UNIVERSITY OF MISKOLC

s a2

Faculty of Mechanical Engineering and Informatics

PhD Dissertation Booklet
Author:
Jawad Ahmad Qasem Alshboul
MSc in Data Science, MSc in Computer Science

Jozsef Hatvany Doctoral School of
Information Science, Engineering and Technology

Title of the Dissertation

Automatic Generation and Evaluation of Programming Questions from Source Code

Research Area
Applied Computer Science
Research Group
Data and Knowledge Bases, Knowledge Intensive Systems

Head of Doctoral School:
Prof. Dr. Laszl6 Kovacs

Academic Supervisor:
Dr. Erika Baksané Varga

Miskolc, Hungary 2025

Table of Contents

O Lo o [FTot Ao RSOOSR TT TSSO TP PP TSP PTR PPN 2
1.1 BACKGIOUNG. ...ttt bbb bbbt e bbb bt b e E s e bt e E e s e e bt e bR b e bt e b e s e ekt e b e e ekt eb e e ebeeb e b nnes 2
1.2 PrODIEM STAIEIMENTeeecieit ettt b et b bbbt b bbb e bt e b e Rt e bt e e s b e bt e b e st eb e nb e s e abeeb e e ebeabe e ebennes 3
1.3 RESEAICH ODJECTIVES. ... ittt b bbbt b b st b e s bt bt e bt e bt e bt eb e nb e s e ebenb e e et e abe e ebe e 4

2 Thesis 1: Ontology-Based Automatic Generation of Learning Materials for Python Programmingc.ccccccveneenen. 4
P [oo [N ot [TSSOSO P TSP 4
B\, 1= 1 T T [o] [0 Y 2SR 4

3 Thesis 2: A Hybrid Approach for Automatic Question Generation from Program Codescceevvvvevvereeneresinsiesinannns 5
R T0 I [oo [N ot [T TSSOSO T ST T TSP PR R PT 5
3.2 MEENOAOIOGY ...ttt b bbb bbb E e E bR E R R R R R R b bRt bbb bt 5

4 Thesis 3: Evaluating Large Language Models for Generating Programming Questions from Source Code................... 7
A o (oo [FTox o] OO ST T USSR P TSP TTPOPRPTROR 7
AV 1= 1 T (o] (oo Y 2SS 8

5 Thesis 4: Template-Based Question Generation from Code Using Static Code AnalysiS..........ccccvvreirinvcniineienen, 10
5L INEFOTUCTION. ...ttt r s Rt e R e h Rt e et R e e e Rt er s e e Rt nr e e e R e nr et e b e nn e enenn e erenres 10
5.2 MEINOAOIOQY ...ttt b bbb b bbb bbb s e bt bRkt E et eb btk nh et r bt enes 10

6 Thesis 5: Multi-Language Static-Analysis System for Automatic Question Generation from Source Code................. 13
B. L INEFOTUCTION. ...ttt b et b bbb e bbb b e bt e b e Rt e bt b e b e eb e e b e s e ekt eb e s e eb e sb et ekt sbe e ebesbe e ebeares 13
LT =112 ToTo (o] oo | 2SSOSR 13

T CONCIUSION ...ttt b b e bt e b e b h s bR b AR bR e bt e R bRt b e R bt E et r s 16
T L FUBUIE WWOTK ...ttt h b e R e bRt e et R e e s e Rt nh s e Rt nr e eR e an et ekt nn e ebenn e enennes 16
7.2 AUNOT S PUDIICATIONS 1.evviiiiiieiiiieiiie st sttt st b et e et et e et e e s be e et e e ke e e bb e e bbe e be e e be e e beeenbaeebeeenbaeenrneans 17

RETEIEINCES. ...ttt b bbb e bt b e e e bbb e b £ e bt e b e b e e bt e E e R £ e bt e b e R e ekt e bR eR e bR e bt b st b nb Rt b nr e ebennes 18

1 Introduction
1.1 Background

Automatic Question Generation (AQG) is the process of creating meaningful and relevant questions
automatically from various types of input, including text, structured data, images, or videos, using
computational methods. In simple terms, it involves designing systems that can understand content,
identify key information or patterns, and generate clear, contextually appropriate questions to support
learning, comprehension assessment, conversational systems, or data exploration without requiring
manual question crafting for each instance [1], [P2]. Figure 1.1 illustrates the conceptual framework
of AQG from source code. The system takes source code as input, processes it through computational
analysis and generation techniques, and automatically produces relevant questions for educational or
assessment purposes. Figure 1.2 illustrates the four-component architecture of Intelligent Tutoring
Systems (ITS) as discussed by the review article [2]. This dissertation focuses specifically on the
Domain Model component through AQG for programming education. This work contributes to the
foundational knowledge representation layer by developing methods to automatically generate
contextually appropriate programming questions that can be integrated into the broader tutoring
system architecture.

Source Code Questions
AQG System o
def add(a, b): ¥)) 3 = What does this function do?

retu”E . +}b Analysis & Generation * What are the parameters?
* What is returned?

Figure 1.1 Conceptual framework of AQG from source code

Intelligent Tutoring System

Domain Model
= Knowledge Representation
= Curriculum Structure
= Content Organization

« Automatic Question Generation
(Research Caonfribution)

Tutoring Model Student Model
- Pedagoqgical Strategies] | ‘ = Learning Progress

- Decision Making - Cognitive Abilities

T

User Interface

- Learning Environment User/Learner
- Interaction Management

\ .

Figure 1.2 The four-component ITS architecture

The evolution of programming education necessitates a profound reflection on how assessment has
been designed, delivered, and evaluated. Given that coding has become necessary across academic
disciplines and industries, educational institutions increasingly need to develop robust and scalable

2

ways to assess their students' programming knowledge and problem-solving skills [3]. Learners today
often study multiple programming languages, including Python, Java, C++, and C, each with unique
syntactic and conceptual nuances, making standardized assessment even more challenging. Although
recent AQG studies have primarily focused on generating questions from natural language texts and,
to a lesser extent, visual data [1], [4], [5], AQG from source code remains underexplored despite its
potential to transform programming education. Academic programming textbooks typically include
text, images, and code examples, yet most AQG systems rely heavily on NLP techniques for text-
based question generation (QG), with limited exploration of visual content [1], [P3]. The review paper
[P2] advocates for developing QG methods tailored to programming topics, along with appropriate
evaluation criteria. Traditional methods of question design in programming courses have struggled to
keep pace with this growth. As noted in previous studies, manually crafted questions are time-
consuming to produce [6], difficult to standardize across diverse learners and languages [6], [7], and
often fall short of covering the full spectrum of cognitive skills outlined in Bloom’s Taxonomy [8].
Moreover, they tend to lack scalability, particularly in large or multi-language educational settings
where hundreds of students may require tailored assessment materials [7]. These challenges have
driven a growing interest in AQG from source code. Rather than relying on static repositories of
questions, AQG approaches analyze code directly, extracting structure, semantics, and logic to
generate assessment items that dynamically align with the learner’s context [9]. This dissertation
responds to that demand by presenting a unified exploration of five distinct yet complementary
approaches: ontology-driven QG [10], [11], hybrid semantic-to-question modeling [9], template-
based multi-language QG via static code analysis [12], evaluation of large language models (LLMs)
for QG from source code [13], and a comprehensive multi-language assessment system powered by
Control Flow Graphs (CFGs) and Program Dependence Graphs (PDGs). Collectively, these
approaches constitute the novel contributions of this work. | extend beyond traditional template or
ontology-based systems by incorporating formal semantic graph representations, namely CFGs and
PDGs, to anchor QG in actual program structure and behavior. CFGs model possible execution paths
and dependencies across program blocks [14], while PDGs capture both control and data
dependencies among statements [15], providing a richer semantic foundation for QG. Each approach
contributes to a shared objective: to automate programming QG in a pedagogically grounded,
cognitively stratified (Organizing learning or assessment tasks by levels of thinking, from simple
recall to complex problem-solving), and linguistically inclusive way [7], [16].

1.2 Problem Statement

The global expansion of computer science (CS) education has intensified the need for scalable, high-
quality assessment tools that can effectively serve diverse learners across various programming
languages [3], [7]. Traditionally, the manual development of programming assessment questions has
been labor-intensive, inconsistent, and insufficient to meet the rising demand for pedagogically
sound, comprehensive evaluation materials in programming education [6], [8], [17]. AQG has
emerged as a promising approach for scalable assessment across educational contexts [1], [4], [5].
However, the current research landscape in AQG reveals a pronounced imbalance in focus and
development across different input modalities. The field has been dominated by text-based question
generation, benefiting from extensive datasets, mature neural models, and a clear trajectory from rule-
based systems to large pre-trained transformers and LLMs [4], [18], [19]. Similarly, visual QG has
seen growing attention, particularly for generating questions from images and, more recently,
educational diagrams, leveraging advancements in multimodal learning [20], [21]. These areas have
established robust evaluation practices and benchmarks, fueling rapid progress and adoption [22],
[23]. In contrast, QG from source code remains significantly underrepresented despite its critical
potential in programming education [9], [12], [18]. Generating meaningful and pedagogically aligned
questions directly from source code presents unique challenges, including understanding code
semantics [14], [15], aligning questions with relevant programming concepts [9], [12], and ensuring
cognitive coverage across difficulty levels [8], [17], [24]. The lack of standardized datasets and well-
defined evaluation metrics further impedes systematic advancements in this domain [13], [22], [23].

3

Most existing AQG research has overlooked this research gap in programming education assessment,
and only a few recent studies have begun exploring it, often in isolated or single-language contexts
[9], [12], [18], leaving a substantial gap in the scalable assessment needs of programming education.
To clarify, generating programming questions directly from raw, multi-language source code requires
integrated semantic parsing (AST/CFG/PDG), multi-language normalization, deliberate Bloom-level
coverage, diverse code-centric question types, and multi-metric evaluation. These requirements are
largely absent in existing primarily text-focused or single-language ontology/LLM studies, leaving
the domain underdeveloped and limiting scalable programming assessment. Addressing this gap is
essential to ensure equitable, effective, and scalable programming assessment tools that align with
modern pedagogical frameworks and can adapt across multiple programming languages [3], [7], [17],
[25]. Advancing AQG from code requires not only robust generation methods that capture the
semantics of source code [14], [15], but also the development of principled evaluation frameworks
tailored to the unique requirements of programming education [13], [22], [23]. This dissertation aims
to address these gaps to advance scalable, high-quality, and pedagogically aligned AQG systems that
support equitable programming education worldwide.

1.3 Research Objectives

This dissertation seeks to address the limitations of current programming assessment methods by
pursuing the following core objectives:
1. To design and implement models that automatically generate programming questions directly
from source code.
2. To ensure systematic alignment of generated questions with cognitive learning frameworks,
particularly Bloom’s Taxonomy.
3. To support multiple programming languages (Python, Java, C++, and C) within a unified,
multi-language assessment context.
4. To evaluate both the technical quality and the pedagogical value of generated questions
through automated metrics and expert review.
Together, these objectives establish the foundation of this dissertation’s contribution to advancing
programming education assessment through Al-enhanced, source code—driven QG and evaluation.

2 Thesis 1: Ontology-Based Automatic Generation of Learning Materials for Python Programming
2.1 Introduction

I developed an ontology-based system that automatically generates programming-related assessment
questions directly from source code. By leveraging structured domain knowledge, the system
semantically interprets programming constructs to support concept-aware gquestion generation,
without relying on adaptive learning mechanisms [P1, P2].

The objectives of this research are to design an ontology-based framework that models Python
programming concepts and their interconnections, and develop a system for automatically generating
Python programming learning materials (specifically quizzes) that align with the modeled concepts
and relationships. It supports beginner, intermediate, and advanced difficulty levels.

2.2 Methodology

Algorithm 2.1 automatically generates MCQs quizzes aligned with Python programming concepts
using a domain-specific ontology. It aims to deliver personalized and contextually accurate
assessments while ensuring semantic alignment with reference materials through BERT-based
similarity checks (implemented and deployed on a Flask App). The process begins by building a
domain ontology for Python programming. This ontology formalizes concepts such as data types,
control structures, functions, and OOP, capturing relationships and properties necessary for the
semantic structuring of learning materials. For each domain concept template, the system uses a
template-based generation approach to create relevant MCQs, systematically organizing these
questions into a structured MCQs bank. This bank is then saved in a comma separated values (CSV)
format for efficient retrieval and further processing. When a learner requests a quiz, the system loads

4

the MCQs dataset, filters questions based on the desired difficulty level, randomly selects the required
number of questions, computes semantic similarity using BERT embeddings to compare the learner’s
domain with reference materials, ensuring that the questions are contextually aligned and relevant,
and returns the personalized quiz alongside similarity metrics for evaluation.

Algorithm 2.1: Ontology-Based MCQ Generation
Input: Domain, Difficulty, Number_of_Questions
Output: Random_MCQ_Quiz, Similarity_Score
1: PROCEDURE BUILD_PYTHON_ONTOLOGY()
ontology < ONTOLOGY STRUCTURE()
RETURN ontology
: END PROCEDURE
: PROCEDURE GENERATE_MCQ_DATASET()
mcq_bank « @
for each domain_template do
questions «— TEMPLATE_BASED_GENERATION(domain_template)
9: mcq_bank.ADD(domain, questions)
10: end for
11: SAVE_TO_CSV(mcq_bank, "mcq_dataset.csv')
12: END PROCEDURE
13: PROCEDURE SERVE_QUIZ(domain, difficulty, num_questions)
14: questions «— LOAD FROM_CSV("mcq_ dataset.csv")
15: filtered «— FILTER BY DIFFICULTY (questions[domain], difficulty)
16: selected — RANDOM_SAMPLE(filtered, num_questions)
17: similarity «— BERT SIMILARITY (ontology material[domain], domain)
18: RETURN FLASK_RESPONSE(selected, similarity)
19: END PROCEDURE

»

NI E®

3 Thesis 2: A Hybrid Approach for Automatic Question Generation from Program Codes
3.1 Introduction

I developed a hybrid system that combines static code analysis, ontology, and natural language
processing using word embeddings to generate programming-related questions from source code
[P3].

This thesis focuses on generating questions from code snippets using semantic relations to extract the
concepts. Generating questions from unconventional sources, such as code snippets, becomes
important in providing a better learning experience to large groups of students, especially when dealing
with limited information. The main goal of this thesis is to assist instructors and students in properly
evaluating student performance by generating Python-based programming questions from existing
materials (i.e., code snippets). The AQG from code snippets will add the possibility of generating a
different set of questions based on the same code snippet. Therefore, it leads to a better understanding
of the given topic. The research objectives of this thesis are to implement a framework that can
interpret Python programming language into text, and enable the framework to comprehend the text
and build connections between the programming structures and the semantic concepts for AQG.

3.2 Methodology

To generate questions from existing Python code snippets, an interpreter is needed to translate the
code into more understandable concepts. Python or any other programming language is constructed
using operators, variables, and functions. The ontology will categorize and conceptualize the list of
commands (i.e., variables, operators, etc.) and the relationships between the concepts in the script. It
will build an explained version of the code by processing the code line by line and creating semantic
relationships based on the input. Subsequently, the translated code is generated and inserted into an
Al question generator called “QuestGen” [26]. This model will generate Boolean, short-answer, and
open-ended questions. Figure 3.1 shows the framework data flow and its components. The current
study considers Boolean, short, and open-ended questions. Since learning a programming language

5

focuses on understanding the content of a code, such questions are more suitable for assessing student
knowledge properly.

Figure 3.1 Proposed framework architecture

Over time, there is a growing demand for QG, a trend that could significantly alleviate the burden on
educators and trainers. This is particularly beneficial for scalable learning formats such as online
courses. Many models exist for generating questions from regular text; however, understanding code
and generating questions from code snippets is not applied due to its complexity. Code-to-text
conversion is a challenging task. However, the semantic relationships between the concepts in the
ontology are an excellent solution. Figure 3.2 shows the whole procedure for translating code into
text. In Figure 3.2, the code undergoes validation by a parser checker responsible for scrutinizing its
syntax. Once the code is confirmed as error-free, the checker directs it to the ontological translator,
acting as the parser within our architecture. This parser transforms the code into coherent sentences,
forwarding them to the QG Al model to generate reasonable questions. An explanation of the QG Al

model is provided in the subsequent section.
translator

. I [y is a string variable]
wvariable equals car equals bar H
3 Z is a integer 5 R i
' ! Ab is a list equals H
3 vanable equals 10 E

Parser check ——

<:> f QuestGen Al

GAb a {integer, list, siringD

Figure 3.2 Question-generation process

Algorithm 3.1 is a hybrid approach employed to automate the generation of programming-related
questions from Python source code by integrating structural parsing with ontology-based semantic
enrichment. Initially, source code samples are parsed using Python AST to identify constructs such
as function definitions, class structures, variable assignments, and control flow statements. An
ontology is constructed to represent these extracted elements and their semantic relationships,
capturing contextual information regarding code dependencies and logical flow within the program.

6

Using this enriched representation, the system generates diverse question types, including Boolean,
short-answer, and open-ended questions.

Algorithm 3.1: Hybrid Approach for QG from Program Codes
Input: Python source file path P

Output: Question set Q ={Q_b, Q_s, Q_o}

Parameters: max_questions, question_type

1: O « BuildOntology()

2: C « ReadFile(P)

3: AST « Parse(C)

4: T« @

5: for each node € AST do

6: switch node.type do

7 case Assignment:

8: ind < Variable(node.target, node.value)
9: case FunctionDef:

10: ind « Function(node.name, node.args)
11: case ClassDef:

12: ind « Class(node.name, node.bases)
13: case Call:

14: ind < Object(node.target, node.func)
15: case Import, ControlFlow:

16: ind < Createlndividual(node)

17: end switch

18: AddToOntology(O, ind)

19: semantic desc < QueryOntologyRelations(O, ind)

20: T« T U {semantic_desc}

21: end for

22: text < Concatenate(T)

23: if QuestGen_Available() then

24: Q « QuestGen_AI Model(text, max_questions, question_type)
25: else

26: Q « HeuristicFallback(text, max_questions, question_type)
27: end if

28: return Q

4 Thesis 3: Evaluating Large Language Models for Generating Programming Questions from Source
Code

4.1 Introduction

I developed a systematic evaluation framework to assess the QG capabilities of LLMs, using
automatic evaluation metrics and complemented by human-centered evaluation metrics for the top-
performer LLM. The findings provide insights into their strengths and limitations in generating
programming-related assessment questions for potential educational use in the programming domain
[P4].

This thesis seeks to uncover insights that may be vital in various applications. Highlighting these best
performers would allow educators, developers, and researchers to make informed decisions about
adopting LLMs for code-related QG tasks. The thesis evaluates a diverse set of state-of-the-art LLMs.
Theses 1 and 2 presented two distinct approaches for AQG from Python source code. Thesis 1
discussed an ontology-driven approach which allowed the structured representation of knowledge
that would yield MCQs automatically from Python programs. Thesis 2 extended Thesis 1 by
providing a hybrid approach, the ontology combined with the QuestGen Al model, to make the
generation process dynamic and grab semantic understanding better. Though they both made
headway, the two approaches suffer mainly in their limited scope in one aspect. No systematic
evaluation metric is provided to benchmark the quality of the questions generated from source codes
across the different dimensions. Hence the evaluation was very much a subjective measure that limits
comparisons of results systematically with other AQG methods. Thesis 3 goes on to cover this gap
by extending AQG research into a multi-language context including Java, C++, and Python. With a

7

broader scope, the performance of LLMs in forming questions from codes rooted in different source

code paradigms with individual syntaxes, semantics, and idiomatic usages could be evaluated. A

structured evaluation framework established by this thesis would assess AQG systems in terms of

comprehensiveness, reliability, and reproducibility in model, language, and approach comparisons.

Thus, Thesis 3 naturally follows from the methodological foundations laid in Theses 1 and 2 and

directly addresses their limitation in evaluations-driven framework for AQG from source code. The

primary objectives of this thesis are as follows:

1. Todefine a set of evaluation criteria, including relevance, clarity and coherence, conciseness, and
coverage, to measure the quality of questions generated by LLMs.

2. To develop an approach for evaluating and comparing the performance of LLMs in QG from
program codes.

3. To empirically evaluate and rank the selected LLMs based on their performance in QG from
program codes.

4.2 Methodology

The methodology explains how the evaluation and comparison are made regarding the proficiency of
various LLMs to create questions from the given source code. This section outlines all the events
leading to data collection and preparation, model selection, evaluation metric selection, experiment
execution, and ranking of the models. In this context, a comprehensive and impartial exercise is
carried out to identify the models best suited for relevant QG tasks concerning programming code.
The languages chosen for the experiment were Python, C++, and Java. These languages were focused
on during the research, with the possibility of applying such methods to other structurally similar
programming languages. The sequence selected aids in rendering clear views into the strengths and
weaknesses of each of the models, thereby allowing a deeper understanding of questions pertaining
to the future of this research. Previous studies have undertaken related efforts, like [27], [28], and
[29]. Algorithm 4.1 shows the pipeline of the proposed framework. It compares LLMs on how well
they generate questions about code, using a reference evaluator model, and produce quantitative
metrics. Given a set of code samples, each model generates questions for each sample using a
consistent prompting strategy. A reference model then evaluates these generated questions to assess
their quality based on dimensions like relevance and clarity. The algorithm computes the average
score for each model and optionally tracks repetition rates to measure question diversity. It further
constructs pairwise win matrices, computes win rates, and calculates Elo ratings to rank models based
on relative performance. The outputs are then summarized, including average scores, win rates, Elo
ratings, repetition rates, and comparison matrices.

The generated questions were assessed for their quality to analyze differences in performance
regarding the selected LLMs. Each question gets evaluated on a scale from 1 to 10 based on the
evaluation metric by GPT-4-0314 as a judge. This study used objective and subjective evaluation
modes, touching on the primary indicators. Relevance means how closely the generated questions
match the source code. Clarity and coherence measure questions' phrasing and how logic is structured
in them. Conciseness assesses whether the questions were brief by examining their length and
checking for unnecessary detail or verbosity. Coverage involves how well each question covered the
entire scope of the input script. It also involved whether the questions reflected different sections or
key components of the code, and not just focused narrowly on isolated elements. In addition to
automated scoring, human reviewers were involved to provide a pedagogical perspective on the top-
performing LLM. Their insights helped validate the results and brought attention to the educational
value of the questions. Human feedback added important context about classroom relevance, teaching
goals, and practical usefulness, which are things that automated systems alone cannot fully capture.
Evaluators kept in mind relevance and educational value when making their judgments. The approach
encompassed a mix of different input data sets, multiple LLMs, stringent evaluation criteria, and
automated and human judgment. The results and examples, from inputs to generated questions, are
discussed in the next section. Parts of this output and the evaluation deconstruction are illustrated in

Algorithm 4.1: Multi-Model Code QG and Evaluation
Input: Set of Code Samples (D), List of LLM Model Names (MODELS),

Reference Evaluation Model (EVAL_MODEL)
Output: Summary of Model Performance Metrics (SMPM)
1: Initialize scores_by_model, reps_by_model, results as empty.
2: For each sample in D do:

3: For each model_name in MODELS do:

4: prompt «<— build_generation prompt(sample.code, sample.language)
. questions «— LLM(model name).generate questions(prompt)
: metrics « evaluate questions(questions, EVAL_MODEL)
> score «— average_scores(metrics)
: repetition «— repetition_rate(questions) // optional
: Store (model_name, sample, metrics) in results

10: Append score to scores_by model[model_name]

11: Append repetition to reps_by _model[model_name]

12: End For

13: End For
14: wins, comparisons «— build win_matrix(scores_by model)
15: win_rate «— win_rates(wins, comparisons)
16: elo < elo_ratings(scores by model)
17: repetition < aggregate_repetition(reps_by_model)
18: Construct SMPM as {ranking(scores_by model), win_rate, elo, repetition, wins, comparisons}

© 00 N o o1

The model average score is established by summing the scores of each criterion across all questions,
and higher scores in each criterion indicate better accuracy in script-to-question generation. The
rankings show that GPT-4-0314 obtained the first rank confirming its effectiveness in generating
relevant, high-quality questions. Moreover, it was analytically carried out on an average win rate
account of all other models to get an all-round perspective on the performance of LLMs under
evaluation. The term win rate refers to a cumulative score for every model and helps determine the
best-performing model among them. For example, if a question is generated by GPT-4-0314 model
and compared to the claude-2 model, and the winner for that particular question is GPT-4-0314, this
would add a point to the GPT-4-0314 model. Then, GPT-4-0314 is compared to other models; if any
model wins a point, its score grows, and then finally, all the models’ scores are calculated, and the
highest winner is ranked first. The approach allows identification of models that have similar win
rates to other models. This analysis offers valuable insights into how each LLM fared directly
compared to its peers, assuming uniform sampling and no ties in the evaluation metrics. The following
Equations (5.1) and (5.2), would calculate the New Rating and the Predicted Rating, respectively
[30]. This technique is used here for the Al evaluation domain; it is derived from tournaments in
sports, where it is often used.
New Rating = Old Rating + K x (W —P) (4.1

Where K refers to the maximum adjusted value, in this context, it is a constant integer number like
32; W is the actual result of the game (1 for a win, 0.5 for a draw, and 0 for a loss); finally, P is the
expected result, calculated using the logistic function in equation 5.2.

P = (Mo—MP) (42)
1 + 10score pomt
Where P stands for the expected outcome for a given model, Mo for model opponent, and Mp for

model player. The constants relating to 1 and 10 are customized; these traditional constants have been
customized in the context to mean that the score point is 400. The two equations constitute the basis
of the Elo rating methodology created initially by Arpad Elo [18] to enable fair and dynamic ranking
of chess players based on match outcomes. Because of its simplicity and efficiency in tracking relative
skill levels, the Elo rating system gradually found acceptance in areas other than chess, like online
games, sporting events, and Al benchmarking. The second equation calculates the expected
probability of one player winning against the other depending on their rating difference, and the first

9

updates the player's rating after every game depending on the actual and expected result. The
combination of both ensures that the rating system accommodates rating adjustments to reward the
unexpected win and penalize against the loss when a rating would become obsolete in view of actual
performance. This means that the average win rate measure provides a clear and quantitative
indication of the relative strength of the models and competitive standing in question generation.

5 Thesis 4: Template-Based Question Generation from Code Using Static Code Analysis
5.1 Introduction

I developed a modular system for AQG and evaluation using template-based static code analysis,
enabling modular QG designed to be extensible with minimal integration overhead. The framework
supports multiple programming languages through customizable parsing templates within a unified
architecture [P5].
The methodology presented in Thesis 4 represents a significant departure from the approaches
detailed in Theses 1, 2, and 3. Thesis 1 was limited to QG using engineered ontologies specific to
providing support for only Python via a reasoning engine and conceptual hierarchies. Thesis 2
blended the hybrid model of ontology and NLP (QuestGen) approaches, translating the Python code
into text, prior to the generation of the question. Then, in Thesis 3, custom evaluation metrics were
framed for benchmarking evaluation of LLM-based systems, among them GPT-4, LLaMA, and
Falcon. LLMs, introduced in Thesis 3, are highly effective for QG from source code; however, they
demand substantial financial and computational resources. This thesis presents a multi-language code
question generator capable of automatically producing assessment questions for Python, C++, Java,
and C codes. It focuses on QG from source code using static code analysis. Static code analysis is
adopted to generate questions from program code. It offers pattern-based algorithm detection,
structural analysis, and question templates. Pattern-based algorithm detection is performed through
regex patterns. Structural analysis examines functions, loops, conditionals, and variables to generate
relevant questions. Question templates involve predefined templates for different code elements to
create varied questions. This template-based approach serves as a lightweight baseline for the future
version alternative to the LLMs discussed in Thesis 3, offering lower computational requirements,
greater interpretability, and faster processing for large-scale deployment. The research objectives of
this study are:
1. Developing a multi-language code question generator capable of automatically producing
assessment questions for Python, C++, Java, and C codes (AQG from source code).
2. Establishing an approach for automatically evaluating the proposed system based on a set of
evaluation criteria through experiments on a real-world dataset to demonstrate its effectiveness
in generating questions from source codes.

5.2 Methodology

This thesis proposes a multi-language code question generator capable of automatically producing
assessment questions for Python, C++, Java, and C codes. The four programming languages were
chosen based on the up-to-date The Importance Of Being Earnest (TIOBE) Index, which indicates
the popularity of programming languages. Python, C++, Java, and C are the most popular
programming languages worldwide according to the TIOBE Index as of May 2025 [31]. While the
paper [32] primarily focuses on general educational applications, it is important to note that modern
adaptations of Bloom's Taxonomy can be tailored to specific domains, like programming. This
adaptation allows for evaluating cognitive tasks unigque to programming education, ensuring that the
generated questions are relevant and effective for learners in that field. As a result, the methodology
in the current research adopts Bloom’s Taxonomy evaluation levels: remembering, understanding,
applying, analyzing, evaluating, and creating. Figure 5.1 shows the proposed methodology for a
multi-language question generator from source code. The research methodology behind the multi-
language question generator involves several interconnected components that work together to
analyze code snippets and generate relevant questions. A detailed explanation of the methodology
follows. Parsing is the process of checking the structure of the code and identifying elements like

10

keywords and variables. After parsing, the system extracts various structural elements from the code.
After parsing, the system extracts various structural elements from the code. The QG process uses
templates customized for different code elements and difficulty levels, as shown in Figure 5.2.

The templates are designed based on principles from cognitive science and educational theory, as
shown in Figure 5.2. After generating candidate questions, the system applies several post-processing
steps like de-duplication, shuffling, and limiting the number of questions to prevent overwhelming
the user, while maintaining a balance of difficulty levels. The methodology includes an evaluation
approach to assess the quality of the generated questions. The evaluation of the proposed system is
designed around a set of defined criteria. It uses experiments conducted on a real-world dataset to
demonstrate its effectiveness in generating questions from source code. The methodology involves a
structured approach to assess the quality of the generated questions across several key dimensions
(Bloom's Taxonomy, Difficulty Distribution, Linguistic Complexity, Code Coverage, Precision,
Recall, Novelty, Educational Alignment, Cognitive Diversity, Question Quality Score).

Algorithm 5.1 shows a multi-language template-based QG and evaluation algorithm. A template-
based pipeline aligned with Bloom’s taxonomy and difficulty levels is utilized to generate and
evaluate high-quality programming questions from code samples across multiple programming
languages. In this pipeline, source code samples undergo parsing using language-specific parsers to
enable accurate syntactic and structural analysis. From the parsed code, meaningful elements such as
functions, loops, and conditional statements are extracted, and ASTs are constructed to represent the
hierarchical structure of the code. Relevant predefined templates are then selected and instantiated
based on the extracted elements, generating candidate questions contextualized to each specific code
sample. The generated questions are post-processed to enhance linguistic clarity, eliminate
redundancy, and align with pedagogical standards. Each question is labelled with the corresponding
Bloom’s level and an estimated difficulty tag to facilitate adaptive learning scenarios. The generated
questions are subsequently evaluated using automated metrics to assess quality, novelty, and
cognitive diversity, and the labelled questions, along with the evaluation statistics, are aggregated and
stored for further analysis and visualization within the system’s reporting modules. To summarize the
overall generation process, the multi-language question generator algorithm is the main engine that
orchestrates the entire QG process. It first detects the programming language of the code snippet,
selects the appropriate parser, and parses the code. It then extracts various code elements (functions,
loops, conditionals, variables) and identifies the algorithm implemented in the code. Based on the
language and extracted elements, it generates appropriate questions. It falls back to generic questions
if no specific questions can be generated. It then shuffles the questions and returns the requested
number. Next, language detection algorithm uses pattern matching to identify the programming
language of the code snippet. It looks for language-specific keywords and syntax patterns to
differentiate between Python, Java, C++, and C. Following this, algorithm identification uses regex
pattern matching to identify common programming algorithms in the code. Each language parser
maintains a dictionary of algorithm names mapped to regex patterns. It returns the name of the first
matching algorithm or null if none is detected. Afterward, QG by element type generates questions
for a specific type of code element (functions, loops, conditionals, etc.). It also uses predefined
templates for each element type and difficulty level.

The human evaluation complements the automated evaluation by validating key findings while
providing educators’ perspective on question quality. Both approaches consistently identified C as a
better performer, though human evaluation revealed more balanced performance across languages
than suggested by automated metrics alone. The convergence between automated educational
alignment scores and human-assessed educational value demonstrates the validity of computational
metrics for educational applications. However, the human evaluation's emphasis on practical teaching
utility provides essential context that purely computational measures cannot capture, highlighting the
importance of multi-faceted evaluation approaches in educational technology research.

11

Code Input

[

Language Detection

Select Language Parser

Code Parsing & Element Extraction

I
[I I I 1

Conditionals

Functions Loops |

| Variables

| Algorithms

L I I I |
I

Question Generation Based on Templates & Difficulty Levels

I
[1 1

[Beginner] [Intermediate] [Advanced]

[I J
I

| Post-processing: Filtering, Deduplication, Shuffling I

Figure 5.1 Methodology for multi-language question generation from source code

'loop": { DifficultyLevel. BEGINNER: [

"What is the purpose of the {type} loop on line {line_num}?", "How many times will the {type} loop on line
{line_num} execute with typical input?", "What happens in each iteration of the {type} loop on line {line_num}?"],

Figure 5.2 Sample of templates used for question generation from source code

Algorithm 5.1: Multi-Language Template-Based QG and Evaluation

Input: Set of code samples in various programming languages (SourceCodeSamples),

Predefined question templates mapped to Bloom’s taxonomy and difficulty levels (Templates)

Output: Generated questions with Bloom’s level and difficulty tags (LabelledQuestions),

Evaluation statistics for generated questions (EvaluationMetrics)

1: for each CodeSample in SourceCodeSamples do

2: ParsedCode «— Parse(CodeSample, LanguageSpecificParser)

3 CodeElements < ExtractCodeElements(ParsedCode)

4. AbstractRep <« GenerateAST(ParsedCode)

5: CandidateQuestions < @

6: for each Element in CodeElements do

7 RelevantTemplates «<— SelectTemplates(Element, Templates)
8 for each Template in RelevantTemplates do

9: Question «— InstantiateTemplate(Template, Element)

10: CandidateQuestions «— CandidateQuestions U {Question}
11 end for

12: end for

13: FilteredQuestions « Postprocess(CandidateQuestions)

14: LabelledQuestions «— LabelQuestions(FilteredQuestions)

15: EvaluationMetrics «— Evaluate(LabelledQuestions, CodeSample)
16: Store(LabelledQuestions, EvaluationMetrics)

17: end for

18: GenerateReportsAndVisualizations()

12

6 Thesis 5: Multi-Language Static-Analysis System for Automatic Question Generation from Source
Code

6.1 Introduction

I developed a modular static analysis framework for AQG across multiple programming languages.
The system integrates language-specific analyzers within a unified architecture designed to support
consistency in QG across the four programming languages (C, C++, Java, and Python) [P6].

The graph-based pipelines in this thesis are meant to complement not compete with the approach of
early LLM methods discussed in Thesis 3 and of the template-based static baseline discussed in
Thesis 4. Thesis 5 has given a lightweight and reproducible baseline across languages but also
revealed some pitfalls of regex parsing, including low precision, limited novelty, and a cap on
structural depth. In this Thesis, that layer is replaced by language-specific parsers (Python AST,
javalang, and Clang/LLVM) that are integrated through a normalization interface to ensure consistent
treatment of functions, methods, loops, conditionals, and variables across Python, Java, C++, and C.
Building on such normalized elements, CFG and PDG construction adds structural insights, such as
control paths, branching, and complexity, alongside semantic insights such as data dependencies and
variable lifecycles. The force-balanced generation mechanism then adjusts in real time from course
to emphasizing under-represented Bloom levels, question types, and algorithm families to achieve
more well-rounded coverage rather than chance distribution across all levels of variety in the
methodology. This generates improved precision, a richer language, greater novelty, and broader
cognitive diversity, while remaining interpretable, deterministic, and free per item. LLMs sometimes
fail to deliver due to budgetary, privacy, or accreditation constraints. The result is an explainable and
adaptable layer that can also support future hybrid pipelines, such as using curated CFG/PDG
summaries to guide LLMSs in producing more creative, higher-order variations. In practice, this
clarifies when each method is best suited: LLMs excel in breadth and stylistic variety, while graph
fusion offers transparent, coverage-controlled, and semantically grounded assessment. The research
objectives of this thesis are:

1. To design and implement three automated pipelines (CFG-based, PDG-based, and CFG-PDG
Synergetic) for QG from source code, each leveraging different code analysis strategies to
explore their effectiveness in producing high-quality, pedagogically aligned questions.

2. To develop an organizational multi-dimensional evaluation system to measure the system
performance in terms of coverage balance, quality of questions, linguistic complexity, and
diversity in all dimensions. This framework encompasses automated measures along with
human assessment measures.

6.2 Methodology

This thesis introduces a multi-language generator and evaluator system that takes source code as input
and is capable of generating coding questions in various programming languages, including Python,
C++, Java, and C. These four language choices were the result of being some of the most popular
languages at the moment, as classified by the May 2025 listing of the TIOBE Index and ranking
software development languages and their current popularity list [31]. It uses an advanced pipeline
structure to transform source code written in several programming languages into good-quality
assessment questions distributed across different dimensions in a reasonably balanced manner. This
section presents a comprehensive description of every element within the pipeline and interconnected
characteristics and functions of the general system. Figure 6.1 shows the comprehensive pipeline for
multi-language question generator and evaluator system. The objective of building a multi-language
question generator and evaluator system is to support the growing demands to meet the assessment
issues in programming education, which traditional manual methods cannot prospectively
accommodate the demands of scaling with an expanding enrollment base and range of curriculum
needs. The pipeline shown in Figure 6.1 starts by feeding in source code, possibly choosing four
supported programming languages: Python, Java, C++, or C. This is used as a preliminary before
further analysis and to clear up any problems with encoding, remove comments, normalize
whitespace, and do other simple preprocessing chores. The system accepts codes with diverse levels
13

of complexity, which may range from simple to intricate codes of implementation algorithms. The

architecture has seven interconnected parts that run code snippets via a chain of specialized

transformations and analyses:

1. Language Detection: The system detects the programming language of the code by passing a
language identifier.

2. Language-Specific Parsing: It uses language-specific optimized parsers.

3. Element Extraction: It automatically recognizes and stores programming elements such as
functions, classes, variables, loops, conditionals, data structures, and language-specific constructs
into an index.

4. Advanced Code Analysis: CFG identifies loops, execution paths, and branching conditionals.
PDG captures variable relationships and data dependencies.

5. Force-Balanced Generation: It takes measures to ensure the selection probabilities are readjusted
during the final stages of generating solutions.

6. Quality Evaluation: It integrates automated and human-based evaluation.

7. Output Generation: It generates structured questions.

Code Input Language Detection Language?SpeCIﬁc
C, C++, Java, Python Parsing

[Element Extraction J

Advanced Code Analysis

[CFG Analysis] [PDG Analysis] [Pattern Matching] [Structural Analysis]

[Functions J [Loops] [Variables] [Conditionals]

!

Force-Balanced Generation

Bloom's Taxonomy: [R] [Ur) [Apply] [Analyze] [Evaluate] [Creale]

Question Types: (Multiple Choice) (Code Tracing] (Fill-in-tne-Blank)

[Error Identification J [Open-Ended] [Creative Coding]

Quality Evaluation N
Automatic Evaluation Human Evaluation Output Generation

Figure 6.1 Comprehensive pipeline for multi-language question generator and evaluator system

Algorithm 6.1 shows the CFG pipeline algorithm for code QG and evaluation. Its main objective is
to generate questions by extracting control flow information from code. It parses code to extract CFG
nodes (basic blocks) and edges (control transitions). Then, it analyzes control paths, loops, and
branching structures. Finally, it generates questions like tracing, MCQ, and basic error-identification
questions based on flow paths. Algorithm 6.2 shows the PDG pipeline algorithm for code QG and
evaluation. Its main objective is to generate questions using data and control dependencies in the
program. It parses code and extracts PDG, capturing data dependencies, variable usage, and control
dependencies. Then, it analyzes data flows, variable lifetimes, and semantic relationships. Finally, it
generates questions like dependency, comprehension, and advanced error-identification questions.

Algorithm 6.3 shows the CFG-PDG pipeline algorithm for code QG and evaluation. Its main
objective is to generate advanced, diverse questions using a synergistic integration of CFG and PDG.

14

Algorithm 6.1: CFG Pipeline for Code QG and Evaluation

Input: Source Code (SC)

Output: Question Set (QS)

1: Parse SC using language-specific parser.

: Construct CFG from SC.

. Identify algorithm type using CFG patterns.

: Compute cyclomatic complexity for difficulty estimation.
: Select Bloom-level-aligned templates for CFG-based QG.
: Fill placeholders using CFG nodes and control paths.

: Generate QS (e.g., tracing, MCQ, and error-identification questions).

0 N o o B~ W DN

: Evaluate QS using quality and diversity metrics.

Algorithm 6.2: PDG Pipeline for Code QG and Evaluation

Input: Source Code (SC)

Output: Question Set (QS)

1: Parse SC using language-specific parser.

: Construct PDG from SC.

: Identify algorithm type using PDG and textual features.

: Analyze data dependencies for semantic complexity estimation.
: Select Bloom-level-aligned templates for PDG-based QG.

: Fill placeholders using PDG nodes and dependency structures.

: Generate QS (e.g., dependency, error identification, and comprehension questions).

o N o o B~ w DN

: Evaluate QS using quality and diversity metrics.

Algorithm 6.3: CFG&PDG Synergetic Pipeline for Code QG and Evaluation
Input: Source Code (SC)

Output: Question Set (QS)

: Parse SC using language-specific parser.

: Construct CFG and PDG from SC.

. Integrate CFG and PDG for a unified structural-semantic representation.

: Identify algorithm type using integrated features.

: Compute complexity and dependency scores for difficulty estimation.

: Select templates aligned with Bloom’s taxonomy and algorithm type.

: Fill placeholders using CFG paths and PDG dependencies.

: Generate QS (e.g., tracing, dependency, error identification, creative coding, and MCQs).

© 00 N O O A W N PP

: Evaluate QS using comprehensive quality, novelty, and diversity metrics.

It parses and simultaneously extracts CFG and PDG representations. Next, it integrates structural
(CFG) and semantic (PDG) information. Then, it identifies algorithm types. Finally, it generates a
reasonably balanced set of questions, including creative coding and higher-order Bloom questions.

15

The same automatic evaluation metrics as the baseline model (Thesis 4 Automatic Evaluation
Approach) are utilized in the system, such as overall quality score, linguistic complexity, precision,
recall, F1-score, novelty score, educational alignment, and cognitive diversity [P5]. Five human-
evaluated dimensions are conceptualized to measure the pedagogical soundness, clarity, and cognitive
relevance of generated programming questions to measure their quality beyond automatic metrics
(relevance, difficulty appropriateness, clarity, educational value, and cognitive level match).

7 Conclusion
7.1 Future Work

Each of the five thesis points opens up unique and practical directions for continued research. The
following recommendations aim to build on their individual contributions, offering ways to refine
current methods, broaden their reach, and address some of the open challenges highlighted throughout
the dissertation.

1. Ontology-Based Automatic Generation of Learning Materials for Python Programming: Future
research could extend the ontology-based approach beyond Python to include a broader range of
programming languages. This would involve designing cross-language ontological frameworks
or language-specific extensions that preserve semantic coherence across diverse syntactic
constructs. Additionally, conducting controlled experimental studies comparing ontology-
generated questions with manually crafted ones could yield valuable insights into their
educational effectiveness, particularly in terms of learner comprehension, retention, and
perceived usefulness.

2. A Hybrid Approach for Automatic Question Generation from Python Program Codes: One
promising direction is to enhance the system’s ability to process more complex programming
structures, especially those involving third-party libraries, nested functions, and interdependent
statements. Improving the semantic interpretation pipeline, possibly by incorporating deeper NLP
techniques or lightweight learning models, could help generate more sophisticated and context-
aware questions. Future research may also explore how to adapt the system automatically to
different code domains or programming paradigms.

3. Evaluating Large Language Models for Generating Programming Questions from Code: Future
work in this area could involve refining the evaluation framework to capture more nuanced
aspects of question quality, such as semantic subtlety, creativity, and alignment with pedagogical
goals. Incorporating qualitative feedback from educators alongside quantitative metrics could
further ground the evaluation process in real instructional needs. Additionally, exploring
emerging models, including domain-specific LLMs or those designed to support multiple
programming languages, may offer deeper insights into their effectiveness across diverse
educational contexts.

4. Template-Based Question Generation from Code Using Static Code Analysis: Subsequent
research may focus on developing dedicated language-specific parsers for Java, C++, and C to
improve upon the current reliance on pattern-based extraction methods. Adding runtime analysis
or symbolic execution could improve the system’s contextual accuracy and support questions
based on actual program behavior. The integration of adaptive or ML-driven components might
also enable context-sensitive template selection. Longitudinal classroom studies would help
assess how such systems impact student learning and engagement over time.

5. Multi-Language Static-Analysis System for Automatic Question Generation from Source Code:
Further development could extend the system to include functional, concurrent, and domain-
specific languages, making it more adaptable to a wide range of curricular needs. By combining
dynamic and static program analysis, the system could generate richer, behavior-aware questions,
especially in tasks involving edge-case reasoning or algorithmic logic. Another important
direction involves linking the framework with adaptive learning platforms that personalize
questions based on individual learner progress. Conducting long-term educational studies would
provide essential data on how the system influences knowledge retention, problem-solving skills,
and transfer of learning across different instructional settings. Finally, a promising extension of

16

this work lies in integrating LLMs with the CFG-PDG framework. The modular design of the
current system already provides clear entry points for such hybridization, where LLMs can be
guided by structural program representations rather than generating questions in isolation. By
using CFG and PDG graphs as guardrails, LLMs could enrich QG with greater semantic variety
and higher-order reasoning while maintaining alignment with Bloom’s taxonomy and algorithmic
correctness.

7.2 Author’s Publications

Publications Related to the Dissertation

Journal Articles in Q Ranking

[P1] J. Alshboul and E. Baksa-Varga, “Ontology-Based Automatic Generation of Learning Materials
for Python Programming,” International Journal of Advanced Computer Science and Applications,
vol. 16, no. 5, 2025, doi: 10.14569/IJACSA.2025.0160508. Quartile: Q3.

[P2] J. Alshboul and E. Baksa-Varga, “A Review of Automatic Question Generation in Teaching
Programming,” International Journal of Advanced Computer Science and Applications, vol. 13, no.
10, 2022, doi: 10.14569/IJACSA.2022.0131006. Quartile: Q3.

[P3] J. Alshboul and E. Baksa-Varga, “A Hybrid Approach for Automatic Question Generation from
Program Codes,” International Journal of Advanced Computer Science and Applications, vol. 15, no.
1, 2024, doi: 10.14569/1JACSA.2024.0150102. Quartile: Q3.

[P4] J. Alshboul and E. Baksa-Varga, “Evaluating Large Language Models for Generating
Programming Questions from Code,” Pollack Periodica: An International Journal for Engineering
and Information Sciences, Status: Accepted/Minor Revision, doi: 10.1556/606.2025.01471. Quartile:
Q3.

[P5] J. Alshboul and E. Baksa-Varga, “Template-Based Question Generation from Code Using Static
Code Analysis,” Pollack Periodica: An International Journal for Engineering and Information
Sciences, Status: Under Review. Quartile: Q3.

[P6] J. Alshboul and E. Baksa-Varga, “Multi-Language Static-Analysis System for Automatic
Question Generation from Source Code,” Status: To Be Submitted.

Other Publications

Journal Articles in Q Ranking

[P7] S. Mokhtar, J. A. Q. Alshboul, and G. O. A. Shahin, “Towards Data-driven Education with
Learning Analytics for Educator 4.0,” Journal of Physics: Conference Series, vol. 1339, no. 1339, p.
012079, Dec. 2019, doi: https://doi.org/10.1088/1742-6596/1339/1/012079. Quartile: Q4.

[P8] H. A. A. Ghanim, J. Alshboul, and L. Kovacs, “Development of Ontology-based Domain
Knowledge Model for IT Domain in e-Tutor Systems,” International Journal of Advanced Computer
Science and Applications, vol. 13, no. 5, 2022, doi: 10.14569/IJACSA.2022.0130505. Quartile: Q3.

International Journals

[P9] J. Alshboul, H. A. A. Ghanim, and E. Baksa-Varga, Semantic Modeling for Learning Materials
in E-tutor Systems, Journal of Software Engineering & Intelligent Systems 6(2) pp. 1-5. (2021),
Journal Article.

Local Journals

[P10] J. Alshboul and E. Baksané-Varga. “Student Academic Performance Prediction,” Production
Systems and Information Engineering, vol. 9, no. 1, pp. 36-53, 2020, Accessed: July. 09, 2025.
[Online]. Available: https://ojs.uni-miskolc.hu/index.php/psaie/article/view/3822.

International Conference Proceedings

[P11] 17th Mikl6s Ivanyi International Ph.D. & DLA Symposium: Architectural, Engineering and
Information Sciences. Title: Development of A Semantic Model for Learning Materials in

17

Intelligent Tutoring Systems. Organizer: Faculty of Engineering and Information Technology,
University of Pécs, Pécs, Hungary. Date: 25th-26th October, 2021.

[P12] Language in the Human-Machine Era Training School. Title: E-Learning and Automatic
Resource Generation for Learning Materials. Date: 05th to 9th June 2023. Location: University of
Pristina, Kosovo. Organizer: EU agency "European Cooperation in Science and Technology".

Local Conference Proceedings

[P13] J. Alshboul and E. Baksané-Varga. A Survey of Domain Model Representations in Intelligent
Tutoring Systems. Miskolc, Hungary: Faculty of Mechanical Engineering and Informatics PhD
Forum Proceedings Book, University of Miskolc, 2021.

[P14] J. Alshboul and E. Baksané-Varga. Code, Feedback, And Question Generation on
Programming Topics Using ChatGPT API. Miskolc, Hungary: Faculty of Mechanical Engineering
and Informatics PhD Forum Proceedings Book, University of Miskolc, 2023.

Book of Abstract

[P15] J. Alshboul, H. A. A. Ghanim, and E. Baksa-Varga. Development of a Semantic Model for
Learning Materials in Intelligent Tutoring Systems, International PhD & DLA Symposium 2021,
Pollack Press (2021). pp. 91-91, Abstract.

[P16] J. Alshboul and E. Baksa-Varga. A Generator-Evaluator Framework for Automatic Question
Generation from Program Codes, International Conference on Al Transformation 2024, Publisher:
Corvinus University of Budapest (2024). pp. 19-20, Abstract.

References

[1] N. Mulla and P. Gharpure, “Automatic Question Generation: A Review of Methodologies, Datasets, Evaluation
Metrics, and Applications,” Progress in Artificial Intelligence, vol. 12, no. 1, pp. 1-32, Jan. 2023, doi:
10.1007/s13748-023-00295-9.

[2] M. Zerkouk, M. Mihoubi, and B. Chikhaoui, “A Comprehensive Review of Al-based Intelligent Tutoring Systems:
Applications and Challenges,” Jul. 25, 2025, arXiv. doi: 10.48550/arXiv.2507.18882.

[3] M. Vinueza-Morales, J. Rodas-Silva, C. Vidal-Silva, J. Cérdova-Moran, and E. Cevallos-Ayon, “Teaching
programming in higher education: a bibliometric analysis of trends, technologies, and pedagogical approaches,”
Frontiers in Education, vol. 10, Mar. 2025, doi: 10.3389/feduc.2025.1525917.

[4] S. Al Faraby, A. Adiwijaya, and A. Romadhony, “Review on Neural Question Generation for Education Purposes,”
International Journal of Artificial Intelligence in Education, vol. 34, no. 3, pp. 1008-1045, Sep. 2024, doi:
10.1007/s40593-023-00374-x.

[5] G. Kurdi, J. Leo, B. Parsia, U. Sattler, and S. Al-Emari, “A Systematic Review of Automatic Question Generation
for Educational Purposes,” International Journal of Artificial Intelligence in Education, vol. 30, no. 1, pp. 121-204,
Mar. 2020, doi: 10.1007/s40593-019-00186-y.

[6] R. Queirds, J. C. Paiva, and J. P. Leal, “Programming Exercises Interoperability: The Case of a Non-Picky
Consumer,” in 10th Symposium on Languages, Applications and Technologies (SLATE 2021), R. Queir6s, M. Pinto,
A. Simdes, F. Portela, and M. J. Pereira, Eds., in Open Access Series in Informatics (OASIcs), vol. 94. Dagstuhl,
Germany: Schloss Dagstuhl - Leibniz-Zentrum fir Informatik, 2021, p. 5:1-5:9. doi:
10.4230/0ASIcs.SLATE.2021.5.

[7] I Mekterovi¢, L. Brki¢, and M. Horvat, “Scaling Automated Programming Assessment Systems,” Electronics, vol.
12, no. 4, 2023, doi: 10.3390/electronics12040942.

[8] H. S. Wankhede and A. W. Kiwelekar, “Qualitative Assessment of Software Engineering Examination Questions
with Bloom’s Taxonomy,” Indian Journal of Science and Technology, vol. 9, no. 6, Mar. 2016, doi:
10.17485/ijst/2016/v9i6/85012.

[9] L. J. Tamang, R. Banjade, J. Chapagain, and V. Rus, “Automatic Question Generation for Scaffolding Self-
explanations for Code Comprehension,” in Artificial Intelligence in Education, M. M. Rodrigo, N. Matsuda, A. I.
Cristea, and V. Dimitrova, Eds., Cham: Springer International Publishing, 2022, pp. 743-748.

18

[10] O. Sitthisak, L. Gilbert, and D. Albert, “Ontology-Driven Automatic Generation of Questions from Competency
Models,” in The 9th International Conference on Computing and InformationTechnology (IC21T2013), P. Meesad,
H. Unger, and S. Boonkrong, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 145-154.

[11] S. Alkhuzaey, F. Grasso, T. R. Payne, and V. Tamma, “Evaluating the Fitness of Ontologies for the Task of Question
Generation,” Apr. 08, 2025, arXiv. doi: 10.48550/arXiv.2504.07994.

[12] O. Sychev and D. Shashkov, “Mass Generation of Programming Learning Problems from Public Code Repositories,”
Big Data and Cognitive Computing, vol. 9, no. 3, 2025, doi: 10.3390/bdcc9030057.

[13] E. Logacheva, A. Hellas, J. Prather, S. Sarsa, and J. Leinonen, “Evaluating Contextually Personalized Programming
Exercises Created with Generative AL” in Proceedings of the 2024 ACM Conference on International Computing
Education Research - Volume 1, in ICER 24. New York, NY, USA: Association for Computing Machinery, 2024,
pp. 95-113. doi: 10.1145/3632620.3671103.

[14] K. Zhu, Y. Lu, H. Huang, L. Yu, and J. Zhao, “Constructing More Complete Control Flow Graphs Utilizing Directed
Gray-Box Fuzzing,” Applied Sciences, vol. 11, no. 3, 2021, doi: 10.3390/app11031351.

[15] Y. Yan, N. Cooper, K. Moran, G. Bavota, D. Poshyvanyk, and S. Rich, “Enhancing Code Understanding for Impact
Analysis by Combining Transformers and Program Dependence Graphs,” Proc. ACM Softw. Eng., vol. 1, no. FSE,
Jul. 2024, doi: 10.1145/3643770.

[16] S. K. Patil and M. M. Shreyas, “A Comparative Study of Question Bank Classification based on Revised Bloom’s
Taxonomy using SVM and K-NN,” in 2017 2nd International Conference On Emerging Computation and
Information Technologies (ICECIT), 2017, pp. 1-7. doi: 10.1109/ICECIT.2017.8453305.

[17] Z. Ullah, A. Lajis, M. Jamjoom, A. Altalhi, and F. Saleem, “Bloom’s taxonomy: A beneficial tool for learning and
assessing students’ competency levels in computer programming using empirical analysis,” Computer Applications
in Engineering Education, vol. 28, no. 6, pp. 1628-1640, 2020, doi: https://doi.org/10.1002/cae.22339.

[18] S. Sarsa, P. Denny, A. Hellas, and J. Leinonen, “Automatic Generation of Programming Exercises and Code
Explanations Using Large Language Models,” presented at the International Computing Education Research,
Lugano, Switzerland: ACM, Aug. 2022, pp. 27-43. doi: https://doi.org/10.1145/3501385.3543957.

[19] H. Naveed, A. U. Khan, S. Qiu, M. Saqib, S. Anwar, M. Usman, N. Akhtar, N. Barnes, and A. Mian, “A
Comprehensive Overview of Large Language Models,” ACM Trans. Intell. Syst. Technol., vol. 16, no. 5, Aug. 2025,
doi: 10.1145/3744746.

[20] A. Ushio, F. Alva-Manchego, and J. Camacho-Collados, “A Practical Toolkit for Multilingual Question and Answer
Generation,” in Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume
3: System Demonstrations), D. Bollegala, R. Huang, and A. Ritter, Eds., Toronto, Canada: Association for
Computational Linguistics, Jul. 2023, pp. 86—94. doi: 10.18653/v1/2023.acl-demo.8.

[21] C. Cheng, Z. Huang, G. Zhao, Y. Guo, X. Lin, J. Wu, X. Li, and S. Wang, “From Objectives to Questions: A
Planning-based Framework for Educational Mathematical Question Generation,” in Proceedings of the 63rd Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), W. Che, J. Nabende, E. Shutova,
and M. T. Pilehvar, Eds., Vienna, Austria: Association for Computational Linguistics, Jul. 2025, pp. 12836-12856.
doi: 10.18653/v1/2025.acl-long.628.

[22] B. Nguyen, M. Yu, Y. Huang, and M. Jiang, “Reference-based Metrics Disprove Themselves in Question
Generation,” in Findings of the Association for Computational Linguistics: EMNLP 2024, Y. Al-Onaizan, M. Bansal,
and Y.-N. Chen, Eds., Miami, Florida, USA: Association for Computational Linguistics, Nov. 2024, pp. 13651-
13666. doi: 10.18653/v1/2024.findings-emnlp.798.

[23] C. Zhou, M. Wang, T. Zhang, Q. Zhu, J. Li, and H. Huang, “From Answers to Questions: EQGBench for Evaluating
LLMs’ Educational Question Generation,” Aug. 05, 2025, arXiv. doi: 10.48550/arXiv.2508.10005.

[24] D. Gnanasekaran, R. Kothandaraman, and K. Kaliyan, “An Automatic Question Generation System Using Rule-
Based Approach in Bloom’s Taxonomy,” Recent Advances in Computer Science and Communications, vol. 14, no.
5, pp. 1477-1487, 2021, doi: 10.2174/2213275912666191113143335.

[25] E. Kasneci et al., “ChatGPT for good? On opportunities and challenges of large language models for education,”
Learning and Individual Differences, vol. 103, p. 102274, 2023, doi: https://doi.org/10.1016/j.lindif.2023.102274.

[26]R. G. Golla, V. Tiwari, P. Chokhra, and H. Okada, “QuestGen AIL” [Online]. Available:
https://github.com/ramsrigouthamg/Questgen.ai

[27]J. Li, T. Tang, W. X. Zhao, J.-Y. Nie, and J.-R. Wen, “Pretrained Language Models for Text Generation: A Survey,”
May 13, 2022, ArXiv. doi: 10.48550/arXiv.2201.05273.

19

[28] X.-Q. Dao, “Performance Comparison of Large Language Models on VNHSGE English Dataset: OpenAl ChatGPT,
Microsoft Bing Chat, and Google Bard,” Jul. 20, 2023, ArXiv. doi: 10.48550/arXiv.2307.02288.

[29] A. Koubaa, “GPT-4 vs. GPT-3.5: A concise showdown,” Apr. 07, 2023, TechRxiv. doi:
10.36227/techrxiv.22312330.v2.

[30] United States Chess Federation, “Approximating formulas for the US Chess rating system.” Apr. 2017. [Online].
Available: http://www.glicko.net/ratings/approx.pdf

[31] Paul Jansen, “The TIOBE Programming Community Index,” Tiobe.com. Accessed: May 16, 2025. [Online].
Available: https://www.tiobe.com/tiobe-index/

[32] L. L. Shwe, S. Matayong, and S. Witosurapot, “Enabling Cognitive and Unified Similarity-Based Difficulty Ranking
Mechanisms for AQG On Multimedia Content,” Expert Systems with Applications, vol. 277, p. 127244, Jun. 2025,
doi: 10.1016/j.eswa.2025.127244.

20

