively accessible. 

 

Problem Statement 

Despite FCA’s potential, its application is hindered by the exponential growth of formal 

concepts, resulting in large and complex lattices. These pose challenges in: 

− Computation – high runtime and memory requirements. 

− Interpretability – dense lattices that are difficult for analysts to navigate. 

− Reliability – oversimplification in some reduction methods, which discard critical 

information. 

Existing reduction techniques (frequency-based pruning, abstraction mechanisms, etc.) often 

lack efficiency, oversimplify the lattice, or fail to improve interpretability. They remain 

fragmented and domain-specific, without a unified framework that integrates computational 

optimization, cognitive strategies, and systematic concept selection. 

Thus, the core problem is to develop robust, scalable, and cognitively aligned lattice 

reduction methodologies that: 

− Improve computational performance, 

− Preserve interpretability and essential relationships, and 

− Adapt flexibly to different datasets and application domains. 
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Research Objectives 

The overarching aim of this dissertation is to advance FCA by making lattice reduction more 

efficient, scalable, and cognitively accessible. The objectives are: 

1. Assess limitations of existing reduction methods in scalability, efficiency, and 

interpretability. 

2. Enhance computational efficiency by designing methods that scale to high-dimensional 

datasets. 

3. Preserve structural integrity, ensuring essential hierarchical relationships remain intact. 

4. Improve interpretability, using principles inspired by human language efficiency to 

identify a minimal, expressive set of core concepts. 

5. Empirically validate the proposed methods using standardized metrics and 

representative datasets. 

Significance of the Study 

This research is significant as it enhances both the theoretical and practical dimensions of 

Formal Concept Analysis (FCA). Theoretically, it introduces refined reduction methodologies 

that address longstanding challenges of computational complexity and interpretability, thereby 

advancing the core understanding of FCA’s scalability. Practically, by producing more 

manageable and cognitively accessible lattices, the work broadens FCA’s usefulness across 

various domains, ranging from knowledge management to data-driven decision-making, 

enabling clearer insights from large and complex datasets. 

 

2. Related Work on Lattice Reduction 

Since its conception by Wille in 1982 [1], FCA has become a powerful framework for 

knowledge extraction and structural data analysis. However, as FCA applications expanded into 

domains such as data mining [3], and social network analysis [8], the complexity of the resulting 

lattices emerged as a central challenge. Large lattices are often computationally demanding and 

cognitively overwhelming, motivating research into reduction techniques. 

Redundancy removal methods eliminate unnecessary objects, attributes, or incidences while 

ensuring that the reduced lattice remains isomorphic to the original [9]. This includes merging 

objects with identical attributes or removing reducible attributes and objects [5]. Other 

strategies, such as the discernibility matrix approach [10], identify minimal subsets of attributes 

while preserving lattice isomorphism. 

Simplification and abstraction methods approximate or restructure lattices to emphasize 

essential features, even at the cost of information loss. Examples include clustering 

objects/attributes [11], matrix factorization techniques like SVD [12]. Further innovations 

involve layered simplifications [13]. A notable abstraction approach is the box lattice [14], 

which isolates atomistic elements relevant to classification systems. 

Selection-based strategies focus on extracting only the most relevant concepts or attributes 

[15]. Among these, the Iceberg Lattice [16] is one of the most influential. It retains only the 

“top-most” frequent concepts by applying a minimum support threshold. Formally, for an 

attribute set 𝐵 ⊆ 𝑀, its support is defined as: 
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𝑠𝑢𝑝𝑝(𝐵) =
∣ 𝐵′ ∣

∣ 𝐺 ∣
 

 

where 𝐵′ is the set of objects possessing 𝐵𝐵𝐵. If 𝑠𝑢𝑝𝑝(𝐵)≥ 𝑚𝑖𝑛𝑠𝑢𝑝, then 𝐵 is considered 

frequent, and frequent concepts form the iceberg lattice. The TITANIC algorithm efficiently 

computes these lattices by pruning search space based on support. In the classic MUSHROOM 

dataset experiment, the full lattice contained 32,086 concepts, but at 85% support, it reduced to 

only the most frequent patterns (e.g., veil type: partial, 100%; veil color: white, 97.62%; gill 

attachment: free, 97.43%). Lower thresholds (70%, 55%) revealed more detailed associations. 

Thus, the iceberg lattice acts as a multi-resolution tool, balancing scalability and 

interpretability. 

Beyond reduction, iceberg lattices have become central to knowledge discovery, enabling 

association rule mining, non-redundant bases, and efficient visualization of otherwise 

intractable datasets. However, they do not consider derivation costs all frequent concepts are 

equally retained, even if some are structurally more central than others. 

Clustering-based approaches have also been explored [17], adapting methods like k-modes 

and its extensions to categorical data and FCA structures. These aim to group related concepts 

into fewer representative ones, though challenges remain in integrating FCA’s hierarchical 

nature. 

Recent research has highlighted the potential of combining cognitive and linguistic 

principles such as the principle of least effort and Zipf’s law [18], to optimize lattices not only 

computationally but also cognitively, making them more aligned with human information 

processing. 

 

3. Foundational Pillars of the Proposed Strategies 

As previously surveyed, many concept lattice reduction techniques have pushed the 

boundaries of FCA’s applicability. However, critical limitations remain: existing methods often 

lack a dynamic understanding of concept interrelations within the lattice and may overlook 

derivation ease how readily one concept can be derived from another crucial to both algorithmic 

efficiency and semantic clarity. Clustering-based reductions frequently rely on geometric 

distance metrics ill-suited to FCA’s relational hierarchy, leading to oversimplified or distorted 

structures. To address these challenges, this dissertation proposes strategies grounded in two 

core pillars: (1) a kernel concepts framework (KCS) and (2) a Dijkstra-based distance on the 

concept lattice.  

Kernel Concepts in Concept Lattices 

 

A kernel concept in FCA is a strategically chosen formal concept within a concept lattice 

that serves as a pivotal “building block” for efficiently representing and deriving other concepts. 

The notion of a kernel concept is introduced in this dissertation as a novel reduction strategy 

within Formal Concept Analysis. While the idea draws inspiration from clustering principles, 

particularly the use of centroids in K-means, the kernel concept framework uniquely adapts this 

principle to the structure of concept lattices. In contrast to frequency-only reductions such as 

iceberg lattices [16], kernel concepts combine structural centrality, frequency, and derivation 

cost into a unified optimization model. Kernel concepts are deliberately selected based on 
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additional criteria to minimize overall complexity. Typically, these criteria involve Frequency 

(how often or how prominently a concept appears) and Derivation Cost (the effort required to 

derive one concept from another). 

Formally, let 𝐶 be the set of all formal concepts and 𝐶𝑀 ⊂ 𝐶 a subset limited by size 

(capacity) ∣ 𝐶𝑀 ∣= 𝑆𝑐. Each concept in 𝐶𝑀 is a kernel concept. The selection minimizes: 

 

𝑚𝑖𝑛{∑ 𝑓(𝑐) 𝑑(𝐶𝑀, 𝑐)| 𝐶𝑀 ⊂ 𝐶 , |𝐶𝑀| =  𝑆𝑐𝑐 ∈𝐶 }, 

where: 

𝑓(𝑐) indicates how “valuable” or “frequent” a concept 𝑐 is, 

𝑑(𝐶𝑀, 𝑐) is the minimal cost to derive concept 𝑐 from any concept in the kernel set 𝐶𝑀. 

Thus kernels act as anchor points (centroids) that can approximate or generate all other concepts 

with minimal overall cost. Kernel concepts serve as the structural backbone of large lattices; 

they reduce computational cost by enabling on-demand derivation of non-kernel concepts; they 

provide a balanced criterion beyond frequency alone by incorporating derivation effort; they 

improve interpretability and usability by offering navigable anchor points; and they facilitate 

downstream analysis (e.g., rule bases, queries) without storing the full lattice. 

 

Dijkstra’s Algorithm on Concept Lattices 

 

     Dijkstra’s algorithm (1959) computes shortest paths in directed, weighted graphs and is 

adapted here to measure structure-aware distances within the concept lattice. In this adapted 

view, vertices are formal concepts and edges represent hierarchical relations (e.g., the partial 

order ≤); weights encode direction (up/down in the lattice), so path costs reflect not only 

frequency but also hierarchical effort. 

 

The symbol ℬ(𝐶, <), and its corresponding graph ℋ(𝐶, 𝐸), where 𝐶 represents the set of 

formal concepts and 𝐸 denotes the edges signifying hierarchical relationships. Let 𝐶𝑠 and 𝐶𝑒 be 

two distinct formal concepts in 𝐶, with 𝐶𝑠 serving as the starting point and 𝐶𝑒 as the endpoint 

for the path calculation. Each concept 𝑐 ∈ 𝐶 has an associated cost 𝑑(𝑐) that represents the cost 

of reaching 𝑐 from 𝐶𝑠. To differentiate the directionality of traversal along the lattice edges, 

two cost parameters are defined: “UpCost” for moving from a concept to a more specific (child) 

concept, and “DownCost” for moving from a concept to a more general (parent) concept. 

Within this framework, the Dijkstra-based distance measure relies on a priority queue Q, 

implemented as a min-heap keyed by 𝑑(𝑐), and a set 𝑉 tracking visited nodes. The cost function 

𝑓: 𝐶 × 𝐶 →  ℝ ∪ {∞} evaluates the cost of moving from one concept c to an adjacent concept 

c′ based on their relation: 

 

𝑓(𝑐, 𝑐′) = {
𝑈𝑝𝐶𝑜𝑠𝑡,       𝑖𝑓 𝑐 ⊇  𝑐′,

𝐷𝑜𝑤𝑛𝐶𝑜𝑠𝑡, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 

 

Combining these costs over a sequence of concepts forms the basis for calculating the 

shortest path. Thus, for all paths (𝑐1, 𝑐2, …, 𝑐𝑛) from 𝐶𝑠 to 𝐶𝑒, the Dijkstra-based distance 

measure 𝑑(𝐶𝑠, 𝐶𝑒) selects the path with the minimal cumulative cost: 
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𝑑(𝐶𝑠, 𝐶𝑒) = 𝑚𝑖𝑛 {  ∑ 𝑓(𝑐𝑖, 𝑐𝑖+1)

𝑛−1

𝑖=1

| (𝑐1, 𝑐2, … , 𝑐𝑛) is a path from 𝐶𝑠 to 𝐶𝑒}, 

 

Here, the measure 𝑑(𝐶𝑠, 𝐶𝑒) represents the minimal cost required to navigate the lattice from 

the starting concept 𝐶𝑠 to the target concept 𝐶𝑒, effectively encapsulating both the structure of 

the concept lattice and the directional constraints inherent in the data’s hierarchy. 

 

4. Clustering-Based Reduction Strategies for FCA 

K-means Dijkstra on Lattice (KDL) 

The K-means Dijkstra on Lattice (KDL) method extends conceptual clustering to 

categorical data by integrating FCA with a customized Dijkstra algorithm. This approach 

leverages the hierarchical structure of concept lattices to ensure that clustering respects 

semantic relationships. 

The process begins with converting categorical data into a formal context, represented as a 

binary incidence matrix. FCA then derives all formal concepts, forming a hierarchical lattice 

that captures attribute-object relationships. To compute distances, directional edge weights are 

assigned within the lattice e.g., downward transitions may cost more than upward ones. These 

weights are used in a modified Dijkstra’s algorithm to determine the shortest paths (conceptual 

distances) between nodes. 

Cluster centers, or kernel concepts, are formal concepts that minimize intra-cluster 

distances. Given a cluster 𝑆 = {𝑐1, . . . , 𝑐|𝑆|}, the centroid 𝑍 is defined as: 

 

𝑍 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑍∈𝑆 (∑ 𝑑(𝑐𝑖, 𝑍)

|𝑆|

𝑖=1

 ). 

where (𝑐𝑖, 𝑍) is the Dijkstra-based distance. This iterative process continues until centroids 

stabilize. 

A key strength of KDL lies in the connectivity of the concept lattice: every concept pair is 

reachable via some path, ensuring the feasibility of distance computation and enabling high-

quality, interpretable clustering. The method efficiently identifies representative concepts that 

preserve both structure and semantics. 

 

 

K-Means Vector on Lattice (KVL) 

The K-means Vector on Lattice (KVL) method transforms categorical data, originally 

structured as formal concepts, into concept description vectors that enable the use of classical 

numerical clustering. Each concept is represented as a vector where each dimension 
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corresponds to an attribute; attributes in the intent are given value 1, while others receive their 

average frequency across all objects. 

 

Definition (Concept Description Vector): 

For a concept 𝑐 = (𝑋, 𝑌) in context = (𝐺, 𝑀, 𝐼), with ∣ 𝑀 ∣= 𝑞 attributes and ∣ 𝐺 ∣= 𝑟 

objects, the description vector is: 

𝑐𝑌 =  (𝑣𝑚1
 , 𝑣𝑚2

 , . . . , 𝑣𝑚𝑞
 ) 

with 

 

𝑣𝑚ℎ
= {

1                                               𝑖𝑓 𝑚ℎ ∈ 𝐵,

1

𝑟
∑ 𝐼(𝑔𝑗, 𝑚ℎ)    𝑖𝑓 𝑚ℎ ∉ 𝐵, ∀ 𝑔𝑗 ∈ 𝐺,

𝑟

𝑗=1

 

This ensures attributes in the intent are fully represented, while others capture their dataset 

prevalence (see Table 1). 

 
Table 1.  Matrix Corresponding to The Relation I 

Objects/Attributes 𝒎𝟏 𝒎𝟐 … 𝒎𝒒 

𝑔1 𝐼(𝑔1, 𝑚1) 𝐼(𝑔1, 𝑚2) … 𝐼(𝑔1, 𝑚𝑞) 

𝑔2 𝐼(𝑔2, 𝑚1) 𝐼(𝑔2, 𝑚2) … 𝐼(𝑔2, 𝑚𝑞) 

… … … … … 

𝑔𝑟 𝐼(𝑔𝑟, 𝑚1) 𝐼(𝑔𝑟, 𝑚2) … 𝐼(𝑔𝑟, 𝑚𝑞) 

 

Definition . Concept Similarity (CS): 

Let 

𝑉𝑐1
 =  (𝑉𝑐1𝑚1

 , 𝑉𝑐1𝑚2
 , … , 𝑉𝑐1𝑚𝑞

  ). 

and 

𝑉𝑐2
 =  (𝑉𝑐2𝑚1

 , 𝑉𝑐2𝑚2
 , … , 𝑉𝑐2𝑚𝑞

  ). 

be the concept description vectors of two distinct concepts 𝑐1 and 𝑐2. The Euclidean 

distance, which serves as the basis for CS, is given by: 

 

𝐶𝑆(𝑉𝑐1
, 𝑉𝑐2

)=√(𝑉𝑐1𝑚1
 −  𝑉𝑐2𝑚1

 )
2

 +  (𝑉𝑐1𝑚2
 −  𝑉𝑐2𝑚2

 )
2

 + . . . + (𝑉𝑐1𝑚𝑞
−  𝑉𝑐2𝑚𝑞

 )
2

 . 

 

 

Armed with the concept description vectors and the associated similarity measure, we can 

apply the classical k-means clustering algorithm. In this process, each concept description 

vector is treated as a data point in a q-dimensional space. The algorithm groups these vectors 

into 𝑘 clusters such that concepts within the same cluster share greater similarity than those in 
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different clusters. Each cluster has a centroid 𝑍𝑖, defined as the mean of all concept description 

vectors assigned to that cluster: 

𝑍𝑖 =
1

|𝑆𝑖|
∑ 𝑉𝑌𝑗

|𝑆𝑖|

𝑗=1

, 𝑉𝑌𝑗
∈  𝑆𝑖. 

where 𝑆𝑖 is the set of concept description vectors in the i-th cluster. 

The objective of k-means is to minimize the within-cluster sum of squared distances 

(WCSS) from each concept description vector to its corresponding centroid:  

 

Q = ∑ ∑ ||𝑉𝑌𝑗
− 𝑍𝑖||2

|𝑆𝑖|

𝑗=1

𝑘

𝑖=1

, 

where: 

− 𝑆𝑖 is the set of concept description vectors assigned to the i-th cluster, 

− 𝑍𝑖 is the centroid of cluster 𝑖, defined as the mean of all vectors in 𝑆𝑖, and 

− ∥⋅∥ denotes the Euclidean norm. 

By repeatedly assigning vectors to their nearest centroids (based on the CS measure) and 

then recalculating the centroids, the algorithm proceeds until it converges to a stable 

configuration, thereby optimally partitioning the concept vectors into coherent, meaningful 

clusters. 

 

Clustering Algorithm 

The clustering procedure unfolds as follows. Consider a formal context 𝑇 = (𝐺, 𝑀, 𝐼)  and 

let 𝑉(𝑇) represent the set of all derived concept description vectors. Suppose we aim to form 𝐾 

clusters. Initially, randomly select 𝐾 initial centroids, 𝑍𝑡
0= (𝐴𝑡, 𝐵𝑡) for (𝑡 = 1,2, . . . 𝐾), each 

corresponding to a preliminary cluster 𝑆𝑡
0= {𝑍𝑡

0}. 

Next, assign each concept description vector 𝑣 ∈ 𝑉(𝑇) to the cluster whose current centroid 

is nearest to 𝑣 based on the chosen distance measure. After this initial assignment, recompute 

each cluster’s centroid by taking the average of all vectors assigned to it, thereby updating each 

cluster center. 

This reassignment and centroid calculation process is repeated iteratively. In each iteration, 

vectors may shift clusters if doing so reduces the overall clustering cost. The process continues 

until the cluster memberships and their centroids remain stable across consecutive iterations, 

indicating that the algorithm has converged. The algorithm steps are as follows: 

 
Algorithm 2. K-means clustering of concepts 
 

Input: All the description vectors of concepts in 𝑉( 𝑇), 𝐾.  

Output: The clusters and corresponding centers.  

Initialize: 

Set 𝑆1
𝑖 ← ∅, 𝑆2

𝑖 ← ∅, ..., 𝑆𝑘
𝑖 ← ∅; 

 𝑖 ← 0,  
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Select initial center vectors of 𝐾 clusters: 𝑍1
𝑖 , 𝑍2

𝑖 ,…, 𝑍𝑘
𝑖 ;  

Assignment: 
𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑣 ∈ 𝑉(𝑇) 𝑑𝑜:  

-Find 𝑡 such that 𝐶𝑆(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒)(𝑣, 𝑍𝑡
𝑖) ≤ 𝐶𝑆(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒)(𝑣, 𝑍𝑗

𝑖),  (𝑗 =

1,2, … , 𝑘) then, 

𝑣 ∈ 𝑆𝑡
𝑖; 

𝐸𝑛𝑑𝐹𝑜𝑟 

Centroid Update: 

𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑆𝑡
𝑖 𝑑𝑜: 

 𝑍𝑡
𝑖+1 =

1

|𝑆𝑡|
∑ 𝑣𝑠 ,

|𝑆𝑡|
𝑠=1 𝑣𝑠 ∈ 𝑆𝑡 

 𝑆𝑡
𝑖+1={𝑣 ∈ 𝑉(𝑇)|𝐶𝑆(𝑣, 𝑍𝑡

𝑖+1) ≤ 𝐶𝑆(𝑣, 𝑍𝑗
𝑖+1)}                             

𝐸𝑛𝑑𝐹𝑜𝑟 

Convergence Check: 

𝐼𝑓 𝑍𝑡
𝑖=𝑍𝑡

𝑖+1, 𝑆𝑡
𝑖=𝑆𝑡

𝑖+1 , 𝑡 = 1,2, . . . , 𝐾, 𝑡ℎ𝑒𝑛 

         Go to “Stop and output the clusters”.  

Else:  

           𝑖 = 𝑖 +  1,  

           Go to “Repeat the assignment step”.  

Output: clusters 𝑆1
𝑖 , 𝑆2

𝑖 , ..., 𝑆𝑘
𝑖  and the corresponding centers 𝑍1

𝑖 , 𝑍2
𝑖 , …, 𝑍𝑘

𝑖 . 

 

 

Once the clustering process is complete and stable clusters are formed, the concept 

description vectors in each cluster can be mapped back to their corresponding original concepts 

from the formal context. This backward mapping leverages the initial construction of concept 

description vectors, ensuring that the clustering results can be interpreted and analyzed in terms 

of the actual concepts they represent. 

 

Algorithm 3: Mapping Description Vectors Back to Original Concepts 
 

Input: The clusters 𝑆1
𝑖 , 𝑆2

𝑖 , …, 𝑆𝑘
𝑖  and the corresponding centers 𝑍1

𝑖 , 𝑍2
𝑖 ,…, 𝑍𝑘

𝑖 .  

Output: Clusters of original concepts. 

Initialize: 

For each 𝑡 = 1 to 𝐾, set 𝑁𝑆𝑡 = ∅, 
Mapping: 

For each vector 𝑣 ∈ 𝑆𝑡
𝑖: 

− Retrieve the corresponding original concept 𝑐 associated with vector 𝑣  
− Add concept 𝐶 to 𝑁𝑆𝑡 

Output: the new clusters 𝑁𝑆1, 𝑁𝑆2, … 𝑁𝑆𝑘, each containing the original concepts. 

 

 

This approximation and mapping technique enables efficient and interpretable clustering of 

concepts within a given context, thereby clarifying the intricate relationships and similarities 

among the different concepts. 

 

Experimental Results 

The experiments evaluated the effectiveness and scalability of the Dijkstra-Based Distance 

Measure and the two clustering approaches: K-means Dijkstra on Lattice (KDL) and K-means 

Vector on Lattice (KVL). All algorithms were implemented in Python (3.11) with NetworkX, 

scikit-learn, and Matplotlib. Formal concepts were generated using a tailored NextClosure 

routine and lattices were constructed with iPred. 

Results show that runtime grows with lattice size (Figure 1), while mean distance behaves 

non-linearly, sometimes peaking in mid-sized, fragmented lattices (Figure 2). Real datasets 

revealed similar patterns (Figures. 3– 4): 
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− Car Evaluation: large lattice but shorter mean distances due to dense interconnections. 

− Balance-Scale & Breast Cancer: fewer concepts but longer paths, reflecting fragmented 

lattices. 

These findings confirm that the Dijkstra-based measure captures structural coherence, density 

effects, and topological differences more robustly than Euclidean alternatives. 

          
                                                                                 

 

 

          
 

 

Cluster quality was evaluated with the Silhouette Coefficient and Davies–Bouldin Index 

(DBI). 

− KDL consistently outperformed KVL: higher Silhouette scores (Figure 5) and lower 

DBI values (Figure 6). 

− Example: On Car Evaluation, KDL achieved a Silhouette of 0.563 vs. 0.106 for KVL. 

− This demonstrates that KDL better preserves conceptual structure, while KVL’s vector 

simplification sacrifices interpretability. 

 
Figure 5. Silhouette Scores by Dataset and Method 

Figure 1. Average Runtime vs. Lattice Size for 

Random Contexts 

 

Figure 2. Mean Distance vs. Lattice Size for 

Random Contexts 

Figure 3. Average Runtime vs. Lattice Size for 

Real-World Datasets 

 

Figure 4.. Mean Distance vs. Lattice Size for 

Real-World Datasets 
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Figure 6. DBI Scores by Dataset and Method 

 

Scalability was examined from two perspectives. First, when varying the number of clusters 

from 2 to 18 on the Car Evaluation dataset, the KVL method exhibited almost linear growth, 

with runtimes remaining efficient between 44 and 52 seconds (Figure 7). In contrast, the KDL 

method showed a steep increase, rising from approximately 1,900 seconds for 2 clusters to 

nearly 49,600 seconds for 18 clusters (Figure 8). Second, scalability was tested with respect to 

the number of formal concepts across four datasets (Balance-Scale, Breast Cancer, Tae, and 

Car Evaluation). Here, KVL maintained stable runtimes in the narrow range of 43–46 seconds, 

demonstrating strong scalability. On the other hand, KDL performed poorly, with execution 

times escalating rapidly and surpassing 2,000 seconds for 8,001 formal concepts (Figures. 9–

10).Summary 

− KDL yields conceptually richer clusters by fully exploiting lattice structure, but at high 

computational cost. 

− KVL offers strong scalability and efficiency, but loses hierarchical nuance. 

− Both methods are viable FCA reduction strategies depending on whether the goal is 

conceptual fidelity (KDL) or scalability (KVL). 

           
 
 

 

                    

Figure 7. KVL Scalability vs. Cluster Count (Car 

Evaluation Dataset with 8001 Concepts) 

 

Figure 8. KVL Scalability with an Increasing 

Number of Formal Concepts 

 

Figure 9.  KDL Scalability with 

Increasing Number of Clusters 

 

Figure 10. KDL Scalability with 

Increasing Number of Formal 

Concepts 
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5. Kernel Concepts Selection for Efficient Lattice 

Reduction 

FCA provides a powerful framework for conceptualization, its derived concept lattices can 

become unwieldy, limiting both scalability and insight. Traditional approaches to simplifying 

these lattices, be they the removal of redundant elements, structural simplifications, or selective 

filtering, can still struggle to accommodate the dynamic, complex nature of many real-world 

datasets. 

. 

 

Kernel Concept Set Approach 

The Kernel Concept Set (KCS) method addresses the inherent complexity of concept 

lattices in FCA, particularly when managing extensive lattices where conventional techniques, 

such as removing arbitrary elements or selecting objects ad hoc, may overlook critical 

structures. KCS focuses on two core attributes of each concept: its frequency and the cost of 

deriving one concept from another. Frequency gauges a concept’s prevalence and importance 

in the dataset, while the derivation cost assesses the effort required to navigate between 

concepts in the lattice. 

Central to KCS is the idea of identifying “kernel concepts,” high-frequency concepts 

strategically positioned in the lattice. By singling out these pivotal elements, KCS preserves 

both structural coherence and meaningful data relationships during lattice simplification. 

Furthermore, KCS employs a flexible derivation cost function to measure similarity, thereby 

accommodating both the real-world usage level of concepts and their internal structure. This 

dual perspective enriches analysis by spotlighting concept clusters and pinpointing the most 

essential information within the lattice. 

In addition, KCS treats kernel concepts as cluster centroids, making it a powerful clustering 

approach for formal concepts. This strategy operates in a general metric space, avoiding the 

need for a vector space, and can yield cost savings relative to typical agglomerative methods. 

Crucially, KCS not only isolates cluster members but also designates central concepts as cluster 

representatives, highlighting the lattice’s crucial “backbone.” Consequently, the KCS method 

offers a balanced, efficient means to reduce and interpret large FCA lattices while protecting 

the most valuable insights embedded in the data. 

Building upon the standard concept lattice model described in Definition 2.5, the Extended 

Concept Lattice introduces additional elements to enrich FCA. Specifically, this extension 

incorporates two core components: 

− A Frequency Value function, reflecting how often each concept appears or how central 

it is within the dataset. 

− A Derivation Cost function, quantifying the cost or complexity of reaching one concept 

from another within the lattice’s structure. 
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Definition 5.5 (Kernel Concept Set). 

An extended lattice 𝔅(𝑑, 𝑓, 𝑑 𝑓) uses these components to identify a Kernel Concept Set 𝐾𝑠  
that satisfies the following: 

− Capacity Constraint: 

|𝐾𝑠| = 𝑆𝑐, where 𝑆𝑐 is a predefined size limit. 

− Optimization Constraint: 

𝐾𝑠 should minimize the cumulative derivation cost across the lattice. Formally: 

𝐾𝑠=𝑎𝑟𝑔𝑚𝑖𝑛𝐾s⊂𝐾{ ∑ 𝑑 𝑓(𝐾s, 𝑐)| |𝐾s| ≤𝑐 ∈𝐾  𝑆𝑐 }. 

This enforces an optimal coverage of the concept set using only 𝑆𝑐 kernel concepts. 

− Role in Lattice Simplification: 

By focusing on these kernel concepts which both appear often (high frequency) and are 

strategically positioned (low derivation cost) the approach zeroes in on the lattice’s 

structural “backbone.” It thereby condenses the lattice into its most informative subset, 

enhancing manageability and preserving core relationships during analysis. 

Overall, these definitions provide a systematic framework for extending an FCA concept 

lattice with frequency-based prioritization and cost-aware navigation, enabling more powerful 

reduction, clustering, and insight extraction in complex or large datasets. 

Optimized Greedy Algorithm for Determining a Kernel Concept Set 

Optimized Greedy Algorithm (Algorithm 4) efficiently identifies a Kernel Concept Set 

(KCS) by selecting a subset of pivotal concepts that minimize total derivation costs across the 

lattice. This reduces lattice size and complexity while preserving key structural insights and 

interpretability. 

 
Algorithm 4: Optimized Greedy Algorithm 

Input: 

− Concept Lattice 𝔅 (K, ≤) 

− Frequency Value Function 𝑓: 𝐶 →  𝑅+ 

− Maximum Core Set Size 𝑆𝑐 

− Transition Cost: 𝑢𝑝𝑤𝑎𝑟𝑑 ←  2, 𝑑𝑜𝑤𝑛𝑤𝑎𝑟𝑑 ←  1 

Output: 

− Kernel Concept Set 𝐾𝑠 

Algorithm Steps: 

1. Initialization: 

− Construct the Concept Lattice 𝔅(𝐶, ≤). 
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− Initialize Kernel Set 𝐾𝑠 as an empty set. 

− Assign Frequency Values 𝑓(𝑐) to each concept 𝑐 in the lattice. 

2. Ancestors and Descendants Preprocessing: 

− For each concept 𝑐 in the lattice, identify its ancestors and descendants. 

− Prepare a memoization dictionary to store the minimal derivation costs. 

3. Derivation Cost Calculation: 

− For each concept 𝑐 in the lattice: 

− Use Dijkstra's algorithm to calculate the minimal derivation cost 𝑑 (𝐾𝑠, 𝑐)  to every 

other concept. 

− Store the costs in a structured way for quick retrieval and use memorization to avoid 

redundant calculations. 

4. Core set identification with Sub-Lattice Optimization: 

− Define 𝑆𝑐 as the maximum size for the Kernel set. 

− Initialize  

𝑏𝑒𝑠𝑡_𝑐𝑜𝑠𝑡 ← ∞,  best_candidate ← None. 

− Iteratively expand 𝐾𝑠: 

− For each candidate concept not in 𝐾𝑠 , construct or retrieve a relevant sub-lattice 

Algorithm 5.2. 

− Calculate the potential reduction in aggregated derivation cost if the candidate were 

added to 𝐾𝑠 . 

− Update 𝑏𝑒𝑠𝑡_𝑐𝑜𝑠𝑡 and best_candidate accordingly. 

− Add the best_candidate to 𝐾𝑠  and update the cost. 

− Continue until ∣𝐾𝑠∣=𝑆𝑐 or no further reduction in cost is possible. 

5. Result Analysis:  

Return the final 𝐾𝑠 as the kernel concept set that minimizes the aggregated derivation cost while adhering to 

the size constraint ∣𝐾𝑠∣=𝑆𝑐. 

 

Algorithmic routines such as sub-lattice construction (presented in Algorithm 5) are crucial 

for reducing the size of the problem space: 

1. Defining the Sub-Lattice 

− Identify a compact subset of concepts (and their interconnections) directly 

relevant to the current calculation. 

− This subset often centers on the target concept(s) and the kernel set members. 

2. Selective Inclusion 

− Only nodes (concepts) and edges (relationships) pertinent to the cost evaluation 

or kernel set update are included, minimizing overhead. 

3. Dynamic Construction 

− As the algorithm updates the kernel set or refines potential candidates, sub-

lattices are rebuilt or adjusted to ensure accuracy and relevance. 

4. Scalability 

− By confining computations to smaller sub-lattices, the method accommodates 

lattices of larger overall size without incurring prohibitive computational costs. 

Algorithm 5: Steps for Building a Sub-Lattice 
1. Initialize Relevant Concepts: 

− Start with an empty set to hold all relevant concepts. 

− Add the two concepts, 𝐴 and 𝐵, to the relevant concepts set. 

2. Add Ancestors and Descendants: 

− Include all ancestors of 𝐴 into the relevant concepts set. 

− Include all descendants of 𝐴 into the relevant concepts set. 

− Repeat the process for node 𝐵, adding both its ancestors and descendants to the relevant concepts set. 

3. Create Sub-Lattice: 

− Initialize an empty dictionary to represent the sub-lattice. 

− For each concept in the relevant concepts set, do the following: 

− Initialize an empty list to store the neighbors of the concept. 
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− Retrieve the list of neighbors from the full lattice dictionary. 

− Include a neighbor in the concept's neighbor list only if the neighbor is also in the relevant 

concepts set. 

− Assign the neighbor list to the concept in the sub-lattice dictionary. 

4. Return Sub-Lattice: 

− The sub-lattice containing only the relevant concepts and edges is now constructed. 

− Return the sub-lattice dictionary. 

By applying these optimization methods, the algorithm strategically narrows the scope of 

its computations while still preserving a comprehensive view of the lattice. This balanced 

approach results in a kernel set that is both cost-effective and representative, exemplifying how 

depth and breadth can be maintained in the analysis of large and intricate concept lattices. 

Experimental Setup and Methodology 

Implementation used Python on macOS (Apple M1, 8 GB RAM, macOS 14.3.1). 

Experiments evaluate KCS against K-means Dijkstra on Lattice (KDL) using four real-world 

datasets (see Table 2 in your thesis). We assess clustering without labels using Silhouette 

Coefficient and Davies–Bouldin Index (DBI). 

Across all datasets, KCS consistently surpasses KDL with higher Silhouette and lower DBI, 

indicating tighter, better-separated clusters. KCS achieves, for example, 0.406 (Balance-Scale) 

and 0.680 (Car Evaluation) in Silhouette, and 1.72 and 1.41 in DBI, respectively. See Figure 

11 (Silhouette) and Figure 12 (DBI) for visual comparison. 

Why KCS wins. KCS centers clusters around kernel concepts chosen by both frequency 

and derivation cost, capturing the lattice’s essential structure. It operates in a general metric 

space (no vector conversion), reduces overhead compared to some traditional approaches, and 

directly yields cluster hubs (centroids) and memberships. 

 
Figure 11.  Silhouette Scores by Dataset and Method. 
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Figure 12.  DBI Scores by Dataset and Method 

Using the datasets in Table 2, we compared KCS vs. KDL runtimes as lattice size grows. 

Figure 13 shows a marked difference: KDL is acceptable on modest lattices but scales poorly, 

while KCS maintains strong efficiency across sizes. Examples: Tae (276 concepts) KDL: 

1210.14 s vs. KCS: 9.35 s; Car Evaluation (3596 concepts) KDL: 781,799.93 s vs. KCS: 

8,361.93 s. 

 

 
Figure 13. Comparative Performance Analysis of KCS and KDL Methods Across Diverse Lattice Sizes 

 

Experiment with the Teaching Assistant Evaluation Dataset 

The TAE dataset (UCI KDD) records 151 TA assignments with six categorical attributes 

(language background, instructor, course type, semester, class size). Transformed to Boolean 

form, the formal context has 151 objects × 101 attributes at 0.05 density. Table 5 shows a 10×8 

subset; Figure 14 displays the line diagram of the resulting lattice.  

 
Table 5. Formal Context about Subset of Tas Dataset. 
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TA 3 X  X  X X X  

TA 4 X  X X  X  X 

TA 5 X X   X X X  

TA 6 X  X  X X  X 

TA 7 X  X  X X  X 

TA 8 X X  X  X X  

TA 9 X X  X  X X  

TA 10 X X  X  X X  

 

 

Figure 14.  Concept Lattice Derived from the Formal Context of Tae Dataset Table 4. 

Applying KCS: 

− With 𝑆𝑐=5, KCS selects 14 kernel concepts, total derivation cost 30,808. Two concepts 

alone cover 138/151 TAs, surfacing patterns such as non-English-speaking TAs in regular 

semesters. 

− Increasing to 𝑆𝑐=8% retains those 14 and adds 8 more (22 kernels), reducing cost to 

26,768 and revealing finer structure (class sizes, course types, language patterns). 

• As 𝑆𝑐 grows from 5% → 20%, cost decreases monotonically (30,808 → 16,132) while 

preserving a streamlined structure. See Figure 15. 
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Figure 15. Trend of Decreasing Derivation Cost with Incremental Expansion of Kernel Set Size (𝑆𝑐) 

 

6. Mining Kernel Concepts: A Cost-Optimized Concept 

Set Generation Method 

This section introduces a new framework for concept lattice reduction, focusing on an 

optimal balance between expressive power and computational feasibility. Unlike conventional 

methods that emphasize frequency filters or attribute-based pruning, our model employs a 

heuristic and machine learning–assisted strategy to pinpoint a small “kernel” of high-frequency 

concepts. These selected kernel concepts form a finite memory structure, with a specialized 

mapping function ensuring each concept is uniquely and transparently represented. The method 

is further bolstered by a Genetic Algorithm (GA) tasked with optimizing the kernel selection, 

aiming to minimize a global generation cost while preserving lattice integrity. Extensive tests 

confirm that our GA-based approach outperforms a benchmark Simulated Annealing method 

in both speed and scalability. The chapter also demonstrates a linguistic-based cost model for 

defining kernel vocabularies, showcasing the versatility of our solution for diverse contexts and 

data domains. Our Main Contributions: 

− Development of a Novel Reduction Model: We introduce a mechanism that integrates 

a derivation cost function with a robust optimization procedure, enabling the 

construction of a simplified yet expressive concept lattice. 

− Genetic Algorithm with Machine Learning Support: A neural network module predicts 

chromosome segment fitness, generating an efficient starting population for the GA, 

thus enhancing convergence speed. 

− Flexible Probability Distribution for Concept Prioritization: Our system accommodates 

various probability distributions 𝑃(𝑠) across concepts, enabling tailored solutions in 

domains with different analytical requirements. 

− Injective Mapping Function: By ensuring each concept is encoded as a unique word 

sequence, the mapping function prevents ambiguity and preserves clarity during lattice 

reduction. 

Our approach provides multiple benefits that significantly improve both the scalability and 

usability of FCA: 
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− Scalability: Adjustable kernel concept selection through input parameters allows users 

to generate compact or more expansive concept sets, matching specific data complexity. 

− Approximation of Full Lattice: The resulting kernel concepts effectively approximate 

the entire concept lattice, retaining crucial relational patterns while minimizing overall 

complexity. 

− Enhanced Clarity: The injective mapping function, coupled with the kernel’s high-

frequency elements, yields a more interpretable representation of concepts. 

− Cognitive Alignment: Aligning the reduced structure with linguistic and cognitive 

principles lowers the mental overhead for understanding and navigating the lattice. 

− Adaptability: Configurable memory sets 𝑊𝑀 and selection thresholds facilitate broad 

adaptability across various domain-specific vocabularies and semantic demands. 

Against this backdrop, the following sections detail the design of our reduction method, 

elaborate on the Genetic Algorithm for kernel concept selection, and evaluate the resulting 

model through comprehensive experiments. 

 

Proposed Method 

To systematically reduce a concept lattice while maintaining both expressiveness and 

derivational efficiency, we propose selecting a targeted kernel subset of concepts. Guided by 

the compactness and clarity inherent in human language, our method relies on a finite 

“memory” of frequently used concepts, applies an injective mapping function to guarantee a 

unique representation for each concept, and utilizes optimization algorithms focused on 

minimizing overall generation cost. By aligning with cognitive and linguistic principles, this 

strategy not only streamlines computational tasks but also enhances the interpretability and 

practical utility of the resulting lattice. 

We begin by assigning a probability value to every concept in the concept lattice 𝐿 = (𝐶, ≤
), These probabilities form a distribution 𝑝: 𝐶 → [0,1] such that 

∑ 𝑝𝑐 = 1
𝑐 ∈𝐶

. 

Each probability reflects how frequently a given concept is used. For instance, the concept 

“bread” is typically used more often than “petrichor.” In addition to the concept lattice, this 

probability distribution serves as an integral part of the input data. 

The first step in reducing the concept set relies on probability-based filtering. Specifically, 

we introduce a probability threshold 𝑝𝐹. Any concept whose probability value is below this 

threshold is removed from consideration, leaving us with the set of frequent concepts, 

𝐶𝐹 = {𝑐 ∈  𝐶| 𝑝(𝑐) ≥ 𝑝𝐹}. 

Note that, in general, 𝐶𝐹 does not form a lattice. From 𝐶𝐹, we select a finite subset of 

concepts, known as the kernel 𝐶𝑀, 

𝐶𝑀 = {𝐶𝑀,1, 𝐶𝑀,2, … , 𝐶𝑀,𝐷} ⊂ 𝐶𝐹, . 
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where 𝐷 is the size of the kernel set. This finite size is a key attribute: it is chosen based on 

the specific requirements of an application and the limitations of available resources, thereby 

ensuring representations that are both scalable and manageable. Moreover, the kernel set’s 

properties help guarantee its effectiveness and dependability in the model. 

The kernel concepts act as special cluster centroids within the target concept set. Clustering, 

commonly employed in data analysis, reduces data volume such that subsequent analyses can 

target whole clusters rather than individual items, thereby optimizing resource usage. In 

particular, conceptual clustering refines standard clustering methods (like k-means or 

hierarchical agglomerative clustering) to work with semantic concept domains. In this study, 

we use an evolutionary strategy to optimize the positions of the cluster centers. 

One application of this kernel concept model lies in refining linguistic concept 

representations. In the language model considered here, each kernel concept corresponds to a 

single word in the available vocabulary, each of these words is a single-word linguistic unit that 

forms the foundation for representing the broader set of concepts. 

 

Kernel Selection Method 

Given a kernel set 𝐶𝑀, we define a cost function ℎ𝐶𝑀
: 

ℎ𝐶𝑀
: C →  ℝ+  . 

where, 

ℎ𝐶𝑀
(𝑐) = 𝑔({𝑑(𝑐𝑘 ∈ 𝐶𝑀, 𝑐 )}). 

where 𝑑(𝑐𝑘, 𝑐 ) represents the cost of deriving a representation of 𝑐 from 𝑐𝑘, and 𝑔 is a 

function applied to the set of these distances. A common choice for 𝑔 is the 𝑚𝑖𝑛 function. The 

main objective is to identify the kernel that minimizes the overall mapping costs, which is 

calculated as 

ℎ(𝐶𝑀) = ∑ 𝑝𝑐 ℎ𝐶𝑀
(𝑐)

𝑐 ∈𝐶
. 

Additionally, there is a constraint on the size of the kernel set: 

|𝐶𝑀|  ≤ 𝐾. 

where 𝐾 is a predefined integer. Minimizing ℎ(𝐶𝑀) by optimally determining the kernels 

𝐶𝑀 is the core goal. Through this approach, we significantly enhance FCA by reducing the 

complexity of the concept lattice via a careful selection of key concepts. This, in turn, supports 

more efficient knowledge representation and further broadens the potential applications of FCA 

across various complex domains. 

If, in a particular case, ℎ(𝐶𝑀) is defined as the sum of element-wise costs 

ℎ(𝐶𝑀) = ∑ 𝑑(𝑐, 𝑐𝑘)
𝑐𝑘∈𝐶𝑀

. 

and taking the following weight value:  
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𝑤𝑐  =  1, 

the problem becomes analogous to the well-known knapsack problem. Specifically, if we 

use an indicator variable 𝑥𝑖 to denote whether a concept 𝑐𝑖 is part of the kernel, then the cost 

function can be expressed as: 

ℎ(𝐶𝑀) = ∑ 𝑝𝑐
𝑐 ∈𝐶

 ∑ 𝑑(𝑐, 𝑖) 𝑥𝑖
𝑖 ∈𝐶

=  ∑ (𝑑(𝑐, 𝑖) ∑ 𝑝𝑐)
𝑐∈𝐶

 𝑥𝑖 = ∑ 𝑣𝑖𝑥𝑖
𝑖𝑖 ∈𝐶

,  

with a capacity constraint of 

∑ 𝑤𝑖𝑥𝑖  ≤ 𝐾
𝑖∈𝐶 

. 

 

Since the knapsack problem is NP-complete, we rely on heuristics—Genetic Algorithm 

(GA) and Simulated Annealing (SA)—to optimize kernel selection. GA efficiently searches for 

near-optimal subsets by balancing exploration with refinement, while SA explores complex 

spaces through probabilistic acceptance of neighbor solutions, enabling escape from local 

optima and improved results. 

 

Practical Application in Word-Level Concept Representation 

In natural language, we use words to describe the concepts that exist in our world. However, 

it is evident that not every concept has a dedicated single word; many concepts require more 

elaborate descriptions to differentiate them. In this context, words that function as “identifiers” 

can be thought of as memory, or kernel concepts. For other concepts, we often rely on a 

combination of these memory words when referring to them in conversation. Together with the 

kernel set, these additional concepts form the set 𝐶𝐹. As for any remaining concepts, we do not 

assign them separate expressions for unique identification. In this work, we utilize the kernel 

concept set mining algorithm to tackle the problem of selecting an optimal vocabulary. 

To formalize this, let 𝑓 be the mapping function that represents concepts at the word level: 

𝑓: 𝐶𝐹  → 𝑊∗. 

where 𝑊∗ is the set of all possible word sequences constructed from a finite collection of 

words 𝑊. The pool 𝑊 includes the words corresponding to the kernel concepts; we denote 𝑊𝑐 

as the word linked to a specific kernel concept 𝑐. 

Concerning the cost function ℎ𝐶𝑀
, we take a straightforward approach: 

ℎ𝐶𝑀
(𝑐) = |𝑓(𝑐)|, 

where |𝑓(𝑐)| indicates the length (in words) of the representation of concept 𝑐. Therefore, 

for every 𝑐 ∈  𝐶𝑀, we have 

ℎ𝐶𝑀
(𝑐) = 1. 
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If we assume 𝐶𝑀 includes all attribute concepts 𝑐𝑎 = ({𝑎}′′, {𝑎}′) and 

∀𝑎 ∈ 𝑀: {𝑎} = {𝑎}′′, 

then we can specify a unique word-level representation: 

 

𝑓(𝑐) =  {𝑓(𝑐𝑘)} ∪ {𝑓(𝑐𝑎)|𝑎 ∈  𝑎𝑡𝑡𝑟(𝑐) \ 𝑎𝑡𝑡𝑟(𝑐𝑘)}  =  𝑊𝑐𝑘
 ∪  {𝑊𝑐𝑎

 |𝑎 

∈  𝑎𝑡𝑡𝑟(𝑐) \ 𝑎𝑡𝑡𝑟(𝑐𝑘)}. 

 

where 𝑐𝑘 denotes the nearest kernel concept to 𝑐, and 𝑎𝑡𝑡𝑟(𝑐) is the set of attributes (the 

intent) of 𝑐. 

 

Proposition 1 

The above mapping function guarantees an unambiguous representation at the word level. 

Example 1 

For illustration, consider the Live in Water ontology provided at: 

https://upriss.github.io/fca/examples.html. This ontology includes 18 concepts in total. Their 

frequencies are compiled in Table A.4 of Appendix A, and the frequency threshold is set at 0.4. 

Figure 19 shows the resulting concept lattice; concepts not in 𝐶𝐹 appear with a gray background. 

In this scenario, only the “specialization” operation is allowed, so 

− 𝑑(𝑐1, 𝑐2) = 1 if  is a direct parent of 𝑐2, 

− 𝑑(𝑐1, 𝑐2) = ∞ otherwise. 

Using these cost settings, the kernel concept mining algorithm yields: 

− Kernel concepts: { 8,  9,  15} 

− Total cost: 14.66 

Within the lattice shown in Figure 7.4, these kernel concept nodes are colored orange. 

 

https://upriss.github.io/fca/examples.html
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Figure 19. Structure of the Live in Water Ontology 

 

Attribute Reduction 

Although the mapping function introduced above ensures a valid word-level representation, 

there might be instances where some elements are redundant. In other words, certain attributes 

and words might be superfluous for distinguishing a particular concept, so only a subset of 

𝑎𝑡𝑡𝑟(𝑐) ∖ 𝑎𝑡𝑡𝑟(𝑐𝑘) would be needed to create an unambiguous representation. By removing 

these unnecessary attributes, we can streamline our overall vocabulary. 

The proposed attribute reduction technique uses the attribute relevance test outlined in 

Algorithm 7.3. This procedure follows a greedy strategy that identifies redundant attributes in 

a loop. Candidate attributes are temporarily deactivated, and we check whether the remaining 

attributes in 𝑎𝑡𝑡𝑟(𝑐) ∖ 𝑎𝑡𝑡𝑟(𝑐𝑘) still provide unique sets for all concepts attached to a kernel 

concept. 

 
Algorithm 7: Attribute Reduction Algorithm 

Input: 

 - Concept Lattice: L 

 - Kernel Set: P 

Output: 

 - Reduced 𝑐𝑀 concept set 

Procedure: 

1. For each kernel concept, gather all items in its cluster along with their respective sets 𝐴(𝑐) = 𝑎𝑡𝑡𝑟(𝑐) ∖ 𝑎𝑡𝑡𝑟(𝑐𝑘). 

2. loop on all attributes a ∈ M for relevance test  

− For all concepts 𝑐 and for attributes sets in 𝐴(𝑐), we remove 𝑎 from the attribute sets. The result set is denoted by 

𝐴′(𝑐). 

− We check, whether all sets in 𝐴′(𝑐) are unique or not. 

4. . If the reduced set 𝐴′(𝑐) is unique for each concept 𝑐, then we can remove 𝑐 from the kernel set 

Example 2 

Continuing the Live in Water example, we perform attribute reduction after computing the 

“winner” kernel concept for each concept. This computation groups concepts by kernel concept, 

forming separate hierarchies whose roots are the kernel concepts. Figure 20 visualizes these 

hierarchies. 
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Figure 20. Structure of the resulted tree structures after selection of the kernel concepts 

 
Figure 21. Word-Level Representation of the Concepts After Attribute Reduction 

Next, the algorithm pinpoints redundant attributes, and in this scenario, the attributes 

{ 1,  4,  9} are identified as extraneous. With these removed, we obtain a reduced attribute set 

and reconstruct the word-level representations of all concepts. Figure 21 illustrates the resulting 

representation tree. Here, 𝑊𝑖 denotes the word assigned to each kernel concept, while 𝑤𝑖 stands 

for the words of the attribute concepts. 

 

Experimental Evaluation 

We implemented the algorithm in Python and ran all experiments on macOS 14.3.1 (Apple 

M1, 8 GB RAM). Four UCI datasets Balance Scale, Breast Cancer Wisconsin, Teaching 

Assistant Evaluation (Tae), and Car Evaluation were converted to FCA formal contexts by 

binarizing categorical variables into Boolean attributes, then used to build their concept lattices 

(see Table 2). These datasets differ in size, attribute count, density, and lattice complexity, 

providing a comprehensive testbed for performance and scalability. The variation in 

objects/attributes and densities stresses the method across both sparse and dense settings, 

enabling a robust assessment of scalability, efficiency, and overall effectiveness. 

A comprehensive set of experiments evaluated the computational time of the Genetic 

Algorithm (GA) and Simulated Annealing (SA) across lattices of varying sizes, differing in 

objects, attributes, and densities. An exponential decay distribution P(s) prioritized higher-level 

concepts to simulate frequent usage in natural language. Both methods were run under identical 

conditions. GA parameters were: population size 100, 50 generations, crossover rate 0.8, 

mutation rate 0.05, and tournament size 5. SA parameters were: initial temperature 1500.0, final 
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temperature 1.0, cooling rate 0.95, and 200 iterations per temperature. Results (Figure 22) show 

GA achieves substantial efficiency gains, scaling nearly linearly with lattice size, while SA 

grows more steeply. This highlights GA’s stronger scalability and suitability for larger, more 

complex lattices. 

 
Figure 22. A Runtime Comparison of Genetic Algorithm (GA) and Simulated Annealing (SA) on Multiple Datasets 

This section examines how varying kernel concept sizes (20%, 25%, 30%) affect the Total 

Expected Generation Cost in the Car Evaluation dataset (3,542 concepts). Both Genetic 

Algorithm (GA) and Simulated Annealing (SA) were tested under consistent parameters. 

Results (Table 6, Figure 23) show that as kernel size increases, costs steadily decrease. At 20%, 

GA achieved 2.0846 vs. SA’s 2.0932; at 25%, GA 1.9486 vs. SA 1.9612; and at 30%, GA 

1.8343 vs. SA 1.8411. 

Overall, GA consistently outperformed SA, offering lower costs and demonstrating stronger 

scalability. Enlarging kernel size reduced generation costs further, confirming GA’s robustness 

and efficiency in simplifying concept lattices while preserving essential structure. 

 
Table 6.  Impact of Kernel Concept Size on Optimization Performance of GA and SA 

Kernel Concept Size (%) Algorithm Core Concepts Selected Cost of the Kernel 

20.0 GA 725 2.08461 

20.0 SA 725 2.09324 

25.0 GA 901 1.94862 

25.0 SA 901 1.96122 

30.0 GA 1,077 1.83434 

30.0 SA 1,077 1.84108 
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Figure 23. Variation of Total Generation Cost () with Kernel Concept Size (%) for GA and SA  

 

Figure 24. Average Cost Comparison of GA and SA Across Frequency Distributions 
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7. Contributions 

 
The main scientific results achieved during the completion of this research are summarized 

below in three theses: 

 

Thesis 1 

Related Publications: [𝑃1, 𝑃4]  

 

I have introduced two new clustering algorithms for lattice reduction in FCA: K-Means Dijkstra 

on Lattice (KDL) and K-Means Vector on Lattice (KVL). Both approaches adapt the standard 

k-means clustering framework to the specific structure of concept lattices, where the 

relationships between formal concepts are hierarchical rather than purely numerical. 

In the case of KDL, the method leverages a Dijkstra-based distance measure that assigns 

direction-sensitive costs to lattice traversal, ensuring that concept proximity is measured in 

terms of structural and hierarchical effort. This allows clusters to reflect the intrinsic 

organization of the lattice, thereby capturing semantic similarity more faithfully. 

By contrast, KVL embeds each concept into a vector space representation based on its intent 

and attribute frequencies. This transformation enables the direct application of standard k-

means clustering, providing a faster and more computationally scalable alternative while still 

preserving meaningful groupings. 

Experimental evaluations conducted on benchmark datasets from the UCI Machine Learning 

Repository demonstrated that both KDL and KVL improve the balance between fidelity of 

conceptual structure and scalability of computation. KDL was shown to be particularly effective 

in producing structure-aware clusters, while KVL provided a robust and efficient method for 

handling larger datasets. Together, these two algorithms extend FCA into the realm of modern 

clustering applications, offering practical solutions for concept lattice reduction. 

 

Thesis 2 

Related Publications: [𝑃2, 𝑃1, 𝑃4] 

 

I have introduced the Kernel Concept Set (KCS) approach, a selection-based strategy for 

reducing concept lattices by identifying a small but representative subset of formal concepts. 

This approach is original to the present research and defines kernel concepts as those that 

combine high frequency of occurrence with low derivation cost, making them both semantically 

central and computationally efficient. 

KCS thus balances two competing objectives: preserving interpretability while reducing 

computational complexity. By retaining kernel concepts as structural “anchors,” the lattice can 

be effectively approximated without losing essential relationships. This represents a departure 

from earlier methods such as iceberg lattices, which rely solely on frequency thresholds and 

therefore risk discarding structurally important but less frequent concepts. 

Comparative experiments confirmed that KCS yields smaller, more interpretable lattices while 

still covering the most significant conceptual structures. Furthermore, the approach enhances 

usability by aligning with human cognitive processes of focusing on “core” concepts, making 

the reduced lattices easier to visualize and analyze. In this way, KCS offers both theoretical 

novelty and practical utility, bridging a gap between efficiency and semantic clarity in lattice 

reduction. 
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Thesis 3 

Related Publications: [𝑃3] 

 

I proposed an optimized Genetic Algorithm (GA) solution for mining kernel concepts in FCA. 

This method introduces a hybrid strategy where the GA is enhanced by a neural network module 

to accelerate fitness evaluation, thereby reducing the computational overhead typically 

associated with evolutionary approaches. The genetic optimization process was specifically 

tailored to select kernel sets that minimize overall derivation cost while respecting constraints 

on set size and interpretability. Through extensive testing on benchmark datasets, the GA-based 

method consistently outperformed existing approaches in terms of both efficiency and quality 

of selected kernel sets. 

Beyond pure efficiency, the method also demonstrated adaptability to application domains such 

as computational linguistics, where kernel concepts can be used to represent core semantic 

structures in textual data. This illustrates the broader potential of kernel-based reduction beyond 

formal lattice theory, highlighting its utility in interdisciplinary research contexts. 

Taken together, these three theses establish a coherent research program that advances the state 

of the art in Formal Concept Analysis. By introducing two novel clustering methods (KDL and 

KVL), formulating the original concept of Kernel Concept Sets, and designing an optimized 

evolutionary algorithm for kernel selection, this dissertation provides a comprehensive 

framework for scalable and interpretable lattice reduction. The results open pathways for 

applying FCA to increasingly complex and large-scale data, bridging theory, computation, and 

real-world application. 
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