University of Miskolc

5T

Faculty of Mechanical Engineering and Informatics

Efficiency Analysis and Optimization of Concept
Lattice Reduction Methods

Ph.D. Dissertation

Jozsef Hatvany Doctoral School of Information Science,
Engineering and Technology

Research Area
Applied Computer Science

Research Group
Data and Knowledge Bases

Author:
Mohammed Ali Daash Alwersh
M.Sc. in Computer Science

Head Of Doctoral School:
Prof. Dr. Jeno Szigeti

Academic Supervisor:
Prof. Dr. Laszlo Kovacs

Miskolc, Hungary 2025



Declaration

Declaration

The author hereby declares that this thesis has not been submitted, either in the same or
in a different form, to this or to any other university for obtaining a PhD degree. The author
affirm that the submitted work is his own and the appropriate credit has been given where
reference has been addressed to the work of others.

Miskolc, 2025.

Mohammed Ali Daash Alwersh

II



Acknowledgments

Acknowledgments

I am deeply grateful to my supervisor, Prof. Dr. Laszl6 Kovacs, for his ongoing support,
guidance, and encouragement throughout the past years. His invaluable insights, patience,
and expertise have significantly contributed to the development of this dissertation. This
work is a reflection of his mentorship as well as the sustained effort and dedication invested
over the past four years.

I am also profoundly grateful to the faculty and staff of the Faculty of Mechanical
Engineering and Informatics at the University of Miskolc, within the Research Field of
Applied Computer Science, for providing the necessary resources and fostering an
environment conducive to academic excellence. Their support and expertise have greatly
enriched my research experience. I also acknowledge the financial support provided by
Stipendium Hungaricum (SH), which helped me successfully complete my research and
focus on the academic pursuits essential to this dissertation.

I extend my heartfelt appreciation to my family, my sons, Mustafa Alwersh and Kadhim
Alwersh, and special thanks to my wife, Maryam Alwersh, for her unwavering support and
for standing by me every step of the way to achieve my goal. Despite the challenges and
difficulties I encountered, her constant support and encouragement have been a steadfast
source of motivation, helping me navigate the inevitable ups and downs of the research
process.

Thank you all for your contributions and for being an integral part of this academic
endeavor.

Mohammed Ali Daash Alwersh

III



Table of Contents

Table of Contents

DECLARATION I
ACKNOWLEDGMENTS III
TABLE OF CONTENTS v
LIST OF FIGURES VI
LIST OF TABLES VII
LIST OF ABBREVIATIONS VIII
PREFACE 1
CHAPTER 1: INTRODUCTION 3
1.1. RESEARCH CONTEXT ...ceieittvtieeeeettteeeeeeeireeeeeeeetaeeeeeeeetaseeeeeesasseseeeeaisseseeeeeassseseseessssseeseesiarseeeeeannres 3
1.2. PROBLEM STATEMENT ......uvviiiiiiiittieeeeeeiireeeeeeeeiteeeeeeeeeaseeeeeesisseseeeesisseseeeeaasssesessessssseeseesirsseseesninses 4
1.3. RESEARCH OBIECTIVES ...uutttiiiiiittteeeeeeeireeeeeeeeitateeeeeeeaseeeeeesiassesseeesisseseseesassseseseessssseeeeesinsseeseesnnsses 5
1.4. RESEARCH QUESTIONS ......uviieiiiieeeietestteeeireeessseeessteesssssessssessssseasssssesssseesssssessssessssssessssesasssessnssees 6
1.5. SIGNIFICANCE OF THE STUDY ..ooeieiiutitiieiieititiee e ettt e eeeareeeeeeeitreeeeeeeetaaeeeeeeasaeeeseesnsseeeeensnseeeeennes 6
1.6. SCOPE AND LIMITATIONS .....uuvtiiiieeitieeeeeeeitteeeeeeeeitreeeeeeeisreeeeeesiareeeeeeeetssseeseestsaseeseesssseeseeessreseeenans 6
1.7. THESIS STRUCTURE ...cceeiiitvtieeeeeeitreeeeeeeeiteeeeeeeetreeeeeeeeaseeeeeesisseseeeesisreseeeesasaseseseesssseeseesiasseeseennsees 7
CHAPTER 2: FOUNDATIONS OF FORMAL CONCEPT ANALYSIS 8
2.1. OVERVIEW ...oviiiiiiiiiiiee e e eecteeeeeeeetaeeeeeeetateeeeeesettaeeeeeeestasaeeeeesasseeeeeeasseeeeeeaasbaseseseensssseeeeesnrseeeeennnnres 8
2.2. STRUCTURE OF CONCEPT LATTICES .....cciitiuttieeeeiitieeeeeeeiitteeeeeeeireeeeeeeeteeeeeeeesaseeeeseennseeseseennnseeeeennns 8
2.2.1. Data Representation AS INPUE ..............ccccocueiiiiiiiiiiiiiniiiiiitce it 9
2.2.2. Operators For Concept FOVMALION ..............c..cccccoiiciiniiiiiniiiiiiniciiiteet ettt 9
2.2.3. From Formal Concepts To The CONCEPt LALLICE...............ccoceveeirinieniiiiicieieiieeieeeeaen 11
2.24. HaSSE DIGZFAM............ceoiiiiiiiiiiiiii et 14

2.2.5. Properties Of FFCA. ...ttt 15

2.2.6. Central Theorem On CONCEPt LATICES...............c.ccuvceiciairiiriiiiininieieeieeee et 17

2.3. OVERVIEW OF FCA ALGORITHMS.......cociutiteeeeiiureeeeeeeiitreeeeeeeireeeeeeeeitsseseeeesissseeseesisssesseessissesseessnnes 17
2.3.1. Batch-Style COMPUIALION..............cc.ccocoiiiiiiiiiiiiiiti et 18

2.3.2. Incremental Techniques FOr UPAQLe..................ccccocioiuiiiiiniiniiniininiieieieieeeeeteeeese i 19
2.3.3. ASSEMbBIING AIGOFIERMS ..ottt 20

2.3.4. General Remarks On FCA Algorithm’s Performance .............c.ccocoeeeeencoicoeoeioeeincencancns 21

24. EXTENSIONS AND APPLICATIONS OF FCA MODEL ......oooiiiiiiiiiiee et et eeecveeeeeeeetveee e e 22
2.5. EMERGING ISSUES IN FCA AND THE NECESSITY FOR REDUCTION METHODS........cccccevvvveeeeeenne. 23
2.5.1. High-Dimensional And Complex DAIGSELS.................coouviriinieniinininiiienieieieeeeeeeese e 24
2.5.2. Adapting To Varied Data Forms Through SCaling...............ccccocoveeininiociinieieinencecne 24
2.5.3. Handling Uncertainty: Noise And MisSSing Values .............c..cccccuvueveeceenienieniaiessaeeenanees 25

2.6. SUMMARY ....cooeittteeeeeeeitteee e eeete e e e eetar e e e e eeetaeeeeeeeetaaeeeeeeatasseeseeeitraeeeeeeeastsaeeeeeessaeeeseenssseeeeensarreeeas 26
CHAPTER 3: LITERATURE REVIEW 27
3.1. OVERVIEW OF EXISTING LATTICE REDUCTION TECHNIQUES INFCA......ccvvviiiieieeeeeeeee, 27
FOFMAL DEfIRILION: ...ttt ettt ettt ene 28

3.2. SUMMARY ....coeittttieeeeectteee e eeett et e e e eetareeeeeeetteeeeeesettsseeeeeeaasseeseeataraeeeeeeaastsseeeeeetsseeeseessrseeeeennarreeees 32
CHAPTER 4: FOUNDATIONAL PILLARS OF OUR PROPOSED STRATEGIES.........cccccceeeueee. 33
4.1. RESEARCH GAPS AND FOUNDATIONAL STRATEGIES........ccoetuvieeeiiiirrreeeeeeiinreeeeeesisreeeeessirreeseessennes 33
4.2, KERNEL CONCEPTS IN CONCEPT LATTICES .....uuvtiiiieiiiieeeeeeecireeeeeeeeteeeeeeeeeaveeeeeesareeeeeeeenreeeeeenannes 35
4.2.1. Definition Of Kernel CONCEPLS ...........cocoueueiioieiiiiiiteieese sttt 35
4.2.2. Role And Importance Of Kernel CORCEPLS ...........cccociuciiiriiniiiininiieieieseeeieeet e 37

4.3, DIKSTRA’S ALGORITHM IN CONCEPT LATTICE REDUCTION ....cccoiiuviiieeeieiirieeeceeireeeeeeeevreeeeeeennes 37
4.3.1. Background And MOtIVALION .............c..cccccouioiiiiiiiiiiiiiiiieseeeee et 37
4.3.2. Dijkstra-Based Distance In FCA.............ccccccoouiiiiioiiiiiiiiiiiiieseseeeeeeee et 39

4.4, BASELINE GREEDY ALGORITHM FOR KERNEL CONCEPTS SELECTION .......cvvveeeeeiiurreeeeeeinreeeeeennnns 41

1A%



Table of Contents

4.4.1. Kernel Concepts SELECHiON. .............cccouevueiiiiiiiiiiitit ettt 41
4.4.2. Baseline Greedy AIGOFItRNM SIEPS..........cccccouioiiiiiiiiiiiiiiiiee et 42
4.4.3. Experimental Setup And Methodology ..................ccccoouiiiiiniiniiiiinininiiceeeeeeeee s 43
4.5. SUMMARY ..ottt s bbb a et a e 46
CHAPTERS: CLUSTERING-BASED REDUCTION STRATEGIES FOR FCA 47
5.1 INTRODUCTION ...coooviiiiiiiitiitinietetcet ettt ettt ettt ettt r et ene s eaeen s en s 47
5.2. K-MEANS ALGORITHM AND ITS EXTENSIONS.......ccooviiiiiiiiiiniitinietiietcierciencienc e 49
5.3. THE PROPOSED METHODS ......ccviuiiiiiiiiiniitiietiietctetc ettt en s ens e eas s enese 53
5.3.1 K-Means Dijkstra On Lattice (KDL).............ccccccccuiiiiiiiiiniiniiinineeeeeeeeeteie e 53
5.3.2. K-Means Vector On Lattice (KVL)..........ccccccoouciiiioiiiiiiiniininiiieieseeeeeeeeeee et 57
5.3.3. ClUSEring ALGOTIIRML........c..ccviieiiiiiiieeet ettt 59
5.4. EXPERIMENTAL RESULTS .....oiiiiiiiiiiiiiitiiecieceic ettt 61
54.1 Testing And Evaluation Of The Dijkstra-Based DiStanCe..................ccccoeeeecvoeioiecincenecnnens 61
5.4.2. CIUSTEFING POFfOFMANCE .......c..c.ceieieeeete ettt 65
5.4.3. Scalability Test ReSults ANGIYSIS .............cocouccueoiioiiiiiiiiiiieeet et 68
5.4.4. Scalability In Relation To The Number Of Formal CONcepts............cc.ccocceceeecvecueeeecincencn, 69
5.35. SUMMARY ..ottt s st a st 70

CHAPTER 6: KERNEL CONCEPTS SELECTION FOR EFFICIENT LATTICE REDUCTION .71

6.1. INTRODUCTION .....cvtiiiiiieeieeesiieeetteeeeteeetveeesteeesssaeeassseeasssesasssseesssssassssesassssassssseesssseesssseesnsseeannes 71

6.2. KERNEL CONCEPT SET APPROACH .....cuuvtiiiitieeeiieesitreeeiteeeseseeessseeessssessssesasssesssssessssssessssssesssseesnnes 71

6.2.1. Optimized Greedy Algorithm For Determining A Kernel Concept Set..................c..cou...... 74

6.3. EXPERIMENTAL SETUP AND METHODOLOGY .....eieitiieiiiieesereeesreeesrreeessresessseessssesessssessssssessssessnnes 76

6.3.1. CIUSTEFING POFfOFMANCE ...ttt 76

6.3.2. Influence Of Lattice Size On RUNEIME .............cccccccuvoiioiiinininiienenieieeeeeeeeee et 77

6.3.3. Experiment With The Teaching Assistant Evaluation Dataset....................ccccccceevenecnnnn 78

6.4. SUMMARY ....uttiiittiteeiteeett e et e e s tteeesebeeestbeeesseeaasseeaassaeesssaaaassseeasssaeesssesaassseeassseesssaeessssesasseeenssens 80
CHAPTER 7: MINING KERNEL CONCEPTS: A COST-OPTIMIZED CONCEPT SET

GENERATION METHOD 82

7.1. INTRODUCTION .....uviiiiiiieeieeestieeeiteeeeteeetveeesteeesssaeeessseeassseeessssaesssssessssesassseessssssessssessnsseessssenennes 82

7.2. PROPOSED IMETHOD.......cccctiieiiiieeeiiieeitteeeiteeesseeessseesssseeassseeessssassssssessssesassssessssssessssessssssessssesennes 83

7.2.1. KFNEI St CM ...ttt 83

7.2.2. Kernel Selection Method ......................ooueeiiieiieeeeee et 84

7.2.3. Optimization Of The Genetic AIGOVItRIN ...............c.cccoovciiiiiiiiiiiiiiiieneeeeeeee e 85

7.3. PRACTICAL APPLICATION IN WORD-LEVEL CONCEPT REPRESENTATION ......cccccvvieeirieeereeenerieennns 89

7.3.1. Problem DESCHIDIION .............cccccoiiuiiiiiiieieetet ettt 89

7.3.2. AGFIDULE ROAUCTION. ...t 91

7.4. EXPERIMENTAL EVALUATION ....coctiiiiiiiiiiiiiieeeiteestteeeiveeeseseeessveeesssasessssesassseessssssessssessssssesssseesnnes 92

74.1. Scalability Evaluation Across Varying Lattice DIMenSions...............cccccoceeceeeeoeeneecincenenn, 93

7.4.2. Influence Of Kernel Concept Size On Overall Generation Cost..............ccccceeveeeevaceennane. 94

7.4.3. Impact Of Frequency Distribution On Algorithm Performance.................cccccocveveveennnn.. 95

7.4.4. GA And SA Convergence In Concept Lattice ReducCtion................cccccoeveeecueoiioieincencancns 96

7.5. SUMMARY ....uttiiititestie e et e et e e et e e e stbeeestbaeesateeassseeaassaeesssaeaassseeasssseesssesaassseeaassseessseaesssseeenssessssens 97

CHAPTER 8: CONCLUSION 98

8.1. SUMMARY ....uttiititeetie e et e ettt e st e e estteeestbeeestteeassseeassaeesssseaassseeassaeesssesaassseeanssseasssaaessssesansseesnssens 98

8.2. CONTRIBUTIONS ....vtieiuitieeieteeesiteeeateeessssesassseeasssesessssesssssesasssessssssssssssessssessssssessssssesssseesssssessssessnnes 98

8.3. FUTURE WORKS......ooiiitiiiiiit ettt etee e tte e ettt e e tteeetvee e sbaeeessaeesssbaeesseeesssaeesssseeensseeenssseessseeens 100

AUTHOR’S PUBLICATIONS 102

REFERENCES 103

APPENDIX 108




List of Figures

List of Figures

Figure 2.1. Hasse Diagram of the Concept Lattice Derived from the Extended Laptop Context ... 14
Figure 2.2. Representative Tools for Concept Lattice Visualization ............ccceevuueeriiiriennnienneens 25
Figure 4.1. Cost Analysis for Greedy Algorithm Across Kernel Concept Set sizes........c.uuueeeeee 44
Figure 4.2. Runtime Analysis for Greedy Algorithm across Kernel Concept Set sizes ................ 45
Figure 4.3. Performance Analysis of the Baseline Greedy Algorithm on Derivation Cost and

Runtime Across Different Lattice SiZeS .....cuuuueeriiiiiimmiiiiiiiiiiiiieiieeiiiiiee e eeeeenee 45
Figure 5.1. Average Runtime vs. Lattice Size for Random Contexts............cceeuvmueeriiiriinnnienneens 63
Figure 5.2. Mean Distance vs. Lattice Size for Random Contexts ...........cevveeeiimmuceriiiriennnienneenns 64
Figure 5.3. Average Runtime vs. Lattice Size for Real-World Datasets .........cccceeeeeriiriennniennnens 65
Figure 5.4. Mean Distance vs. Lattice Size for Real-World Datasets ...........ccceuvmueeriiiriinnnicnnnens 65
Figure 5.5. Silhouette Scores by Dataset and Method.........ccouuueiiiiiiiiiiiiiniiiiiiiiiinniiiiceneeee 67
Figure 5.6. DBI Scores by Dataset and Method ...........cooiviiiiiiiiiiiiiiiiiiiiiniiiiiiccn e 67
Figure 5.7. KVL Scalability vs. Cluster Count (Car Evaluation Dataset with 8001 Concepts)...... 68
Figure 5.8. KVL Scalability with an Increasing Number of Formal Concepts............ccceuuuueereeene 68
Figure 5.9. KDL Scalability with Increasing Number of CIUSters...........ueeriiiiiirmuieniiiriinnnicnneene 69
Figure 5.10. KDL Scalability with Increasing Number of Formal Concepts ..........cccccevevuneeneees 69
Figure 6.1. Silhouette Scores by Dataset and Method. .......cc..eueiiiiiiiiiiiiiiiiiiiiiiiniiiieneeee 77
Figure 6.2. DBI Scores by Dataset and Method ...........c.oceeiiimiiiiiiiiiiiiiiiiniiiiiiiccnncceteeieee e 77
6.3. Comparative Performance Analysis of KCS and KDL Methods Across Diverse Lattice Sizes

............................................................................................................................... 78
Figure 6.4. Concept Lattice Derived from the Formal Context of Tae Dataset Table 5.4. ............ 79
Figure 6.5. Trend of Decreasing Derivation Cost with Incremental Expansion of Kernel Set Size

[ Yo} I U OO UPPUPRPPPPPRRPRt 80
Figure 7.1. MLP Framework for Fitness ApproXimation............coeeeeeruimueerieiiimmmienneerienmnenneenne 88
Figure 7.2. Loss Function in the Training ProCess...........cccetuumueiiiiiiiiiiiiiniiiiiiiiecnn e 88
Figure 7.3. Efficiency Improvement of the Relevance-Based Selection.........cceuuueeeiiiriennncnneens 89
Figure 7.4. Structure of the Live in Water Ontology........cccevvummeriiiiiimimiiniiiiiiiieeneeerreeieee e 91
Figure 7.5. Structure of the resulted tree structures after selection of the kernel concepts............. 92
Figure 7.6. Word-Level Representation of the Concepts After Attribute Reduction.................... 92
Figure 7.7. A Runtime Comparison of Genetic Algorithm (GA) and Simulated Annealing (SA) on

MULLIPIE DALASELS ...eveeeririuieeieeeiiiiiee ettt ettt e e ettt e eeeteabae s e eeetarnaeseeeeennnns 94
Figure 7.8. Variation of Total Generation Cost () with Kernel Concept Size (%) for GA and SA . 95
Figure 7.9. Average Cost Comparison of GA and SA Across Frequency Distributions ............... 96
Figure 7.10. Runtime Performance of GA and SA Across Frequency Distributions.................... 96
Figure 7.11. GA and SA Convergence in Concept Lattice Reduction ...........ccceuuueeeiiiriinniennnen. 97

VI



List of Tables

List of Tables

Table 2.1. CTOSS TaDIE ....cc.ceiuiiiieiieieeee ettt sttt ettt st b e et nee e 9
Table 2.2. Determine Additional CONCEPLS .....cevveervierireriieriierieereeseerteieesieesieesieesseesseeseeseesseeseenns 11
Table 2.3. The Extended Laptop Formal Context (Cross-Table Representation) ............cccceceennenee. 13
Table 4.1. Lattice CharacteriSLICS .......ceeeruerterieierieiteeiterie sttt st eite ettt sttt et sbe b e e eneenaes 43
Table 5.1. Matrix Corresponding to The Relation L ..........cccoovevierieniiniinieiceeeeceeceeeee e 57
Table 5.2. Characteristics of Random and Real-World Formal Contexts. ..........cccceerverieerieerieennennn. 62
Table 5.3. Formal Concepts Generated from the Formal Contexts in Table 5.2.........ccccceeveiennenee. 62
Table 5.4. Characteristics of the Generated LattiCes. .........coeeveeriririeneniieeeseeeteeeece e 62
Table 5.5. Silhouette Coefficient Outcomes for KDL and KVL Across Various Datasets.............. 66
Table 5.6. DBI Results for KDL and KVL Across Different Datasets. .........cccoceevverienieneenieeniennn 67
Table 6.1. Silhouette Scores Comparing KDL and KCS Methods Across Datasets. ..........c.c....... 76
Table 6.2. DBI Index Scores Comparing KDL and KCS Methods Across datasets. ....................... 77
Table 6.3. Formal Context about Subset of Tas Dataset. .........cccocevereereneneiiienenieteeeeceeee e 79
Table 7.1 Impact of Kernel Concept Size on Optimization Performance of GA and SA ................ 94
A. 1. The Formal Concepts Derived from the Cross-Table Described in Table 2.3 ...................... 108
A. 2. Kernel Concept Set Analysis of TA Assignments (S¢ S€t t0 5%0) ..ecovvevrverrierieenieerieerieereenne. 109
A. 3. Kernel Concept Set Analysis of TA Assignments (S¢ S€t t0 8%0) ...eoveverenirieenenencenienene. 109
A. 4. List of Generated Concept LattiCes.......ccverrierierieriieniieiieiieieesieesieesseeseeseeseesseesesssesssennns 110

VII



List of Abbreviations

List of Abbreviations
FCA Formal Concept Analysis
CL Concept Lattice
KDL K-Means Dijkstra on Lattice
KVL K-Means Vector on Lattice
KCS Kernel Concept Set
ICFCA International Conference on Formal Concept Analysis
ICCS International Conference on Conceptual Structures
CLA Concept Lattices and their Applications
SVD Singular Value Decomposition
CbO Close-by-One
FcbO Fast Close-by-One
RDF Resource Description Framework
DM Data Mining
OWL Web Ontology Language
SparQL SPARQL Protocol and RDF Query Language
IR Information Retrieval
CC Conceptual Clustering
DBI Davies-Bouldin Index
CS Concept Similarity
EMO-CC  Multiobjective Evolutionary Conceptual Clustering Methodology
KDD Knowledge Discovery in Databases
GA Genetic Algorithm
SA Simulated Annealing
MLP Multi-Layer Perceptron
NLP Natural Language Processing

VIII



Preface

Preface

This dissertation embodies a focused endeavor in the realm of knowledge engineering,
particularly at the intersection of data mining and Formal Concept Analysis (FCA). Since its
inception in the early 1980s by Rudolf Wille, FCA has been recognized as a powerful
mathematical tool for representing and analyzing the relationships between objects and
attributes within formal contexts. By structuring information into concept lattices,
hierarchical diagrams that capture the relationships between objects and attributes, FCA
facilitates the discovery of meaningful patterns in diverse fields, including software
engineering, information retrieval, e-learning systems, bioinformatics, and beyond.

Yet, as datasets expand in size and complexity, the concept lattices derived from them
can grow exponentially, posing formidable computational and interpretive challenges.
Traditional FCA methods, while theoretically elegant, often become computationally
intensive and cognitively overwhelming, hindering the effective utilization of these
structures in large-scale data analytics. This dissertation addresses these challenges head-on
through a series of three integrated contributions, each representing a strategic step toward
more scalable, efficient, and human-centered FCA methodologies.

A key groundwork is first laid out, establishing several foundational pillars that guide the
methods proposed here. These include the notion of kernel concepts, specially chosen
concepts that serve as anchors for understanding and reducing a concept lattice, alongside
an asymmetrical distance metric that adapts Dijkstra’s algorithm for cost-aware navigation.
A baseline greedy framework for concept selection further sets the stage for the more
specialized methods and cognitively aligned reduction strategies that follow.

The first contribution introduces two novel extensions of the k-means algorithm, K-
Means Dijkstra on Lattice (KDL) and K-Means Vector on Lattice (KVL), to adapt
clustering-based reduction strategies for FCA. KDL leverages the inherent hierarchical
structure of categorical data by incorporating a graph-based distance measure derived from
FCA. This ensures that reductions remain faithful to the underlying conceptual relationships,
yielding more interpretable and structurally consistent lattices. In contrast, KVL transforms
formal concepts into numerical vectors, allowing the application of conventional k-means
clustering at scale. While this vectorization simplifies complexity and improves
computational efficiency, careful consideration is given to preserving lattice quality.
Together, KDL and KVL mark an initial leap toward practical, data-driven lattice reduction
that balances complexity management with interpretability.

Building on these foundations, the second contribution, the Kernel Concept Set (KCS)
approach proposes a frequency- and cost-based strategy for selecting a core subset of
concepts. By determining a kernel that covers the most critical and frequently occurring
attributes, KCS optimizes reduction while maintaining essential structure. This approach
goes beyond the first step’s clustering-centric views, providing a more refined selection
mechanism that directly addresses the trade-off between completeness and efficiency.
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Finally, the third contribution introduces cognitive and linguistic strategies for scalable
concept lattice reduction. Inspired by human language optimization principles, this model
employs a finite “vocabulary” of high-frequency conceptual units (kernel concepts) and an
injective mapping function to ensure each concept is represented uniquely and meaningfully.
By integrating Genetic Algorithms and Simulated Annealing alongside a learning-based
module, the model identifies an optimal kernel subset that minimizes total generation cost,
a measure reflecting both computational and cognitive resources. This interdisciplinary
approach not only reduces lattice size but also aligns the resulting structures with human
cognitive processes, making the reduced lattices both computationally feasible and
intuitively comprehensible.

Collectively, these three contributions form a coherent research trajectory. Starting from
harnessing clustering methods for initial complexity control (KDL and KVL), moving
through a frequency- and cost-informed selection of pivotal concepts (KCS), and
culminating in a linguistically and cognitively oriented optimization framework, this
dissertation offers a comprehensive toolkit for addressing the scalability, efficiency, and
interpretability challenges inherent in FCA.

By fusing computational heuristics, cognitive insights, and linguistic principles into the
FCA reduction process, this work advances FCA from a theoretically compelling method to
a practical, user-aligned analytical framework. It lays the groundwork for broader adoption
of FCA in large-scale data analysis, equipping researchers and practitioners with strategies
to navigate, understand, and ultimately derive more meaningful insights from complex and
voluminous data



Introduction

Chapter 1:  Introduction

1.1. Research Context

In recent decades, the exponential growth of data across diverse domains, from healthcare
and finance to e-learning and social media, has necessitated increasingly sophisticated
methods to extract, represent, and interpret meaningful patterns. The convergence of data
mining, machine learning, and knowledge engineering has driven researchers and
practitioners to seek frameworks that not only handle vast amounts of information efficiently
but also facilitate human understanding of underlying structures and relationships. Among
these frameworks, Formal Concept Analysis (FCA) [1] has emerged as a mathematically
rigorous and conceptually rich approach to organizing and interpreting complex datasets.

FCA operates by mapping data described as objects and attributes into a conceptual
hierarchy known as a concept lattice. This lattice encodes the inherent relationships within
the data, revealing clusters of attributes that co-occur among sets of objects. The resulting
structure is more than just a visualization tool; it serves as a knowledge representation
mechanism that can inform decision-making, discovery of patterns, and the identification of
subtle dependencies. However, as data complexity intensifies, due to high dimensionality,
large numbers of objects, or the intricate interplay of attributes, the concept lattices
constructed from such datasets often become prohibitively large and complex. Despite their
theoretical elegance, these massive lattices pose practical challenges: they demand
substantial computational resources to construct and manipulate, and they may overwhelm
human analysts attempting to derive insights. The problem is compounded by the fact that
many fields relying on FCA, such as bioinformatics or software engineering, frequently
involve large-scale and evolving datasets [2].

In light of these considerations, the need for concept lattice reduction methods becomes
evident. By judiciously streamlining the concept lattice to retain essential structural and
informational properties while discarding redundancies and less critical elements, these
reduction methods pave the way for more efficient analysis and clearer interpretability.
Achieving a balance between lattice complexity and informational fidelity is a non-trivial
challenge, especially as reduction techniques must ensure that critical patterns and
relationships remain intact for meaningful analysis.

The quest for more efficient and interpretable FCA-based frameworks does not exist in
isolation. The broader landscape of knowledge engineering and data analytics is also
grappling with scalability and accessibility issues. Just as natural language processing
research has evolved to manage complexities of informal language on social media [3], and
intelligent tutoring systems have integrated sophisticated knowledge models to adapt
learning materials [4], [5], so too must FCA methodologies evolve. These parallel efforts
underscore a universal trend: as data grows in volume and complexity, analytical approaches
must become more adaptive, intelligent, and scalable.

This dissertation seeks to tackle these intertwined issues of scalability and interpretability
in FCA. It does so by developing and refining foundational pillars for lattice reduction, chief
among them kernel concepts (centrally important nodes in a lattice) and cost-aware distance
metrics and building upon these to propose multiple specialized reduction strategies. The
overarching ambition is to fortify FCA’s practical utility in handling large-scale data,
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transforming an elegant theoretical framework into a truly accessible tool for knowledge
discovery in complex domains.

Building upon this motivation, the dissertation advances three central contributions. First,
it introduces clustering-based reduction strategies that adapt the K-means paradigm to FCA,
namely KDL and KVL, which capture structural and attribute-based proximities in the
lattice. Second, it develops the kernel concept framework as an original idea for selecting a
strategically small yet influential subset of concepts that minimize derivation cost while
preserving interpretability. Third, it proposes an optimization approach based on genetic
algorithms, enhanced with neural-network-assisted evaluation, to efficiently mine kernel
concepts and extend their applicability to domains such as computational linguistics.
Collectively, these contributions establish a coherent methodological foundation for scalable
and interpretable FCA, while also opening avenues for broader applications in large and
complex data environments.

1.2. Problem Statement

FCA provides a mathematically sound and conceptually intuitive framework for
representing complex data through concept lattices hierarchical structures that reveal
intricate relationships between objects and attributes. While FCA has demonstrated
considerable value in various domains, from knowledge engineering and intelligent tutoring
systems to social media analysis and sentiment mining, its practical application is often
hampered by a critical and persistent issue: the exponential growth in the number of formal
concepts and, consequently, the size and complexity of the resulting concept lattice.

As datasets become more extensive, heterogeneous, and dynamic, the concept lattices
derived from them can become prohibitively large and unwieldy. This exponential
complexity leads to significant computational overheads in lattice construction,
maintenance, and navigation. It also creates formidable interpretability challenges. Analysts,
domain experts, and automated reasoning tools struggle to extract meaningful insights from
a lattice that is both visually and structurally dense, rife with redundancies, and difficult to
navigate.

Although several reduction techniques have attempted to mitigate these challenges by
pruning less relevant concepts, applying frequency-based filters, or introducing abstraction
mechanisms to simplify the lattice structure, they often suffer from critical limitations. A
major issue is computational inefficiency, since many reduction algorithms do not scale well
and result in prohibitive runtime and memory consumption, particularly for large or evolving
datasets. Another challenge is the inadequate balance between complexity and fidelity, as
some approaches oversimplify the lattice and discard critical information, thereby
undermining the reliability of subsequent analyses. Moreover, while certain strategies reduce
lattice size, they do not sufficiently enhance interpretability or improve cognitive
accessibility, leaving users grappling with opaque and dense structures. Finally, many of the
proposed approaches remain fragmented, lacking a unifying framework capable of
integrating computational optimization with cognitive and linguistic strategies as well as
systematic selection criteria for core concepts. Consequently, practitioners are often forced
to rely on ad hoc or domain-specific solutions that do not generalize well across different
datasets or application domains.

This gap in the literature, where scalability, efficiency, interpretability, and adaptability
to varying contexts remain only partially addressed, represents the crux of the problem. It
underscores the urgent need for holistic, optimized reduction techniques that not only
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streamline concept lattices but also retain their informational richness and align more closely
with human cognitive processes.

In essence, the challenge is to develop robust, scalable, and cognitively aligned concept
lattice reduction methodologies that fulfill multiple objectives simultaneously: to
significantly improve computational performance, to maintain or enhance interpretability,
to preserve essential relationships and data patterns, and to integrate seamlessly into diverse
application scenarios. This dissertation aims to tackle this core problem head-on, proposing
innovative solutions, ranging from specialized k-means-based lattice clustering algorithms
and kernel concept set selection to cognitive and linguistic optimization frameworks, that
collectively advance the state of the art in FCA-based data analysis.

1.3. Research Objectives

The overarching aim of this research is to advance concept lattice reduction in FCA by
making it more computationally efficient, scalable, and aligned with human interpretive
processes. In pursuit of this aim, the research is guided by the following objectives.

First, it seeks to assess the limitations of existing reduction methods by thoroughly
examining current approaches to concept lattice reduction and identifying their shortcomings
in terms of scalability, computational efficiency, and interpretability. This evaluation
highlights gaps in the literature and informs the strategic direction for new methodologies.
Building on this, the second objective is to enhance computational efficiency and scalability
by developing and refining reduction techniques that significantly decrease the time and
resource requirements for constructing and managing concept lattices, thereby enabling the
application of FCA to large-scale, high-dimensional datasets.

A third objective is to preserve structural integrity and informational fidelity, ensuring
that the proposed reduction methods maintain essential hierarchical relationships and key
data patterns within the lattice so that reduced structures remain meaningful representations
of the underlying dataset. Closely related to this, the fourth objective is to improve
interpretability and cognitive alignment by applying principles inspired by human language
optimization to identify a minimal yet expressive subset of core concepts. This streamlines
the lattice, making it more accessible and understandable, ultimately enhancing usability for
analysts.

The fifth objective is to establish a unified and adaptable framework for reduction
techniques, integrating various strategies into a cohesive system that allows flexible
adjustments based on domain-specific needs, data characteristics, or interpretive goals. Such
a unified perspective supports systematic exploration and tuning of different approaches.
Finally, the sixth objective is to empirically validate and benchmark the proposed methods
through rigorous experiments, standardized evaluation metrics, and representative datasets,
demonstrating their effectiveness, versatility, and relevance across multiple application
scenarios.

By achieving these objectives, the research aims to transform FCA from a theoretically
appealing but computationally intensive approach into a more agile, interpretable, and
widely applicable framework for knowledge representation and data-driven decision-
making.
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1.4. Research Questions

Building upon the problem statement and research objectives, this study seeks to address
key questions that probe into the theoretical and practical dimensions of concept lattice
reduction in FCA. The research questions are framed to guide the investigation towards more
efficient, interpretable, and integrative reduction methodologies:

1. What are the limitations of current concept lattice reduction methods in terms of
computational efficiency, scalability, and interpretability, and how do these
constraints hinder their widespread adoption in real-world scenarios?

2. How can reduction techniques be optimized or reimagined to handle increasingly
large and complex datasets without imposing prohibitive computational costs,
thereby making FCA a more viable option for big data contexts?

3. In the process of simplifying the lattice, how can essential hierarchical relationships
and the core informational content be preserved, ensuring that reduced lattices
remain faithful, reliable representations of the underlying data?

4. How can concepts inspired by human linguistic efficiency be employed to identify a
minimal yet expressive set of core concepts, thereby enhancing the interpretability
and cognitive accessibility of the resulting reduced lattice?

5. Can diverse reduction strategies, including kernel concepts identification, and
cognitively informed models, be integrated into a unified framework that allows
flexible adaptation across various data domains, analytical objectives, and resource
constraints?

6. How can the performance and utility of the proposed reduction techniques be
rigorously evaluated against standardized metrics and representative datasets, and to
what extent can these methods be generalized across different application areas?

1.5. Significance of the Study

This research is significant as it enhances both the theoretical and practical dimensions
of Formal Concept Analysis. Theoretically, it introduces refined reduction methodologies
that address longstanding challenges of computational complexity and interpretability,
thereby advancing the core understanding of FCA’s scalability. Practically, by producing
more manageable and cognitively accessible lattices, the work broadens FCA’s usefulness
across various domainsranging from knowledge management to data-driven decision-
making, enabling clearer insights from large and complex datasets.

1.6. Scope and Limitations

The scope of this research encompasses the development, integration, and empirical
evaluation of concept lattice reduction techniques within the framework of FCA. The focus
lies on enhancing computational efficiency, ensuring interpretability, and retaining essential
structural properties of the lattice. The study involves testing various datasets and employing
standardized performance metrics to validate proposed methodologies. However, certain
limitations apply. The research does not aim to cover all possible data types or application
domains, and the selection of evaluation metrics may not capture every facet of reduction
quality. Moreover, while the proposed methods strive for broad applicability, domain-
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specific customization may still be required. These constraints acknowledge the complexity
and evolving nature of data challenges, guiding realistic expectations for the results.

1.7. Thesis Structure

This dissertation is organized into eight chapters. Chapter 1 introduces the research
context, outlining the problem, objectives, significance, scope, and key research questions.
Chapter 2 lays the theoretical foundation of FCA, defining formal contexts and concepts,
discussing various algorithmic strategies, and addressing challenges in managing large-scale
data with lattice reduction methods. In Chapter 3, a literature review examines existing
techniques for reducing concept lattices, such as redundancy removal and clustering-based
strategies, highlighting the need for novel approaches that balance scalability with
interpretability. Chapter 4 presents the core principles of our proposed methods, introducing
kernel concepts, a cost-based distance metric adapted from Dijkstra’s algorithm, and a
baseline greedy selection process to underpin our advanced reduction strategies. Chapter 5
introduces two clustering algorithms, KDL and KVL adapted from K-Means for FCA,
detailing their theoretical bases and experimental evaluations on synthetic and real-world
datasets. Building on this, Chapter 6 proposes the Kernel Concept Set (KCS) method, which
leverages frequency metrics and derivation costs to identify pivotal concepts, thereby
reducing complexity while preserving structural relationships. Chapter 7 further refines
lattice reduction by incorporating heuristic and machine-learning approaches, such as
Genetic Algorithms and Simulated Annealing, to optimize kernel concept selection while
ensuring human-aligned representations. Finally, Chapter 8 concludes the dissertation by
summarizing the primary achievements and outlining future research directions.
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Chapter 2:  Foundations of Formal Concept Analysis

2.1. Overview

FCA was introduced by Rudolf Wille in 1982 as a specialized subfield emerging from
applied mathematics, grounded in the notions of “concept” and “concept hierarchy.” Over
time, FCA has evolved into an unsupervised machine learning approach adept at uncovering
and representing conceptual structures embedded within data. Its initial mathematical
underpinnings have broadened FCA’s appeal, making it well-known, particularly in
computer science, though its influence also extends to fields such as data mining [6], [7],
knowledge representation [§], information management [9], and beyond. Since its inception,
FCA has inspired hundreds of scholarly publications and has been supported by foundational
texts, most notably the work of Ganter and Wille [10] provided the mathematical foundation
of FCA, as well as key volumes by Davey and Priestley [11]. Historically, the Darmstadt
research group in Germany played a pivotal role in FCA’s early development, and today,
FCA research spans the globe, supported by annual international conferences including the
International Conference on Formal Concept Analysis (ICFCA), the International
Conference on Conceptual Structures (ICCS), and the Concept Lattices and their
Applications (CLA) meeting series. FCA’s diverse range of applications now includes not
only computer science but also statistics, applied mathematics, medicine, psychology, social
science [12], [13], [14], artificial intelligence, and information retrieval [9].

At its core, FCA provides a methodology for analyzing binary data, where data is
represented by objects and attributes, and uncovering the fundamental patterns,
dependencies, and implications present in this data. In practice, FCA takes a binary context
(a set of objects and their associated attributes) as input and produces sets of “natural
clusters” of objects and attributes as output. These conceptual clusters can then be visually
represented as a Hasse diagram (or line diagram), also known as a concept lattice or Galois
lattice. This lattice representation reveals the intrinsic structural relationships concealed
within the binary data. By offering a graphical and conceptual viewpoint, FCA enables
clearer and more meaningful interpretations of complex datasets. Essentially, from a given
collection of objects and attributes, FCA facilitates the extraction of a relevant ontology a
systematic, philosophically grounded representation of entities and their interrelations
enhancing the transparency and informational value of the data under study. For an in-depth
exploration of FCA's role in knowledge discovery and information science, readers are
directed to a detailed survey available in [15].

2.2. Structure of Concept Lattices

In this section, we establish the fundamental notions underlying FCA, starting with the
definition of a formal context and moving toward the concept lattice that emerges from it.
We introduce key elements such as formal concepts, which pair sets of objects and attributes,
and explain how these concepts form a concept lattice that reveals the inherent structure of
the data. To ground these ideas, we explore the mathematical constructs that support FCA,
including Galois connections and closure operators, along with their essential properties.
This theoretical foundation paves the way for understanding how concepts relate to one
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another and how the lattice embodies a complete and well-organized representation of the
given dataset.

2.2.1. Data Representation as Input

At the heart of FCA lies a binary data representation often called a cross-table or
incidence table. This table links a set of objects (usually placed along rows) to a set of
attributes (usually placed along columns). Each cell in the table marks whether a given object
possesses a particular attribute, commonly indicated by a symbol (e.g., “x”). If the cell is
empty, the object does not have that attribute [10].

As a simple illustration, consider a collection of laptop models (objects) and a selection
of their attributes (characteristics) as shown in Table 2.1. Suppose we have four laptops L4,
L,, L3, L, and four attributes: “Touchscreen” (T), “Backlit Keyboard” (B), “Solid-State
Drive (SSD)” (S), and “Detachable Screen” (D). We might arrange them as follows:

Table 2.1. Cross Table

B S D
L1 X X X
LZ X X
L3 X X
Ly X

In this example, the symbol “x” in the cell for L; and T means L; (Laptop 1) has a
touchscreen, whereas the blank cell for L, and T means L, does not have a touchscreen. By
capturing objects and attributes in this manner, FCA can methodically derive formal
concepts and the resulting lattice that reveals the underlying conceptual structure within the
dataset.

Definition 2.1 (Formal Context):

A formal context is a triple (G, M, I) where G is a non-empty set of objects, M is a non-
empty set of attributes, and I S G X M is a binary relation. If (g, m) € I, it indicates that the
object g € G has attribute m € M. Each “x” in the cross-table corresponds to a pair (g, m) €
1 [10].

In essence, a cross-table provides a straightforward and intuitive representation of data
suitable for applying FCA. From this foundation, one can extract the conceptual structures
known as formal concepts and arrange them into a concept lattice, thereby uncovering and
visualizing meaningful patterns and relationships in the data.

2.2.2. Operators for Concept Formation

From each formal context (G, M, I), where G is a non-empty set of objects, M is a non-
empty set of attributes, and I S G X M is the incidence relation, we derive two fundamental
operators that map subsets of objects to subsets of attributes and vice versa. These are known
as the concept forming operators, and they are central to identifying the formal concepts that
constitute a concept lattice.

Definition 2.2 (Concept Forming Operators):
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Consider a formal context (G, M, I). For any subset of objects X € G and any subset of
attributes Y € M, define:
X'={meM|vgeX, (g m)EI,

Y'={g€eGlvmeY,(g,m)EIl}.

In other words, X" is the set of attributes common to every object in X, and Y" is the set
of all objects that have every attribute in Y [10].

Remarks:

— The operator (-)Tmaps subsets of objects in G to subsets of attributes in M.
Intuitively, if X € G, then X" returns the intersection of attributes shared by all
objects in X.

— The operator (-)l is its dual: it takes subsets of attributes Y € M and returns all
objects in G that possess all attributes in Y.

Example 2.1:

Recall our earlier example with laptops as objects and their features as attributes. Let:

- G ={L4, L,, L3, L} represent four laptop models.
— M ={T (Touchscreen), B (Backlit Keyboard), S (SSD), D (Detachable Screen)}.

— The relation I (indicated by “x”) is given as shown in the formal context in Table
2.1:

From this context:

1 Consider X = {L,, L3}. L, has {T, B, S}, and L; has {T, S, D}. The attributes common to
both L, and L3 are T and S, so {L1, L3}T={T, S}.
2 Consider a single object set X = {L,}. L, has {T, S}. Thus, {L4}T= {T,S}.

For attributes:

- LetY = {B,S}. We want all objects that have both a Backlit Keyboard and a Solid-
State Drive. L, and L, fit this description, hence {B, .S'}l ={Lq,L,}.

- LetY = {S}. All laptops with a Solid-State Drive are L4, L,, L3, and Ly, so {5}l =
{L1, L2, L3, L4}

These concept-forming operators are crucial building blocks. By capturing which
attributes characterize a set of objects, and which objects exhibit a particular combination of
attributes, they enable us to define and understand formal concepts. Ultimately, these
concepts can be combined to form a concept lattice, a structured representation that reveals
intricate relationships within the data.

10
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2.2.3. From Formal Concepts to the Concept Lattice

A central pillar of Formal Concept Analysis is the notion of formal concepts. These
represent well-defined clusters of objects and attributes derived from the given formal
context, embodying the intuitive idea of concepts, each concept corresponds to a group of
objects sharing a precisely matching set of attributes [10].

Definition 2.3 (Formal Concept):

Given a formal context (G, M, I), a formal concept is a pair (X,Y) with X €S G andY S M
such that:
X'=v,v'=X.

In other words, (X, Y) forms a formal concept if and only if X contains just objects sharing
all attributes from Y and Y contains just attributes shared by all objects from X, with no
extraneous elements. Here, X is called the extent and Y is called the intent of the concept.
Extents are precisely the objects that share all attributes in Y, and the intent Y represents all
attributes that these objects X have in common.

Example 2.2:

Consider the laptops example in the formal context in Table 2.1:

Let’s take X = {Lq, L,}. These two laptops share at least the attributes {SSD, Backlit}
because both have these attributes. Indeed, X' = {SSD, Backlit} = Y. Conversely, Y* =
{Ly,L,} = X. Hence, (X;,Y;) = ({L1,L;},{SSD, Backlit}) forms a formal concept. This
concept pairs a set of objects (the laptops L; and L,) with the exact set of attributes they
share (SSD and Backlit). In practice, a formal concept acts as a “fixpoint”: no other attributes
are missing or superfluous for the chosen set of objects, and no other objects outside X share
exactly these attributes.

Moreover, more formal concepts exist, with three represented by the highlighted
rectangles in Table 2.2 below:

Table 2.2. Determine Additional Concepts

T | B S D T | B S D T S | D
L1 X X X Ll X X X L1 X X &
L, x x L, X X L, X i
Ly X X X Ly X X X Ls X % X
L, X X Ly X % L, X X

SpeCiﬁcaHy7 (XZ' YZ) = ({Lli L3' L4}, {T’ S})a (X3r YB) = ({L3}) {T' S, D}) and (Xél-' Y4) =
({L1, L2, L3, La},{SD).

Beyond individual concepts, FCA also provides a way to arrange them into a hierarchy.
Concepts are naturally ordered by a subconcept-superconcept relation, reflecting the

intuitive idea that some concepts are more specialized (fewer objects, more attributes) and
others more general (more objects, fewer attributes).

11
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Definition 2.4 (Subconcept-Superconcept Ordering) [10]:
For two formal concepts (X;,Y;) and (X,,Y,) in (G, M, I),
X, Y) <X, V) o X, CX, & Y,CY,.

If one concept’s extent is contained in another’s, it is deemed more specific (a
subconcept). If we think of real-world categories like “High-End Laptops” being a
subconcept of “All Laptops with SSD,” this aligns perfectly: “High-End Laptops” is more
specialized, fitting strictly inside a larger, more general category. Collecting all formal
concepts of a formal context and ordering them by < (represents the subconcept-
superconcept ordering) yields a concept lattice. This lattice organizes all concepts into a
cohesive structure, displaying the entire “map” of how concepts relate in terms of specificity
and generality.

Definition 2.5 (Concept Lattice):

In general lattice theory, a lattice is a partially ordered set (P, <) in which every pair of
elements has a unique greatest lower bound (meet) and a unique least upper bound (join).

In FCA, the collection of all formal concepts derived from a formal context (G, M,I),
denoted by

B(G, MDD ={X,Y)eE2¢x2M | X" =YV, Y =X}.

together with the subconcept—superconcept ordering <, forms a concept lattice.
Thus, (B(G, M, I), <) is a lattice where each pair of formal concepts has a unique meet and
join, making it the central structural representation in FCA.

In addition to simply being a partially ordered set, a concept lattice is, by definition, a
lattice. In general lattice theory, a lattice is a partially ordered set (poset) in which every pair
of elements has both a greatest lower bound (meet) and a least upper bound (join). When we
say that (B(G,M,I),<) is a lattice, we mean that for any two formal concepts in this set,
there is a well-defined concept that serves as their greatest lower bound and another that
serves as their least upper bound [10].

— Greatest Lower Bound (Meet or Infimum):

Consider two formal concepts (X;,Y;) and (X,,Y,) in the concept lattice B(G, M, ).
Their meet, denoted (X, Y;) A (X3, Y5), is a formal concept that lies below or equal to both
(X1,Y1) and (X,,Y;) in the ordering <, and it is the greatest such concept with this property.
Intuitively, this meet concept represents the most specific (or “lowest”) concept that is still
a common "descendant" of both (X;,Y;) and (X,,Y,). In practical terms, the meet
corresponds to the concept formed by taking the intersection of the object sets and
determining which attributes remain common to those objects, thus ensuring you get the
greatest common "lower" concept.

12
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— Least Upper Bound (Join or Supremum):

Similarly, the join, denoted (X;,Y;) V (X3,Y,), is the least upper bound of the two
concepts. It is a formal concept that ranks above or equal to both (X;,Y;) and (X;,Y,) and
is the least such concept with this property. Intuitively, the join concept represents the most
general (or “highest”) concept that can be seen as a common "ancestor" of both (X;,Y;) and
(X,,Y,). Concretely, you can think of it as taking the union of their attribute sets and finding
all objects that share these combined attributes. This ensures you obtain the smallest concept
higher than both initial concepts.

Because every pair of concepts in B(G, M, I) has a unique meet and a unique join, the
structure (B(G, M, I), <) qualifies as a lattice.

Definition 2.6 (Extents and Intents):

— The set of all extents of the concept lattice is Ext(G,M,I) ={X <SG | (X,Y) €
B(G,M, ), for some Y}.
— The set of all intents is Int(G,M,I) ={Y € M | (X,Y) € B(G,M,I) for some X}.

In summary, starting from a formal context, we derive formal concepts that pair subsets
of objects with subsets of attributes, forming a concept lattice when organized by the natural
subconcept-superconcept relation. This lattice provides a complete and structurally rich
representation of the relationships present in the original data.

Example 2.3 (Extended Laptop Scenario):

To further illustrate the process of deriving a concept lattice, let’s consider an expanded
example using a set of laptops and additional attributes. Suppose we have the following set
of objects (laptops) and attributes:

Objects (Laptops):
G = {Ll, Lz, L3, L4, L5, L65 L7, Lg}.

Attributes:

M = {T(Touchscreen), B(Backlit),S(S5D), D(Detachable), L(Lightweight),
M(Metal Chassis), G(Gaming)}.

Assume the incidence relation I (indicated by "x") is given by the cross-table in Table
2.3:

Table 2.3. The Extended Laptop Formal Context (Cross-Table Representation)

T B S D L M G
L, X X X X
L, X X X
L, X X X X
L, X
Ls X X X X
Lg X X X
L, X X X X
Lg X X X X X

13
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The corresponding formal context (G, M, I) for our expanded laptop example yields a set
of formal concepts. All formal concepts derived from the cross-table described in Table 2.3
are presented in Table A.1 of Appendix A. Each concept provides insight into how certain
groups of laptops share defining attributes, ultimately forming the building blocks of the
concept lattice.

The corresponding concept lattice B(G, M, I) is depicted in the following Figure 2.1, as
a Hasse diagram. Each node corresponds to one of the formal concepts listed above, and
edges illustrate the subconcept-superconcept ordering.

In this dissertation, the set of formal concepts was systematically enumerated using the
NextClosure algorithm, which guarantees completeness by generating each concept in lectic
order. To establish the covering relation of the lattice (i.e., the Hasse diagram edges), the
iPred algorithm [16] was applied, as it efficiently predicts direct predecessors without
computing all pairwise comparisons. All these steps were implemented in a Python script
developed for this research, which automated the extraction of formal contexts, the
computation of formal concepts, and the construction of the lattice. Finally, the resulting
lattice was visualized through Python libraries such as networkx, and matplotlib, enabling
the rendering of the Hasse diagrams.

Figure 2.1. Hasse Diagram of the Concept Lattice Derived from the Extended Laptop Context

2.2.4. Hasse Diagram

The Hasse diagram derived from a formal context is a graphical representation that
organizes all formal concepts into a hierarchy defined by the subconcept-superconcept
relation. Each node in the diagram corresponds to a formal concept, which is composed of
an extent (a set of objects) and an intent (a set of attributes). This visual structure allows one
to understand how concepts relate to each other, moving from broader, more general
concepts near the top, more specific concepts near the bottom.

A standard labeling convention is employed to improve readability and interpretation.
Formal concepts that correspond exactly to a single object and all its associated attributes

14
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are called object concepts. For an object g € G, such an object concept is represented as
({9}, {g}), and denoted by y(g). In the diagram, the object’s identifier g is placed below
its corresponding node. As an illustration, if we have an object concept ({L,}",{L,}’) from
the laptop formal context above, describing a particular laptop L; and its attributes
{T,B,S, L}, the node in the Hasse diagram would be labeled simply as “L;” beneath it as
shown in Figure 2.1, making it immediately clear that this concept is tightly linked to a single
object L;.

Conversely, formal concepts that correspond exactly to a single attribute and all objects
sharing it are called attribute concepts. For an attribute m € M, such an attribute concept is
represented as ({m},{m}’") and denoted by u(m). The attribute’s identifier m is placed
above its corresponding node. For example, if there is an attribute concept ({{L, L, Ls,
Lg}, {B}) focusing on all laptops that have the attribute B, the node would be labeled simply
“B” above it as shown in Figure 2.1, signaling that this concept captures the essence of
attribute B.

This labeling approach, objects below and attributes above is not only consistent but
highly informative. It allows for quick identification of object concepts and attribute
concepts. At a glance, one can recognize pure object or attribute concepts by their placement
of labels. However, not every concept fits neatly into these two categories. Many formal
concepts arise from more complex intersections of multiple objects and attributes. Such
concepts may represent meaningful clusters or patterns in the data without corresponding
purely to one object or one attribute. These intermediate nodes often remain unlabeled or
require more careful interpretation of their extents and intents [17], [18].

By traversing the diagram from bottom to top, one moves from general concepts (which
may have many objects and fewer attributes) to more specialized concepts (fewer objects,
more attributes). The topmost node often represents a concept characterized by a maximal
set of attributes (sometimes all attributes), and possibly no objects at all, while the
bottommost node often represents a concept containing all objects and possibly no attributes.
Intermediate nodes show how objects group together under shared attribute sets and how
attribute sets apply to particular object subsets.

In summary, the Hasse diagram’s layout and labeling conventions provide a clear,
intuitive framework for interpreting complex data relationships. Object labels below nodes,
attribute labels above nodes, and unlabeled intersections work together to reveal how objects
and attributes interact, cluster, and form meaningful concepts. This makes the concept lattice
an invaluable tool for gaining insights, identifying patterns, and informing decision-making
in a wide range of application domains.

2.2.5. Properties of FCA

Let (G, M, I) be a formal context, with G as a non-empty set of objects, M as a non-empty
set of attributes, and I © G X M denoting the incidence relation. Consider arbitrary subsets
X,X1,X, €GandY,Y;, Y, © M. Recall the concept-forming operators: for X € G, define

X'={meMl|vgeX (gm)eEIl}
and for Y € M, define,

Y'={geGIVmEY,(gm)EI}.
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These operators (+)' map subsets of objects to subsets of attributes and vice versa. From
the definitions of (-)" and related properties, the following fundamental relationships hold
[10]:

— Monotonicity of Derivations (for Objects):
IfX; € X, € G, then

X, 2X,.

In other words, enlarging the set of objects cannot produce a larger attribute set. Instead,
it can only stay the same size or become smaller.

— Monotonicity of Derivations (for Attributes):
IfY, €Y, © M, then
Y,'2Y,.
Analogously, increasing the set of attributes leads to a smaller or equal set of objects
sharing all of them.

— Closure-like Properties of Double Derivations:
For any X € G, we have

XcX"and X' =X"".
Similarly, forany Y © M,
YSY'and Y =Y"".

Here, X" = (X")" and X""" = (X"")" are iterated derivations. The equality X' = X" and
Y' = Y"" indicate a closure-like behavior of these operators.

— Galois Connection-Style Equivalences:
The up and down derivations (-)’ satisfy a Galois connection between subsets of G
and subsets of M. Specifically,

XcY X' cv.

This property encapsulates the fundamental duality: a set of objects X is included in the
down-set of a set of attributes Y if and only if the attribute set X’ is included in Y.

Formal Concepts as Fixpoints: A pair (X,Y) with X € G and Y © M forms a formal
concept if and only if

X' =YandY' =X.
This fixpoint condition ensures that (X,Y) captures a perfectly correlated cluster of
objects and attributes, no object outside X shares all attributes of Y, and no attribute outside

Y is common to all objects in X. Formal concept analysis encompasses a broad range of
properties and advanced structures. For more intricate details, mathematical proofs, and

16



Foundations of Formal Concept Analysis

generalizations, authoritative references include [11], which provides a comprehensive
mathematical foundation, as well as Carpineto and Romano [19], among others.

2.2.6. Central Theorem on Concept Lattices

Before stating the main theorem, we briefly recall some notions from lattice theory. A
complete lattice (L, <) is a lattice in which every subset of L has both a supremum (least
upper bound, denoted V) and an infimum (greatest lower bound, denoted A). This property
ensures that arbitrary joins and meets exist, not only those for finite pairs. Within such a
structure, certain subsets play a special role: a subset S € L is called supremum-dense if
every element of L can be expressed as the join (supremum) of some subset of S. Likewise,
a subset T € L is called infimum-dense if every element of L can be expressed as the meet
(infimum) of some subset of T'.

The main theorem by Wille (1982) provides a fundamental characterization of concept
lattices [1]:

Theorem (Main Theorem of Concept Lattices):
Let (G, M,I) be a formal context and B(G, M, I) its set of formal concepts. Then:

1. Completeness:
(B(G,M,I),<) is a complete lattice. For any collection of formal concepts {(X},Y;

)}je]:
Njes(X;, ¥j) = (njEJXj'(UJ'EJYj)”)' Ve (X, ) = ((UJ'EJXJ')”' ﬂquj)-

2. Representation of Complete Lattices:
Any complete lattice (V, <) can be represented as a concept lattice B(G, M, I) if there
exist mappings y: G — V and u: M — V such that:
— y(G) is supremum-dense (V —dense) in V and pu(M) is infimum-dense
(A—dense)inV.
— v(g9) < u(m) if and only if (g, m) € I.

The theorem ensures B(G,M,I) is always a complete lattice, with well-defined
supremum and infimum operations. It also shows that concept lattices are universal: any
complete lattice can be modeled as a concept lattice by choosing appropriate objects and
attributes. Labeling the lattice by assigning each object g to its object concept y(g) and each
attribute m to its attribute concept p(m) preserves all original information. This result
anchors concept lattices as a core mathematical structure in FCA, ensuring no loss of
information and offering a canonical form for representing complete lattices.

2.3. Overview of FCA algorithms

Computing all formal concepts from a given formal context can be challenging. A naive
approach will examine every subset of attributes Y & M to determine if it forms a closed set.
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This would be computationally prohibitive since there are 2! subsets of attributes. Instead,
FCA algorithms incorporate strategies like canonical test conditions, lexicographic ordering
of subsets, and efficient data structures to prune the search space. FCA encompasses a
variety of algorithms designed to efficiently construct concept lattices from formal contexts.
These algorithms can be broadly categorized into three classes: Batch-Style Computation,
Incremental Techniques for Update, and Assembling Algorithms. Each class employs
distinct methodologies tailored to specific computational and application requirements. This
section provides an exploration of these algorithmic classes, highlighting their operational
principles [20].

2.3.1. Batch-Style Computation

Batch-style algorithms are foundational in FCA, generating the entire set of formal
concepts from scratch by processing the complete formal context in a single run. These
algorithms typically operate in a top-down or bottom-up manner, either beginning with
minimal intents and progressively building towards maximal intents or vice versa. A notable
technique within this category is the lexicographic ordering of attribute subsets, which serves
to streamline the concept generation process by preventing redundant computations.

One of the most prominent batch algorithms is Ganter’s NextClosure algorithm,
introduced in [10], [21]. The algorithm employs a lexicographic order to systematically
explore subsets of attributes, ensuring that each formal concept is generated exactly once in
a canonical form. The key idea is to traverse the space of attribute subsets in a predetermined
order, applying closure operations to identify and confirm formal concepts. The following
pseudo-code of the NextClosure algorithm is adapted from [10].

Algorithm 2.1: NextClosure

Input:

A formal context (G, M, I), with attribute set M = {m,, m,, ..., m,,}.

A current intent Y € M.

Output:

All formal concepts derived from Y, enumerated in lectic (canonical) order.

procedure NextClosure(Y):
output concept (Y',Y) // extent-intent pair
ien
success «— false
while not success and i > 0 do
i<i—1
ifm; € Y then
D « Y U {m}
C « (D)’ // closure of D
if (C \'Y) contains no element < m; then
NextClosure(C) // recursive call
success «— true
end if
end if
end while
end procedure

NextClosure operates with a time complexity of O(| G || M | - | L |), where | L | is the
number of formal concepts. Its polynomial delay of O(| G |?- | M |) makes it efficient for
contexts with moderate sizes.
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Another significant batch algorithm is the Close-by-One (CbO) family, which enhances
the concept generation process by incorporating efficient canonicity tests and leveraging
data structures to store intermediate results. The original CbO algorithm, detailed in [22],
focuses on reducing redundant computations through strategic exploration of the attribute
space. The Fast Close-by-One (FcbO) algorithm, introduced in [23], enhances CbO by
implementing an additional canonicity test to eliminate redundant computations. FcbO
employs a breadth-first search strategy to propagate canonicity failures, thereby significantly
reducing the number of attribute comparisons required. Another advanced variant is the In-
Close algorithm [24], which optimizes closure operations by incrementally computing
closures and employing matrix searching techniques. The In-Close2 version [25] further
refines this approach by propagating attribute tests downward and reordering the context
table to group maximal rectangles, resulting in performance gains over FcbO.

Batch algorithms like NextClosure and CbO are powerful for generating complete
concept lattices from static contexts. However, their performance can degrade with large
datasets due to the exponential number of possible attribute subsets. Despite optimizations,
these algorithms require re-computation from scratch whenever the formal context changes,
limiting their applicability in dynamic environments.

2.3.2. Incremental Techniques for Update

Incremental algorithms address the limitations of batch algorithms by efficiently updating
the concept lattice in response to changes in the formal context, such as the addition or
removal of objects or attributes. These algorithms build the concept lattice incrementally,
modifying the existing structure with minimal computational overhead rather than
reconstructing it entirely.

One of the earliest incremental algorithms is Norris’ Algorithm [26], which updates the
concept lattice by sequentially incorporating new objects. The algorithm maintains the lattice
structure by identifying and adjusting affected concepts when a new object is introduced.
AddIntent [27] is another algorithm enhances incremental updates by employing heuristics
to identify modified and generator concepts. It traverses the concept lattice graph
recursively, ensuring that each new concept is processed exactly once and that canonicity is
maintained throughout the update process. Another approach is presented in [28], where an
optimized incremental concept lattice construction method improves update efficiency by
integrating features from Ferre and InClose algorithms. This approach reduces
computational complexity through context reduction techniques, enabling faster concept set
updates. The method outperforms existing incremental techniques in specific parameter
ranges, making it particularly effective for dynamic datasets that require frequent
modifications.

Further advancements in this field have introduced more sophisticated strategies to
address scalability, modularity, and adaptability in dynamic environments. One such
advancement focuses on the incremental mining of frequent closed itemsets (FCIs), where
the aim is to avoid full recomputation when transactions or minimum support thresholds
change. This approach, presented in [29], outlines two strategies, one mirroring classical
lattice traversal and another optimized via structural pruning that significantly reduce
redundant computation by localizing updates to affected sublattices. The method proves
particularly effective for dynamic databases and exploratory workflows, where the frequent
tuning of parameters like minsup is common.
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In a broader lattice-assembly perspective, [30] introduces a general framework for
incremental object insertion that classifies existing lattice concepts into four distinct
categories: new, modified, generator, and unchanged. Each category undergoes localized
transformations that preserve the global lattice structure with minimal disruption. This
classification not only guides efficient lattice maintenance but also connects incremental
updates with modular lattice construction through the Compute-Lattice-Inc procedure,
which incrementally builds a global lattice by composing partial ones.

Expanding on this foundation, [31] proposes a generic insertion scheme based on
structural invariants that constrain how upper and lower covers change during incremental
updates. A key result here is the formulation of the ADD-OBJECT algorithm, which scans
concept intents against new object attributes, augments extents as needed and ensures
correctness via targeted ORDER updates. Beyond single insertions, this framework extends
to context subposition and distributed assembly, providing robust support for batch updates
and modular factorization across multiple datasets.

Complementing these approaches, [32] introduces a partition-based construction strategy
that embraces a divide-and-conquer philosophy. By fragmenting the input context and
computing individual lattices for each fragment, the method reassembles a global lattice
through a structured traversal of the product order. It employs specialized data structures
such as concept records, ranked lists, and embedding tables and culminates in the
ASSEMBLY procedure, which merges partial lattices efficiently. This technique offers a
scalable solution for large or naturally partitioned datasets and conceptually bridges
incremental and modular construction paradigms.

Incremental algorithms provide a robust solution for maintaining concept lattices in
dynamic environments. By updating the lattice incrementally, these algorithms offer
substantial performance improvements over batch algorithms, especially in scenarios with
frequent data modifications. Their ability to efficiently handle updates makes them
indispensable for applications involving real-time data streams and evolving datasets.

2.3.3. Assembling Algorithms

Assembling algorithms represent an evolution of incremental techniques, focusing on
constructing concept lattices by combining partial structures derived from segmented parts
of the formal context. This approach is particularly advantageous for large-scale and
distributed datasets, as it allows for parallel processing and efficient aggregation of results.

The Divide & Conquer algorithm [33] exemplifies this class by partitioning the formal
context into smaller, manageable segments, computing concept lattices for each segment
independently, and subsequently merging these partial lattices into a cohesive whole. This
method leverages parallelism, enabling significant scalability and efficiency gains by
distributing the computational load across multiple processors or machines.

Key Steps of Assembling Algorithms:

1. Partitioning the Formal Context:
— The formal context (G, M,I) is divided either vertically (by attributes) or
horizontally (by objects) into smaller subcontexts.
2. Computing Partial Lattices:
— For each subcontext, a partial concept lattice is constructed using batch or
incremental algorithms.
3. Merging Partial Lattices:
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— The partial lattices are then combined, ensuring consistency and maintaining
the overall lattice structure. This often involves resolving overlaps and
integrating shared concepts.

Advantages of Assembling Algorithms:
— Parallel Processing: Enables concurrent computations on different segments of the
formal context, significantly reducing total computation time.
— Scalability: Efficiently handles large datasets by distributing the processing
workload, making it suitable for big data applications.
— Flexibility: Can be adapted to various partitioning strategies, allowing optimization
based on specific dataset characteristics and computational resources.

Assembling algorithms extend the capabilities of incremental and batch methods by
facilitating the construction of concept lattices from segmented data. Their inherent
parallelism and scalability make them particularly suited for handling extensive and complex
datasets, ensuring that FCA remains effective even as data volumes grow.

2.3.4. General Remarks on FCA Algorithm’s Performance

The computational efficiency of FCA algorithms is influenced by several parameters
associated with the formal context (G, M, I). Key factors include:

e The cardinalities |G| and |M]|.
o The size of the incidence relation I.

e The density p = which measures how densely attributes occur in objects.

I
IGl. Im|”

Empirical evaluations [20] indicate that certain algorithms excel under specific
conditions. For contexts where |G| and |M| are large and p is high (dense contexts), bottom-
up algorithms like Close-by-One and NextClosure, as well as Norris’ incremental algorithm,
often yield superior performance. Conversely, for contexts where |G| and |M| remain small
and p is low (sparse contexts), incremental methods such as Godin’s algorithm[34] can be
more effective, thereby minimizing unnecessary computations.

Constructing the entire lattice, including its partial order, imposes an additional
computational burden. Algorithms solely generating the set of formal concepts C often
exhibit lower runtime complexity than those that must also determine the ordering relations
< among concepts. This is because the calculation of minimal upper neighbors and lower
neighbors for each concept in € introduces extra steps beyond the initial concept generation.

Preventing redundant concept computations is essential for efficiency. The set of all
formal concepts derived from (G, M, I). Without careful checks, an algorithm might attempt
to recompute concepts it has already enumerated. To address this, suitable data structures
and canonicity checks are employed. For instance, Godin’s algorithm organizes concepts by
the cardinality of their intents, enabling quick lookups and pruning strategies.

A commonly used technique to accelerate set operations involves representing attribute
subsets as fixed-length bit arrays. Each attribute m € M corresponds to a particular bit
position. For two subsets X, Y © M, the set intersection X N Y translates directly to a bitwise
AND operation on their corresponding bit arrays. This representation reduces set-theoretic
operations to O(| M |/w) time, where w is the word size of the machine. For example, if
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M={a<b<c<d<e<f}and S ={a,cd,e}, one can encode S as a binary vector
v(S) = 101110, where the position of each bit corresponds to an attribute in lexicographic
order. Then, X N Y is computed as v(X) A v(Y), a single bitwise operation.

Additionally, reordering rows and columns of the context (G, M, I) can yield substantial
improvements. Sorting attributes by frequency and rearranging objects to minimize
Hamming distances between their bit-array representations enhances spatial locality and
cache utilization. Such techniques, as implemented in In-Close2 [25], demonstrate
performance gains in excess of 30% for large datasets.

In conclusion, the performance of FCA algorithms depends not only on the choice of
algorithmic strategy, bottom-up vs. incremental, but also on data representation techniques,
the selection and design of indexing structures, and preprocessing steps like ordering and
clustering of attributes and objects. By judiciously combining these strategies, FCA
computations can scale more efficiently to handle increasingly large and dense formal
contexts.

2.4. Extensions and Applications of FCA Model

This section explores various extensions and applications of the FCA model, highlighting
advancements that enhance both its theoretical foundations and practical utility. One
significant extension is the concept of box elements in a concept lattice, introduced as a
refinement of FCA [35]. This work focuses on constructing the box lattice of a given concept
lattice B(G, M, I), which serves as a structured framework for classification systems. The
box lattice, derived from a CJ-generated complete lattice (Completely Join-irreducible
generated), allows for an alternative decomposition of concept lattices into atomistic
components, enhancing the classification hierarchy's representation. The study establishes
the equivalence between classification lattices and box lattices, proving that any
classification lattice can be reconstructed from an atomistic complete lattice. Additionally,
the paper proposes an algorithmic approach for computing box elements, which is
particularly useful in cluster analysis and group technology applications. This extension of
FCA provides a novel method for structuring and analyzing classification systems within
concept lattices.

Building upon this, an important computational enhancement of FCA is presented in [36],
where the authors introduce an incremental method for constructing box extents in a concept
lattice. This research improves the efficiency of box element construction by refining the
one-object extension method, demonstrating that box extents can be incrementally generated
while avoiding exponential growth in complexity. A key result is that the box extent lattice
can be order-embedded in the lattice of atomic extents, further strengthening FCA’s
mathematical foundation for classification tasks. The paper contributes a computationally
feasible algorithm that improves the practical applicability of FCA in data classification,
clustering, and engineering applications, particularly in Group Technology. By optimizing
the successive extension of box extents, this work significantly enhances the scalability and
usability of FCA-based classification systems.

Beyond the crisp (binary) framework of traditional FCA, another key extension into the
fuzzy domain is presented in [37]. This work explores the lattice structure of fuzzy rough
sets with crisp reference sets, integrating fuzzy logic with FCA principles to handle graded
membership and uncertainty in classification. The study establishes an isomorphism
between the lattice of fuzzy rough sets and the lattice of rough sets for a crisp equivalence
relation, preserving fundamental order-theoretic properties crucial to FCA. By bridging
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fuzzy rough set theory with concept lattice structures, this extension allows FCA to be
applied in uncertain knowledge representation, particularly in machine learning, data
classification, and artificial intelligence. This adaptation expands the scope of FCA beyond
traditional binary relations, enabling its use in complex, real-world scenarios where
uncertainty must be considered.

FCA’s diverse applications extend beyond computer science to statistics, medicine,
psychology, social sciences [12], [13], [14], artificial intelligence, and information retrieval
[9]. In education, FCA is applied to student assessment by constructing concept lattices from
a Student Assessment Matrix (SAM) and a Question Skill Matrix (QSM) [38]. This approach
visualizes student knowledge hierarchies, enabling objective grading, personalized learning,
and effective group formation based on complementary skills. By integrating FCA into
educational evaluation, this method offers a data-driven framework for assessing student
performance and knowledge representation. Beyond education, FCA has been effectively
applied in industrial engineering [39], particularly in solving the machine-part grouping
problem in cellular manufacturing. By analyzing a binary incidence matrix, formal concepts
and extent partitions are used to optimize manufacturing cells, improving machine utilization
and reducing inter-cell movements, this application further demonstrates FCA's versatility
in addressing complex, real-world industrial challenges. In Natural Language Processing
(NLP), FCA is applied to part-of-speech (POS) classification by constructing concept
lattices to generate classification rules [40]. This FCA-based approach replaces traditional
decision trees and neural networks, identifying maximal consistent nodes to improve
classification accuracy and efficiency. Experimental results show that the FCA-based
classifier outperforms neural networks in execution time and accuracy, making it a viable
alternative for morphological classification and linguistic analysis. A closely related
application in string transformation rule induction uses FCA to generalize morphological
transformations by constructing concept lattices [40]. This approach improves rule induction
efficiency by organizing transformation rules hierarchically, enabling compact and
generalized rule extraction. The optimized incremental concept lattice construction enhances
pattern recognition and linguistic processing, making FCA a valuable tool in text analysis
and NLP.

These extensions and applications highlight FCA’s adaptability and effectiveness in
diverse fields, demonstrating its potential for advancing both theoretical research and
practical problem-solving across multiple domains.

2.5. Emerging Issues in FCA and the Necessity for Reduction
Methods

FCA’s relevance in complex data analysis is tempered by practical constraints,
particularly as datasets grow in size, complexity, and heterogeneity. The following
subsections highlight key challenges that underscore why reduction techniques are integral
to the next generation of FCA methodologies. These insights reflect the ongoing dialogue in
the literature regarding computational bottlenecks, data transformation strategies, and
maintaining representational fidelity [20], [25].
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2.5.1. High-Dimensional and Complex Datasets

As datasets expand in both volume and complexity, the practical application of FCA faces
intensified challenges. The sheer scale of modern data potentially encompassing hundreds
of thousands of objects and attributes drives exponential growth in the number of formal
concepts and the resultant concept lattice [41]. In essence, each new object or attribute can
significantly multiply the possible combinations of object-attribute pairs, creating a
combinatorial explosion that places tremendous computational burdens on lattice
construction and subsequent analysis.

This surge in complexity is particularly evident in domains where data is inherently large-
scale and intricate. For example, in bioinformatics and genomics research, ever-increasing
datasets contain vast numbers of genes or proteins, each associated with a myriad of
attributes such as functional annotations, experimental conditions, and genomic variants
[42], [43]. Similarly, space telemetry data, streaming in real time from numerous sensors,
and massive e-learning repositories, recording the activities and proficiencies of thousands
of learners, yield datasets too extensive for conventional FCA techniques to handle
efficiently. Without suitable reduction strategies, the concept lattice may become
prohibitively large and overwhelming, making it difficult for analysts to extract meaningful
patterns or insights.

Moreover, high-dimensional data often includes attributes of varying scales, types, and
significance. Some attributes may be redundant or represent fine-grained distinctions that,
while statistically present, hold limited analytical value. Others may be essential but
obscured by a plethora of less relevant details. The presence of these “noisy” or low-impact
attributes further exacerbates the complexity by producing a multitude of extra concepts that
are not necessarily relevant for the task at hand [44]

In response to these challenges, FCA must be equipped with sophisticated reduction
techniques designed to operate at scale. For instance, heuristic filtering can prune attributes
or objects that fall below a certain frequency threshold, ensuring that only the most
prominent and impactful elements remain [30]. Clustering-based approaches can collapse
sets of similar rows or columns to simplify the formal context, thereby yielding a more
compact and cognitively manageable lattice structure [45], [46], [47]. Additionally,
computational methods like Singular Value Decomposition (SVD) or Non-negative Matrix
Factorization can compress the data matrix into a reduced representation, though these
factorization-based approaches must be applied carefully to preserve interpretability and
handle noise gracefully [48].

Ultimately, handling high-dimensional and complex datasets requires a balanced synergy
between computational optimization, conceptual abstraction, and selective filtering. By
integrating robust reduction methods, FCA can maintain its core strength as a formal,
structured approach to understanding complex data relationships, even in environments
characterized by massive scale and multifaceted data attributes.

2.5.2. Adapting to Varied Data Forms Through Scaling

FCA traditionally requires binary input data, but many real-world problems involve
continuous, many-valued, or more complex data types [49]. Scaling bridges this gap by
transforming non-binary attributes into a suitable form. However, determining effective
scaling parameters and intervals, particularly in dynamic data scenarios like data streams
remains non-trivial [25]. As new data arrives or attribute ranges shift, scaling must be
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repeated or updated, further straining computational resources. Efficient incremental or
distributed scaling approaches become essential for maintaining performance and achieving
timely analysis results.

2.5.3. Handling Uncertainty: Noise and Missing Values

Real-world datasets often contain outliers, incorrect measurements, or incomplete
information. Such imperfections can inflate the number of formal concepts, as even slight
deviations generate additional, and frequently irrelevant concepts [50]. Mitigating these
effects calls for strategies that tolerate a controlled level of exceptions fault-tolerant FCA
methods or that apply smoothing, filtering, or imputation techniques to ensure the resulting
lattice remains both accurate and concise [44]

Beyond these fundamental issues, FCA grapples with other complexities as data volumes
grow:

— Parallel and Distributed Computation: Efficiently computing concept lattices in
parallel or distributed environments is crucial as datasets become too large for single-
node solutions [51]. Distributed algorithms and load-balancing strategies can
significantly improve scalability.

— Data Stream Processing: The high velocity of streaming data demands incremental
updating and approximation methods to keep up with new objects and attributes
without recomputing entire lattices [52].

— Visualization of Large Lattices: As concept lattices grow large, traditional Hasse
diagrams become visually overwhelming and hinder user comprehension. While
tools like ConExp [53], Galicia [54] provide different visualization strategies, they
still face challenges in interactivity and scalability for large-scale contexts. Figure
2.2 illustrates some default visualization strategies, demonstrating that
straightforward approaches are insufficient for extensive datasets.

ConExp Galicia

Figure 2.2. Representative Tools for Concept Lattice Visualization

In conclusion, as FCA encounters increasingly complex, large-scale, and evolving
datasets, it must integrate refined reduction methods, advanced scaling strategies, and robust
mechanisms for noise handling and concept filtering. These enhancements will ensure that
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FCA remains both a powerful and practical framework for knowledge discovery in
challenging data-driven environments.

2.6. Summary

This chapter provided a comprehensive foundation for FCA, detailing the theoretical
underpinnings that make it a powerful framework for knowledge representation. After
introducing the essential constructs, it examined how FCA identifies conceptual structures
within data and organizes them into concept lattices.

Subsequently, the chapter reviewed key algorithmic paradigms, batch computation,
incremental updates, and lattice assembly, emphasizing how each approach addresses
different computational challenges. Techniques to enhance algorithmic performance, such
as efficient data structures, attribute reordering, and heuristic filtering, were highlighted as
essential tools for managing complexity.

The chapter then focused on the pressing challenges FCA faces in contemporary big data
contexts, where high-dimensional, noisy, and evolving datasets demand more scalable and
flexible solutions. This necessitates robust reduction methods, advanced scaling techniques
for complex data types, and approaches to handle noise and missing values. Recognizing
these obstacles sets the stage for developing refined methodologies that preserve FCA’s
conceptual clarity and interpretability, even as data grows in scale and complexity.
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Chapter 3:  Literature Review

3.1. Overview of Existing Lattice Reduction Techniques in FCA

FCA has, since its conception by Wille in 1982 [1], evolved into a powerful tool for
knowledge extraction and structural data analysis. Its mathematical foundations enable the
organization of data into concept lattices, revealing intricate relationships that have proved
beneficial across a wide range of domains, data mining [6], neural networks [55], and social
network analysis [12], [13], [14], among others. Yet, as FCA applications have expanded,
the complexity of the resulting lattices has become a significant concern. Reducing the
complexity of concept lattices derived from FCA is a critical challenge in knowledge
engineering. As FCA extracts formal concepts and arranges them into a concept lattice, the
resulting structure can become prohibitively large and intricate, often rendering it
computationally demanding and difficult for humans to interpret. Therefore, the quest for
effective reduction techniques, approaches that simplify these lattices while retaining their
essential conceptual relationshipsm is at the forefront of FCA research.

Various reduction methodologies have been proposed to manage and simplify concept
lattices [56]. They generally fall into three categories: redundancy removal, simplification,
and selection-based strategies. Redundancy removal methods focus on eliminating
unnecessary objects, attributes, or incidences, ensuring the resulting lattice remains
isomorphic to the original but reduced in scale [57], [58], [59]. However, while these
methods can yield smaller, structurally similar lattices, they often remain computationally
heavy for very large datasets and do not always provide a significantly more interpretable
structure. A straightforward reduction method in this category involves merging multiple
objects that share exactly the same attributes into a single representative object or merging
multiple attributes that appear together across identical sets of objects into one attribute. By
removing these redundancies, the resulting formal context becomes “clarified” while
retaining the same conceptual structure [10]. Another type of reduction that maintains the
lattice’s overall structure is to remove any attribute that can be represented by other existing
attributes, referred to as a reducible attribute[10]. Formally, if there is an attribute m € M
and a subset of attributes B € M, with m & B, such that m' = B’, then um (the attribute
concept of m) is the infimum of the attribute concepts p(b) for all b € B. Consequently, if
attribute m is removed, the resulting concept lattice remains equivalent to the original one,
both in structure and relational ordering. In a similar way, eliminating reducible objects from
a formal context can yield a smaller context whose associated concept lattice is still
isomorphic to that of the original. Specifically, an object g € G for which y(g) 1is the
infimum of y(a) oversomesetA S Gandg & A,a € A ,can be removed without changing
the isomorphism class of the resulting [10]. To further minimize the size of formal contexts
while preserving the underlying concept lattice, various strategies have been developed. One
such strategy, proposed in [60], uses a “discernibility matrix” to determine a minimal subset
of attributes. This approach treats (G, M, I) as a formal context and looks at pairs of concepts
(A4, By), (A,,B,) € B(G, M, I). The symmetric difference of their intention parts, = (B; U
B;)\(B;1 N B,), defines their “discernibility.” Once the discernibility matrix is constructed,
a minimal set of attributes B € M can be chosen so that the resulting lattice B(G, M, ")
remains isomorphic to B(G, M, I). Here, I’ = I N (G X A), and A denotes the minimal set of
attributes having the smallest cardinality. Building on this, Qi [61] presented guidelines to
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reduce the number of discernibility computations, still ensuring the possibility of obtaining
a minimal set of attributes. Furthermore, [60] categorize attributes of a formal context as
“absolutely necessary,” “relatively necessary,” or “absolutely unnecessary.” An attribute
that appears in every minimal set is deemed absolutely necessary; if it appears in at least one
but not all minimal sets, it is relatively necessary; and if an attribute appears in none of the
minimal sets, it is considered absolutely unnecessary.

Simplification or abstraction approaches attempt to approximate or restructure the lattice
to emphasize its most essential features while accepting some information loss. These
include clustering similar objects or attributes to form more compact representations [62],
employing algebraic reductions like SVD or non-negative matrix factorization [63], and
leveraging approximation operators such as neighborhood-based concept lattices [64]. The
discernibility matrix-based reduction algorithm [65] and sophisticated factorization methods
[66] represent key efforts to minimize complexity. Linguistic-valued layered lattice
simplifications that consider three-way decision methods [67], as well as attribute reduction
in Pythagorean Fuzzy formal contexts leveraging optimized Apriori-algorithm variants [68],
reflect ongoing innovation in this area. Yet, these simplification methods may rely on
assumptions (e.g., pseudo similarities) or introduce computational burdens that limit their
practical use. An interesting approach related to focusing on a sublattice of concept lattices
rather than enumerating all concepts, was presented in [35]. They consider row-reduced
contexts and define the so-called box lattice, Box(B(G, M, I)), which retains exactly those
concepts relevant for classification systems, leading to an atomistic sublattice. Their method
identifies and generates these ‘box elements’ by finding the atoms of Box(B(G, M, I)). This
atom-based decomposition provides a systematic framework to study or build classification
lattices in a potentially more manageable subset, thereby extending formal concept analysis
techniques to clustering and grouping tasks where classification systems play a key role.

Selection-based techniques provide another promising avenue for lattice reduction.
Instead of attempting to maintain or approximate the entire structure, selection strategies
isolate only those concepts or attributes deemed most relevant for a given analysis [18], [56].
A particularly influential reduction strategy is the Iceberg Lattice, introduced in [43]. Unlike
algebraic or attribute-based simplifications, this approach offers a scalable solution for
reducing the size of concept lattices in FCA. Its central principle is to retain only the “top-
most” portion of the lattice by filtering concepts according to a minimum support threshold.
In doing so, the method preserves the most frequent and globally significant concepts, while
pruning less frequent and potentially less informative ones.

Formal Definition:

Let K = (G, M, I) be a formal context, where G is the set of objects, M is the set of attributes,
and I € G X M is the incidence relation.

For an attribute set B € M, its support is defined as:
supp(B) =IB"| /1 G |.
where B’ C G is the set of all objects possessing attributes in B.
An attribute set B (or concept intent) is called frequent if:

supp(B) = minsup, with minsup € [0,1].
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— A frequent concept is a formal concept (4, B) whose intent B is frequent.
— The collection of all frequent concepts forms the iceberg concept lattice of K.

Since support is monotone decreasing with set inclusion (i.e., if B; € B, then
supp(B;) = supp(B,), the iceberg lattice is an order filter of the full lattice. In practice,
this means it generally forms only a join-semilattice. To restore lattice completeness, a new
bottom element can be artificially introduced. The Authors proposed the TITANIC
algorithm (a /evel-wise data mining procedure) to efficiently compute iceberg concept
lattices. The key innovation lies in introducing a weight function in this case, the support
function that is compatible with the FCA closure operator. This compatibility enables the
algorithm to prune the search space and avoid redundant computations.

The algorithm proceeds as follows:

1. Initialization: Begin with the empty set and all singleton attribute sets as candidate
generators.

2. Weight Calculation: Compute support values for candidate sets.

3. Closure Computation: Determine the closure of candidate sets by checking support
invariance under attribute addition.

4. Key Sets Identification: Identify minimal generators (key sets) whose closures yield
new frequent concepts.

5. Pruning: Discard non-key sets or those below the support threshold.

6. Iteration: Generate higher-level candidates by combining frequent subsets.

7. Termination: Stop when no new frequent sets remain.

This level-wise exploration ensures that only frequent concepts above the support
threshold are considered, dramatically improving scalability compared to classical
approaches like Ganter’s NextClosure algorithm. In their seminal work, Stumme et al.
applied iceberg lattices to the MUSHROOM database from the UCI repository.

o The full lattice contained 32,086 concepts, far too large for practical visualization.

e By applying a minimum support of 85%, the iceberg lattice was reduced to only the
most frequent concepts, highlighting attributes such as veil type: partial (100%
support), veil color: white (97.62%), and gill attachment: free (97.43%).

e Decreasing the support threshold to 70% or 55% progressively revealed finer
structures and associations, including implications like.

{gill attachment: free, gill spacing: close} = {veil color: white}.

Thus, iceberg lattices act as a multi-resolution tool, where lowering the support threshold
became apparent. In this way, iceberg lattices can be viewed as a multi-resolution tool:
higher thresholds expose the most dominant and general patterns, while lower thresholds
allow exploration of finer and more specific associations.

Beyond their role in lattice reduction, iceberg lattices have become a central tool in related
areas of knowledge discovery. They provide a condensed representation of frequent closed
itemset, support efficient association rule mining through non-redundant bases, and enable
structured visualization of large datasets that would otherwise be computationally
prohibitive and cognitively overwhelming. By systematically filtering concepts based on
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support, iceberg lattices strike a balance between scalability and interpretability, laying the
groundwork for many subsequent advances in FCA-based reduction and mining techniques.
While this approach offers a straightforward means of reducing lattice size and highlights
frequently occurring concepts, it does not account for derivation costs; concepts with the
same high support remain equally in the lattice, even if one is far more central for deriving
other concepts. By narrowing down the concept set, these methods can achieve more
manageable and interpretable lattices.

In many scenarios, there is additional knowledge about the sets of objects and attributes.
Some selection techniques use this knowledge to guide the reduction process, focusing on
objects or attributes that satisfy particular constraints. For instance, some methods leverage
attribute weighting [69], hierarchical structures [70], to further refine which concepts are
retained. Recent efforts, such as the tri-granularity model introduced in [71], highlight a
layered approach that organizes the lattice at multiple granularity levels global, local, and
elementary, to systematically perform attribute reduction. Other selection methods consider
the relationships between specific attributes [72], or rely on frequency thresholds and
structural constraints [46], [73], [74] to highlight only the most significant concepts.
Although these strategies improve upon simplistic pruning mechanisms, they often treat the
selection criteria as static filters and do not fully consider the dynamic aspect of concept
derivation within the lattice.

Conceptual clustering has been identified as a viable approach for concept lattice
reduction. By grouping similar concepts, one can approximate or replace large sets of related
concepts with fewer, representative “cluster centers,” thereby simplifying the overall lattice.
Traditionally, data clustering has focused on numerical datasets, leveraging geometric
distance measures such as Euclidean or Manhattan distances to partition objects into
meaningful clusters. However, the straightforward geometric notions of distance do not
translate well to datasets characterized by categorical attributes, such as gender, location, or
product categories, nor do they inherently capture the hierarchical and relational nuances of
FCA-generated concepts. This limitation has prompted a surge of interest in adapting
clustering methods to handle categorical data effectively [75], [76], [77]. For categorical
datasets, similarity typically relies on equality checks rather than continuous-valued metrics.
A simple matching measure, counting how many attributes match exactly, forms a baseline
approach [78]. Yet, equality-based similarity treats all mismatches equally, ignoring subtle
categorical variations and overlooking the hierarchical relationships that FCA captures [79].
Standard clustering algorithms designed for continuous vector spaces must therefore be
reimagined to both accommodate categorical data and align with FCA’s conceptual
structures. The widely known k-means algorithm [80] exemplifies these challenges. While
k-means is celebrated for its simplicity and efficiency, it cannot directly process categorical
attributes without transformations that risk information loss. This shortcoming has led to the
development of several k-means variants designed for categorical data. The k-modes
algorithm [77], for example, replaces mean-based cluster centers with modes and employs a
simple matching measure. Although k-modes can handle categorical attributes, it often faces
stability issues in defining unique cluster modes and may not exploit any underlying
hierarchy present in the data.

Subsequent adaptations, such as k-representative [81] and k-centers [82], introduce more
refined definitions of cluster “centers.” K-representative constructs representatives by
considering the distribution of categorical values within a cluster, while k-centers estimates
cluster centers as sets of probability distributions derived from kernel density estimations.
These methods try to preserve important categorical relationships, but they still rely on
vector-like representations or frequency counts that can obscure latent hierarchies or lead to
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loss of crucial relational information. Other refined variants include fuzzy k-modes [83],
scalable k-modes [84], and probabilistic k-modes [85]. These extensions enhance clustering
flexibility and scalability, incorporate uncertainty modeling, and improve computation
times. Yet, despite these advancements, the primary focus often remains on adapting k-
means to categorical domains rather than integrating hierarchical structures like those found
in FCA. Concept lattices derived from FCA inherently encode hierarchical and relational
aspects that these clustering methods do not fully utilize. This gap suggests an opportunity:
rather than simply clustering categorical data, we can employ the hierarchical, relational
structures of FCA to guide clustering-based reduction. Formal Concept Analysis can
represent data as a concept lattice, where each concept is formed by a set of attributes (intent)
and a set of objects (extent). If we treat the concept lattice itself, or the underlying datasets
it emerges from, as input to a clustering procedure adapted for categorical data, the resulting
“cluster centers” can serve as approximations of the original concept sets. This approach can
reduce the number of concepts that need to be explicitly represented, thus simplifying the
lattice without completely discarding the essential information.

While these reduction techniques have advanced FCA, a notable gap remains in
incorporating human language optimization principles, such as the principle of least effort
[86] and Zipf’s law, into lattice reduction. These linguistic insights reveal how humans
naturally favor concise, high-frequency elements to minimize cognitive load [87]. By
drawing on this perspective, it becomes possible to enhance both computational efficiency
and cognitive accessibility in concept lattice reduction, aligning the resulting structures more
closely with natural human information processing. Authors in [87], presents a pivotal study
demonstrating that average information content is a superior predictor of word length in
human languages compared to mere word frequency. This challenges the traditional Zipf’s
law, which posits that word length is primarily determined by frequency of use, with more
frequent words being shorter. The authors argue that human languages optimize words
lengths to achieve efficient communication by accounting for the statistical dependencies
between words, aligning with principles from information theory. They introduce a formal
measure of a word’s average information content I (w), calculated as:

I(w) = =Y P(ctlw)log P(w]ct).

Where, P(ct|w) is the probability of context ¢ given word w, and P(w|ct) is the
probability of word w given context c. This formula captures the expected amount of
information a word conveys across different contexts, reflecting its unpredictability and
communicative value. Their empirical analysis across multiple languages using N-gram
models reveals that words with higher average information content tend to be longer. This
suggests that languages allocate longer word forms to convey more complex or less
predictable meanings, thereby optimizing the balance between communicative efficiency
and cognitive effort.

The authors in [88], explores the emergence of Zipf’s law in human language through
the lens of the principle of least effort. They propose that language evolution is driven by a
trade-off between the efforts of the speaker and the hearer, leading to an optimized
communication system. In their model, they represent language as a binary matrix A = {a;;},
where a;; = 1 if signal s; refers to object 77, and a;; = 0 otherwise. This matrix captures the
associations between a set of signals S = {sq,s,,...,5,} and a set of objects R =
{ri,11,...,mm}. They define two key entropy measures to represent the efforts of the speaker
and the hearer:
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— Speaker’s Effort: Measured by the entropy of the signal distribution, reflecting
the effort in producing and retrieving signals.

Hn(S) =- ?=1P(Si) logn P(Si)a
Where P(s;) is the probability of signal s;.

— Hearer’s Effort: Measured by the average conditional entropy of objects given a
signal, capturing the ambiguity from the hearer’s perspective.

Hm(Rls) = ?=1P(si) Hm(Rlsi)a

with,
Hp(Rlsy) = — X% P(rjls:) logy, P(1ls;).

The authors introduce a cost function that combines these two efforts:
®(A) =AH,(R|S)+ (1 — V)H,(S),

where A € [0,1] is a parameter that balances the importance of the hearer’s effort versus
the speaker’s effort. By minimizing this cost function, they find that at a critical value 1%,
the system undergoes a phase transition. At this point, the frequency distribution of signals
follows Zipf’s law, indicating that efficient communication arises naturally from optimizing
the balance between speaker and hearer efforts.

3.2. Summary

This chapter provided an overview of various strategies designed to manage and reduce
the complexity of concept lattices in FCA. Early methods focused on removing redundant
information or simplifying the lattice through algebraic or approximation techniques. While
these approaches improved scalability or interpretability to some extent, they often did not
fully leverage the hierarchical relationships inherent in the data or consider human cognitive
factors.

As research progressed, attention turned to clustering-based approaches that more
effectively handle categorical attributes and incorporate the relational structures that FCA
encodes. Recent work integrates frequency, derivation costs, and insights from cognitive and
linguistic studies, refining concept selection into a dynamic, cognitively aligned process. By
doing so, these newer techniques achieve more human-intelligible lattice reductions, better
balancing complexity, interpretability, and structural fidelity than earlier methods.

The existing body of work highlights several strategies for lattice reduction in FCA,
ranging from iceberg lattices and attribute selection to clustering-based approaches. While
these studies provide important insights, they also leave unresolved challenges in terms of
scalability, interpretability, and cost-aware reduction. A more detailed articulation of these
research gaps along with the motivations that drive the present dissertation and the core
strategies it introduces is presented in the next chapter.
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Chapter 4: Foundational Pillars of Our Proposed
Strategies

4.1. Research Gaps and Foundational Strategies

As previously surveyed, many concept lattice reduction techniques have pushed the
boundaries of FCA’s applicability, especially in terms of computational feasibility and visual
interpretability. However, critical limitations remain. Most notably, existing methods often
lack a dynamic understanding of concept interrelations within the lattice structure. They may
overlook derivation ease that is, how readily one concept can be derived from another a
factor crucial to both algorithmic efficiency and semantic clarity. Furthermore, clustering-
based FCA reductions frequently rely on geometric distance metrics ill-suited to FCA’s
inherently relational hierarchy, which can result in oversimplified or distorted conceptual
structures.

To address these challenges, this dissertation proposes a set of novel strategies that
combine foundational FCA principles with concepts from graph theory, optimization, and
linguistics. These strategies are grounded in two core pillars: (1) the kernel concepts
framework, and (2) the adaptation of Dijkstra’s algorithm for deriving distances between
concepts in the lattice. Together, these components aim to preserve the structural integrity
of FCA lattices while enhancing their interpretability and scalability. While the techniques
surveyed in the previous chapter have significantly advanced the quest for more manageable
concept lattices, several notable shortcomings remain. Chiefly, existing methods often lack
a dynamic understanding of how concepts relate within the hierarchical framework of FCA;
they may also neglect how easily one concept can be derived from another. Additionally,
approaches that do tackle categorical data or incorporate clustering frequently rely on
distance metrics ill-suited for FCA’s relational structure, leading to potential information
loss.

To address these gaps, this dissertation introduces many strategies, including two novel
extensions of the k-means algorithm, K-means Dijkstra on Lattice (KDL) and K-means
Vector on Lattice (KVL), that aim to preserve the categorical richness and hierarchical
relationships of FCA-based structures. Unlike previous methods that treat categorical
attributes as flat symbols, our methods integrate the relational structure derived from FCA,
using it as a guide for identifying meaningful cluster representatives, i.e., reduced concept
sets. KDL exploits the lattice structure constructed from FCA by considering formal
concepts as nodes and their hierarchical order as edges. Instead of relying on geometric
distances, KDL uses a shortest-path computation (via a customized Dijkstra’s algorithm) on
the lattice to measure distances between concepts. By substituting Euclidean distance with
path costs on the concept lattice, KDL identifies cluster “centroids” that faithfully represent
underlying conceptual relationships, effectively capturing and preserving the data’s
hierarchical complexity. These centroids act as representative concepts that can replace large
sets of similar concepts, thus reducing the scale of the lattice. While KDL leverages a graph-
based perspective, KVL transforms each formal concept into a “concept description vector.”
This vectorization step, guided by FCA insights, ensures that the attributes and relationships
critical to the lattice’s structure are not lost. KVL then applies conventional k-means
clustering to these vectors. The carefully constructed vector space retains key structural
features of the lattice, enabling k-means to group related concepts into clusters. The resulting
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cluster centers approximate the original concept sets, contributing to lattice reduction by
replacing numerous related concepts with a fewer number of centroids.

Both KDL and KVL serve as reduction tools, going beyond standard clustering
adaptations. They incorporate FCA’s relational context to generate more interpretable,
stable, and structure-preserving cluster centers. Whereas earlier categorical clustering
methods focused primarily on defining suitable similarity measures or handling uncertainty,
KDL and KVL integrate FCA’s conceptual hierarchy to maintain the interpretability and
essential properties of the concept lattice. By doing so, they transform the clustering process
into a powerful lattice reduction technique.

The Kernel Concept Set (KCS) approach in this study, arises from the need to address the
limitations found in traditional selection-based methods. Unlike frequency-only or attribute-
centric selection techniques, the KCS method integrates both the frequency of concepts and
their derivation cost. The concept of “derivation cost” introduces a crucial dynamic element:
rather than merely counting how often a concept appears or which attributes it possesses,
KCS evaluates how easily one concept can be derived from another, acknowledging the
hierarchical and directional relationships in the lattice. This perspective enables a more
holistic assessment of concept importance and interconnectivity.

One key innovation of KCS lies in its flexible derivation cost function. By refining the
notion of similarity into a more general, flexible distance measure, one that can account for
both usage-level patterns and internal structural details, the KCS approach transcends the
limitations of static, frequency-based methods. This broader scope of application offers a
nuanced understanding of concept relationships, capturing complexities that would
otherwise remain hidden. Whereas earlier selection-based methods might only consider
whether a concept is “frequent enough” or “fits certain attribute criteria,” KCS factors in
how “expensive” it is to navigate from one concept to another within the lattice, using a
shortest-path interpretation influenced by Dijkstra-based measures [46].

Another distinguishing feature of the KCS approach is its capacity to identify kernel
concepts that serve as conceptual “centers” or anchors. Much like centroids in clustering
algorithms, these kernel concepts become reference points around which other concepts can
be grouped. This reframing of concept selection as a clustering-like process separates KCS
from standard selection strategies and sets it apart from conventional clustering methods that
require vector spaces or rely on ad-hoc distance metrics. Instead, KCS operates efficiently
within a general metric space, providing a more natural fit for the hierarchical structures
inherent in FCA lattices. By doing so, it avoids the information loss commonly associated
with vectorization and also foregoes the computationally expensive steps seen in standard
agglomerative clustering methods.

The KCS approach, therefore, surpasses traditional methods in several critical aspects:

— It does not require a vector space; a general metric space is sufficient.

— It has a lower cost compared to the standard agglutinative clustering methods.
— Flexible distance interpretation

— It provides the cluster centroids not only the cluster members.

By combining frequency measures, derivation costs, and a robust notion of concept
similarity, the KCS approach offers a more sophisticated and holistic strategy than earlier
selection or simplification methods. It not only selects a minimal and representative kernel
subset but also ensures that the chosen concepts form a stable backbone from which the
entire lattice can be understood or reconstructed. This capability positions KCS as a novel
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clustering methodology tailored explicitly for concept lattices, representing a significant step
forward in the quest to reduce lattice complexity while maintaining meaningful and
interpretable structures.

While these reduction techniques have advanced the field of FCA, there remains a gap
in leveraging principles from human language optimization to enhance both computational
efficiency and cognitive accessibility. Another proposed model in this study addresses this
gap by drawing inspiration from first, linguistic theories that examine how human languages
evolve to balance expressiveness with efficiency, such as the principle of least effort [86], a
concept suggesting that humans naturally seek to minimize the amount of work they do,
including in language use. Zipf observed that the frequency of word usage in a language is
inversely proportional to its rank in a frequency table, a phenomenon now known as Zipf’s
law. This means that a few words are used extremely frequently, while the vast majority are
used rarely, and second, the information theory in linguistics [87]. In human language, words
and structures are optimized to convey maximum meaning with minimal cognitive load and
resource expenditure.

4.2. Kernel Concepts in Concept Lattices
4.2.1. Definition of Kernel Concepts

A kernel concept in FCA is a strategically chosen formal concept within a concept lattice
that serves as a pivotal “building block™ for efficiently representing and deriving other
concepts. The notion of a kernel concept is introduced in this dissertation as a novel
reduction strategy within Formal Concept Analysis. While the idea draws inspiration from
clustering principles, particularly the use of centroids in K-means, the kernel concept
framework uniquely adapts this principle to the structure of concept lattices. In contrast to
frequency-only reductions such as iceberg lattices [43], kernel concepts combine structural
centrality, frequency, and derivation cost into a unified optimization model. To the best of
our knowledge, no prior FCA work has formalized or applied this combination, making
kernel concepts an original contribution of the present research. Kernel concepts are
deliberately selected based on additional criteria to minimize overall complexity Typically,
these criteria involve:

— Frequency: How often or how prominently a concept appears in the domain,
indicating its global importance or prevalence.
— Derivation Cost: The computational or structural effort required to derive one

concept from another, reflecting each concept’s “navigational” significance in the
lattice.

Formally, if C is the set of all formal concepts in a lattice and C; < C is a subset limited
by size or cost constraints, then each concept in €y, is called a kernel concept. Together,
these kernel concepts act as anchor points or centroids that can approximate or generate all
other concepts with minimal overall cost. Typically, kernel concepts are subject to a capacity
constraint, |Cy| = S. , which ensures that the subset of chosen concepts does not grow too
large. This limit S, can be specified according to resource constraints, interpretability
requirements, or domain-specific guidelines. The process of selecting €, then boils down to
minimizing an aggregate cost function such as:
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min{Yc ec f(c) d(Cy, )| Cy © C,|Cy| = Sc},
where:
f (¢) indicates how “valuable” or “frequent” a concept c is,
d(Cy, c) 1s the minimal cost to derive concept ¢ from any concept in the kernel set Cy,.

In essence, each kernel concept helps minimize the total “distance” needed to generate
or approximate all other concepts while still respecting the size or capacity limit. Positioning
kernel concepts among reduction methods, numerous methods exist to simplify or reduce
concept lattices ranging from redundancy removal to abstracting hierarchies or filtering by
frequency thresholds. The well-known iceberg lattice strategy, for instance, filters the
concept lattice based on a single support threshold minsupp, typically minsupp € [0,1].

Formally, consider a formal context (G, M, I), where G is the set of objects, M is the set
of attributes, and I S G X M is the incidence relation indicating which objects possess which
5]
TR
where B’ is the set of all objects in G that share exactly the attributes in B. If the support
supp(B) meets or exceeds the minimum threshold minsuppupp, then (4, B) remains in the
iceberg lattice; otherwise, it is pruned. This straightforward criterion provides a practical
means of reducing the size of the concept lattice, retaining only those concepts whose intent
is sufficiently frequent in the dataset. This approach:

attributes. For any concept (4, B) in this context, its support is measured as supp(B) =

— Focuses purely on frequency: Only concepts that appear “often enough” are kept.

— Captures top-level groupings: The “topmost portion” of the concept lattice
becomes explicit, offering a higher-level but frequency-centric view of the data.

— Does not account for derivation cost: Two concepts with the same high support
remain equally in the lattice even if one concept is much more “central” for
deriving other concepts.

In iceberg, the primary criterion revolves around the condition supp(B) = minsupp,
whereby each concept’s support value must exceed a fixed threshold. Consequently, the
method prunes all concepts falling below that global frequency requirement. Conceptually,
this can be seen as filtering the lattice down to its “topmost” or “most frequent” portion.
However, this design choice also entails a caveat: while it efficiently isolates those concepts
that appear very often in the data, it may discard concepts with lower support that are
structurally pivotal in deriving or relating other parts of the lattice. Moreover, no inherent
metric accounts for derivation cost or traversal complexity.

In contrast, kernel selection depends on a more nuanced blend of concept frequency f ()
and derivation cost d(). By focusing on a combined or weighted measure of usage and
“hubness,” kernel selection aims to locate a small but influential set of “centroid” concepts
from which the entire lattice can be efficiently derived or approximated. This balanced
approach provides a richer interpretation, ensuring each chosen concept is both sufficiently
frequent and well-connected within the conceptual structure. Naturally, one trade-off is that
it demands an auxiliary cost metric d(), adding a layer of optimization that typically involves
more complex computations than a simple frequency threshold.
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4.2.2. Role and Importance of Kernel Concepts

Kernel concepts serve as the linchpin in effectively managing, interpreting, and
streamlining large concept lattices within FCA. Their selection, driven by criteria such as
frequency and derivation cost, brings multiple advantages:

1.

Structural Backbone: By design, each kernel concept often functions as a “hub” for
deriving or approximating numerous other concepts. This positions kernel concepts
as the structural backbone of the lattice, ensuring that the essential relationships and
crucial data patterns remain intact even after significant reductions in overall lattice
size.

Computational Efficiency: Concept lattices can grow exponentially with the size of
the dataset, imposing high computational and memory demands. Identifying a
minimal kernel set that still covers or approximates the entire lattice substantially
reduces computational overhead. In many cases, one can generate or retrieve non-
kernel concepts on-demand from kernel concepts through derivation, thus avoiding
explicit enumeration of all possible concepts.

Balanced Criterion Beyond Frequency Alone: Simple thresholds (e.g., iceberg
approaches) focus on frequency, risking the exclusion of structurally pivotal but less
frequent concepts. Kernel concepts, however, account not just for how often a
concept appears (its frequency) but also for how readily (or “inexpensively”) it can
serve as a representative. This dual perspective often yields a more faithful
representation of the lattice's inherent relationships, balancing global relevance with
local connectivity.

Interpretability and Usability: Large and dense concept lattices can overwhelm users
seeking patterns or insights. By highlighting the kernel subset, analysts can more
easily navigate “anchor points” within the data, making subsequent visualization,
exploration, or domain-specific interpretations more straightforward. This enhanced
clarity is crucial in fields such as knowledge discovery, ontology learning, and
database marketing, where decision-makers must interpret and act on complex data
structures.

Facilitating Further Analysis: Kernel concepts frequently serve as natural “centroids”
or “cluster centers” in conceptual clustering and approximation tasks. Once
determined, they can be integrated into downstream workflows such as generating
bases of association rules or supporting user queries without recomputing or storing
the full lattice. This modularity fosters efficient iterative analyses, allowing repeated
refinement or extended exploration of the data’s conceptual organization.

In essence, kernel concepts play an essential role in bridging the gap between complete
conceptual representation and practical scalability. They constitute a carefully chosen subset
that simultaneously conserves the key structural and semantic properties of the lattice and
promotes more efficient knowledge processing.

4.3.

Dijkstra’s Algorithm in Concept Lattice Reduction

4.3.1. Background and Motivation

Dijkstra’s algorithm, introduced in 1959 by Edsger W. Dijkstra, is a cornerstone method
for computing shortest paths in directed, weighted graphs. Its efficiency and general
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applicability have led to its adoption across multiple fields, including Internet routing where
it determines optimal data traversal paths between network nodes, and various transportation
and logistics applications that require identifying fast, cost-effective routes [89]. Given a
directed weighted graph G = (V, E), where V is a set of vertices and E is a set of edges, each
edge e€E has a non-negative weight representing its traversal cost. Dijkstra’s algorithm
systematically calculates the shortest path from a source vertex to every other vertex in V,
offering a reliable solution to a wide range of shortest-path problems.

The algorithm marks vertices as either “temporary” or “visited,” continually updating
tentative distances from the source. It terminates once all vertices have been processed.
However, the algorithm cannot handle negative edge weights directly, potentially limiting
its accuracy if such edges are present [90]. Another practical consideration is the choice of
data structures for managing priority queues, which influences the algorithm’s time
complexity:

— Using a Fibonacci Heap: Complexity:

O(|V[log|V] + [E]).

In this case, DeleteMin operations take O (1) amortized time, providing theoretically
optimal performance.

— Using a Standard Binary Heap: Complexity:

O(|E|log|V]).

Here, the algorithm performs |E| updates for the standard heap, typically yielding
efficient performance in many real-world scenarios.

- Using a Priority Queue (e.g., array-based): Complexity:

o(IVI®).
This arises from repeated scans of the unordered set New Frontier, up to |V| times
to find the vertex with the minimum temporary distance (sDist) value.

Beyond the standard Dijkstra’s method, several variants cater to specific conditions. The
Bellman-Ford algorithm [91] accommodates negative-weight edges at a higher
computational cost. The Floyd-Warshall algorithm [92] uses dynamic programming to
manage both positive and negative weights comprehensively. Johnson’s algorithm [93]
employs Bellman-Ford to reweight edges, eliminating negatives and reducing execution
time for sparse graphs. The A* algorithm integrates heuristics with breadth-first search
principles, potentially increasing efficiency in certain contexts, albeit with some risk to
completeness or absolute accuracy [94]. The appropriate choice among these methods
depends on factors such as graph density, edge weight properties, and performance
requirements.

However, when applying FCA to complex categorical datasets, traditional Euclidean or
frequency-based distance measures often fail to reflect the nuanced hierarchical relationships
encoded in the concept lattice. To address this gap, adapting Dijkstra’s algorithm to measure
distances within the lattice proves advantageous. In this adapted view:
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Vertices (Nodes) become formal concepts derived from the FCA context.

Edges represent hierarchical relationships (e.g., the partial order < between
concepts), with assigned weights corresponding to upward or downward moves in
the lattice.

N —

This integration ensures that path costs capture not just the frequency of concepts (as in
simpler pruning methods) but also their relative “distance” or “effort” within the lattice’s
structure.

4.3.2. Dijkstra-Based Distance in FCA

The Dijkstra-based distance measure plays a pivotal role in our proposed frameworks.
Providing a more suitable alternative to the conventional metrics, Dijkstra’s algorithm
operates directly on the concept lattice derived from categorical data through FCA. By
incorporating the inherent structure of the lattice, the method considers direction-sensitive
costs, typically assigning a higher cost to upward (parent-to-child) movements than to
downward (child-to-parent) transitions. This directional weighting more accurately reflects
the hierarchical nature of the data. To enhance efficiency, the algorithm employs a min-
heap-based priority queue, ensuring that calculations for shortest paths, are performed both
effectively and with minimal computational overhead.

Formally, consider a concept lattice B(C, <), and its corresponding graph H (C, E),
where C represents the set of formal concepts and E denotes the edges signifying hierarchical
relationships. Let C; and C, be two distinct formal concepts in C, with C serving as the
starting point and C, as the endpoint for the path calculation. Each concept ¢ € C has an
associated cost d(c) that represents the cost of reaching ¢ from C. To differentiate the
directionality of traversal along the lattice edges, two cost parameters are defined: “UpCost”
for moving from a concept to a more specific (child) concept, and “DownCost” for moving
from a concept to a more general (parent) concept.

Within this framework, the Dijkstra-based distance measure relies on a priority queue Q,
implemented as a min-heap keyed by d(c), and a set V tracking visited nodes. The cost
function f:C X C —» R U {0} evaluates the cost of moving from one concept ¢ to an
adjacent concept ¢’ based on their relation:

~ _ (UpCost, ifc=2c,
fle,c) = {DownCost, otherwise.
Combining these costs over a sequence of concepts forms the basis for calculating the
shortest path. Thus, for all paths (c;, ¢, ..., ¢,) from Cs to C,, the Dijkstra-based distance
measure d(Cs, C,) selects the path with the minimal cumulative cost:

n—-1
d(C,,C,) = min{ z f(ci,ciz1) | (cq, €y .ny €p) is @ path from Cs to Cp ¢,
i=1

Here, the measure d(C;, C,) represents the minimal cost required to navigate the lattice
from the starting concept C to the target concept C,, effectively encapsulating both the
structure of the concept lattice and the directional constraints inherent in the data’s hierarchy.
The algorithm functions as follows:
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Algorithm 4.1: The Dijkstra-Based Distance Measure Algorithm on The Concept Lattice
Inputs: C;, C,, H(C, E), UpCost, DownCost.
Output: minimum cost from Cs to C,
Initialize:
For eachcinH:
d(c) « oo
EndFor
d(C) < 0
Initialize PandV « @
Insert (0, C,) into Q
While Q # @ do:
(d(c),c) < Dequeue(Q)
If ¢ = Ce then:
Return d(C,).
EndIf
If cnotinV then:
AddctoV
EndIf
For each neighbor u of c do:
If neighbor notinV:
If cis a superset of u then:
cost « d(c) + UpCost
Else:
cost « d(c) + DownCost
EndIf
If cost < d(u) then:
d(u) « cost

P(u) « ¢
Enqueue (d(u),u) into Q
EndIf
EndIf
EndFor
EndWhile

In the presented framework, C; represents the starting concept from which the shortest
path calculation begins, and C, designates the target concept. The structure H (C,E)
symbolizes the concept lattice, comprising the set of concepts € and their connecting edges
E. Within this framework, UpCost and DownCost are predefined metrics quantifying the
cost of transitioning upward or downward along the lattice edges. The shortest path distances
from Cy to any given concept ¢ are stored in d(c), while a predecessor map P indicates the
immediate predecessor of ¢ along the shortest path, ensuring a traceable route from Cs to C,.
The priority queue Q manages pending concepts to explore, and the set VV records already
visited nodes. Due to the lattice’s inherent connectivity, the algorithm always identifies a
path between C and C,.

The time complexity of this approach, O(E + C log(C)), reflects the interplay of the
number of edges E and concepts C, combined with efficient operations on the min-heap-
based priority queue. By capitalizing on the lattice’s structured relationships and integrating
directionally-sensitive cost functions, this Dijkstra-based distance measure more precisely
captures categorical dissimilarities. Consequently, it supports a more streamlined clustering
procedure and improves the accuracy and interpretability of the resulting cluster
assignments.

By adapting Dijkstra’s algorithm to work directly on concept lattices, we achieve a
structure-aware distance measure that elevates categorical data analysis beyond simpler
frequency-based or geometric approaches. Each path cost reflects not just how often a
concept appears or how large its extent might be, but also how structurally central it is. This
distance measure undergirds various parts of our proposed FCA-based reduction framework:
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it guides kernel concept selection, steers the clustering of concepts, and helps maintain a
manageable yet conceptually rich representation of high-dimensional, complex datasets.

4.4. Baseline Greedy Algorithm for Kernel Concepts Selection

This section introduces a baseline Greedy Algorithm for identifying a kernel concept set
within a large formal concept lattice. While simpler and less optimized than the advanced
methods detailed in subsequent chapters, this algorithm demonstrates how integrating
concept frequency and derivation costs can produce a smaller, yet structurally significant,
subset of concepts. It selects the most beneficial concept at each step based on two key
measures: frequency and derivation cost. Despite its simplicity, the algorithm can become
time-consuming when applied to larger datasets or kernel sizes, highlighting the necessity
for more advanced or optimized approaches.

4.4.1. Kernel Concepts Selection

In the kernel concept selection process, we focus on two measures for each concept ¢ €
C (the set of all concepts in the lattice):

1. Frequency f(c)
A positive real-valued function

f:C - R*,

quantifying how relevant or frequently a concept ¢ appears. This metric highlights
concepts that are crucial within the domain.

2. Derivation Cost d()
A function

d:CxC - R* u{0},
indicating the “cost” of deriving one concept from another within the lattice.

e Self-Cost: d (c,c) = 0, for any concept ¢ within the lattice, indicating no cost for
self-derivation.

e Asymmetric Cost: For two different concepts ¢; and «c¢,, d(cy,cy) #
d (cy, cq), reflecting the directional nature of derivation within the lattice.

e Integration of Dijkstra-Based Distance Measure: To refine the calculation of
asymmetric costs between concepts, we have employed the Dijkstra-Based
Distance Measure from. This approach computes the shortest path in the lattice
considering the direction and cost of the path. Specifically, we have set the cost for
upward transitions (parent-to-child) in the lattice as 2 and for downward transitions
(child-to-parent) as 1. This integration adds a layer of sophistication to our function
d, allowing it to more accurately represent the complexities involved in navigating
the concept lattice.

3. Frequency-Weighted Derivation Cost

For a subset of concepts K. € C, let
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d (Ke,c) = min g {d (ci, 0) | ¢; € Kc}.
then the frequency-weighted derivation cost becomes:
d’ (K., c) = f(c)- d(K,,©).

This expression captures both (a) how important c is, and (b) how far ¢ lies from the
chosen set Cs.

4. Kernel Concept Set: Optimization Constraint

We seek a kernel set K,,,;,, of maximum size S, that minimizes the sum of frequency-
weighted distances over all concepts:

KminzargmiancC{Zc €C d f(Kc' C)l IKCI = Sc}~

In simpler notation, define:

AggCost(K) = Y () d(Ke ).

cec

We want K,,,;,, such that AggCost(K_) is minimized and |K.| = S,.

4.4.2. Baseline Greedy Algorithm Steps

A greedy approach offers a direct, though not always optimal, way to find a suitable
kernel set. Below are the main steps:

Algorithm 4.2: Baseline Greedy Concepts Kernel Selection

Input:
- The set of all concepts C
- Frequency Value for eachc € C
- Maximum Core Set Size S, (maximum kernel set size)
- Transition Cost: upward « 2, downward < 1
Output:
- Kernel Concept Set K
Algorithm Steps:

1. Initialization:
- Initialize K; < None.
2. Derivation Cost Calculation:
- For each concept c in the lattice, calculate the minimal derivation cost to every other concept
using Dijkstra's algorithm. Apply the Dijkstra-Based Distance Measure, for asymmetric cost
calculation between concepts, as:

d (Ke,¢) = min cex {d (¢ c) | ¢ € K}

3. Aggregated Derivation Cost Computation:
For a given subset K.C C, calculate the aggregated derivation cost using the formula:

AggCost(K) = ) (F(©) - d(Ke,0))

cec

4. Kernel Set Identification:
- Define S, the maximum size for the Kernel set.
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- Initialize best_cost « (o), best_candidate « None.

- Iteratively add concepts to K using a greedy algorithm approach:
- Select the concept that most reduces the aggregated derivation cost.
- Update best_cost and best_candidate as optimal options are found.
- Continue until |K.|=|S.| or no further reduction in the aggregated derivation cost is

possible.
5. Result Analysis:
- The final K represents the kernel concept set that minimizes the aggregated derivation cost,
adhering to the constraint |K.|=|S,]|.

One major bottleneck in the baseline Greedy Algorithm is the repeated shortest-path
derivation cost calculation, typically carried out via Dijkstra’s algorithm at O(V?) per
concept (where V denotes the total number of concepts). If performed naively for every pair
of concepts, this cost may inflate to O(V?). Consequently, the baseline method can become
prohibitively slow on large or dense lattices, underscoring the need for more efficient or
optimized approaches in practical FCA scenarios.

4.4.3. Experimental Setup and Methodology

4.4.3.1. Impact of Kernel Set Size on Derivation Cost and Execution
Time

In our study, we analyzed how the baseline greedy algorithm in FCA responds to varying
kernel concept set sizes across multiple benchmark datasets. Specifically, we experimented
with four widely used datasets from the UCI Machine Learning Repository Balance-Scale!,
Breast Cancer Wisconsin?, Teaching assistant evaluation (Tae)?, and Car Evaluation*. For
each dataset, the kernel set size was systematically adjusted between 15% and 30% of the
total number of concepts in its corresponding lattice (as summarized in Table 4.1). This

1. Derivation Cost

- Reflects the aggregated resources needed to derive all relevant concepts once
the kernel set is chosen.

- We hypothesize that increasing the kernel concepts set size, thus
encompassing more concepts in the core set, simplifies the structure and
lowers derivation cost.

2. Runtime

- The time required by the greedy algorithm to identify the kernel set.

- As the kernel set size grows, we expect more steps and candidate checks,
leading to higher runtime.

To ensure robustness, each lattice configuration in Table 4.1 is tested multiple times,
varying the kernel set proportion (15%, 20%, 25%, 30% of total concepts). The results are
captured (Figure 4.1), illustrating how changes in kernel size affect derivation cost and

runtime.
Table 4.1. Lattice Characteristics

Formal Contexts #Object #Attributes Density # Formal concepts #Edges

Balance-Scale 625 20 0.18 1070 3822

1 Balance-Scale dataset: https://archive.ics.uci.edu/dataset/12/balance+scale.
2 Breast Cancer dataset: https://archive.ics.uci.edu/dataset/14/breast+cancer.
3 Tae Dataset: https://archive.ics.uci.edu/dataset/100/teaching+assi stant+evaluation.

4 Car Evaluation dataset: https:/archive.ics.uci.edu/dataset/19/car+evaluation.
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Breast Cancer 286 43 0.20 2132 7818
Tae 151 101 0.05 276 619
Car Evaluation 1728 21 0.20 3596 14917

Cost Analysis for Greedy Algorithm
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Figure 4.1. Cost Analysis for Greedy Algorithm Across Kernel Concept Set sizes

As shown in Figure 4.1, the experimental results reveal that enlarging the kernel set
consistently reduces derivation cost, indicating that a more encompassing core set effectively
simplifies the effort required to derive remaining concepts. However, this advantage is
counterbalanced by growing computational demands: each added concept triggers more
candidate checks, causing runtime to increase noticeably at higher kernel sizes as shown in
Figure 4.2. Although the baseline greedy method remains a practical solution for moderate
datasets, its scalability begins to wane when kernel proportions approach 30%, especially in
contexts with many formal concepts (e.g., Car Evaluation).

44.3.2. Impact of Lattice Size on Derivation Cost and Runtime

We further examine the baseline greedy algorithm by varying the size and complexity of
the lattices themselves, as detailed in Table 4.1. This step explores how the number of formal
concepts and overall lattice density affect two main metrics:

1. Derivation Cost: The aggregated effort required for concept derivation once the
kernel is chosen.

2. Runtime: The total time the baseline greedy method takes to select a kernel set of
fixed proportion (e.g., 30%) from the lattice.

In particular, Figure 4.3 visually captures these relationships across the four different
datasets from Table 4.1. When considering smaller lattices (e.g., Breast Cancer or Tae, each
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with fewer than a thousand formal concepts), the baseline greedy algorithm strikes a
reasonable balance between lowering derivation cost and keeping runtime manageable.
However, with larger lattices (e.g., Car Evaluation, featuring over two thousand formal

concepts), runtime escalates rapidly, highlighting the baseline algorithm’s limited
scalability.

Run Time Analysis for Greedy Algorithm
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Figure 4.2. Runtime Analysis for Greedy Algorithm across Kernel Concept Set sizes
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Figure 4.3. Performance Analysis of the Baseline Greedy Algorithm on Derivation Cost and Runtime Across Different
Lattice Sizes
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From these results, several observations emerge:

- Stable Performance on Small Lattices: As seen in Figure 4.3 for Breast Cancer or
Tae, when the lattice has fewer concepts, the baseline greedy approach effectively
reduces derivation cost with minimal runtime growth.

- Sharp Runtime Increases in Larger Lattices: For datasets like Car Evaluation, Figure
4.3 shows a more dramatic rise in runtime, suggesting that repeated cost
computations and candidate checks become exponentially more expensive.

- Consistent Reduction in Derivation Cost: Regardless of lattice size, the method
reliably lowers derivation cost particularly beneficial in moderately sized lattices
though the runtime penalty intensifies in bigger ones.

Overall, Figure 4.3 underscores that while the baseline greedy algorithm adeptly
decreases derivation cost across the studied datasets, it becomes noticeably slower for
extensive lattices containing large numbers of formal concepts. These findings confirm that
the baseline approach remains a viable choice for small to medium lattice sizes but may
require optimization or alternative methods to maintain feasible runtimes in large-scale FCA
applications.

4.5. Summary

This chapter presented the essential building blocks of the proposed reduction
framework, namely kernel concepts, Dijkstra-based distance calculations, and a baseline
Greedy Algorithm. These components demonstrated how structural properties of the lattice
could be leveraged to achieve more compact and interpretable representations. The greedy
approach, in particular, showed that combining frequency measures with derivation costs
made it possible to select a smaller but meaningful subset of concepts that preserved the
lattice’s structural backbone. Even as a simple heuristic, it highlighted the usefulness of
kernel concepts as pivotal anchors for both efficiency and clarity.

At the same time, the limitations of the baseline approach were clear, especially its lack
of scalability and high runtime on larger lattices. These constraints underscored the need for
more advanced strategies and provided the motivation for the techniques developed in the
following chapters. By laying this groundwork, the chapter established both the feasibility
and the challenges of lattice reduction, setting the stage for optimized and cognitively
aligned methods that extend beyond the greedy framework while ensuring tractability and
interpretability for large-scale FCA applications.
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Chapter 5:  Clustering-Based Reduction Strategies for
FCA

5.1. Introduction

Concept management is a key dimension of knowledge engineering, where ontologies
play a central role in structuring and representing domain-specific knowledge [95]. Widely
adopted standards such as Resource Description Framework (RDF), the Web Ontology
Language (OWL), SPARQL Protocol and RDF Query Language (SPARQL), and
Description Logic [96] provide powerful tools for describing concepts, relationships, and
constraints. However, these frameworks typically rely on human experts to define atomic
concepts and derivation rules, offering limited automation for concept generation from raw
data.

Beyond ontologies, automated concept generation is pursued through various analytical
approaches. Two prominent families are Conceptual Clustering (CC) and FCA. Conceptual
clustering [97] partitions unlabeled objects into meaningful clusters, each described by
conceptual patterns or attributes. Traditional conceptual clustering methods often rely on
numerical taxonomies and distance-based measures. While effective for numerical features,
these techniques face substantial limitations when dealing with categorical data. The
resulting clusters may not be well-characterized in intuitive, human-readable conceptual
terms [98].

To address these shortcomings, multiple variants of conceptual clustering have emerged.
These include [47]:

— Distance optimization methods: These approaches start with an initial set of clusters
and incrementally refine them by minimizing a predefined distance-based objective
function. At each step, elements may be reassigned to different clusters if such a
move leads to a lower overall cost. The algorithm iterates this process until it reaches
a stable configuration where no further improvement can be made. The resulting
clusters are thus formed by continuously optimizing for minimal intra-cluster
distances, often leading to well-defined groupings that reflect the underlying data
structure.

— Interesting-pattern discovery methods: In these techniques, the focus shifts from
purely geometric measures to identifying significant recurring patterns within the
data. Methods inspired by frequent itemset mining [99] search for commonly co-
occurring attribute values across different objects. By filtering out infrequent or
irrelevant patterns, the algorithm highlights the most characteristic and
discriminative features of clusters. Consequently, concepts and clusters emerge from
these frequent patterns, providing richer semantic descriptions than those relying
solely on numeric similarity.

— Tree-based approaches: Tree-based conceptual clustering techniques, such as
RUMMAGE [98], employ a hierarchical partitioning strategy. The dataset is
recursively split into subsets based on the values of certain attributes, effectively
building a conceptual tree structure. At each branching point, an attribute or attribute-
value condition forms a “conceptual description” for the subsets. This top-down
approach ensures that the resulting clusters are not only distinct from one another but
also described by meaningful, interpretable attribute-based rules.
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— Evolutionary strategies: Evolutionary approaches like the Multiobjective
Evolutionary Conceptual Clustering Methodology (EMO-CC) [100] apply bio-
inspired techniques, such as genetic algorithms, to guide the clustering process.
Candidate clusterings are represented as individuals in a population. Through
operations akin to mutation and crossover, as well as selection pressures favoring
clusters with desirable properties (e.g., compactness and interpretability), the method
evolves increasingly refined clusterings over time. The multiobjective aspect
accommodates simultaneous optimization of multiple criteria, balancing various
quality measures to yield conceptually rich and well-organized clusters.

— Statistical methods: Statistical-based methods, exemplified by COBWEB [101],
incrementally form a hierarchical classification tree by adding objects one at a time.
Each node in the tree corresponds to a probabilistic concept—a distribution of
attribute values—that reflects a particular class of objects. A heuristic measure
known as category utility guides the tree growth and partitioning decisions. Category
utility rewards partitions that improve the predictive power of attribute values for
object classification. This probabilistic and heuristic-driven approach results in a tree
of concepts that are both statistically coherent and conceptually meaningful, enabling
intuitive comprehension of the data’s structure.

In practice, the widely acclaimed k-means algorithm [80] excels in simplicity and
efficiency, particularly for large numerical datasets. However, its direct application to
categorical data is problematic. Adaptations like k-modes [77], k-representative [81], and k-
centers [82] have been proposed. While these adaptations can handle categorical data by
redefining “cluster centers” and “similarity measures,” they often require data
transformations that risk losing hierarchical relationships inherent in the data. On another
front, FCA models data as objects and binary attributes, producing a concept lattice that
captures all possible formal concepts. Despite offering a comprehensive view, the resultant
concept lattice can be excessively large, complicating both computation and interpretability.
Efficient reduction of concept lattices, preserving only essential concepts, is a key research
direction. Moreover, real-world concepts seldom derive from a single consistent attribute
set. Instead, multiple attribute subsets might characterize a concept under different
conditions, suggesting that non-crisp, flexible construction methods would be beneficial.

Integrating the strengths of conceptual clustering and FCA presents new opportunities.
Conceptual clustering can manage object partitions efficiently, while FCA provides a
structured representation of hierarchical concept relationships. Merging these approaches
demands methods adept at categorical and hierarchical data handling, which is where our
contributions lie, and specifically, we leverage the idea of extracting a smaller set of
“centroids” or kernel concepts to achieve effective lattice reduction while retaining essential
structure.

This chapter introduces two novel extensions of the k-means algorithm for categorical
data within the FCA framework, K-means Dijkstra on Lattice (KDL) and K-means Vector
on Lattice (KVL), with the overarching goal of reducing the original concept lattice to a
smaller kernels subset. These methods aim to integrate hierarchical conceptual structures
with efficient clustering, thereby retaining critical relationships while improving
manageability and interpretability:

— KDL leverages FCA to construct a graph of formal concepts and employs a
customized Dijkstra algorithm to measure distances within this lattice. It identifies
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centroids (kernels) that are formal concepts with minimal intra-cluster distance,
accurately capturing hierarchical and categorical relationships.

- KVL, on the other hand, translates formal concepts into numerical concept
description vectors, applying traditional k-means for scalability at the possible
expense of overlooking some hierarchical nuances.

By combining these methods with a parameterized distance function, we gain flexible
control over the size of the resulting concept hierarchy and the degree of approximation it
provides. Notably, this approach also enables an approximate reduction of formal concept
lattices, resulting in a more manageable, kernel-based view of the data. In essence, KDL and
KVL bring together conceptual clustering and FCA, automating the generation of a
streamlined concept set that preserves interpretability and remains grounded in human-
centric conceptualization.

5.2. K-Means Algorithm and Its Extensions

The k-means algorithm [80] is a well-known partitional clustering technique frequently
employed in various data analysis scenarios. It assumes a dataset D composed of N
numerical objects and aims to separate them into k non-empty, disjoint clusters (with k <
N). A core objective of k-means is to minimize the total within-cluster variation, typically
measured as the sum of squared distances from each object to the center (centroid) of the
cluster it belongs to.

Mathematically, k-means can be framed as an optimization problem. Let U = [u; ]
denote the partition matrix, where u; ; is a binary indicator that specifies whether object X; is
assigned to cluster S;. Let Z = {Zy,Z;,...,Z;} represent the set of cluster centers.
Typically, the squared Euclidean distance dis(X;, Z;) [102] is used to quantify how far each
data point is from a given cluster center.

The cost function to be minimized, P(U, Z), is given by:

P(U,Z) = Zk: iui,j dis(X;, Z)).

j=1i=1
This minimization is subject to constraints ensuring that each object X; belongs to exactly

one cluster:
k

Zui’j=1, 1S1SN;

=1
u;; €{0,1},1<i<N,1<j<k.

Here, u; ; = 1, 1f X; is assigned to S;, and 0, otherwise. The cluster centers Z; correspond
to the mean positions of objects assigned to that cluster.

The k-means algorithm proceeds iteratively through four main steps:
— Initialize cluster centers as Z°=Z?...., Z, and sett = 0.

— With fixed cluster centers Zt, solve P(U,Z") to obtain partition matrix U¢. Each
object X; is assigned to the cluster with the nearest cluster center.
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—  With fixed partition matrix U¢, generate updated cluster centers Z¢*1 to minimize P
(Ut, Z**1). The new cluster centers are computed as the mean of the objects within
each cluster.

— If convergence is reached or a stopping criterion is satisfied, output the final result
and terminate. Otherwise, increment t by 1 and go back to step 2.

By repeatedly adjusting both cluster memberships and centers, k-means converges to a
local minimum of the objective function. Although highly effective for numerical data, k-
means encounters difficulties when dealing directly with categorical data. The fundamental
challenge lies in the absence of a natural numeric representation and a meaningful way to
compute means or geometric distances for categorical variables. This motivates the
development of specialized extensions and adaptations of k-means to handle categorical data
more appropriately.

A range of extensions and modifications have been introduced to the k-means algorithm
to enable its application to categorical data. One of the most prominent approaches is the K-
modes algorithm [77]. In contrast to the original k-means method, which depends on
Euclidean distance metrics, K-modes utilizes a dissimilarity measure specifically designed
for categorical attributes. Instead of treating data as points in a Euclidean space, K-modes
employs a simple matching distance and defines “cluster centers” in terms of modes rather
than means.

For two categorical objects X and Y, each described by M categorical attributes, the K-
modes dissimilarity is computed by counting how many attribute values differ. Formally:

M
dis(X,Y) = Z 5(X, ),
i=1

with
O' lf Xi = Yl )
1

Within a cluster composed of N categorical objects {X;, ..., Xy}, where X; = (x;4, ...,
x;y)and1 < i < N is determined by selecting the most frequently occurring category for
each attribute positionm (1 < m < M) across the cluster’s objects {X1m, ..., Xym - These
alterations, introduced in [77], adapt the clustering process for categorical data while
preserving the fundamental iterative nature of k-means. Nonetheless, it is important to note
that the mode for a given cluster may not be unique, potentially introducing variability in
the clustering outcome based on how modes are chosen.

For a given cluster composed of categorical objects {X;, ..., Xy}, with each object
represented as X; = (x;q, ..., Xjy) for 1 < i < N, the K-modes algorithm determines the
cluster’s mode Z = (o04,...,0y) by selecting 0,,,, 1 < m < M, as the attribute value that
occurs most frequently in the set {X;,y, ..., Xym }. This approach, introduced by the authors
in [77], adapts the standard K-means framework to handle categorical attributes by replacing
numerical means with modes. However, it is important to note that a given cluster’s mode
may not be uniquely defined, multiple attribute values can share the same highest frequency.
This potential ambiguity can introduce instability into the clustering process, as the final
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outcome may depend on the particular mode chosen from among several equally frequent
candidates.

The k-Representative algorithm [81] represents a further adaptation of the K-means
framework, introducing the concept of cluster representatives to handle categorical data.
Instead of using a single mode to characterize a cluster, as done in K-modes, the k-
Representative approach defines a representative that captures the distribution of attribute
values within the cluster.

Consider a cluster S consisting of p categorical objects: S = {Xj,..., X, }., where each
object (x4, ..., X;y) With the condition 1 < i < p, and each x;;; corresponds to the value
of the m-th attribute. For each attribute m (1 < m < M), we define 03, as the set of
distinct categorical values that attribute m can take within cluster S. In other words, 03, =
{om,> -, Om, }, where each oy, is a unique category observed in the m-th attribute across all
objects in S.

Consider a cluster S composed of p categorical objects: S = {Xj,...,X,,}, where each
object X; = (x;1, ..., Xjpy) fori =1,...,p, and M denotes the number of attributes. For each
attribute m (1 < m < M), we define O;, as the set of all distinct categorical values that
the m-th attribute takes on within cluster S. In other words, 03, is derived by examining the
m-th attribute values {X;, ..., Xp,m } of every object in S and collecting the unique categories
observed. This set 03, thus represents all the different categorical values that attribute m can
assume across the entire cluster S.

For example, consider a cluster S containing three objects:

- Object 1: (Red, Circle, Large)
- Object 2: (Blue, Circle, Medium)
- Object 3: (Red, Square, Medium)

Focusing on attribute 1 (Color), we encounter the values “Red” and “Blue” among these
objects. Thus, 0= {Red, Blue}, capturing the distinct color categories present in the cluster.
Similarly, 05 (for Shape) would be {Circle, Square}, and O3 (for Size) would be {Large,
Medium}. The cluster S representative Zg = (z3,...,2y), is then defined by assigning to
each attribute m a set of category-frequency pairs:

z5 = {(0mp fS(0m1)) | Oy is an element of 03}

The term fS(o,,;) denotes the proportional frequency of category o,, in the m-th
attribute of cluster S. To compute fS(0,,;), we count how many objects in S possess the
attribute value o,,; for attribute m (denoted #5(0,,;)) and divide that count by p, the total
number of objects in the cluster:

S(0m) = #S(om) /p.

In essence, z3, is not a single value but a probability-like distribution over the categories
of the m-th attribute, reflecting how frequently each category occurs in that cluster.

To determine the similarity between a new object X = (x4,...,xy) and the cluster
representative Zg, the k-Representative algorithm uses a simple matching-based
dissimilarity measure. For each attribute m, we consider all category values o,,; in Oy, and
their frequencies fS(0,,;). The dissimilarity dis(X, Zs)is defined as:
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M
dis,Z5) = D> fS(om) + 8Ctm,Om)
me1 Omi€ Om

Here, 6(x,,, 0m1) 1s 0 if x,, = 01, and 1 otherwise. This means the dissimilarity is
influenced both by whether x,,, matches a commonly occurring category in S (in which case
the contribution is low) and by how frequent that category is within the cluster (less common
categories influence the sum differently).

To illustrate, returning to our example cluster S and considering a new object: Object 4:
(Blue, Circle, Small)

The representative Zs derived from S would look like this:

— For attribute 1 (Color): {(‘Red’, 0.67), (‘Blue’, 0.33)}

— For attribute 2 (Shape): {(‘Circle’, 0.67), (‘Square’, 0.33)}
— For attribute 3 (Size): {(‘Large’, 0.33), (‘Medium’, 0.67)}

Calculating the dissimilarity step-by-step:
For attribute 1 (Color):

0y in 07 {(‘Red’), (‘Blue’)}

fS(om): {0.67,0.33}

0 (‘Blue’, ‘Red’) =1, & (‘Blue’, ‘Blue’) =0
Contribution for attribute 1:

fS(Red’) - & (‘Blue’, ‘Red’) + fS('Blue’) - & (‘Blue’, ‘Blue’)=0.67 - 1 +0.33 -0
=0.67

For attribute 2 (Shape):

0y in O3 {(‘Circle’), (‘Square’)}

fS(om): {0.67,0.33}

o (‘Circle’, ‘Circle’) =0, d (‘Circle’, ‘Square’) =1
Contribution for attribute 2:

fS('Circle”) - & (‘Circle’, “Circle”) + fS('Square’) - & (‘Circle’, ‘Square’)= 0.67 - 0
+0.33-1=0.33

For attribute 3 (Size):
0y in O3: {(‘Large’), (‘Medium’)}
fS(om1): {0.33,0.67}
O (‘Small’, ‘Large’) =1, O (‘Small’, ‘Medium’) =1

Contribution for attribute 2:
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fS('Large’) - 8 (‘Small’, ‘Large’) + fS('"Medium”) - 8 (‘Small’, ‘Medium’) = 0.33
-1+067-1=1

Finally, sum up the contributions from all attributes:
dis(Object4,Vs) = 0.67 +033+1 =2

Since the total dissimilarity is 2, the cluster assignment of Object 4 depends on
comparing this value to the dissimilarities obtained with other cluster representatives. The
cluster for which this dissimilarity is minimal is where the object is assigned, indicating the
closest categorical “profile.”

Through this method, the k-Representative algorithm captures not only the predominant
attribute values within a cluster but also their distribution, providing a richer and more
flexible characterization of categorical clusters. Unlike methods that rely on a single mode
per attribute, k-Representative must manage and update a distribution for each attribute’s
categories. This can lead to increased computational overhead, particularly for large datasets
with many categories. Additionally, the complexity of interpreting frequency distributions
may pose challenges in understanding cluster representatives, making it less straightforward
for users to interpret cluster meanings.

Numerous specialized extensions have been introduced to address the inherent
complexities of clustering categorical data. One noteworthy variant is the k-Centers
algorithm [82], which treats cluster centers as probability distributions derived via kernel
density estimation. In this approach, indicator vectors and squared Euclidean distance are
employed to measure dissimilarities, thereby maintaining the core principles of k-means
while effectively accommodating categorical data characteristics.

Beyond k-Centers, additional techniques have emerged, each targeting specific
challenges. The fuzzy K-modes algorithm [83] introduces soft assignments, allowing data
objects to partially belong to multiple clusters. This flexibility can better capture nuances in
complex datasets. Meanwhile, scalable K-modes [84] enhances computational efficiency,
making it more practical for large-scale scenarios with vast numbers of objects and
attributes. The probabilistic K-modes method [85] integrates probabilistic models to handle
uncertainty and variability in categorical attributes, offering a more comprehensive
understanding of cluster membership.

These comprehensive efforts reflect ongoing research and innovation to adapt k-means-
style algorithms for categorical data analysis. By accommodating categorical attributes
through alternative distance measures, frequency-based distributions, or probabilistic
techniques, these methods significantly broaden the applicability of clustering algorithms.
As aresult, they offer effective solutions in diverse areas where categorical data is prevalent,
ensuring that k-means and its variants remain integral tools in the data scientist’s toolkit. In
line with these developments, our approach aims to integrate the strengths of conceptual
clustering methods with the structural insights of FCA, thus enabling more effective
clustering and generalization of categorical concepts within complex lattice structures.

5.3. The Proposed Methods
5.3.1. K-means Dijkstra on Lattice (KDL)

The K-means Dijkstra on Lattice (KDL) approach introduces a form of conceptual
clustering tailored to categorical data, integrating FCA with a modified Dijkstra algorithm.
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By leveraging the hierarchical structure of the concept lattice, an intrinsic outcome of FCA-
KDL advances beyond traditional clustering methods, ensuring that semantic relationships
and conceptual hierarchies guide the clustering process. The core phases and principles of
the KDL methodology are as follows:

— Data Conversion to Formal Context: The initial step involves converting the
categorical dataset into a formal context. This is achieved by representing the data
as a binary incidence matrix, where each row corresponds to a distinct object and
each column represents an attribute. An entry of ‘1’ in the matrix indicates that the
object in that row possesses the attribute denoted by that column, whereas a ‘0’
signifies the absence of that attribute. This binary representation serves as the
foundational structure upon which Formal Concept Analysis is applied.

— Formal Concept Derivation: Once the formal context is defined, Formal Concept
Analysis identifies all the possible formal concepts, each capturing significant
relationships among objects and attributes. These concepts form a hierarchical
lattice structure that reveals the underlying data organization. Although the number
of concepts can grow rapidly, analytical approximations [28], [103] provide insights
into this growth, considering both the number of objects, attributes, and the overall
size of the context.

— Assigning Edge Weights: At this stage, a directional cost framework is introduced
to model the traversal between interconnected concepts within the lattice. By
assigning higher costs to certain transitions, such as moving from a parent concept
down to its children, this approach can emphasize the significance of particular
hierarchical moves. For instance, a downward step might carry a cost of 2, while an
upward step might only cost 1. These weighted relationships ensure that the
clustering algorithm accurately reflects the relative importance and complexity of
moving through different regions of the concept lattice.

— Utilizing Dijkstra’s Algorithm for Distance Computation: To evaluate the
conceptual distances within the lattice, the method integrates a modified Dijkstra’s
algorithm. Given the assigned edge weights, Dijkstra’s algorithm identifies the
shortest path and its associated minimum cost between any two formal concepts.
This ensures that the chosen distance metric is sensitive to the lattice’s structure,
allowing the clustering process to respect and leverage the inherent hierarchical
relationships when determining conceptual similarity.

— Deriving and Refining Cluster Centroids (kernels): Once distances within the lattice
are established, cluster centroids, elected formal concepts that best represent each
cluster are determined. These centroids undergo iterative refinement, with each
update recalculating which formal concept minimizes the total distance to all other
concepts in the cluster. This iterative process continues until the centroids converge,
ensuring that each cluster center is optimally aligned with the inherent structure and
relationships in the concept lattice.

The proposed clustering approach, which integrates FCA and Dijkstra’s algorithm,
leverages a key property of concept lattices: for any two concepts ¢; and ¢, in a concept
lattice, there is always at least one path connecting them. Since the lattice is constructed from
all possible formal concepts and their hierarchical interrelations, each concept is reachable
from any other through a sequence of edges. This ensures that the lattice forms a connected
structure, allowing continuous traversal from one concept to another.
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To illustrate this, consider two concepts ¢; and c,. If they share a direct connection (c;
<c, or ¢; < ¢4), a path between them already exists. If not, we look at the sets of concepts
R(cy1) and R(c,) that are reachable from c¢; 1 and c,, respectively. If these sets intersect, then
there is at least one concept ¢ in the intersection, guaranteeing a path ¢c; = ¢ — ¢;. If no
immediate intersection is found, the search can be extended iteratively by exploring
additional reachable concepts until a common one is identified.

This pervasive connectivity is central to the clustering process. Since every concept pair
in the lattice is connected, it becomes feasible to compute the least-cost shortest path between
any two concepts using the Dijkstra-based distance measure. This, in turn, enables precise
cluster formation: each cluster’s centroid is identified through concepts that minimize intra-
cluster distances, and the inherent lattice structure ensures that these computations are both
meaningful and efficient. By exploiting the lattice’s connectivity, the proposed method can
effectively handle categorical data, respect the conceptual hierarchy, and produce coherent,
high-quality clusters.

5.3.1.1. Cluster Centers (Kernel Concepts)

Defining cluster centers, or centroids, within a concept lattice is crucial for effectively
applying the K-means Dijkstra on Lattice (KDL) method. These centroids must themselves
be formal concepts from the lattice. Their selection and iterative refinement play a key role
in minimizing the overall clustering cost. Consider a cluster S composed of formal concepts
{ci) ... 5} where i = 1,2,...,|S|. The chosen centroid Z is the concept within S that yields

the smallest total distance to every other concept in S. Formally:

S|
Z = argmingcg z d(c;, Z)

=1

Here, d(c;, Z) represents the Dijkstra-based distance from each concept c; in the cluster
S to a candidate centroid Z. The argmin operator identifies the representative formal concept
Z in S that achieves the minimal sum of distances to all other cluster members. Since Z must
be a member of S, this approach ensures an efficient search for the optimal centroid.

The existence of such a centroid is guaranteed by the properties of the Dijkstra-based
distance measure, making the method generally applicable, regardless of the set of formal
concepts at hand. By defining cluster centers as formal concepts, the approach provides both
mathematical rigor and practical utility. This strategy enhances the interpretability of
clustering results by selecting representative formal concepts for each cluster, ultimately
supporting a more comprehensive and insightful analysis of complex concept lattices.

5.3.1.2. The Clustering Algorithm

The K-Means Dijkstra on Lattice (KDL) clustering approach, anchored in FCA and the
Dijkstra-based distance framework, operates through a systematic procedure that iteratively
refines cluster assignments and identifies optimal centroids rooted in the lattice’s conceptual
structure.
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Algorithm 5.1: K-Means Dijkstra on Lattice (KDL) clustering algorithm

Inputs: k, the number of clusters; B, the lattice of formal concepts.
Output: The resulting clusters {S;, S5, ..., Sk}
Initialize:
Select k formal concepts {cy, C,, ..., ¢, } from the lattice B randomly as the initial centroids of
the k clusters.
Assignment:
For each formal concept ¢ € B do:
Assign c to the cluster S; for which the Dijkstra-based distance measure d(c, Z;) is
minimized, where Z; is the centroid of cluster S;.
Centroid Update:
For each cluster S; do:
Recalculate the centroid Z; as the formal concept ¢ that minimizes the total distance to all
other concepts within S;
Iteration:
While centroids change between iterations do:
Repeat steps 2 and 3.
Finalization:
Output the resulting clusters {S;, S,, ..., Sk }-

5.3.1.3. Cost Analysis of KDL Method

This section provides an evaluation of the computational complexity associated with the
KDL method, examining each phase from initial cluster setup to the final cluster
assignments. Understanding this complexity offers valuable insights into the method’s
efficiency and scalability.

Let:

— K denote the number of clusters,

— N the number of objects,

— A the number of attributes,

— C the number of concepts,

— E the number of edges in the lattice, and

— B the maximum number of border elements (peripheral concepts with minimal or
maximal extent/intent) considered during lattice construction.

Initially, the KDL procedure transforms the categorical dataset into a formal context, a
step that involves a binary conversion of each data entry. This preprocessing yields a
complexity of O(NA). Following this, the lattice is constructed from the derived formal
concepts, requiring operations over all border elements for each concept, resulting in a
worst-case complexity of O(CB).

The final stage involves a K-means-like clustering over the lattice-derived concepts.
Here, the main computational burden arises from repeatedly determining shortest paths
between concept pairs to update cluster assignments and recalibrate centroids. By employing
Dijkstra’s algorithm and assuming [ iterations until convergence, this portion contributes
O(IKC(E + Clog C)) to the complexity.

Combining these components, the overall time complexity can be approximated as
O(NA + CB + IKC(E + Clog C)). While this is a rough estimation and may vary based
on data characteristics and distributions, focusing on the dominant term for large-scale
scenarios simplifies the complexity to O(IKC(E + C log C)).
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In summary, the KDL method’s complexity grows primarily with the number of
concepts and edges in the lattice. Understanding this dependency is essential for selecting
suitable parameter values and optimizations to achieve efficient performance in practical
clustering scenarios.

5.3.2. K-Means Vector on Lattice (KVL)

This method provides a systematic way to represent categorical data, originally
structured as formal concepts, within a numerical framework amenable to conventional
clustering techniques. Instead of dealing directly with categorical relationships, KVL
transforms each formal concept into a corresponding "concept description vector." In this
vectorization step, each concept, however abstract or categorical is represented by a real-
valued vector, where each dimension corresponds to a particular attribute. The magnitude of
the value in each dimension reflects the attribute’s prevalence or significance within that
concept.

Once these concept description vectors are obtained, the classical k-means algorithm can
be applied directly. By treating each vector as a point in a continuous, high-dimensional
space, the standard distance measures and iterative refinement steps of k-means become
applicable. Through this process, the concept description vectors are partitioned into k
clusters, with each cluster identified by a centroid vector. Vectors within a cluster share a
closer similarity to this centroid than to those in other clusters. Consequently, the KVL
approach enables the aggregation of related concepts, simplifies the intricate structure of the
original categorical data, and facilitates more intuitive, scalable, and numerically-driven
cluster analysis.

Definition 4.1 (Concept Description Vector):

Consider a formal concept ¢ = (X,Y), where X € G, Y S M, and the given context T =
(G, M, I) comprises a set of objects G and a set of attributes M, with | M |=qand | G |=T.
The incidence relation I € G X M is represented by a binary matrix of dimensions r X q,
where each entry in the matrix corresponds to whether an attribute is associated with an
object (1 if true, O if false). Labeling the rows by g4, g2,-..., g and the columns by m,,
Mmy,..., My, this matrix provides the foundational structure linking objects and attributes.
The matrix can be defined as shown in Table 5.1.

Table 5.1. Matrix Corresponding to The Relation 1

Objects/Attributes my m, m,
91 I(g,my)  1(gnmz) ... 1(91-mq)
92 1(gmy)  1(g2m;) ... 1(g2,mq)
Iy 1(gr,m)  I(grmp) ... I(gr,Mg)
A concept description vector ¢y = (U, , Vm, ,...,vmq) captures the essence of the

concept c. For each attribute m;, € M, the component v,,, is computed as follows:
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1 if m, €B,

T

=11 )
h ;z I(gj,mh) if my, & B,Yg;€Qq,

j=1

Um

This definition distinguishes between attributes that form part of the concept’s intent Y
and those that do not. Attributes in the intent are assigned a value of 1, reflecting their strong
defining role. Attributes not in the intent are assigned a value corresponding to their average
occurrence across all objects G. This frequency-based weighting provides a measure of the
attribute’s general relevance within the dataset. By constructing the concept description
vector in this manner, each vector component encodes how intrinsic an attribute is to the
concept. The resulting vector not only supports direct comparisons between concepts but
also enables the application of classical numerical clustering techniques, paving the way for
more flexible and insightful data analysis.

After constructing the concept description vectors, the KVL approach introduces a
concept similarity measure (CS), to evaluate how closely concepts relate to one another.
Following Definition 6, Concept Similarity is derived using the Euclidean distance between
any two concept description vectors V., and V,,. This measurement quantifies the proximity
of two concepts by considering each corresponding element of their vectors.

Definition 4.1. Concept Similarity (CS):
Let

Ve, = <V61m1 ,Vclmz ’ miVClmq )

and

VCZ - <V62m1 ,chmz ’ “.'VCqu )

be the concept description vectors of two distinct concepts ¢; and c¢,. The Euclidean
distance, which serves as the basis for CS, is given by:

CS(Vey Ve )= |(Vey,, = Ve )2 + (Ve = Vey, )2 +...4 (VC1 -V, )2.

c c
mq 2m, mq 2mg

Armed with the concept description vectors and the associated similarity measure, we
can apply the classical k-means clustering algorithm. In this process, each concept
description vector is treated as a data point in a g-dimensional space. The algorithm groups
these vectors into k clusters such that concepts within the same cluster share greater
similarity than those in different clusters. Each cluster has a centroid Z;, defined as the mean
of all concept description vectors assigned to that cluster:

]

1
j=1
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where S; is the set of concept description vectors in the i-th cluster.

The objective of k-means is to minimize the within-cluster sum of squared distances
(WCSS) from each concept description vector to its corresponding centroid:

where:

e S, is the set of concept description vectors assigned to the i-th cluster,
e Z; is the centroid of cluster i, defined as the mean of all vectors in S;, and
e |I-ll denotes the Euclidean norm.

By repeatedly assigning vectors to their nearest centroids (based on the CS measure) and
then recalculating the centroids, the algorithm proceeds until it converges to a stable
configuration, thereby optimally partitioning the concept vectors into coherent, meaningful
clusters.

5.3.3. Clustering Algorithm

The clustering procedure unfolds as follows. Consider a formal context T = (G, M, I)
and let V(T) represent the set of all derived concept description vectors. Suppose we aim to
form K clusters. Initially, randomly select K initial centroids, Z{= (4;, B;) for (t =
1,2,...K), each corresponding to a preliminary cluster SP= {Z?}.

Next, assign each concept description vector v € V(T) to the cluster whose current
centroid is nearest to v based on the chosen distance measure. After this initial assignment,
recompute each cluster’s centroid by taking the average of all vectors assigned to it, thereby
updating each cluster center.

This reassignment and centroid calculation process is repeated iteratively. In each
iteration, vectors may shift clusters if doing so reduces the overall clustering cost. The
process continues until the cluster memberships and their centroids remain stable across
consecutive iterations, indicating that the algorithm has converged. The algorithm steps are
as follows:

Algorithm 5.2. K-means clustering of concepts

Input: All the description vectors of concepts in V( T), K.
Output: The clusters and corresponding centers.

Initialize:

SetSi« 0,5, <@, .., S,‘; « @

i<0,

Select initial center vectors of K clusters: Z{, Z é,. A ,i(;
Assignment:

For eachv € V(T) do:
-Find t such that CS(distance)(v, Zé) < CS(distance)(v,Z-i), (=
1,2, ..., k) then,
v € S
EndFor
Centroid Update:
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For each S do:

i+1 — 1 IS
Zt _EZS=1 Vs, Vs € St

sit={v e v(T)|CS (v, 2{**) < €S(v, Z/*1)}
EndFor
Convergence Check:
If Zi=71*1, Si=Si*'  t =1,2,...,K, then
Go to “Stop and output the clusters”.
Else:
i=i+ 1,
Go to “Repeat the assignment step”.
Output: clusters S}, S§, ..., S,f,_ and the corresponding centers Z:, Z, ..., Z,i.

Once the clustering process is complete and stable clusters are formed, the concept
description vectors in each cluster can be mapped back to their corresponding original
concepts from the formal context. This backward mapping leverages the initial construction
of concept description vectors, ensuring that the clustering results can be interpreted and
analyzed in terms of the actual concepts they represent.

Algorithm 5.3: Mapping Description Vectors Back to Original Concepts

Input: The clusters S¢, S, ..., S,f,_ and the corresponding centers Zi, Z,..., Z,i(.
Output: Clusters of original concepts.
Initialize:
Foreacht = 1to K, set NS, = 0,
Mapping:
For each vector v € Si:
—  Retrieve the corresponding original concept ¢ associated with vector v
— Add concept C to NS,
Output: the new clusters NS;, NS,, ... NS, each containing the original concepts.

This approximation and mapping technique enables efficient and interpretable clustering
of concepts within a given context, thereby clarifying the intricate relationships and
similarities among the different concepts.

5.3.3.1. Cost Analysis of the KVL Method

A complexity assessment of the KVL approach reveals multiple stages influencing
overall performance. Initially, the data undergoes preprocessing where each of the N objects
with A attributes is represented in binary form, resulting in a complexity of O(NA).
Following preprocessing, C formal concepts are generated, and each concept is represented
as an A-dimensional vector, incurring O (AC) time.

Once these vectors are created, the algorithm selects K initial centroids randomly from
the C concepts, which adds a cost of O(K). Subsequent phases involve iterative refinement:
each iteration requires assigning C concepts to their nearest centroid and then updating those
centroids, each iteration costing O(CK). With [ iterations until convergence, this totals
O(ICK).

In the final step, the algorithm maps the resulting concept vectors back to their original
formal concepts, contributing another O(CK) in complexity. Combining all these
components yields an approximate total complexity of O(NA + AC + K + ICK + CK).
Although this is a heuristic estimation, and real-world complexity may vary depending on
the data distribution, focusing on the dominant terms simplifies it to O (IKC). This indicates
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that the iterative centroid assignment and update phases primarily influence the scalability
and runtime efficiency of the KVL method.

5.4. Experimental Results

This section provides empirical evaluations showcasing the effectiveness and scalability
of both the Dijkstra-Based Distance Measure and the two proposed clustering approaches:
K-means Dijkstra on Lattice (KDL) and K-means Vector on Lattice (KVL). All experiments
were conducted on a Mac system featuring an Apple M1 chip and 8GB of RAM, running
macOS 13.2.1. This setup ensures a stable and efficient environment for performance
assessment, allowing for consistent comparisons and insights into the practical utility of the
methods under real-world conditions. The algorithms developed in this thesis were
implemented by the author in Python (version 3.11), using NetworkX for graph
computations, scikit-learn for clustering, and Matplotlib for visualization. Formal concepts
were derived with a tailored NextClosure routine to ensure canonical enumeration, while
iPred was used to construct the Hasse diagram and capture inclusion relations among
concepts. To support reproducibility and future research, the full source code including
clustering methods, distance functions, and experimental scripts is openly available on
GitHub, with the repository link provided at the end of each chapter.

5.4.1. Testing and Evaluation of the Dijkstra-Based Distance

The evaluation of the Dijkstra-based distance measure involved a systematic approach
to ensure both its reliability and adaptability across various data settings:
1. Random Generation of Formal Contexts:

Five distinct formal contexts were randomly generated, each differing in size and
density. Table 5.2 summarizes their characteristics. Density here represents the ratio
of filled entries (1s) to the total possible entries in the binary matrix, essentially
reflecting how much information each context encodes about object-attribute
relationships. For instance, Formal Contextl (600 objects, 125 attributes) has a
density of 0.10, implying a relatively sparse structure where only 10% of entries are
1. Lower density values indicate sparser relationships, while higher densities signify
more attributes per object, thus richer conceptual structures.

2. UCI Datasets Transformation:
Four well-known datasets from the UCI Machine Learning Repository were included
in the analysis. Before experimentation, these datasets were transformed into formal
contexts as indicated in Table 5.2. The chosen datasets—Balance-Scale, Breast
Cancer, Car Evaluation, and Tae were selected for their public availability and the
categorical nature of their attributes:

— Balance-Scale: Instances reflect different tilt states of a balance scale.

— Breast Cancer: Instances are categorized as benign or malignant.

— Car Evaluation: Instances fall into four categories (unacc, acc, good, vgood).
— Tae (Teaching Assistant Evaluation): Represents teaching performance

across multiple semesters, with each instance categorized as low, medium, or
high.

61



Clustering-Based Reduction Strategies for FCA

3. Formal Concept Extraction:
The NextClosure algorithm [21] was applied to each formal context to derive all
possible formal concepts. The number of formal concepts obtained from each context
is listed in Table 5.3. This step is crucial for understanding the underlying patterns
and hierarchies within the data.

4. Graph Construction:
To visualize and analyze the relationships among the extracted formal concepts,
graphs were built. The Ipred algorithm [16] was employed to optimally arrange these
concepts, considering the influence of density on the resulting diagram’s complexity.
A higher density often leads to more nodes and edges, reflecting a more intricate
concept lattice. In contrast, sparser contexts result in fewer concepts and simpler,
more manageable lattices, as illustrated in Table 5.4.

Overall, these preparation steps provided a comprehensive testing environment, ensuring
that the Dijkstra-based distance measure was evaluated across a range of densities, dataset
complexities, and structural scenarios.

Table 5.2. Characteristics of Random and Real-World Formal Contexts.

Formal Contexts #objects #attributes density
Formal Context1 600 125 0.10
Formal Contex2 11000 30 0.10
Formal Context3 1350 120 0.05
Formal Context4 2000 20 0.15
Formal Context5 12000 20 0.23
Balance-Scale 625 20 0.20
Breast Cancer 182 35 0.25
Tae 151 101 0.04
Car Evaluation 1728 21 0.28

Table 5.3. Formal Concepts Generated from the Formal Contexts in Table 5.2.

Formal Contexts #formal concepts
Formal Context1 29926

Formal Contex2 15117

Formal Context3 9882

Formal Context4 2989

Formal Context5 39931
Balance-Scale 1297

Breast Cancer 2569

Tae 276

Car Evaluation 8001

Table 5.4. Characteristics of the Generated Lattices.
#inclusion relationship

Formal Contexts #formal concepts
between concepts (edges)
Concept latticel 29926 122839
Concept lattice2 15117 67040
Concept lattice3 9882 36797
Concept lattice4 2989 12175
Concept lattice5 39931 228427
Balance-Scale 1297 4945
Breast Cancer 2569 9513
Tae 276 619
Car Evaluation 8001 38928
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The evaluation process employed the Dijkstra-based distance measure on concept
lattices derived from five randomly generated formal contexts and four real-world datasets.
These formal contexts differed significantly in terms of objects, attributes, and density, while
the real-world datasets encompassed varied domains such as balance scale, breast cancer
classification, teaching assistant evaluation, and car evaluation. After establishing the
contexts and datasets, FCA techniques, specifically the NextClosure algorithm, were applied
to extract formal concepts. The number of resulting concepts ranged widely, from as few as
2989 in Formal Context 4 to as many as 39931 in Formal Context 5.

It is important to note that some datasets, including Balance Scale, Breast Cancer, and
Car Evaluation, were also used earlier in Table 4.1 but with different preprocessing
configurations (e.g., density, attribute filtering, or encoding methods). In particular, the
Breast Cancer dataset was restructured in this chapter, which altered the number of objects
and attributes, thereby affecting the number of derived concepts and the resulting lattice
structure.

Each set of formal concepts was then represented as a concept lattice constructed via the
Ipred algorithm, highlighting the inclusion relationships among concepts. The complexity
and size of each context influenced the lattice structure, reflected in the number of inclusion
relationships. For the performance assessment, a subset of concept pairs 25% of the total
concepts was randomly selected from each lattice. The shortest paths and their costs were
computed using the Dijkstra-based measure across ten independent trials. The analysis
recorded both the average runtime and the mean distance, providing insights into the
efficiency and scalability of the distance measure under varying conditions.

In Figures 5.1 and 5.2, the Dijkstra-based distance measure was applied to lattices
derived from randomly generated formal contexts of varying sizes and densities, where in
Figure 5.1 shows that the algorithm’s runtime generally increases in larger lattices. More
objects and attributes produce a greater number of formal concepts, resulting in a lattice with
more nodes and edges hence, more computational effort is required for shortest-path
calculations. This relationship holds across the all lattices tested, making it clear that denser
or larger lattices pose higher computational demands.

Execution Time (seconds)
N]

T T T T T T T T
5000 10000 15000 20000 25000 30000 35000 40000

Number of Formal Concepts

Figure 5.1. Average Runtime vs. Lattice Size for Random Contexts

Figure 5.2 further reveals a consistent pattern when comparing independently generated
lattices, often displaying a peak at certain sizes or densities. When a random context
produces a moderately sized but fragmented lattice, concept pairs tend to form clusters with
relatively few connecting links, increasing shortest-path lengths. In contrast, larger or denser
lattices tend to include overlapping attributes that create multiple bridges between clusters,
effectively reducing the overall mean distance. These findings highlight how varying
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random context parameters generate diverse lattice topologies while still exhibiting
predictable trends in both runtime and distance.
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Figure 5.2. Mean Distance vs. Lattice Size for Random Contexts

Figures 5.3 and 5.4 present analogous evaluations of the Car Evaluation, Balance-Scale,
Breast Cancer, and Tae datasets, highlighting how real-world categorical data influence both
lattice size and concept dispersion. First, Figure 5.3 shows that the runtime scales with the
number of concepts; as larger lattices incorporate more nodes and edges, each shortest-path
computation requires additional steps, thereby lengthening the average execution time.
Second, examining mean distance behaviors as shown in Figure 5.4 reveals that the Car
Evaluation dataset despite producing the largest number of formal concepts (8001), exhibits
a shorter mean distance than some smaller lattices, suggesting high interconnectivity due to
overlapping attributes and more numerous paths between concepts. In contrast, Balance-
Scale and Breast Cancer, despite fewer concepts, have higher mean distances, indicating
more fragmented lattices with fewer cross-links. As in the random contexts, these real-world
datasets can experience peaks in mean distance at certain sizes.

These observations underscore several key insights:

1. Structural Coherence vs. Sheer Size:
A dataset can generate a large concept lattice yet exhibit relatively short mean
distances if its attributes foster dense interconnections among concepts. Conversely,
smaller lattices may yield higher average distances when they remain fragmented
and lack sufficient bridging attributes.

2. Dynamic Interplay Between Density and Connectivity:
Across both random and real-world contexts, the layered nature of concept lattices
often produces peaks in mean distance. This occurs when there are enough concepts
to form loosely connected clusters—rather than fully integrated networks—but not
enough overlapping attributes to create extensive cross-links. As additional concepts
emerge and overlapping attributes increase, these clusters integrate further, resulting
in a decline in the overall mean distance.

3. Robustness of the Dijkstra-Based Approach:
The Dijkstra-based distance measure consistently captures these subtle structural
transitions, underscoring its robustness. Instead of smoothing over inherent
differences, it accurately reflects the organization of each dataset, making it a
valuable tool for understanding how real-world categorical data are layered or
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interlinked. This, in turn, provides deeper insights into the topology and connectivity
of concept lattices.
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Figure 5.3. Average Runtime vs. Lattice Size for Real-World Datasets
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Figure 5.4. Mean Distance vs. Lattice Size for Real-World Datasets

By integrating the Dijkstra-based distance measure with FCA, the approach effectively
leverages the hierarchical nature of categorical data. Instead of relying solely on Euclidean
metrics, this method interprets dissimilarities as shortest paths within a lattice, thereby more
accurately mirroring the relational patterns inherent in categorical datasets. Substituting
Euclidean distance with a Dijkstra-based measure in the K-means clustering framework
offers a more faithful representation of categorical relationships, enabling more precise
cluster identification and analysis. As a result, it provides a powerful, application-agnostic
tool for exploring and interpreting complex categorical data, opening up new opportunities
for research and practice in data-driven decision-making.

5.4.2. Clustering Performance

To assess clustering quality for categorical data, the Silhouette Coefficient and Davies-
Bouldin Index (DBI) are employed. Both measures operate without the need for ground truth
labels, making them valuable in practical scenarios.

The Silhouette Coefficient gauges how well each data point fits within its assigned
cluster compared to other clusters. Its values range from -1 to 1, where a high positive score
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indicates that a point is well-assigned to its cluster, while a negative score suggests a
potential misclassification. Formally:

Silhouette Score = (b — a) / max (a, b).

Here, ‘a’ represents the average intra-cluster distance (the average distance from a point to
other points within the same cluster), and ‘b’ is the average distance from the point to the
points in the nearest neighboring cluster.

In contrast, the Davies-Bouldin Index (DBI) assesses how separated and compact the
clusters are. Lower DBI values indicate a more optimal clustering solution. To compute DBI,
we proceed as follows:

1. For each cluster S;, compute the average intra-cluster distance S¢;. This is the average
distance of all points in S; to the cluster’s centroid Z;.

2. Determine the distance d;; between the centroids of each pair of clusters S; and ;.

3. For each pair of clusters (i, j), compute the ratio:

Rij = (SCl+SC]) / dl]

4. For each cluster S;, identify R; = max (R;;) across all other clusters SjS_jSj.
5. Finally, the DBI is obtained by averaging all R; values across the clusters.

Formally:

DBI = (1) Y R,.

S
where: S is the total number of clusters

A lower DBI score means clusters are more compact internally and better separated from
each other. Both the Silhouette Coefficient and DBI thus provide complementary
perspectives on the cluster quality, enabling a robust evaluation of clustering performance
in complex categorical data scenarios without requiring predefined labels.

By examining four real-world datasets, as detailed in Table 5.3 and reflected in both the
numerical results (Tables 5.5 and 5.6) and graphical trends (Figure. 5.5 and Figure. 5.6), the
number of clusters was set to align with each dataset’s inherent classes. Averaging the
performance across 100 runs per method provided clear insights into how K-means Dijkstra
on Lattice (KDL) compares to K-means Vector on Lattice (KVL) in practical clustering
scenarios.

Table 5.5. Silhouette Coefficient Outcomes for KDL and KVL Across Various Datasets.

Datasets KDL KVL #Clusters
Balance-Scale 0.406 0.128 3
Breast Cancer 0.239 0.090 2

Tae 0.300 0.092 3
Car Evaluation 0.563 0.106 4

Examining the Silhouette Coefficient (Table 5.5) clearly shows that KDL, which
inherently respects the lattice graph structure derived from categorical data, consistently
surpasses KVL. This advantage is further substantiated by the DBI results (Table 5.6), where
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KDL again exhibits superior clustering quality by achieving lower index values across all

datasets.

Table 5.6. DBI Results for KDL and KVL Across Different Datasets.

Datasets KDL KVL # Clusters
Balance-Scale 1.48 2,64 3
Breast Cancer 1.83 2,78 2
Tae 149 2.62 3
Car Evaluation 1.90 2.92 4

The core strength of KDL stems from its integration of FCA and Dijkstra’s algorithm.
FCA constructs a concept hierarchy reflecting the nuanced relationships in categorical data,
while Dijkstra’s algorithm finds optimal paths within this hierarchy. By employing a
distance measure based on the shortest path between formal concepts, KDL captures the
underlying data structure more accurately. This results in more coherent and meaningful
clusters.

In contrast, the KVL method, despite simplifying the process by converting categorical
data into numerical vectors, may lose critical hierarchical information. Such abstraction can
lead to less effective clustering outcomes, as evidenced by higher DBI values and less
favorable Silhouette scores.

- KDI .
KVL >

Balance-Scale Breast Cancer T Car Evaluation

Figure 5.5. Silhouette Scores by Dataset and Method

+ KDL
28 KVL

- o

Balance-Scale Breast Cancer Be Car Evaluation

Figure 5.6. DBI Scores by Dataset and Method

Together, these findings underscore the importance of leveraging the inherent structure
in categorical datasets. Although KVL remains a viable approach for certain scenarios, the
results strongly advocate for methods like KDL especially when the goal is to preserve and
utilize the complex relationships implicit in categorical data. In essence, choosing between
KDL and KVL should hinge on data characteristics and analytical goals, ensuring that the
method aligns with the intrinsic nature of the data at hand.
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5.4.3. Scalability Test Results Analysis

Exploring how both K-means Dijkstra on Lattice (KDL) and K-means Vector on Lattice
(KVL) respond to changes in the number of clusters provides valuable insights into their
scalability. All results reported are based on the average runtime from five independent runs,
ensuring the reliability of the performance assessment.

In this experiment, the number of clusters was varied from 2 to 18, while maintaining a
constant dataset size. Using the Car Evaluation dataset with 8001 formal concepts as a
benchmark, the KVL method displayed a near-linear increase in execution time, as
illustrated in Figure. 5.7. The runtime ranged roughly between 44.48 and 51.56 seconds,
indicating that KVL scales efficiently with an increasing number of clusters.

In contrast, Figure. 5.8 shows that the KDL method exhibited a steep rise in execution
time as the cluster count grew, escalating from about 1926.77 seconds for 2 clusters to
approximately 49600.10 seconds for 18 clusters. This substantial jump reflects the
computational complexity introduced by navigating the rich lattice structure and multiple
concept relationships inherent in KDL.

Execution time (seconds)
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Figure 5.7. KVL Scalability vs. Cluster Count (Car Evaluation Dataset with 8001 Concepts)
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Figure 5.8. KVL Scalability with an Increasing Number of Formal Concepts

These observations suggest that while KVL offers more favorable scalability and
computational efficiency with increasing cluster counts, KDL provides more nuanced
conceptual results. Ultimately, the choice between methods depends on the analytical
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requirements and resource constraints, highlighting a trade-off between scalability and the
depth of conceptual structure captured in the clustering process.

5.4.4. Scalability in Relation to the Number of Formal Concepts

When examining scalability with respect to the number of formal concepts, both KDL
and KVL methods were tested under a fixed number of clusters (three) across various real-
world datasets: Balance-Scale, Breast Cancer, Tae, and Car Evaluation. As illustrated in
Figure. 5.9 and Figure. 5.10, the execution times for KVL and KDL were recorded for
datasets containing 276, 1297, 2569, and 8001 formal concepts.

Figure. 5.10 reveals that KVL maintains relatively stable execution times as the number
of formal concepts grows, demonstrating impressive scalability. The average runtimes
remain within a narrow range (43.14 to 46.35 seconds), indicating that KVL efficiently
manages increasingly large datasets without substantial performance degradation.

By contrast, Figure. 5.10 shows that KDL experiences a dramatic increase in runtime as
the number of formal concepts expands. The execution times escalate from 53.67 seconds
to over 2000 seconds, reflecting a substantial computational burden when handling large,
complex lattices. Although KDL may offer higher-quality conceptual clustering due to its
richer representation, this comes at the cost of reduced scalability.
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Figure 5.9. KDL Scalability with Increasing Number of Clusters
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Figure 5.10. KDL Scalability with Increasing Number of Formal Concepts
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In summary, while KDL potentially delivers more nuanced clustering results, it is
significantly more resource-intensive, limiting its scalability. Conversely, KVL, though
possibly less conceptually rich, proves to be far more scalable for larger and more complex
datasets. The choice between these methods depends on the priorities and constraints of a
given application. Future research could investigate strategies to combine the strengths of
both approaches, striving for a method that balances conceptual depth with computational
efficiency.

5.5. Summary

Our investigation was guided by the overarching goal of leveraging FCA within
conceptual clustering frameworks to effectively reduce and manage the complexity of
concept lattices. The introduction of a Dijkstra-based distance measure was pivotal, offering
enhanced capability to capture hierarchical relationships in categorical data and reveal
deeper structural insights into concept lattices.

We evaluated two clustering methods tailored for FCA contexts: K-means Dijkstra on
Lattice (KDL) and K-means Vector on Lattice (KVL). KDL, utilizing the Dijkstra-based
distance measure directly on the lattice structure, yielded conceptually rich clusters that
preserved inherent hierarchies. However, its scalability diminished as the lattice size grew.
In contrast, KVL demonstrated superior scalability but risked oversimplifying hierarchical
nuances by converting categorical data into numerical vectors.

Significantly, these methods show promise not only in conceptual clustering but also as
reduction tools for FCA concept lattices. Experimental results indicate that KDL and KVL
can achieve effective centroid selection from the FCA concept set. Although the execution
cost can surpass that of conventional FCA reduction algorithms, these methods still represent
viable approaches for concept lattice reduction, particularly when conceptual fidelity or
scaling requirements demand careful trade-offs.

Looking ahead, refining these approaches could strike a better balance between
conceptual rigor and scalability. Potential avenues include simplifying the lattice
construction for KDL or integrating more nuanced distance measures into KVL to preserve
categorical hierarchies. Moreover, further integrating the Dijkstra-based measure into k-
means could extend their applicability. Ultimately, these findings form a solid foundation
for developing clustering methodologies that maintain conceptual depth while efficiently
managing lattice complexity, moving closer to more scalable and conceptually sound
solutions in FCA-based applications.

Github: https://github.com/Mdaash/FCA-KVIL-and-KDL-/tree/master/KDL_KVI. Methods

Publications : P;, P,
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Chapter 6:  Kernel Concepts Selection for Efficient
Lattice Reduction

6.1. Introduction

FCA provides a powerful framework for conceptualization, its derived concept lattices
can become unwieldy, limiting both scalability and insight. Traditional approaches to
simplifying these lattices, be they the removal of redundant elements, structural
simplifications, or selective filtering, can still struggle to accommodate the dynamic,
complex nature of many real-world datasets.

This chapter introduces the Kernel Concept Set Approach (KCS), a novel selection-
based methodology designed to address these challenges by integrating concept frequency
with a derivation cost function. Unlike typical methods focusing solely on frequency or
attribute relevance, KCS offers a flexible cost framework that accounts for both conceptual
usage and internal structure. By highlighting specific concepts as cluster centers, the
approach not only supports efficient clustering in a general metric space but also preserves
core structural insights. Importantly, KCS can serve as a specialized clustering technique,
especially within FCA contexts, bringing substantial benefits in interpretability, reduced
computational expense, and flexible distance interpretation.

6.2. Kernel Concept Set Approach

The Kernel Concept Set (KCS) method addresses the inherent complexity of concept
lattices in FCA, particularly when managing extensive lattices where conventional
techniques, such as removing arbitrary elements or selecting objects ad hoc, may overlook
critical structures. KCS focuses on two core attributes of each concept: its frequency and the
cost of deriving one concept from another. Frequency gauges a concept’s prevalence and
importance in the dataset, while the derivation cost assesses the effort required to navigate
between concepts in the lattice.

Central to KCS is the idea of identifying “kernel concepts,” high-frequency concepts
strategically positioned in the lattice. By singling out these pivotal elements, KCS preserves
both structural coherence and meaningful data relationships during lattice simplification.
Furthermore, KCS employs a flexible derivation cost function to measure similarity, thereby
accommodating both the real-world usage level of concepts and their internal structure. This
dual perspective enriches analysis by spotlighting concept clusters and pinpointing the most
essential information within the lattice.

In addition, KCS treats kernel concepts as cluster centroids, making it a powerful
clustering approach for formal concepts. This strategy operates in a general metric space,
avoiding the need for a vector space, and can yield cost savings relative to typical
agglomerative methods. Crucially, KCS not only isolates cluster members but also
designates central concepts as cluster representatives, highlighting the lattice’s crucial
“backbone.” Consequently, the KCS method offers a balanced, efficient means to reduce
and interpret large FCA lattices while protecting the most valuable insights embedded in the
data.
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Definition 5.1 (Extended Concept Lattice):
Building upon the standard concept lattice model described in Definition 2.5, the

Extended Concept Lattice introduces additional elements to enrich FCA. Specifically, this
extension incorporates two core components:

— A Frequency Value function, reflecting how often each concept appears or how
central it is within the dataset.

— A Derivation Cost function, quantifying the cost or complexity of reaching one
concept from another within the lattice’s structure.

Definition 5.2 (Frequency Value Function):
Let C represent the set of formal concepts in the extended lattice. A function
f:C - R*.

assigns a positive real value to each concept ¢ € C. The value f(c) gauges the relative
frequency or importance of concept ¢ within the domain.

Definition 5.3 (Derivation Cost Function):
A second function
d:C x € - R*U {0}.

captures the cost of deriving one concept from another. Here, d(cy, ¢c;) reflects how
much “effort” or “distance” it takes to move from concept c¢; to concept ¢, in the lattice.

—  Self-Cost:
d(c,c) = 0.
No cost is incurred when deriving a concept from itself.
— Asymmetry:
d(cy, ;) # d (cy¢q).

The cost may differ depending on the direction of traversal, mirroring the lattice’s
hierarchy.

— Integration with a Dijkstra-Based Distance:
For more refined asymmetrical costs, the lattice edges are weighted so that upward
transitions (from child to parent) differ in cost from downward transitions (parent
to child). For instance, an upward move might have weight 2, while a downward
move might have weight 1. This scheme harnesses a Dijkstra-based shortest path
method to capture directional complexities accurately [46].

Definition 5.4 (Distance from a Subset):
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For a subset of concepts K; € C, the distance
d(Ks,c) = min{d (¢, ¢) | ¢; € K}

denotes the minimal derivation cost from any concept in K to a particular concept c.
This measure effectively accounts for the closest “anchor” in Kg when assessing how easily
one can reach c.

Definition 5.5 (Frequency-Weighted Derivation Cost):

To incorporate both a concept’s significance (its frequency) and the structural cost to
reach it, define:

d/(Ks,c) = f(c) - d(Ks,c).

This product-based metric balances how often a concept appears with the complexity of
accessing it within the lattice.

Definition 5.5 (Kernel Concept Set).

An extended lattice B(d, f,d ) uses these components to identify a Kernel Concept Set
K that satisfies the following:

— Capacity Constraint:
|Kg| = S, where S, is a predefined size limit.
— Optimization Constraint:
K, should minimize the cumulative derivation cost across the lattice. Formally:
KszargminKscK{ Zc €K d f(Ks' C)l IKSI < SC }
This enforces an optimal coverage of the concept set using only S, kernel concepts.
— Role in Lattice Simplification:
By focusing on these kernel concepts which both appear often (high frequency) and
are strategically positioned (low derivation cost) the approach zeroes in on the
lattice’s structural “backbone.” It thereby condenses the lattice into its most
informative subset, enhancing manageability and preserving core relationships
during analysis.
Overall, these definitions provide a systematic framework for extending an FCA concept

lattice with frequency-based prioritization and cost-aware navigation, enabling more
powerful reduction, clustering, and insight extraction in complex or large datasets.
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6.2.1. Optimized Greedy Algorithm for Determining a Kernel Concept Set

To address the significant computational demands often associated with large concept
lattices in FCA, we introduce an Optimized Greedy Algorithm (Algorithm 5.1) that
efficiently identifies a Kernel Concept Set (KCS). The algorithm is devised to systematically
construct an optimal subset of concepts that minimizes total derivation costs across the
lattice. This total cost encapsulates the aggregate effort of deriving every other concept from
a chosen kernel set of core concepts. By focusing on such pivotal concepts, the procedure
inherently reduces the lattice’s size and complexity, enhancing interpretability while
retaining essential structural insights.

Algorithm 5.1: Optimized Greedy Algorithm

Input:

—  Concept Lattice B (K, <)

—  Frequency Value Function f: C - R*

—  Maximum Core Set Size S,

—  Transition Cost: upward < 2,downward < 1
Output:

—  Kernel Concept Set K
Algorithm Steps:

1. Initialization:
—  Construct the Concept Lattice B(C, <).
— Initialize Kernel Set K; as an empty set.
—  Assign Frequency Values f(c) to each concept c in the lattice.
2. Ancestors and Descendants Preprocessing:
—  For each concept c in the lattice, identify its ancestors and descendants.
—  Prepare a memoization dictionary to store the minimal derivation costs.
3. Derivation Cost Calculation:
—  For each concept c in the lattice:
—  Use Dijkstra's algorithm to calculate the minimal derivation cost d (K, ¢) to every
other concept.
—  Store the costs in a structured way for quick retrieval and use memorization to avoid
redundant calculations.
4. Core set identification with Sub-Lattice Optimization:
—  Define S, as the maximum size for the Kernel set.
—  Initialize
best_cost « o, best candidate < None.
—  Iteratively expand Kj:
—  For each candidate concept not in K, construct or retrieve a relevant sub-lattice
Algorithm 5.2.
—  Calculate the potential reduction in aggregated derivation cost if the candidate were
added to K.
—  Update best_cost and best _candidate accordingly.
—  Add the best_candidate to K; and update the cost.
—  Continue until |K|=S, or no further reduction in cost is possible.
5. Result Analysis:
Return the final K as the kernel concept set that minimizes the aggregated derivation cost while adhering to
the size constraint [K¢|=S,.

The computational complexity of the proposed approach is influenced by several factors,
most notably the number of concepts within the lattice (denoted by C) and the structure of
their interconnections. During the preprocessing stage, identifying ancestors and
descendants for each concept in a densely connected lattice can lead to an 0(C?)) overhead.
A naive derivation cost calculation for all concept pairs, which employs Dijkstra’s algorithm,
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might appear to scale as 0(C3). However, by confining each cost determination to a focused
sub-lattice of average size s, the effective complexity adjusts to roughly O(C X s). Within
the iterative kernel construction step, adding each new kernel concept involves recalculating
aggregated derivation costs, but again only on localized sub-lattices and with memoization
to avoid repeated computations. This further step is typically bounded by O(S, X s) is the
maximum permitted size of the kernel set. Consequently, the overall time requirement
primarily combines the derivation cost computations O(C X s) with the iterative kernel set
expansions (S. X s), yielding a marked reduction in comparison to a more naive global
approach.

Algorithmic routines such as sub-lattice construction (presented in Algorithm 5.2) are
crucial for reducing the size of the problem space:

1. Defining the Sub-Lattice
— Identify a compact subset of concepts (and their interconnections) directly
relevant to the current calculation.
— This subset often centers on the target concept(s) and the kernel set members.
2. Selective Inclusion
— Only nodes (concepts) and edges (relationships) pertinent to the cost
evaluation or kernel set update are included, minimizing overhead.
3. Dynamic Construction
— As the algorithm updates the kernel set or refines potential candidates, sub-
lattices are rebuilt or adjusted to ensure accuracy and relevance.
4. Scalability
— By confining computations to smaller sub-lattices, the method accommodates
lattices of larger overall size without incurring prohibitive computational
costs.

Algorithm 5.2: Steps for Building a Sub-Lattice
1. Initialize Relevant Concepts:
—  Start with an empty set to hold all relevant concepts.
—  Add the two concepts, A and B, to the relevant concepts set.
2. Add Ancestors and Descendants:
—  Include all ancestors of A into the relevant concepts set.
—  Include all descendants of A into the relevant concepts set.
—  Repeat the process for node B, adding both its ancestors and descendants to the relevant concepts set.
3. Create Sub-Lattice:
— Initialize an empty dictionary to represent the sub-lattice.
—  For each concept in the relevant concepts set, do the following:
— Initialize an empty list to store the neighbors of the concept.
— Retrieve the list of neighbors from the full lattice dictionary.
— Include a neighbor in the concept's neighbor list only if the neighbor is also in the relevant
concepts set.
—  Assign the neighbor list to the concept in the sub-lattice dictionary.
4. Return Sub-Lattice:
—  The sub-lattice containing only the relevant concepts and edges is now constructed.
—  Return the sub-lattice dictionary.

By applying these optimization methods, the algorithm strategically narrows the scope
of its computations while still preserving a comprehensive view of the lattice. This balanced
approach results in a kernel set that is both cost-effective and representative, exemplifying
how depth and breadth can be maintained in the analysis of large and intricate concept
lattices.
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6.3. Experimental Setup and Methodology

We conducted our algorithm’s implementation and evaluation within a Python-based
environment, leveraging its widespread community support and broad selection of
development utilities. All experiments ran on a Mac equipped with an Apple M1 processor
and 8GB of RAM, operating under Mac OS 14.3.1, ensuring a stable and efficient testing
platform for diverse computational.

6.3.1. Clustering Performance

A comparative evaluation of the proposed Kernel Concept Set Approach (KCS) against
the K-means Dijkstra on Lattice (KDL) [46] method was carried out using four real-world
datasets (see Table 4.1). To measure clustering quality without the requirement of labeled
data, we relied on the Silhouette Coefficient and the Davies-Bouldin Index (DBI). Across
all datasets tested, KCS consistently surpassed KDL, reflecting more coherent within-cluster
organization and clearer separation among clusters. Specifically, KCS achieved higher
Silhouette Coefficient values, for example, 0.406 and 0.680 on the Balance-Scale and Car
Evaluation datasets, respectively, and lower DBI scores (e.g., 1.72 and 1.41), indicative of
tighter, well-separated clusters.

These strong outcomes stem from KCS’s strategy of choosing kernel concepts as cluster
centers based on both concept frequency and derivation cost. By situating clusters around
pivotal kernel concepts, KCS effectively captures the essential structure of large lattices,
lowering complexity while maintaining meaningful relationships among concepts.
Moreover, KCS operates within a general metric space, circumventing the overhead of
vector-space transformations, and thus reduces computational costs relative to some
traditional approaches. Its capability to identify both cluster memberships and centroids
facilitates deeper insights into the data’s inherent patterns, ultimately supporting a more
efficient, interpretable, and lattice-focused analysis.

The findings summarized in Tables 6.1 and 6.2, along with the corresponding visual
representations in Figure. 6.1 and Figure. 6.2, underscore the Kernel Concept Set (KCS)
approach’s notably stronger clustering performance compared to the K-means Dijkstra on
Lattice (KDL) method across multiple datasets. This advantage arises from KCS’s
distinctive use of the concept lattice’s inherent complexity for clustering, thereby offering a
more fine-grained and effective analysis of categorical data. In contrast to the KDL
method—which capitalizes on the lattice structure and Dijkstra’s algorithm—KCS centers
on identifying a “kernel” of concepts, prioritizing their frequency and derivation cost. By
focusing on a lattice’s most meaningful elements, this strategy not only reduces the volume
of information needing analysis but also yields higher-quality clusters by designating these
kernel concepts as cluster hubs.

Table 6.1. Silhouette Scores Comparing KDL and KCS Methods Across Datasets.

Datasets KDL KCS #Clusters
Balance-Scale 0.275 0.406 3
Breast Cancer 0.125 0.351 2

Tae 0.163 0.393 3
Car Evaluation 0.382 0.680 4

Significantly, this quality advantage is reflected in KCS’s improved Silhouette
Coefficients and lower Davies-Bouldin Index values, indicative of more cohesive within-
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cluster relationships and clearer delineations between clusters than those achieved by KDL.
Overall, these results affirm that a selective, concept-focused methodology—Iike that
employed by KCS—can substantially elevate clustering outcomes by directly engaging with
the most pivotal facets of categorical data and their hierarchical interconnections.

Table 6.2. DBI Index Scores Comparing KDL and KCS Methods Across datasets.

Datasets KDL KCS # Clusters
Balance-Scale 2.67 1.72 3
Breast Cancer 2.88 1.35 2

Tae 2.12 1.70 3
Car Evaluation 3.34 1.41 4
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Figure 6.1. Silhouette Scores by Dataset and Method.
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Figure 6.2. DBI Scores by Dataset and Method

6.3.2. Influence of Lattice Size on Runtime

In a targeted experimental comparison, we examined how the Kernel Concept Set
Approach (KCS) measures up against the K-means Dijkstra on Lattice (KDL) method within
the framework of FCA. By using the datasets outlined in Table 4.1, we investigated how
these methods handle increasingly complex lattice structures, focusing on their runtime as
the principal performance metric.

As depicted in Figure. 6.3, the tested approaches diverge markedly in efficiency once
lattice size grows. Although KDL demonstrated acceptable performance for relatively
modest lattices, it exhibited substantial scalability and runtime issues with larger structures.
In stark contrast, KCS maintained strong efficiency across the entire range of lattice sizes.
For instance, when processing the “Tae” dataset (276 concepts), KDL required 1,210.14
seconds, whereas KCS completed the same task in just 9.35 seconds. A similar pattern
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appeared in the “Car Evaluation” dataset, where runtime dropped from 781,799.93 seconds
(KDL) to 8,361.93 seconds (KCS) for 3,596 concepts.

These outcomes highlight the KCS method’s superior adaptability and computational
economy, making it a more effective choice for FCA applications spanning varied and
especially larger lattice complexities. The capacity to reduce runtime substantially across
different scales underscores the feasibility of using KCS in data-intensive environments. By
dramatically lessening the time required to process substantial concept lattices, KCS
significantly broadens FCA’s practical utility in analyzing complex datasets—ultimately
setting a new performance benchmark, as illustrated by the results in Figure. 6.3.

Run Time Comparison

10° 3 — KDL Method
i KCS Method

Run Time (Log Scale}

Tee BalanceScale BreastCancer CarEvaluation
Lattice Size

6.3. Comparative Performance Analysis of KCS and KDL Methods Across Diverse Lattice Sizes

6.3.3. Experiment with the Teaching Assistant Evaluation Dataset

A specific demonstration involves the Teaching Assistant Evaluation dataset sourced
from the UCI KDD Archive. This dataset captures the performance of 151 teaching
assistants (TAs) in the University of Wisconsin-Madison's Statistics Department across
various semesters, including both standard academic terms and summer sessions. Publicly
available at UCI KDD, the dataset provides a valuable basis for investigations into teaching
effectiveness. Six categorical attributes, encompassing elements such as TA language
background (English speaker or not), course instructor (25 categories), course type (26
variants), semester format (summer or regular), and class size, collectively enable a
multifaceted view of TA performance assessments.

For use within FCA, each categorical attribute is transformed into Boolean form,
producing a formal context containing 151 rows (one per TA assignment) and 101 columns
(attributes) at a density of 0.05. Table 6.3 illustrates a smaller portion of the data comprising
10 TA assignments and 8 attributes, while Figure 6.4 depicts the resulting concept lattice
through a line diagram generated using the ConExp (Concept Explorer) software. This initial
demonstration provides a concise view of the relationships and structure revealed by FCA.

When the entire dataset is processed, the Kernel Concept Set (KCS) method proves to
be highly effective at consolidating and clarifying the concept lattice’s 276 concepts.
Applying an initial maximum kernel size S. of 5% yields a kernel containing 14 key concepts
(see Table A.2 of Appendix A), registering a total derivation cost of 30,808. Although the
frequency values in these concepts were assigned to illustrate the process, the result already
highlights salient patterns in the TA assignments, including a marked emphasis on certain
attributes (e.g., semester format or language proficiency). For instance, two of the concepts
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alone cover 138 TAs out of 151, indicating a notable preference for non-English-speaking
TAs in regular semesters.

Table 6.3. Formal Context about Subset of Tas Dataset.
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Figure 6.4. Concept Lattice Derived from the Formal Context of Tae Dataset Table 5.4.

Raising S. to 8% preserves the original 14 concepts while adding eight more, leading to
a 22-concept kernel with a reduced total derivation cost of 26,768 (Table A.3 of Appendix
A). These newly integrated concepts bring more refined insights, including further details
about class sizes, course types, and TA language patterns. Such additions reveal more
complex assignment practices, for example, employing non-English-speaking TAs for
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specific regular-semester courses and assigning English-speaking TAs in summer sessions.
This reconfiguration of the kernel concept set not only uncovers deeper relationships but
also underscores the KCS approach’s flexibility in uncovering multiple hierarchical layers
within the data.

Reducing the aggregate derivation cost from 30,808 to 26,768 underscores how
effectively KCS refines the lattice, pinpointing vital concepts that encapsulate the dataset’s
most pertinent patterns. Moreover, by compressing these key relationships into a concise
subset of the full concept set, KCS makes the analysis both more streamlined and more
illuminating. This capability is especially valuable for exploring data-intensive educational
contexts, where capturing essential interactions, such as instructor preferences or course
attributes, is crucial for decision-making.

This efficiency becomes clearer when examining how the kernel set size expands from
5% to 20%, as shown in Figure. 6.5. With a kernel set size S, initially at 5%, the derivation
cost starts at 30,808 and steadily declines as the kernel increases, dropping to 24,274 at 10%,
19,782 at 15%, and reaching 16,132 at 20%. This continuous decrease highlights one of the
KCS approach’s central strengths: the capacity to include more concepts in the kernel set
while keeping the overall complexity in check. The additional concepts fit smoothly into the
existing lattice, maintaining a streamlined analytical process even as the dataset coverage
grows broader. This well-balanced integration confirms the KCS method’s scalability and
adaptability for complex data exploration, enabling richer insights and more informed
conclusions without placing undue computational strain on the analysis.
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Figure 6.5. Trend of Decreasing Derivation Cost with Incremental Expansion of Kernel Set Size (S.)

6.4. Summary

This chapter introduces the Kernel Concept Set Approach (KCS) as an innovative
extension of FCA, targeting the inherent complexity of large concept lattices. By integrating
concept frequency with a flexible derivation cost function, KCS goes beyond conventional
frequency- or attribute-based filtering methods. Specifically, KCS strategically pinpoints
kernel concepts to serve as pivotal cluster centroids, emphasizing both their prevalence
(frequency) and the effort to derive one concept from another (cost).

Compared to the K-means Dijkstra on Lattice (KDL) method, KCS demonstrates
superior efficiency and clearer structural insight, even within a general metric space where
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many standard approaches incur higher overhead. By highlighting key concepts and
reducing derivation costs, KCS preserves the essential lattice structure, yielding high-quality
clustering results. Crucially, this approach also enables scalable approximation of formal
concept lattices, accommodating larger datasets without sacrificing interpretability or
performance. Consequently, KCS stands as a valuable, cost-effective tool for researchers
and practitioners seeking deeper insights and more streamlined analysis in FCA-driven data
exploration.

Github: https://github.com/Mdaash/KCS Approach/blob/master/KCS Method vl.ipynb

Publications : P,, P;, P,
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Chapter 7:  Mining Kernel Concepts: A Cost-Optimized
Concept Set Generation Method

7.1. Introduction

This chapter introduces a new framework for concept lattice reduction, focusing on an
optimal balance between expressive power and computational feasibility. Unlike
conventional methods that emphasize frequency filters or attribute-based pruning, our model
employs a heuristic and machine learning—assisted strategy to pinpoint a small “kernel” of
high-frequency concepts. These selected kernel concepts form a finite memory structure,
with a specialized mapping function ensuring each concept is uniquely and transparently
represented. The method is further bolstered by a Genetic Algorithm (GA) tasked with
optimizing the kernel selection, aiming to minimize a global generation cost while
preserving lattice integrity. Extensive tests confirm that our GA-based approach outperforms
a benchmark Simulated Annealing method in both speed and scalability. The chapter also
demonstrates a linguistic-based cost model for defining kernel vocabularies, showcasing the
versatility of our solution for diverse contexts and data domains. Our Main Contributions:

— Development of a Novel Reduction Model: We introduce a mechanism that
integrates a derivation cost function with a robust optimization procedure, enabling
the construction of a simplified yet expressive concept lattice.

— Genetic Algorithm with Machine Learning Support: A neural network module
predicts chromosome segment fitness, generating an efficient starting population for
the GA, thus enhancing convergence speed.

— Flexible Probability Distribution for Concept Prioritization: Our system
accommodates various probability distributions P(s) across concepts, enabling
tailored solutions in domains with different analytical requirements.

— Injective Mapping Function: By ensuring each concept is encoded as a unique word
sequence, the mapping function prevents ambiguity and preserves clarity during
lattice reduction.

Our approach provides multiple benefits that significantly improve both the scalability
and usability of FCA:

— Scalability: Adjustable kernel concept selection through input parameters allows
users to generate compact or more expansive concept sets, matching specific data
complexity.

— Approximation of Full Lattice: The resulting kernel concepts effectively
approximate the entire concept lattice, retaining crucial relational patterns while
minimizing overall complexity.

— Enhanced Clarity: The injective mapping function, coupled with the kernel’s high-
frequency elements, yields a more interpretable representation of concepts.

— Cognitive Alignment: Aligning the reduced structure with linguistic and cognitive
principles lowers the mental overhead for understanding and navigating the lattice.
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- Adaptability: Configurable memory sets W,, and selection thresholds facilitate broad
adaptability across various domain-specific vocabularies and semantic demands.

Against this backdrop, the following sections detail the design of our reduction method,
elaborate on the Genetic Algorithm for kernel concept selection, and evaluate the resulting
model through comprehensive experiments.

7.2. Proposed Method

To systematically reduce a concept lattice while maintaining both expressiveness and
derivational efficiency, we propose selecting a targeted kernel subset of concepts. Guided
by the compactness and clarity inherent in human language, our method relies on a finite
“memory” of frequently used concepts, applies an injective mapping function to guarantee
a unique representation for each concept, and utilizes optimization algorithms focused on
minimizing overall generation cost. By aligning with cognitive and linguistic principles, this
strategy not only streamlines computational tasks but also enhances the interpretability and
practical utility of the resulting lattice.

7.2.1. Kernel Set Cy,

We begin by assigning a probability value to every concept in the concept lattice L =
(C, <), These probabilities form a distribution p: C — [0,1] such that

z pe = 1.
cec

Each probability reflects how frequently a given concept is used. For instance, the
concept “bread” is typically used more often than “petrichor.” In addition to the concept
lattice, this probability distribution serves as an integral part of the input data.

The first step in reducing the concept set relies on probability-based filtering.
Specifically, we introduce a probability threshold pr. Any concept whose probability value
is below this threshold is removed from consideration, leaving us with the set of frequent
concepts,

Cr ={c € Clp(c) = pr}

Note that, in general, Cr does not form a lattice. From Cp, we select a finite subset of
concepts, known as the kernel €y,

Cv ={Cm1,Cy2, -, Cyp} C Cp, .

where D is the size of the kernel set. This finite size is a key attribute: it is chosen based
on the specific requirements of an application and the limitations of available resources,
thereby ensuring representations that are both scalable and manageable. Moreover, the
kernel set’s properties help guarantee its effectiveness and dependability in the model.
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The kernel concepts act as special cluster centroids within the target concept set.
Clustering, commonly employed in data analysis, reduces data volume such that subsequent
analyses can target whole clusters rather than individual items, thereby optimizing resource
usage. In particular, conceptual clustering refines standard clustering methods (like k-means
or hierarchical agglomerative clustering) to work with semantic concept domains. In this
study, we use an evolutionary strategy to optimize the positions of the cluster centers.

One application of this kernel concept model lies in refining linguistic concept
representations. In the language model considered here, each kernel concept corresponds to
a single word in the available vocabulary, each of these words is a single-word linguistic
unit that forms the foundation for representing the broader set of concepts.

7.2.2. Kernel Selection Method
Given a kernel set €y, we define a cost function h,,:
h¢,:C— R* .
where,
hey(€) = g({d(c € Cy, c)}).
where d(cy, ¢ ) represents the cost of deriving a representation of ¢ from ¢, and g is a
function applied to the set of these distances. A common choice for g is the min function.

The main objective is to identify the kernel that minimizes the overall mapping costs, which
is calculated as

hCu) = ) Pehey (o)

Additionally, there is a constraint on the size of the kernel set:
|Cyl <K.

where K is a predefined integer. Minimizing h(C,;) by optimally determining the kernels
Cy 1s the core goal. Through this approach, we significantly enhance FCA by reducing the
complexity of the concept lattice via a careful selection of key concepts. This, in turn,
supports more efficient knowledge representation and further broadens the potential
applications of FCA across various complex domains.

If, in a particular case, h(Cy,) is defined as the sum of element-wise costs

h(Cy) =Z _d(e,c)

and taking the following weight value:

w, = 1,
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the problem becomes analogous to the well-known knapsack problem. Specifically, if
we use an indicator variable x; to denote whether a concept c; is part of the kernel, then the
cost function can be expressed as:

h(Cy) = ZCECPC Ziecd(& Dx; = Ziec(d(c’ i) ZCECPC) X; = Zivixi'

with a capacity constraint of

Z W;X; <K.
iec

Since the knapsack problem is NP-complete, the general form of our optimization task
is at least as challenging. As a result, we employ heuristic methods, namely, a genetic
algorithm (GA) and a simulated annealing approach to tackle the problem.

When using the GA, we search efficiently for an approximately optimal subset (kernel)
and its associated mapping function, aiming to minimize the total expected cost. Because
the concept lattice can be exponentially large, an exact solution is often infeasible; the GA
instead balances exploring a broad solution space with systematically refining promising
candidates to converge on an effective solution.

Simulated annealing serves as the second baseline in our evaluations. This well-
established method is particularly suited to large and complex optimization spaces.
Beginning with an initial solution, it iteratively generates new ‘“neighbor” solutions, and
whether a new solution is accepted depends on a probabilistic factor governed by a
temperature parameter. This mechanism allows the algorithm to escape local optima,
potentially leading to further improvements in the solution.

7.2.3. Optimization of the Genetic Algorithm

The Genetic Algorithm (GA) in our framework conducts a chromosome-level evaluation
that primarily governs the selection operation, also influencing crossover and mutation. In
both the mutation phase and the generation of the initial population, a uniform random
selection is typically used, which tends to be less efficient than a fitness-based approach.

Algorithm 7.1: Genetic Algorithm for Optimizing the Memory Subset

1. Input
*  Concept Lattice: L
*  Frequency Distribution: P

. Kernel Size Constraint: K

2. Output
*  The optimal kernel subset Cy,
3. Algorithm
3.1. Initialize the Kernel
Begin by setting the kernel subset to Cy, the atomic concepts.

3.2. Determine Chromosome Length
Let L =| C \ C, I(each chromosome is indicating a potential memory subset).
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3.3. Configure Genetic Algorithm Parameters
Npopulations Ngeneration: Pselectionapcrossovera Pmutation
3.4. Genetic Algorithm Loop
34.1. Population Initialization
Generate Npopuylationchromosomes. Each chromosome with exactly K — K, ones,
ensuring the memory constraint is satisfied.
3.4.2. Evaluate Fitness
For each chromosome (memory subset candidate Cy,), compute h(Cy,). The fitness is
inversely proportional to this cost h(Cy,)
3.43. Selection Operation
Randomly choose chromosomes from the current population according to their fitness
(fitter chromosomes have a higher chance of being selected).
3.4.4. Crossover
Apply single-point crossover among the selected chromosomes to produce new
offspring.
3.4.5. Mutation
Use bit-flip mutation to invert randomly chosen bits (0 = 1or1 — 0) in the
offspring.
3.4.6. Repair Phase
Ensure each offspring still meets the K — K, ones constraint.
If there are too many ones, flip random ones to zero until the count is correct; if too few,
flip random zeros to ones until the required number of ones is reached.
3.4.7. Replacement
Form the new population from the resulting offspring after repair.
3.5. Termination Condition: After Ngeperation iterations, select the chromosome with the highest fitness as the
best solution.
3.6. Return: Output the optimal chromosome, which corresponds to the best-performing kernel subset Cy,;.

To address this limitation, we introduce a machine learning module for predicting the
relevance of any subset of concepts in L. This module can directly propose kernel set
candidates without requiring exhaustive enumeration. Our method proceeds as follows:

For any subset of concepts S € C, we introduce a fitness function

ZC’ € ¢.Pc h(cli CM)
|C.| '

f($) =

where C, is defined as the kernel sets of size K that include S:

Cc=1Culs © Cu,  |Cul =K}

Algorithm 7.2: Simulated Annealing for Optimizing Memory Subset

1. Input:
*  Concept Lattice: L
*  Frequency Distribution: P
*  Kernel Size Constraint: K
2. Output:

*  The optimal Cy; concept set
3. Algorithm:

3.1. Initialize the Kernel Set with C,.
3.2. Set Simulated Annealing Parameters:
3.2.1. Initial Temperature T: Starting temperature (e.g., 1500.0).
3.2.2. Final Temperature T, ;0 Temperature at which the algorithm terminates (e.g., 1.0)
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3.23.  Cooling Rate a: Factor by which the temperature decreases each iteration (e.g., 0.95).
324. Number of Iterations per Temperature: Number of neighbor evaluations per temperature step
(e.g., 200).
3.3. Generate Initial Solution:
33.1. Eligible Concepts C' = C \ Cy: Concepts available for selection into Cy,.
3.3.2.  Random Concepts Selection: Number of additional concepts to be selected.
3.3.3. Select Initial Cy;: Randomly sample Sg concepts from C’ and set

Cy=CyUS,.

3.4. Simulated Annealing Loop until Tin;tiqr < Trinai:
34.1. Current Solution:
*  Memory Subset: Cy,, the current set of selected concepts.
»  Fitness: Total expected generation cost for Cy;, computed using the fitness function:

feurrent = Z pe h(c).
cec

34.2. Generate Neighbor Solution with Swap Operation:

*  Remove a random concept ¢, from Cy; \Cy.
e Add arandom concept ¢; from C"\ C, .
* Ensure| Cy [= K.

343. Fitness Evaluation for Neighbor: Compute fy0ignpor-
3.4.4. Calculating Acceptance Probability:
If freignbor < feurrent> accept the neighbor. Otherwise, accept the neighbor with probability:

fneighbor - fcurrent
exp\— .

Tinitial

3.4.5. Cooling Phase: Update the temperature T = aT.
3.4.6. Termination: Stop if T < Tfing-

This measure provides an estimate of the subset’s relevance for building an optimal
kernel set. Because directly computing f() for every subset can be prohibitively expensive,
we instead employ a machine-learning-based approximation strategy to predict these fitness
values efficiently.

The model’s output corresponds to an estimated fitness measure, serving as an
approximation of h(s). This estimation process employs a training set derived by uniformly
sampling candidate kernel sets of size K. From these uniformly chosen samples, the
algorithm compiles a training dataset that underpins the regression neural network’s learning
process.

Within this model, the primary objective lies in identifying suitable candidate concept
subsets for both initialization and mutation stages. To achieve this, the fitness estimation is
performed by a regression-oriented neural network, whose input vector v constitutes a
membership representation over the concept set C. Concretely:

v; =1 if¢; € s, and 0 otherwise

The model then derives a predicted fitness score, serving as an approximation to h(s).
To generate the training data, we begin with randomly sampled kernel sets of size K, drawing
from C in a uniform manner. This process yields an initial dataset
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To ={(s,h(s)) Isc (s |=K}
From T,,, we construct a secondary training subset
T, ={(s,h'(s") | s cs €Ty},

where h'() denotes an aggregated fitness value computed relative to T,. By uniting these
two parts, the final training set becomes

71 == 7}) U 711.

The neural network utilized in our approach follows a four-layer MLP configuration,
providing a sequential stack of interconnected layers as illustrated in Figure 7.1.

Layer (type) Output Shape Param #
dense (Dense) (None, 200) 20200
dense_1 (Dense) (None, 30) 6030
dense_2 (Dense) (None, 16) 496
dense_3 (Dense) (None, 1) 17

Total params: 26,743

Figure 7.1. MLP Framework for Fitness Approximation

During the training phase, the system recorded the changing loss value for a training
dataset of 40,000 items, as depicted in Figure 7.2. The graph shows a continuous decrease
in loss, indicating that the neural network effectively acquires the mapping from concept
subsets to their predicted fitness values. Once the network is sufficiently trained, the
algorithm proceeds to produce the most promising concept subsets by employing an apriori-
based greedy procedure, grounded in the principle that strong itemsets generally contain
equally strong sub-itemsets. This process begins by examining single items and estimating
their predicted fitness with the trained neural network. It then advances to constructing and
evaluating candidate pairs, again leveraging the neural network for selection. Following the
identification of optimal pairs, the algorithm extends to forming triplets and pruning any that
fail to meet performance thresholds, ultimately arriving at a refined collection of top kernel
candidates as a result of this module.
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Figure 7.2. Loss Function in the Training Process
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Subsequently, this assembled candidate set serves as the initial population for the
Genetic Algorithm (GA). The impact of incorporating the relevance factor into the selection
process is illustrated in Figure 7.3. In that figure, the dotted line denotes the baseline GA’s
performance, whereas the solid line represents the enhanced GA incorporating the relevance-
based selection. Evidently, the revised algorithm persistently outperforms the baseline,
underscoring the efficiency gains attributed to the relevance-based approach. Through this
synergy of neural network-driven relevance prediction and a GA framework, the method
accelerates the discovery of optimal kernel subsets.
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Figure 7.3. Efficiency Improvement of the Relevance-Based Selection

7.3. Practical Application in Word-Level Concept Representation
7.3.1. Problem Description

In natural language, we use words to describe the concepts that exist in our world.
However, it is evident that not every concept has a dedicated single word; many concepts
require more elaborate descriptions to differentiate them. In this context, words that function
as “identifiers” can be thought of as memory, or kernel concepts. For other concepts, we
often rely on a combination of these memory words when referring to them in conversation.
Together with the kernel set, these additional concepts form the set Cr. As for any remaining
concepts, we do not assign them separate expressions for unique identification. In this work,
we utilize the kernel concept set mining algorithm to tackle the problem of selecting an
optimal vocabulary.

To formalize this, let f be the mapping function that represents concepts at the word
level:

f:Cpr - W™

where W™ is the set of all possible word sequences constructed from a finite collection
of words W. The pool W includes the words corresponding to the kernel concepts; we denote
W, as the word linked to a specific kernel concept c.

Concerning the cost function h¢,, , we take a straightforward approach:
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hey (©) = If (),

where |f(c)| indicates the length (in words) of the representation of concept c.
Therefore, for every ¢ € C,;, we have

hCM(C) = 1
If we assume C,, includes all attribute concepts ¢, = ({a}"’,{a}") and
Va € M:{a} = {a}",

then we can specify a unique word-level representation:

fle) = {f(c)}v {f(cadla € attr(c) \ attr(cy)} = W, U (W, |a

€ attr(c) \ attr(cg)}.

where ¢, denotes the nearest kernel concept to ¢, and attr(c) is the set of attributes (the
intent) of c.

Proposition 1
The above mapping function guarantees an unambiguous representation at the word level.

Proof. For any concept c, since Cy is finite and its size does not exceed K, we can identify
the closest kernel concept c;.. The representation W, is a unique word. Because attr(c) and
attr(c;) are individually unique, the pair (¢, attr(c) \ attr(c;)) yields a one-of-a-kind
attribute  set. Hence, the word sequence W, U {W |a € attr(c) \ attr(cy)

unambiguously denotes a specific concept in the lattice. 0

Example 1

For illustration, consider the Live in Water ontology provided at:
https://upriss.github.io/fca/examples.html. This ontology includes 18 concepts in total. Their
frequencies are compiled in Table A.4 of Appendix A, and the frequency threshold is set at
0.4. Figure 7.4 shows the resulting concept lattice; concepts not in Cr appear with a gray
background.

In this scenario, only the “specialization” operation is allowed, so

— d(cq,¢3) = 1if is adirect parent of c;,
- d(cq,c3) = oo otherwise.

Using these cost settings, the kernel concept mining algorithm yields:

- Kernel concepts: {8, 9, 15}
- Total cost: 14.66

Within the lattice shown in Figure 7.4, these kernel concept nodes are colored orange.
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Figure 7.4. Structure of the Live in Water Ontology

7.3.2. Attribute Reduction

Although the mapping function introduced above ensures a valid word-level
representation, there might be instances where some elements are redundant. In other words,
certain attributes and words might be superfluous for distinguishing a particular concept, so
only a subset of attr(c) \ attr(c,) would be needed to create an unambiguous
representation. By removing these unnecessary attributes, we can streamline our overall
vocabulary.

The proposed attribute reduction technique uses the attribute relevance test outlined in
Algorithm 7.3. This procedure follows a greedy strategy that identifies redundant attributes
in a loop. Candidate attributes are temporarily deactivated, and we check whether the
remaining attributes in attr(c) \ attr(c) still provide unique sets for all concepts attached
to a kernel concept.

Algorithm 7.3: Attribute Reduction Algorithm

Input:
- Concept Lattice: L
- Kernel Set: P
Output:
- Reduced Cp; concept set
Procedure:
1. For each kernel concept, gather all items in its cluster along with their respective sets A(c) = attr(c) \ attr(c).
2. loop on all attributes a € M for relevance test
—  For all concepts ¢ and for attributes sets in A(c), we remove a from the attribute sets. The result set is denoted
by A'(c).
—  We check, whether all sets in A’(c) are unique or not.
4. . If the reduced set A'(c) is unique for each concept ¢, then we can remove ¢ from the kernel set
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Example 2

Continuing the Live in Water example, we perform attribute reduction after computing
the “winner” kernel concept for each concept. This computation groups concepts by kernel
concept, forming separate hierarchies whose roots are the kernel concepts. Figure 7.5
visualizes these hierarchies.

Next, the algorithm pinpoints redundant attributes, and in this scenario, the attributes
{1, 4, 9} are identified as extraneous. With these removed, we obtain a reduced attribute set
and reconstruct the word-level representations of all concepts. Figure 7.6 illustrates the
resulting representation tree. Here, W; denotes the word assigned to each kernel concept,
while w; stands for the words of the attribute concepts.

Figure 7.6. Word-Level Representation of the Concepts After Attribute Reduction

7.4. Experimental Evaluation
To validate the effectiveness of our algorithm, we implemented it in Python, selected for

its extensive toolset and robust library support that streamlines the management of
computationally intensive tasks. All experiments were performed on a Mac system running
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macOS 14.3.1, equipped with an Apple M1 chip and 8 GB of RAM, thus providing a stable
and resource-efficient environment for empirical assessment.

For the study’s comparative analysis, we relied on four established real-world datasets
obtained from the UCI Machine Learning Repository. To align these datasets with FCA,
each dataset’s categorical variables were translated into Boolean features, yielding formal
contexts. In this process, every distinct category was mapped to a corresponding binary
attribute, indicating the presence or absence of that category for a given object. Following
this transformation, we constructed the respective concept lattices for each dataset, with key
information summarized in Table 4.1.

The selected datasets, Balance Scale, Breast Cancer Wisconsin, Teaching Assistant
Evaluation (Tae), and Car Evaluation, each exhibit unique attributes as shown in Table 4.1,
such as size, attribute count, density, and structural intricacy when transformed into concept
lattices. This diversity offers a thorough testbed for evaluating algorithmic performance and
scalability across varied data scenarios.

This selection of datasets provides a broad and demanding environment for algorithm
evaluation, enabling us to thoroughly gauge its scalability, efficiency, and overall
effectiveness under varying data conditions. By incorporating sets distinguished by different
sizes, numbers of attributes, and densities, we specifically challenge the algorithm’s capacity
to manage both large-scale and intricate lattices. High object and attribute counts probe the
method’s ability to handle substantial data volumes, while varying densities allow us to
examine its performance in both sparse and dense configurations. Consequently, testing our
model on these diverse datasets provides a robust appraisal of its effectiveness and
adaptability in real-world situations that exhibit a range of complexity levels.

7.4.1. Scalability Evaluation Across Varying Lattice Dimensions

A comprehensive set of experiments was undertaken to evaluate the computational time
of both the Genetic Algorithm (GA) and Simulated Annealing (SA) when applied to lattices
of varying sizes. Each dataset tested features different scales in terms of object count,
attribute count, and density levels. This design enables a thorough assessment of how
computational time grows with increasing lattice complexity. In conducting the experiments,
an exponential decay function was utilized for the probability distribution P(s) over
concepts, prioritizing higher-level concepts to simulate more frequent usage in natural
language.

Under controlled and identical testing conditions, both GA and SA were tasked with
selecting a set of core concepts for lattice reduction, consistent with the methods described
in previous sections. The Genetic Algorithm and Simulated Annealing were configured as
follows:

Genetic Algorithm Parameters
— Population Size (): 100
-~ Number of Generations (): 50
- Crossover Rate (): 0.8
-~ Mutation Rate (): 0.05

-~ Tournament Size (): 5

Simulated Annealing Parameters
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— Initial Temperature (): 1500.0

- Final Temperature (): 1.0

- Cooling Rate (): 0.95

— Iterations per Temperature (): 200

These parameter values were chosen based on pilot studies and established practices in
evolutionary algorithm research [104]. The resulting computational time for each method,
as shown in Figure 7.7, indicates that the Genetic Algorithm offers substantial efficiency
gains over Simulated Annealing, particularly as the concept lattice expands. While both
methods see rising computational demands with larger lattices, the GA exhibits a near-linear
increase in execution time. This scalability emphasizes its suitability for extensive datasets
and underscores its overall advantage in handling more complex lattice structures.

T Execution Time Comparison
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Figure 7.7. A Runtime Comparison of Genetic Algorithm (GA) and Simulated Annealing (SA) on Multiple Datasets

7.4.2. Influence of Kernel Concept Size on Overall Generation Cost

In this section, we investigate how altering the proportion of core concepts impacts both
the Total Expected Generation Cost () and the overall reduction of stored concepts in a
concept lattice. Two optimization algorithms, Genetic Algorithm (GA) and Simulated
Annealing (SA), are evaluated at different core concept size percentages. The outcomes,
presented in Table 7.1 and depicted in Figures 7.8, offer valuable insights into each
algorithm’s scalability and effectiveness in concept lattice reduction.

Table 7.1 Impact of Kernel Concept Size on Optimization Performance of GA and SA

Kernel Concept Size (%) Algorithm Core Concepts Selected Cost of the Kernel
20.0 GA 725 2.08461
20.0 SA 725 2.09324
25.0 GA 901 1.94862
25.0 SA 901 1.96122
30.0 GA 1,077 1.83434
30.0 SA 1,077 1.84108

Our experiments specifically targeted core concept sizes of 20%, 25%, and 30% of the
3,542 formal concepts in the Car Evaluation dataset. For each chosen size, both GA and SA
were tasked with identifying an optimal subset of core concepts. Their primary objective
was to minimize the total generation cost () while substantially decreasing the quantity of
stored concepts within the lattice.
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To ensure rigor and consistency, the algorithmic parameters for both methods were
carefully selected based on preliminary trials and recognized practices in evolutionary
computation [104]. Table 7.1 demonstrates how varying the kernel concept size influences
performance for both GA and SA. At a 20% kernel size, GA achieved a cost value of 2.0832,
while SA recorded a marginally higher cost. Increasing the kernel size to 25% yielded
respective costs of 1.9486 (GA) and 1.9612 (SA). Finally, at 30% kernel size, GA reached
1.8343, narrowly outperforming SA’s 1.8418.

Total Expected Generation Cost vs Core Concept Size for Car Evaluation Dataset
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Figure 7.8. Variation of Total Generation Cost () with Kernel Concept Size (%) for GA and SA

The analysis highlights the Genetic Algorithm's (GA) strong performance in optimizing
kernel concept selection, substantially improving the efficiency of concept lattice reduction.
While Simulated Annealing (SA) also yields comparable cost reductions, GA’s consistent
advantage renders it especially suitable for scenarios where minimizing generation cost is
paramount. Moreover, the marked decrease in stored concepts underscores the model’s
effectiveness in simplifying the lattice, making it more manageable for real-world
applications. Our findings further demonstrate that enlarging the kernel concept size leads
to notable decreases in the total expected generation cost, with GA consistently
outperforming SA in cost-sensitive and lattice-streamlining contexts. These outcomes
underscore both the scalability and robustness of the proposed model, confirming its
capability to manage varying data complexities effectively in concept lattice reduction.

7.4.3. Impact of Frequency Distribution on Algorithm Performance

We conducted additional experiments by selecting kernel concept sizes of 20%, 25%,
and 30% from the Tae dataset’s 276 formal concepts under three distinct frequency
distributions: Default, Uniform, and Random. Figures 7.9 and 7.10 illustrate that in the
Default distribution, GA consistently achieved the lowest average total expected generation
cost of 1.3209, with SA closely following at 1.3272. This improved outcome stems from
strategically assigning high-frequency linguistic units and employing an injective mapping
function, thereby streamlining the lattice while aligning with human cognitive processes by
emphasizing the most frequently used concepts.

In contrast, the Uniform distribution resulted in notably higher costs, 1.7117 for GA and
1.7190 for SA, reflecting reduced optimization due to the absence of frequency-based
prioritization. Meanwhile, the Random distribution yielded intermediate values of 1.6637
for GA and 1.6796 for SA, showcasing GA’s resilience in adapting to stochastic frequency
patterns while maintaining performance similar to the Default distribution.
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Notably, GA also demonstrated superior runtime efficiency across all distributions,
averaging about 20.65 seconds, whereas SA typically exceeded 55 seconds. Despite our
model’s capacity to accommodate various frequency distributions, the Default scenario
proves most effective by minimizing cost while maintaining runtime efficiency. Thus, GA
stands out as the preferred method in contexts demanding both cost-effectiveness and speed,
particularly when exploiting structured frequency distributions that align well with natural
cognitive patterns.
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Figure 7.9. Average Cost Comparison of GA and SA Across Frequency Distributions
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Figure 7.10. Runtime Performance of GA and SA Across Frequency Distributions

7.4.4. GA and SA Convergence in Concept Lattice Reduction

We conducted a detailed comparison of Genetic Algorithm (GA) and Simulated
Annealing (SA) in reducing concept lattice complexity for a dataset containing 276 formal
concepts. As depicted in Figure 7.8, each method seeks to minimize a “generation cost,”
which estimates the cognitive and linguistic effort needed to represent concepts. The shared
objective is to streamline the lattice while preserving interpretability.

Observing Figure 7.11, SA (green line) begins at a relatively high cost and rapidly
decreases, aided by its elevated initial temperature. This swift descent indicates SA’s
capacity to quickly identify an efficient solution, although the algorithm often stabilizes
sooner, suggesting it may converge on a reasonably good, but not always optimal outcome.
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Figure 7.11. GA and S4 Convergence in Concept Lattice Reduction

By contrast, GA (blue line) shows a more measured reduction in cost, attributed to its
population-based framework of crossover and mutation, which continues refining solutions
beyond the first stages. This extended improvement typically enables GA to arrive at a lower
final cost than SA, reflecting a more thoroughly optimized solution. While both approaches
effectively diminish the lattice’s complexity, GA consistently achieves a slightly lower
ultimate cost, aligning better with the goal of balancing expressiveness and usability in
concept lattices.

Overall, the findings indicate that SA excels in rapidly yielding a near-optimal reduction,
useful for scenarios demanding quick approximations, while GA’s iterative refinement
yields marginally superior final outcomes. Each algorithm thus caters to different priorities:
SA for accelerated initial reductions and GA for achieving a more precise, cognitively
aligned result.

7.5. Summary

This chapter presents an innovative approach to address the scalability and complexity
hurdles in FCA. By blending cognitive insights and linguistic optimization, the proposed
model strategically selects a core subset of high-frequency concepts and employs an
injective mapping function. The resulting kernel subset reduces computational overhead
while preserving key structural relationships in the lattice.

Comparative evaluations using Genetic Algorithms (GA) and Simulated Annealing (SA)
consistently highlight GA's superior performance in both computational efficiency and
minimizing generation costs, as demonstrated across multiple real-world datasets. The
integration of human-centric principles not only clarifies the reduced lattice structures but
also enhances usability, making FCA-based analyses more intuitive and tractable for
practical applications.

Overall, the proposed methodology bridges a critical gap between efficient
computational methods and cognitively aligned lattice simplifications, thereby extending the
utility of FCA in complex, large-scale data environments. This intersection of cognitive
efficiency and computational scalability opens new possibilities for more powerful, user-
friendly lattice reduction techniques in future research and real-world implementations.

Github: https://github.com/Mdaash/KCS _Approach/blob/master/GA_and_SA_analysis.ipynb

Publications : P,
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Chapter 8:  Conclusion

8.1. Summary

This dissertation addresses the escalating challenges of scalability and interpretability in
FCA, where concept lattices can become exceedingly large as datasets grow in size and
complexity. Despite FCA’s robust theoretical underpinnings, traditional methods often yield
unwieldy lattices that are time-consuming to compute and difficult for users to navigate. To
tackle these issues, the research combines three complementary strategies for lattice
reduction. First, two clustering-based algorithms, K-Means Dijkstra on Lattice (KDL) and
K-Means Vector on Lattice (KVL), identify a small set of representative “centroid”
concepts. KDL leverages an adapted shortest-path metric on the lattice, whereas KVL
employs a vectorization step before applying k-means. Both approaches effectively
compress lattice size while retaining critical structural relationships.

Building on this, the Kernel Concept Set (KCS) approach uses frequency and derivation-
cost metrics to select a minimal yet structurally faithful subset of concepts. This selection-
based method preserves essential patterns in the data while significantly reducing lattice
complexity. Finally, a Genetic Algorithm (GA), enhanced with a neural network—based
fitness evaluation, optimizes the discovery of these kernel concepts. This GA-centric
strategy has been shown to outperform other benchmarks, further underscoring the
robustness and efficiency of the proposed reductions.

Together, these methods provide a scalable and interpretable framework for FCA,
enabling analysts to handle larger, more diverse datasets and promoting practical adoption
across domains that rely on concept lattices for knowledge representation.

8.2. Contributions

The main scientific results achieved during the completion of this research are
summarized below in three theses:

—  Thesis 1
Related Publications: [Py, P,]

I have introduced two new clustering algorithms for lattice reduction in FCA: K-
Means Dijkstra on Lattice (KDL) and K-Means Vector on Lattice (KVL). Both
approaches adapt the standard k-means clustering framework to the specific structure
of concept lattices, where the relationships between formal concepts are hierarchical
rather than purely numerical.

In the case of KDL, the method leverages a Dijkstra-based distance measure that
assigns direction-sensitive costs to lattice traversal, ensuring that concept proximity
is measured in terms of structural and hierarchical effort. This allows clusters to
reflect the intrinsic organization of the lattice, thereby capturing semantic similarity
more faithfully.

By contrast, KVL embeds each concept into a vector space representation based on
its intent and attribute frequencies. This transformation enables the direct application
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of standard k-means clustering, providing a faster and more computationally scalable
alternative while still preserving meaningful groupings.

Experimental evaluations conducted on benchmark datasets from the UCI Machine
Learning Repository demonstrated that both KDL and KVL improve the balance
between fidelity of conceptual structure and scalability of computation. KDL was
shown to be particularly effective in producing structure-aware clusters, while KVL
provided a robust and efficient method for handling larger datasets. Together, these
two algorithms extend FCA into the realm of modern clustering applications,
offering practical solutions for concept lattice reduction.

Thesis 2
Related Publications: [P,, Py, P,]

I have introduced the Kernel Concept Set (KCS) approach, a selection-based strategy
for reducing concept lattices by identifying a small but representative subset of
formal concepts. This approach is original to the present research and defines kernel
concepts as those that combine high frequency of occurrence with low derivation
cost, making them both semantically central and computationally efficient.

KCS thus balances two competing objectives: preserving interpretability while
reducing computational complexity. By retaining kernel concepts as structural
“anchors,” the lattice can be effectively approximated without losing essential
relationships. This represents a departure from earlier methods such as iceberg
lattices, which rely solely on frequency thresholds and therefore risk discarding
structurally important but less frequent concepts.

Comparative experiments confirmed that KCS yields smaller, more interpretable
lattices while still covering the most significant conceptual structures. Furthermore,
the approach enhances usability by aligning with human cognitive processes of
focusing on “core” concepts, making the reduced lattices easier to visualize and
analyze. In this way, KCS offers both theoretical novelty and practical utility,
bridging a gap between efficiency and semantic clarity in lattice reduction.

Thesis 3
Related Publications: [P;]

I proposed an optimized Genetic Algorithm (GA) solution for mining kernel
concepts in FCA. This method introduces a hybrid strategy where the GA is
enhanced by a neural network module to accelerate fitness evaluation, thereby
reducing the computational overhead typically associated with evolutionary
approaches. The genetic optimization process was specifically tailored to select
kernel sets that minimize overall derivation cost while respecting constraints on set
size and interpretability. Through extensive testing on benchmark datasets, the GA-
based method consistently outperformed existing approaches in terms of both
efficiency and quality of selected kernel sets.

Beyond pure efficiency, the method also demonstrated adaptability to application
domains such as computational linguistics, where kernel concepts can be used to
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represent core semantic structures in textual data. This illustrates the broader
potential of kernel-based reduction beyond formal lattice theory, highlighting its
utility in interdisciplinary research contexts.

Taken together, these three theses establish a coherent research program that advances
the state of the art in Formal Concept Analysis. By introducing two novel clustering methods
(KDL and KVL), formulating the original concept of Kernel Concept Sets, and designing an
optimized evolutionary algorithm for kernel selection, this dissertation provides a
comprehensive framework for scalable and interpretable lattice reduction. The results open
pathways for applying FCA to increasingly complex and large-scale data, bridging theory,
computation, and real-world application.

8.3. Future Works

The methods introduced in this dissertation kernel concepts, the Dijkstra-based distance
measure, and the clustering frameworks KDL and KVL provide an initial but promising
foundation for reducing the size and complexity of concept lattices while maintaining
interpretability. Nevertheless, several avenues exist for extending and improving these
contributions in future work. One important direction lies in advancing the kernel concept
framework. While the current approach balances frequency and derivation cost, future
research may design richer cost functions that integrate semantic weights, probabilistic
relevance, or user-defined priorities. In addition, adaptive selection strategies could be
developed, where the kernel set dynamically adjusts according to the analytical task (e.g.,
association rule mining vs. clustering), thus making kernel concepts even more versatile as
structural anchors in FCA.

The Dijkstra-based distance measure also opens room for refinement. At present, fixed
costs are assigned to upward and downward lattice moves. Future studies could investigate
adaptive or data-driven weighting schemes, where the costs are learned from data
distributions or domain-specific feedback. Moreover, exploring approximations of shortest
paths such as pruning uninformative regions of the lattice or using heuristic accelerators may
enhance scalability without sacrificing structural fidelity.

For the KDL clustering method, one limitation arises from the repeated execution of
shortest-path computations. Future work could incorporate advanced indexing strategies,
parallel graph processing, or precomputed distance matrices to mitigate this overhead.
Beyond efficiency, the algorithm itself may benefit from hybridization with other clustering
paradigms, such as density-based methods or spectral clustering, allowing KDL to capture
different structural properties of the lattice. Similarly, the KVL method could be expanded
by refining its vectorization strategy. Currently, attribute frequencies are used to
approximate absent attributes; however, incorporating global statistical measures (such as
mutual information) or embedding-based representations could yield vectors that capture
more subtle semantic similarities. This could improve clustering accuracy while maintaining
computational efficiency.

Beyond individual methods, future work should also explore the integration of kernel
concepts and lattice-based distances with machine learning pipelines. For example, kernel
sets could serve as interpretable features in classification tasks, or lattice-based distances
could enhance similarity measures in recommender systems. Embedding these methods into
hybrid symbolic—statistical frameworks would not only extend their applicability but also
strengthen the interpretability of AI systems, a concern of growing importance in
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contemporary research. Finally, a promising direction lies in extending experimental
validation. While the current evaluation relied on UCI benchmark datasets, applying the
methods to larger, real-world contexts (e.g., biomedical ontologies, legal knowledge graphs,
or e-commerce transaction data) would both test scalability and demonstrate practical utility.
Such applications could highlight the unique contribution of kernel concepts and lattice-
aware clustering in domains where transparency, efficiency, and semantic structure are
equally critical.
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Appendix

A. 1. The Formal Concepts Derived from the Cross-Table Described in Table 2.3

Concept # Extent (X) Intent (Y) Formal Concept (X,Y)
1 0 {T. B, sé?’ L. M, (@, {T,B,S,D,L,M,G})
2 (L} {T,B,S,L} ({L}, {T,B,S,L})
3 {L2} {B, S, M} ({Lz2}, {B,S,M})
4 {Ly} {T,S,D, G} ({Ls}, {T,S,D,G})
5 {Ls} {T, B, L, M} ({Ls}, {T,B,L, M} )
6 (L} {S,L, M, G} ({L;}, {S,L,M, G})
7 {Lg} {T,B,D,L,G} ({Lg}, {T,B,D,L,G})
8 {L1, L} {B, S} ({L1, L}, {B,S})
9 {L1, L3} {T, S} ({L1, L3}, {T,S})
10 {Ly, Ly} {S,L} ({Ly, Ly}, {S,L})
11 {Ly, Ls} (B, M} ({Ly, Ls}, {B,M})
12 {Ly, Ly} (S, M} ({Ly, Ly}, {S,M})
13 (L, Ly} {S, G} ({Ls, Ly}, {S, G})
14 {Ls, Lg} {T,D, G} ({Ls Lg}, {T,D,G})
15 {Ls, Ly} L, M} ({Ls, Ly}, {L,M})
16 (L, Lg} (T,D,L} ({Le Lg}, {T,D,L})
17 {Ly, Lg} (L, G} ({Ly Lg}, {L,G})
18 {Ly, Ls, Lg} {T,B,L} ({Ly, L, Lg}, {T, B, L})
19 {Ly, Ls, Ly} M} ({Ly, Ls, Ly}, {M})
20 {Ls, Lg, Lg} (T, D} ({L3, Lg, Lg}, {T, D} )
21 {Ls, Ly, Lg} (G} ({Ls, Ly, Lg}, {G})
22 (L1, Ly, Ls, Lg} (B} ({Ly, Ly, Ls, Lg}, {B})
23 {Ly, Ls, Lg, Lg} (T, L} ({Ly, L, L, Lg}, {T, L} )
24 (L1, Ly, Ly, Ly, Ly} (S} ({Ly, Ly, Ly, Ly, Ly}, {S})
25 (L1, Ly, Ls, L, Lg} (T} ({Ly, Ly, Ls, Lg, Lg}, {T})
26 {Ly, Ls, Lg, Ly, Lg} (L} ({Ly, Ls, Lg, Ly, Lg}, {L})
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f
27 {L19 L25 L3, L4, L5= L6’ L7,L8} @ ( 1L15 LZ: L35 L4=)L5a L6a L7’L8}a @

A. 2. Kernel Concept Set Analysis of TA Assignments (S, set to 5%)

Coillgept N““g';’;rr i‘:lngAs Highlighted Attributes
Attributes
1 2 Course 3, Summer, Course Instructor 15, Class_Size 17, Eng Nat spk 2
2 2 Class_Size 19, Course 3, Summer, Course Instructor 23, Eng Nat spk 1
3 3 regular, Eng Nat spk 2, Course 1, Class_Size 51
4 3 Summer_or_regular 2, Eng Nat spk 2, Course 3, Course Instructor 8
5 3 Summer_or_regular 2, Eng Nat spk 2, Course_5, Course_Instructor 9
6 3 Summer_or_regular 2, Course 3, Course Instructor 22, Eng Nat spk 1
7 4 Course 7, Eng Nat spk 2, Summer or regular 2, Course Instructor 25
8 4 Summer or_regular 2, Eng Nat spk 2, Course 3, Course Instructor 23
9 6 Eng Nat spk 2, Class_Size 20, Summer or regular 1, Course 3
10 7 Summer_or_regular 2, Eng Nat spk 2, Course 15
11 8 Summer_or_regular 2, Eng Nat spk 2, Course Instructor 7, Course 11
12 14 Summer_or_regular 2, Eng Nat spk 2, Course 2
13 108 Summer_or_regular 2, Eng Nat spk 2
14 128 Summer _or_regular 2
A. 3. Kernel Concept Set Analysis of TA Assignments (S, set to 8%)
Concept ID N““é'l’;rr i‘:lngAs Highlighted Attributes
Attributes
1 1 Class_Size_11, Course_19, Summer_or_regular_2, Eng Nat_spk 2,
Course_Instructor_16
2 1 Course_Instructor_1, Summer_or_regular_2, Eng Nat spk 2, Course_8,
Class_Size 18
3 1 Class_Size_39, Summer_or_regular_2, Course_2, Eng_Nat_spk_2,
Course_Instructor_9
4 2 Course_3, Class_Size 13, Summer_or_regular_1, Eng_Nat spk 1,
Course_Instructor_13
5 2 Course 3, Summer, Course Instructor 15, Class_Size 17, Eng Nat spk 2
6 2 Class_Size 19, Course 3, Summer, Course Instructor 23, Eng Nat spk 1
7 3 regular, Eng Nat spk 2, Course 1, Class_Size 51
8 3 Summer_or_regular 2, Eng Nat spk 2, Course 3, Course Instructor 8
9 3 Summer or_regular 2, Eng Nat spk 2, Course 5, Course Instructor 9
10 3 Summer_or_regular 2, Course 3, Course Instructor 22, Eng Nat spk 1
11 4 Course 7, Eng Nat spk 2, Summer or regular 2, Course Instructor 25
12 4 Summer_or_regular 2, Eng Nat spk 2, Course 3, Course Instructor 23
13 5 Summer_or_regular 2, Eng Nat_spk 2, Course_3, Course_Instructor_10
14 6 Eng Nat spk 2, Class_Size 20, Summer or regular 1, Course 3
15 7 Course_Instructor_18, Eng_Nat_spk 2, Summer_or_regular_2
16 7 Course_Instructor_13, Eng_Nat_spk 2, Summer_or_regular_2
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17
18
19
20
21
22

14
20
108
128

Summer_or_regular 2, Eng Nat spk 2, Course 15

Summer or_regular 2, Eng Nat spk 2, Course Instructor 7, Course 11

Summer_or_regular 2, Eng Nat spk 2, Course 2

Summer_or_regular 2, Eng Nat_spk 1

Summer_or_regular 2, Eng Nat spk 2

Summer_or_regular 2

A. 4. List of Generated Concept Lattices

Id Intent Frequency
0 1,2,7 0.96
1 8,1,2,7 0.89
2 1,2,3,7,8 0.85
3 1,3,7,8,9 0.32
4 1,7 0.68
5 8,1,7 0.71
6 8,1,3,7 0.35
7 1,2,4,6 0.78
8 1,2 0.77
9 1 0.34
10 1,2,3,4,6 0.63
11 1,2,3 0.92
12 1,3 0.67
13 1,3,4,5 0.75
14 1,4 0.39
15 1,3,4 0.54
16 1,3,4,6 0.47
17 1,4,6 0.61
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