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1 Introduction 

1.1 Background 

Automatic Question Generation (AQG) is the process of creating meaningful and relevant questions 

automatically from various types of input, including text, structured data, images, or videos, using 

computational methods. In simple terms, it involves designing systems that can understand content, 

identify key information or patterns, and generate clear, contextually appropriate questions to support 

learning, comprehension assessment, conversational systems, or data exploration without requiring 

manual question crafting for each instance [1], [P2]. Figure 1.1 illustrates the conceptual framework 

of AQG from source code. The system takes source code as input, processes it through computational 

analysis and generation techniques, and automatically produces relevant questions for educational or 

assessment purposes. Figure 1.2 illustrates the four-component architecture of Intelligent Tutoring 

Systems (ITS) as discussed by the review article [2]. This dissertation focuses specifically on the 

Domain Model component through AQG for programming education. This work contributes to the 

foundational knowledge representation layer by developing methods to automatically generate 

contextually appropriate programming questions that can be integrated into the broader tutoring 

system architecture. 

The evolution of programming education necessitates a profound reflection on how assessment has 

been designed, delivered, and evaluated. Given that coding has become necessary across academic 

disciplines and industries, educational institutions increasingly need to develop robust and scalable 

 
Figure 1.1 Conceptual framework of AQG from source code 

 

 

 
Figure 1.2 The four-component ITS architecture  
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ways to assess their students' programming knowledge and problem-solving skills [3]. Learners today 

often study multiple programming languages, including Python, Java, C++, and C, each with unique 

syntactic and conceptual nuances, making standardized assessment even more challenging. Although 

recent AQG studies have primarily focused on generating questions from natural language texts and, 

to a lesser extent, visual data [1], [4], [5], AQG from source code remains underexplored despite its 

potential to transform programming education. Academic programming textbooks typically include 

text, images, and code examples, yet most AQG systems rely heavily on NLP techniques for text-

based question generation (QG), with limited exploration of visual content [1], [P3]. The review paper 

[P2] advocates for developing QG methods tailored to programming topics, along with appropriate 

evaluation criteria. Traditional methods of question design in programming courses have struggled to 

keep pace with this growth. As noted in previous studies, manually crafted questions are time-

consuming to produce [6], difficult to standardize across diverse learners and languages [6], [7], and 

often fall short of covering the full spectrum of cognitive skills outlined in Bloom’s Taxonomy [8]. 

Moreover, they tend to lack scalability, particularly in large or multi-language educational settings 

where hundreds of students may require tailored assessment materials [7]. These challenges have 

driven a growing interest in AQG from source code. Rather than relying on static repositories of 

questions, AQG approaches analyze code directly, extracting structure, semantics, and logic to 

generate assessment items that dynamically align with the learner’s context [9]. This dissertation 

responds to that demand by presenting a unified exploration of five distinct yet complementary 

approaches: ontology-driven QG [10], [11], hybrid semantic-to-question modeling [9], template-

based multi-language QG via static code analysis [12], evaluation of large language models (LLMs) 

for QG from source code [13], and a comprehensive multi-language assessment system powered by 

Control Flow Graphs (CFGs) and Program Dependence Graphs (PDGs). Collectively, these 

approaches constitute the novel contributions of this work. I extend beyond traditional template or 

ontology-based systems by incorporating formal semantic graph representations, namely CFGs and 

PDGs, to anchor QG in actual program structure and behavior. CFGs model possible execution paths 

and dependencies across program blocks [14], while PDGs capture both control and data 

dependencies among statements [15], providing a richer semantic foundation for QG. Each approach 

contributes to a shared objective: to automate programming QG in a pedagogically grounded, 

cognitively stratified (Organizing learning or assessment tasks by levels of thinking, from simple 

recall to complex problem-solving), and linguistically inclusive way [7], [16]. 

1.2 Problem Statement 

The global expansion of computer science (CS) education has intensified the need for scalable, high-

quality assessment tools that can effectively serve diverse learners across various programming 

languages [3], [7]. Traditionally, the manual development of programming assessment questions has 

been labor-intensive, inconsistent, and insufficient to meet the rising demand for pedagogically 

sound, comprehensive evaluation materials in programming education [6], [8], [17]. AQG has 

emerged as a promising approach for scalable assessment across educational contexts [1], [4], [5]. 

However, the current research landscape in AQG reveals a pronounced imbalance in focus and 

development across different input modalities. The field has been dominated by text-based question 

generation, benefiting from extensive datasets, mature neural models, and a clear trajectory from rule-

based systems to large pre-trained transformers and LLMs [4], [18], [19]. Similarly, visual QG has 

seen growing attention, particularly for generating questions from images and, more recently, 

educational diagrams, leveraging advancements in multimodal learning [20], [21]. These areas have 

established robust evaluation practices and benchmarks, fueling rapid progress and adoption [22], 

[23]. In contrast, QG from source code remains significantly underrepresented despite its critical 

potential in programming education [9], [12], [18]. Generating meaningful and pedagogically aligned 

questions directly from source code presents unique challenges, including understanding code 

semantics [14], [15], aligning questions with relevant programming concepts [9], [12], and ensuring 

cognitive coverage across difficulty levels [8], [17], [24]. The lack of standardized datasets and well-

defined evaluation metrics further impedes systematic advancements in this domain [13], [22], [23]. 
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Most existing AQG research has overlooked this research gap in programming education assessment, 

and only a few recent studies have begun exploring it, often in isolated or single-language contexts 

[9], [12], [18], leaving a substantial gap in the scalable assessment needs of programming education. 

To clarify, generating programming questions directly from raw, multi-language source code requires 

integrated semantic parsing (AST/CFG/PDG), multi-language normalization, deliberate Bloom-level 

coverage, diverse code-centric question types, and multi-metric evaluation. These requirements are 

largely absent in existing primarily text-focused or single-language ontology/LLM studies, leaving 

the domain underdeveloped and limiting scalable programming assessment. Addressing this gap is 

essential to ensure equitable, effective, and scalable programming assessment tools that align with 

modern pedagogical frameworks and can adapt across multiple programming languages [3], [7], [17], 

[25]. Advancing AQG from code requires not only robust generation methods that capture the 

semantics of source code [14], [15], but also the development of principled evaluation frameworks 

tailored to the unique requirements of programming education [13], [22], [23]. This dissertation aims 

to address these gaps to advance scalable, high-quality, and pedagogically aligned AQG systems that 

support equitable programming education worldwide. 

1.3 Research Objectives 

This dissertation seeks to address the limitations of current programming assessment methods by 

pursuing the following core objectives: 

1. To design and implement models that automatically generate programming questions directly 

from source code. 

2. To ensure systematic alignment of generated questions with cognitive learning frameworks, 

particularly Bloom’s Taxonomy. 

3. To support multiple programming languages (Python, Java, C++, and C) within a unified, 

multi-language assessment context. 

4. To evaluate both the technical quality and the pedagogical value of generated questions 

through automated metrics and expert review. 

Together, these objectives establish the foundation of this dissertation’s contribution to advancing 

programming education assessment through AI-enhanced, source code–driven QG and evaluation. 

2 Thesis 1: Ontology-Based Automatic Generation of Learning Materials for Python Programming  

2.1 Introduction 

I developed an ontology-based system that automatically generates programming-related assessment 

questions directly from source code. By leveraging structured domain knowledge, the system 

semantically interprets programming constructs to support concept-aware question generation, 

without relying on adaptive learning mechanisms [P1, P2].  

The objectives of this research are to design an ontology-based framework that models Python 

programming concepts and their interconnections, and develop a system for automatically generating 

Python programming learning materials (specifically quizzes) that align with the modeled concepts 

and relationships. It supports beginner, intermediate, and advanced difficulty levels. 

2.2 Methodology 

Algorithm 2.1 automatically generates MCQs quizzes aligned with Python programming concepts 

using a domain-specific ontology. It aims to deliver personalized and contextually accurate 

assessments while ensuring semantic alignment with reference materials through BERT-based 

similarity checks (implemented and deployed on a Flask App). The process begins by building a 

domain ontology for Python programming. This ontology formalizes concepts such as data types, 

control structures, functions, and OOP, capturing relationships and properties necessary for the 

semantic structuring of learning materials. For each domain concept template, the system uses a 

template-based generation approach to create relevant MCQs, systematically organizing these 

questions into a structured MCQs bank. This bank is then saved in a comma separated values (CSV) 

format for efficient retrieval and further processing. When a learner requests a quiz, the system loads 
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the MCQs dataset, filters questions based on the desired difficulty level, randomly selects the required 

number of questions, computes semantic similarity using BERT embeddings to compare the learner’s 

domain with reference materials, ensuring that the questions are contextually aligned and relevant, 

and returns the personalized quiz alongside similarity metrics for evaluation. 

 
Algorithm 2.1: Ontology-Based MCQ Generation 

Input: Domain, Difficulty, Number_of_Questions 

Output: Random_MCQ_Quiz, Similarity_Score 

1:  PROCEDURE BUILD_PYTHON_ONTOLOGY() 

2:      ontology ← ONTOLOGY_STRUCTURE()    

3:      RETURN ontology 

4:  END PROCEDURE 

5:  PROCEDURE GENERATE_MCQ_DATASET() 

6:      mcq_bank ← ∅ 

7:      for each domain_template do 

8:          questions ← TEMPLATE_BASED_GENERATION(domain_template) 

9:          mcq_bank.ADD(domain, questions) 

10:     end for 

11:     SAVE_TO_CSV(mcq_bank, "mcq_dataset.csv") 

12: END PROCEDURE 

13: PROCEDURE SERVE_QUIZ(domain, difficulty, num_questions) 

14:     questions ← LOAD_FROM_CSV("mcq_dataset.csv") 

15:     filtered ← FILTER_BY_DIFFICULTY(questions[domain], difficulty) 

16:     selected ← RANDOM_SAMPLE(filtered, num_questions) 

17:     similarity ← BERT_SIMILARITY(ontology_material[domain], domain) 

18:     RETURN FLASK_RESPONSE(selected, similarity) 

19: END PROCEDURE 

3 Thesis 2: A Hybrid Approach for Automatic Question Generation from Program Codes 

3.1 Introduction 

I developed a hybrid system that combines static code analysis, ontology, and natural language 

processing using word embeddings to generate programming-related questions from source code 

[P3].  

This thesis focuses on generating questions from code snippets using semantic relations to extract the 

concepts. Generating questions from unconventional sources, such as code snippets, becomes 

important in providing a better learning experience to large groups of students, especially when dealing 

with limited information. The main goal of this thesis is to assist instructors and students in properly 

evaluating student performance by generating Python-based programming questions from existing 

materials (i.e., code snippets). The AQG from code snippets will add the possibility of generating a 

different set of questions based on the same code snippet. Therefore, it leads to a better understanding 

of the given topic. The research objectives of this thesis are to implement a framework that can 

interpret Python programming language into text, and enable the framework to comprehend the text 

and build connections between the programming structures and the semantic concepts for AQG.  

3.2 Methodology 

To generate questions from existing Python code snippets, an interpreter is needed to translate the 

code into more understandable concepts. Python or any other programming language is constructed 

using operators, variables, and functions. The ontology will categorize and conceptualize the list of 

commands (i.e., variables, operators, etc.) and the relationships between the concepts in the script. It 

will build an explained version of the code by processing the code line by line and creating semantic 

relationships based on the input. Subsequently, the translated code is generated and inserted into an 

AI question generator called “QuestGen” [26]. This model will generate Boolean, short-answer, and 

open-ended questions. Figure 3.1 shows the framework data flow and its components. The current 

study considers Boolean, short, and open-ended questions. Since learning a programming language 
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focuses on understanding the content of a code, such questions are more suitable for assessing student 

knowledge properly. 

Over time, there is a growing demand for QG, a trend that could significantly alleviate the burden on 

educators and trainers.  This is particularly beneficial for scalable learning formats such as online 

courses. Many models exist for generating questions from regular text; however, understanding code 

and generating questions from code snippets is not applied due to its complexity. Code-to-text 

conversion is a challenging task. However, the semantic relationships between the concepts in the 

ontology are an excellent solution. Figure 3.2 shows the whole procedure for translating code into 

text. In Figure 3.2, the code undergoes validation by a parser checker responsible for scrutinizing its 

syntax. Once the code is confirmed as error-free, the checker directs it to the ontological translator, 

acting as the parser within our architecture. This parser transforms the code into coherent sentences, 

forwarding them to the QG AI model to generate reasonable questions. An explanation of the QG AI 

model is provided in the subsequent section.  

 

Algorithm 3.1 is a hybrid approach employed to automate the generation of programming-related 

questions from Python source code by integrating structural parsing with ontology-based semantic 

enrichment. Initially, source code samples are parsed using Python AST to identify constructs such 

as function definitions, class structures, variable assignments, and control flow statements. An 

ontology is constructed to represent these extracted elements and their semantic relationships, 

capturing contextual information regarding code dependencies and logical flow within the program. 

 
Figure 3.1 Proposed framework architecture 

 

 
Figure 3.2 Question-generation process  
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Using this enriched representation, the system generates diverse question types, including Boolean, 

short-answer, and open-ended questions.  

 
Algorithm 3.1: Hybrid Approach for QG from Program Codes 

Input: Python source file path P 

Output: Question set Q = {Q_b, Q_s, Q_o} 

Parameters: max_questions, question_type 

1:  O ← BuildOntology()   

2:  C ← ReadFile(P) 

3:  AST ← Parse(C) 

4:  T ← ∅ 

5:  for each node ∈ AST do 

6:      switch node.type do 

7:          case Assignment: 

8:              ind ← Variable(node.target, node.value) 

9:          case FunctionDef: 

10:             ind ← Function(node.name, node.args) 

11:         case ClassDef: 

12:             ind ← Class(node.name, node.bases) 

13:         case Call: 

14:             ind ← Object(node.target, node.func) 

15:         case Import, ControlFlow: 

16:             ind ← CreateIndividual(node) 

17:     end switch 

18:     AddToOntology(O, ind) 

19:     semantic_desc ← QueryOntologyRelations(O, ind)   

20:     T ← T ∪ {semantic_desc} 

21: end for 

22: text ← Concatenate(T) 

23: if QuestGen_Available() then 

24:     Q ← QuestGen_AI_Model(text, max_questions, question_type) 

25: else 

26:     Q ← HeuristicFallback(text, max_questions, question_type) 

27: end if 

28: return Q 

4 Thesis 3: Evaluating Large Language Models for Generating Programming Questions from Source 

Code 

4.1 Introduction 

I developed a systematic evaluation framework to assess the QG capabilities of LLMs, using 

automatic evaluation metrics and complemented by human-centered evaluation metrics for the top-

performer LLM. The findings provide insights into their strengths and limitations in generating 

programming-related assessment questions for potential educational use in the programming domain 

[P4].  

This thesis seeks to uncover insights that may be vital in various applications. Highlighting these best 

performers would allow educators, developers, and researchers to make informed decisions about 

adopting LLMs for code-related QG tasks. The thesis evaluates a diverse set of state-of-the-art LLMs. 

Theses 1 and 2 presented two distinct approaches for AQG from Python source code. Thesis 1 

discussed an ontology-driven approach which allowed the structured representation of knowledge 

that would yield MCQs automatically from Python programs. Thesis 2 extended Thesis 1 by 

providing a hybrid approach, the ontology combined with the QuestGen AI model, to make the 

generation process dynamic and grab semantic understanding better. Though they both made 

headway, the two approaches suffer mainly in their limited scope in one aspect. No systematic 

evaluation metric is provided to benchmark the quality of the questions generated from source codes 

across the different dimensions. Hence the evaluation was very much a subjective measure that limits 

comparisons of results systematically with other AQG methods. Thesis 3 goes on to cover this gap 

by extending AQG research into a multi-language context including Java, C++, and Python. With a 
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broader scope, the performance of LLMs in forming questions from codes rooted in different source 

code paradigms with individual syntaxes, semantics, and idiomatic usages could be evaluated. A 

structured evaluation framework established by this thesis would assess AQG systems in terms of 

comprehensiveness, reliability, and reproducibility in model, language, and approach comparisons. 

Thus, Thesis 3 naturally follows from the methodological foundations laid in Theses 1 and 2 and 

directly addresses their limitation in evaluations-driven framework for AQG from source code. The 

primary objectives of this thesis are as follows: 

1. To define a set of evaluation criteria, including relevance, clarity and coherence, conciseness, and 

coverage, to measure the quality of questions generated by LLMs. 

2. To develop an approach for evaluating and comparing the performance of LLMs in QG from 

program codes. 

3. To empirically evaluate and rank the selected LLMs based on their performance in QG from 

program codes. 

4.2 Methodology 

The methodology explains how the evaluation and comparison are made regarding the proficiency of 

various LLMs to create questions from the given source code. This section outlines all the events 

leading to data collection and preparation, model selection, evaluation metric selection, experiment 

execution, and ranking of the models. In this context, a comprehensive and impartial exercise is 

carried out to identify the models best suited for relevant QG tasks concerning programming code. 

The languages chosen for the experiment were Python, C++, and Java. These languages were focused 

on during the research, with the possibility of applying such methods to other structurally similar 

programming languages. The sequence selected aids in rendering clear views into the strengths and 

weaknesses of each of the models, thereby allowing a deeper understanding of questions pertaining 

to the future of this research. Previous studies have undertaken related efforts, like [27], [28], and 

[29]. Algorithm 4.1 shows the pipeline of the proposed framework. It compares LLMs on how well 

they generate questions about code, using a reference evaluator model, and produce quantitative 

metrics. Given a set of code samples, each model generates questions for each sample using a 

consistent prompting strategy. A reference model then evaluates these generated questions to assess 

their quality based on dimensions like relevance and clarity. The algorithm computes the average 

score for each model and optionally tracks repetition rates to measure question diversity. It further 

constructs pairwise win matrices, computes win rates, and calculates Elo ratings to rank models based 

on relative performance. The outputs are then summarized, including average scores, win rates, Elo 

ratings, repetition rates, and comparison matrices. 

The generated questions were assessed for their quality to analyze differences in performance 

regarding the selected LLMs. Each question gets evaluated on a scale from 1 to 10 based on the 

evaluation metric by GPT-4-0314 as a judge. This study used objective and subjective evaluation 

modes, touching on the primary indicators. Relevance means how closely the generated questions 

match the source code. Clarity and coherence measure questions' phrasing and how logic is structured 

in them. Conciseness assesses whether the questions were brief by examining their length and 

checking for unnecessary detail or verbosity. Coverage involves how well each question covered the 

entire scope of the input script. It also involved whether the questions reflected different sections or 

key components of the code, and not just focused narrowly on isolated elements. In addition to 

automated scoring, human reviewers were involved to provide a pedagogical perspective on the top-

performing LLM. Their insights helped validate the results and brought attention to the educational 

value of the questions. Human feedback added important context about classroom relevance, teaching 

goals, and practical usefulness, which are things that automated systems alone cannot fully capture. 

Evaluators kept in mind relevance and educational value when making their judgments. The approach 

encompassed a mix of different input data sets, multiple LLMs, stringent evaluation criteria, and 

automated and human judgment. The results and examples, from inputs to generated questions, are 

discussed in the next section. Parts of this output and the evaluation deconstruction are illustrated in  
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Algorithm 4.1: Multi-Model Code QG and Evaluation 

Input: Set of Code Samples (D), List of LLM Model Names (MODELS),  

           Reference Evaluation Model (EVAL_MODEL) 

Output: Summary of Model Performance Metrics (SMPM) 

1: Initialize scores_by_model, reps_by_model, results as empty. 

2: For each sample in D do: 

     3: For each model_name in MODELS do: 

      4: prompt ← build_generation_prompt(sample.code, sample.language) 

      5: questions ← LLM(model_name).generate_questions(prompt) 

      6: metrics ← evaluate_questions(questions, EVAL_MODEL) 

      7: score ← average_scores(metrics) 

      8: repetition ← repetition_rate(questions) // optional 

      9: Store (model_name, sample, metrics) in results 

      10: Append score to scores_by_model[model_name] 

      11: Append repetition to reps_by_model[model_name] 

     12: End For 

13: End For 

14: wins, comparisons ← build_win_matrix(scores_by_model) 

15: win_rate ← win_rates(wins, comparisons) 

16: elo ← elo_ratings(scores_by_model) 

17: repetition ← aggregate_repetition(reps_by_model) 

18: Construct SMPM as {ranking(scores_by_model), win_rate, elo, repetition, wins, comparisons} 

 

The model average score is established by summing the scores of each criterion across all questions, 

and higher scores in each criterion indicate better accuracy in script-to-question generation. The 

rankings show that GPT-4-0314 obtained the first rank confirming its effectiveness in generating 

relevant, high-quality questions. Moreover, it was analytically carried out on an average win rate 

account of all other models to get an all-round perspective on the performance of LLMs under 

evaluation. The term win rate refers to a cumulative score for every model and helps determine the 

best-performing model among them. For example, if a question is generated by GPT-4-0314 model 

and compared to the claude-2 model, and the winner for that particular question is GPT-4-0314, this 

would add a point to the GPT-4-0314 model. Then, GPT-4-0314 is compared to other models; if any 

model wins a point, its score grows, and then finally, all the models’ scores are calculated, and the 

highest winner is ranked first. The approach allows identification of models that have similar win 

rates to other models. This analysis offers valuable insights into how each LLM fared directly 

compared to its peers, assuming uniform sampling and no ties in the evaluation metrics. The following 

Equations (5.1) and (5.2), would calculate the New Rating and the Predicted Rating, respectively 

[30]. This technique is used here for the AI evaluation domain; it is derived from tournaments in 

sports, where it is often used. 

New Rating =  Old Rating + K × (W − P) (4.1) 

Where K refers to the maximum adjusted value, in this context, it is a constant integer number like 

32; W is the actual result of the game (1 for a win, 0.5 for a draw, and 0 for a loss); finally, P is the 

expected result, calculated using the logistic function in equation 5.2. 

P =
1

1 + 10
(Mo−Mp)

score point

         (4.2) 

Where P stands for the expected outcome for a given model, Mo for model opponent, and Mp for 

model player. The constants relating to 1 and 10 are customized; these traditional constants have been 

customized in the context to mean that the score point is 400. The two equations constitute the basis 

of the Elo rating methodology created initially by Arpad Elo [18] to enable fair and dynamic ranking 

of chess players based on match outcomes. Because of its simplicity and efficiency in tracking relative 

skill levels, the Elo rating system gradually found acceptance in areas other than chess, like online 

games, sporting events, and AI benchmarking. The second equation calculates the expected 

probability of one player winning against the other depending on their rating difference, and the first 
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updates the player's rating after every game depending on the actual and expected result. The 

combination of both ensures that the rating system accommodates rating adjustments to reward the 

unexpected win and penalize against the loss when a rating would become obsolete in view of actual 

performance. This means that the average win rate measure provides a clear and quantitative 

indication of the relative strength of the models and competitive standing in question generation. 

5 Thesis 4: Template-Based Question Generation from Code Using Static Code Analysis 

5.1 Introduction 

I developed a modular system for AQG and evaluation using template-based static code analysis, 

enabling modular QG designed to be extensible with minimal integration overhead. The framework 

supports multiple programming languages through customizable parsing templates within a unified 

architecture [P5].  

The methodology presented in Thesis 4 represents a significant departure from the approaches 

detailed in Theses 1, 2, and 3. Thesis 1 was limited to QG using engineered ontologies specific to 

providing support for only Python via a reasoning engine and conceptual hierarchies. Thesis 2 

blended the hybrid model of ontology and NLP (QuestGen) approaches, translating the Python code 

into text, prior to the generation of the question. Then, in Thesis 3, custom evaluation metrics were 

framed for benchmarking evaluation of LLM-based systems, among them GPT-4, LLaMA, and 

Falcon. LLMs, introduced in Thesis 3, are highly effective for QG from source code; however, they 

demand substantial financial and computational resources. This thesis presents a multi-language code 

question generator capable of automatically producing assessment questions for Python, C++, Java, 

and C codes. It focuses on QG from source code using static code analysis. Static code analysis is 

adopted to generate questions from program code. It offers pattern-based algorithm detection, 

structural analysis, and question templates. Pattern-based algorithm detection is performed through 

regex patterns. Structural analysis examines functions, loops, conditionals, and variables to generate 

relevant questions. Question templates involve predefined templates for different code elements to 

create varied questions. This template-based approach serves as a lightweight baseline for the future 

version alternative to the LLMs discussed in Thesis 3, offering lower computational requirements, 

greater interpretability, and faster processing for large-scale deployment. The research objectives of 

this study are: 

1. Developing a multi-language code question generator capable of automatically producing 

assessment questions for Python, C++, Java, and C codes (AQG from source code). 

2. Establishing an approach for automatically evaluating the proposed system based on a set of 

evaluation criteria through experiments on a real-world dataset to demonstrate its effectiveness 

in generating questions from source codes.  

5.2 Methodology 

This thesis proposes a multi-language code question generator capable of automatically producing 

assessment questions for Python, C++, Java, and C codes. The four programming languages were 

chosen based on the up-to-date The Importance Of Being Earnest (TIOBE) Index, which indicates 

the popularity of programming languages. Python, C++, Java, and C are the most popular 

programming languages worldwide according to the TIOBE Index as of May 2025 [31]. While the 

paper [32] primarily focuses on general educational applications, it is important to note that modern 

adaptations of Bloom's Taxonomy can be tailored to specific domains, like programming. This 

adaptation allows for evaluating cognitive tasks unique to programming education, ensuring that the 

generated questions are relevant and effective for learners in that field. As a result, the methodology 

in the current research adopts Bloom’s Taxonomy evaluation levels: remembering, understanding, 

applying, analyzing, evaluating, and creating. Figure 5.1 shows the proposed methodology for a 

multi-language question generator from source code. The research methodology behind the multi-

language question generator involves several interconnected components that work together to 

analyze code snippets and generate relevant questions. A detailed explanation of the methodology 

follows. Parsing is the process of checking the structure of the code and identifying elements like 
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keywords and variables. After parsing, the system extracts various structural elements from the code. 

After parsing, the system extracts various structural elements from the code. The QG process uses 

templates customized for different code elements and difficulty levels, as shown in Figure 5.2. 

The templates are designed based on principles from cognitive science and educational theory, as 

shown in Figure 5.2. After generating candidate questions, the system applies several post-processing 

steps like de-duplication, shuffling, and limiting the number of questions to prevent overwhelming 

the user, while maintaining a balance of difficulty levels. The methodology includes an evaluation 

approach to assess the quality of the generated questions. The evaluation of the proposed system is 

designed around a set of defined criteria. It uses experiments conducted on a real-world dataset to 

demonstrate its effectiveness in generating questions from source code. The methodology involves a 

structured approach to assess the quality of the generated questions across several key dimensions 

(Bloom's Taxonomy, Difficulty Distribution, Linguistic Complexity, Code Coverage, Precision, 

Recall, Novelty, Educational Alignment, Cognitive Diversity, Question Quality Score). 

Algorithm 5.1 shows a multi-language template-based QG and evaluation algorithm. A template-

based pipeline aligned with Bloom’s taxonomy and difficulty levels is utilized to generate and 

evaluate high-quality programming questions from code samples across multiple programming 

languages. In this pipeline, source code samples undergo parsing using language-specific parsers to 

enable accurate syntactic and structural analysis. From the parsed code, meaningful elements such as 

functions, loops, and conditional statements are extracted, and ASTs are constructed to represent the 

hierarchical structure of the code. Relevant predefined templates are then selected and instantiated 

based on the extracted elements, generating candidate questions contextualized to each specific code 

sample. The generated questions are post-processed to enhance linguistic clarity, eliminate 

redundancy, and align with pedagogical standards. Each question is labelled with the corresponding 

Bloom’s level and an estimated difficulty tag to facilitate adaptive learning scenarios. The generated 

questions are subsequently evaluated using automated metrics to assess quality, novelty, and 

cognitive diversity, and the labelled questions, along with the evaluation statistics, are aggregated and 

stored for further analysis and visualization within the system’s reporting modules. To summarize the 

overall generation process, the multi-language question generator algorithm is the main engine that 

orchestrates the entire QG process. It first detects the programming language of the code snippet, 

selects the appropriate parser, and parses the code. It then extracts various code elements (functions, 

loops, conditionals, variables) and identifies the algorithm implemented in the code. Based on the 

language and extracted elements, it generates appropriate questions. It falls back to generic questions 

if no specific questions can be generated. It then shuffles the questions and returns the requested 

number. Next, language detection algorithm uses pattern matching to identify the programming 

language of the code snippet. It looks for language-specific keywords and syntax patterns to 

differentiate between Python, Java, C++, and C. Following this, algorithm identification uses regex 

pattern matching to identify common programming algorithms in the code. Each language parser 

maintains a dictionary of algorithm names mapped to regex patterns. It returns the name of the first 

matching algorithm or null if none is detected. Afterward, QG by element type generates questions 

for a specific type of code element (functions, loops, conditionals, etc.). It also uses predefined 

templates for each element type and difficulty level.  

The human evaluation complements the automated evaluation by validating key findings while 

providing educators’ perspective on question quality. Both approaches consistently identified C as a 

better performer, though human evaluation revealed more balanced performance across languages 

than suggested by automated metrics alone. The convergence between automated educational 

alignment scores and human-assessed educational value demonstrates the validity of computational 

metrics for educational applications. However, the human evaluation's emphasis on practical teaching 

utility provides essential context that purely computational measures cannot capture, highlighting the 

importance of multi-faceted evaluation approaches in educational technology research.  
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Algorithm 5.1: Multi-Language Template-Based QG and Evaluation 

Input: Set of code samples in various programming languages (SourceCodeSamples),  

           Predefined question templates mapped to Bloom’s taxonomy and difficulty levels (Templates) 

Output: Generated questions with Bloom’s level and difficulty tags (LabelledQuestions),  

             Evaluation statistics for generated questions (EvaluationMetrics) 

1:  for each CodeSample in SourceCodeSamples do 

2:      ParsedCode ← Parse(CodeSample, LanguageSpecificParser) 

3:      CodeElements ← ExtractCodeElements(ParsedCode) 

4:      AbstractRep ← GenerateAST(ParsedCode) 

5:      CandidateQuestions ← ∅ 

6:      for each Element in CodeElements do 

7:          RelevantTemplates ← SelectTemplates(Element, Templates) 

8:          for each Template in RelevantTemplates do 

9:              Question ← InstantiateTemplate(Template, Element) 

10:             CandidateQuestions ← CandidateQuestions ∪ {Question} 

11:         end for 

12:     end for 

13:     FilteredQuestions ← Postprocess(CandidateQuestions) 

14:     LabelledQuestions ← LabelQuestions(FilteredQuestions) 

15:     EvaluationMetrics ← Evaluate(LabelledQuestions, CodeSample) 

16:     Store(LabelledQuestions, EvaluationMetrics) 

17: end for 

18: GenerateReportsAndVisualizations() 

 
Figure 5.1 Methodology for multi-language question generation from source code 

 

 'loop': { DifficultyLevel.BEGINNER: [ 

"What is the purpose of the {type} loop on line {line_num}?", "How many times will the {type} loop on line 

{line_num} execute with typical input?", "What happens in each iteration of the {type} loop on line {line_num}?",], 
 

Figure 5.2 Sample of templates used for question generation from source code 
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6 Thesis 5: Multi-Language Static-Analysis System for Automatic Question Generation from Source 

Code 

6.1 Introduction 

I developed a modular static analysis framework for AQG across multiple programming languages. 

The system integrates language-specific analyzers within a unified architecture designed to support 

consistency in QG across the four programming languages (C, C++, Java, and Python) [P6].  

The graph-based pipelines in this thesis are meant to complement not compete with the approach of 

early LLM methods discussed in Thesis 3 and of the template-based static baseline discussed in 

Thesis 4. Thesis 5 has given a lightweight and reproducible baseline across languages but also 

revealed some pitfalls of regex parsing, including low precision, limited novelty, and a cap on 

structural depth. In this Thesis, that layer is replaced by language-specific parsers (Python AST, 

javalang, and Clang/LLVM) that are integrated through a normalization interface to ensure consistent 

treatment of functions, methods, loops, conditionals, and variables across Python, Java, C++, and C. 

Building on such normalized elements, CFG and PDG construction adds structural insights, such as 

control paths, branching, and complexity, alongside semantic insights such as data dependencies and 

variable lifecycles. The force-balanced generation mechanism then adjusts in real time from course 

to emphasizing under-represented Bloom levels, question types, and algorithm families to achieve 

more well-rounded coverage rather than chance distribution across all levels of variety in the 

methodology. This generates improved precision, a richer language, greater novelty, and broader 

cognitive diversity, while remaining interpretable, deterministic, and free per item. LLMs sometimes 

fail to deliver due to budgetary, privacy, or accreditation constraints. The result is an explainable and 

adaptable layer that can also support future hybrid pipelines, such as using curated CFG/PDG 

summaries to guide LLMs in producing more creative, higher-order variations. In practice, this 

clarifies when each method is best suited: LLMs excel in breadth and stylistic variety, while graph 

fusion offers transparent, coverage-controlled, and semantically grounded assessment. The research 

objectives of this thesis are: 

1. To design and implement three automated pipelines (CFG-based, PDG-based, and CFG-PDG 

Synergetic) for QG from source code, each leveraging different code analysis strategies to 

explore their effectiveness in producing high-quality, pedagogically aligned questions. 

2. To develop an organizational multi-dimensional evaluation system to measure the system 

performance in terms of coverage balance, quality of questions, linguistic complexity, and 

diversity in all dimensions. This framework encompasses automated measures along with 

human assessment measures. 

6.2 Methodology 

This thesis introduces a multi-language generator and evaluator system that takes source code as input 

and is capable of generating coding questions in various programming languages, including Python, 

C++, Java, and C. These four language choices were the result of being some of the most popular 

languages at the moment, as classified by the May 2025 listing of the TIOBE Index and ranking 

software development languages and their current popularity list [31]. It uses an advanced pipeline 

structure to transform source code written in several programming languages into good-quality 

assessment questions distributed across different dimensions in a reasonably balanced manner. This 

section presents a comprehensive description of every element within the pipeline and interconnected 

characteristics and functions of the general system. Figure 6.1 shows the comprehensive pipeline for 

multi-language question generator and evaluator system. The objective of building a multi-language 

question generator and evaluator system is to support the growing demands to meet the assessment 

issues in programming education, which traditional manual methods cannot prospectively 

accommodate the demands of scaling with an expanding enrollment base and range of curriculum 

needs.  The pipeline shown in Figure 6.1 starts by feeding in source code, possibly choosing four 

supported programming languages: Python, Java, C++, or C. This is used as a preliminary before 

further analysis and to clear up any problems with encoding, remove comments, normalize 

whitespace, and do other simple preprocessing chores. The system accepts codes with diverse levels 
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of complexity, which may range from simple to intricate codes of implementation algorithms. The 

architecture has seven interconnected parts that run code snippets via a chain of specialized 

transformations and analyses: 

1. Language Detection: The system detects the programming language of the code by passing a 

language identifier. 

2. Language-Specific Parsing: It uses language-specific optimized parsers. 

3. Element Extraction: It automatically recognizes and stores programming elements such as 

functions, classes, variables, loops, conditionals, data structures, and language-specific constructs 

into an index. 

4. Advanced Code Analysis: CFG identifies loops, execution paths, and branching conditionals. 

PDG captures variable relationships and data dependencies. 

5. Force-Balanced Generation: It takes measures to ensure the selection probabilities are readjusted 

during the final stages of generating solutions.  

6. Quality Evaluation: It integrates automated and human-based evaluation.  

7. Output Generation: It generates structured questions. 

Algorithm 6.1 shows the CFG pipeline algorithm for code QG and evaluation. Its main objective is 

to generate questions by extracting control flow information from code. It parses code to extract CFG 

nodes (basic blocks) and edges (control transitions). Then, it analyzes control paths, loops, and 

branching structures. Finally, it generates questions like tracing, MCQ, and basic error-identification 

questions based on flow paths. Algorithm 6.2 shows the PDG pipeline algorithm for code QG and 

evaluation. Its main objective is to generate questions using data and control dependencies in the 

program. It parses code and extracts PDG, capturing data dependencies, variable usage, and control 

dependencies. Then, it analyzes data flows, variable lifetimes, and semantic relationships. Finally, it 

generates questions like dependency, comprehension, and advanced error-identification questions.  

Algorithm 6.3 shows the CFG-PDG pipeline algorithm for code QG and evaluation. Its main 

objective is to generate advanced, diverse questions using a synergistic integration of CFG and PDG.  

 

Figure 6.1 Comprehensive pipeline for multi-language question generator and evaluator system 
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Algorithm 6.1: CFG Pipeline for Code QG and Evaluation 

Input: Source Code (SC) 

Output: Question Set (QS) 

1: Parse SC using language-specific parser. 

2: Construct CFG from SC. 

3: Identify algorithm type using CFG patterns. 

4: Compute cyclomatic complexity for difficulty estimation. 

5: Select Bloom-level-aligned templates for CFG-based QG. 

6: Fill placeholders using CFG nodes and control paths. 

7: Generate QS (e.g., tracing, MCQ, and error-identification questions). 

8: Evaluate QS using quality and diversity metrics. 

 

Algorithm 6.2: PDG Pipeline for Code QG and Evaluation 

Input: Source Code (SC) 

Output: Question Set (QS) 

1: Parse SC using language-specific parser. 

2: Construct PDG from SC. 

3: Identify algorithm type using PDG and textual features. 

4: Analyze data dependencies for semantic complexity estimation. 

5: Select Bloom-level-aligned templates for PDG-based QG. 

6: Fill placeholders using PDG nodes and dependency structures. 

7: Generate QS (e.g., dependency, error identification, and comprehension questions). 

8: Evaluate QS using quality and diversity metrics. 

 

Algorithm 6.3: CFG&PDG Synergetic Pipeline for Code QG and Evaluation 

Input: Source Code (SC) 

Output: Question Set (QS) 

1: Parse SC using language-specific parser. 

2: Construct CFG and PDG from SC. 

3: Integrate CFG and PDG for a unified structural-semantic representation. 

4: Identify algorithm type using integrated features. 

5: Compute complexity and dependency scores for difficulty estimation. 

6: Select templates aligned with Bloom’s taxonomy and algorithm type. 

7: Fill placeholders using CFG paths and PDG dependencies. 

8: Generate QS (e.g., tracing, dependency, error identification, creative coding, and MCQs). 

9: Evaluate QS using comprehensive quality, novelty, and diversity metrics. 

 

It parses and simultaneously extracts CFG and PDG representations. Next, it integrates structural 

(CFG) and semantic (PDG) information. Then, it identifies algorithm types. Finally, it generates a 

reasonably balanced set of questions, including creative coding and higher-order Bloom questions. 
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The same automatic evaluation metrics as the baseline model (Thesis 4 Automatic Evaluation 

Approach) are utilized in the system, such as overall quality score, linguistic complexity, precision, 

recall, F1-score, novelty score, educational alignment, and cognitive diversity [P5]. Five human-

evaluated dimensions are conceptualized to measure the pedagogical soundness, clarity, and cognitive 

relevance of generated programming questions to measure their quality beyond automatic metrics 

(relevance, difficulty appropriateness, clarity, educational value, and cognitive level match). 

7 Conclusion 

7.1 Future Work 

Each of the five thesis points opens up unique and practical directions for continued research. The 

following recommendations aim to build on their individual contributions, offering ways to refine 

current methods, broaden their reach, and address some of the open challenges highlighted throughout 

the dissertation. 

1. Ontology-Based Automatic Generation of Learning Materials for Python Programming: Future 

research could extend the ontology-based approach beyond Python to include a broader range of 

programming languages. This would involve designing cross-language ontological frameworks 

or language-specific extensions that preserve semantic coherence across diverse syntactic 

constructs. Additionally, conducting controlled experimental studies comparing ontology-

generated questions with manually crafted ones could yield valuable insights into their 

educational effectiveness, particularly in terms of learner comprehension, retention, and 

perceived usefulness. 

2. A Hybrid Approach for Automatic Question Generation from Python Program Codes: One 

promising direction is to enhance the system’s ability to process more complex programming 

structures, especially those involving third-party libraries, nested functions, and interdependent 

statements. Improving the semantic interpretation pipeline, possibly by incorporating deeper NLP 

techniques or lightweight learning models, could help generate more sophisticated and context-

aware questions. Future research may also explore how to adapt the system automatically to 

different code domains or programming paradigms. 

3. Evaluating Large Language Models for Generating Programming Questions from Code: Future 

work in this area could involve refining the evaluation framework to capture more nuanced 

aspects of question quality, such as semantic subtlety, creativity, and alignment with pedagogical 

goals. Incorporating qualitative feedback from educators alongside quantitative metrics could 

further ground the evaluation process in real instructional needs. Additionally, exploring 

emerging models, including domain-specific LLMs or those designed to support multiple 

programming languages, may offer deeper insights into their effectiveness across diverse 

educational contexts. 

4. Template-Based Question Generation from Code Using Static Code Analysis: Subsequent 

research may focus on developing dedicated language-specific parsers for Java, C++, and C to 

improve upon the current reliance on pattern-based extraction methods. Adding runtime analysis 

or symbolic execution could improve the system’s contextual accuracy and support questions 

based on actual program behavior. The integration of adaptive or ML-driven components might 

also enable context-sensitive template selection. Longitudinal classroom studies would help 

assess how such systems impact student learning and engagement over time. 

5. Multi-Language Static-Analysis System for Automatic Question Generation from Source Code: 

Further development could extend the system to include functional, concurrent, and domain-

specific languages, making it more adaptable to a wide range of curricular needs. By combining 

dynamic and static program analysis, the system could generate richer, behavior-aware questions, 

especially in tasks involving edge-case reasoning or algorithmic logic. Another important 

direction involves linking the framework with adaptive learning platforms that personalize 

questions based on individual learner progress. Conducting long-term educational studies would 

provide essential data on how the system influences knowledge retention, problem-solving skills, 

and transfer of learning across different instructional settings. Finally, a promising extension of 
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this work lies in integrating LLMs with the CFG-PDG framework. The modular design of the 

current system already provides clear entry points for such hybridization, where LLMs can be 

guided by structural program representations rather than generating questions in isolation. By 

using CFG and PDG graphs as guardrails, LLMs could enrich QG with greater semantic variety 

and higher-order reasoning while maintaining alignment with Bloom’s taxonomy and algorithmic 

correctness. 
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