
University of Miskolc

Faculty of Mechanical Engineering and Informatics

PhD Dissertation Booklet

Author:

Jawad Ahmad Qasem Alshboul

MSc in Data Science, MSc in Computer Science

József Hatvany Doctoral School of

Information Science, Engineering and Technology

Title of the Dissertation

Automatic Generation and Evaluation of Programming Questions from Source Code

Research Area

Applied Computer Science

Research Group

Data and Knowledge Bases, Knowledge Intensive Systems

Head of Doctoral School:

Prof. Dr. László Kovács

Academic Supervisor:

Dr. Erika Baksáné Varga

Miskolc, Hungary 2025

1

Table of Contents
1 Introduction ... 2

1.1 Background ... 2

1.2 Problem Statement .. 3

1.3 Research Objectives .. 4

2 Thesis 1: Ontology-Based Automatic Generation of Learning Materials for Python Programming 4

2.1 Introduction... 4

2.2 Methodology ... 4

3 Thesis 2: A Hybrid Approach for Automatic Question Generation from Program Codes .. 5

3.1 Introduction... 5

3.2 Methodology ... 5

4 Thesis 3: Evaluating Large Language Models for Generating Programming Questions from Source Code 7

4.1 Introduction... 7

4.2 Methodology ... 8

5 Thesis 4: Template-Based Question Generation from Code Using Static Code Analysis ... 10

5.1 Introduction... 10

5.2 Methodology ... 10

6 Thesis 5: Multi-Language Static-Analysis System for Automatic Question Generation from Source Code................. 13

6.1 Introduction... 13

6.2 Methodology ... 13

7 Conclusion ... 16

7.1 Future Work .. 16

7.2 Author’s Publications ... 17

References.. 18

2

1 Introduction

1.1 Background

Automatic Question Generation (AQG) is the process of creating meaningful and relevant questions

automatically from various types of input, including text, structured data, images, or videos, using

computational methods. In simple terms, it involves designing systems that can understand content,

identify key information or patterns, and generate clear, contextually appropriate questions to support

learning, comprehension assessment, conversational systems, or data exploration without requiring

manual question crafting for each instance [1], [P2]. Figure 1.1 illustrates the conceptual framework

of AQG from source code. The system takes source code as input, processes it through computational

analysis and generation techniques, and automatically produces relevant questions for educational or

assessment purposes. Figure 1.2 illustrates the four-component architecture of Intelligent Tutoring

Systems (ITS) as discussed by the review article [2]. This dissertation focuses specifically on the

Domain Model component through AQG for programming education. This work contributes to the

foundational knowledge representation layer by developing methods to automatically generate

contextually appropriate programming questions that can be integrated into the broader tutoring

system architecture.

The evolution of programming education necessitates a profound reflection on how assessment has

been designed, delivered, and evaluated. Given that coding has become necessary across academic

disciplines and industries, educational institutions increasingly need to develop robust and scalable

Figure 1.1 Conceptual framework of AQG from source code

Figure 1.2 The four-component ITS architecture

3

ways to assess their students' programming knowledge and problem-solving skills [3]. Learners today

often study multiple programming languages, including Python, Java, C++, and C, each with unique

syntactic and conceptual nuances, making standardized assessment even more challenging. Although

recent AQG studies have primarily focused on generating questions from natural language texts and,

to a lesser extent, visual data [1], [4], [5], AQG from source code remains underexplored despite its

potential to transform programming education. Academic programming textbooks typically include

text, images, and code examples, yet most AQG systems rely heavily on NLP techniques for text-

based question generation (QG), with limited exploration of visual content [1], [P3]. The review paper

[P2] advocates for developing QG methods tailored to programming topics, along with appropriate

evaluation criteria. Traditional methods of question design in programming courses have struggled to

keep pace with this growth. As noted in previous studies, manually crafted questions are time-

consuming to produce [6], difficult to standardize across diverse learners and languages [6], [7], and

often fall short of covering the full spectrum of cognitive skills outlined in Bloom’s Taxonomy [8].

Moreover, they tend to lack scalability, particularly in large or multi-language educational settings

where hundreds of students may require tailored assessment materials [7]. These challenges have

driven a growing interest in AQG from source code. Rather than relying on static repositories of

questions, AQG approaches analyze code directly, extracting structure, semantics, and logic to

generate assessment items that dynamically align with the learner’s context [9]. This dissertation

responds to that demand by presenting a unified exploration of five distinct yet complementary

approaches: ontology-driven QG [10], [11], hybrid semantic-to-question modeling [9], template-

based multi-language QG via static code analysis [12], evaluation of large language models (LLMs)

for QG from source code [13], and a comprehensive multi-language assessment system powered by

Control Flow Graphs (CFGs) and Program Dependence Graphs (PDGs). Collectively, these

approaches constitute the novel contributions of this work. I extend beyond traditional template or

ontology-based systems by incorporating formal semantic graph representations, namely CFGs and

PDGs, to anchor QG in actual program structure and behavior. CFGs model possible execution paths

and dependencies across program blocks [14], while PDGs capture both control and data

dependencies among statements [15], providing a richer semantic foundation for QG. Each approach

contributes to a shared objective: to automate programming QG in a pedagogically grounded,

cognitively stratified (Organizing learning or assessment tasks by levels of thinking, from simple

recall to complex problem-solving), and linguistically inclusive way [7], [16].

1.2 Problem Statement

The global expansion of computer science (CS) education has intensified the need for scalable, high-

quality assessment tools that can effectively serve diverse learners across various programming

languages [3], [7]. Traditionally, the manual development of programming assessment questions has

been labor-intensive, inconsistent, and insufficient to meet the rising demand for pedagogically

sound, comprehensive evaluation materials in programming education [6], [8], [17]. AQG has

emerged as a promising approach for scalable assessment across educational contexts [1], [4], [5].

However, the current research landscape in AQG reveals a pronounced imbalance in focus and

development across different input modalities. The field has been dominated by text-based question

generation, benefiting from extensive datasets, mature neural models, and a clear trajectory from rule-

based systems to large pre-trained transformers and LLMs [4], [18], [19]. Similarly, visual QG has

seen growing attention, particularly for generating questions from images and, more recently,

educational diagrams, leveraging advancements in multimodal learning [20], [21]. These areas have

established robust evaluation practices and benchmarks, fueling rapid progress and adoption [22],

[23]. In contrast, QG from source code remains significantly underrepresented despite its critical

potential in programming education [9], [12], [18]. Generating meaningful and pedagogically aligned

questions directly from source code presents unique challenges, including understanding code

semantics [14], [15], aligning questions with relevant programming concepts [9], [12], and ensuring

cognitive coverage across difficulty levels [8], [17], [24]. The lack of standardized datasets and well-

defined evaluation metrics further impedes systematic advancements in this domain [13], [22], [23].

4

Most existing AQG research has overlooked this research gap in programming education assessment,

and only a few recent studies have begun exploring it, often in isolated or single-language contexts

[9], [12], [18], leaving a substantial gap in the scalable assessment needs of programming education.

To clarify, generating programming questions directly from raw, multi-language source code requires

integrated semantic parsing (AST/CFG/PDG), multi-language normalization, deliberate Bloom-level

coverage, diverse code-centric question types, and multi-metric evaluation. These requirements are

largely absent in existing primarily text-focused or single-language ontology/LLM studies, leaving

the domain underdeveloped and limiting scalable programming assessment. Addressing this gap is

essential to ensure equitable, effective, and scalable programming assessment tools that align with

modern pedagogical frameworks and can adapt across multiple programming languages [3], [7], [17],

[25]. Advancing AQG from code requires not only robust generation methods that capture the

semantics of source code [14], [15], but also the development of principled evaluation frameworks

tailored to the unique requirements of programming education [13], [22], [23]. This dissertation aims

to address these gaps to advance scalable, high-quality, and pedagogically aligned AQG systems that

support equitable programming education worldwide.

1.3 Research Objectives

This dissertation seeks to address the limitations of current programming assessment methods by

pursuing the following core objectives:

1. To design and implement models that automatically generate programming questions directly

from source code.

2. To ensure systematic alignment of generated questions with cognitive learning frameworks,

particularly Bloom’s Taxonomy.

3. To support multiple programming languages (Python, Java, C++, and C) within a unified,

multi-language assessment context.

4. To evaluate both the technical quality and the pedagogical value of generated questions

through automated metrics and expert review.

Together, these objectives establish the foundation of this dissertation’s contribution to advancing

programming education assessment through AI-enhanced, source code–driven QG and evaluation.

2 Thesis 1: Ontology-Based Automatic Generation of Learning Materials for Python Programming

2.1 Introduction

I developed an ontology-based system that automatically generates programming-related assessment

questions directly from source code. By leveraging structured domain knowledge, the system

semantically interprets programming constructs to support concept-aware question generation,

without relying on adaptive learning mechanisms [P1, P2].

The objectives of this research are to design an ontology-based framework that models Python

programming concepts and their interconnections, and develop a system for automatically generating

Python programming learning materials (specifically quizzes) that align with the modeled concepts

and relationships. It supports beginner, intermediate, and advanced difficulty levels.

2.2 Methodology

Algorithm 2.1 automatically generates MCQs quizzes aligned with Python programming concepts

using a domain-specific ontology. It aims to deliver personalized and contextually accurate

assessments while ensuring semantic alignment with reference materials through BERT-based

similarity checks (implemented and deployed on a Flask App). The process begins by building a

domain ontology for Python programming. This ontology formalizes concepts such as data types,

control structures, functions, and OOP, capturing relationships and properties necessary for the

semantic structuring of learning materials. For each domain concept template, the system uses a

template-based generation approach to create relevant MCQs, systematically organizing these

questions into a structured MCQs bank. This bank is then saved in a comma separated values (CSV)

format for efficient retrieval and further processing. When a learner requests a quiz, the system loads

5

the MCQs dataset, filters questions based on the desired difficulty level, randomly selects the required

number of questions, computes semantic similarity using BERT embeddings to compare the learner’s

domain with reference materials, ensuring that the questions are contextually aligned and relevant,

and returns the personalized quiz alongside similarity metrics for evaluation.

Algorithm 2.1: Ontology-Based MCQ Generation

Input: Domain, Difficulty, Number_of_Questions

Output: Random_MCQ_Quiz, Similarity_Score

1: PROCEDURE BUILD_PYTHON_ONTOLOGY()

2: ontology ← ONTOLOGY_STRUCTURE()

3: RETURN ontology

4: END PROCEDURE

5: PROCEDURE GENERATE_MCQ_DATASET()

6: mcq_bank ← ∅

7: for each domain_template do

8: questions ← TEMPLATE_BASED_GENERATION(domain_template)

9: mcq_bank.ADD(domain, questions)

10: end for

11: SAVE_TO_CSV(mcq_bank, "mcq_dataset.csv")

12: END PROCEDURE

13: PROCEDURE SERVE_QUIZ(domain, difficulty, num_questions)

14: questions ← LOAD_FROM_CSV("mcq_dataset.csv")

15: filtered ← FILTER_BY_DIFFICULTY(questions[domain], difficulty)

16: selected ← RANDOM_SAMPLE(filtered, num_questions)

17: similarity ← BERT_SIMILARITY(ontology_material[domain], domain)

18: RETURN FLASK_RESPONSE(selected, similarity)

19: END PROCEDURE

3 Thesis 2: A Hybrid Approach for Automatic Question Generation from Program Codes

3.1 Introduction

I developed a hybrid system that combines static code analysis, ontology, and natural language

processing using word embeddings to generate programming-related questions from source code

[P3].

This thesis focuses on generating questions from code snippets using semantic relations to extract the

concepts. Generating questions from unconventional sources, such as code snippets, becomes

important in providing a better learning experience to large groups of students, especially when dealing

with limited information. The main goal of this thesis is to assist instructors and students in properly

evaluating student performance by generating Python-based programming questions from existing

materials (i.e., code snippets). The AQG from code snippets will add the possibility of generating a

different set of questions based on the same code snippet. Therefore, it leads to a better understanding

of the given topic. The research objectives of this thesis are to implement a framework that can

interpret Python programming language into text, and enable the framework to comprehend the text

and build connections between the programming structures and the semantic concepts for AQG.

3.2 Methodology

To generate questions from existing Python code snippets, an interpreter is needed to translate the

code into more understandable concepts. Python or any other programming language is constructed

using operators, variables, and functions. The ontology will categorize and conceptualize the list of

commands (i.e., variables, operators, etc.) and the relationships between the concepts in the script. It

will build an explained version of the code by processing the code line by line and creating semantic

relationships based on the input. Subsequently, the translated code is generated and inserted into an

AI question generator called “QuestGen” [26]. This model will generate Boolean, short-answer, and

open-ended questions. Figure 3.1 shows the framework data flow and its components. The current

study considers Boolean, short, and open-ended questions. Since learning a programming language

6

focuses on understanding the content of a code, such questions are more suitable for assessing student

knowledge properly.

Over time, there is a growing demand for QG, a trend that could significantly alleviate the burden on

educators and trainers. This is particularly beneficial for scalable learning formats such as online

courses. Many models exist for generating questions from regular text; however, understanding code

and generating questions from code snippets is not applied due to its complexity. Code-to-text

conversion is a challenging task. However, the semantic relationships between the concepts in the

ontology are an excellent solution. Figure 3.2 shows the whole procedure for translating code into

text. In Figure 3.2, the code undergoes validation by a parser checker responsible for scrutinizing its

syntax. Once the code is confirmed as error-free, the checker directs it to the ontological translator,

acting as the parser within our architecture. This parser transforms the code into coherent sentences,

forwarding them to the QG AI model to generate reasonable questions. An explanation of the QG AI

model is provided in the subsequent section.

Algorithm 3.1 is a hybrid approach employed to automate the generation of programming-related

questions from Python source code by integrating structural parsing with ontology-based semantic

enrichment. Initially, source code samples are parsed using Python AST to identify constructs such

as function definitions, class structures, variable assignments, and control flow statements. An

ontology is constructed to represent these extracted elements and their semantic relationships,

capturing contextual information regarding code dependencies and logical flow within the program.

Figure 3.1 Proposed framework architecture

Figure 3.2 Question-generation process

7

Using this enriched representation, the system generates diverse question types, including Boolean,

short-answer, and open-ended questions.

Algorithm 3.1: Hybrid Approach for QG from Program Codes

Input: Python source file path P

Output: Question set Q = {Q_b, Q_s, Q_o}

Parameters: max_questions, question_type

1: O ← BuildOntology()

2: C ← ReadFile(P)

3: AST ← Parse(C)

4: T ← ∅

5: for each node ∈ AST do

6: switch node.type do

7: case Assignment:

8: ind ← Variable(node.target, node.value)

9: case FunctionDef:

10: ind ← Function(node.name, node.args)

11: case ClassDef:

12: ind ← Class(node.name, node.bases)

13: case Call:

14: ind ← Object(node.target, node.func)

15: case Import, ControlFlow:

16: ind ← CreateIndividual(node)

17: end switch

18: AddToOntology(O, ind)

19: semantic_desc ← QueryOntologyRelations(O, ind)

20: T ← T ∪ {semantic_desc}

21: end for

22: text ← Concatenate(T)

23: if QuestGen_Available() then

24: Q ← QuestGen_AI_Model(text, max_questions, question_type)

25: else

26: Q ← HeuristicFallback(text, max_questions, question_type)

27: end if

28: return Q

4 Thesis 3: Evaluating Large Language Models for Generating Programming Questions from Source

Code

4.1 Introduction

I developed a systematic evaluation framework to assess the QG capabilities of LLMs, using

automatic evaluation metrics and complemented by human-centered evaluation metrics for the top-

performer LLM. The findings provide insights into their strengths and limitations in generating

programming-related assessment questions for potential educational use in the programming domain

[P4].

This thesis seeks to uncover insights that may be vital in various applications. Highlighting these best

performers would allow educators, developers, and researchers to make informed decisions about

adopting LLMs for code-related QG tasks. The thesis evaluates a diverse set of state-of-the-art LLMs.

Theses 1 and 2 presented two distinct approaches for AQG from Python source code. Thesis 1

discussed an ontology-driven approach which allowed the structured representation of knowledge

that would yield MCQs automatically from Python programs. Thesis 2 extended Thesis 1 by

providing a hybrid approach, the ontology combined with the QuestGen AI model, to make the

generation process dynamic and grab semantic understanding better. Though they both made

headway, the two approaches suffer mainly in their limited scope in one aspect. No systematic

evaluation metric is provided to benchmark the quality of the questions generated from source codes

across the different dimensions. Hence the evaluation was very much a subjective measure that limits

comparisons of results systematically with other AQG methods. Thesis 3 goes on to cover this gap

by extending AQG research into a multi-language context including Java, C++, and Python. With a

8

broader scope, the performance of LLMs in forming questions from codes rooted in different source

code paradigms with individual syntaxes, semantics, and idiomatic usages could be evaluated. A

structured evaluation framework established by this thesis would assess AQG systems in terms of

comprehensiveness, reliability, and reproducibility in model, language, and approach comparisons.

Thus, Thesis 3 naturally follows from the methodological foundations laid in Theses 1 and 2 and

directly addresses their limitation in evaluations-driven framework for AQG from source code. The

primary objectives of this thesis are as follows:

1. To define a set of evaluation criteria, including relevance, clarity and coherence, conciseness, and

coverage, to measure the quality of questions generated by LLMs.

2. To develop an approach for evaluating and comparing the performance of LLMs in QG from

program codes.

3. To empirically evaluate and rank the selected LLMs based on their performance in QG from

program codes.

4.2 Methodology

The methodology explains how the evaluation and comparison are made regarding the proficiency of

various LLMs to create questions from the given source code. This section outlines all the events

leading to data collection and preparation, model selection, evaluation metric selection, experiment

execution, and ranking of the models. In this context, a comprehensive and impartial exercise is

carried out to identify the models best suited for relevant QG tasks concerning programming code.

The languages chosen for the experiment were Python, C++, and Java. These languages were focused

on during the research, with the possibility of applying such methods to other structurally similar

programming languages. The sequence selected aids in rendering clear views into the strengths and

weaknesses of each of the models, thereby allowing a deeper understanding of questions pertaining

to the future of this research. Previous studies have undertaken related efforts, like [27], [28], and

[29]. Algorithm 4.1 shows the pipeline of the proposed framework. It compares LLMs on how well

they generate questions about code, using a reference evaluator model, and produce quantitative

metrics. Given a set of code samples, each model generates questions for each sample using a

consistent prompting strategy. A reference model then evaluates these generated questions to assess

their quality based on dimensions like relevance and clarity. The algorithm computes the average

score for each model and optionally tracks repetition rates to measure question diversity. It further

constructs pairwise win matrices, computes win rates, and calculates Elo ratings to rank models based

on relative performance. The outputs are then summarized, including average scores, win rates, Elo

ratings, repetition rates, and comparison matrices.

The generated questions were assessed for their quality to analyze differences in performance

regarding the selected LLMs. Each question gets evaluated on a scale from 1 to 10 based on the

evaluation metric by GPT-4-0314 as a judge. This study used objective and subjective evaluation

modes, touching on the primary indicators. Relevance means how closely the generated questions

match the source code. Clarity and coherence measure questions' phrasing and how logic is structured

in them. Conciseness assesses whether the questions were brief by examining their length and

checking for unnecessary detail or verbosity. Coverage involves how well each question covered the

entire scope of the input script. It also involved whether the questions reflected different sections or

key components of the code, and not just focused narrowly on isolated elements. In addition to

automated scoring, human reviewers were involved to provide a pedagogical perspective on the top-

performing LLM. Their insights helped validate the results and brought attention to the educational

value of the questions. Human feedback added important context about classroom relevance, teaching

goals, and practical usefulness, which are things that automated systems alone cannot fully capture.

Evaluators kept in mind relevance and educational value when making their judgments. The approach

encompassed a mix of different input data sets, multiple LLMs, stringent evaluation criteria, and

automated and human judgment. The results and examples, from inputs to generated questions, are

discussed in the next section. Parts of this output and the evaluation deconstruction are illustrated in

9

Algorithm 4.1: Multi-Model Code QG and Evaluation

Input: Set of Code Samples (D), List of LLM Model Names (MODELS),

 Reference Evaluation Model (EVAL_MODEL)

Output: Summary of Model Performance Metrics (SMPM)

1: Initialize scores_by_model, reps_by_model, results as empty.

2: For each sample in D do:

 3: For each model_name in MODELS do:

 4: prompt ← build_generation_prompt(sample.code, sample.language)

 5: questions ← LLM(model_name).generate_questions(prompt)

 6: metrics ← evaluate_questions(questions, EVAL_MODEL)

 7: score ← average_scores(metrics)

 8: repetition ← repetition_rate(questions) // optional

 9: Store (model_name, sample, metrics) in results

 10: Append score to scores_by_model[model_name]

 11: Append repetition to reps_by_model[model_name]

 12: End For

13: End For

14: wins, comparisons ← build_win_matrix(scores_by_model)

15: win_rate ← win_rates(wins, comparisons)

16: elo ← elo_ratings(scores_by_model)

17: repetition ← aggregate_repetition(reps_by_model)

18: Construct SMPM as {ranking(scores_by_model), win_rate, elo, repetition, wins, comparisons}

The model average score is established by summing the scores of each criterion across all questions,

and higher scores in each criterion indicate better accuracy in script-to-question generation. The

rankings show that GPT-4-0314 obtained the first rank confirming its effectiveness in generating

relevant, high-quality questions. Moreover, it was analytically carried out on an average win rate

account of all other models to get an all-round perspective on the performance of LLMs under

evaluation. The term win rate refers to a cumulative score for every model and helps determine the

best-performing model among them. For example, if a question is generated by GPT-4-0314 model

and compared to the claude-2 model, and the winner for that particular question is GPT-4-0314, this

would add a point to the GPT-4-0314 model. Then, GPT-4-0314 is compared to other models; if any

model wins a point, its score grows, and then finally, all the models’ scores are calculated, and the

highest winner is ranked first. The approach allows identification of models that have similar win

rates to other models. This analysis offers valuable insights into how each LLM fared directly

compared to its peers, assuming uniform sampling and no ties in the evaluation metrics. The following

Equations (5.1) and (5.2), would calculate the New Rating and the Predicted Rating, respectively

[30]. This technique is used here for the AI evaluation domain; it is derived from tournaments in

sports, where it is often used.

New Rating = Old Rating + K × (W − P) (4.1)

Where K refers to the maximum adjusted value, in this context, it is a constant integer number like

32; W is the actual result of the game (1 for a win, 0.5 for a draw, and 0 for a loss); finally, P is the

expected result, calculated using the logistic function in equation 5.2.

P =
1

1 + 10
(Mo−Mp)

score point

 (4.2)

Where P stands for the expected outcome for a given model, Mo for model opponent, and Mp for

model player. The constants relating to 1 and 10 are customized; these traditional constants have been

customized in the context to mean that the score point is 400. The two equations constitute the basis

of the Elo rating methodology created initially by Arpad Elo [18] to enable fair and dynamic ranking

of chess players based on match outcomes. Because of its simplicity and efficiency in tracking relative

skill levels, the Elo rating system gradually found acceptance in areas other than chess, like online

games, sporting events, and AI benchmarking. The second equation calculates the expected

probability of one player winning against the other depending on their rating difference, and the first

10

updates the player's rating after every game depending on the actual and expected result. The

combination of both ensures that the rating system accommodates rating adjustments to reward the

unexpected win and penalize against the loss when a rating would become obsolete in view of actual

performance. This means that the average win rate measure provides a clear and quantitative

indication of the relative strength of the models and competitive standing in question generation.

5 Thesis 4: Template-Based Question Generation from Code Using Static Code Analysis

5.1 Introduction

I developed a modular system for AQG and evaluation using template-based static code analysis,

enabling modular QG designed to be extensible with minimal integration overhead. The framework

supports multiple programming languages through customizable parsing templates within a unified

architecture [P5].

The methodology presented in Thesis 4 represents a significant departure from the approaches

detailed in Theses 1, 2, and 3. Thesis 1 was limited to QG using engineered ontologies specific to

providing support for only Python via a reasoning engine and conceptual hierarchies. Thesis 2

blended the hybrid model of ontology and NLP (QuestGen) approaches, translating the Python code

into text, prior to the generation of the question. Then, in Thesis 3, custom evaluation metrics were

framed for benchmarking evaluation of LLM-based systems, among them GPT-4, LLaMA, and

Falcon. LLMs, introduced in Thesis 3, are highly effective for QG from source code; however, they

demand substantial financial and computational resources. This thesis presents a multi-language code

question generator capable of automatically producing assessment questions for Python, C++, Java,

and C codes. It focuses on QG from source code using static code analysis. Static code analysis is

adopted to generate questions from program code. It offers pattern-based algorithm detection,

structural analysis, and question templates. Pattern-based algorithm detection is performed through

regex patterns. Structural analysis examines functions, loops, conditionals, and variables to generate

relevant questions. Question templates involve predefined templates for different code elements to

create varied questions. This template-based approach serves as a lightweight baseline for the future

version alternative to the LLMs discussed in Thesis 3, offering lower computational requirements,

greater interpretability, and faster processing for large-scale deployment. The research objectives of

this study are:

1. Developing a multi-language code question generator capable of automatically producing

assessment questions for Python, C++, Java, and C codes (AQG from source code).

2. Establishing an approach for automatically evaluating the proposed system based on a set of

evaluation criteria through experiments on a real-world dataset to demonstrate its effectiveness

in generating questions from source codes.

5.2 Methodology

This thesis proposes a multi-language code question generator capable of automatically producing

assessment questions for Python, C++, Java, and C codes. The four programming languages were

chosen based on the up-to-date The Importance Of Being Earnest (TIOBE) Index, which indicates

the popularity of programming languages. Python, C++, Java, and C are the most popular

programming languages worldwide according to the TIOBE Index as of May 2025 [31]. While the

paper [32] primarily focuses on general educational applications, it is important to note that modern

adaptations of Bloom's Taxonomy can be tailored to specific domains, like programming. This

adaptation allows for evaluating cognitive tasks unique to programming education, ensuring that the

generated questions are relevant and effective for learners in that field. As a result, the methodology

in the current research adopts Bloom’s Taxonomy evaluation levels: remembering, understanding,

applying, analyzing, evaluating, and creating. Figure 5.1 shows the proposed methodology for a

multi-language question generator from source code. The research methodology behind the multi-

language question generator involves several interconnected components that work together to

analyze code snippets and generate relevant questions. A detailed explanation of the methodology

follows. Parsing is the process of checking the structure of the code and identifying elements like

11

keywords and variables. After parsing, the system extracts various structural elements from the code.

After parsing, the system extracts various structural elements from the code. The QG process uses

templates customized for different code elements and difficulty levels, as shown in Figure 5.2.

The templates are designed based on principles from cognitive science and educational theory, as

shown in Figure 5.2. After generating candidate questions, the system applies several post-processing

steps like de-duplication, shuffling, and limiting the number of questions to prevent overwhelming

the user, while maintaining a balance of difficulty levels. The methodology includes an evaluation

approach to assess the quality of the generated questions. The evaluation of the proposed system is

designed around a set of defined criteria. It uses experiments conducted on a real-world dataset to

demonstrate its effectiveness in generating questions from source code. The methodology involves a

structured approach to assess the quality of the generated questions across several key dimensions

(Bloom's Taxonomy, Difficulty Distribution, Linguistic Complexity, Code Coverage, Precision,

Recall, Novelty, Educational Alignment, Cognitive Diversity, Question Quality Score).

Algorithm 5.1 shows a multi-language template-based QG and evaluation algorithm. A template-

based pipeline aligned with Bloom’s taxonomy and difficulty levels is utilized to generate and

evaluate high-quality programming questions from code samples across multiple programming

languages. In this pipeline, source code samples undergo parsing using language-specific parsers to

enable accurate syntactic and structural analysis. From the parsed code, meaningful elements such as

functions, loops, and conditional statements are extracted, and ASTs are constructed to represent the

hierarchical structure of the code. Relevant predefined templates are then selected and instantiated

based on the extracted elements, generating candidate questions contextualized to each specific code

sample. The generated questions are post-processed to enhance linguistic clarity, eliminate

redundancy, and align with pedagogical standards. Each question is labelled with the corresponding

Bloom’s level and an estimated difficulty tag to facilitate adaptive learning scenarios. The generated

questions are subsequently evaluated using automated metrics to assess quality, novelty, and

cognitive diversity, and the labelled questions, along with the evaluation statistics, are aggregated and

stored for further analysis and visualization within the system’s reporting modules. To summarize the

overall generation process, the multi-language question generator algorithm is the main engine that

orchestrates the entire QG process. It first detects the programming language of the code snippet,

selects the appropriate parser, and parses the code. It then extracts various code elements (functions,

loops, conditionals, variables) and identifies the algorithm implemented in the code. Based on the

language and extracted elements, it generates appropriate questions. It falls back to generic questions

if no specific questions can be generated. It then shuffles the questions and returns the requested

number. Next, language detection algorithm uses pattern matching to identify the programming

language of the code snippet. It looks for language-specific keywords and syntax patterns to

differentiate between Python, Java, C++, and C. Following this, algorithm identification uses regex

pattern matching to identify common programming algorithms in the code. Each language parser

maintains a dictionary of algorithm names mapped to regex patterns. It returns the name of the first

matching algorithm or null if none is detected. Afterward, QG by element type generates questions

for a specific type of code element (functions, loops, conditionals, etc.). It also uses predefined

templates for each element type and difficulty level.

The human evaluation complements the automated evaluation by validating key findings while

providing educators’ perspective on question quality. Both approaches consistently identified C as a

better performer, though human evaluation revealed more balanced performance across languages

than suggested by automated metrics alone. The convergence between automated educational

alignment scores and human-assessed educational value demonstrates the validity of computational

metrics for educational applications. However, the human evaluation's emphasis on practical teaching

utility provides essential context that purely computational measures cannot capture, highlighting the

importance of multi-faceted evaluation approaches in educational technology research.

12

Algorithm 5.1: Multi-Language Template-Based QG and Evaluation

Input: Set of code samples in various programming languages (SourceCodeSamples),

 Predefined question templates mapped to Bloom’s taxonomy and difficulty levels (Templates)

Output: Generated questions with Bloom’s level and difficulty tags (LabelledQuestions),

 Evaluation statistics for generated questions (EvaluationMetrics)

1: for each CodeSample in SourceCodeSamples do

2: ParsedCode ← Parse(CodeSample, LanguageSpecificParser)

3: CodeElements ← ExtractCodeElements(ParsedCode)

4: AbstractRep ← GenerateAST(ParsedCode)

5: CandidateQuestions ← ∅

6: for each Element in CodeElements do

7: RelevantTemplates ← SelectTemplates(Element, Templates)

8: for each Template in RelevantTemplates do

9: Question ← InstantiateTemplate(Template, Element)

10: CandidateQuestions ← CandidateQuestions ∪ {Question}

11: end for

12: end for

13: FilteredQuestions ← Postprocess(CandidateQuestions)

14: LabelledQuestions ← LabelQuestions(FilteredQuestions)

15: EvaluationMetrics ← Evaluate(LabelledQuestions, CodeSample)

16: Store(LabelledQuestions, EvaluationMetrics)

17: end for

18: GenerateReportsAndVisualizations()

Figure 5.1 Methodology for multi-language question generation from source code

 'loop': { DifficultyLevel.BEGINNER: [

"What is the purpose of the {type} loop on line {line_num}?", "How many times will the {type} loop on line

{line_num} execute with typical input?", "What happens in each iteration of the {type} loop on line {line_num}?",],

Figure 5.2 Sample of templates used for question generation from source code

13

6 Thesis 5: Multi-Language Static-Analysis System for Automatic Question Generation from Source

Code

6.1 Introduction

I developed a modular static analysis framework for AQG across multiple programming languages.

The system integrates language-specific analyzers within a unified architecture designed to support

consistency in QG across the four programming languages (C, C++, Java, and Python) [P6].

The graph-based pipelines in this thesis are meant to complement not compete with the approach of

early LLM methods discussed in Thesis 3 and of the template-based static baseline discussed in

Thesis 4. Thesis 5 has given a lightweight and reproducible baseline across languages but also

revealed some pitfalls of regex parsing, including low precision, limited novelty, and a cap on

structural depth. In this Thesis, that layer is replaced by language-specific parsers (Python AST,

javalang, and Clang/LLVM) that are integrated through a normalization interface to ensure consistent

treatment of functions, methods, loops, conditionals, and variables across Python, Java, C++, and C.

Building on such normalized elements, CFG and PDG construction adds structural insights, such as

control paths, branching, and complexity, alongside semantic insights such as data dependencies and

variable lifecycles. The force-balanced generation mechanism then adjusts in real time from course

to emphasizing under-represented Bloom levels, question types, and algorithm families to achieve

more well-rounded coverage rather than chance distribution across all levels of variety in the

methodology. This generates improved precision, a richer language, greater novelty, and broader

cognitive diversity, while remaining interpretable, deterministic, and free per item. LLMs sometimes

fail to deliver due to budgetary, privacy, or accreditation constraints. The result is an explainable and

adaptable layer that can also support future hybrid pipelines, such as using curated CFG/PDG

summaries to guide LLMs in producing more creative, higher-order variations. In practice, this

clarifies when each method is best suited: LLMs excel in breadth and stylistic variety, while graph

fusion offers transparent, coverage-controlled, and semantically grounded assessment. The research

objectives of this thesis are:

1. To design and implement three automated pipelines (CFG-based, PDG-based, and CFG-PDG

Synergetic) for QG from source code, each leveraging different code analysis strategies to

explore their effectiveness in producing high-quality, pedagogically aligned questions.

2. To develop an organizational multi-dimensional evaluation system to measure the system

performance in terms of coverage balance, quality of questions, linguistic complexity, and

diversity in all dimensions. This framework encompasses automated measures along with

human assessment measures.

6.2 Methodology

This thesis introduces a multi-language generator and evaluator system that takes source code as input

and is capable of generating coding questions in various programming languages, including Python,

C++, Java, and C. These four language choices were the result of being some of the most popular

languages at the moment, as classified by the May 2025 listing of the TIOBE Index and ranking

software development languages and their current popularity list [31]. It uses an advanced pipeline

structure to transform source code written in several programming languages into good-quality

assessment questions distributed across different dimensions in a reasonably balanced manner. This

section presents a comprehensive description of every element within the pipeline and interconnected

characteristics and functions of the general system. Figure 6.1 shows the comprehensive pipeline for

multi-language question generator and evaluator system. The objective of building a multi-language

question generator and evaluator system is to support the growing demands to meet the assessment

issues in programming education, which traditional manual methods cannot prospectively

accommodate the demands of scaling with an expanding enrollment base and range of curriculum

needs. The pipeline shown in Figure 6.1 starts by feeding in source code, possibly choosing four

supported programming languages: Python, Java, C++, or C. This is used as a preliminary before

further analysis and to clear up any problems with encoding, remove comments, normalize

whitespace, and do other simple preprocessing chores. The system accepts codes with diverse levels

14

of complexity, which may range from simple to intricate codes of implementation algorithms. The

architecture has seven interconnected parts that run code snippets via a chain of specialized

transformations and analyses:

1. Language Detection: The system detects the programming language of the code by passing a

language identifier.

2. Language-Specific Parsing: It uses language-specific optimized parsers.

3. Element Extraction: It automatically recognizes and stores programming elements such as

functions, classes, variables, loops, conditionals, data structures, and language-specific constructs

into an index.

4. Advanced Code Analysis: CFG identifies loops, execution paths, and branching conditionals.

PDG captures variable relationships and data dependencies.

5. Force-Balanced Generation: It takes measures to ensure the selection probabilities are readjusted

during the final stages of generating solutions.

6. Quality Evaluation: It integrates automated and human-based evaluation.

7. Output Generation: It generates structured questions.

Algorithm 6.1 shows the CFG pipeline algorithm for code QG and evaluation. Its main objective is

to generate questions by extracting control flow information from code. It parses code to extract CFG

nodes (basic blocks) and edges (control transitions). Then, it analyzes control paths, loops, and

branching structures. Finally, it generates questions like tracing, MCQ, and basic error-identification

questions based on flow paths. Algorithm 6.2 shows the PDG pipeline algorithm for code QG and

evaluation. Its main objective is to generate questions using data and control dependencies in the

program. It parses code and extracts PDG, capturing data dependencies, variable usage, and control

dependencies. Then, it analyzes data flows, variable lifetimes, and semantic relationships. Finally, it

generates questions like dependency, comprehension, and advanced error-identification questions.

Algorithm 6.3 shows the CFG-PDG pipeline algorithm for code QG and evaluation. Its main

objective is to generate advanced, diverse questions using a synergistic integration of CFG and PDG.

Figure 6.1 Comprehensive pipeline for multi-language question generator and evaluator system

15

Algorithm 6.1: CFG Pipeline for Code QG and Evaluation

Input: Source Code (SC)

Output: Question Set (QS)

1: Parse SC using language-specific parser.

2: Construct CFG from SC.

3: Identify algorithm type using CFG patterns.

4: Compute cyclomatic complexity for difficulty estimation.

5: Select Bloom-level-aligned templates for CFG-based QG.

6: Fill placeholders using CFG nodes and control paths.

7: Generate QS (e.g., tracing, MCQ, and error-identification questions).

8: Evaluate QS using quality and diversity metrics.

Algorithm 6.2: PDG Pipeline for Code QG and Evaluation

Input: Source Code (SC)

Output: Question Set (QS)

1: Parse SC using language-specific parser.

2: Construct PDG from SC.

3: Identify algorithm type using PDG and textual features.

4: Analyze data dependencies for semantic complexity estimation.

5: Select Bloom-level-aligned templates for PDG-based QG.

6: Fill placeholders using PDG nodes and dependency structures.

7: Generate QS (e.g., dependency, error identification, and comprehension questions).

8: Evaluate QS using quality and diversity metrics.

Algorithm 6.3: CFG&PDG Synergetic Pipeline for Code QG and Evaluation

Input: Source Code (SC)

Output: Question Set (QS)

1: Parse SC using language-specific parser.

2: Construct CFG and PDG from SC.

3: Integrate CFG and PDG for a unified structural-semantic representation.

4: Identify algorithm type using integrated features.

5: Compute complexity and dependency scores for difficulty estimation.

6: Select templates aligned with Bloom’s taxonomy and algorithm type.

7: Fill placeholders using CFG paths and PDG dependencies.

8: Generate QS (e.g., tracing, dependency, error identification, creative coding, and MCQs).

9: Evaluate QS using comprehensive quality, novelty, and diversity metrics.

It parses and simultaneously extracts CFG and PDG representations. Next, it integrates structural

(CFG) and semantic (PDG) information. Then, it identifies algorithm types. Finally, it generates a

reasonably balanced set of questions, including creative coding and higher-order Bloom questions.

16

The same automatic evaluation metrics as the baseline model (Thesis 4 Automatic Evaluation

Approach) are utilized in the system, such as overall quality score, linguistic complexity, precision,

recall, F1-score, novelty score, educational alignment, and cognitive diversity [P5]. Five human-

evaluated dimensions are conceptualized to measure the pedagogical soundness, clarity, and cognitive

relevance of generated programming questions to measure their quality beyond automatic metrics

(relevance, difficulty appropriateness, clarity, educational value, and cognitive level match).

7 Conclusion

7.1 Future Work

Each of the five thesis points opens up unique and practical directions for continued research. The

following recommendations aim to build on their individual contributions, offering ways to refine

current methods, broaden their reach, and address some of the open challenges highlighted throughout

the dissertation.

1. Ontology-Based Automatic Generation of Learning Materials for Python Programming: Future

research could extend the ontology-based approach beyond Python to include a broader range of

programming languages. This would involve designing cross-language ontological frameworks

or language-specific extensions that preserve semantic coherence across diverse syntactic

constructs. Additionally, conducting controlled experimental studies comparing ontology-

generated questions with manually crafted ones could yield valuable insights into their

educational effectiveness, particularly in terms of learner comprehension, retention, and

perceived usefulness.

2. A Hybrid Approach for Automatic Question Generation from Python Program Codes: One

promising direction is to enhance the system’s ability to process more complex programming

structures, especially those involving third-party libraries, nested functions, and interdependent

statements. Improving the semantic interpretation pipeline, possibly by incorporating deeper NLP

techniques or lightweight learning models, could help generate more sophisticated and context-

aware questions. Future research may also explore how to adapt the system automatically to

different code domains or programming paradigms.

3. Evaluating Large Language Models for Generating Programming Questions from Code: Future

work in this area could involve refining the evaluation framework to capture more nuanced

aspects of question quality, such as semantic subtlety, creativity, and alignment with pedagogical

goals. Incorporating qualitative feedback from educators alongside quantitative metrics could

further ground the evaluation process in real instructional needs. Additionally, exploring

emerging models, including domain-specific LLMs or those designed to support multiple

programming languages, may offer deeper insights into their effectiveness across diverse

educational contexts.

4. Template-Based Question Generation from Code Using Static Code Analysis: Subsequent

research may focus on developing dedicated language-specific parsers for Java, C++, and C to

improve upon the current reliance on pattern-based extraction methods. Adding runtime analysis

or symbolic execution could improve the system’s contextual accuracy and support questions

based on actual program behavior. The integration of adaptive or ML-driven components might

also enable context-sensitive template selection. Longitudinal classroom studies would help

assess how such systems impact student learning and engagement over time.

5. Multi-Language Static-Analysis System for Automatic Question Generation from Source Code:

Further development could extend the system to include functional, concurrent, and domain-

specific languages, making it more adaptable to a wide range of curricular needs. By combining

dynamic and static program analysis, the system could generate richer, behavior-aware questions,

especially in tasks involving edge-case reasoning or algorithmic logic. Another important

direction involves linking the framework with adaptive learning platforms that personalize

questions based on individual learner progress. Conducting long-term educational studies would

provide essential data on how the system influences knowledge retention, problem-solving skills,

and transfer of learning across different instructional settings. Finally, a promising extension of

17

this work lies in integrating LLMs with the CFG-PDG framework. The modular design of the

current system already provides clear entry points for such hybridization, where LLMs can be

guided by structural program representations rather than generating questions in isolation. By

using CFG and PDG graphs as guardrails, LLMs could enrich QG with greater semantic variety

and higher-order reasoning while maintaining alignment with Bloom’s taxonomy and algorithmic

correctness.

7.2 Author’s Publications

Publications Related to the Dissertation

Journal Articles in Q Ranking

[P1] J. Alshboul and E. Baksa-Varga, “Ontology-Based Automatic Generation of Learning Materials

for Python Programming,” International Journal of Advanced Computer Science and Applications,

vol. 16, no. 5, 2025, doi: 10.14569/IJACSA.2025.0160508. Quartile: Q3.

[P2] J. Alshboul and E. Baksa-Varga, “A Review of Automatic Question Generation in Teaching

Programming,” International Journal of Advanced Computer Science and Applications, vol. 13, no.

10, 2022, doi: 10.14569/IJACSA.2022.0131006. Quartile: Q3.

[P3] J. Alshboul and E. Baksa-Varga, “A Hybrid Approach for Automatic Question Generation from

Program Codes,” International Journal of Advanced Computer Science and Applications, vol. 15, no.

1, 2024, doi: 10.14569/IJACSA.2024.0150102. Quartile: Q3.

[P4] J. Alshboul and E. Baksa-Varga, “Evaluating Large Language Models for Generating

Programming Questions from Code,” Pollack Periodica: An International Journal for Engineering

and Information Sciences, Status: Accepted/Minor Revision, doi: 10.1556/606.2025.01471. Quartile:

Q3.

[P5] J. Alshboul and E. Baksa-Varga, “Template-Based Question Generation from Code Using Static

Code Analysis,” Pollack Periodica: An International Journal for Engineering and Information

Sciences, Status: Under Review. Quartile: Q3.

[P6] J. Alshboul and E. Baksa-Varga, “Multi-Language Static-Analysis System for Automatic

Question Generation from Source Code,” Status: To Be Submitted.

Other Publications

Journal Articles in Q Ranking

[P7] S. Mokhtar, J. A. Q. Alshboul, and G. O. A. Shahin, “Towards Data-driven Education with

Learning Analytics for Educator 4.0,” Journal of Physics: Conference Series, vol. 1339, no. 1339, p.

012079, Dec. 2019, doi: https://doi.org/10.1088/1742-6596/1339/1/012079. Quartile: Q4.

[P8] H. A. A. Ghanim, J. Alshboul, and L. Kovacs, “Development of Ontology-based Domain

Knowledge Model for IT Domain in e-Tutor Systems,” International Journal of Advanced Computer

Science and Applications, vol. 13, no. 5, 2022, doi: 10.14569/IJACSA.2022.0130505. Quartile: Q3.

International Journals

[P9] J. Alshboul, H. A. A. Ghanim, and E. Baksa-Varga, Semantic Modeling for Learning Materials

in E-tutor Systems, Journal of Software Engineering & Intelligent Systems 6(2) pp. 1-5. (2021),

Journal Article.

Local Journals

[P10] J. Alshboul and E. Baksáné-Varga. “Student Academic Performance Prediction,” Production

Systems and Information Engineering, vol. 9, no. 1, pp. 36–53, 2020, Accessed: July. 09, 2025.

[Online]. Available: https://ojs.uni-miskolc.hu/index.php/psaie/article/view/3822.

International Conference Proceedings

[P11] 17th Miklós Iványi International Ph.D. & DLA Symposium: Architectural, Engineering and

Information Sciences. Title: Development of A Semantic Model for Learning Materials in

18

Intelligent Tutoring Systems. Organizer: Faculty of Engineering and Information Technology,

University of Pécs, Pécs, Hungary. Date: 25th-26th October, 2021.

[P12] Language in the Human-Machine Era Training School. Title: E-Learning and Automatic

Resource Generation for Learning Materials. Date: 05th to 9th June 2023. Location: University of

Pristina, Kosovo. Organizer: EU agency "European Cooperation in Science and Technology".

Local Conference Proceedings

[P13] J. Alshboul and E. Baksáné-Varga. A Survey of Domain Model Representations in Intelligent

Tutoring Systems. Miskolc, Hungary: Faculty of Mechanical Engineering and Informatics PhD

Forum Proceedings Book, University of Miskolc, 2021.

[P14] J. Alshboul and E. Baksáné-Varga. Code, Feedback, And Question Generation on

Programming Topics Using ChatGPT API. Miskolc, Hungary: Faculty of Mechanical Engineering

and Informatics PhD Forum Proceedings Book, University of Miskolc, 2023.

Book of Abstract

[P15] J. Alshboul, H. A. A. Ghanim, and E. Baksa-Varga. Development of a Semantic Model for

Learning Materials in Intelligent Tutoring Systems, International PhD & DLA Symposium 2021,

Pollack Press (2021). pp. 91-91, Abstract.

[P16] J. Alshboul and E. Baksa-Varga. A Generator-Evaluator Framework for Automatic Question

Generation from Program Codes, International Conference on AI Transformation 2024, Publisher:

Corvinus University of Budapest (2024). pp. 19-20, Abstract.

References

[1] N. Mulla and P. Gharpure, “Automatic Question Generation: A Review of Methodologies, Datasets, Evaluation

Metrics, and Applications,” Progress in Artificial Intelligence, vol. 12, no. 1, pp. 1–32, Jan. 2023, doi:

10.1007/s13748-023-00295-9.

[2] M. Zerkouk, M. Mihoubi, and B. Chikhaoui, “A Comprehensive Review of AI-based Intelligent Tutoring Systems:

Applications and Challenges,” Jul. 25, 2025, arXiv. doi: 10.48550/arXiv.2507.18882.

[3] M. Vinueza-Morales, J. Rodas-Silva, C. Vidal-Silva, J. Córdova-Morán, and E. Cevallos-Ayón, “Teaching

programming in higher education: a bibliometric analysis of trends, technologies, and pedagogical approaches,”

Frontiers in Education, vol. 10, Mar. 2025, doi: 10.3389/feduc.2025.1525917.

[4] S. Al Faraby, A. Adiwijaya, and A. Romadhony, “Review on Neural Question Generation for Education Purposes,”

International Journal of Artificial Intelligence in Education, vol. 34, no. 3, pp. 1008–1045, Sep. 2024, doi:

10.1007/s40593-023-00374-x.

[5] G. Kurdi, J. Leo, B. Parsia, U. Sattler, and S. Al-Emari, “A Systematic Review of Automatic Question Generation

for Educational Purposes,” International Journal of Artificial Intelligence in Education, vol. 30, no. 1, pp. 121–204,

Mar. 2020, doi: 10.1007/s40593-019-00186-y.

[6] R. Queirós, J. C. Paiva, and J. P. Leal, “Programming Exercises Interoperability: The Case of a Non-Picky

Consumer,” in 10th Symposium on Languages, Applications and Technologies (SLATE 2021), R. Queirós, M. Pinto,

A. Simões, F. Portela, and M. J. Pereira, Eds., in Open Access Series in Informatics (OASIcs), vol. 94. Dagstuhl,

Germany: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021, p. 5:1-5:9. doi:

10.4230/OASIcs.SLATE.2021.5.

[7] I. Mekterović, L. Brkić, and M. Horvat, “Scaling Automated Programming Assessment Systems,” Electronics, vol.

12, no. 4, 2023, doi: 10.3390/electronics12040942.

[8] H. S. Wankhede and A. W. Kiwelekar, “Qualitative Assessment of Software Engineering Examination Questions

with Bloom’s Taxonomy,” Indian Journal of Science and Technology, vol. 9, no. 6, Mar. 2016, doi:

10.17485/ijst/2016/v9i6/85012.

[9] L. J. Tamang, R. Banjade, J. Chapagain, and V. Rus, “Automatic Question Generation for Scaffolding Self-

explanations for Code Comprehension,” in Artificial Intelligence in Education, M. M. Rodrigo, N. Matsuda, A. I.

Cristea, and V. Dimitrova, Eds., Cham: Springer International Publishing, 2022, pp. 743–748.

19

[10] O. Sitthisak, L. Gilbert, and D. Albert, “Ontology-Driven Automatic Generation of Questions from Competency

Models,” in The 9th International Conference on Computing and InformationTechnology (IC2IT2013), P. Meesad,

H. Unger, and S. Boonkrong, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 145–154.

[11] S. Alkhuzaey, F. Grasso, T. R. Payne, and V. Tamma, “Evaluating the Fitness of Ontologies for the Task of Question

Generation,” Apr. 08, 2025, arXiv. doi: 10.48550/arXiv.2504.07994.

[12] O. Sychev and D. Shashkov, “Mass Generation of Programming Learning Problems from Public Code Repositories,”

Big Data and Cognitive Computing, vol. 9, no. 3, 2025, doi: 10.3390/bdcc9030057.

[13] E. Logacheva, A. Hellas, J. Prather, S. Sarsa, and J. Leinonen, “Evaluating Contextually Personalized Programming

Exercises Created with Generative AI,” in Proceedings of the 2024 ACM Conference on International Computing

Education Research - Volume 1, in ICER ’24. New York, NY, USA: Association for Computing Machinery, 2024,

pp. 95–113. doi: 10.1145/3632620.3671103.

[14] K. Zhu, Y. Lu, H. Huang, L. Yu, and J. Zhao, “Constructing More Complete Control Flow Graphs Utilizing Directed

Gray-Box Fuzzing,” Applied Sciences, vol. 11, no. 3, 2021, doi: 10.3390/app11031351.

[15] Y. Yan, N. Cooper, K. Moran, G. Bavota, D. Poshyvanyk, and S. Rich, “Enhancing Code Understanding for Impact

Analysis by Combining Transformers and Program Dependence Graphs,” Proc. ACM Softw. Eng., vol. 1, no. FSE,

Jul. 2024, doi: 10.1145/3643770.

[16] S. K. Patil and M. M. Shreyas, “A Comparative Study of Question Bank Classification based on Revised Bloom’s

Taxonomy using SVM and K-NN,” in 2017 2nd International Conference On Emerging Computation and

Information Technologies (ICECIT), 2017, pp. 1–7. doi: 10.1109/ICECIT.2017.8453305.

[17] Z. Ullah, A. Lajis, M. Jamjoom, A. Altalhi, and F. Saleem, “Bloom’s taxonomy: A beneficial tool for learning and

assessing students’ competency levels in computer programming using empirical analysis,” Computer Applications

in Engineering Education, vol. 28, no. 6, pp. 1628–1640, 2020, doi: https://doi.org/10.1002/cae.22339.

[18] S. Sarsa, P. Denny, A. Hellas, and J. Leinonen, “Automatic Generation of Programming Exercises and Code

Explanations Using Large Language Models,” presented at the International Computing Education Research,

Lugano, Switzerland: ACM, Aug. 2022, pp. 27–43. doi: https://doi.org/10.1145/3501385.3543957.

[19] H. Naveed, A. U. Khan, S. Qiu, M. Saqib, S. Anwar, M. Usman, N. Akhtar, N. Barnes, and A. Mian, “A

Comprehensive Overview of Large Language Models,” ACM Trans. Intell. Syst. Technol., vol. 16, no. 5, Aug. 2025,

doi: 10.1145/3744746.

[20] A. Ushio, F. Alva-Manchego, and J. Camacho-Collados, “A Practical Toolkit for Multilingual Question and Answer

Generation,” in Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume

3: System Demonstrations), D. Bollegala, R. Huang, and A. Ritter, Eds., Toronto, Canada: Association for

Computational Linguistics, Jul. 2023, pp. 86–94. doi: 10.18653/v1/2023.acl-demo.8.

[21] C. Cheng, Z. Huang, G. Zhao, Y. Guo, X. Lin, J. Wu, X. Li, and S. Wang, “From Objectives to Questions: A

Planning-based Framework for Educational Mathematical Question Generation,” in Proceedings of the 63rd Annual

Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), W. Che, J. Nabende, E. Shutova,

and M. T. Pilehvar, Eds., Vienna, Austria: Association for Computational Linguistics, Jul. 2025, pp. 12836–12856.

doi: 10.18653/v1/2025.acl-long.628.

[22] B. Nguyen, M. Yu, Y. Huang, and M. Jiang, “Reference-based Metrics Disprove Themselves in Question

Generation,” in Findings of the Association for Computational Linguistics: EMNLP 2024, Y. Al-Onaizan, M. Bansal,

and Y.-N. Chen, Eds., Miami, Florida, USA: Association for Computational Linguistics, Nov. 2024, pp. 13651–

13666. doi: 10.18653/v1/2024.findings-emnlp.798.

[23] C. Zhou, M. Wang, T. Zhang, Q. Zhu, J. Li, and H. Huang, “From Answers to Questions: EQGBench for Evaluating

LLMs’ Educational Question Generation,” Aug. 05, 2025, arXiv. doi: 10.48550/arXiv.2508.10005.

[24] D. Gnanasekaran, R. Kothandaraman, and K. Kaliyan, “An Automatic Question Generation System Using Rule-

Based Approach in Bloom’s Taxonomy,” Recent Advances in Computer Science and Communications, vol. 14, no.

5, pp. 1477–1487, 2021, doi: 10.2174/2213275912666191113143335.

[25] E. Kasneci et al., “ChatGPT for good? On opportunities and challenges of large language models for education,”

Learning and Individual Differences, vol. 103, p. 102274, 2023, doi: https://doi.org/10.1016/j.lindif.2023.102274.

[26] R. G. Golla, V. Tiwari, P. Chokhra, and H. Okada, “QuestGen AI.” [Online]. Available:

https://github.com/ramsrigouthamg/Questgen.ai

[27] J. Li, T. Tang, W. X. Zhao, J.-Y. Nie, and J.-R. Wen, “Pretrained Language Models for Text Generation: A Survey,”

May 13, 2022, ArXiv. doi: 10.48550/arXiv.2201.05273.

20

[28] X.-Q. Dao, “Performance Comparison of Large Language Models on VNHSGE English Dataset: OpenAI ChatGPT,

Microsoft Bing Chat, and Google Bard,” Jul. 20, 2023, ArXiv. doi: 10.48550/arXiv.2307.02288.

[29] A. Koubaa, “GPT-4 vs. GPT-3.5: A concise showdown,” Apr. 07, 2023, TechRxiv. doi:

10.36227/techrxiv.22312330.v2.

[30] United States Chess Federation, “Approximating formulas for the US Chess rating system.” Apr. 2017. [Online].

Available: http://www.glicko.net/ratings/approx.pdf

[31] Paul Jansen, “The TIOBE Programming Community Index,” Tiobe.com. Accessed: May 16, 2025. [Online].

Available: https://www.tiobe.com/tiobe-index/

[32] L. L. Shwe, S. Matayong, and S. Witosurapot, “Enabling Cognitive and Unified Similarity-Based Difficulty Ranking

Mechanisms for AQG On Multimedia Content,” Expert Systems with Applications, vol. 277, p. 127244, Jun. 2025,

doi: 10.1016/j.eswa.2025.127244.

