University of Miskolc

Faculty of Mechanical Engineering and Informatics

PhD Dissertation

Author:

Jawad Ahmad Qasem Alshboul MSc in Data Science, MSc in Computer Science

József Hatvany Doctoral School of Information Science, Engineering and Technology

Title of the Dissertation

Automatic Generation and Evaluation of Programming Questions from Source Code

Research Area

Applied Computer Science

Research Group

Data and Knowledge Bases, Knowledge Intensive Systems

Head of Doctoral School:

Prof. Dr. László Kovács

Academic Supervisor:

Dr. Erika Baksáné Varga

Miskolc, Hungary 2025

Declaration of Author

Miskolc, June 2025.

Declaration of Authorship
The author hereby declares that this thesis has not been submitted, either in the same or in a different form, to this or any other university to obtain a PhD degree.
The author confirms that the submitted work is his own, and the appropriate credit has been given where reference has been made to the work of others.
Author's Declaration
I, the undersigned, Jawad Ahmad Qasem Alshboul, declare that I have prepared this doctoral dissertation and have used only the sources provided.
All parts that I have taken from another source, either directly or in the same content but paraphrased, are clearly marked with the source.

Jawad Ahmad Qasem Alshboul

Acknowledgment

All praise and thanks are due to Allah, the Most Merciful, whose blessings and guidance have

allowed me to reach this milestone in my academic journey. Without His mercy and support, this

accomplishment would not have been possible.

I would like to express my deepest gratitude to my supervisor, Dr. Erika Baksáné Varga, for her

invaluable guidance, encouragement, and patience throughout my doctoral studies. Her insightful

feedback and continuous support have greatly shaped this research and helped me grow both

academically and personally.

My sincere appreciation also goes to Prof. Dr. László Kovács, Head of the Doctoral School, for

his support, facilitation, and the constructive environment provided during my research period.

His leadership and encouragement have been instrumental in enabling me to complete this work.

To my parents, whose endless prayers, love, and sacrifices have been the foundation of every

achievement in my life, I owe more than words can express. I am forever grateful for their

unwavering belief in me. I am also thankful to my brothers and sisters for their support,

understanding, and constant encouragement throughout this journey, even during the most

challenging days.

Jawad Alshboul

2

Table of Contents

Declaration of Authorship	1
Acknowledgment	2
Table of Contents	3
List of Figures	6
List of Tables	8
List of Abbreviations	9
Summary	
Chapter 1 Introduction	
1.1 Background	12
1.2 Research Motivation	14
1.3 Problem Statement	15
1.4 Research Aims	16
1.5 Research Objectives	17
1.6 Scope and Limitations	17
1.7 Significance of the Study	18
1.8 Dissertation Structure	18
Chapter 2 Literature Review	20
2.1 Introduction	20
2.2 Ontology-Based Instructional Content Generation.	20
2.3 Static Code Analysis and Graph-Based Representations	23
2.3.1 Automatic Question Generation	26
2.3.2 Program Analysis	26
2.3.3 CFG Analyzers	26
2.3.4 PDG Analyzers	27
2.3.5 Hybrid CFG-PDG Analysis	28
2.3.6 Synergistic Use of CFG and PDG	28
2.3.7 Question Generation Strategies	29
2.4 Template-Based and Question Generation Strategies	29
2.5 Bloom's Taxonomy and Cognitive Alignment	29
2.6 Question Types in Programming Education	31
2.7 Large Language Models in Programming Question Generation	32
2.7.1 Background On Language Models in NLP	32
2.7.2 Question Generation with Large Language Models	33
2.7.3 Evaluation Metrics for NLP	
2.7.4 State-of-the-art LLMs	
2.8 Evaluation Metrics for Generated Questions from Source Code	
2.9 Conclusion	
Chapter 3 Ontology-Based Automatic Generation of Learning Materials for Python Programming	

3.1 Introduction	38
3.2 Methodology	40
3.2.1 Ontology-Based Approach for Learning Materials Generation	40
3.2.2 Proposed Knowledge Model for The Domain-Specific Concepts	44
3.2.3 Proposed Model Implementation	46
3.2.4 Proposed Ontology-Based Model Validation and Evaluation	50
3.3 Results	53
3.4 Discussion.	56
3.5 Conclusion	57
Chapter 4 A Hybrid Approach for Automatic Question Generation from Program Codes	59
4.1 Introduction	59
4.2 Methodology	60
4.2.1 Architecture	60
4.2.2 Ontology Design	62
4.2.3 Parser	63
4.2.4 Question Generation	64
4.2.5 QuestGen AI	64
4.2.6 Hybrid Question Generation from Program Codes	65
4.3 Results	67
4.4 Discussion	72
4.5 Conclusion	75
Chapter 5 Evaluating Large Language Models for Generating Programming Questions from Source Code	76
5.1 Introduction	76
5.2 Methodology	77
5.2.1 Data Collection	78
5.2.2 Question Generation	79
5.2.3 Performance Metrics	81
5.2.4 Experimental Setup	81
5.3 Results	83
5.3.1 Model Rankings	83
5.3.2 Observations and Insights	85
5.3.3 Repetitive Evaluation	85
5.3.4 Human Evaluation	87
5.4 Discussion	89
5.5 Conclusion	91
Chapter 6 Template-Based Question Generation from Code Using Static Code Analysis	93
6.1 Introduction	93
6.2 Methodology	94
6.2.1 Language-Specific Parsing	94

6.2.2 Code Element Extraction	95
6.2.3 Template-Based Question Generation	96
6.2.4 Cognitive Science-Based Question Design.	96
6.2.5 Question Post-Processing	97
6.2.6 Evaluation Approach	98
6.3 Results	102
6.4 Discussion	109
6.4.1 Research Contributions	110
6.4.2 Limitations	110
6.4.3 Future Directions	111
6.5 Conclusion	111
Chapter 7 Multi-Language Static-Analysis System for Automatic Question Generation from Source Code	113
7.1 Introduction	113
7.2 Methodology	116
7.2.1 System Architecture and Design Philosophy	117
7.2.2 Advanced Code Analysis Techniques	119
7.2.3 Evaluation Metrics	124
7.3 Results	125
7.4 Discussion	130
7.4.1 The Proposed Systems and the Baseline Comparison	131
7.4.2 Research Contributions and Educational Implications	133
7.4.3 Research Limitations	134
7.4.4 Future Research Directions	134
7.5 Conclusion	135
Chapter 8 Conclusion	137
8.1 Contributions	137
8.1.1 Thesis 1	137
8.1.2 Thesis 2	137
8.1.3 Thesis 3	137
8.1.4 Thesis 4	137
8.1.5 Thesis 5	138
8.2 Future work	138
8.3 Author's Publications	139
References	142

List of Figures

Figure 1.1 Conceptual framework of AQG from source code	12
Figure 1.2 The four-component ITS architecture	13
Figure 3.1 General knowledge model for the domain-specific concepts	45
Figure 3.2 Specific knowledge model for the domain-specific concepts	46
Figure 3.3 Core classes of the presented model	47
Figure 3.4 Object property relationships	47
Figure 3.5 Domain-specific concepts ontology graph	48
Figure 3.6 A SPARQL query for retrieving the concept "python class" and its description	48
Figure 3.7 Controlling the ontology of domain-specific concepts	49
Figure 3.8 The result of the ontology of domain-specific concepts	49
Figure 3.9 Task assessment generation	49
Figure 3.10 Task assessment and result sample	50
Figure 3.11 MCQs task assessment	50
Figure 3.12 Consistency of the domain-specific concepts ontology	51
Figure 3.13 OntOlogy pitfall scanner tool	52
Figure 3.14 OntOlogy pitfall scanner tool results	52
Figure 3.15 Python MCQ quiz generator flask app	56
Figure 4.1 Proposed framework architecture	61
Figure 4.2 Ontology design visualization using protégé	63
Figure 4.3 Instance definition of Subtraction	63
Figure 4.4 Question-generation process	64
Figure 4.5 Generating questions directly from code	67
Figure 4.6 A code snippet with variable definitions	68
Figure 4.7 Generated text from a code snippet	68
Figure 4.8 Generated questions for variable definitions	68
Figure 4.9 Generated questions without using the proposed approach	69
Figure 4.10 Python code for defining classes and objects	69
Figure 4.11 Generated explanation of the code in Figure 4.10	69
Figure 4.12 Generated questions for the code in Figure 4.10	70
Figure 4.13 Generated questions without using the proposed model	70
Figure 4.14 Code snippet containing a function and arithmetic operations	71
Figure 4.15 Generated explanation of the code in Figure 4.14	71
Figure 4.16 Generated questions using the proposed model	71
Figure 4.17 Generated questions without using the proposed model	71
Figure 4.18 Question performance ranking by validity	73
Figure 4.19 Validity score vs. code difficulty level	73
Figure 5.1 Sample prompt to generate questions from source code	80

Figure 5.2 Response to a prompt	80
Figure 5.3 Sample Python script	80
Figure 5.4 Evaluation of the generated questions	81
Figure 5.5 Average win rate against all other models	85
Figure 5.6 Win rate matrix	86
Figure 5.7 Models criteria score comparison	86
Figure 6.1 Methodology for multi-language question generation from source code	95
Figure 6.2 Sample of templates used for question generation from source code	96
Figure 6.3 Bloom's taxonomy coverage	104
Figure 6.4 Question difficulty distribution by language	104
Figure 6.5 Question quality score by language and difficulty level	105
Figure 6.6 Question quality score by language and code complexity	105
Figure 6.7 Linguistic complexity by difficulty level	106
Figure 6.8 Average question diversity by programming language	107
Figure 7.1 Comprehensive pipeline for multi-language question generator and evaluator system	116
Figure 7.2 Quality score per language f or the three approaches compared with the baseline	131
Figure 7.3 Comparison between the proposed approaches and the baseline	132

List of Tables

Table 2.1 Comparison between the traditional approaches and ontology-based approaches	22
Table 2.2 AST, CFG, and DFG summary table	25
Table 3.1 Comparison between the traditional approaches and ontology-based approaches	50
Table 3.2 Evaluation table sample	54
Table 3.3 Ontology-based model evaluation: Python programming topics sample	55
Table 3.4 Ontology-based model evaluation performance by dataset size	55
Table 4.1 Environment settings, tools, and applied libraries	62
Table 4.2 Types of syntax covered	72
Table 5.1 Selected LLMs.	79
Table 5.2 Average criteria scores	83
Table 5.3 Repetition rates for each model at different question levels	87
Table 5.4 Human evaluation summary table	88
Table 5.5 Repeated measures ANOVA results	88
Table 5.6 Post-hoc pairwise comparisons – relevance (Bonferroni Corrected)	88
Table 5.7 Post-hoc pairwise comparisons – educational value (Bonferroni Corrected)	89
Table 6.1 A sample transformation from code to question	103
Table 6.2 Automatic evaluation results by programming language (N=456)	107
Table 6.3 Human evaluation results by programming language (N=40)	108
Table 6.4 Paired t-test results for human evaluation differences	108
Table 7.1 Bloom's taxonomy distribution	126
Table 7.2 Dataset question type distribution	127
Table 7.3 Automatic evaluation results by approach	128
Table 7.4 Quality score by approach per programming language	129
Table 7.5 Human evaluation of CFG-PDG results by programming language (N=48)	130
Table 7.6 Paired t-test results for human evaluation differences	130

List of Abbreviations

AI Artificial Intelligence ANOVA Analysis of Variance

API Application Programming Interface AQG Automatic Question Generation

AST Abstract Syntax Tree AWS Amazon Web Services

BERT Bidirectional Encoder Representations from Transformers

BLEU Bilingual Evaluation Understudy

CFG Control Flow Graph
CS Computer Science

CSV Comma Separated Values

DF Degrees of Freedom
DFG Data Flow Graph

ELO Elo Rating System (relative model ranking)
 F1-Score Harmonic Mean of Precision and Recall
 GPT Generative Pre-trained Transformer

ITS Intelligent Tutoring Systems
JSON JavaScript Object Notation

KGs Knowledge GraphsLLMs Large Language Models

LMS Learning Management Systems MCQ Multiple-Choice Question

ML Machine Learning

N Machine Learning
N Number of Samples

NLP Natural Language Processing

ALMG Automatic Learning Materials Generation

OWL Web Ontology Language PDG Program Dependence Graph

p-value Probability Value in Statistical Testing

QG Question Generation

ROUGE Recall-Oriented Understudy for Gisting Evaluation

SPARQL SPARQL Protocol and RDF Query Language

TIOBE The Importance of Being Earnest (Programming Languages Popularity Index)

Summary

This dissertation addresses the critical issue of developing effective methods for Automatic Question Generation (AQG) from source code in programming education. The motivation arises from the increasing demand for scalable and adaptive assessment tools in computer science, where manual preparation of exercises and tests often places a heavy burden on instructors. The objectives of this research are to design, implement, and evaluate multiple approaches for generating meaningful assessment questions directly from program code. The significance of this work lies in its potential to support personalized learning, reduce instructor workload, and enhance assessment quality.

To achieve these aims, the dissertation adopts a progressive research design across five interrelated studies, each addressing specific limitations of earlier approaches and expanding the scope of AQG in terms of computational techniques, programming language coverage, and pedagogical contribution. The first study developed an ontology-based system that modeled Python programming concepts to automatically generate structured learning materials in the form of questions. Building on this, the second study proposed a hybrid approach that integrated semantic analysis with template-driven techniques, still within Python, to improve both accuracy and diversity of questions. The third study shifted toward artificial intelligence by evaluating transformer-based large language models for their ability to generate semantically rich coderelated questions across C++, Java, and Python. The fourth study introduced a template-based system employing static code analysis as a baseline for multi-language generation, producing parameterized questions from C, C++, Java, and Python code. Finally, the fifth study culminated in the design of a multi-language static-analysis system, which directly addressed the limitations of the baseline system by broadening scalability and improving question variety while retaining accuracy across the same four languages. Data collection across studies included generated question sets, automatic evaluations, and expert reviews.

The ontology-based system demonstrated feasibility for concept-driven AQG but lacked scalability. The hybrid method produced a wider variety of questions than template-only systems, enhancing both diversity and contextual relevance. Large language models demonstrated strong potential in generating semantically rich questions across multiple programming languages but posed challenges in computational demands and cost. The template-based static code analysis system achieved high precision in syntactically accurate question generation across four languages, but creativity and higher-order question types remained constrained. The multi-language static-analysis system overcame several of these limitations by supporting broader coverage and improving flexibility, thereby demonstrating scalability and practical deployment

potential. Expert evaluations confirmed the accuracy and relevance of the generated questions, though further enhancement is required for creativity and critical-thinking dimensions.

Taken together, the findings confirm that a multi-approach framework can address the diverse requirements of AQG from source code in programming education. The dissertation contributes not only computational methods but also pedagogical insights into assessment design and linguistic perspectives on question formulation. It advances theoretical understanding while offering practical tools for scalable programming assessment. Practical implications include integrating AQG systems into learning management platforms to support automated formative assessment at scale. Limitations include dependence on source code quality, variation across programming languages, and the need for validation in authentic classroom contexts. Future research directions include adaptive AQG, closer integration with intelligent tutoring systems, and extending applications beyond programming to other domains requiring structured assessment.

Chapter 1 Introduction

1.1 Background

Automatic Question Generation (AQG) is the process of creating meaningful and relevant questions automatically from various types of input, including text, structured data, images, or videos, using computational methods. In simple terms, it involves designing systems that can understand content, identify key information or patterns, and generate clear, contextually appropriate questions to support learning, comprehension assessment, conversational systems, or data exploration without requiring manual question crafting for each instance [1], [P2]. Figure 1.1 illustrates the conceptual framework of AQG from source code. The system takes source code as input, processes it through computational analysis and generation techniques, and automatically produces relevant questions for educational or assessment purposes.

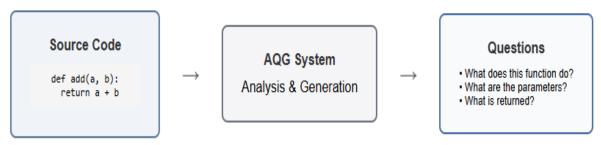


Figure 1.1 Conceptual framework of AQG from source code

Figure 1.2 illustrates the four-component architecture of Intelligent Tutoring Systems (ITS) as discussed by the review article [2]. This dissertation focuses specifically on the Domain Model component through AQG for programming education. This work contributes to the foundational knowledge representation layer by developing methods to automatically generate contextually appropriate programming questions that can be integrated into the broader tutoring system architecture.

The evolution of programming education necessitates a profound reflection on how assessment has been designed, delivered, and evaluated. Given that coding has become necessary across academic disciplines and industries, educational institutions increasingly need to develop robust and scalable ways to assess their students' programming knowledge and problem-solving skills [3]. Learners today often study multiple programming languages, including Python, Java, C++, and C, each with unique syntactic and conceptual nuances, making standardized assessment even more challenging.

Although recent AQG studies have primarily focused on generating questions from natural language texts and, to a lesser extent, visual data [1], [4], [5], AQG from source code remains underexplored despite its potential to transform programming education. Academic programming

textbooks typically include text, images, and code examples, yet most AQG systems rely heavily on NLP techniques for text-based question generation (QG), with limited exploration of visual content [1], [P3]. The review paper [P2] advocates for developing QG methods tailored to programming topics, along with appropriate evaluation criteria.

Domain Model • Knowledge Representation • Curriculum Structure • Content Organization • Automatic Question Generation (Research Contribution) Student Model • Pedagogical Strategies • Decision Making User Interface • Learning Environment User/Learner

Intelligent Tutoring System

Figure 1.2 The four-component ITS architecture

Interaction Management

Traditional methods of question design in programming courses have struggled to keep pace with this growth. As noted in previous studies, manually crafted questions are time-consuming to produce [6], difficult to standardize across diverse learners and languages [6], [7], and often fall short of covering the full spectrum of cognitive skills outlined in Bloom's Taxonomy [8]. Moreover, they tend to lack scalability, particularly in large or multi-language educational settings where hundreds of students may require tailored assessment materials [7].

These challenges have driven a growing interest in AQG from source code. Rather than relying on static repositories of questions, AQG approaches analyze code directly, extracting structure, semantics, and logic to generate assessment items that dynamically align with the learner's context [9]. This dissertation responds to that demand by presenting a unified exploration of five distinct yet complementary approaches: ontology-driven QG [10], [11], hybrid semantic-to-question modeling [9], template-based multi-language QG via static code analysis [12], evaluation of large language models (LLMs) for QG from source code [13], and a comprehensive multi-language assessment system powered by Control Flow Graphs (CFGs) and Program Dependence Graphs (PDGs). Collectively, these approaches constitute the novel contributions of this work. I extend

beyond traditional template or ontology-based systems by incorporating formal semantic graph representations, namely CFGs and PDGs, to anchor QG in actual program structure and behavior. CFGs model possible execution paths and dependencies across program blocks [14], while PDGs capture both control and data dependencies among statements [15], providing a richer semantic foundation for QG. Each approach contributes to a shared objective: to automate programming QG in a pedagogically grounded, cognitively stratified (Organizing learning or assessment tasks by levels of thinking, from simple recall to complex problem-solving), and linguistically inclusive way [7], [16]. The background and motivation for this work emerge directly from the collective recognition within these studies of the limitations in existing systems and the urgent need for more intelligent, adaptable, and scalable solutions in programming education assessment [7].

1.2 Research Motivation

Despite significant advancements in artificial intelligence (AI)-driven educational technologies, several critical gaps persist in the domain of AQG for programming education. The first significant challenge is the lack of scalable systems capable of generating high-quality, diverse, and cognitively stratified questions directly from source code [17], [18]. As discussed by Kurdi et al. (2020), rigid template-based QG methods are often manually constructed, lack linguistic diversity, and are limited in their ability to produce varied or complex question types. These limitations hinder their adaptability across different domains and educational objectives [5]. Previous studies show that manually created questions are time-consuming and struggle to maintain cognitive coverage across large-scale deployments, reinforcing the necessity for automation that accommodates a range of programming logic and learner profiles [17]. A second limitation is the insufficient support for multi-language QG across most existing tools [19]. Template and static analysis-based methods typically underperform when handling multi-language syntax and semantics, making them less effective for inclusive educational environments [5]. Additionally, few frameworks integrate pedagogical models such as Bloom's Taxonomy in a systematic way, resulting in assessment items that are either too shallow or mismatched in cognitive depth [20], [21].

The introduction of the transformer architecture marked a significant advancement in language modeling by incorporating an attention mechanism. This component enables the model to dynamically assess the relative importance of input tokens and discern intricate relationships among them, independent of their sequential positioning. As a result, the model demonstrates enhanced coherence in its generated outputs and exhibits an improved capacity to preserve contextual information over extended textual spans [22], [23]. Finally, current evaluation practices for QG from source code lack standardization and pedagogical alignment. Typical methods often

rely on single-reference n-gram similarity metrics such as BLEU (Bilingual Evaluation Understudy) and ROUGE (Recall-Oriented Understudy for Gisting Evaluation), which fail to capture the semantic and syntactic diversity needed for robust assessment. Previous efforts have shown that multi-reference evaluations, especially those enhanced by paraphrases generated through LLMs, can improve the correlation with human judgment and provide more reliable evaluation frameworks [24].

Although LLMs like GPT-4 (generative pre-trained transformer) can generate syntactically fluent questions, their outputs vary considerably in relevance, clarity, and educational value. Benchmarks such as EQGBench demonstrate that while LLM-generated questions are linguistically coherent, their practical applicability in educational settings depends heavily on alignment with pedagogical objectives, which is currently insufficiently addressed [25]. Moreover, expert-validated, multi-dimensional evaluation frameworks that integrate educational goals and knowledge alignment remain rare, limiting the instructional reliability (consistent pedagogical appropriateness and quality) of automatically generated questions. Recent work proposing planning-based frameworks emphasizes the need for such multi-dimensional, expert-informed approaches to enhance the pedagogical usefulness and reliability of question generation systems [26].

These limitations underscore the need for a principled and pedagogically grounded approach to AQG from source code. By integrating semantic modeling (Creating a structured representation of knowledge so a computer can understand the meaning and relationships between concepts), cognitive stratification, and rigorous evaluation practices, such an approach can support scalable and equitable learning assessments in programming education.

1.3 Problem Statement

The global expansion of computer science (CS) education has intensified the need for scalable, high-quality assessment tools that can effectively serve diverse learners across various programming languages [3], [7]. Traditionally, the manual development of programming assessment questions has been labor-intensive, inconsistent, and insufficient to meet the rising demand for pedagogically sound, comprehensive evaluation materials in programming education [6], [8], [21]. AQG has emerged as a promising approach for scalable assessment across educational contexts [1], [4], [5]. However, the current research landscape in AQG reveals a pronounced imbalance in focus and development across different input modalities. The field has been dominated by text-based question generation, benefiting from extensive datasets, mature neural models, and a clear trajectory from rule-based systems to large pre-trained transformers and LLMs [4], [17], [22]. Similarly, visual QG has seen growing attention, particularly for generating questions from images and, more recently, educational diagrams, leveraging

advancements in multimodal learning [19], [26]. These areas have established robust evaluation practices and benchmarks, fueling rapid progress and adoption [24], [25]. In contrast, QG from source code remains significantly underrepresented despite its critical potential in programming education [9], [12], [17]. Generating meaningful and pedagogically aligned questions directly from source code presents unique challenges, including understanding code semantics [14], [15], aligning questions with relevant programming concepts [9], [12], and ensuring cognitive coverage across difficulty levels [8], [20], [21]. The lack of standardized datasets and well-defined evaluation metrics further impedes systematic advancements in this domain [13], [24], [25]. Most existing AQG research has overlooked this research gap in programming education assessment, and only a few recent studies have begun exploring it, often in isolated or single-language contexts [9], [12], [17], leaving a substantial gap in the scalable assessment needs of programming education. To clarify, generating programming questions directly from raw, multi-language source code requires integrated semantic parsing (AST/CFG/PDG), multi-language normalization, deliberate Bloom-level coverage, diverse code-centric question types, and multi-metric evaluation. These requirements are largely absent in existing primarily text-focused or singlelanguage ontology/LLM studies, leaving the domain underdeveloped and limiting scalable programming assessment.

Addressing this gap is essential to ensure equitable, effective, and scalable programming assessment tools that align with modern pedagogical frameworks and can adapt across multiple programming languages [3], [7], [21], [23]. Advancing AQG from code requires not only robust generation methods that capture the semantics of source code [14], [15], but also the development of principled evaluation frameworks tailored to the unique requirements of programming education [13], [24], [25]. This dissertation aims to address these gaps to advance scalable, high-quality, and pedagogically aligned AQG systems that support equitable programming education worldwide.

1.4 Research Aims

This dissertation aims to advance programming education by designing, implementing, and evaluating automated systems that generate and assess programming questions directly from source code in a pedagogically grounded, linguistically inclusive, and cognitively diverse manner [3], [7], [9], [12], [17]. This research seeks to bridge the gap between code-level semantic understanding and educational assessment, using various techniques including ontologies [10], [11], template-based static analysis [20], and LLMs [17], [22], [23], [25].

A central aim is to alleviate the manual workload of educators while improving assessment quality and scalability across multiple programming languages [6], [7], [21]. Another aim is to

systematically align generated questions with established cognitive learning models, especially Bloom's Taxonomy, to ensure relevance across difficulty levels and educational contexts [8], [16], [20], [21].

This dissertation also aims to contribute robust evaluation methodologies combining automatic scoring and expert review [13], [24], [25], improving the reliability and instructional alignment of automatically generated content [1], [4], [5]. Ultimately, the research aspires to provide an integrated, technically rigorous, and pedagogically valid foundation for future systems in programming assessment, especially in multi-language and large-scale learning environments [2], [3], [23].

These aims collectively shape the trajectory and cohesion of the dissertation's contributions, reflecting the interdisciplinary intersection of code analysis, natural language generation, and educational measurement [1], [4], [17], [22].

1.5 Research Objectives

This dissertation seeks to address the limitations of current programming assessment methods by pursuing the following core objectives:

- 1. To design and implement models that automatically generate programming questions directly from source code.
- 2. To ensure systematic alignment of generated questions with cognitive learning frameworks, particularly Bloom's Taxonomy.
- 3. To support multiple programming languages (Python, Java, C++, and C) within a unified, multi-language assessment context.
- 4. To evaluate both the technical quality and the pedagogical value of generated questions through automated metrics and expert review.

Together, these objectives establish the foundation of this dissertation's contribution to advancing programming education assessment through AI-enhanced, source code–driven QG and evaluation.

1.6 Scope and Limitations

This dissertation is bounded by the following scope and limitations, which reflect the operational design and methodological constraints of the conducted studies:

- 1. The primary focus is on source code as input, excluding textbook content and natural-language problem descriptions.
- 2. The study is limited to four programming languages: Python, Java, C++, and C.

- 3. The generated question types include multiple-choice questions (MCQs), open-ended questions, Boolean (yes/no) questions, short-answer questions, code-tracing questions, fill-in-the-blank questions, error identification (debugging) questions, and creative coding questions.
- 4. Evaluation incorporates both automated scoring metrics and expert human review.
- 5. The scope does not extend to real-time feedback, adaptive learning mechanisms, or dynamic student modeling.

These boundaries ensure that the dissertation delivers a focused and rigorous contribution to AQG from source code, while acknowledging the limits of generalizability and leaving room for future research directions.

1.7 Significance of the Study

This dissertation makes several important contributions to programming education assessment through AQG:

- 1. It reduces the manual workload of educators by automating the design of programming questions aligned with pedagogical frameworks.
- 2. It enhances inclusivity by enabling multi-language AQG and supporting cognitively diverse assessment items.
- 3. It introduces rigorous evaluation pipelines that combine automatic metrics with expert judgment, thereby improving the reliability and trustworthiness of educational AI.
- 4. It contributes to the intersection of NLP, machine learning (ML), and programming pedagogy by applying structured and AI-driven methods to real-world educational challenges.

Collectively, these contributions position the dissertation as both a technological advancement and a pedagogical innovation in equitable, scalable, and cognitively aligned programming education.

1.8 Dissertation Structure

This dissertation is organized to reflect the systematic development, evaluation, and integration of five distinct yet interrelated approaches to AQG from source code.

Chapter 2: Literature Review. This chapter provides an overview of research on programming assessment, question generation, semantic code analysis, template-based methods, and LLMs.

Chapters 3–7: Research Studies. Each chapter presents an independent but interconnected study, including its introduction, methodology, results, discussion, and conclusion.

Chapter 3: Ontology-Based Automatic Generation of Learning Materials for Python Programming.

Chapter 4: Hybrid Approach for Automatic Question Generation from Program Codes.

Chapter 5: Evaluating Large Language Models for Generating Programming Questions from Source Code.

Chapter 6: Template-Based Question Generation from Code Using Static Code Analysis.

Chapter 7: Multi-Language Static-Analysis System for Automatic Question Generation from Source Code.

Chapter 8: Conclusion. This chapter synthesizes the findings, presents contributions, outlines future research directions, and lists publications resulting from the dissertation.

While each study stands independently, together they form a cohesive exploration of AQG, from source code reflecting both the progressive development of the dissertation and its multi-layered contributions across computational, pedagogical, and linguistic dimensions.

Chapter 2 Literature Review

2.1 Introduction

AQG from source code is situated at the intersection of educational assessment, programming pedagogy, static program analysis, and AI. As programming becomes a fundamental skill in education and industry, the demand for scalable, cognitively diverse, and pedagogically sound assessment frameworks has intensified. This chapter synthesizes the foundational literature across these intersecting domains, organizing contributions and identifying gaps thematically across ontology-driven instructional content, graph-based static analysis, template-based question systems, LLMs, multi-language question generation, and the application of Bloom's Taxonomy in automated assessment frameworks [9], [17], [21].

2.2 Ontology-Based Instructional Content Generation

Effective instruction in programming education requires comprehensive and adaptive learning materials [27]. These materials include textual and visual content, interactive exercises, tutorials, real-world examples, assessment tools, and personalized pathways that reinforce hands-on practice and real-world applicability. Textual content delivers explanations, code examples, and problem sets, while interactive exercises and tutorials facilitate active learning and progressive skill development. Real-world examples bridge theory with practice, and assessment tools measure student progress and understanding [28]. The overarching aim is to provide accessible, engaging, and personalized resources that support varied learning preferences. Programming languages are a central area of study in CS and software development. Developing effective methods for teaching programming concepts is essential. Interest in QG techniques for programming languages has grown as a means of creating scalable practice opportunities, reinforcing learning, and enabling ongoing assessment [P2]. The paper [P3] applied ontology to develop a QG approach for programming concepts. Several studies have investigated the possibility of automatic generation of learning materials and their positive impact on enhancing student engagement and learning outcomes. Vergara et al. [29] found that AI-generated personalized learning materials boosted students' motivation and performance in mathematics courses. At the same time, Liu et al. [30] highlighted how AI-powered tools assist educators by automating quiz and worksheet creation, reducing manual workload while maintaining instructional quality. Lin et al. [31] examined the relationship between student engagement and outcomes in a cyber-flipped course, finding a positive correlation between active participation and academic performance, thereby underscoring the value of dynamic course materials in blended learning environments. Over the years, numerous researchers have explored the use of ontologies in education to automatically create and structure learning materials, enhancing personalization and interoperability within learning management systems (LMS) [32]. For example, the article [33] proposed an intelligent ontology-based system to automate tasks such as course scheduling and academic advising, demonstrating improvements in efficiency and student experience through structured domain knowledge. William and Joselin [32] discussed how ontologies enhance personalized learning, advocating for their use in shifting away from one-size-fits-all models to adaptive, student-centered instruction.

In the paper [34], a method for constructing structured knowledge graphs using word embeddings and NLP techniques was introduced, enabling automated semantic extraction and relationship mapping from educational content. This structured approach facilitates reference definition (prerequisites, hierarchy, relatedness), supporting the creation of dynamic, interconnected learning resources. Similarly, Stephen [35] explored the use of LLMs like GPT-3 to generate CS learning materials across topics, evaluating quality, relevance, and coherence to propose innovative methods for scalable CS education. Flanagan et al. [36] proposed leveraging NLP and ML to structure educational content extracted from various sources, aligning it with learning objectives to improve digital learning environments. Meanwhile, the paper [37] detailed the construction and practical application of a knowledge graph within Australian school science curricula, focusing on personalized learning and adaptive tutoring system integration.

Despite the growth of ontology-driven learning material generation, significant limitations remain: insufficient knowledge representation structures, limited flexibility and context awareness, challenges in reusability, and the lack of deep, adaptive personalization. Current systems often require human oversight, lack the interactivity and nuanced feedback of human instruction, and fall short in fostering critical problem-solving skills. Continued AI advancements in contextual understanding and adaptability are necessary to overcome these limitations. Table 2.1 compares traditional methods with ontology-based approaches, highlighting the latter's strengths in semantic structuring, flexibility, scalability, and personalization, which are essential for modern, learner-centered programming education. The complexity of QG requires expertise, deep content knowledge, and substantial time investment, especially in online learning contexts since the emergence of syntax-based and semantic-based QG models in 2014 [38], ontologies have proven effective for standardizing knowledge representation across domains, including e-learning, facilitating personalized and efficient learning [P9].

Table 2.1 Comparison between the traditional approaches and ontology-based approaches

Feature/Aspect	Traditional Approaches	Ontology-based Approaches	References
Knowledge Structure	linear and hierarchical	semantic and interconnected	[33], [P1]
Flexibility	limited adaptability to new topics	highly adaptable to new knowledge and domains	[34], [39]
Context Awareness	minimal context consideration	rich context understanding through relationships	[40], [P8]
Content Reusability	low reusability of materials	high reusability due to modular components	[P3], [P9]
Personalization	basic customization, often static	dynamic personalization based on learner profiles	[32], [41]
Scalability	difficult to scale with growing content	easily scalable with ontological frameworks	[42], [43]
Interoperability	often siloed systems	enhanced interoperability across platforms	[29], [44]
Knowledge Representation	simple data structures (e.g., text, images)	rich semantic representation using classes, properties, and relationships	[45], [P13]
Maintenance	time-consuming updates and revisions	more accessible updates due to modular ontology design	[46], [47]
Collaboration Support	limited collaboration features	facilitates collaboration through shared ontologies	[35], [P9]
Learning Pathways	predefined and rigid learning paths	dynamic learning pathways based on learner needs	[29], [30]
Assessment Tools	basic quizzes and tests	adaptive assessments based on learner progress	[48], [49]
Feedback Mechanism	limited feedback based on performance	contextual feedback based on semantic analysis	[36], [50]

Domain knowledge models, particularly those implemented with Python and Owlready2, offer flexible and integrable representations for e-learning systems [P8]. They enable adaptive learning systems capable of tailoring experiences to individual learners, reinforcing efficient knowledge transfer. Although QG in programming education holds transformative potential, implementation remains partial in modern contexts. Programming languages, central to CS education, demand effective teaching methods, with QG approaches enabling scalable practice and assessment opportunities [P3]. To support learning, Urazova [51] developed a system for automatic UML database design QG and response evaluation using AI and NLP, providing students with practical, self-assessment tools. Russell [52] explored automated code-tracing exercises in CS1 courses,

demonstrating their utility in reinforcing control flow and problem-solving skills, while acknowledging challenges in replacing traditional teaching approaches. LLMs have recently been applied to generate programming tasks and explanations, offering scalable solutions for instructors [17]. However, challenges remain, including dependence on large-scale models, computational demands, and difficulties in generating high-quality training data, all of which must be addressed when implementing these technologies in educational contexts [53].

2.3 Static Code Analysis and Graph-Based Representations

Static code analysis is employed across various domains, particularly in compiler design and security [54]. Static code analysis is used to automate checking student programming assignments. It verifies the correctness of student programming assignments concerning assignment instructions [55]. Many static analysis techniques are based on code representation, and it is critical in performing other tasks that involve drawing deductions about semantic relationships between program statements [56]. A proper code representation procedure allows deriving meaningful source code features that capture different aspects of the source code structure and behavior. Graph-based structures have mainly been employed in recent innovations in code representation to capture both the syntactic and the semantic details embedded in the code. The Abstract Syntax Tree (AST), CFG, PDG, and Data Flow Graph (DFG) are the most commonly used forms of representation. The definitions of AST, CFG, and DFG are as follows:

Definition 1: AST

An AST for the function f_i in a program $P = \{f_1, f_2, ..., f_n\}$ is represented as a graph $G_A^i = (V_A^i, E_A^i)$ where V_A^i is the set of leaf nodes and E_A^i is the set of directed edges, where each edge connects a parent node to its corresponding child node.

Definition 2: CFG

The CFG for the function f_i is defined as a graph $G_C^i = (V_C^i, E_C^i)$ where V_C^i is a set of nodes and E_C^i is a set of directed edges representing the control flow between the nodes.

Definition 3: DFG

A DFG for the function f_i is defined as a graph $G_D^i = (V_D^i, E_D^i)$ where V_D^i is a set of nodes and E_D^i is a set of directed edges capturing variable accesses and modifications during the execution.

The following is a simple example of a small function and shows how its AST, CFG, and DFG would look in a basic form. This will give the reader a clear idea of how each graph is constructed and what it represents. A simple Python function illustrates these structures:

Example Function

def add(x, y):

$$z = x + y$$

return z

1. AST: The **AST** represents the syntactic structure of the code. It focuses on how the source code is structured, not how it executes or flows.

AST Nodes (simplified):

- FunctionDef
 - o Name: add
 - o Parameters: x, y
 - o Body:
 - Assignment: z = x + y
 - Expression: x + y
 - Return: z

AST Edges:

- Each node connects to its child syntax elements. For example:
 - \circ FunctionDef \rightarrow Assignment
 - \circ Assignment \rightarrow Expression
 - \circ Expression \rightarrow x, Expression \rightarrow y
 - \circ FunctionDef \rightarrow Return
- 2. CFG: The **CFG** shows the control flow from one instruction to another.

CFG Nodes:

- 1. Start
- 2. z = x + y
- 3. return z
- 4. End

CFG Edges:

- Start \rightarrow Assignment
- Assignment → Return
- Return \rightarrow End

Note: Since there is no branching (like if or loop), the CFG is linear.

3. DFG: The **DFG** captures how data (variables) are used and modified.

DFG Nodes (variables): x, y, and z.

DFG Edges:

- $x \rightarrow z$ (z is computed from x)
- $y \rightarrow z$
- $z \rightarrow return (z is used in return)$

This tells us that z depends on x and y and is then used in the return statement. Table 2.2 shows a summary of AST, CFG, and DFG. While the DFG tracks explicit variable flows and value dependencies across statements, the PDG additionally captures control dependencies (partial CFG), revealing how both execution conditions and data shape program behavior.

Table 2.2 AST, CFG, and DFG summary table

Graph Type	What It Shows	Example Focus
AST	Code structure	z = x + y is an assignment with an addition expression
CFG	Execution order	Start → Compute → Return
DFG	Variable flow	$x, y \rightarrow z \rightarrow return$

PDG must be aware of some important control dependencies (which parts of the code are conditional on others). For example:

if
$$x > 0$$
:

$$y = 5$$

return y

The statement y = 5 depends on x > 0 being true (a control dependency). CFG is needed to determine branching, loops, and execution contexts. So, PDG uses partial control dependencies from CFG and data dependencies from DFG to build a unified view.

2.3.1 Automatic Question Generation

AQG has developed as a considerable scholarly subject in learning technology, and it has been used in many fields, such as programming education. Early research in this area tended to target the case of generating natural language questions based on natural language text and not as much about generating program questions based on program code [P3]. The combination of AST, CFG, and PDG analyzers and QG systems can considerably improve the quality and relevance of automatically created questions. A combination of the CFGs to provide program control flow information with PDGs to provide data dependency information can give a more comprehensive view of the program's behavior. In education, AI presents not only challenges but also opportunities, especially in its application to gauge student understanding. The rise of AI-generated code necessitates rethinking assessment practices to accurately measure student understanding and effort [57]. Systems using AST, CFG, and PDG have been developed for grading programming skills [58], demonstrating the potential of structured code analysis for automated evaluation.

2.3.2 Program Analysis

The problem of code analysis in programming languages has been discussed in several settings, but little has been said about a particular case of QG. The combination of CFG and PDG, analysis done when performing code comprehension, has been examined under various settings. The paper [59] has shown that graph-based neural networks can well be applied to the problem of code understanding by combining information in ASTs and in DFGs. In the same way, the authors in [60] employed graph-based forms to enhance bug detection and code completion. These strategies point to the possibility of using graph-based code analyses to build a better understanding of code at a deeper level, though they have not been used directly to answer questions. More relevant to the present work, the authors [61] built a natural language generator that takes a Python code snippet and generates a natural language description of that code. Their strategy involved a language-specific parser coupled with standard, intermediate representations, just like the current work. Nevertheless, they were concerned with code summarization and giving feedback, and did not discuss the difficulties of achieving balance in coverage of algorithms and cognitive levels.

2.3.3 CFG Analyzers

CFGs are especially useful for program analysis abstractions and indicate all potential paths of execution in a program. A graph is a model of a program in that each node corresponds to a basic block of code, and edges indicate the flow of control between blocks. The CFG analyzers exploit this format to obtain information about the structure of the program, to find out whether or not there are possible loops and conditional transitions, and to identify unreachable code blocks [56].

Such information can be used invaluably in the generation of questions so that one can then be asked questions that determine how the programmer understands the mechanics of control flows, including loop invariants, branch conditions, and exception handling. Modeling and analysis of the execution flow of a program is paramount in its correctness, reliability, and security [62]. It is possible to extract syntax and semantic information of source code using CFGs, which allows a more detailed analysis of the behavior of programs [56].

Questions about the order of statement execution, the circumstances under which different blocks of code are entered, and the possibility of entering an infinite loop or dead code are answerable by studying the control flow. Suggesting a student to concentrate on the control flow, such questions may examine his/her grasp of the logic of the program. Also, CFGs can be used to determine important areas of code that can be looked at in more detail, e.g., performance bottlenecks or errorprone areas.

2.3.4 PDG Analyzers

PDGs are a contrasting view in that they explicitly specify the data and control dependency between distinct program statements. Nodes in a PDG are the individual statements, whereas the edges show whether the value computed by one statement is referenced by another (data dependence) or whether the evaluation of one statement is conditional on the result of another (control dependence) [56]. This representation provides an analysis of critical data dependencies, potential data races, and possibilities of code optimization with PDG analyzers. They give a structure to how questions can be generated, which tests the understanding of the programmer on issues like the flow of data, side effects, and effects of changes in a particular variable or statement. All vulnerable cases of buffer overflows are spatial mistakes, which can be diagnosed with the assistance of spatial information in a DFG [63]. Buffer overflow can be discovered with the aid of static data flow analysis.

The PDGs are also capable of determining the inputs that influence or determine specific outputs, which is an important aspect of numerous security vulnerabilities. Data flow presents an analysis of how data is directed through a program and what is done to the data [64]. Data flow is a dependency relationship among variables, with nodes representing variables and edges denoting what caused the value of a variable [65]. Data flow analysis may discover a variety of bugs and is among the most frequently used approaches in practice [66]. Following the interdependency of variables allows determining the possible vulnerabilities, including a buffer overflow or a format string, to be identified.

2.3.5 Hybrid CFG-PDG Analysis

Combining CFG and PDG analyzers provides an effective method to generate questions and thus allows the generation of questions requiring insight into control flow and data dependencies. This combination enables the creation of questions that are more complicated and subtle and tests the reasoning of a learner about the interaction of various program components. The integration of data and control that has been implemented in applications is more intriguing when designing a custom architecture [67]. For example, one may pose questions like whether a modification in a specific variable will affect the execution course of the program or what conditions could cause a particular data dependency to produce a run-time error. This would allow for coming up with more difficult and pertinent actual programming situations. Furthermore, CFG-PDG combinations can also be used to discover the most critical control-sensitive and data-dependent code sections to generate questions that pinpoint the most important parts of program behavior. Combining these techniques improves the capability of defining questions that can assess single pieces of code and code interactions between control flow and data dependency. Beyond QG, the synergy between CFG and PDG provides broader benefits for comprehensive software understanding and analysis, as discussed next.

2.3.6 Synergistic Use of CFG and PDG

Studies that expand AST-based code representations to cover paths in CFG and PDG have demonstrated dramatic performance benefits to software engineering activities like method naming, classification, and clone detection [68]. This combination of CFG and PDG analyzers provides a more comprehensive picture of the program behavior. It allows us to generate questions that will focus on control flow and data dependencies. The study of the interaction between these two representations can enable the production of questions that demand deeper knowledge regarding the functionality of the program in general and the possible interactions between the various sections of the code. Such integration allows the formulation of questions that are more rigorous and insightful. It results in a more elegant measure of the fairness of assessing the competency of a programmer. Such a combination presents stronger questions, and the programmer understands the code better.

The combination of PDGs and CFGs presents a synergistic effect and is useful when it comes to finding vulnerabilities in code. When control flow and data dependency information are combined, this capability emerges to discover fine-grained defects that may remain elusive to either of the techniques individually [69].

2.3.7 Question Generation Strategies

Designing effective QG strategies is critically important in the design of assessments that not only measure the knowledge a programmer has about code, but also measure it accurately. Such strategies must apply to the characteristics of CFGs and PDGs and utilize the strong points of these subjects to outline thought-provoking and relevant questions. Among these approaches are identifying high-priority sections of code, including loops, conditional statements, or function calls, and creating questions about their behavior. The other way is following data dependencies with the PDG, forming questions about the information flow in the program. The assessment should be on relevant issues.

2.4 Template-Based and Question Generation Strategies

Template-based approaches have been widely used in AQG across various domains. The paper [5] provided a comprehensive survey of template-based QG techniques, highlighting their effectiveness in ensuring question quality and relevance. It mentioned that the template library is a major component of QG systems.

The paper [70] addressed educators' challenges in creating exam questions, particularly in remote learning environments. To tackle these challenges, the authors proposed a new approach that combines generative software development principles with feature-oriented product line engineering. This approach was designed to automate the creation of exam questions, specifically single-choice questions, using written templates.

The proposed generator allows educators to create families of questions that vary based on specific features and parameters. However, existing template-based AQG methods often fall short in supporting multi-language contexts, balanced algorithm coverage, and strategic difficulty alignment. This dissertation builds on these foundations while addressing these limitations, ensuring multi-language support and cognitive diversity in QG.

2.5 Bloom's Taxonomy and Cognitive Alignment

Bloom's Taxonomy is a starting point from which a set of questions can be classified according to the complexity of thinking skills [71]. Bloom's Taxonomy is a foundational framework for categorizing questions based on cognitive complexity [71]. It includes remembering, understanding, applying, analyzing, evaluating, and creating [71], [72]. In the paper [73], the authors have performed a thorough review of factors that complicate introductory programming tasks and have established several major factors that make questions more or less challenging. Their result offers valuable information in preparing questions of adequate difficulty based on

varying programming languages. The tactical use of programming languages' difficulty level has been argued on different educational fronts. These learning theories guide us in generating questions, especially in providing proper cognitive demand, difficulty levels, and language-specific issues.

Integrating Bloom's Taxonomy into AQG frameworks marked a significant advancement in aligning educational technology with pedagogical objectives. This integration enables the generation of assessment items systematically mapped to cognitive skill levels, ensuring that instruction and evaluation are pedagogically sound and targeted to desired learning outcomes. Recent AQG systems utilize Bloom's Taxonomy to classify and generate questions that target specific cognitive levels, from basic recall (remembering) to higher-order thinking skills like learners' cognitive development and support differentiated instruction [20]. It encompasses remembering, understanding, applying, analyzing, evaluating, and creating [71], [72], [74]. This taxonomy helps assess the cognitive skills that the questions aim to consider. Bloom's Taxonomy is used to classify educational learning objectives into levels of complexity and specificity. The following are the six levels from the simplest to the most complex:

- 1. Remembering: This is the basic level where learners must recall facts and concepts. It involves recognizing and recalling relevant knowledge stored in memory.
- 2. Understanding: Learners demonstrate comprehension by explaining ideas or concepts, summarizing information, and interpreting meaning.
- 3. Applying: It involves using knowledge in new situations. Learners can apply what they have learned to solve problems or complete tasks, demonstrating practical understanding.
- 4. Analyzing: Learners break down information into parts to understand its structure. They can differentiate between facts and inferences and identify relationships among various components.
- 5. Evaluating: Learners make judgments based on criteria and standards. They can critique ideas, assess the validity of arguments, and provide justification for their opinions.
- 6. Creating: This is the highest level of Bloom's Taxonomy, where learners combine elements to form a coherent or functional whole. They can design new products, propose solutions, or generate original ideas.

These levels are essential for educators to design assessments and questions that target various cognitive skills, ensuring a comprehensive evaluation of student learning. In the context of AQG, understanding these levels is crucial for creating questions that effectively assess students' knowledge and cognitive abilities.

2.6 Question Types in Programming Education

Programming instructors use a variety of question formats to assess and enhance student understanding, often leveraging AQG from source code. Each question type serves different learning objectives and challenges. The following are the question types in programming education:

- 1- MCQs: MCQs are a popular assessment tool in programming courses. MCQs can be an effective and motivating way for students to test their understanding of programming concepts [75].
- 2- Open-Ended Questions: Open-ended questions in programming education require students to provide an unstructured response, such as explaining code or writing their own solution [76].
- 3- Boolean (Yes/No) Questions: Yes/No or True/False questions are a simple form of assessment where students judge the correctness of a statement. In programming education, these judgment questions are considered a type of closed-ended exercise alongside MCQs and fill-in-the-blanks [77].
- 4- Short Answer Questions: Short answer questions require a brief textual or numeric response rather than selecting from given options. In programming, this format is often seen in questions like "What is the output of the following code?" or "Give the Big-O time complexity of this algorithm." These questions compel students to recall or deduce an answer without cues. They can assess understanding more directly than MCQs, and recent systems have begun to automatically grade such answers [78].
- 5- Code Tracing Questions: Code tracing questions present a piece of code and ask students to simulate its execution to determine the outcome or state. A typical prompt might be: "Given this code, what will be the output?" or "What values do the variables hold after execution?" This question type is well-established in programming education as a way to test understanding of control flow and state changes [79].
- 6- Fill-in-the-Blank Questions: Fill-in-the-blank questions in programming provide a code snippet or sentence with certain parts removed, and students must supply the missing piece. This format is often used to focus attention on specific syntax or concepts [80].
- 7- Error Identification (Debugging) Questions: Error identification questions, also known as debugging tasks, present students with faulty code and ask them to find and/or fix the error. These questions target a student's ability to read code critically and understand common bugs. For instance, a prompt may say: "This code is supposed to do X but it does not. What is the error and how would you fix it?" [81].

8- Creative Coding Questions: Creative coding tasks are open-ended prompts that require students to write original code to achieve some goal, often with room for creative expression or multiple correct solutions. Unlike the strictly defined answers of the above formats, these questions might ask students to "Design a program that meets scenario X" or "Create a graphic using code that accomplishes Y." The emphasis is on problem-solving, design, and creativity in programming [82].

2.7 Large Language Models in Programming Question Generation

Advances in NLP have led to the emergence of LLMs. These language models have proven their potential in different NLP applications, including QG and evaluation [83]. This section reviews the related works that laid the foundations for developing and evaluating LLMs in generative AI.

2.7.1 Background On Language Models in NLP

The development of LLMs has been influential [84]. In the past decade, the emergence of LLMs has driven a paradigm shift in NLP [85]. These models are characterized by their immense size, often containing billions of parameters. They are pre-trained on vast amounts of data, which enables them to learn patterns, syntax, and semantics of natural language. Pre-training is followed by fine-tuning specific tasks, making them adaptable to various applications.

Other methods of QG involve building specialized ontologies and integrating them with AI models, such as the previous research work [P3]. A hybrid ontology and AI approach was proposed to build an AQG model. However, this work lacks automatic evaluation framework. The novelty lies in bridging the semantic gap between programming syntax and natural language understanding, enabling AI-based QG systems to work effectively with source code as input material (something that was not possible before without extensive manual annotation of code examples).

OpenAI's GPT models have continuously improved language generation capabilities, starting with GPT-1 and advancing to GPT-2, GPT-3, and beyond [86]. GPT-3.5, for example, delivered human-level performance on different language tasks, from translation to question-answering.

LLMs have proved their adaptability in NLP tasks. They perform well in text generation, summarization, translation, sentiment analysis, and various other tasks. The capacity to understand and generate text in multiple languages and domains causes such adaptability [86]. While LLMs are powerful tools, they are not without their challenges. Their massive size demands substantial computational resources, making them inaccessible to many researchers and organizations. These models have been criticized for keeping biases in their training data [87]. In the context of programming question generation, several types of biases are particularly concerning: (1) Gender

and cultural biases may manifest in variable names, example scenarios, or assumed contexts (e.g., consistently using male names in programming examples or culturally-specific references), (2) Programming paradigm biases where certain coding styles or approaches are favored over others, potentially disadvantaging students from different programming backgrounds, and (3) Complexity biases where questions may systematically favor certain types of programming concepts or difficulty levels based on the prevalence of such examples in training data. Research efforts to mitigate these biases and make LLMs fairer have gained attention.

One of LLMs' strengths is their adaptability through fine-tuning [88]. Researchers and practitioners can customize these models for domain-specific tasks, allowing them to perform well in specialized domains. The fine-tuning process involves training the model on task-specific data, enhancing performance and relevance to specific tasks. The growth of LLMs has raised ethical and societal concerns. The ability of these models to generate coherent, human-like responses also means they might be used for malicious activities such as misinformation and deepfakes. Discussions on responsible AI and ethical use are ongoing. LLMs have become the focus of many studies, ranging from model architecture and training techniques to healthcare, finance, and education applications. Researchers are exploring ways to harness LLMs' power to benefit society while mitigating potential harms [89].

2.7.2 Question Generation with Large Language Models

Integrating LLMs into language processing has significantly advanced QG capabilities. Because of their extensive pre-training on vast text corpora, LLMs have transformed how questions are generated. This section explores the evolution and impact of LLMs on QG, emphasizing their contributions to the field of NLP [22].

- 1) From rule-based to data-driven approach: Before the era of LLMs, QG primarily relied on templates and rule-based methods. These techniques effectively generated simple questions but were inadequate in generating relevant and diverse questions. LLMs have adopted a data-driven approach. Their ability to learn complex language patterns and semantics has led to the generation of questions customized to the specific content from which they are derived [90].
- 2) Contextual understanding and coherence: LLMs can contextualize the input text to generate coherent and relevant outputs, unlike rule-based methods, which often produce disconnected or irrelevant questions. Contextual understanding is critical when generating questions from documents with complex structures, technical language, or nuanced information [91].

- 3) Fine-tuning for question generation: Fine-tuning involves adapting pre-trained models to specific tasks by training them on question-generation datasets [92]. It allows LLMs to learn the patterns for various contexts, which improves their performance.
- 4) Challenges and opportunities: LLMs offer great potential in QG, but challenges exist. Generating clear and concise questions with different levels of complexity and coverage remains an ongoing research challenge [93]. The current research addresses these challenges by introducing evaluation criteria such as clarity, conciseness, and coverage to comprehensively evaluate LLMs in QG.

2.7.3 Evaluation Metrics for NLP

Evaluating language processing models is critical to NLP research and application development. Effective evaluation metrics allow researchers and practitioners to assess models' performance in various tasks quantitatively and qualitatively [94].

- 1) The need for evaluation metrics: Evaluation metrics judge how the performance of NLP models is measured. NLP tasks have different aspects and often involve generating or processing human language, making it challenging to assess models' performance objectively. Metrics provide a structured framework for evaluating models' output, identifying strengths and weaknesses, tracking progress, and guiding model development [95].
- 2) NLP evaluation metrics: For NLP evaluation, several widely accepted evaluation metrics have been developed to assess different aspects of model performance. These include clarity, which measures the similarity between generated and reference text, and ROUGE for text summarization tasks [96]. These metrics evaluate the generated text's specific linguistic qualities.
- 3) Objective evaluation: Objective metrics can be used to assess the capability of NLP models. For example, clarity provides quantitative scores indicating the clarity between the generated and reference text. Combining metrics like relevance, coherence, and conciseness offers a more comprehensive understanding of model performance [97]. Our research adopts this set of criteria to assess LLMs' performance in generating questions from program codes.
- 4) Ethical considerations in metrics: Using evaluation metrics raises ethical concerns. Metrics should be carefully chosen to avoid reinforcing biases or undesirable behaviors in NLP models [98]. Responsible AI practices involve developing metrics that encourage fairness and ethical behavior in NLP models. The approach proposed in the current research addresses these ethical concerns while evaluating LLMs' performance and considering issues related to relevance and clarity in question generation. As LLMs become more powerful, ethical considerations have become important. Developing responsible AI and mitigating biases in LLMs are critical [99].

2.7.4 State-of-the-art LLMs

Various models have emerged, each showing considerable performance across language processing tasks [89].

- 1) GPT-4: Building on the success of its predecessors, GPT-4 is known for its language generation ability [100]. GPT-4 exhibits contextual understanding due to its larger model size, improved training techniques, and increased parameters [101]. GPT-4-0314 has a smaller context capacity than GPT-4-0613. GPT-4 has set a high benchmark for other models in question generation.
- 2) GPT-3.5: It is the updated version of GPT-3; a later version is 3.5-turbo. It supports 4096 tokens, is free on the web interface, and has a paid application programming interface (API). The capabilities of GPT3.5-turbo-0613 result in better output than GPT-3 for text processing tasks [102].
- 3) Llama-2: Llama-2 specializes in chat-based interactions and is designed to generate human-like responses [103]. This specialization makes Llama2 a strong candidate for dialogue-based question generation.
- 4) H2OGPT Variants: The H2OGPT series features fine-tuned variants for specific domains. H2OGPT-gm-oasst1-en-2048-falcon-40b and H2OGPT-gm-oasst1-falcon40b offer promising performance for domain-specific applications [104]. These models are customized to generate questions from technical content, which aligns with our research's focus on QG from source code. Several versions with different parameter sizes are available; all are open-source and can be optimized for specific domains. Each falcon has a distinct parameter capacity or token size [103]. The following is a brief description of each model:
 - H2OGPT-gm-oasst1-en-2048-falcon-40b-v1: It has the largest parameter size in open-source models, reaching 40 billion parameters, and the precision of text generation and understanding of NLP is high [105].
 - H2OGPT-gm-oasst1-en-2048-falcon-40b-v2: This version is similar to the previous version, as they both trained on the same dataset; however, different personalization settings were added. Additionally, both versions support 2048 tokens [105].
 - Falcon-40b-sft-top1-560: This model supports up to 2048 tokens and performs very well in text generation. It was trained on the OSSAT dataset [105].
 - H2OGPT-oasst1-falcon-40b: This version is the initial release with 40 billion parameters and supports 2048 tokens. However, the other versions have more refined training data than the initial version [105].

- H2OGPT-gm-oasst1-en-2048-falcon-7b-v3: This model is significantly smaller than the other Falcon models; however, it is also trained on the OSSAT data set, and supports the context length of 2048 [105].
- Falcon-40b-instruct: This model is the newer version of Falcon and uses the same dataset
 as the previous ones. However, this version is tuned specifically to perform tasks and follow
 instructions precisely. This version performs better on the required tasks than the previous
 ones [105].
- 5) Vicuna-33b: Vicuna-33b focuses on specialized applications [106]. Its model size of 33 billion parameters combines scalability with domain expertise. Vicuna-33b's potential for generating questions in specific technical domains might provide valuable insights into the feasibility of using such models for specialized tasks.
- 6) Claude: The Claude model is from Google, and it has a huge input token limit that reaches up to 100K user input. Claude performs well on multiple-choice tasks [107]. However, at the time of writing, this model was only available in the USA and the UK, which was considered an access limitation [108]. The parameter size for this model reaches 130 billion parameters. Furthermore, for text generation, it is stated that it outperforms GPT-3.5, but GPT-4 remains better at prompt understanding and coding [109].

2.8 Evaluation Metrics for Generated Questions from Source Code

Evaluating automatically generated questions is still a problematic issue, and multiple metrics and methods are suggested in the literature. The article [110] developed a framework to measure the quality of MCQs that are produced automatically in terms of relevance, clarity, and educational worth. The paper [75] proposed some evaluation measures to gauge the quality and effectiveness of the generated MCQs. These parameters make questions relevant, varied, and appropriate for educational programs. The primary measurement criteria include question relevance score, diversity index, and difficulty alignment accuracy. In another paper [111], the authors mentioned that LLMs automatically generate MCQs in curricula CS0 and CS1. The course outline of both CS0 and CS1 is the core input data into the EduCS system. The paper includes a list of evaluation metrics that will help to evaluate the quality of MCQs provided by the EduCS system. The most relevant aspects of these assessment measures were clarity, relevance, and difficulty level. As a knowledge representation technique [P13], ontology has been used to build semantic models for the Python language [P8], [P9]. The paper [P1] used automatic evaluation measures, bidirectional encoder representations from transformers (BERT)-based semantic accuracy, to assess the content. The paper [P3] does not cover automatic evaluation but proposes a hybrid model with

human expert evaluations focused on code difficulty and generated question validity. Overall, assessing the quality of machine-generated questions from source code calls for robust metrics beyond conventional automated scoring methods.

2.9 Conclusion

This chapter examined the intersection of AQG and programming education, emphasizing how ontology-driven methods, graph-based code analysis, and LLMs contribute to scalable, high-quality assessment systems. The chapter reviewed ontology-based instructional content generation, highlighting its role in structuring and personalizing learning materials for programming education while enhancing content reuse and consistency. It also explored how static code analysis techniques, particularly ASTs, CFGs, DFGs, and PDGs, provide a structured foundation for analyzing code semantics to inform AQG. The integration of these graph-based representations supports the development of targeted, cognitively diverse programming questions that align with Bloom's Taxonomy, ensuring assessments measure varying levels of cognitive skills. The chapter further discussed template-based approaches and LLMs like GPT-4 and Llama-2, demonstrating their potential to generate coherent, contextually relevant programming questions while acknowledging challenges such as bias, scalability, and the need for robust evaluation frameworks. It highlighted the importance of clear evaluation metrics, including semantic accuracy, relevance, and cognitive alignment, to assess the quality of automatically generated questions effectively.

Overall, the chapter established a comprehensive theoretical foundation for the dissertation, identifying critical limitations of current AQG methods in programming education, particularly the lack of AQG directly from source codes and the absence of evaluation metrics for such methods. The gaps identified in this literature review directly inform the research contributions. While existing work provides valuable foundations in ontology-based content generation, graph-based code analysis, and LLM applications, no existing systems integrate these approaches for AQG from source codes, nor do they provide comprehensive evaluation and systematic cognitive alignment to Bloom's Taxonomy levels.

Chapter 3 Ontology-Based Automatic Generation of Learning Materials for Python Programming

3.1 Introduction

Recently, knowledge graphs (KGs), as structured forms of knowledge representation, have gained substantial research interests across academia and industry from modern ontology views. Integrating educational technologies with KGs has an impressive influence on teaching and learning activities, especially in programming with Python. E-learning platforms provide students with tools to easily engage and receive ongoing feedback during the e-learning sessions [35]. KGs are crucial in optimizing the automation of ontology-based learning material generation. They support the organization, interrelation, and knowledge utilization in a particular field [112]. In Python programming, KGs can delineate the existing knowledge, relations, and entities [112]. Additionally, ontology-driven systems support more effective comprehension of the context and relations of various concepts, thus enabling more precise and thorough learning materials generation [112]. Adding KGs to the ontology-based automatic generation of educational materials improves content relevance, personalization, interoperability, content reuse, and efficient knowledge capture [113]. KGs can efficiently organize and manage the structural knowledge of Python programming [113].

In the information age, one's programming capability is required in many professions, as accentuated by the availability of resources aimed at teaching and training in programming [30]. Designing high-quality learning materials for programming languages is difficult and requires substantial resources because of fragmentation in educational programming design, instructional programming expertise, and difficulty in adaptive personalization [32]. Ontology-based automatic learning materials generation (ALMG) leverages advanced educational technologies to streamline this process [39]. This technology will assist educators in saving time and costs by generating particular and appealing materials for students [39]. Calmon et al. [42] describe an automated curriculum selection system that tailors educational content to student needs using ML and data analytics, improving learning effectiveness and institutional delivery. Similarly, Xia et al. [48] propose adaptive networked learning material delivery, demonstrating how ML can manage learning processes and enhance student outcomes in networking education.

One of the methods to represent domain models is through ontology-based representation [P13]. Semantic understanding and knowledge representation enable Ontology-based ALMG for Python programming that produces resources like tutorials, code examples, exercises, and assessments. The development of an ontology for capturing Python programming concepts, relationships, and properties is used in this approach. It attempts to create learning materials based on the pedagogical

requirements and learning objectives. The ontology-based approach further enables continuously updating and refining the learning materials to sync with Python programming environment changes [114]. Ontology-based ALMG for Python programming is a highly efficient and scalable approach using structured knowledge presentation for automating educational content creation [32]. With this method, its learning materials remain consistent, high quality, and personalized, all while allowing for the efficient creation of various resources. Likewise, the existence of the ontologies makes the routines adaptable to changes in Python programming [115], i.e., updating the ontologies and automatically regenerating learning materials. Ontologies' automation saves educators and content creators time and effort and improves a deep semantic understanding of the Python programming domain for a better generation of learning materials [34]. Manual creation of Python programming learning materials remains time-consuming and often fails to keep pace with the ecosystem's rapid evolution [P3]. An ontology-driven automated approach can address these challenges, improving learners' access to high-quality, adaptive, and contextually relevant resources. The automatic generation of Python learning materials is critical for ensuring scalability, adaptability, consistency, and accessibility while facilitating innovation in educational technology and programming pedagogy [49]. It enables diverse, personalized learning experiences aligned with learners' needs and learning styles, supporting educational quality while reducing instructor workload.

This chapter aims to develop a comprehensive ontology for Python programming and design an ontology-based ALMG system tailored to Python education. It outlines the system's design and implementation while exploring potential enhancements and the implications of such a system in educational contexts. This chapter details the technologies and methodologies underlying ontology-based ALMG, emphasizing how ontologies capture domain knowledge and facilitate the automated generation of educational content. It discusses the educational and practical implications of ontology-based ALMG, illustrating its potential to enhance Python programming instruction. The objectives of this chapter are to:

- 1. Design an ontology-based framework that models Python programming concepts and their interconnections.
- 2. Develop a system for automatically generating Python programming learning materials (specifically quizzes) that align with the modeled concepts and relationships. It supports beginner, intermediate, and advanced difficulty levels.

The structure of this chapter is as follows: Section 3.2 describes the methodology, outlining the ontology-based approach, domain-specific knowledge modeling, and implementation details, including validation and evaluation of the proposed model. Sections 3.3 and 3.4 present the results

and discussion, respectively, while Section 3.5 concludes the chapter, highlighting practical implications.

3.2 Methodology

3.2.1 Ontology-Based Approach for Learning Materials Generation

Formal knowledge representation is used in an ontology-based approach that captures domainspecific concepts, relations, and properties and uses such information to generate learning materials. The method involves an ontology for the target domain's concepts, relationships, and properties, such as programming languages. Semantic understanding is captured through ontology, meaning it results in inferring relationships and categorizing concepts. Learners' needs and preferences are analyzed based on educational objectives and learner profiles. The ontology is used to generate content that is coherent and contextually relevant. The materials are presented using NLP techniques to make the explanation as clear and understandable as possible. Because it is based on ontology, it allows for continuous updating and refinement as the domain knowledge changes. The benefits include scalability, adaptability, personalization, consistency, efficiency, and accessibility. The ontology-based approach can create adaptive, personalized, high-quality educational content for various domains, such as programming education. The ontology-based approach for generating learning materials involves structured knowledge representations on a domain to automatically create the learning materials. Ontologies are leveraged in this process to map the relationships between different concepts in the subject of a knowledge domain, providing generated materials that are pedagogically sound and contextually relevant. The primary process of generating learning materials using an ontology-based approach can be demonstrated in several steps as follows:

- 1. Ontology development, which includes domain analysis, is to identify the key concepts, relationships, and rules within the subject area, and ontology construction to define the concepts (classes), properties (relationships), and instances (individuals) within the domain, and validation and refinement ensure that the ontology accurately represents the domain knowledge through validation and iterative refinement.
- 2. Knowledge representation involves formalizing the ontology. This formal language provides precise semantics for the concepts and relationships, axioms, and rules to define axioms and inference rules to capture the logical constraints and derivations within the domain.
- 3. Learning materials generation, which contains the content extraction for identifying relevant content from the ontology based on the learning objectives, content structuring to organize the extracted content into a coherent structure, following educational best practices (e.g., Bloom's

taxonomy), and template application to apply predefined templates to format the content into various types of learning materials (e.g., textbooks, task assessments, interactive modules).

4. Automated generation algorithms include the input processing to accept inputs such as learning objectives, target audience, and preferred content format; ontology querying, which uses description logic queries to retrieve relevant concepts, relationships, and instances from the ontology, material assembly to assemble the retrieved information into structured learning materials using the defined templates, and output generation for producing the final learning materials in the desired format (e.g., HTML, e-learning platform).

AGLM involves a complex pipeline integrating NLP, ML, and educational technology. The following is an algorithmic approach to automatically generating learning materials from an ontology. AGLM in the programming domain involves several tailored steps. The following is a general pipeline for AGLM in the programming domain:

Inputs:

- Programming Language: The specific language (Python).
- Learning Objectives: Skills or concepts to be covered (e.g., syntax, data structures, algorithms).
- Content Sources: Online tutorials, documentation, code repositories.
- Format Preferences: Code snippets, quizzes, text explanation.
- Target Audience: Beginner, intermediate, or advanced learners.

Steps:

1. Content Retrieval:

- Query content sources using APIs or web scraping to gather relevant programming resources.
- Use NLP techniques to filter and categorize content based on relevance and complexity.

2. Content Analysis:

- Analyze the retrieved content for key programming concepts, syntax rules, common pitfalls, and best practices.
- Identify gaps in the content that need to be addressed to fulfill the learning objectives.

3. Content Structuring:

- Organize the content into a logical flow, such as:
- Introduction to the language
- Basic syntax and constructs

- Control structures (loops, conditionals)
- Data structures (arrays, lists, dictionaries)
- Functions and modules
- Advanced topics (e.g., OOP, frameworks)
- Create outlines or flowcharts to visualize the structure.

4. Material Creation:

- Generate text explanations for each section using NLP techniques.
- Create code examples and snippets that illustrate each concept.
- Develop quizzes or coding challenges based on the key concepts identified.
- Design multimedia elements (like screencasts or infographics) if applicable.

5. Customization:

- Tailor the generated materials to fit the target audience's skill level.
- Adjust complexity by simplifying explanations or introducing advanced topics as needed.

6. Interactive Elements:

- Integrate coding environments (like Jupyter Notebooks or online IDEs) where learners can practice coding directly within the material.
- Include live coding demonstrations or interactive simulations.

7. Feedback Loop:

- Incorporate user feedback mechanisms (like quizzes and surveys) to evaluate understanding and engagement.
- Use ML to refine content generation based on user performance data.

8. Output Generation:

- Compile all materials into a cohesive format (e.g., HTML pages, PDF documents, online course modules).
- Ensure accessibility standards are met (e.g., code readability, alt text for images).

9. Review and Iteration:

• Implement a review process where educators or experienced programmers can evaluate the generated materials.

• Iterate on the content based on feedback and updates in programming language features or best practices.

Outputs:

- Comprehensive learning materials tailored to programming topics and audiences.
- Code snippets and examples for hands-on practice.
- Quizzes and coding challenges to reinforce learning.

While the complete AGLM pipeline outlined above provides necessary context for understanding AGLM, the focus of the current research (ontology-based MCQs generation with BERT similarity) is on some parts of this general pipeline. Algorithm 3.1 automatically generates MCQs quizzes aligned with Python programming concepts using a domain-specific ontology. It aims to deliver personalized and contextually accurate assessments while ensuring semantic alignment with reference materials through BERT-based similarity checks (implemented and deployed on a Flask App).

```
Algorithm 3.1: Ontology-Based MCQ Generation
Input: Domain, Difficulty, Number of Questions
Output: Random_MCQ_Quiz, Similarity_Score
1: PROCEDURE BUILD_PYTHON_ONTOLOGY()
2:
    ontology ← ONTOLOGY STRUCTURE()
    RETURN ontology
3:
4: END PROCEDURE
5: PROCEDURE GENERATE MCQ DATASET()
    mcq\_bank \leftarrow \emptyset
7:
    for each domain_template do
8:
      questions ← TEMPLATE BASED GENERATION(domain template)
      mcq_bank.ADD(domain, questions)
9:
10:
     end for
     SAVE TO CSV(mcq bank, "mcq dataset.csv")
11:
12: END PROCEDURE
13: PROCEDURE SERVE QUIZ(domain, difficulty, num questions)
     questions ← LOAD FROM CSV("mcq dataset.csv")
     filtered ← FILTER BY DIFFICULTY(questions[domain], difficulty)
15:
     selected ← RANDOM SAMPLE(filtered, num questions)
16:
     similarity ← BERT_SIMILARITY(ontology_material[domain], domain)
     RETURN FLASK RESPONSE(selected, similarity)
19: END PROCEDURE
```

The process begins by building a domain ontology for Python programming. This ontology formalizes concepts such as data types, control structures, functions, and OOP, capturing relationships and properties necessary for the semantic structuring of learning materials. For each domain concept template, the system uses a template-based generation approach to create relevant MCQs, systematically organizing these questions into a structured MCQs bank. This bank is then saved in a comma separated values (CSV) format for efficient retrieval and further processing.

When a learner requests a quiz, the system loads the MCQs dataset, filters questions based on the desired difficulty level, randomly selects the required number of questions, computes semantic similarity using BERT embeddings to compare the learner's domain with reference materials, ensuring that the questions are contextually aligned and relevant, and returns the personalized quiz alongside similarity metrics for evaluation. This approach enables scalable, automated generation of high-quality, semantically accurate quizzes in programming education, reducing manual effort while enhancing learning personalization and alignment with learning objectives.

3.2.2 Proposed Knowledge Model for The Domain-Specific Concepts

The domain-specific concept is the system's knowledge module, organizing the domain knowledge structure, including its central concepts and their relationships. This model facilitates the automatic generation of learning materials for the educational process. It focuses on constructing and organizing domain-specific concepts and their interrelations [47].

A knowledge module consists of guidelines to identify all vocabulary concepts to illustrate or solve problems. It is purely declarative and does not provide instructions on how learners can utilize it to address practical issues [116]. Two categories of ontology modules have been developed based on the characteristics of the learning materials: general domain-specific concepts ontology and specific domain-specific concepts knowledge module ontology. These modules represent the knowledge concepts needed for learning, provide input to the knowledge module, offer particular feedback, select problems, create learning materials, and support the student model. A domain-specific concepts knowledge module has been proposed based on current research, as illustrated in Figure 3.1. This model is fundamentally based on domain concepts, properties, task assessments, material resources, learning objectives, learning rules, learning levels, and their interrelationships.

To generate learning materials and reuse the knowledge module in the learning process, ontologies organize and represent the domain-specific concepts in the knowledge module. The advantage of this model is its ability to personalize and automatically generate learning materials for learners.

Based on the general domain-specific concepts ontology shown in Figure 3.1, domain concepts, domain properties, task assessments, material resources, learning objectives, learning rules, and learning levels terminologies refer to the following:

- Domain concepts present domain-specific knowledge or a comprehensive learning material or course overview.
- Domain properties represent learning material or domain-specific properties within a domain knowledge model.

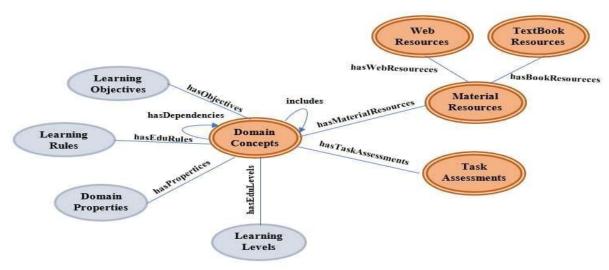


Figure 3.1 General knowledge model for the domain-specific concepts

- Task assessments explain how the application system can assess or measure the required learner activities within a specific period.
- Material resources are physical or digital items used in educational settings to support and facilitate learning. They include textbooks, web resources, software, multimedia tools, and laboratory equipment.
- Learning objectives are clear, measurable goals that outline students' expected learning outcomes. They guide teachers in planning instruction, designing assessments, and evaluating progress. Aligned with curriculum and instructional standards, they provide a framework for effective teaching and assessment.
- Learning rules are principles or guidelines that describe how learning occurs and how new information is acquired and processed. These rules help educators understand student learning and inform instructional strategies while helping students become more effective learners by optimizing their learning processes.
- Learning levels are the stages of proficiency and understanding that individuals progress through as they acquire new knowledge, skills, and competencies. They are crucial in education and instructional design, as they help educators tailor teaching methods and materials to support students at different stages of their learning journey.
- Figure 3.2 displays the design and structure of a selected ontology knowledge module for the domain-specific concepts case study for the Python programming domain. Several relationships are applied to the domain-specific concepts selected in case examples. The relationships are generalization or specialization, dependency, and containment. Containment indicates that a specific domain concept within a given domain contains various concepts (has-a). The

generalization or specialization shows particular topics or domains with specific concepts (is-a). Based on Figure 3.1 and Figure 3.2, the following displays a temporary explanation of a domain concept:

- Domain concepts: Class, Function.
- Domain properties: syntax.
- Task assessments: program, code review, project.
- Material resources: textbooks, web resources.

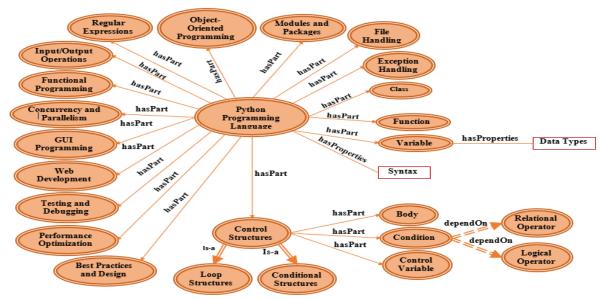


Figure 3.2 Specific knowledge model for the domain-specific concepts

3.2.3 Proposed Model Implementation

CS and Information Technology disciplines offer numerous language modules and packages for developing and managing ontology models. Python is one of the most widely used and favored languages for implementing an ontology for domain-specific concept models. This interpreted, object-oriented, and extensible programming language is known for its exceptional clarity and versatility across various fields [40]. The paper [P8] used Python and Owlready2 to create the ontology and implement the domain knowledge. The domain-specific concept explored in this work is the "Basics of Computer Programming." The ontology is constructed using the "Python Programming Language." Python and Owlready2 modules implement domain-specific concepts within the ontology. Owlready2 facilitates transparent access to ontologies, allowing for the manipulation of classes, individuals, object properties, data properties, annotations, property domains, ranges, constrained datatypes, disjoints, and class expressions, including intersections, unions, property value restrictions, and more. Python offers some functions and modules for

managing ontologies to implement, create, and modify ontologies. The get_ontology() function allows building an empty ontology from its IRI using the Owlready2 module. Owlready2 uses the syntax "with ontology: ..." to demonstrate the ontology that will receive the new RDF triples. For creating an ontology, the following short code is used:

```
from owlready2 import *
ontology = get_ontology()
with ontology: <Python code>
```

Concerning the implementation of the domain-specific concepts and the construction of its components: the domain concepts, learning objectives, domain properties, task assessments, learning rules, material resources, and learning levels. Figure 3.3 shows a code dealing with the design of the core classes of the presented model. Figure 3.4 corresponds with some of the object property relationships defined for the constructed components of the selected model. Several tools are available to display the ontology graph. The tools are Synaptica, OWLGrEd, and Protégé.

```
ontology = get_ontology("http://test.org/Domain_Specific_Concepts.owl#")
    #Construction of the Domain Specific Concepts Components
   with ontology:
4
        class DomainConcepts(Thing):
            def take():
    print("I take Domain Concepts")
 6
        class LearningObjectives (Thing):
8
            def take(self):
        print('Learning Objectives')
class DomainProperties (Thing):
10
11
            def take(self):
                 print('Domain Properties related to the Domain Concept')
14
        class TaskAssessments (Thing):
15
            def take(self):
                print('Task Assessments related to the Domain Concept')
16
        class LearningRules
                              (Thing):
        def take(self):
    print('Learning Rules related to the Domain Concept')
class MaterialResources(Thing):
18
19
20
           def take(self):
22
                 print('material resource related to the Domain Concept')
        class TextBookResources(MaterialResources): pass
23
        class WebResources(MaterialResources): pass
25
        class LearningLevels
                               (Thing):
            def take(self):
                print('Learning Levels related to the Domain Concept')
```

Figure 3.3 Core classes of the presented model

```
#The Object Property Relationships added to the Domain Specific Concepts
          class hasPart(DomainConcepts >> DomainConcepts): pass
class partOf(DomainConcepts >> DomainConcepts):
30
31
                inverse = hasPart
          class hasDependency(DomainConcepts >> DomainConcepts): pass
class dependencyOf(DomainConcepts >> DomainConcepts):
33
34
                inverse = hasDependency
          class associate(DomainConcepts >> DomainConcepts): pa
class associatedBy(DomainConcepts >> DomainConcepts):
36
                inverse = associate
39
          class hasParent(DomainConcepts >> DomainConcepts): pass
          class parentOF(DomainConcepts >> DomainConcepts):
40
                inverse = hasParent
41
          class hasProperty(DomainConcepts >> DomainProperties): pass
class propertyOf(DomainProperties >> DomainConcepts):
    inverse = hasProperty
42
43
44
          class hasTask(DomainConcepts >> TaskAssessments):pass
class taskOf(TaskAssessments >> DomainConcepts):
45
46
               inverse = hasTask
47
48
          class hasMaterial(DomainConcepts >> MaterialResources): pass
          class materialOf(MaterialResources >> DomainConcepts):
49
               inverse = hasMaterial
51
          class hasDRule(DomainConcepts >> LearningRules):
          class druleUOf(LearningRules >> DomainConcepts):
                          = hasDRule
```

Figure 3.4 Object property relationships

Protégé is the most commonly used tool to display the ontology graph of domain-specific concepts, as shown in Figure 3.5. The ontology visualization employs different types of connecting lines to represent various relationships between concepts. Solid arrows indicate direct hierarchical relationships, where parent concepts contain or encompass child concepts. Dashed lines represent dependency relationships, showing that one concept relies on or requires

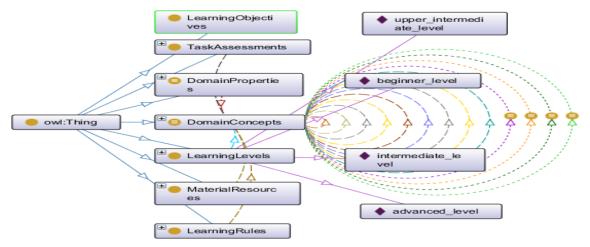


Figure 3.5 Domain-specific concepts ontology graph

understanding of another concept. The circular relationship lines in Figure 3.5 demonstrate the interconnected nature of programming concepts, where each topic can depend on another topic and contain subtopics. For example, the iterative loop depends on variables, logical operators, and relational operators, as shown by the dashed dependency lines. Control sentences contain conditional sentences and iterative sentences, illustrated through solid hierarchical arrows. Figure 3.6 presents a SPARQL query as an example of visualizing all the domain concepts in the selected ontology domain-specific concepts regarding retrieving the domain concept and its description.

Domain Concept: Python Class Domain Description:

Figure 3.6 A SPARQL query for retrieving the concept "python class" and its description

A class is a user-defined blueprint or prototype from which objects are created. Classes provide a means of bundling data and functionality together. Creating a new class creates a new type of object, allowing new instances of that type to be made. Each class instance can have attributes attached to it for maintaining its state. Class instances can also have methods (defined by their class) for modifying their state.

NLP is used for automatic learning material generation, applying the Spacy module in Python and the rdflib module. Figure 3.7 and Figure 3.8 present the code that controls the ontology of domain-specific concepts. Figure 3.9 and Figure 3.10 display snapshots of SPARQL for generating task assessment and query results according to SPARQL selecting concepts. The results are domain concepts, task assessment, and asking questions in the form of MCQs. Regarding automatic learning materials generation, the system randomly generates task assessments as MCQs for the learner. The learner is asked to answer the question, and according to the answer, whether it is correct or not, the system will automatically generate learning materials for further reading. Figure 3.11 shows a snapshot of a task assessment question, whether the answer is correct, and the suggested learning material for the selected task. Table 3.1 shows a comparison between traditional vs. ontology-based learning material creation.

```
import rdflib
      import
                spacy
     from spacy lang en import English
        Load the English NLP model
     nlp = English()
     # Load the ontology
g = rdflib.Graph()
10
     g.parse("dataset/update_py_onto_module.owl", format="xml")
     # Extract concepts from the ontology concepts = [str(concept) for concept
12
                     [str(concept) for concept in g.subjects()]
     # Process the concepts using the NLP model
     learning_materials = []
for concept in concepts:
    doc = nlp(concept)
           # Generate learning materials based on the processed concept definition = f"The term '{concept}' refers to {doc[0].text.lower()}." learning_materials.append(definition)
19
20
21
22
    # Print the generated learning materials
for material in learning_materials:
         print(material)
```

Figure 3.7 Controlling the ontology of domain-specific concepts

```
The term 'http://test.org/Domain_Specific_Concepts.owl#c' refers to http://test.org/domain_specific_concepts.owl#c.
The term 'http://test.org/Domain_Specific_Concepts.owl#LearningObjectives' refers to http://test.org/domain_specific_concepts.owl#learningObjectives.
The term 'http://test.org/Domain_Specific_Concepts.owl#task1' refers to http://test.org/domain_specific_concepts.owl#task1.
The term 'http://test.org/Domain_Specific_Concepts.owl#intermediate_level' refers to http://test.org/domain_specific_concepts.owl#leveldescription' refers to http://test.org/domain_specific_concepts.owl#leveldescription.
The term 'http://test.org/Domain_Specific_Concepts.owl#propertyName' refers to http://test.org/domain_specific_concepts.owl#propertyname.
The term 'http://test.org/Domain_Specific_Concepts.owl#ruleSyntax' refers to http://test.org/domain_specific_concepts.owl#ruleSyntax.
The term 'http://test.org/Domain_Specific_Concepts.owl#associatedBy' refers to http://test.org/domain_specific_concepts.owl#massociatedBy.
The term 'http://test.org/Domain_Specific_Concepts.owl#hasProperty' refers to http://test.org/domain_specific_concepts.owl#hasProperty.
The term 'http://test.org/Domain_Specific_Concepts.owl#taskCatogary' refers to http://test.org/domain_specific_concepts.owl#hasProperty.
The term 'http://test.org/Domain_Specific_Concepts.owl#taskCatogary' refers to http://test.org/domain_specific_concepts.owl#hasProperty.
The term 'http://test.org/Domain_Specific_Concepts.owl#taskCatogary' refers to http://test.org/domain_specific_concepts.owl#hasProperty.
The term 'http://test.org/Domain_Specific_Concepts.owl#hasProperty' refers to http://test.org/domain_specific_concepts.owl#hasProperty.
The term 'http://test.org/Domain_Specific_Concepts.owl#hasProperty' refers to http://test.org/domain_specific_concepts.owl#hasProperty.
The term 'http://test.org/Domain_Specific_Concepts.owl#hasProperty' refers to http://test.org/domain_specific_concepts.owl#hasProperty.
```

Figure 3.8 The result of the ontology of domain-specific concepts

```
SELECT DISTINCT ?domain ?task ?question ?ans1 ?ans2 ?ans3 ?ans4
4
 5
                             WHERE {
 6
                             ?d a dn:DomainConcepts; dn:hasTask ?t;
 7
                             dn:domainName ?domain.
 8
                             ?t dn:taskName ?task;
 9
                             dn:questionSchema ?question;
10
                             dn:a ?ans1;
                             dn:b ?ans2;
11
12
                             dn:c ?ans3;
                             dn:d ?ans4.
13
```

Figure 3.9 Task assessment generation

```
Task: Python classes

Task Question: What is a class in Python?

a) A module

b) A function

c) A template for creating objects

d) An array
your answer is: c
your answer is correct, because it match the system answer
you can learn more about this domain in the material: Python Classes and Objects from the following Resources
https://www.geeksforgeeks.org/python-classes-and-objects/
```

Figure 3.10 Task assessment and result sample

Figure 3.11 MCQs task assessment

T 11 21 C .	11 . 1 . 1	1 1	1 , 1 1	1 1
Table 3.1 Comparison	hotwoon the traditional	annroachas and	l outology-hasec	Lannroachas
Table 3.1 Comparison	verween me maamonai	upproudnes unu	Onibiog y-bused	upprouches

Feature	Traditional Learning Material Creation	Ontology-Based Learning Material Creation
Content Organization	Linear and structured manually	Hierarchical and dynamically structured using ontology
Customization	Limited personalization	Highly personalized based on learners' needs
Content Reusability	Low content created from scratch	High, modular content reuse across different topics
Automation	Mostly manual work	AI-assisted generation and annotation
Content Consistency	It can be inconsistent across materials	Ensures uniform structure and terminology
Adaptability	Hard to update and adapt	Easily adaptable to new knowledge and learning trends
Efficiency	Time-consuming	Faster and more efficient due to automation
Interactivity	Mostly static content	Dynamic and interactive learning experiences
Scalability	Difficult to scale	Easily scalable across different subjects and learners

3.2.4 Proposed Ontology-Based Model Validation and Evaluation

For ontology-based model validation and evaluation, various tools can be utilized to ensure the ontology's accuracy, consistency, completeness, and pedagogical effectiveness. Among these, OOPS! and HermiT were selected for this work due to their compatibility with OWL ontologies,

Protégé integration, and support for logical reasoning and pitfall detection. Using these tools, you can comprehensively validate and evaluate ontology-based models to ensure high-quality, effective learning materials. A robust continuous improvement framework is based on combining automated tools with expert reviews.

1. Ontology Evaluation: Ontology evaluation tools are essential in assessing ontology quality, reliability, and utility in many domains [50]. Ontology quality is measured with several metrics and methods, including quality metrics, consistency checkers, structural analysis tools, domain-specific evaluation tools, and usability evaluation tools [50]. Moreover, these tools also maintain the integrity and usefulness of ontologies across different domains. Automation, usability, interoperability, domain-specific adaptations, and capabilities for dynamic evaluation can be improved [50]. IRI_Debug is an ontology evaluation tool that enables detecting and correcting issues in the Internationalized Resource Identifiers (IRIs) [46]. It provides IRI validation, validation of errors, consistency checking, namespace control, and an easy-to-use interface [46]. However, it is unsatisfactory due to the effectiveness of ontology complexity and IRI usage patterns in ontology development, maintenance, and educational use. Continuous updates are necessary for evolving standards [46]. Owlready2 offers many reasoners for manipulating the domain ontology, such as Pellet, ELK, and HermiT. The HermiT reasoner is used, as shown in Figure 3.12, to check that the constructed ontology is consistent and allows the classification, instance checking, class satisfiability, and conjunctive query answering of the developed domain ontology for the selected model. It is the most commonly used in ontology engineering.

Figure 3.12 Consistency of the domain-specific concepts ontology

2. Ontology Validation: Ontology validation tools ensure ontologies' quality, reliability, and usability [117]. They identify issues related to consistency, completeness, correctness, and adherence to best practices [117]. Popular tools include OOPS!, OntoQA, OQuaRE, Pellet and Hermit, OntoMetric, BioPortal and AgroPortal, and OntoClean. OOPS! is a tool that helps ontology developers identify and address common pitfalls in ontology design [118]. It uses a set of pitfalls from best practices and expert recommendations, covering naming conventions, ontology structure,

and logical inconsistencies [118]. The tool generates detailed reports detailing pitfalls, severity, and affected elements and provides recommendations for correcting each [118]. It can be integrated into ontology environments like Protégé, enhancing usability and promoting best practices [118]. Figure 3.13 shows the OntOlogy Pitfall Scanner tool for ontology validation, which is used for the validation process. The input values for this tool can be ontology URL or RDF file code. Figure 3.14 shows the OntOlogy Pitfall Scanner tool validation results.



Figure 3.13 OntOlogy pitfall scanner tool

Figure 3.14 OntOlogy pitfall scanner tool results

3.3 Results

The ontology-based AGLM in the Python programming domain as a solution provides a more sophisticated system for generating learning materials. Assessing their quality accuracy, 98.5%, makes it a valuable tool in educational technology and content generation. The dataset used in this experiment is the Python programming language ontology [119]. To generate the learning materials, BERT embeddings have been used to measure the semantic similarity of generated learning materials to predefined reference materials. It also generates an evaluation table, Table 3.2, summarizing the results for each domain concept, as explained in the following steps:

- 1. Ontology and learning materials: An ontology is defined for various domain concepts (e.g., Python Programming, Data Structures), and learning materials are generated for each domain concept using predefined content.
- 2. BERT-based accuracy calculation: BERT model from the sentence-transformers library is used to compute embeddings for the generated learning materials and predefined reference materials. The cosine similarity is then calculated between these embeddings to determine the semantic accuracy of the generated content.
- 3. MCQ generation: MCQs are generated for each domain concept and assess how much the learner understands it.
- 4. Evaluation Table: Table 3.2 shows how the create_evaluation_table function collected generated learning materials, accuracy scores, MCQs, and a brief description of results from the results set into a structured evaluation table with the help of pandas. Descriptions of the accuracy are offered as a categorical measure based upon the thresholds, "Excellent alignment" being the case when the accuracy is greater than 90%, "Good alignment" for anything from 70% to 90%, and "Moderate alignment" for a value that is less than 70%.

Table 3.3 compares the ontology-based model's performance across numerous samples of the Python programming topic Data Types, Control Flow, Functions, Error Handling, and OOP (Object-Oriented Programming), respectively. It shows how effectively the system can generate learning materials and assessments for each topic. As shown in Table 3.4, the ontology-based model's performance also changes according to the dataset size when presented with the task of generating Python programming learning materials. It shows accuracy and other improvements as the model processes more datasets and proves its scalability. Using the following formulas, the evaluation metrics such as accuracy, precision, recall, and harmonic mean of precision and recall (F1-Score) are calculated by the formulas from 3.1 to 3.4.

$$Accuracy = (True Positives + True Negatives) / (Total Instances)$$
 (3.1)

$$Precision = True Positives / (True Positives + False Positives)$$
 (3.2)

$$Recall = True Positives / (True Positives + False Negatives)$$
 (3.3)

$$F1_Score = 2 * (Precision * Recall) / (Precision + Recall)$$
 (3.4)

Data is split into training (80%) and testing (20%) sets using the train_test_split function from sklearn.model_selection. The final parameter is the split with test_size=0.2, and random_state=42 ensures reproducibility. Using dataset size, the training and testing percentages are calculated. The values for these datasets are explicitly defined and printed in the run_evaluation function to make it clear for model training and evaluating the dataset distribution. In this case, the accuracy calculation was measured using the BERT-based semantic similarity. A pre-trained BERT model was used to transform the generated and reference texts into vector embeddings. These embeddings were computed into cosine similarity values measuring their semantic closeness. A predefined threshold was set to verify if the generated content was accurate (e.g., 0.8 or 0.9). The accuracy was calculated as the percentage of correctly matched samples over the total number of samples.

Table 3.2 Evaluation table sample

Domain Concept	Generated Learning Material	Accuracy Score (%)	MCQs	Description
Python Programming	Python is a versatile programming language known for its simplicity and readability. It supports multiple programming paradigms, including procedural, object-oriented, and functional programming.	98.50%	Q: What keyword is used to define a function in Python? - def - function - func - define Answer: def	Excellent alignment with reference material.
Data Structures	Common data structures in Python include lists, dictionaries, sets, and tuples. Each structure has unique properties and use cases.	95.85%	Q: Which of the following is an unordered collection in Python? - List - Tuple - Dictionary - String Answer: Dictionary	Excellent alignment with reference material.
Algorithms	Algorithms are step-by-step procedures for solving problems. In Python, you can implement algorithms for sorting, searching, and manipulating data in Python.	92.30%	Q: What is the time complexity of binary search? \n - O(n) \n - O(log n) \n - O(n log n) Answer: O(log n)	Excellent alignment with reference material.

Table 3.3 Ontology-based model evaluation: Python programming topics sample

Python Topic	Number of examples	Percentage	Accuracy	Precision	Recall	F1- Score
Data Types (int, float, str)	390	39%	0.95	0.93	0.96	0.94
Control Flow (if, else, loops)	170	17%	0.91	0.89	0.92	0.90
Functions (def, arguments, return)	70	7%	0.93	0.91	0.94	0.92
Error Handling (try, except)	70	7%	0.89	0.86	0.91	0.88
Object-Oriented Programming (OOP)	360	36%	0.90	0.87	0.92	0.89

Table 3.4 Ontology-based model evaluation performance by dataset size

Dataset Size (Records)	Accuracy	Precision	Recall	F1-Score
Small (500)	0.88	0.85	0.89	0.87
Medium (1500)	0.91	0.89	0.92	0.90
Large (5000)	0.985	0.92	0.95	0.93

One final point to clarify: the literature lacks comprehensive and domain-specific evaluation metrics tailored to QG from source code. Traditional text-based metrics like BERT score do not fully capture the nuances of the generation process in AQG from code. Finally, the proposed system was deployed using Flask App, as shown in Figure 3.15. The final ontology-driven dataset contained 5,000 structured quiz examples. For the current research, the dropdown menus (e.g., domain and difficulty) are not dynamically populated from the ontology. Each Example consists of a question, four options to choose from as an answer, and the correct answer. This study implements an ontology-driven quiz generation system that leverages structured knowledge representation to enhance Python programming education. By systematically aligning quiz content with formal ontological structures, the system introduces difficulty mapping and semantic similarity evaluation, ensuring learners engage with contextually relevant and appropriately challenging material. This principled approach differentiates itself from generic quiz generators by providing a structured framework that supports meaningful assessment while maintaining domain specificity. The semantic analysis components refine content alignment and facilitate the generation of quizzes. As part of its future trajectory, the system is designed to incorporate advanced NLP techniques to enhance semantic alignment and QG quality, thereby positioning this work at the intersection of

structured knowledge representation and adaptive educational technology within the context of programming education.

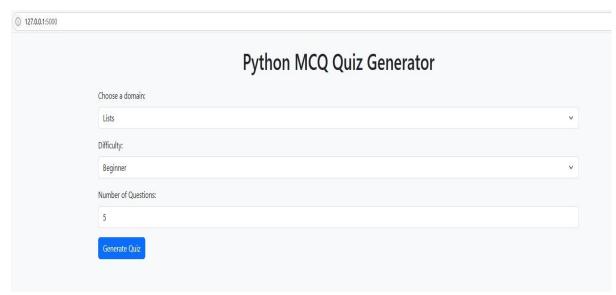


Figure 3.15 Python MCQ quiz generator flask app

3.4 Discussion

Ontology-based AGLM is a technology that can potentially enhance learning experiences in almost any educational environment. From an instructor's point of view, it operates as a tool that can initiate customized tests based on the students' diagnostic results. In this way, it enables the emergence of personalized learning materials directed to certain weak spots and saves quiz creation and grading time. This technology can provide a personalized learning path for learners, particularly Python programming students. An independent learner might start with a diagnostic test that covers basic topics such as data types, control flow, and functions. It can create debug tasks, discussions, and interactive lessons personalized to the student's needs based on their performance. It can also generate automatic feedback to highlight task errors, syntax errors, and possible solutions for student advancement. The instructor can use the same feedback to identify challenges faced by students and correspondingly grade the difficulty level of exercises so that support may be made more specific. This technology is excellent for use in both self-paced and instructor-led learning environments. In a blended learning model, for example, a self-paced learner could work through the function modules, and an instructor could give the diagnostic quizzes to track progress. Real-time performance tracking enables educators to identify learning gaps and intervene effectively. Advanced learners can also use the system to focus on specialized topics, such as data manipulation using Pandas, with automatically generated complex coding tasks to support skill advancement.

Overall, the ontology-based approach allows instructors to align learning materials with specific learning objectives, ensuring learners receive contextually relevant, personalized content that enhances engagement and retention while improving instructional efficiency. For the future work, the ontology should be completely dynamic. Consequently, the dropdown menus of the Flask App (e.g., domain and difficulty) are planned to be dynamically populated directly from the ontology after adding the dynamic facility in the generation process. The literature lacks comprehensive and relevant evaluation metrics dedicated to QG from source codes. BERT and other text-based metrics do not offer the overall picture of the generation process for AQG from source codes.

Regarding positioning the developed system within the literature, prior ontology-driven question generation has largely focused on domain-agnostic ontologies and the production of MCQs from concept graphs [120], [121], [122]. These approaches often leverage OWL/RDF structures and Bloom-aligned templates rather than code semantics. Items are derived from ontology triples and evaluated primarily through expert judgment at scale, rather than program analysis of executable artifacts. By contrast, Chapter 3 system employs a Python-specific ontology to generate MCQs directly from source code, linking programming constructs and relationships to pedagogical objectives, thereby shifting from triple-verbalization to a code-aware, concept-driven generation process. Unlike MCQ pipelines that repurpose general knowledge bases (e.g., Biology or multidomain ontologies), the current approach models Python concepts directly and integrates them with generation strategies designed specifically for programming education. This distinguishes it not only from general ontology-based AQG but also from recent programming ontology efforts aimed at computational thinking across multiple languages [114], by focusing narrowly and deeply on Python constructs to support pedagogical alignment. In doing so, the approach addresses a gap noted in systematic reviews of AQG methods [38]. This code-centric, language-specific ontology thus extends ontology-based AQG beyond text and knowledge-graph settings and establishes a foundation that subsequent chapters compare with template and LLM-based approaches.

3.5 Conclusion

In the digital age, programming skills have become a requisite for practice in almost every professional sphere, increasing the need for the most effective learning materials in programming study and training. Generating educational resources of computer programming based on ontology is a promising way to improve the quality and efficiency of educational resources of computer programming.

This chapter designed and developed an ontology-based framework to model Python programming concepts and their relationships, enabling the automatic generation of quizzes and learning materials aligned with these structures. Using BERT-based semantic similarity evaluations, the

system achieved a high accuracy rate of 98.5%, validating its effectiveness in producing relevant, accurate, and pedagogically coherent content.

The novelty of this approach lies in its integration of structured ontological modeling with automated quiz generation, ensuring difficulty levels, semantic relevance, and alignment with instructional objectives in Python programming education.

Despite its contributions, this study acknowledges limitations. First, it primarily focused on Python programming, which may limit the generalizability of findings. Second, it requires further testing through controlled trials comparing ontology-based learning materials with traditional resources to evaluate impacts on retention, engagement, and mastery. Third, the ontology-based generation process is not completely dynamic. Fourth, the literature lacks comprehensive and relevant evaluation metrics dedicated to QG from source codes (BERT metrics does not offer the overall picture of the generation process for AQG from source codes). Future research should expand the system to support multi-language programming education, assess its effectiveness through controlled experiments, and integrate adaptive feedback mechanisms and advanced NLP to further enhance QG quality.

Thesis 1: I developed an ontology-based system that automatically generates programming-related assessment questions directly from source code. By leveraging structured domain knowledge, the system semantically interprets programming constructs to support concept-aware question generation, without relying on adaptive learning mechanisms. **[P1, P2]**

Chapter 4 A Hybrid Approach for Automatic Question Generation from Program Codes

4.1 Introduction

AQG has become significant with the increasing trend of online learning and its scalability in recent years. Technical courses like learning programming languages are more popular, and there is a massive demand for such subjects. Questions are the primary approach used to evaluate student knowledge [123]. Therefore, creating questions becomes more challenging as the constant growth of e-learning continues, more courses are made, and the pressure on teachers is high. Intelligent and deliberate questions can enhance student understanding and reduce the gap between theory and practice in programming subjects [124]. For example, the article [125] monitors the performance and behavior of students who engage in courses with self-assessment methods in programming and problem-solving. The research in [126] observes the decentralized practice by monitoring the intensity and timing of the impact on student learning and problem-solving in programming languages. The research paper [127] addresses interactivity while solving problems in programming languages based on learning objects. The article [128] tries to enhance the use of digital resources for students and instructors. The research papers [129] and [130] address the learning objects that can be used in different contexts using Web3. Finally, the article [131] suggests collaborative learning to help instructors engage students in generating and evaluating questions. The proposed method in this chapter focuses on translating Python code into text and uses an AI-based framework to generate questions from the text. Ontology is also used to connect and conceptualize the logic of the programming language. Applying ontology ensures interoperability with other systems and reduces the overhead on educational platforms. This chapter contributes to e-learning platforms and improves the overall experience of programming language instructors. It also enhances the learning path for students who like to learn and do exercises without repeating the same questions. The outcome of this research is to generate meaningful questions based on Python code to assist instructors in creating more questions in a timely manner, thus ensuring student proper learning of the potential programming language. Unlike similar works, most recent research focuses on generating questions from text, while some research focuses on generating questions from visuals or images [132].

This chapter focuses on generating questions from code snippets using semantic relations to extract the concepts. Generating questions from unconventional sources, such as code snippets, becomes important in providing a better learning experience to large groups of students, especially when dealing with limited information. The main goal of this chapter is to assist instructors and students in properly evaluating student performance by generating Python-based programming questions from existing materials (i.e., code snippets). The AQG from code snippets will add the possibility

of generating a different set of questions based on the same code snippet. Therefore, it leads to a better understanding of the given topic. The research objectives of this chapter are to implement a framework that can interpret Python programming language into text, and enable the framework to comprehend the text and build connections between the programming structures and the semantic concepts for AQG. There are several differences in purpose and methodology between the two approaches presented in Chapters 3 and 4. These two chapters present two completely separate approaches. Chapter 3 focused on developing a general ontology-driven learning materials generation in the form of MCQs using structured knowledge representation. Chapter 3 used Python programming concepts to extract the concepts and build the structured knowledge representation, and the QG process was not fully dynamic. On the other hand, Chapter 4 focuses on dynamic QG from direct Python source codes. Chapter 4 develops a hybrid approach that combines AST, NLP, programming ontology, and an AI model for dynamic code-to-QG. Chapter 4 presents multi-type dynamic generation of questions (Boolean, short-answer, and open-ended). The chapter is structured as follows: Section 4.2 details the methodology and framework. Sections 4.3 and 4.4 present results and discussion, respectively. Section 4.5 concludes the chapter.

4.2 Methodology

QG involves computer understanding of the available materials to propose plausible questions to students. However, two approaches are usually effective: AI-based or semantic-based. The current work uses a combination of semantic and AI methods to properly generate questions from code snippets based on semantic code conversion. The primary motivation for using the semantic approach is maintaining concept relations in the programming language keywords to increase system intelligence on the programming language rules. Other approaches would not accurately represent the programming language rules, keywords, and concepts. This section will detail the QG framework architecture, the technology used, and the approach to generating questions.

4.2.1 Architecture

To generate questions from existing Python code snippets, an interpreter is needed to translate the code into more understandable concepts. Python or any other programming language is constructed using operators, variables, and functions. Operators such as +,-,AND usually do the actual computing. At the same time, variables are used to store values and recall them with operators to perform specific tasks. Functions contain a list of variables, loops, and operators to be executed in order. The ontology will categorize and conceptualize the list of commands (i.e., variables, operators, etc.) and the relationships between the concepts in the script. It will build an explained version of the code by processing the code line by line and creating semantic relationships based on the input. Subsequently, the translated code is generated and inserted into

an AI question generator called "QuestGen" [133]. This model will generate Boolean, short-answer, and open-ended questions. Figure 4.1 shows the framework data flow and its components. Awareness of existing technologies and software is essential to construct any framework or software. Such awareness can improve productivity and help address many issues that take a long time. As a result, I implemented a framework using various third-party software in this chapter. Table 4.1 describes this case's environment settings, tools, and applied libraries. The QuestGen AI model, an open-source NLP library dedicated to creating simple question-generation methods, has been used. It has been on a mission to become the world's most sophisticated question-generation AI by utilizing cutting-edge transformer models like T5, BERT, and OpenAI GPT-2, among others. The primary objective of QuestGen AI is to simplify the QG process, providing support to educators, content creators, and learners in developing educational materials. This tool significantly enhances the efficiency of teaching and learning resource development through automation, ultimately facilitating a more effective educational experience.

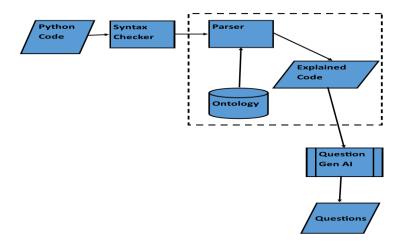


Figure 4.1 Proposed framework architecture

Before generating questions, the QuestGen AI model expects a text as input. The ontology mentioned next is responsible for converting the snippet code from the Python programming language into text that humans can understand. Subsequently, this model can generate questions based on the inserted text. The QuestGen AI model supports four types of questions, and they are as follows:

- Questions with Several Choices (MCQs)
- Boolean (Yes/No) Questions
- Open-ended Questions
- Question Paraphrase

The current study considers Boolean, short, and open-ended questions. Since learning a programming language focuses on understanding the content of a code, such questions are more suitable for assessing student knowledge properly.

Table 4.1 Environment settings, tools, and applied libraries

Name	Description
OwlReady2	Python library to implement Ontology V 0.37
Protege	Software Application for viewing and modifying ontology
Jupyter Notebook	IDE to develop the framework
QuestGen	AI-based application to generate questions from the text
Python	V 3.11.1

4.2.2 Ontology Design

The ontology is built and compiled using the Owlready2 library in Python. Such a library would support automating manual activities like adding instances to the ontology. However, the main components and the relationships between concepts should be implemented manually to maintain logical correctness. Translating code into text starts with assigning keywords to ontology classes and describing these keywords. For example, the "=" sign is described in the ontology as an "equal sign", a value of the Assignment subclass in the operator class. The output of the ontology implemented in Python and Owlready2 is then imported into Protégé for visualization purposes, since the visualization is not yet supported on Owlready2. Figure 4.2 shows the visualization of the ontology design in Protégé.

Logical correctness would enforce semantic meaning on the written script. For example, an "elif" statement syntax is valid in Python. However, it cannot exist without having an "if" statement before it. An "elif" should only come after an "if". Furthermore, logical correctness would connect all the keywords and describe the semantic relationship between steps. Most essential aspects of the Python programming language in the designed ontology are classified as classes and subclasses. For example, in this study, the Python language elements and constructs have been categorized into four main classes: Control Structure, Function, Library, and Operator. Each subclass of the Operator class contains several instances that would map each instance to the operator class. Such mapping would assist in enforcing the logical correctness of the translated snippet. Figure 4.3 shows an instance definition from the constructed ontology. The ontology's capabilities aim to structure the Python programming language to ensure that the computer can collect vocabulary text about the keywords and build sentences based on the combination of the

programming language keywords, which can be fed later into the QG model. The main limitation is that the ontology should be built manually by adding the explanation of all instances, which can be challenging to implement. Further research is needed to improve this approach.

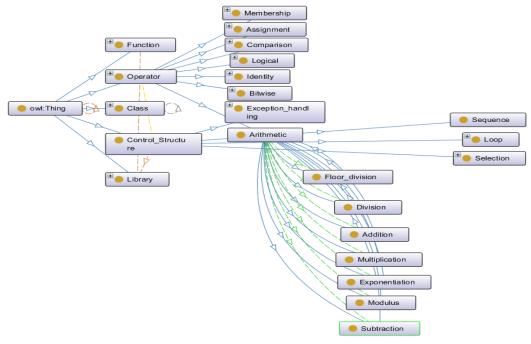


Figure 4.2 Ontology design visualization using protégé

```
<owl:Class rdf:about="#Subtraction">
 <rdfs:subClassOf>
  <owl:Restriction>
   <owl:onProperty rdf:resource="#has_example"/>
   <owl:hasValue rdf:datatype="http://www.w3.org/2001/XMLSchema#string">Example
usage of Subtraction</owl:hasValue>
  </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
  <owl:Restriction>
   <owl:onProperty rdf:resource="#has description"/>
rdf:datatype="http://www.w3.org/2001/XMLSchema#string">Description of
Subtraction</owl:hasValue>
  </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf rdf:resource="#Arithmetic"/>
</owl:Class>
```

Figure 4.3 Instance definition of Subtraction

4.2.3 Parser

The parser's job is to detach a block of code into pieces that can match the ontology based on keywords and custom conditions. These conditions are adjusted depending on the inserted snippets. This model uses the ontology to create sentences. It analyzes keywords in the parser and generates sentences explaining the code. For example, a=10, the parser would create "a is a variable. a value is 10". AST helps turn Python code (and maybe other types later) into sentences using a set of rules. It maintains whatever logic the ontology possesses about the code. Then, it is

fed into the AI model to generate proper questions based on the code interpretation by the ontology. The 'explained code' is passed to the QuestGen AI framework to generate questions.

4.2.4 Question Generation

Over time, there is a growing demand for QG, a trend that could significantly alleviate the burden on educators and trainers. This is particularly beneficial for scalable learning formats such as online courses. Many models exist for generating questions from regular text; however, understanding code and generating questions from code snippets is not applied due to its complexity. Code-to-text conversion is a challenging task. However, the semantic relationships between the concepts in the ontology are an excellent solution. Figure 4.4 shows the whole procedure for translating code into text. In Figure 4.4, the code undergoes validation by a parser checker responsible for scrutinizing its syntax. Once the code is confirmed as error-free, the checker directs it to the ontological translator, acting as the parser within our architecture. This parser transforms the code into coherent sentences, forwarding them to the QG AI model to generate reasonable questions. An explanation of the QG AI model is provided in the subsequent section.

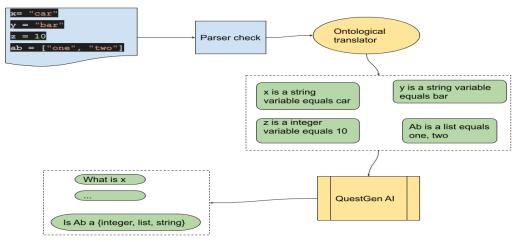


Figure 4.4 Question-generation process

4.2.5 QuestGen AI

The QuestGen AI model is an AI model that can generate questions using AI. The QuestGen project is available in an open-source format [18]. The model is already trained and can generate high-quality questions based on text fed into the model. Instructors can choose the type of question that can be generated; however, Boolean, short, and open-ended questions have only been applied for this study. The results summarized in the subsequent section show that the AI model can generate reasonable questions based on the input text and its level of clarity.

 Input: The model can process various types of input, including structured, unstructured, and context-based content such as passages, documents, and articles.

- Field of application: The model is tailored to support the education field across diverse
 disciplines such as science, history, language arts, and more. However, it does not have the
 capability to execute or generate programming language code (at the time of this research).
- Generation method: It is a semantic-based model designed to comprehend inserted text by leveraging concepts and contextual awareness. This procedure is divided into two main steps. Firstly, it begins with entity recognition, wherein the model extracts crucial information such as dates, names, and relationships, employing part-of-speech tagging. Next, the model applies question templates to the extracted information to match the most suitable predefined question template. To improve question quality, various methods are employed, including probabilistic approaches to refine wording and phrasing within the questions.
- Question format: The model can propose various formats, including open-ended, multiple choice, true/false, and short answer.
- Response format: The responses are generated in both text and JavaScript object notation
 (JSON) formats. Each type of question has its own format. For instance, MCQs prompt the
 system to produce the question stem and its corresponding answer choices. This distinction
 applies to all question types, and the resulting output is tailored accordingly.
- Example: The sentence inserted into the model is "In Python, a function is defined using the 'def' keyword, followed by the function name and parentheses containing any parameters. The function body is indented and contains statements that define the function's behavior."
- The generated questions for a true/false type of question are:
 - o "Is a function in Python defined using the 'def' keyword?".
 - o "Do parentheses follow the function name in a Python function?".
 - o "Does the function body in Python need to be indented?".

4.2.6 Hybrid Question Generation from Program Codes

Algorithm 4.1 is a hybrid approach employed to automate the generation of programming-related questions from Python source code by integrating structural parsing with ontology-based semantic enrichment. Initially, source code samples are parsed using Python AST to identify constructs such as function definitions, class structures, variable assignments, and control flow statements. An ontology is constructed to represent these extracted elements and their semantic relationships, capturing contextual information regarding code dependencies and logical flow within the

program. Using this enriched representation, the system generates diverse question types, including Boolean, short-answer, and open-ended questions, through either the QuestGen neural generation model or a heuristic fallback mechanism when computational resources are limited.

```
Algorithm 4.1: Hybrid Approach for QG from Program Codes
Input: Python source file path P
Output: Question set Q = \{Q_b, Q_s, Q_o\}
Parameters: max_questions, question_type
1: O ← BuildOntology()
2: C \leftarrow ReadFile(P)
3: AST \leftarrow Parse(C)
4: T ← Ø
5: for each node ∈ AST do
6:
     switch node.type do
7:
        case Assignment:
8:
          ind ← Variable(node.target, node.value)
9:
        case FunctionDef:
10:
           ind ← Function(node.name, node.args)
        case ClassDef:
11:
12:
           ind \leftarrow Class(node.name, node.bases)
13:
        case Call:
           ind ← Object(node.target, node.func)
14:
15:
        case Import, ControlFlow:
           ind ← CreateIndividual(node)
16:
17:
     end switch
18:
      AddToOntology(O, ind)
19:
      semantic_desc ← QueryOntologyRelations(O, ind)
20:
     T \leftarrow T \cup \{semantic\_desc\}
21: end for
22: text \leftarrow Concatenate(T)
23: if QuestGen_Available() then
24: Q \leftarrow QuestGen AI Model(text, max questions, question type)
25: else
26: Q ← HeuristicFallback(text, max questions, question type)
27: end if
28: return O
```

The suggested hybrid method is aimed at semantic correctness as well as parsing robustness through a three-tier processing pipeline that morphs code structure into semantic text while keeping the door open for AI-assisted QG. Python AST parser is adopted as a rule-based deterministic parser, retaining the original code structure and accounting for various syntactical elements of Python including variables, functions, classes, operators, and control structures. Structural construction is maintained directly through mapping from AST nodes to ontology, such that every construction/coding entity relates to the specialized classes in programming ontology while themselves (variable, function, class, control structures), the function analyze_variable_type() actually holds the type representation intact and traces the direct hierarchical relationships back to the code context of that construct throughout the journey of conversion. The programming-specific ontology acts as a semantic link that guides code structure interpretation and generation of structured semantic text, which can then be fed into the QuestGen AI model to produce programming-related educational questions that are cohesively tied to code concepts through the quality of the semantic input developed. The AST-based parsing mechanism handles diverse code constructs from simple assignments to more complex object-oriented hierarchies with nested functions and inheritance relationships, thereby laying down a sound structure for performing code-to-text conversion, although in the future it can be extended to include automated question validation mechanisms and quantitative metrics for domain alignment to further cement the educational assessment capacities and verify end-to-end semantic preservation of the system.

4.3 Results

The results are generated in two versions, one utilizing our proposed model and the other without its use (i.e., by directly inserting the code into the QuestGen AI), as depicted in Figure 4.5.

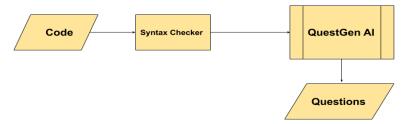


Figure 4.5 Generating questions directly from code

The implemented framework facilitates the QG process, empowering teachers to automatically generate Python programming language assessment questions for testing students' knowledge. Three different Python code examples were tested to see how well the system works compared to a baseline model. Each example shows a different type of programming that students and developers commonly work with. Example 1 in Figure 4.6: This is a basic script that just defines some variables (strings, lists, and numbers). It is the kind of simple code seen in introductory programming lessons, so it tests whether the system can explain fundamental Python concepts clearly. Example 2 in Figure 4.10: It offers classes and inheritance, a Person class and a Student class that builds on it. This example checks if the system can handle more advanced topics like object-oriented programming, which can be tricky to explain well. Example 3 in Figure 4.14: This one imports the math library to calculate a circle's area. It tests how the system deals with functions, imported libraries, and mathematical operations (pretty common stuff in real programming projects). These three examples were picked because they cover different skill levels and programming concepts. Starting with basic variables, moving to classes, and ending with functions and imports gives a good range to test the system thoroughly. Figure 4.6 depicts a straightforward code snippet featuring variable definitions. This figure illustrates specific variables alongside their assigned values, incorporated as a script within the ontology. A Python

parser is employed to validate the text as proper code before generating any flawed or erroneous questions to mitigate the potential for incorrect syntax within the inserted code. Figure 4.7 displays the translated text derived from the code, providing a textual interpretation for each line. The interpreter presents the variable type and specifies the assigned value for each variable. Figure 4.8 showcases the outcomes resulting from inserting the aforementioned text into the QuestGen AI model. It is worth mentioning that the evaluation was based on human evaluation.

```
# Example Python script to analyze
python_script = """
xfoo = "foo"
ab = ["one", "two"]
cd = ["a boy", 33, "sudden"]
ef = 10
"""
```

Figure 4.6 A code snippet with variable definitions

```
xfoo is a string variable and its value is 'foo'
ab is a list variable and it has 2 items
cd is a list variable and it has 3 items
ef is an integer variable and its value is 10
```

Figure 4.7 Generated text from a code snippet

```
Running model for generation
('questions': [{'Question': 'What is the value of xfoo?', 'Answer': 'foo', 'id': 1, 'context': "xfoo is a string variable and
its value is 'foo'"}]}
{'questions': [{'Answer': 'foo',
          'Question': 'What is the value of xfoo?',
           'context': "xfoo is a string variable and its value is 'foo",
          'id': 1}],
'statement': "xfoo is a string variable and its value is 'foo'"}
Running model for generation
{'questions': [{'Question': 'What are the items in the list variable ab?', 'Answer': 'items', 'id': 1, 'context': 'ab is a list
variable and it has 2 items' }]}
{'questions': [{'Answer': 'items',
          'Question': 'What are the items in the list variable ab?',
           'context': 'ab is a list variable and it has 2 items',
          'id': 1}],
'statement': 'ab is a list variable and it has 2 items'}
Running model for generation
('questions': [{'Question': 'How many items does cd have?', 'Answer': 'items', 'id': 1, 'context': 'cd is a list variable
and it has 3 items' ] ]
{'questions': [{'Answer': 'items',
           'Question': 'How many items does cd have?',
          'context': 'cd is a list variable and it has 3 items',
          'id': 1}],
'statement': 'cd is a list variable and it has 3 items'}
Running model for generation
('questions': [{'Question': 'What is the value of ef?', 'Answer': 'value', 'id': 1, 'context': 'ef is an integer variable and
its value is 10'}]}
{'questions': [{'Answer': 'value',
           'Question': 'What is the value of ef?',
          'context': 'ef is an integer variable and its value is 10',
          'id': 1}],
'statement': 'ef is an integer variable and its value is 10'}
```

Figure 4.8 Generated questions for variable definitions

Figure 4.9 can be seen without having a context. The question generator failed to produce any meaningful questions except for the list variable, where it managed to generate a relevant question. However, the AI model could not comprehend all the lines, hence the presence of the ZERO {} symbol.

Figure 4.9 Generated questions without using the proposed approach

Figure 4.10 exhibits a Python code comprising class and object definitions presented as a string and passed through an ontology to translate it into text. Subsequently, this text is fed into the QuestGen model to generate questions. In the subsequent examples, only the generated questions and context from QuestGen AI will be showcased, omitting the complete outputs. Moving on to Figure 4.11, it explains the preceding code snippet depicted in Figure 4.10 using natural language, preparing it for input into the AI generator.

```
# Example Python script to generate explanations
python_script = """
class Person:
    def __init__(self, name, age):
        self.name = name
        self.age = age

class Student(Person):
    def __init__(self, name, age, school):
        super().__init__(name, age)
        self.school = school

var1 = Person("Jane", 25)
var2 = Student("John", 20, "ABC School")
"""
```

Figure 4.10 Python code for defining classes and objects

```
Person is a class definition
__init__ is a method
    name is an instance of the property
    age is an instance of the property

Student is a class definition
__init__ is a method
    school is an instance of the property

Student inherits from the Person class
var1 is an instance of the Person class with name 'Jane' and age 25
var2 is an instance of the Student class with name 'John', age 20, and school 'ABC School'
Student inherits from Person
```

Figure 4.11 Generated explanation of the code in Figure 4.10

Following this, Figure 4.12 displays the questions generated from the snippet description, demonstrating the relevance of the generated questions. However, Figure 4.13 illustrates the outcome of generating questions without providing a snippet description, resulting in improper questions marked by ZERO{} symbols and inaccuracies. This indicates the necessity of providing a description for accurate QG.

```
[{'Question': 'What is person?, 'context': 'Person is a class definition'}]
[{'Question': 'What is __init__?', 'context': '__init__ is a method'}]}
[{'Question': 'Name is an instance of a property?', 'context': 'name is an instance of the property'}]
[{'Question': 'What is age an instance of?', 'context': 'age is an instance of the property'}]
[{'Question': 'What is a student a class definition?', 'context': 'Student is a class definition'}]
[{'Question': 'What is __init__?', 'context': '__init__ is a method'}]
[{'Question': 'What is a school?', 'context': 'school is an instance of the property'}]
[{'Question': 'What class does a student inherit from?', 'context': 'Student inherits from the Person class'}]
[{'Question': 'What is var1 an instance of?', 'context': "var1 is an instance of the Person class with name 'Jane' and age 25"}]
[{'Question': "What is the instance of the Student class with name 'John', age 20, and school 'ABC School'?'', 'context': "var2 is an instance of the Student class with name 'John', age 20, and school 'ABC School'"}]
[{'Question': 'Who does a student inherit from?', 'context': 'Student inherits from Person'}]
```

```
ZERO{}
[{'Question': 'What is the age of the person in def __init__?','context': 'def __init__(self, name, age):'}]
ZERO{}
[{'Question': 'What does age mean?', 'context': 'self.age = age self.age = age'}]
ZERO{}
[{'Question': 'What is the age of the child?','context': 'def __init__(self, name, age, school):'}]
[{'Question': 'What is super().__init__(name, age)?','context': 'super().__init__(name, age)'}]
[{'Question': 'What is self.school?','context': 'self.school = school self.school = school'}]
ZERO{}
[{'Question': 'What is the value of student(John, 20, "ABC School")?','context': 'var2 = Student("John", 20, "ABC School")'}]
```

Figure 4.12 Generated questions for the code in Figure 4.10

Figure 4.13 Generated questions without using the proposed model

In the third example, depicted in Figure 4.14, a function is defined to compute the area of a circle based on its radius. This code incorporates arithmetic operations and utilizes Python's 'math' module. Subsequently, Figure 4.15 exhibits the output resulting from describing the aforementioned code to input into the AI model. Meanwhile, Figure 4.16 displays the generated questions derived from the description of the code snippet involving mathematical operations. Conversely, Figure 4.17 showcases a question generated without describing the snippet. The results depicted in all figures are formatted in JSON, containing both the question and its solution.

The QuestGen model provides the answer alongside the question if it available, excluding the options. It is worth noting that there are warnings due to deprecated libraries utilized by the QuestGen AI model, prompting necessary updates by the authors. Results indicate that generating questions directly from code without semantic translation yields poor quality, while ontology-based translation enables the generation of meaningful, contextually aligned questions using QuestGen.

```
# Define the Python code to be analyzed
python_code = """
import math
def area(radius):
    area = math.pi * radius ** 2
    return area
r = 5
a = area(r)
"""
```

Figure 4.14 Code snippet containing a function and arithmetic operations

```
Imported module: math
area_of_circle is a method definition
rd is a variable
  Its value is Constant(value=5)
ar is a variable
  Its value is Call(func=Name(id='area_of_circle', ctx=Load()), args=[Name(id='r', ctx=Load())], keywords=[])
```

Figure 4.15 Generated explanation of the code in Figure 4.14

```
[{'Question': 'What is the name of the module that is imported?', 'context': 'Imported module:
math'}]
[{'Question': 'What is a method definition?', 'context': 'area is a method definition'}]
[{'Question': 'What is r?', 'context': 'r is a variable of type unknown'}]
[{'Question': 'What is Constant(value=5)?', 'context': 'Its value is Constant(value=5) Its value is
Constant(value=5)'}]
[{'Question': 'What is a variable of type unknown?', 'context': 'a is a variable of type unknown'}]
[{'Question': 'What is the calculated area of the circle?','context': "'a' represents the calculated
area of the circle."}]
[{'Question': "What is the value of the call(func=Name(id='area', ctx=Load()),
args=[Name(id='r', ctx=Load())?", 'context': "Its value is Call(func=Name(id='area', ctx=Load()),
args=[Name(id='r', ctx=Load())], keywords=[])"}]
                  Figure 4.16 Generated questions using the proposed model
   ZERO{}
   [{'Question': 'What is the area of the math.pi * radius?', 'context': 'area = math.pi * radius ** 2'}]
   ZERO{}
   ZERO{}
   ZERO{}
```

Figure 4.17 Generated questions without using the proposed model

4.4 Discussion

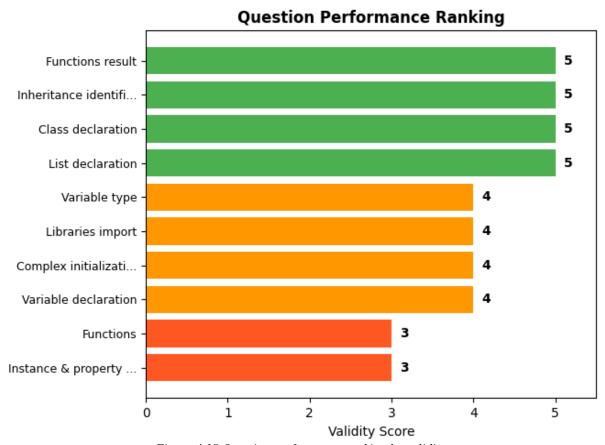
In this experiment, various code snippets were tested for translation using the proposed ontology and fed into the QuestGen model to create questions. Table 4.2 outlines the test cases, the generated questions, and the difficulty level of the tested code. It was noticed that human evaluation of AQG results is more accurate than automatic assessments [132]. Based on the literature, no evaluation metrics are specific to QG from source code. The evaluation was conducted by a qualified human evaluator. The validity of the generated code is rated on a scale of 1 to 5, where one represents the least validity and five indicates the highest validity. Difficulty is assessed based on script logic, with five denoting complexity and one representing simplicity. For instance, identifying variable assignments is relatively straightforward, while understanding inheritance is more challenging. Generating appropriate questions from sophisticated or advanced code snippets, such as those utilizing third-party libraries, still presents limitations. Composing accurate questions becomes increasingly tricky as code complexity and inter-line relationships grow. Consequently, further development is necessary to enhance outcomes. Addressing this need will lead to more advanced results. Nevertheless, this study introduces a new dimension to e-learning and supplements existing QG approaches that have proven effective in textual sources.

Table 4.2 Types of syntax covered

	Test case	Code level of difficulty	A generated question	Context	Generated question validity
a)	Variable declaration	1	What is the value of xfoo?	xfoo is a string variable and its value is 'foo'	4
b)	List declaration	2	'What are the items in the list variable ab?	'ab is a list variable and it has 2 items'	5
c)	Class declaration	3	What is a person?	Person is a class definition	5
d)	Instance and property initialization	4	What is a school an instance of?	'school is an instance of the property'	3
e)	Variable initialization, instance initialization, property.	5	'What is var1 an instance of?'	var1 is an instance of the Person class with name 'Jane' and age 25"	4
f)	Inheritance identification	5	Who does a student inherit from?	Student inherits from Person	5
g)	Libraries import	4	What is the name of the module that is imported?	Imported module: math	4
h)	Functions	4	What is a method definition?	area is a method definition	3
i)	Variable type	4	What is r?	'r is a variable of type unknown'	4
j)	Functions result	5	'What is the calculated area of the circle?	'a' represents the calculated area of the circle.	5

From Table 4.2, mean validity score is 4.20. Concept coverage analysis indicated a somewhat balanced distribution of validity scores across the evaluated topic areas, with no major weaknesses found. Advanced Topics and Functions managed an 80% average validity (4.00 out 5), with a slightly weaker performance since it was more consistently done in other categories. Basic syntax and object-oriented concepts did slightly better, achieving 87% validity each (4.33 out of 5), indicating high clarity and alignment with the intended learning outcomes. The implication of these results is that while all areas are being seen to have good educational value (educational effectiveness is 80% for validity score>=4), just slight refinements in advanced and function-based questions may help align their effectiveness with the top two-performing categories. Specific areas such as instance and property initialization, along with certain function-related items, emerged as opportunities for improvement as shown in Figure 4.18. Figure 4.19 demonstrates that there is no strong linear relationship between code difficulty and validity scores (r = -0.042).

It is important to note that the experiments involving QuestGen AI were conducted in mid-2023, during a period when state-of-the-art LLMs, including ChatGPT, had not yet reached their current level of maturity. At that time, direct code input into QuestGen often resulted in poor question generation, particularly due to limited understanding of Python syntax and structure. This limitation motivated the development of the proposed hybrid pipeline architecture.



Regarding positioning the developed system within the literature, prior research in AQG from source code has mostly taken single-paradigm approaches. For example, the article [134] focused on generating challenge questions from student code using program analysis, but their work lacks semantic or ontology integration. Similarly, the research paper [135] proposed Jask, which generates questions about learners' Java code via static analysis, but it remains language-specific and ontology-free. More recently, Goodfellow and colleagues [136] developed AutoMCQ, an LLM-based system for automatically generating code comprehension MCQs; while scalable, this approach is entirely prompt-driven and does not ensure semantic control. Parallel work such as the article [12] introduced a "meaning tree" approach for mass generation of programming problems from repositories, though it emphasizes problem synthesis rather than semantically guided, question-level assessment. It is evident that the majority of systems fall into one of three categories: template-based, driven by code analysis, or entirely neural, which creates an opportunity for hybrid systems that combine semantic control with adherence to program structure.

Chapter 4's hybrid approach is novel because it combines program analysis (e.g., AST/control flow parsing) with an ontology-driven semantic layer to steer both the intent and linguistic realization of generated questions. This helps create questions that are not only grammatically correct but also educationally useful, including the generation of meaningful distractors. In contrast, Chapter 3 addressed ontology-based generation of only conceptual MCQs; Chapter 4 advances further by producing more question types, bridging structural code analysis with ontology-guided semantics, which is a combination absent in earlier studies.

Finally, Semantic accuracy is achieved through a deterministic Python AST traversal that maps each code element to an ontology individual before language generation. This rule-based process ensures reliable coverage of constructs such as assignments, functions, classes, control flow, imports, and object creation, while the ontology restricts vocabulary to code-backed entities to prevent out-of-scope concepts. Because no standardized automatic metrics exist at that time for AQG from source code, evaluation was conducted through expert human judgment. Generated questions were evaluated using two complementary rubrics. A programming instructor rated question validity on a 1–5 scale, where higher scores reflected semantic accuracy, clarity, and pedagogical usefulness. Source code difficulty was assessed separately, considering both structural and conceptual factors such as control flow depth, inheritance, and use of external libraries. Future work will focus on developing dedicated evaluation metrics for automatic question generation from source code.

4.5 Conclusion

E-learning has become very popular recently, notably accelerated by the onset of the pandemic. One area that has gained considerable attention among researchers is AQG derived from learning materials. However, the predominant focus of existing efforts lies in generating questions from textual content. This work, however, concentrates on generating questions tailored for Python programming language learners derived explicitly from code snippets found in textbooks and course materials. Leveraging ontologies, this approach demands fewer computational resources, enhancing the scalability of the framework across diverse systems. The proposed framework harnesses ontological mapping, associating each syntactic element with its corresponding meaning and explanation. The process involves translating code into text and subsequently feeding this translated text into an AI-based model for question generation. It aims to alleviate the burden on educators and reduce the repetition of the same questions for different groups of students. Moreover, the generated questions from code snippets serve to evaluate students' general understanding. The method used to achieve this goal combines the QuestGen AI model and ontology based on semantic code conversion. The results produced are questions based on the code snippets provided. The evaluation criteria were code complexity and question validity. This work has great potential for improving the e-learning platforms to improve the overall experience for both learners and instructors. The hybrid pipeline architecture is the main contribution, while a comprehensive evaluation layer is a priority for future work that builds on the hybrid pipeline architecture. Results indicate that generating questions directly from code without semantic translation yields poor quality, while ontology-based translation enables the generation of meaningful, contextually aligned questions using QuestGen AI model. However, the proposed approach still has some limitations. The generation of questions relies solely on the QuestGen AI model, which can occasionally result in poorly phrased questions due to its AI nature. Additionally, the model might struggle to identify certain third-party libraries in complex code snippets. Hence, it represents an opportunity for future work to facilitate the insertion and categorization of concepts from all libraries. Finally, exploring alternative models such as GPT and expanding the framework to recursively process all imported libraries would enable a deeper understanding of complex syntactic structures. This enhancement would empower the ontology to explain code snippets better and generate more nuanced and fitting questions. Future work is needed to develop dedicated evaluation metrics for AQG from source code.

Thesis 2: I developed a hybrid system that combines static code analysis, ontology, and natural language processing using word embeddings to generate programming-related questions from source code. **[P3]**

Chapter 5 Evaluating Large Language Models for Generating Programming Questions from Source Code

5.1 Introduction

The field of NLP has witnessed unprecedented strides, and the enabling factors have been the increased availability of digital resources in text and the advancement of language modeling. GPT-3.5, GPT-4, Llama, Falcon, and Vicuna are among the most prominent LLMs. These models have successfully understood and generated human language, and their impacts have been felt in other areas like code generation and analysis. The number and complexity of datasets used in language modeling have recently increased. The general domain of coding and software engineering has adopted the computational capacity of these models to automate code-related question construction. Consider a script written in a programming language like Python. This script is considered input to these large language models through an application programming interface (API) connection. The output would be a collection of relevant questions about the input (e.g., Python script).

The large number of accessible language models creates a challenge. With all these options available, comparing them in terms of performance and output quality is necessary. The present study addresses this challenge by conducting a comparative evaluation of popular LLMs. This study proposes a set of evaluation criteria to assess and benchmark these models' performance systematically. These criteria represent essential aspects, including relevance, clarity and coherence, conciseness, and coverage. Every aspect has been examined to assess the performance of the LLMs under investigation. This study evaluates these models, clarifying their distinctive characteristics and shortcomings.

This chapter seeks to uncover insights that may be vital in various applications. Highlighting these best performers would allow educators, developers, and researchers to make informed decisions about adopting LLMs for code-related QG tasks. The chapter evaluates a diverse set of state-of-the-art LLMs. Chapters 3 and 4 presented two distinct approaches for AQG from Python source code. Chapter 3 discussed an ontology-driven approach which allowed the structured representation of knowledge that would yield MCQs automatically from Python programs. Chapter 4 extended that thesis by providing a hybrid approach, the ontology combined with the QuestGen AI model, to make the generation process dynamic and grab semantic understanding better. Though they both made headway, the two approaches suffer mainly in their limited scope in one aspect. No systematic evaluation metric is provided to benchmark the quality of the questions generated from source codes across the different dimensions. Hence the evaluation was very much a subjective measure that limits comparisons of results systematically with other AQG

methods. Chapter 5 goes on to cover this gap by extending AQG research into a multi-language context including Java, C++, and Python. With a broader scope, the performance of LLMs in forming questions from codes rooted in different source code paradigms with individual syntaxes, semantics, and idiomatic usages could be evaluated. A structured evaluation framework established by this chapter would assess AQG systems in terms of comprehensiveness, reliability, and reproducibility in model, language, and approach comparisons. Thus, Chapter 5 naturally follows from the methodological foundations laid in Chapters 3 and 4 and directly addresses their limitation in evaluations-driven framework for AQG from source code. The primary objectives of this chapter are as follows:

- 1. To define a set of evaluation criteria, including relevance, clarity and coherence, conciseness, and coverage, to measure the quality of questions generated by LLMs.
- 2. To develop an approach for evaluating and comparing the performance of LLMs in QG from program codes.
- 3. To empirically evaluate and rank the selected LLMs based on their performance in QG from program codes.

This chapter is structured as follows. Section 5.2 outlines the methodology, describes the dataset used for evaluation, and provides a detailed account of the experimental setup. Section 5.3 presents the evaluation results along with the ranking of the LLMs. Section 5.4 discusses the findings and explores the potential applications of LLMs in QG from program code. Section 5.5 concludes the chapter.

5.2 Methodology

The methodology explains how the evaluation and comparison are made regarding the proficiency of various LLMs to create questions from the given source code. This section outlines all the events leading to data collection and preparation, model selection, evaluation metric selection, experiment execution, and ranking of the models. In this context, a comprehensive and impartial exercise is carried out to identify the models best suited for relevant QG tasks concerning programming code. The languages chosen for the experiment were Python, C++, and Java. These languages were focused on during the research, with the possibility of applying such methods to other structurally similar programming languages. The sequence selected aids in rendering clear views into the strengths and weaknesses of each of the models, thereby allowing a deeper understanding of questions pertaining to the future of this research. Previous studies have undertaken related efforts, like [137], [138], and [139]. Algorithm 5.1 shows the pipeline of the proposed framework. It compares LLMs on how well they generate questions about code, using a

reference evaluator model, and produce quantitative metrics. Given a set of code samples, each model generates questions for each sample using a consistent prompting strategy. A reference model then evaluates these generated questions to assess their quality based on dimensions like relevance and clarity. The algorithm computes the average score for each model and optionally tracks repetition rates to measure question diversity. It further constructs pairwise win matrices, computes win rates, and calculates Elo ratings to rank models based on relative performance. The outputs are then summarized, including average scores, win rates, Elo ratings, repetition rates, and comparison matrices.

```
Algorithm 5.1: Multi-Model Code QG and Evaluation
Input: Set of Code Samples (D), List of LLM Model Names (MODELS),
      Reference Evaluation Model (EVAL_MODEL)
Output: Summary of Model Performance Metrics (SMPM)
1: Initialize scores_by_model, reps_by_model, results as empty.
2: For each sample in D do:
    3: For each model name in MODELS do:
      4: prompt ← build generation prompt(sample.code, sample.language)
      5: questions ← LLM(model name).generate questions(prompt)
      6: metrics ← evaluate questions(questions, EVAL MODEL)
      7: score ← average scores(metrics)
      8: repetition ← repetition_rate(questions) // optional
      9: Store (model_name, sample, metrics) in results
      10: Append score to scores_by_model[model_name]
      11: Append repetition to reps by model[model name]
    12: End For
13: End For
14: wins, comparisons ← build win matrix(scores by model)
15: win rate ← win rates(wins, comparisons)
16: elo ← elo ratings(scores by model)
17: repetition ← aggregate repetition(reps by model)
18: Construct SMPM as {ranking(scores_by_model), win_rate, elo, repetition, wins, comparisons}
```

5.2.1 Data Collection

The dataset is already prepared for the study; it contains a rich collection of code snippets written in Python, Java, and C++ [140]. These languages were chosen to reflect a wide variety of syntax structures prevalent in all of these languages. Each LLM was then tasked using a custom-developed software tool to generate questions from the selected code samples. After generation, the printed questions underwent assessment against the predefined criteria. Each model was thus analyzed and ranked based on the ability of the questions it generated to meet those evaluation standards. These models have a wide range of diversity in size, architecture, and capabilities, from smaller, old-fashioned models to innovative, gigantic ones. These models were chosen to encompass various sizes, ensuring a comprehensive performance evaluation. Table 5.1 shows each model's name and its number of parameters. All the models are based on transformer architecture; therefore, the architecture is not mentioned in the table. A curated set of Python, C++, and Java

scripts prepared covering an array of programming concepts, complexities, and domains. Three programs were used: procedural, object-oriented, and general. The general code was taken from online sources. The two other codes were prepared. In these programs, diverse programming elements were collected so that all basic topics (from the Python/C++/Java language reference) are represented. Note on Nomenclature: In this chapter, model names combine official branding and repository-specific identifiers (e.g., Hugging Face, API documentation) to ensure consistency and replicability throughout the text.

Table 5.1 Selected LLMs

Model	Parameters	Availability
GPT-4-0314	175B	Paid
llama-2-70b-chat	70B	Free
GPT-4-0613	175B	Paid
llama-2-13b-chat	13B	Free
claude-2	130B	Paid
GPT-3.5-turbo-0613	175B	Paid
falcon-40b-v1	40B	Free
falcon-40b-v2	40B	Free
vicuna-33b-v1.3	33B	Free
llama-65b	65B	Free
falcon-40b-sft-top1-560	40B	Free
mixtral-8x7b-instruct-v0.1	56B	Free
falcon-7b-v3	7B	Free
falcon-40b-instruct	40B	Free
falcon-7b	7B	Free

5.2.2 Question Generation

The next phase involved instructing the selected LLMs to generate diverse questions based on the attached scripts. This process required the formulation of a carefully crafted prompt, which was used as input for each LLM. All the models used the same role and content to get measurable results. The prompt served as a crucial communication channel between the software and the models, guiding them to generate questions relevant to the script provided. The entire script was passed to each of the abovementioned LLMs as part of the prompt. The models were instructed to generate diverse questions based on the attached script. The prompt utilized for generating the question set is given in Figure 5.1. It was designed to be informative and specific; generating questions from the Python/C++/Java script to the LLMs. Figure 5.2 shows an example of responses to the presented prompt. A Python script, taken from the prepared collection, was

provided as input to each LLM as part of the prompt. Figure 5.3 shows an example of a Python script. Each script in the dataset was processed sequentially, and the LLMs were prompted to generate 50 questions based on each attached script. The scripts are publicly available on GitHub [140]. As the questions were generated, they were associated with the script from which they were derived. This association was needed in the evaluation process as it allowed accurately assess the generated questions' relevance to the script content. Combining different LLMs and well-prepared scripts is the foundation for systematically evaluating these models in generating questions. At this point, each LLM under evaluation created a question set for each associated script in the dataset, leading to a direly massive output that could be analyzed afterward. These question sets were then evaluated according to the criteria described in the following sections.

Figure 5.1 Sample prompt to generate questions from source code

```
"questions": [

"How many iterations does the while loop have in total?",

"What is the final value of 'num' after the loop exits?",

"What is the purpose of the 'factorial' function?",

"How does the 'factorial' function calculate the factorial?",

"What is the purpose of the 'num' variable?",

"Explain the purpose of the 'while' loop in the 'factorial' function.",

"How are the values of 'num' and 'n' updated in each iteration of the 'while' loop?",

]
```

Figure 5.2 Response to a prompt

Figure 5.3 Sample Python script

5.2.3 Performance Metrics

The generated questions were assessed for their quality to analyze differences in performance regarding the selected LLMs. Each question gets evaluated on a scale from 1 to 10 based on the evaluation metric by GPT-4-0314 as a judge. This study used objective and subjective evaluation modes, touching on the primary indicators. Relevance means how closely the generated questions match the source code. Clarity and coherence measure questions' phrasing and how logic is structured in them. Conciseness assesses whether the questions were brief by examining their length and checking for unnecessary detail or verbosity. Coverage involves how well each question covered the entire scope of the input script. It also involved whether the questions reflected different sections or key components of the code, and not just focused narrowly on isolated elements. In addition to automated scoring, human reviewers were involved to provide a pedagogical perspective on the top-performing LLM. Their insights helped validate the results and brought attention to the educational value of the questions. Human feedback added important context about classroom relevance, teaching goals, and practical usefulness, which are things that automated systems alone cannot fully capture. Evaluators kept in mind relevance and educational value when making their judgments. The approach encompassed a mix of different input data sets, multiple LLMs, stringent evaluation criteria, and automated and human judgment. The results and examples, from inputs to generated questions, are discussed in the next section. Parts of this output and the evaluation deconstruction are illustrated in Figure 5.4.

```
"question": "How many iterations does the while loop have in total?",
"criteria_scores": {
    "Relevance": 9,
    "Clarity": 9,
    "Coherence": 9,
    "Coverage": 8,
    "Average": 8.8
}

"question": "What is the final value of 'num' after the loop exits?",
"criteria_scores": {
    "Relevance": 8,
    "Clarity": 9,
    "Coherence": 9,
    "Conciseness": 8,
    "Coverage": 8,
    "Coverage": 8,
    "Average": 8,
    "Average": 8,
    "Average": 8,
    "Average": 8.4
```

Figure 5.4 Evaluation of the generated questions

5.2.4 Experimental Setup

This section provides a detailed description of the experimental setup employed for evaluating the performance of the selected models in generating questions from codes. The objective of this setup was to get a collection of reliable results that would facilitate the comparison of LLMs and the identification of the top-performing models. A custom software was developed to serve this

purpose. This software accepts program codes as input, invokes the selected LLMs via API calls, and collects the generated questions. For each LLM, the software collected a substantial sample of questions for analysis.

5.2.4.1 Software Environment

The software environment was configured based on Amazon Web Services (AWS) Instances in which different AWS instances were used to deploy open-source LLMs. Windows 10 Pro distribution was used to provide a stable and efficient computing environment. Python was the programming language to implement the custom software tool that interfaces with the LLMs. PyTorch 2.1 and Hugging Face v3 Transformers library were employed for managing and interfacing with the LLMs. Finally, different APIs were used for every model.

5.2.4.2 Data Splitting

To ensure the robustness and reliability of the experiments, a collection of code scripts was submitted at once to provide context to the model and, therefore, assist in generating more robust questions. Thereafter, the LLMs were instructed to generate questions based on the input.

5.2.4.3 Evaluation Metrics

The LLM-generated questions were evaluated using a combination of quantitative and qualitative metrics. As mentioned in the methodology section, these metrics include relevance, clarity and coherence, conciseness, and coverage. While the human evaluation metrics include relevance and educational value. Relevance in human evaluation is manually judged by human evaluators and it relies on subjective human judgment rather than algorithmic similarity (unlike the automatic relevance judged by LLM algorithmic similarity).

5.2.4.4 Model Execution

Execution of the experiments was a systematic approach. Each LLM was fed scripts individually as prompts through the custom software. The LLMs generated a set of questions for each script, which were recorded. The generated questions were associated with their script for accurate evaluation. The experiments were executed sequentially for all selected LLMs to maintain consistency and avoid potential bias that may arise from parallel execution.

5.2.4.5 Model Ranking Criteria

The model ranking criteria were established based on the aggregated performance results across the evaluation metrics. The models that showed high performance across these criteria were identified as the top-performing LLMs for the task of generating questions from source codes.

This experimental setup was designed to provide a reliable and comprehensive assessment of LLMs' capabilities in QG from program codes.

5.2.4.6 Repetition Rate

This criterion determines if questions are repeated in any model based on each 10-question batch increase. For instance, each model is required to generate the first 10 questions, then 20, then 30, and so on. The goal is to calculate the repeated questions generated for each model.

5.3 Results

This part presents the results of the extensive evaluation of various LLMs in generating questions from program codes, examined through multiple metrics, like relevance, clarity and coherence, conciseness, and coverage. Based on the amassed data and just-mentioned evaluation criteria, the LLMs are ranked, highlighting their strengths and weaknesses in question generation.

5.3.1 Model Rankings

Table 5.2 presents the average scores for each model across all criteria based on the question generated.

Table 5.2 Average criteria scores

Model	Relevance	Clarity and Coherence	Conciseness	Coverage
GPT-4-0314	9.85	8.87	8.13	8.57
GPT-4-0613	8.46	8.23	8.80	9.22
GPT-3.5-turbo-0613	9.37	7.84	8.69	7.61
claude-2	7.86	7.97	8.80	7.96
falcon-7b-v3	8.45	8.52	8.26	7.32
vicuna-33b-v1.3	8.84	8.04	7.51	7.88
falcon-40b-v2	7.93	8.38	7.59	7.65
llama-2-13b-chat	7.69	7.71	6.27	7.60
llama-2-70b-chat	7.76	8.22	7.63	8.14
mixtral-8x7b-instruct-v0.1	6.51	6.55	7.62	7.46
falcon-40b-v1	6.63	7.53	6.68	6.36
falcon-40b-sft-top1-560	7.51	7.88	6.54	7.29
llama-65b	7.45	6.85	7.54	7.53
falcon-7b	7.23	7.83	6.83	7.76
falcon-40b-instruct	7.12	8.03	6.83	7.58

The model average score is established by summing the scores of each criterion across all questions, and higher scores in each criterion indicate better accuracy in script-to-question

generation. The rankings show that GPT-4-0314 obtained the first rank confirming its effectiveness in generating relevant, high-quality questions. Moreover, it was analytically carried out on an average win rate account of all other models to get an all-round perspective on the performance of LLMs under evaluation. The term win rate refers to a cumulative score for every model and helps determine the best-performing model among them. For example, if a question is generated by GPT-4-0314 model and compared to the claude-2 model, and the winner for that particular question is GPT-4-0314, this would add a point to the GPT-4-0314 model. Then, GPT-4-0314 is compared to other models; if any model wins a point, its score grows, and then finally, all the models' scores are calculated, and the highest winner is ranked first. The approach allows identification of models that have similar win rates to other models. This analysis offers valuable insights into how each LLM fared directly compared to its peers, assuming uniform sampling and no ties in the evaluation metrics. Figure 5.5 shows the models that consistently outperformed others in QG. The following Equations (5.1) and (5.2), would calculate the New Rating and the Predicted Rating, respectively [141]. This technique is used here for the AI evaluation domain; it is derived from tournaments in sports, where it is often used.

New Rating = Old Rating +
$$K \times (W - P)$$
 (5.1)

Where K refers to the maximum adjusted value, in this context, it is a constant integer number like 32; W is the actual result of the game (1 for a win, 0.5 for a draw, and 0 for a loss); finally, P is the expected result, calculated using the logistic function in equation 5.2.

$$P = \frac{1}{\frac{\text{(Mo-Mp)}}{1 + 10^{\text{score point}}}}$$
 (5.2)

Where P stands for the expected outcome for a given model, Mo for model opponent, and Mp for model player. The constants relating to 1 and 10 are customized; these traditional constants have been customized in the context to mean that the score point is 400. The two equations constitute the basis of the Elo rating methodology created initially by Arpad Elo [18] to enable fair and dynamic ranking of chess players based on match outcomes. Because of its simplicity and efficiency in tracking relative skill levels, the Elo rating system gradually found acceptance in areas other than chess, like online games, sporting events, and AI benchmarking. The second equation calculates the expected probability of one player winning against the other depending on their rating difference, and the first updates the player's rating after every game depending on the actual and expected result. The combination of both ensures that the rating system accommodates rating adjustments to reward the unexpected win and penalize against the loss when a rating would become obsolete in view of actual performance. This means that the average win rate measure

provides a clear and quantitative indication of the relative strength of the models and competitive standing in question generation. Figure 5.5 shows the average win rate of each language model against all others in the evaluation, assuming uniform sampling and no ties. The average win rate is a valuable metric for understanding how each LLM performed directly compared to its peers in generating questions from program codes. Figure 5.6 shows the win rate matrix for every model and together with Figure 5.5 they indicate that GPT-4-0314 as the top-performing model.

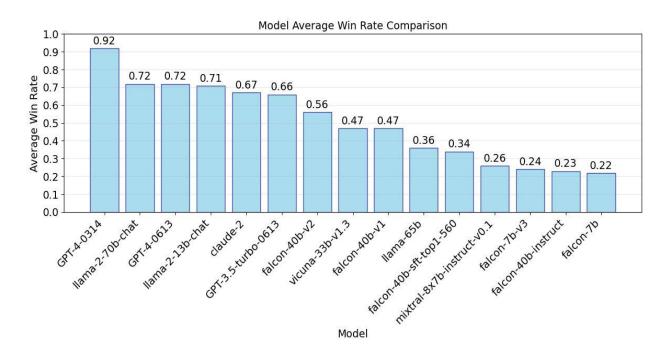


Figure 5.5 Average win rate against all other models

5.3.2 Observations and Insights

The model GPT-4-0314 consistently outperformed the others across multiple evaluation criteria. It demonstrated a strong ability to generate relevant, clear, and comprehensive questions. Its top positions highlight its suitability for question-generation tasks related to the scripts. It also excelled in relevance, providing questions that were contextually connected to the script content and clearly articulated. Some models, like falcon-40b-v1 and mixtral-8x7b-instructv0.1 demonstrated limited coverage, with questions that missed certain key aspects of the scripts. Figure 5.7 shows the metric score for the models and compares relevance, clarity and coherence, conciseness, and coverage. Finally, GPT-4-0314 shows superiority compared to the other LLMs.

5.3.3 Repetitive Evaluation

Table 5.3 shows the repeated question rate results. The table shows that GPT-4-0314 has the best rate among the other models. It is apparent that GPT-4-0314 had the lowest rate of question repetition. On the other hand, falcon-7b had the highest number of repeated questions.

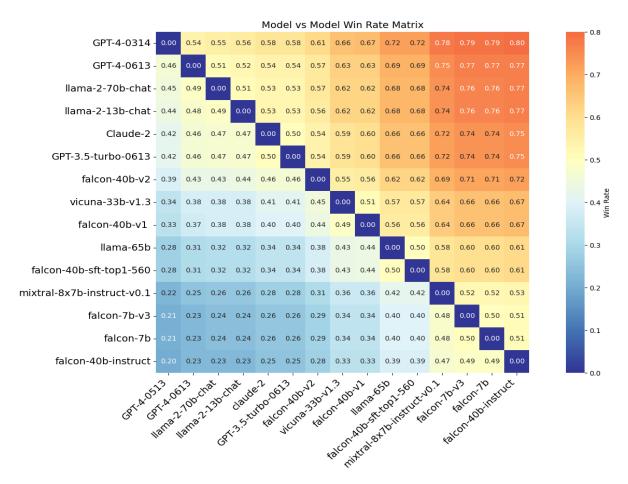


Figure 5.6 Win rate matrix

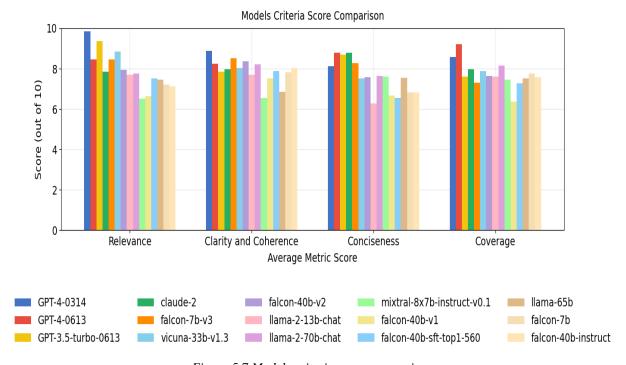


Figure 5.7 Models criteria score comparison

Table 5.3 Repetition rates for each model at different question levels

Model	10 questions	20 questions	30 questions	40 questions	50 questions
GPT-4-0314	0	0	0	1	1
llama-2-70b-chat	0	0	1	1	2
GPT-4-0613	0	0	1	1	2
llama-2-13b-chat	0	1	1	2	2
claude-2	0	1	1	2	3
GPT-3.5-turbo-0613	0	1	1	2	3
falcon-40b-v2	1	1	2	2	3
vicuna-33b-v1.3	1	2	3	3	4
falcon-40b-v1	1	2	3	3	4
llama-65b	2	3	3	4	5
falcon-40b-sft-top1-560	2	3	3	4	5
mixtral-8x7b-instruct-v0.1	3	4	4	5	6
falcon-7b-v3	3	4	4	5	6
falcon-40b-instruc	3	4	4	5	6
falcon-7b	3	4	5	6	7

5.3.4 Human Evaluation

While the study incorporates well-defined automated evaluation metrics, relying solely on algorithmic assessment can limit the contextual and pedagogical nuance captured in generated questions. To address this limitation, human evaluation was introduced as a complementary measure and it was conducted on the top-performing LLM based on the automatic evaluation (GPT-4-0314). Five educators independently assessed a stratified sample of 45 automatically generated questions; 15 per programming language (C++, Java, and Python). Each question was rated on a 5-point Likert scale (1 = poor, 5 = excellent). Table 5.4 summarizes the human evaluation scores across the three programming languages and code types. Table 5.5 presents the results of the repeated-measures analysis of variance (ANOVA) on relevance and educational value metrics. F denotes the F-statistic, DF refers to degrees of freedom, Num indicates the numerator degrees of freedom, Den indicates the denominator degrees of freedom, and p is the p-value. The analysis revealed no statistically significant differences across programming languages

F(2,8) = 0.96, p = 0.4239, suggesting that language choice did not affect perceived question relevance meaningfully. A similar pattern was observed for the educational value metric p = 0.0689, which approached but did not reach the conventional threshold for significance $\alpha = 0.05$. Post-hoc pairwise comparisons, summarized in Table 5.6 and Table 5.7, support this finding. No significant differences emerged between language pairs concerning relevance, as all adjusted p-values exceeded the threshold for statistical significance. About educational value, the comparison between C++ and Python yielded the lowest p-value (p = 0.0186); however, after applying the Bonferroni correction, the adjusted p-value rose to 0.0557. This result may be considered marginally significant. A weak positive correlation (r = 0.30) was found between relevance and educational value, indicating partial overlap between the two metrics. It suggests that while the two metrics are related, they capture distinct aspects of human-perceived question quality.

Table 5.4 Human evaluation summary table

Language	Code Type	Relevance	Educational Value
Python	General	4.8	4.75
Python	Procedural	4.85	4.83
Python	Object-Oriented	4.95	4.87
Java	General	4.85	4.78
Java	Procedural	4.88	4.86
Java	Object-Oriented	4.94	4.92
C++	General	4.65	4.58
C++	Procedural	4.72	4.65
C++	Object-Oriented	4.85	4.8
Average Score	All	4.83	4.78

Table 5.5 Repeated measures ANOVA results

Metric	F-value	Num DF	Den DF	p-value
Relevance	0.957	2	8	0.424
Educational Value	3.808	2	8	0.069

Table 5.6 Post-hoc pairwise comparisons – relevance (Bonferroni Corrected)

Language 1	Language 2	t-stat	p-value	Bonferroni Adjusted p
C++	Java	0.784	0.477	1.000
C++	Python	-0.459	0.670	1.000
Java	Python	-1.633	0.178	0.533

Table 5.7 Post-hoc pairwise comparisons – educational value (Bonferroni Corrected)

Language 1	Language 2	t-stat	p-value	Bonferroni Adjusted p
C++	Java	-1.907	0.129	0.388
C++	Python	-3.833	0.019	0.056
Java	Python	-0.514	0.634	1.000

The established statistical techniques were used to evaluate the reliability of the human evaluation results and their significance. The use of repeated measures ANOVA, as in Table 5.5, is appropriate to test whether there are overall differences in relevance and educational value scores across programming languages, as it accounts for within-subject variability and is standard practice for such comparisons. The reported p-values in Table 5.5 represent these omnibus tests that comment on significant effects across all groups. For Tables 5.6 and 5.7, Bonferroni-corrected p-values were used for post-hoc pairwise comparisons. This adjustment is necessary because multiple comparisons increase the risk of Type I error (false positives). The Bonferroni correction is a widely accepted method to control for this risk, ensuring that any significant findings in the pairwise tests are robust and not due to chance. In summary, the use of standard p-values for the initial ANOVA (Table 5.5) and Bonferroni-adjusted p-values for post-hoc comparisons (Tables 5.6 and 5.7) reflects best practices in statistical analysis. This approach provides a rigorous and transparent assessment of the human evaluation data, enhancing the scientific credibility of the study's findings.

5.4 Discussion

This research is particularly unique as it addresses a gap in the literature concerning AI-based QG for programming education. Earlier studies, such as the one conducted by Maity et al. [142], focused on how LLMs can generate different kinds of questions, including open-ended and multiple-choice formats. Although these studies focused on generating questions about multilanguage and multi-format general educational purposes, they did not consider programming-related artifacts such as program codes. Similarly, Tran et al. [143] and Doughty et al. [144] addressed the use of LLMs for generating and answering MCQs in computing education. Still, their focus was mainly on modifying existing questions rather than generating new ones from program codes. Their work indicated how effective models like GPT-3 and GPT-4 are in assessing and generating MCQs related to specific learning objectives. The current research builds on this existing work by utilizing LLMs to generate new questions directly from program code, an area that has not been extensively explored. Unlike previous research that depended on text-based

datasets or learners' input, the proposed method assesses how well LLMs can convert program codes into educational questions. This method addresses a significant gap by providing automated, context-specific QG tools tailored to programming education.

Studies such as those by Baral et al. [145] and Kargupta et al. [146] worked on the assessment capabilities of LLMs. They focused on evaluating student responses rather than generating questions. The current study complements these initiatives by focusing on the initial phase of educational assessments (developing high-quality questions that align with programming curricula). The current research enhances understanding of LLM capabilities using evaluation metrics such as relevance, clarity and coherence, conciseness, and coverage. These metrics offer a more detailed perspective than previous studies, which typically focused on general performance benchmarks. These findings improve the use of AI-driven tools in programming education, providing scalable solutions for educators and learners alike. The rankings and observations from this evaluation have significant implications for applications that involve generating questions from program codes. The models GPT-4-0314, GPT-4-0613, and llama-2-70b-chat are well-suited for tasks where the generation of questions that are both relevant and coherent with the script content is critical. Moreover, this research also highlights the importance of using a combination of metrics to comprehensively evaluate LLMs for QG. The four metrics and the win rate offer a well-rounded view of a model's performance in this complex task. The proposed framework can assist teachers and online instructors in assessing and testing student knowledge with a large question base. Furthermore, different tests are performed on various models to assist in selecting the best one. The framework also helps in testing model capability in case other models are released in the future.

The proposed LLMs-based framework outperforms some existing approaches in programming education assessment by addressing their core limitations. The ontology-based system [P1], though structured via semantic similarity using BERT embeddings (98.5% accuracy), is constrained to Python and lacks human evaluation, limiting its pedagogical depth. It fails to assess cognitive alignment or instructional appropriateness, which are essential for effective educational questions. The hybrid semantic-AI method [P3], relying solely on human evaluation, introduces scalability challenges and conceptual limitations. Its single-language focus and absence of automatic metrics hinder systematic, repeatable assessment across broader educational contexts. The template-based approach [P5] supports multiple programming languages and incorporates both human and automated evaluation. However, low quality scores (0.57–0.59) indicate limited effectiveness, with constrained adaptability to diverse programming constructs. In contrast, the proposed multi-language LLM-based system (Python, C++, Java) integrates both robust automatic

metrics (GPT-4-0314 e.g., relevance: 9.85, clarity and coherence: 8.87, conciseness: 8.13, and coverage: 8.57) and expert human evaluation (relevance: 4.83, and educational value: 4.78). This dual-layered assessment ensures both technical correctness and pedagogical soundness, offering comprehensive coverage and educational alignment previously unmet by prior models.

Regarding positioning the proposed LLMs-based evaluation framework within the literature, recent work has begun to evaluate LLMs and LLM-based pipelines for producing programming exercises and assessment items, but gaps remain in systematic, code-grounded question evaluation. The paper [136] demonstrates a Generative AI pipeline (LLMs) to automatically generate code-comprehension MCQs integrated with an assessment platform. It illustrates scalability but relying primarily on prompt engineering without deep semantic/code-grounding checks. Studies on LLMs for code understanding, like [17], [147], show that models can generate exercises and explanations (e.g., Codex work) but frequently require human refinement and lack standardized benchmarks for question quality and code-faithfulness. The study presented in [148] conducts large-scale empirical analyses to investigate how effectively LLMs comprehend code, particularly through mutation testing and fault localization techniques. These analyses uncover critical failure modes, such as hallucinations and limited fault sensitivity, that highlight the limitations of current evaluation practices. Consequently, the findings underscore the need for specialized metrics tailored to assessing LLMs-generated items derived from code. Benchmarks tailored to code comprehension (e.g., CodeMMLU) further illustrate the value of multiple-choice style, code-focused benchmarks for measuring reasoning depth rather than surface fluency [149]. Finally, recent surveys and benchmark papers synthesize evaluation metrics and point out that general code-generation benchmarks do not fully capture question quality [150], while others like [151] highlight that code-generation benchmarks often suffer from prompt quality issues which compromise their pedagogical alignment and semantic relevance to real-world developer tasks.

In summary, the evaluation has provided valuable insights into the capabilities of various LLMs in generating questions from program codes. The top-performing models can be valuable assets in applications such as educational platforms, code analysis, and automated documentation generation, where high-quality QG is essential.

5.5 Conclusion

AI and LLMs are growing rapidly. E-learning platforms demand effective QG methods, and LLMs have made this process much easier. While recent studies have focused on generating questions from text, no prior research has evaluated LLMs' ability to generate questions from program codes. This study introduces a framework for assessing LLMs' performance in generating questions from program codes. LLMs have been extensively investigated for their capability to

formulate questions from source code. Python, C++, and Java program codes were considered as inputs in this regard. The study considered a diverse range of LLMs for evaluating QG from source codes. A dataset of questions was compiled and systematically analyzed using these models. The method adopted a combination of relevance, clarity and coherence, conciseness, and coverage as evaluation metrics to assess comprehensively their potential for QG. Human evaluation was also considered as an additional measure. Results from the present research were clear and compelling. Across the board, the models were ranked topmost among the evaluated LLMs: GPT-4-0314, GPT-4-0613, and llama-2-70b-chat. They proved proficiency in contextually relevant QG in terms of clarity, conciseness, and comprehensive coverage of source code content. Their performance underlines their potential as utilities within educational platforms, automated documentation generation, and code analysis applications. These metrics offered some quantitative insights into the syntactic and semantic correctness of the generated questions. The ratings were carried out using automatic AI evaluations (GPT-4-0314) to ensure the generated questions were grammatically correct, semantically sound, and contextually appropriate. The real implications of the findings stretch far beyond question generation. They have practical ramifications for learning outcome assessment efforts in any domain requiring natural language understanding and generation. As AI systems increasingly mediate human-computer interactions, it is crucial to comprehend the strengths and weaknesses of LLMs. Though GPT-4-0314 was at the very top of the ranks, other evaluated LLMs proved to have some value in specific use cases and may come in handy for tasks with particular emphasis on QG attributes. Performance evaluation has created a valuable resource for decision-makers employing LLMs in various applications. Results indicate that further along, advancing with AI technologies, systems such as GPT-4-0314, GPT-4-0613, and llama-2-70b-chat set new standards in the natural language generation area, thus propelling innovation and possibilities across numerous fields.

Thesis 3: I developed a systematic evaluation framework to assess the QG capabilities of LLMs, using automatic evaluation metrics and complemented by human-centered evaluation metrics for the top-performer LLM. The findings provide insights into their strengths and limitations in generating programming-related assessment questions for potential educational use in the programming domain. **[P4]**

Chapter 6 Template-Based Question Generation from Code Using Static Code Analysis

6.1 Introduction

The manual creation of programming exercises remains time-consuming for educators, often taking hours to ensure questions align with specific learning objectives and code complexity levels [P2]. This challenge intensifies in multi-language educational settings where instructors must simultaneously maintain question banks for multiple programming languages. Recent advances in static analysis frameworks and attribute grammar systems have laid the technical foundation for AQG tools that parse code structures, extract semantic elements, and populate pedagogical templates [152], [153]. Traditional AQG systems relied heavily on template-based approaches that limited question diversity and contextual relevance [P3]. Integrating AST analysis with reference attribute grammars has enabled more sophisticated code element extraction, particularly for object-oriented languages like Java and C++ [154], [155], [156]. These technological advancements coincide with growing pedagogical demands for personalized learning pathways and competency-based assessment frameworks in CS education [5]. Cross-language QG introduces unique parsing challenges due to varying syntax rules and programming paradigms. There is no agreed-upon or standard evaluation metric for AQG from source code for educational purposes. The current few systems deal with one programming language (single-language) without fully automated evaluation [P2], [P3]. As a result, the main added value of this chapter is dealing with multi-language AQG from source code and automating the evaluation process.

The methodology presented in Chapter 6 represents a significant departure from the approaches detailed in Chapters 3, 4, and 5. Chapter 3 was limited to QG using engineered ontologies specific to providing support for only Python via a reasoning engine and conceptual hierarchies. Chapter 4 blended the hybrid model of ontology and NLP (QuestGen) approaches, translating the Python code into text, prior to the generation of the question. Then, in Chapter 5, custom evaluation metrics were framed for benchmarking evaluation of LLM-based systems, among them GPT-4, LLaMA, and Falcon. LLMs, introduced in Chapter 5, are highly effective for QG from source code; however, they demand substantial financial and computational resources. This chapter presents a multi-language code question generator capable of automatically producing assessment questions for Python, C++, Java, and C codes. It focuses on QG from source code using static code analysis. Static code analysis is adopted to generate questions from program code. It offers pattern-based algorithm detection, structural analysis, and question templates. Pattern-based algorithm detection is performed through regex patterns. Structural analysis examines functions, loops, conditionals, and variables to generate relevant questions. Question templates involve predefined templates for different code elements to create varied questions. This template-based

approach serves as a lightweight baseline for the future version alternative to the LLMs discussed in Chapter 5, offering lower computational requirements, greater interpretability, and faster processing for large-scale deployment. The research objectives of this study are:

- 1. Developing a multi-language code question generator capable of automatically producing assessment questions for Python, C++, Java, and C codes (AQG from source code).
- 2. Establishing an approach for automatically evaluating the proposed system based on a set of evaluation criteria through experiments on a real-world dataset to demonstrate its effectiveness in generating questions from source codes.

This chapter is structured as follows: Section 6.2 outlines the methodology and the system architecture. Section 6.3 presents the results of the multi-language QG and evaluation. Section 6.4 discusses the findings, contributions, and limitations. Section 6.5 concludes the chapter with key insights.

6.2 Methodology

This chapter proposes a multi-language code question generator capable of automatically producing assessment questions for Python, C++, Java, and C codes. The four programming languages were chosen based on the up-to-date The Importance Of Being Earnest (TIOBE) Index, which indicates the popularity of programming languages. Python, C++, Java, and C are the most popular programming languages worldwide according to the TIOBE Index as of May 2025 [157]. While the paper [71] primarily focuses on general educational applications, it is important to note that modern adaptations of Bloom's Taxonomy can be tailored to specific domains, like programming. This adaptation allows for evaluating cognitive tasks unique to programming education, ensuring that the generated questions are relevant and effective for learners in that field. As a result, the methodology in the current research adopts Bloom's Taxonomy evaluation levels: remembering, understanding, applying, analyzing, evaluating, and creating. Figure 6.1 shows the proposed methodology for a multi-language question generator from source code. The research methodology behind the multi-language question generator involves several interconnected components that work together to analyze code snippets and generate relevant questions. A detailed explanation of the methodology follows.

6.2.1 Language-Specific Parsing

Parsing is the process of checking the structure of the code and identifying elements like keywords and variables. The foundation of the system is a modular parser that handles multiple programming languages:

- Language detection: The system first identifies the programming language of the input code using heuristic pattern matching. This detection is based on language-specific keywords, syntax patterns, and structures.
- 2. Language-specific parsers: Each supported language (Python, Java, C++, and C) has a dedicated parser that implements the common code parser interface. This enables polymorphic handling of different languages while accounting for their unique characteristics.
- 3. Python parser implementation: For Python, the system leverages the AST module to perform deep structural analysis of the code. This provides detailed information about functions, loops, conditionals, and variables.
- 4. Other language parsers: For Java, C++, and C, the system implements regex-based parsers that identify key structural elements despite the lack of native AST support in Python for these languages.

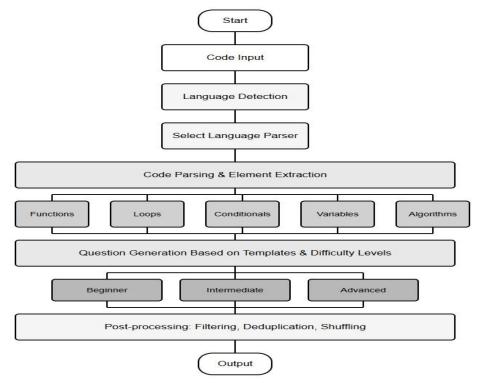


Figure 6.1 Methodology for multi-language question generation from source code

6.2.2 Code Element Extraction

After parsing, the system extracts various structural elements from the code:

1. Function analysis: The system extracts information about functions, including their names, parameters, return statements, and recursion patterns.

- 2. Loop detection: The system identifies different types of loops (for/while) and extracts information about their variables and conditions.
- 3. Conditional statement analysis: For conditional statements (if/else), the system extracts conditions, identifies branch patterns, and determines nesting levels.
- 4. Variable tracking: The system extracts variables, their data types (when possible), initialization values, and their modifications throughout the code.
- 5. Algorithm identification: Using a dictionary of algorithm-specific regex patterns, the system identifies common algorithms implemented in the code (e.g., binary search, sorting algorithms, and graph traversals).

6.2.3 Template-Based Question Generation

The QG process uses templates customized for different code elements and difficulty levels, as shown in Figure 6.2:

- 1. Difficulty stratification: Questions are categorized into three difficulty levels beginner, intermediate, and advanced aligned with increasing cognitive complexity.
- 2. Element-specific templates: Each code element type (functions, loops, conditionals, variables, algorithms) has specific question templates designed to test understanding at different levels.
- 3. Dynamic template parameters: The system dynamically fills template parameters with specific code elements. For example, function parameter examples are generated based on parameter names using heuristic rules.

```
'loop': { DifficultyLevel.BEGINNER: [

"What is the purpose of the {type} loop on line {line_num}?", "How many times will the {type} loop on line {line_num} execute with typical input?", "What happens in each iteration of the {type} loop on line {line_num}?",],
```

Figure 6.2 Sample of templates used for question generation from source code

6.2.4 Cognitive Science-Based Question Design

The templates are designed based on principles from cognitive science and educational theory, as shown in Figure 6.2:

- 1. Bloom's Taxonomy alignment:
 - a) Beginner questions focus on remembering and understanding (e.g., "What is the purpose of function X?").

- b) Intermediate questions target applying and analyzing (e.g., "Trace the execution of function X with inputs Y").
- c) Advanced questions emphasize evaluating and creating (e.g., "How could you optimize function X?").
- 2. Contextual relevance: Questions directly reference specific code elements, line numbers, and variable names from the input code to create contextually relevant assessments.
- 3. Balanced coverage: The system distributes questions across different code elements to ensure a comprehensive assessment of the code snippet.

6.2.5 Question Post-Processing

After generating candidate questions, the system applies several post-processing steps:

- 1. De-duplication: Eliminates duplicate or highly similar questions to ensure variety.
- 2. Shuffling: Randomizes the order of questions to prevent predictable patterns.
- 3. Limiting: Controls the number of questions to prevent overwhelming the user, while maintaining a balance of difficulty levels.
- 4. Fallback strategies: If specific elements cannot be extracted (e.g., due to parsing errors), the system falls back to more general questions about the code.

Each language-specific parser yields a common intermediate representation (lists of dictionaries for functions, loops, conditionals, variables) so that downstream template selection is languageagnostic. Python leverages AST traversal for recursion and loop-depth heuristics, while Java/C/C++ currently rely on regex signatures adequate for introductory educational patterns (single method declarations, simple loops, flat conditionals). Advanced constructs (e.g., pointer arithmetic nuance, method overloading resolution, templates/generics) are intentionally out-ofscope for this baseline but can be incorporated by swapping parsers without altering the generation layer. The system presently employs 177 Bloom-tagged templates (function: 37, loop: 35, condition: 35, variable: 35, algorithm: 35) spanning three difficulty tiers. Parameterization injects code-derived identifiers (names, line numbers, inferred complexity) to avoid generic phrasing. Current templates are structure-sensitive at the element presence level but not yet adaptive to deeper nesting or compound branching. There are three diversity controls: stochastic selection across applicable templates, element-level breadth (functions, loops, conditionals, variables, algorithm), and Bloom soft-cap (≤40% any level) to reduce repetitive output. This baseline does not yet adapt template probability to structural complexity (e.g., nesting depth), which is planned for future work. Multi-language static analysis is the non-executive extraction of language-specific structures unified into an intermediate representation via a shared parser interface. Python employs AST traversal, whereas Java, C, and C++ use deterministic regex extractors. This abstraction standardizes template-engine behavior across languages while supporting parser substitution, including tree-sitter, without architectural change. The regex-based parsers were evaluated against 76 implementations of algorithms (19 algorithms across 4 languages) without any observed extraction failures. Although this level of performance is sufficient for canonical educational patterns, the absence of a formal gold-standard extraction audit is recognized. Planned improvements in Chapter 7 include the substitution of the current approach with more advanced parsers capable of handling complex language constructs such as nested generics and pointer arithmetic.

6.2.6 Evaluation Approach

The methodology includes an evaluation approach to assess the quality of the generated questions. The evaluation of the proposed system is designed around a set of defined criteria. It uses experiments conducted on a real-world dataset to demonstrate its effectiveness in generating questions from source code. The methodology involves a structured approach to assess the quality of the generated questions across several key dimensions:

- 1. Bloom's Taxonomy: The Bloom's Taxonomy cognitive level distribution is computed using Bloom's Taxonomy alignment to assess cognitive level distribution (remembering, understanding, applying, analyzing, evaluating, and creating).
- 2. Difficulty distribution: The questions are analyzed across three difficulty levels (Beginner, Intermediate, Advanced) for four programming languages: C, C++, Java, and Python.
- 3. Linguistic complexity: This dimension combines word count, sentence count, Flesch-Kincaid Grade Level, and average sentence length. All values are normalized to a 0–1 scale, with sentence length capped at 25 words and grade level capped at 10. The final score is computed using the formula:

$$Linguistic Complexity = \begin{cases} 0.6 \cdot Normalized Grade Level \\ +0.4 \cdot Normalized Sentence Length \end{cases}$$
(6.1)

4. Code coverage: Measures how comprehensively the generated questions address different code components. The score is calculated as:

$$Code Coverage = \begin{cases} 0.4 \cdot Variables Coverage \\ +0.6 \cdot Functions Coverage \end{cases}$$
 (6.2)

5. Precision: Defined as the ratio of relevant or correct questions to the total number of questions generated by the system.

$$Precision = True Positives / (True Positives + False Positives)$$
 (6.3)

6. Recall: Assesses the system's ability to generate all relevant or expected questions, using code coverage as a proxy indicator for recall.

Recall = True Positives / (True Positives + False Negatives)
$$(6.4)$$

$$F1_Score = 2 * (Precision * Recall) / (Precision + Recall)$$
 (6.5)

7. Novelty: Measures the originality of the generated questions using the formula:

Novelty =
$$\begin{cases} 0.4 \cdot \text{Bloom Score} + 0.3 \cdot \text{Code Elements} \\ + 0.3 \cdot \text{Advanced Question Types} \end{cases}$$
 (6.6)

8. Educational alignment: Evaluates how well the questions align with predefined learning objectives. The score is computed as:

$$Educational Alignment = \begin{cases} 0.7 \cdot Expected Bloom Match \\ +0.3 \cdot Expected Linguistic Complexity Match \end{cases}$$
(6.7)

9. Cognitive diversity: Captures the diversity of cognitive skills involved in answering the questions. The formula used is:

Cognitive Diversity =
$$0.4 \cdot \text{Bloom Score}/6 + 0.6 \cdot \text{Entropy}$$
 (6.8)

Entropy =
$$-\sum p \cdot \log(p)/\log(6)$$
 (6.9)

and p denotes the proportion of questions at each Bloom's level. The weighted values are flexible and open to future refinement. For instance, future researchers might introduce additional variables, such as the density of technical terms, to further improve linguistic complexity estimation.

10. Question quality score by language and difficulty: The score is calculated through a multi-step process. First, computing eight different quality metrics for each question (linguistic complexity, code coverage, Bloom's distribution, precision, recall, novelty, educational alignment, and cognitive diversity). Second, combining these metrics with predetermined weights. Third, aggregating the scores by programming language and difficulty level.

11. Quality score by code complexity: The score is calculated through a multi-step process. First, computing eight different quality metrics for each question (linguistic complexity, code coverage, Bloom's distribution, precision, recall, novelty, educational alignment, and cognitive diversity). Second, combining these metrics with predetermined weights. Third, aggregating the scores by language and code complexity (simple, moderate, or complex).

Linguistic complexity: 0.15, code coverage: 0.20, bloom's distribution: 0.15, precision: 0.15, recall: 0.10, novelty: 0.10, educational alignment: 0.10, and cognitive diversity: 0.05 are the suggested weights. Algorithm 6.1 shows a multi-language template-based QG and evaluation algorithm. A template-based pipeline aligned with Bloom's taxonomy and difficulty levels is utilized to generate and evaluate high-quality programming questions from code samples across multiple programming languages. In this pipeline, source code samples undergo parsing using language-specific parsers to enable accurate syntactic and structural analysis. From the parsed code, meaningful elements such as functions, loops, and conditional statements are extracted, and ASTs are constructed to represent the hierarchical structure of the code. Relevant predefined templates are then selected and instantiated based on the extracted elements, generating candidate questions contextualized to each specific code sample. The generated questions are post-processed to enhance linguistic clarity, eliminate redundancy, and align with pedagogical standards. Each question is labelled with the corresponding Bloom's level and an estimated difficulty tag to facilitate adaptive learning scenarios. The generated questions are subsequently evaluated using automated metrics to assess quality, novelty, and cognitive diversity, and the labelled questions, along with the evaluation statistics, are aggregated and stored for further analysis and visualization within the system's reporting modules. To summarize the overall generation process, the multilanguage question generator algorithm is the main engine that orchestrates the entire QG process. It first detects the programming language of the code snippet, selects the appropriate parser, and parses the code. It then extracts various code elements (functions, loops, conditionals, variables) and identifies the algorithm implemented in the code. Based on the language and extracted elements, it generates appropriate questions. It falls back to generic questions if no specific questions can be generated. It then shuffles the questions and returns the requested number. Next, language detection algorithm uses pattern matching to identify the programming language of the code snippet. It looks for language-specific keywords and syntax patterns to differentiate between Python, Java, C++, and C. Following this, algorithm identification uses regex pattern matching to identify common programming algorithms in the code. Each language parser maintains a dictionary of algorithm names mapped to regex patterns. It returns the name of the first matching algorithm or null if none is detected. Afterward, QG by element type generates questions for a specific type of code element (functions, loops, conditionals, etc.). It also uses predefined templates for each element type and difficulty level.

Algorithm 6.1: Multi-Language Template-Based QG and Evaluation

Input: Set of code samples in various programming languages (SourceCodeSamples),

Predefined question templates mapped to Bloom's taxonomy and difficulty levels (Templates)

Output: Generated questions with Bloom's level and difficulty tags (LabelledQuestions),

Evaluation statistics for generated questions (EvaluationMetrics)

- 1: for each CodeSample in SourceCodeSamples do
- 2: ParsedCode ← Parse(CodeSample, LanguageSpecificParser)
- 3: CodeElements ← ExtractCodeElements(ParsedCode)
- 4: AbstractRep ← GenerateAST(ParsedCode)
- 5: CandidateQuestions $\leftarrow \emptyset$
- 6: for each Element in CodeElements do
- 7: RelevantTemplates ← SelectTemplates(Element, Templates)
- 8: for each Template in RelevantTemplates do
- 9: Question ← InstantiateTemplate(Template, Element)
- 10: CandidateQuestions ← CandidateQuestions ∪ {Question}
- 11: end for
- 12: end for
- 13: FilteredQuestions ← Postprocess(CandidateQuestions)
- 14: LabelledQuestions ← LabelQuestions(FilteredQuestions)
- 15: EvaluationMetrics ← Evaluate(LabelledQuestions, CodeSample)
- 16: Store(LabelledQuestions, EvaluationMetrics)
- 17: end for
- 18: GenerateReportsAndVisualizations()

Finally, mixed-difficulty QG generates questions at beginner, intermediate, and advanced difficulty levels. It combines questions from different difficulty levels and eliminates duplicate questions to ensure variety. Final clarification regarding handling multi-language parsing, the system employs a modular parsing architecture to accommodate the syntactic and semantic diversity of Python, C++, Java, and C. For Python, the built-in AST module is utilized to perform deep structural analysis. For C, C++, and Java, custom regex-based parsers are implemented to extract functions, loops, conditionals, and variables. Each language is supported by a dedicated parser class that adheres to a common interface, enabling polymorphic handling and normalization of code elements. Templates are mapped to these normalized elements, ensuring that question generation logic remains consistent across languages despite syntactic differences. While the current implementation focuses on common structural features, such as functions and loops, the architecture is extensible and can be adapted to handle language-specific constructs (e.g., pointers, method overloading) in future work. Templates are manually crafted but are designed to be generalizable across all supported languages. Each element type (function, loop, condition, variable, algorithm) has approximately 6 templates at the Beginner level and about 15 templates each at Intermediate and Advanced levels. The template repository consists of a diversity of templates for all code elements (functions, loops, conditionals, variables, algorithms) that have been categorized in terms of levels of difficulty into beginner, intermediate, and advanced. For any specific code element and difficulty level, a number of templates have been created, which add up to several dozen templates in the repositories. These templates are parameterized, and with the help of code-specific details like variable names and line numbers, the placeholders are filled with these details dynamically. The system considers the random shuffling and deduplicating the questions during the post-processing stage. Random-selection of applicable templates even further increases variability and lowers the chances of generating repetitively or shallowly elaborated questions. The even spread across different Bloom's taxonomy levels among the various code elements ensures that the exams are satisfactory without being overly fitted to a small number of fixed patterns. Finally, the weights used in the evaluation formulas (e.g., 0.6, 0.4) are not fixed and were determined based on a combination of literature review, domain expertise, and practical judgment. For example, in the linguistic complexity metric, a lower weight was assigned to sentence length (0.4) than to grade level (0.6), reflecting the assessment that grade level more directly impacts comprehension in programming contexts, while sentence length, though relevant, has less influence due to its design for general natural language. These choices were informed by the understanding of the field and are open to future refinement. Human evaluations were also incorporated complement automated metrics. Future work may empirically optimize these weights or introduce additional variables, such as technical term density, to further enhance metric validity.

6.3 Results

This chapter presents a multi-language question generator from source code capable of automatically producing assessment questions across the top four programming languages (Python, C++, Java, and C) chosen according to the TIOBE Index. The system analyzes code structure using language-specific parsers and generates questions at varying difficulty levels. The 114 questions for each programming language are evaluated based on 19 different algorithms and across three complexity levels (simple, moderate, and complex). The dataset of code snippets used is available on GitHub [158]. There are six generated questions for each algorithm in each programming language: two for beginners, two for intermediates, and two for advanced learners. The total number of generated questions is 456. Established educational assessment metrics, outlined in section 6.2.6 of the methodology, were used to evaluate the generated questions. The algorithms used are listed based on their fundamental categories:

- Sorting Algorithms (Bubble Sort, Insertion Sort, Selection Sort, Merge Sort, and Quick Sort).
- 2. Searching Algorithms (Binary Search, Linear Search, and Knuth-Morris-Pratt).

- 3. Graph Traversal Algorithms (Depth-First Search, Breadth-First Search, and Topological Sort).
- 4. Shortest Path Algorithms (Dijkstra's, Floyd-Warshall, and A* Search).
- 5. Minimum Spanning Tree Algorithms (Kruskal's and Prim's).
- 6. Optimization & Problem-Solving Approaches (Dynamic Programming, Greedy, and Huffman Coding).

For the collected and prepared dataset, the following attributes are included:

- 1. Functions, Loops, Conditionals, and Variables: Each attribute is binary 0 means the feature is not present in the code snippet, while 1 indicates it is present. All selected code examples include at least one instance of each of these four elements.
- 2. Lines: This attribute captures the length of the code, measured by the number of lines in each snippet.
- 3. Complexity: This is a categorical attribute with three levels simple, moderate, and complex- reflecting the overall complexity of the code.
- 4. Generated Questions: The questions are primarily designed to require explanatory answers rather than simple yes/no or multiple-choice responses (open-ended questions). This field contains six automatically difficulty-tiered generated questions based on the input code: two aimed at beginner-level learners, two at intermediate level, and two at advanced level.

A sample transformation from code to question is presented in Table 6.1.

Table 6.1 A sample transformation from code to question

Original Code	Template	Generated Question	
def calculate_area (radius): return 3.14·radius·radius	"What does the {function_name} function calculate using {parameter}?"	"What does the calculate_area function calculate using radius?"	
class Student: definit(self, name, age): self.name = name self.age = age	"What attributes does the {class_name} class initialize?"	"What attributes does the Student class initialize?"	
try: result = x/y except ZeroDivisionError: result = 0	"What happens in this code when {error_type} occurs?"	"What happens in this code when ZeroDivisionError occurs?"	

Figure 6.3 presents Bloom's Taxonomy coverage. Bloom's Taxonomy cognitive level distribution was computed using a detailed multi-step process. Each question was first analyzed to detect its cognitive level using keyword matching, with the level determined based on the highest number of keyword matches from Bloom's taxonomy. These levels were then mapped to numeric values (1 to 6) and normalized to a 0–1 scale for further analysis. For example, the system calculated the

percentage of questions falling under each level, resulting in distributions of 16% for "Remember" and 8% for "Create". The generated questions demonstrated good coverage across cognitive levels, with a distribution of Remember: 16%, Understand: 24%, Apply: 16%, Analyze: 22%, Evaluate: 14%, and Create: 8%. This distribution indicates a balanced approach with room for improvement in higher-order thinking (Create level). Figure 6.4 shows the distribution of question difficulty levels (Advanced, Intermediate, and Beginner) across four programming languages: C, C++, Java, and Python. The proportions of difficulty levels are identical across all four languages. There is no noticeable skew toward a particular difficulty level for any specific language. In short, the difficulty level distribution is very evenly balanced across these languages. By default, the distribution of generated questions is set to a 2:2:2 ratio - two beginner, two intermediate, and two advanced. This deliberate balance ensures that one-third of the questions target each difficulty level, providing a well-rounded assessment experience.

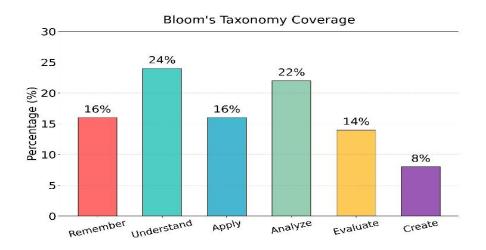


Figure 6.3 Bloom's taxonomy coverage

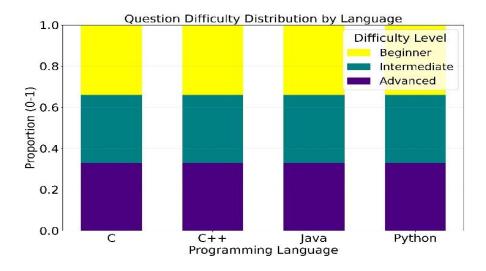


Figure 6.4 Question difficulty distribution by language

Figure 6.5 reveals the question quality score by language and difficulty level. The scores shown in this visualization were calculated through a multi-step process. The overall quality scores cluster around the 0.55–0.60 range, indicating fairly consistent quality across difficulty levels and languages. It looks like beginner questions are generally better crafted or better received, perhaps because they are simpler and easier to generate and validate. Figure 6.6 focuses on the question quality score by language and code complexity. The scores shown in this visualization were calculated through a multi-step process. Across the board, none of the complexity levels dominate quality scores universally, which suggests that the quality of a question is not strictly tied to how simple or complex the code is.

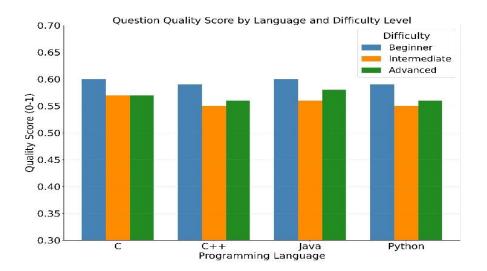


Figure 6.5 Question quality score by language and difficulty level

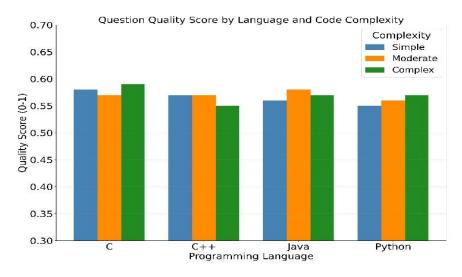


Figure 6.6 Question quality score by language and code complexity

Figure 6.7 visualizes the linguistic complexity of different programming languages (C, C++, Java, and Python) across three difficulty levels: Beginner, Intermediate, and Advanced. In general, linguistic complexity often tends to increase with difficulty level. The linguistic complexity scores

were calculated using a structured, multi-step process. First, basic text metrics, including word and sentence counts, were computed for each question to analyze sentence structure and length. Next, readability metrics - including Flesch-Kincaid Grade Level - were generated using the Textstat library to assess how readable and educationally appropriate the questions were. To further evaluate syntactic complexity, the average sentence length was calculated. All these metrics were then normalized to a 0–1 scale for comparability, with sentence length capped at 25 words and the grade level normalized to a maximum of 10. Using these normalized values, a final linguistic complexity score was derived using a weighted formula: 0.6 times the normalized Flesch-Kincaid Grade plus 0.4 times the normalized sentence length. Finally, the scores were aggregated based on difficulty level - Beginner, Intermediate, and Advanced - to analyze patterns in linguistic complexity across question tiers.

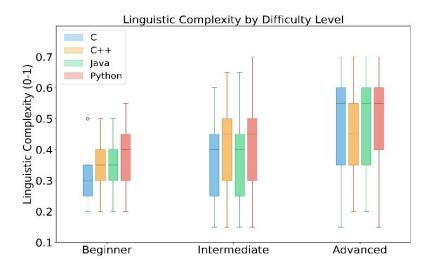


Figure 6.7 Linguistic complexity by difficulty level

Figure 6.8 shows that the average question diversity scores varied by language, ranging from 0.63 for C to 0.55 for C++. The diversity scores were calculated through a structured, multi-step process using Shannon entropy to measure how evenly questions were distributed across different question templates and types. This differs from cognitive diversity, which specifically measures the distribution of Bloom's taxonomy levels. The question diversity metric aggregates scores by programming language by collecting template usage patterns across different algorithms and averaging them across each language's question set. All diversity scores were normalized to a 0–1 scale for cross-language comparison. The results suggest that C code naturally elicits the most diverse range of question types (0.63), followed by Java (0.59) and Python (0.57), while C++ generates the least diverse questions (0.55). This variation may reflect the inherent structural differences between programming languages, with C's lower-level constructs potentially offering

more varied questioning opportunities compared to C++'s more standardized object-oriented patterns.

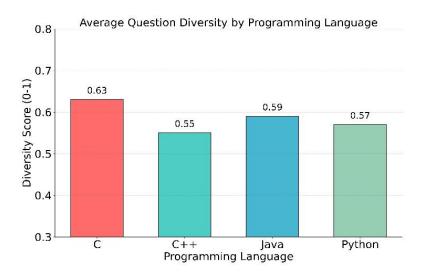


Figure 6.8 Average question diversity by programming language

Table 6.2 shows automatic evaluation metrics for AQG from source code across four programming languages. C achieved a slightly higher overall quality score of 0.59, while the other languages scored 0.57. C code tends to be less syntactically ambiguous, allowing the system's static analysis and template-matching components to extract structural elements slightly better. N denotes number of samples.

Table 6.2 Automatic evaluation results by programming language (N=456)

Performance Metric	C	C++	Java	Python	Statistical Significance
Overall Quality Score	0.59	0.57	0.57	0.57	F(3,452) = 5.01, p < 0.01
Linguistic Complexity	0.35	0.37	0.39	0.44	F(3,452) = 8.73, p < 0.001
Code Coverage	1.00	1.00	1.00	1.00	No significant difference
Precision	0.36	0.35	0.35	0.39	F(3,452) = 6.40, p < 0.001
Recall	1.00	1.00	1.00	1.00	Perfect recall across all languages
F1-Score	0.53	0.52	0.52	0.56	F(3,452) = 5.71, p < 0.001
Novelty Score	0.17	0.14	0.15	0.15	F(3,452) = 3.35, p < 0.05
Educational Alignment	0.48	0.42	0.42	0.42	F(3,452) = 7.91, p < 0.001
Cognitive Diversity	0.53	0.50	0.52	0.50	F(3,452) = 4.61, p < 0.01

There is no agreed-upon or standard evaluation metric for QG from source code for educational purposes. While the study employs well-defined metrics, the absence of human evaluation limits the contextual accuracy of generated questions. As a result, two human evaluators were used to

complement the automatic evaluation. The manual metrics used are relevance and educational value of the questions. The human evaluators were allowed to rate based on their teaching experience. Relevance can cover code topic match, code context understanding, difficulty appropriateness, and clarity. Educational value can cover concept coverage, cognitive challenge, feedback potential, and engagement. The two evaluators were given the same 40 questions divided evenly and stratified between the four programming languages. Table 6.3 shows human evaluation metrics for QG from source code across four programming languages. Table 6.3 shows C leads slightly. Python, Java, and C++ are tied at 3.45, showing a fairly even performance. Two tests were conducted to understand whether this slight difference has statistical significance. First, a paired t-test compares C versus each of the average scores of Python, Java, and C++, as shown in Table 6.4. Two, one-way ANOVA comparing average scores across all four languages (F-statistic: 48.44, p-value: 1.01e-12 (very low)). The difference between C and other languages is very slight. Based on the table of paired t-tests and ANOVA results, the differences between C and the other languages are statistically significant, even if they were very slight.

Table 6.3 Human evaluation results by programming language (N=40)

Metric	Python	Java	C++	C
Relevance	3.8	3.7	3.7	3.8
Educational Value	3.1	3.2	3.2	3.2
Average Score	3.45	3.45	3.45	3.50

Table 6.4 Paired t-test results for human evaluation differences

Comparison	t-statistic	p-value	Significant? (α=0.05)
C vs Python	7.22	0.00005 (very low)	Yes
C vs Java	9.64	0.000005 (very low)	Yes
C vs C++	16.10	0.00000006 (very low)	Yes

Table 6.2 shows slight differences in quality scores across languages. Of those differences that are observed in means of quality scores across languages, although they are small numerically (0.59 vs. 0.57), statistical significance indicates the fact that such differences are less likely due to the randomness in the sample itself. Of course, it should be mentioned explicitly that what is statistically significant is not always practically or educationally significant. The effect sizes are small and that those minimal deltas probably would not register as significant difference in student learning outcomes in actual classroom environments. Thus, the greater value of reporting these

results is to show that the system performs equally across languages and highlight areas in need of further improvement, rather than to make a claim of large practical impacts on the basis of such small score differences.

The human evaluation complements the automated evaluation by validating key findings while providing educators' perspective on question quality. Both approaches consistently identified C as a better performer, though human evaluation revealed more balanced performance across languages than suggested by automated metrics alone. The convergence between automated educational alignment scores and human-assessed educational value demonstrates the validity of computational metrics for educational applications. However, the human evaluation's emphasis on practical teaching utility provides essential context that purely computational measures cannot capture, highlighting the importance of multi-faceted evaluation approaches in educational technology research.

6.4 Discussion

Regarding positioning the proposed system within the literature, most prior work on AQG that uses templates follows a single-paradigm, deterministic design: template libraries map extracted elements to question patterns and are widely used as an alternative to AI-driven question generation methods, which may require large datasets and can produce lower-quality results. Template-driven generators (e.g., general template generators for single-choice questions) demonstrate reliable scalability and easy LMS integration but are limited in diversity and semantic sensitivity [70]. Complementary work, such as [159], has explored mass problem synthesis from public code and general template AQG across domains. These approaches emphasize throughput and template parametrization rather than semantic grounding or pedagogically adaptive distractor generation. It mines open-source code to generate large banks of valid expression-evaluation and program-tracing problems for introductory programming. Its approach leverages tree structures (like ASTs) from code analysis to parametrize problem templates, emphasizing high throughput and scalability. It is worth noting that external baseline comparisons with prior template-based AQG systems were not conducted due to their single-language scope, differing semantic pipelines, and the lack of publicly available, standardized multi-language static-analysis benchmark corpora. Additionally, experimenting with all 19 algorithms presented in this chapter using LLMs would have incurred prohibitively high computational costs. The present work therefore establishes an internal, fully reproducible baseline to enable future controlled cross-system studies as richer benchmark datasets become available.

6.4.1 Research Contributions

This methodology introduces several key contributions to automated programming QG. Unlike many existing systems focusing on a single programming language, this approach handles four languages with a unified framework. It combines AST-based parsing (for Python) with regexbased parsing (for other languages) to achieve broad language coverage without sacrificing depth of analysis. It implements a pattern-based approach to identify common algorithms in code, enabling algorithm-specific questions. It systematically categorizes questions into different difficulty levels based on cognitive complexity rather than arbitrary designations. It generates example parameters for function calls based on parameter names, creating more realistic and contextually appropriate questions. Finally, it ensures questions cover multiple aspects of programming knowledge. The evaluation framework developed for this system is fully automated. The evaluation pipeline uses a detailed taxonomy including linguistic complexity (word and sentence counts, Flesch-Kincaid grade level), code coverage (how much of the code elements are referenced by the questions), distribution according to Bloom's taxonomy (detection of cognitive levels through keywords), precision and recall (heuristic estimates based on code element coverage), novelty (originality of questions generated), educational alignment (Bloom/difficulty level expected vs. actual standards), and cognitive diversity (entropy of levels in Bloom). These metrics collectively assess both the structural and educational quality of the generated questions. While the evaluation process is primarily automatic, it is complemented by human validation: two expert evaluators rated a subset of questions for relevance and educational value, as detailed in Tables 6.3 and 6.4. The evaluation pipeline was newly developed for this research, though certain metrics (e.g., F1-score, precision, recall, relevance, educational value) are adapted from those used in Chapters 3-5 to suit the template-based context.

6.4.2 Limitations

While this chapter's results are promising, it is important to acknowledge certain limitations. The current methodology has several limitations that suggest directions for future research. The regex-based parsing for Java, C++, and C is less precise than AST-based parsing, which may affect question quality. The current approach relies on static code analysis and does not include dynamic runtime behavior analysis. The system recognizes structural patterns but has limited understanding of the semantic purpose of the code. The fixed templates may become predictable with extended use. Finally, the extraction phase of a system collects some attributes that can then be accessed for template use, for generating questions on these code structures. Notably, the regex-based parsers have limitations in their ability to capture deeply nested or highly unconventional constructs. In

practical use, however, the system might cover typical nesting and recursion patterns found in most educational codes but would not inherently support very complex codes.

6.4.3 Future Directions

Future improvements could include using language-specific parsers for each supported language, incorporating ML for more adaptive QG, adding dynamic code execution analysis, implementing more sophisticated algorithm detection, developing context-aware template generation, and investigating the educational effectiveness of automatically generated questions through student performance analysis.

6.5 Conclusion

This chapter developed and evaluated a template-based approach using static code analysis for AQG from source code. By leveraging ASTs and predefined templates, the system effectively generated contextually relevant questions across multiple programming languages, addressing a core challenge in programming education. A dataset of 456 questions from 19 algorithms and three code complexity levels was used. Although nearly all existing systems support a single programming language, this approach integrates four languages into a unified framework. The system was evaluated using several metrics, including the overall quality score. Experimental results showed consistent quality across C (0.59), Java (0.57), Python (0.57), and C++ (0.57). Expert evaluations rated the system's utility between 3.45 and 3.50 across languages, with significant statistical support (F = 48.44, p = 1.01e-12), confirming its practical applicability. The generated questions spanned all six Bloom's taxonomy levels. The levels are 16% Remember, 24% Understand, 16% Apply, 22% Analyze, 14% Evaluate, and 8% Create, maintaining an identical distribution across all languages. This somewhat balanced cognitive coverage underscores the system's ability to support comprehensive learning assessments. This work offers a multi-language question generator from source code capable of automatically producing assessment questions for Python, C++, Java, and C codes and an approach for automatically evaluating the proposed system based on a set of evaluation criteria complemented by human evaluation metrics. While performance was consistent, the approach may not capture advanced or creative problem-solving nuances. Current diversity and quality scores highlight room for improvement. Future work should expand template libraries, improve QG filtering process to increase precision, incorporate ML to enhance quality, and conduct longitudinal studies to assess learning outcomes over time. The proposed system provides a validated foundation for scalable, automated assessment in programming education. With strong quantitative support (quality: 0.59-0.57; cognitive diversity: 0.50–0.53; expert rating: 3.45–3.50), it offers a practical, adaptable tool for educators. The automatic evaluation shows that C achieved a slightly higher overall quality score of 0.59, while the other languages scored 0.57. Human evaluation complements the automated evaluation, providing educators' perspective on question quality. In summary, this work marks a promising early-stage (baseline) system toward intelligent, scalable assessment systems, bridging static analysis and educational theory to meet the evolving demands of CS education. This template-based approach serves as a lightweight baseline for the future version alternative to the LLMs discussed in Chapter 5, offering lower computational requirements, greater interpretability, and faster processing for large-scale deployment.

Thesis 4: I developed a modular system for AQG and evaluation using template-based static code analysis, enabling modular QG designed to be extensible with minimal integration overhead. The framework supports multiple programming languages through customizable parsing templates within a unified architecture. **[P5]**

Chapter 7 Multi-Language Static-Analysis System for Automatic Question Generation from Source Code

7.1 Introduction

AQG has become an important approach as the assessment in programming education has grown into a significant challenge. Computer programming education is considered increasingly important in the age of technology, and coding education is now regarded as a fundamental skill in many fields other than CS [160]. The growth of programming education is accompanied by the increasing difficulty of educators in defining a diverse and high-quality set of assessment applications that can reasonably assess student knowledge of various programming languages, algorithms, and problem-solving abilities in different cognitive levels [P2]. AQG from program code has also become a major research topic, with the demand growing for resourceful education tools and automatic assessment models in CS [161]. AQG has become popular, especially in education, when individualized assessment is required [P2], [P3]. Manual development of questions is time-consuming. Thus, the automatic formulation has been investigated [162]. The creation of questions manually is time-consuming and labor-intensive. It may lead to weak coverage of programming concepts and cognitive skills, which causes large gaps in student assessment and learning outcomes.

CFG and PDG are important intermediate representations and are structured views of the complicated control and data dependences in a program [163]. The graphs are useful in building a strong basis that extracts semantically useful information that can be used to develop interesting and challenging questions. More recent developments in deep learning have resulted in the development of code-generation models that can generate source code based on natural language and code-based hints with high accuracy [164]. Automatic programming, as a field, seeks to reduce human interaction in the production of executable code and has singled out code search, code generation, and program repair as the major topics [165]. The main purpose of this chapter is to discuss a synergistic combination of CFG-based and PDG-based analyzers regarding the scenario of generating questions about program codes, including the approaches, results, and possible future aspects.

It has been suggested to use graphs to encode both the syntactic and semantic structure of code and then use graph-based deep learning algorithms to either learn or reason about program structures [59]. Such methods fail to capture dependencies over long distances that are created when the same variable or function is used in widely separated places. Static analysis tools are used to analyze code and provide suggestions for auto-completion, which are usually organized alphabetically [166]. Modern integrated development environments have the code completion

feature, contributing greatly to programming efficiency and eliminating code errors [166]. Graph-based program representations, such as CFGs and PDGs, increase the avenues of understanding behavior offered by encoding control flow and data dependency graph representations. This more elaborate representation permits the generation of questions to focus on particular elements of functionality, logic, and possible code weaknesses, thus facilitating a more thorough evaluation of the programmer's knowledge [59].

There is a specific challenge related to the multi-language nature of programming education. During their studies, students study a variety of programming languages, beginning at lower levels, such as Python, and moving on to systems programming languages, such as C and C++, and to object-oriented languages, such as Java. All languages have distinct paradigms, syntaxes, and idiomatic constructs and need specialized parsing and analysis algorithms. These challenges are further added by the difficulty of programming education today. Learners are required to learn through numerous programming languages, learn the different paradigms of thinking algorithmically, and acquire skills at several cognitive levels, including concrete syntax recall, abstract problem-solving, and code-writing. Conventional evaluation methods have a problem covering these dimensions comprehensively and sustaining consistency and quality. This shortcoming is especially acute in large-scale education contexts where hundreds or thousands of students need tailored assessment materials. A general question generator must cover this multilanguage aspect across languages with uniform quality and coverage. The chapter deals with the background of multi-language nature in the context of education in programming by proposing a consistent model for code analysis and QG in four commonly accepted programming languages. It presents a force-balanced generation procedure, which works to ensure even coverage in multiple dimensions, a serious shortcoming of other current technologies. This shows that at all levels of cognitive difficulty, advanced graph-based code analysis techniques can effectively generate higher-quality questions, and the whole scope of assessment can be increased. It offers a strategic scheme to assign different difficulty levels to programming languages per the general CS learning route. It comes up with a list of general evaluation criteria to determine the future of research and development on AQG. Such contributions open up major implications in programming education, especially by easing a potential burden on educators, providing higher quality and broader assessment coverage, and an enhanced learning experience for students in various programming languages and levels of proficiency.

The graph-based pipelines in this chapter are meant to complement not compete with the approach of early LLM methods discussed in Chapter 5 and of the template-based static baseline discussed in Chapter 6. Chapter 6 has given a lightweight and reproducible baseline across languages but

also revealed some pitfalls of regex parsing, including low precision, limited novelty, and a cap on structural depth. In this chapter, that layer is replaced by language-specific parsers (Python AST, javalang, and Clang/LLVM) that are integrated through a normalization interface to ensure consistent treatment of functions, methods, loops, conditionals, and variables across Python, Java, C++, and C. Building on such normalized elements, CFG and PDG construction adds structural insights, such as control paths, branching, and complexity, alongside semantic insights such as data dependencies and variable lifecycles. The force-balanced generation mechanism then adjusts in real time from course to emphasizing under-represented Bloom levels, question types, and algorithm families to achieve more well-rounded coverage rather than chance distribution across all levels of variety in the methodology. This generates improved precision, a richer language, greater novelty, and broader cognitive diversity, while remaining interpretable, deterministic, and free per item. LLMs sometimes fail to deliver due to budgetary, privacy, or accreditation constraints. The result is an explainable and adaptable layer that can also support future hybrid pipelines, such as using curated CFG/PDG summaries to guide LLMs in producing more creative, higher-order variations. In practice, this clarifies when each method is best suited: LLMs excel in breadth and stylistic variety, while graph fusion offers transparent, coverage-controlled, and semantically grounded assessment. The research objectives of this chapter are:

- To design and implement three automated pipelines (CFG-based, PDG-based, and CFG-PDG Synergetic) for QG from source code, each leveraging different code analysis strategies to explore their effectiveness in producing high-quality, pedagogically aligned questions.
- To develop an organizational multi-dimensional evaluation system to measure the system
 performance in terms of coverage balance, quality of questions, linguistic complexity, and
 diversity in all dimensions. This framework encompasses automated measures along with
 human assessment measures.

The remainder of this chapter is organized as follows: Section 7.2 presents the multi-language question generator system methodology, including the system architecture, language-specific parsing techniques, and advanced code analysis methods. Section 7.3 presents the system evaluation results, including coverage balance, question quality, linguistic complexity, diversity metrics, and human evaluation metrics. Section 7.4 discusses the implications of the results, the contributions and limitations of the study, and directions for future research. Section 7.5 concludes the chapter.

7.2 Methodology

This chapter introduces a multi-language generator and evaluator system that takes source code as input and is capable of generating coding questions in various programming languages, including Python, C++, Java, and C. These four language choices were the result of being some of the most popular languages at the moment, as classified by the May 2025 listing of the TIOBE Index and ranking software development languages and their current popularity list [157]. It uses an advanced pipeline structure to transform source code written in several programming languages into good-quality assessment questions distributed across different dimensions in a reasonably balanced manner. This section presents a comprehensive description of every element within the pipeline and interconnected characteristics and functions of the general system. Figure 7.1 shows the comprehensive pipeline for multi-language question generator and evaluator system.

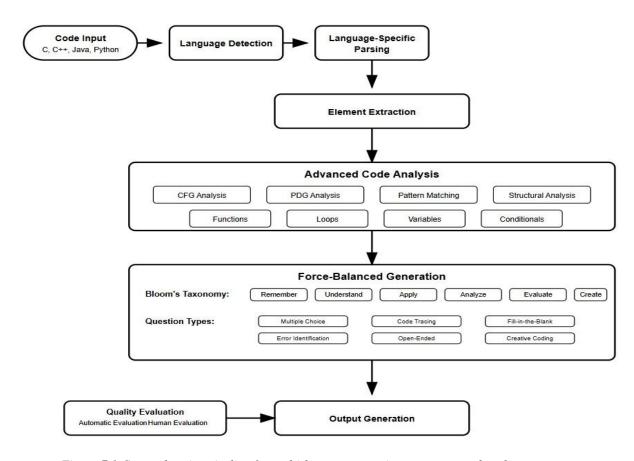


Figure 7.1 Comprehensive pipeline for multi-language question generator and evaluator system

The methodology is a complex of several important elements that interact with each other to interpret code fragments and generate useful, applicative questions. The following sections have a step-by-step analysis of how everything works. This section delivers the complete multi-language question generator and evaluator system methodology, in which the architecture, implementation, and evaluation framework are outlined. The system was developed to tackle

severe shortcomings of available automated assessment frameworks on programming education with novel parsing, analysis, generation, and evaluation strategies.

7.2.1 System Architecture and Design Philosophy

The objective of building a multi-language question generator and evaluator system is to support the growing demands to meet the assessment issues in programming education, which traditional manual methods cannot prospectively accommodate the demands of scaling with an expanding enrollment base and range of curriculum needs. Four basic design principles that informed each detail of architecture and implementation governed the system:

- 1. Language Inclusivity Principle: The system supports Python, Java, C++, and C programming languages, as these are the four most taught programming languages in CS education, as per the TIOBE Index. This multi-language strategy curbs the limitations of current systems by being multi-language to the level that students could get constant assessment throughout their whole programming program.
- 2. Algorithmic Diversity Principle: The system includes a collection of 19 fundamental algorithms offered in 6 categories: sorting algorithms (Bubble Sort, Insertion Sort, Selection Sort, Merge Sort, Quick Sort), searching algorithms (Binary Search, Linear Search, Knuth-Morris-Pratt), graph traversal algorithms (Depth-First Search, Breadth-First Search, Topological Sort), shortest path algorithms (Dijkstra algorithm, Floyd Warshall algorithm, A* Search), minimum spanning tree algorithms (Kruskal, Prim), and optimization techniques (Dynamic Programming, Greedy Algorithms, Huffman Coding). This extensive coverage will allow the students to be assessed on the entire range of algorithmic concepts required in CS learning. Employing additional algorithms and more diverse source codes is recommended for future enhancements.
- 3. Cognitive Alignment Principle: The system creates questions that cover each of the six levels of Bloom's Taxonomy: remembering, understanding, applying, analyzing, evaluating, and creating, so that the cognitive information is thoroughly assessed at both ends of the spectrum in recollection and way high up in terms of solving problems and also devising codes. Such consistency with pre-existing structures in education generates questions predisposed toward gradual skill-building hierarchies and critical thinking.
- 4. Comprehensive Evaluation Principle: The system consists of an automated measure in addition to human assessment by subject matter experts, to ensure that the questions generated are of high quality and pedagogically sound for use in education.

The pipeline shown in Figure 7.1 starts by feeding in source code, possibly choosing four supported programming languages: Python, Java, C++, or C. This is used as a preliminary before further analysis and to clear up any problems with encoding, remove comments, normalize whitespace, and do other simple preprocessing chores. The system accepts codes with diverse levels of complexity, which may range from simple to intricate codes of implementation algorithms. The architecture has seven interconnected parts that run code snippets via a chain of specialized transformations and analyses:

- 1. Language Detection: The system detects the programming language of the code by passing a language identifier.
- 2. Language-Specific Parsing: It uses language-specific optimized parsers: Python AST module with ast2json and astunparse extensions to provide full syntax tree capabilities, javalang library to provide structured Java code coverage, Clang to provide support of C code, and a custom Clang and LLVM-based parser to provide C++ coverage.
- 3. Element Extraction: It automatically recognizes and stores programming elements such as functions, classes, variables, loops, conditionals, data structures, and language-specific constructs into an index. This component applies language-specific extraction rules and consistently covers as many pertinent programming elements as possible across languages.
- 4. Advanced Code Analysis: It incorporates CFG and PDG construction employing NetworkX-based implementations. CFG identifies loops, execution paths, and branching conditionals. PDG captures variable relationships and data dependencies. These graphical representations allow a more complex analysis of the program behavior and the algorithmic patterns.
- 5. Force-Balanced Generation: It takes dynamic measures to ensure the selection probabilities are readjusted during the final stages of generating solutions.
- 6. Quality Evaluation: It integrates automated and human-based evaluation to assess question quality on technical accuracy, semantic relevance, educational value, and linguistic clarity.
- 7. Output Generation: It generates structured questions with detailed metadata that contains the type of question, the difficulty, the level of Bloom's taxonomy, and the question. Due to the output format, the content can be easily scaffolded into LMSs and educational platforms.

The Python parsing component can use the built-in AST module in Python and additional libraries to analyze and manipulate code in detail. This style gives good insight into the syntactic structure of Python code and is compatible with the complete Python language specification. Java parsing component supports Java analysis, using the javalang library to examine Java sources and incorporating the latest Java features like generics, annotations, lambda expressions, and modular

programming constructs. The C parser was first implemented using the pycparser library, which deals with the C programming language. But it was skipping much of the code. As a result, Clang was adopted for C parsing. The C++ parsing unit uses the Clang/LLVM system to execute the analysis of all modern C++ code.

The system uses a common parser interface, which offers uniform access to language-specific language-niche parsing features without sacrificing individual parser features and capabilities. This is facilitated by the unified parser interface, which allows the seamless addition of language-specific parsing capabilities with the flexibility of using the individual advantages of different parsers. This architecture helps in an eventual expansion to other programming languages and parsing methods while still being compatible with the current parts.

7.2.2 Advanced Code Analysis Techniques

CFG analysis helps one understand the program flow and control structures needed to formulate complex instructions for a program. It enables the full generation and analysis of CFGs with NetworkX-based representations of programs that provide the complete control flow behavior of programs over all supported languages.

PDGs analyze the program dependency and relationships between variables and the information about the control flow given by a CFG analysis. The ability in PDG generation and analysis of the programs in the form of NetworkX-based graph representations facilitates the generation of questions regarding data flow, variable scope, and program semantics. The component of PDG analysis creates detailed representations of all dependencies within programs that reveal the critical data flow and control relationships.

The resulting PDGs supplement CFG analysis to give a fully rounded view of both program form and behavior, allowing complex QG aimed at both semantics and data flow knowledge of programs.

Algorithm 7.1 shows the CFG pipeline algorithm for code QG and evaluation. Its main objective is to generate questions by extracting control flow information from code. It parses code to extract CFG nodes (basic blocks) and edges (control transitions). Then, it analyzes control paths, loops, and branching structures. Finally, it generates questions like tracing, MCQ, and basic error-identification questions based on flow paths.

Algorithm 7.2 shows the PDG pipeline algorithm for code QG and evaluation. Its main objective is to generate questions using data and control dependencies in the program. It parses code and extracts PDG, capturing data dependencies, variable usage, and control dependencies. Then, it

analyzes data flows, variable lifetimes, and semantic relationships. Finally, it generates questions like dependency, comprehension, and advanced error-identification questions.

Algorithm 7.3 shows the CFG-PDG pipeline algorithm for code QG and evaluation. Its main objective is to generate advanced, diverse questions using a synergistic integration of CFG and PDG. It parses and simultaneously extracts CFG and PDG representations. Next, it integrates structural (CFG) and semantic (PDG) information. Then, it identifies algorithm types. Finally, it generates a reasonably balanced set of questions, including creative coding and higher-order Bloom questions.

Algorithm 7.1: CFG Pipeline for Code QG and Evaluation

Input: Source Code (SC)

Output: Question Set (QS)

- 1: Parse SC using language-specific parser.
- 2: Construct CFG from SC.
- 3: Identify algorithm type using CFG patterns.
- 4: Compute cyclomatic complexity for difficulty estimation.
- 5: Select Bloom-level-aligned templates for CFG-based QG.
- 6: Fill placeholders using CFG nodes and control paths.
- 7: Generate QS (e.g., tracing, MCQ, and error-identification questions).
- 8: Evaluate QS using quality and diversity metrics.

Algorithm 7.2: PDG Pipeline for Code QG and Evaluation

Input: Source Code (SC)

Output: Question Set (QS)

- 1: Parse SC using language-specific parser.
- 2: Construct PDG from SC.
- 3: Identify algorithm type using PDG and textual features.
- 4: Analyze data dependencies for semantic complexity estimation.
- 5: Select Bloom-level-aligned templates for PDG-based QG.
- 6: Fill placeholders using PDG nodes and dependency structures.
- 7: Generate QS (e.g., dependency, error identification, and comprehension questions).
- 8: Evaluate QS using quality and diversity metrics.

Algorithm 7.3: CFG&PDG Synergetic Pipeline for Code QG and Evaluation

Input: Source Code (SC)

Output: Question Set (QS)

- 1: Parse SC using language-specific parser.
- 2: Construct CFG and PDG from SC.
- 3: Integrate CFG and PDG for a unified structural-semantic representation.
- 4: Identify algorithm type using integrated features.
- 5: Compute complexity and dependency scores for difficulty estimation.
- 6: Select templates aligned with Bloom's taxonomy and algorithm type.
- 7: Fill placeholders using CFG paths and PDG dependencies.
- 8: Generate QS (e.g., tracing, dependency, error identification, creative coding, and MCQs).
- 9: Evaluate QS using comprehensive quality, novelty, and diversity metrics.

The following is a simple scenario that demonstrates how QG works. The system analyzes the CFGs and PDGs and then performs motif detection to find patterns in structures and semantics, such as loops with conditionals, branching nodes, dependency chains, or variables with multiple reaching definitions. From each motif, triggering generation events, the generation events are balanced under the balancing mechanism to ensure proportional coverage across Bloom's taxonomy levels that define question types and programming languages.

The templates are rule-driven and indexed to specific motifs; thus, for instance, a branch motif will lead to a tracing or a branch-outcome question while a dependency chain would lead to a dataflow explanation. Bloom levels are seeded by the motif type and are then fine-tuned using heuristics based on cyclomatic complexity, path length, and fan-out, which also determine relative difficulty. Before finalization, placeholder symbols and spans are validated against the symbol table, dependency paths are checked for consistency, and duplicates are filtered out to preserve semantic correctness. For example, the function sum_positive(nums) initializes an accumulator, iterates through a list, updates the total conditionally, and returns the total. From the CFG analysis, these nodes are: initialization, looping, branching, updating, and returning, which is further clarified by the PDG, which illustrates its dependencies between the loop variable, condition, update, and final return. Motifs would include that of a loop that has an internal conditional (mapped to Apply/Analyze - level tracing questions) and of a data dependency chain from inputs to the output (mapped to Analyze - level explanation tasks). Instantiating the relevant templates would produce questions such as: "After executing sum positive on [-2, 3, 5], what value is returned?" (Apply, Beginner) and "Describe the data flow from each positive element in nums to the final result" (Analyze, Intermediate). In effect, the entire framework turns graphical motifs into well-scoped questions that are semantically valid to cover simple constructs but also nested ones, with distributions engineered rather than left to emergence.

To illustrate the process more concretely, after CFG and PDG analysis identifies the loop-with-conditional and data-dependency motifs, the system triggers QG events. These events map to predefined templates indexed by motif type. The initial Bloom levels are seeded according to motif characteristics and further adjusted using heuristics such as cyclomatic complexity, path length, and fan-out, which also inform relative difficulty. Placeholders are validated against the symbol table, dependency paths are checked for consistency, and duplicates are removed. Once candidate questions are generated, the force-balanced stage works to ensure proportional coverage across Bloom levels. The system groups questions by level, finds the smallest group size, and uniformly samples questions to enforce parity. Importantly, this step does not modify question content, it simply balances the distribution and shuffles the order to remove potential ordering bias. As a result, the final question set is semantically valid, reproducible, and engineered to provide a fairer cognitive profile, avoiding overrepresentation of "remember" or "understand" questions derived from simpler motifs.

At this stage, the system treats all algorithms uniformly. Template selection relies on detected structures (loops, branches, updates) and pre-assigned Bloom levels. Although current category labels (from 19 algorithms spanning six conceptual families) are used for reporting, the architecture supports future extensions: routing algorithms toward specialized template families and empirically calibrating difficulty, while maintaining transparency and reproducibility. The framework does not explicitly map algorithm categories to Bloom levels or template pools. All templates are triggered from structural motifs alone. Category-specific tendencies can still be observed even though the system treats all algorithms uniformly. Sorting algorithms (Bubble, Insertion, Selection, Merge, Quick) are loop-intensive, with nested iterations and repeated comparisons, which often produce Apply-level questions that focus on execution tracing and state prediction (e.g., "After the first outer iteration of Bubble Sort, what is the value of index j?"). This ensures generalizability and language-independence, but it also limits the ability to design questions tailored to the pedagogical nuances of each algorithm family.

Finally, CFGs and PDGs play complementary roles in the question generation process: CFGs capture execution flow and branching, leading to questions such as "Which statement executes after the conditional at line X?", while PDGs trace variable dependencies and data flow, prompting tasks like "How does variable X influence the final result?" For example, in binary search, CFG analysis highlights branching structures that generate path-tracing questions, whereas PDG analysis reveals links such as def_left → use_left → def_mid, supporting dependency-based questions about how values shape later comparisons. When combined, CFG and PDG perspectives allow for higher-order prompts like "The variable mid is computed at line 27 (PDG) and used in

the conditional at line 30 (CFG). Would moving this computation inside the conditional affect correctness?" This integration expands Bloom-level coverage by blending structural and semantic analysis, while lightweight pattern-matching heuristics (e.g., nested loops for sorting, index updates for searching, recursion for divide-and-conquer) enable contextualization without sacrificing generality. The following is a concrete example using a Python code fragment to demonstrate the direct mapping from code structure \rightarrow graph motifs \rightarrow pedagogically-aligned questions with semantic correctness guaranteed:

```
def count_positives(numbers):
    count = 0
    for num in numbers:
        if num > 0:
            count += 1
    return count
```

1. Graph Construction: CFG captures control flow (function \rightarrow initialization \rightarrow loop \rightarrow conditional \rightarrow update \rightarrow return); PDG tracks data dependencies (count definition \rightarrow conditional update \rightarrow return use).

2. Motif Detection:

- Loop-with-conditional motif (for-loop containing if-statement).
- Accumulator pattern (initialize \rightarrow conditionally update \rightarrow return).
- Def-use chain for count variable.
- 3. Automatically Generated Questions:
 - Apply (Tracing): "Trace the value of count after each iteration for input [-1, 3, 0, 5]".
 - Analyze (Dataflow Open-Ended): "Explain how the variable count flows from line 2 to line 6".
 - Evaluate (Error Detection): "If line 4's condition were num >= 0, what would happen with input [0, -2, 3]?"
- 4. Validation: All variable references (count, num) verified in symbol table and line numbers confirmed in CFG paths.
- 5. Force Balancing: If multiple Apply-level questions were generated, the system would trim excess to match representation of higher Bloom levels. The system uses this technique to make the generated questions reasonably balanced across various cognitive or question types. However, further work is needed to achieve a more evenly balanced distribution in future enhancements.

To clarify the distinct roles and advantages of CFG, PDG, and their synergistic combination for QG, three simple concrete examples are presented. CFGs capture execution ordering and control flow, enabling questions about path selection and iteration. PDGs encode data dependencies and variable lifetimes, supporting questions about value propagation and semantic correctness. Combined CFG+PDG enables higher-order questions requiring both control and data analysis.

Three Concrete Examples:

1. CFG-Based Question (Control Flow):

```
if x > 0:
    result = x * 2
else:
    result = x * -1
```

Generated question (Apply): "For input x = -3, which branch executes and what is the final value of result?" CFG enables tracing execution paths through conditional branches.

2. PDG-Based Question (Data Dependencies):

```
total = 0
for i in range(5):
total += i * 2
return total
```

Generated question (Analyze): "Trace how the variable 'total' is defined, updated, and used. Which line's definition ultimately determines the returned value?" PDG reveals def-use chains and variable lifetime dependencies.

3. CFG+PDG Synergistic Question (Control + Data):

```
def safe_divide(a, b):
if b != 0:
return a / b
return 0
```

Generated question (Evaluate): "Explain how the control guard (b != 0) protects the data dependency between parameters and the division operation. What happens if this guard is removed?" Combined analysis enables questions about correctness and robustness requiring both control flow understanding and data dependency tracking.

This demonstrates how CFG targets execution tracing, PDG targets dependency analysis, and CFG+PDG enables higher-order correctness evaluation.

7.2.3 Evaluation Metrics

The same automatic evaluation metrics as the baseline model (6.2.6 Evaluation Approach) are utilized in the system, such as overall quality score, linguistic complexity, precision, recall, F1-

score, novelty score, educational alignment, and cognitive diversity [P5]. Overall quality score aggregates linguistic quality, technical correctness, and clarity. Linguistic complexity measures readability and sophistication. Precision and recall evaluate generation accuracy and coverage. F1-Score balances precision and recall. Novelty score measures uniqueness across questions. Educational alignment measures alignment with programming learning objectives. Cognitive diversity measures distribution across Bloom's taxonomy levels. Relevance and educational value measures were adopted from the baseline system [P5] for human evaluation metrics. Five human-evaluated dimensions are conceptualized to measure the pedagogical soundness, clarity, and cognitive relevance of generated programming questions to measure their quality beyond automatic metrics:

- 1. Relevance: This metric addresses how well a question aligns with the programming education goal and profession. It encompasses curriculum fit (e.g., ACM/IEEE standards), relevance to real-world scenarios, alignment with learning objectives, significance, and suitability with the target programming language.
- 2. Difficulty appropriateness: It quantifies the extent to which an author designed a question to unequivocally appear at the cognitive level (Beginner versus Intermediate versus Advanced) to which it is targeted. It considers the prerequisite knowledge needed, the cognitive load, the complexity of the problem, the duration required to solve the problem, and whether the question is scaffolded appropriately for the learners.
- 3. Clarity: The aspects of how clearly a question is and whether or not it is ambiguous. It encompasses the quality of the grammar, instructional accuracy, suitability of terminology, visual presentation (e.g., readability of the code), and the removal of possible ambiguities.
- 4. Educational value: This value reflects the question's ability to foster learning and skill acquisition. Evaluation is based on the depth of understanding of the underlying concept, capability to develop programming skills, portability to other situations, interest and value of engagement, and contribution to learning.
- 5. Cognitive level match: Analysis of the question focuses on the level of Bloom's taxonomy. It evaluates to what extent relevant those cognitive operations included (e.g., remembering, applying, analyzing), the promotion of higher-order thinking, and whether the question was a valid instrument of cognitive assessment.

7.3 Results

The experimental evaluation demonstrated the effectiveness of the proposed approach in generating relevant and challenging questions from program codes. The system successfully

generated comprehensive programming questions datasets spread across Bloom levels. Table 7.1 demonstrates how CFG-based, PDG-based, and CFG-PDG approaches distribute across Bloom's Taxonomy, illustrating their alignment with cognitive engagement in algorithm learning. The PDG-based method supports lower to mid-level cognitive processes, particularly remembering, understanding, and analyzing, through its visual and structural program representations. In contrast, CFG-based and CFG-PDG approaches maintain consistent engagement at higher-order levels, specifically in evaluating and creating tasks related to algorithm design and optimization. This distribution highlights how each approach differentially contributes to fostering cognitive development, providing a nuanced basis for aligning teaching strategies with targeted learning outcomes in programming education. The dataset of code snippets used is available on GitHub [158], the same dataset used for the baseline system [P5]. Established educational assessment metrics, outlined in section "7.2.3 Evaluation Metrics" of the methodology, were used to evaluate the generated questions.

Table 7.1 Bloom's taxonomy distribution

Cognitive Level	CFG-Based	PDG-Based	CFG-PDG	Primary Focus Areas
Remembering	76	370	57	Algorithm facts, terminology, syntax
Understanding	76	357	38	Code behavior, step-by-step execution
Applying	76	95	57	Algorithm adaptation, implementation
Analyzing	76	370	57	Efficiency analysis, code structure
Evaluating	76	40	17	Algorithm selection, trade-off analysis
Creating	76	-	38	Algorithm design, optimization

Table 7.2 outlines how various question types are distributed across CFG-based, PDG-based, and CFG-PDG, illustrating their alignment with cognitive skill development in algorithm learning. Multiple-choice, code tracing, and fill-in-the-blank formats are prevalent across all approaches. PDG-based shows higher frequencies, underscoring their effectiveness in reinforcing fundamental concepts and procedural fluency. Error identification tasks appear exclusively within CFG-based activities, aligning with its strengths in syntax analysis and debugging practices. Open-ended questions, promoting reflective reasoning and synthesis, are most prominent in CFG-based tasks but are also utilized within PDG-based and CFG-PDG contexts, supporting deeper cognitive engagement. Creative coding tasks in PDG-based and CFG-PDG approaches highlight these methods' emphasis on practical application and design-oriented learning. This distribution

demonstrates a strategic alignment of question types with each pedagogical strength of the approach, ensuring targeted cognitive development within programming education.

Table 7.2 Dataset question type distribution

Cognitive Level	CFG-Based	PDG-Based	CFG-PDG
Multiple Choice	76	357	57
Code Tracing	76	370	57
Fill-in-the-Blank	76	370	57
Error Identification	76	-	17
Open-Ended	152	40	38
Creative Coding	-	95	38

Table 7.3 presents the comparative evaluation of the CFG-based, PDG-based, and CFG-PDG synergistic pipelines, demonstrating clear advancements in AQG for programming education. The CFG-PDG synergistic pipeline consistently achieved the highest overall quality and linguistic complexity scores (0.83), outperforming both the CFG-based (0.78, 0.77) and PDG-based (0.72, 0.62) pipelines. This indicates that the integration of structural (CFG) and semantic (PDG) analyses contributes to the generation of questions that are not only technically sound but also pedagogically rich and linguistically diverse. Precision was similarly highest in the CFG-PDG pipeline (0.83), underscoring its effectiveness in producing relevant, accurate questions. Recall showed the lowest scores across all systems, indicating a shared opportunity for future expansion in question variety. The CFG-PDG pipeline maintained a balanced F1-score (0.15), competitive with CFG-based (0.19) and superior to PDG-based (0.11), demonstrating its capacity to balance quality with breadth despite the inherent challenges in automatic assessment generation. The novelty scores were notably high for both the CFG-PDG (0.96) and PDG-based (0.95) pipelines, illustrating the semantic depth added by PDG analysis, which enhances the diversity of questions beyond surface-level syntax. All systems achieved maximum educational alignment (1.00), reflecting their capacity to generate questions aligned with Bloom's taxonomy and curriculum goals. The metric reflects the proportion of questions that have both a valid Bloom's taxonomy level and an appropriate curriculum tag. Since the tagging process is built into the pipeline and applied to every question by default, the score consistently comes out as 1.00, indicating a shared need for future review. Importantly, the CFG-PDG pipeline achieved the highest cognitive diversity (0.31), supporting a broader range of question types that facilitate deeper learning and higher-order cognitive engagement. Collectively, these results affirm the CFG-PDG synergistic pipeline as the most robust and effective approach for scalable, high-quality, and cognitively diverse QG from source code. It successfully bridges the structural strengths of CFG analysis and the semantic insights of PDG analysis, meeting the evolving needs of programming education. Future research should focus on enhancing recall and extending template libraries for rare constructs. Based on Table 7.1 and Table 7.2, the three pipelines have not fully resolved the balance issue, highlighting the need for a future solution.

Table 7.3 Automatic evaluation results by approach

Performance Metric	CFG-Based	PDG-Based	CFG-PDG
Overall Quality Score	0.78	0.72	0.83
Linguistic Complexity	0.77	0.62	0.83
Precision	0.77	0.62	0.83
Recall	0.11	0.06	0.08
F1-Score	0.19	0.11	0.15
Novelty Score	0.86	0.95	0.96
Educational Alignment	1.00	1.00	1.00
Cognitive Diversity	0.20	0.29	0.31

Table 7.4 underscores the superiority of the CFG-PDG synergistic pipeline in generating high-quality programming assessment questions across C, C++, Java, and Python. This integrated approach consistently achieved the highest quality scores (0.81–0.85), demonstrating its adaptability across procedural, object-oriented, and scripting languages. The CFG-based pipeline also performed reliably (0.77–0.78), highlighting the value of structural (control-flow) analysis for generating clear and pedagogically sound questions.

In contrast, the PDG-based pipeline scored lower (0.71–0.72), reflecting its strength in semantic insight while revealing limitations when used without structural context. These results confirm that combining CFG and PDG analysis is essential for producing scalable, high-quality, language-agnostic QG, addressing a critical challenge in automated programming education assessment. The CFG-PDG synergistic pipeline thus emerges as a robust solution for educators seeking consistent, meaningful, and pedagogically aligned assessments across diverse programming curricula.

Table 7.4 Quality score by approach per programming language

Programming Language	CFG-Based	PDG-Based	CFG-PDG
С	0.77	0.72	0.84
C++	0.78	0.71	0.85
Java	0.77	0.71	0.82
Python	0.78	0.72	0.81

While the study employs well-defined metrics, the absence of human evaluation limits the contextual accuracy of generated questions. As a result, human evaluators were used to complement the automatic evaluation. Human evaluation was conducted exclusively on the topperforming approach through automated assessment (CFG-PDG pipeline). Five educators independently evaluated a stratified sample of 48 automatically generated questions (12 per programming language, 2 per Bloom level). Each question was assessed using a 5-point Likert scale, where 1 represented poor performance and 5 represented excellent performance. The evaluation covered five dimensions: relevance, difficulty, appropriateness, clarity, educational value, and cognitive level alignment. Table 7.5 shows human evaluation metrics for QG from source code using CFG-PDG across four programming languages. Table 7.5 shows C++ leads slightly. Two tests were conducted to understand whether this slight difference has statistical significance. First is a paired t-test comparing the average of the C++ versus each of the Python, Java, and C scores, as shown in Table 7.6. Two is a one-way ANOVA comparing average scores across all four languages (F-statistic: 1.20, p-value: 0.3098). The difference between C++ and other languages is very slight. Based on the table of paired t-tests and ANOVA results, the differences between C++ and the other languages are statistically significant, even if they were slight. Table 7.6 shows that all three comparisons show that C++ received significantly higher evaluation scores than C, Java, and Python, confirming that C++ questions were rated most favorably by human evaluators across all metrics.

C++'s advantage appears to stem from LLVM's libclang parser, which generates more detailed ASTs and denser CFG/PDG graphs than the Python or Java parsers. Its expressive syntax provides richer structural input for QG. The human evaluation is a valuable counterpart to automated assessment, reinforcing core findings while offering critical insights from an educational perspective regarding question quality. Both methods consistently identified C++ as the stronger performer; however, human reviewers observed a noticeable performance difference across different languages than automated metrics initially indicated. The fact that there should be no difference between automated educational scoring and the evaluations of a human being highlights

the validity of using computers in educational settings. However, human involvement in consideration of practical classroom application brings in a critical context that purely algorithmic approaches do not have, reinforcing the need for a multidimensional measurement framework in educational technology research.

Table 7.5 Human evaluation of CFG-PDG results by programming language (N=48)

Metric	С	C++	Java	Python
Relevance	4.31	4.39	4.15	4.07
Difficulty Appropriateness	4.31	4.40	4.17	4.09
Clarity	4.29	4.42	4.17	4.02
Educational Value	4.33	4.41	4.21	4.05
Cognitive Level Alignment	4.27	4.42	4.16	4.01
Average Score	4.30	4.41	4.17	4.05

Table 7.6 Paired t-test results for human evaluation differences

Comparison	t-statistic	p-value	Significant? (α=0.05)
C++ vs. C	2.847	0.031	Yes
C++ vs. Java	6.172	0.001	Yes
C++ vs. Python	8.924	<0.001	Yes

7.4 Discussion

Current representative work in the field explores neuro-symbolic integration, wherein static analysis is used as a form of weak supervision to guide neural generative models. Empirical results demonstrate that this approach yields a marked improvement in the semantic fidelity of synthetically generated code, reducing errors such as type violations and uninitialized variable access [167]. Recent research has empirically validated the cross-language feasibility of systems that integrate static analysis with LLMs for automated test and code generation. While these pipelines demonstrate practical utility across languages such as Java, Python, and Kotlin, their application remains predominantly focused on these technical tasks rather than on pedagogically-oriented objectives, such as generating instructional questions for programming education [168], [169]. The empirical analysis of the study [170] concludes that the static analysis capabilities of code LLMs are fundamentally limited and do not generalize to improved performance on code intelligence tasks. This limitation motivates a hybrid approach, where LLMs are augmented with

deterministic analyzers to provide the fault sensitivity and correctness guarantees that LLMs alone cannot achieve. The article [12] presents a fully automated pipeline for generating a massive bank of programming exercises by mining code from public repositories. Its core innovation is a language-independent 'meaning tree' representation that allows code snippets to be translated and used across C++, Java, and Python. The method leverages static analysis to parse code, extract expressions, and auto-generate problems annotated with pedagogical metadata like required skills and common errors, enabling scalable content creation for intelligent tutoring systems without human intervention. This section critically analyzes and breaks down the findings of the experiments and presents their overall implications on programming education, automated assessment, and educational technology. The discussion delves into the implications of the findings, limitations and challenges, and the broader impact of multi-language QG from source code on CS education.

7.4.1 The Proposed Systems and the Baseline Comparison

Figure 7.2 shows a clear performance metric improvement across the four programming languages in the new systems compared to the baseline template-based AQG system introduced in Chapter 6. The comparison between the new systems and the baseline shown in Figure 7.3 reveals substantial improvements across nearly all performance metrics, indicating that the new systems are significantly more effective in generating high-quality programming questions.

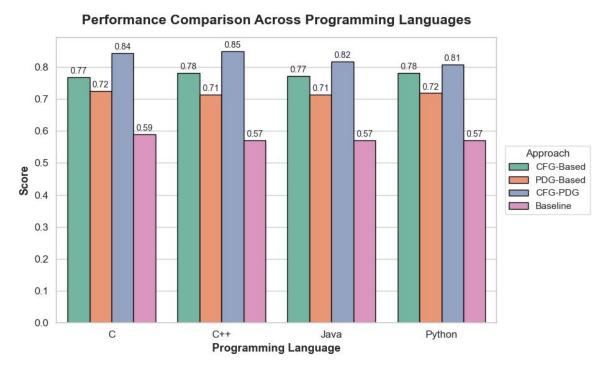


Figure 7.2 Quality score per language f or the three approaches compared with the baseline

Figure 7.3 compares the CFG-based, PDG-based, CFG-PDG synergistic, and the baseline template-based AQG system across the evaluation metrics. CFG-PDG synergistic pipeline consistently demonstrates better performance, achieving the highest overall quality score (0.83) and linguistic complexity (0.83). This suggests that integrating control-flow and semantic dependency analyses enables the generation of questions that are technically accurate and articulated in linguistically rich and varied forms, essential for maintaining learner engagement and supporting nuanced comprehension. The CFG-based pipeline follows closely (0.78, 0.77), indicating that control-flow analysis provides a reliable structure for generating clear and pedagogically aligned questions.

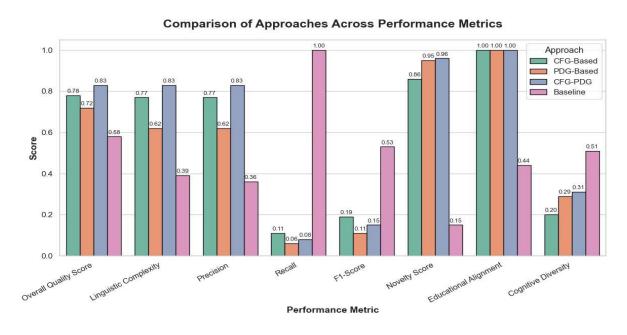


Figure 7.3 Comparison between the proposed approaches and the baseline

However, it lacks the semantic depth required for advanced comprehension and higher-order question types. The PDG-based pipeline, while lower in quality (0.72) and linguistic complexity (0.62), contributes semantic insights that enhance novelty and cognitive diversity, albeit with challenges in clarity and consistency when used independently. In contrast, the baseline template-based AQG system underperforms (0.58 quality, 0.39 linguistic complexity), revealing the limitations of shallow syntax-based approaches that cannot capture deeper structures or semantics of code, often resulting in repetitive and low-cognitive-load questions. The CFG-PDG pipeline demonstrates high precision (0.83), improving upon the CFG-based (0.77) and outperforming the PDG-based (0.62) and baseline (0.36) systems. This indicates the system's capacity to generate relevant, targeted questions with minimal irrelevant outputs, ensuring assessment quality. However, recall remains a shared challenge across all graph-based systems, with scores of 0.08 (CFG-PDG), 0.11 (CFG-based), and 0.06 (PDG-based), compared to the baseline system's

inflated recall (1.00). The baseline's maximum recall is misleading; it achieves high coverage by generating a large volume of low-quality, repetitive questions, reflected in its low quality and linguistic complexity scores. The CFG-PDG pipeline, while generating fewer questions, prioritizes relevance and cognitive alignment, as demonstrated by its higher precision, ensuring that the generated assessments are meaningful rather than voluminous. In contrast, the CFG-PDG pipeline favors precision and cognitive alignment, generating fewer but more meaningful questions. Its F1-score (0.15), though lower than the baseline's (0.53), reflects a deliberate tradeoff prioritizing quality over quantity. This underscores that high F1-scores driven by excessive recall may not translate into pedagogically effective assessments. Notably, the CFG-PDG pipeline achieves the highest novelty score (0.96), marginally surpassing the PDG-Based (0.95) and outperforming the CFG-Based (0.86) and Baseline (0.15). This indicates that incorporating semantic dependency analysis allows the system to generate diverse, non-trivial questions that push learners beyond rote memorization, enhancing engagement and learning outcomes. Educational alignment remains maximum (1.00) across all graph-based systems, underscoring their consistent alignment with learning objectives and Bloom's Taxonomy levels. Since the tagging process is built into the pipeline and applied to every question by default, the score consistently comes out as 1.00, indicating a shared need for future review. In contrast, the baseline system's lower alignment score (0.44) highlights its inadequacy in maintaining pedagogical coherence. Cognitive diversity is highest in the CFG-PDG pipeline (0.31), followed by the PDG-Based (0.29) and CFG-Based (0.20), indicating the CFG-PDG pipeline's ability to generate questions spanning various cognitive levels, including analysis, evaluation, and creative coding. Despite a numeric cognitive diversity score of 0.51, the baseline system often produces superficially diverse but low-order questions, lacking depth and true cognitive challenge. Finally, the low recall of CFG-PDG reflects its reliance on a few templates that cover basic patterns, suggesting the need to expand templates and leverage CFG-PDG complexity or ML approaches to capture a broader range of valid questions while keeping precision high.

7.4.2 Research Contributions and Educational Implications

The generator is a key event in automatic assessment. Its capability to produce reasonably balanced content in terms of languages, Bloom's taxonomy, and the form and types of questions helps address the bias inherent to manual QG. The proposed study contributes to educational technology by showing that rich computational modeling strategies can reliably operationalize abstract educational concepts like cognitive complexity, difficulty progression, and content balance. Automating cognitive assessment in programming instruction confirms that Bloom's taxonomy was applied systematically, proving its feasibility in programming education. The four

programming languages are empirically supported with consistent performance based on theories that focus on conceptual rather than memorization of languages. The fact that it included all 19 fundamental algorithms and divided them into six categories covers areas of common curriculum deficiencies, with some algorithms being emphasized more than others. The pedagogical system ensures that the students will get an in-depth exposure to algorithmic concepts needed to learn CS.

7.4.3 Research Limitations

The focus on 19 algorithms excludes advanced topics (e.g., ML, cryptography). Limited language support (Python, Java, C++, C) misses functional and web languages. The system emphasizes algorithmic tasks over higher-order software engineering skills. Standardized formats may not fully capture real-world complexity or creativity. Static analysis limits insight into run-time behavior. At present, the framework does not explicitly map algorithm categories to Bloom levels or template pools. All templates are triggered from structural motifs alone. This ensures generalizability and language-independence, but it also limits the ability to design questions tailored to the pedagogical nuances of each algorithm family. Finally, the three pipelines have not fully resolved the balance issue, highlighting the need for a future solution.

7.4.4 Future Research Directions

Future development should prioritize expansion to additional programming languages, particularly those representing different paradigms such as functional programming, concurrent programming, and domain-specific languages. The modular architecture provides a foundation for such expansion, though each new language will require careful consideration of paradigm-specific concepts and assessment approaches. Integration with adaptive learning platforms could provide personalized educational experiences based on individual student progress and learning patterns. Longitudinal studies of student learning outcomes would provide crucial evidence for the educational effectiveness of automated QG. Such studies should examine immediate learning gains, retention, transfer to new contexts, and development of expert-like problem-solving skills. Future extensions may incorporate lightweight category detection to enable algorithm-aware generation. For instance, sorting motifs could unlock invariant and complexity analysis templates, graph traversal motifs could emphasize reachability and connectivity, and dynamic programming motifs could surface recurrence-based reasoning tasks. Such refinements would enrich question diversity while retaining the current framework's transparency and reproducibility.

Finally, a promising extension of this work lies in integrating LLMs with the CFG-PDG framework. The modular design of the current system already provides clear entry points for such hybridization, where LLMs can be guided by structural program representations rather than generating questions in isolation. By using CFG and PDG graphs as guardrails, LLMs could enrich

QG with greater semantic variety and higher-order reasoning while maintaining alignment with Bloom's taxonomy and algorithmic correctness. This hybrid approach has the potential to address the current limitation of low recall, enable more adaptive question complexity, and balance structural rigor with semantic richness.

7.5 Conclusion

The increasing demand for high-quality and cognitively aligned assessments in programming education presents a significant challenge for educators, particularly within multi-language, largescale instructional settings. This study presents a robust, scalable, and pedagogically aligned system for AQG from source code, leveraging CFG, PDG, and a synergistic CFG-PDG pipeline to address this challenge across Python, Java, C++, and C. The system systematically covers 19 fundamental algorithms, six levels of Bloom's taxonomy, and a diverse range of question types, with reasonably balanced distributions. Empirical results demonstrated that the CFG-PDG synergistic pipeline consistently outperformed standalone CFG-based and PDG-based pipelines, achieving an overall quality score of 0.83, linguistic complexity of 0.83, precision of 0.83, and novelty of 0.96. Compared to CFG-based and PDG-based pipelines, it also achieved enhanced cognitive diversity (0.31), supporting the generation of semantically rich, cognitively engaging questions spanning higher-order cognitive levels and promoting deeper learning engagement. Human evaluations further confirmed its pedagogical value, with C++ questions receiving slightly high ratings while maintaining consistent quality across all languages. Despite these advancements, limitations remain, particularly in expanding coverage to functional and web languages and in capturing dynamic program behaviors. The system maintained maximum educational alignment (1.00) across all pipelines, confirming its compatibility with curriculum goals and facilitating integration into adaptive learning platforms and scalable online courses. Since the tagging process is built into the pipeline and applied to every question by default, the score consistently comes out as 1.00, indicating a shared need for future work. The low recall of CFG-PDG reflects its reliance on a few templates that cover basic patterns, suggesting the need to expand templates and leverage CFG-PDG complexity or ML approaches to capture a broader range of valid questions while keeping precision high. Future work will prioritize template library expansion, dynamic analysis integration, and longitudinal studies to assess the system's impact on learning outcomes, engagement, and skill retention in diverse learning contexts. In conclusion, this work establishes a foundational advancement in automated programming assessment, offering a practical, effective tool for educators to deliver high-quality, equitable, and cognitively diverse evaluations in CS education.

Thesis 5: I developed a modular static analysis framework for AQG across multiple programming languages. The system integrates language-specific analyzers within a unified architecture designed to support consistency in QG across the four programming languages (C, C++, Java, and Python). **[P6]**

Chapter 8 Conclusion

8.1 Contributions

This dissertation has established a comprehensive, systematic approach to advancing programming education through automated, high-quality, and pedagogically aligned QG and learning material creation. Across ontology-based models, hybrid AI frameworks, template-driven static analysis, LLM evaluation, CFG pipeline, PDG pipeline, and CFG–PDG pipeline, the research consistently demonstrates scalable, effective methodologies that address critical gaps in assessment practices within multi-language programming education. The findings provide educators and technology developers with validated, actionable frameworks to enhance learning engagement, assessment quality, and instructional efficiency, paving the way for further innovations in automated programming education tools. The main scientific results achieved during the completion of this research are summarized in five thesis points.

8.1.1 Thesis 1

I developed an ontology-based system that automatically generates programming-related assessment questions directly from source code. By leveraging structured domain knowledge, the system semantically interprets programming constructs to support concept-aware question generation, without relying on adaptive learning mechanisms. [P1, P2]

8.1.2 Thesis 2

I developed a hybrid system that combines static code analysis, ontology, and natural language processing using word embeddings to generate programming-related questions from source code. **[P3]**

8.1.3 Thesis 3

I developed a systematic evaluation framework to assess the QG capabilities of LLMs, using automatic evaluation metrics and complemented by human-centered evaluation metrics for the top-performer LLM. The findings provide insights into their strengths and limitations in generating programming-related assessment questions for potential educational use in the programming domain. [P4]

8.1.4 Thesis 4

I developed a modular system for AQG and evaluation using template-based static code analysis, enabling modular QG designed to be extensible with minimal integration overhead. The framework supports multiple programming languages through customizable parsing templates within a unified architecture. [P5]

8.1.5 Thesis 5

I developed a modular static analysis framework for AQG across multiple programming languages. The system integrates language-specific analyzers within a unified architecture designed to support consistency in QG across the four programming languages (C, C++, Java, and Python). [P6]

8.2 Future work

Each of the five thesis points opens up unique and practical directions for continued research. The following recommendations aim to build on their individual contributions, offering ways to refine current methods, broaden their reach, and address some of the open challenges highlighted throughout the dissertation.

- 1. Ontology-Based Automatic Generation of Learning Materials for Python Programming: Future research could extend the ontology-based approach beyond Python to include a broader range of programming languages. This would involve designing cross-language ontological frameworks or language-specific extensions that preserve semantic coherence across diverse syntactic constructs. Additionally, conducting controlled experimental studies comparing ontology-generated questions with manually crafted ones could yield valuable insights into their educational effectiveness, particularly in terms of learner comprehension, retention, and perceived usefulness.
- 2. A Hybrid Approach for Automatic Question Generation from Python Program Codes: One promising direction is to enhance the system's ability to process more complex programming structures, especially those involving third-party libraries, nested functions, and interdependent statements. Improving the semantic interpretation pipeline, possibly by incorporating deeper NLP techniques or lightweight learning models, could help generate more sophisticated and context-aware questions. Future research may also explore how to adapt the system automatically to different code domains or programming paradigms.
- 3. Evaluating Large Language Models for Generating Programming Questions from Code: Future work in this area could involve refining the evaluation framework to capture more nuanced aspects of question quality, such as semantic subtlety, creativity, and alignment with pedagogical goals. Incorporating qualitative feedback from educators alongside quantitative metrics could further ground the evaluation process in real instructional needs. Additionally, exploring emerging models, including domain-specific LLMs or those designed to support multiple programming languages, may offer deeper insights into their effectiveness across diverse educational contexts.

- 4. Template-Based Question Generation from Code Using Static Code Analysis: Subsequent research may focus on developing dedicated language-specific parsers for Java, C++, and C to improve upon the current reliance on pattern-based extraction methods. Adding runtime analysis or symbolic execution could improve the system's contextual accuracy and support questions based on actual program behavior. The integration of adaptive or ML-driven components might also enable context-sensitive template selection. Longitudinal classroom studies would help assess how such systems impact student learning and engagement over time.
- 5. Multi-Language Static-Analysis System for Automatic Question Generation from Source Code: Further development could extend the system to include functional, concurrent, and domain-specific languages, making it more adaptable to a wide range of curricular needs. By combining dynamic and static program analysis, the system could generate richer, behavioraware questions, especially in tasks involving edge-case reasoning or algorithmic logic. Another important direction involves linking the framework with adaptive learning platforms that personalize questions based on individual learner progress. Conducting long-term educational studies would provide essential data on how the system influences knowledge retention, problem-solving skills, and transfer of learning across different instructional settings. Finally, a promising extension of this work lies in integrating LLMs with the CFG-PDG framework. The modular design of the current system already provides clear entry points for such hybridization, where LLMs can be guided by structural program representations rather than generating questions in isolation. By using CFG and PDG graphs as guardrails, LLMs could enrich QG with greater semantic variety and higher-order reasoning while maintaining alignment with Bloom's taxonomy and algorithmic correctness. This hybrid approach has the potential to address the current limitation of low recall, enable more adaptive question complexity, and balance structural rigor with semantic richness.

8.3 Author's Publications

Publications Related to the Dissertation

Journal Articles in Q Ranking

[P1] J. Alshboul and E. Baksa-Varga, "Ontology-Based Automatic Generation of Learning Materials for Python Programming," International Journal of Advanced Computer Science and Applications, vol. 16, no. 5, 2025, doi: 10.14569/IJACSA.2025.0160508. Quartile: **Q3**.

- [P2] J. Alshboul and E. Baksa-Varga, "A Review of Automatic Question Generation in Teaching Programming," International Journal of Advanced Computer Science and Applications, vol. 13, no. 10, 2022, doi: 10.14569/IJACSA.2022.0131006. Quartile: **Q3**.
- [P3] J. Alshboul and E. Baksa-Varga, "A Hybrid Approach for Automatic Question Generation from Program Codes," International Journal of Advanced Computer Science and Applications, vol. 15, no. 1, 2024, doi: 10.14569/IJACSA.2024.0150102. Quartile: **Q3**.
- [P4] J. Alshboul and E. Baksa-Varga, "Evaluating Large Language Models for Generating Programming Questions from Code," Pollack Periodica: An International Journal for Engineering and Information Sciences, Status: Accepted/Minor Revision, doi: 10.1556/606.2025.01471. Quartile: **Q3**.
- [P5] J. Alshboul and E. Baksa-Varga, "Template-Based Question Generation from Code Using Static Code Analysis," Pollack Periodica: An International Journal for Engineering and Information Sciences, Status: Under Review. Quartile: **Q3**.
- [P6] J. Alshboul and E. Baksa-Varga, "Multi-Language Static-Analysis System for Automatic Question Generation from Source Code," Status: To Be Submitted.

Other Publications

Journal Articles in Q Ranking

- [P7] S. Mokhtar, J. A. Q. Alshboul, and G. O. A. Shahin, "Towards Data-driven Education with Learning Analytics for Educator 4.0," Journal of Physics: Conference Series, vol. 1339, no. 1339, p. 012079, Dec. 2019, doi: https://doi.org/10.1088/1742-6596/1339/1/012079. Quartile: **Q4**.
- [P8] H. A. A. Ghanim, J. Alshboul, and L. Kovacs, "Development of Ontology-based Domain Knowledge Model for IT Domain in e-Tutor Systems," International Journal of Advanced Computer Science and Applications, vol. 13, no. 5, 2022, doi: 10.14569/IJACSA.2022.0130505. Quartile: Q3.

International Journals

[P9] J. Alshboul, H. A. A. Ghanim, and E. Baksa-Varga, Semantic Modeling for Learning Materials in E-tutor Systems, Journal of Software Engineering & Intelligent Systems 6(2) pp. 1-5. (2021), Journal Article.

Local Journals

[P10] J. Alshboul and E. Baksáné-Varga. "Student Academic Performance Prediction," Production Systems and Information Engineering, vol. 9, no. 1, pp. 36–53, 2020, Accessed: July. 09, 2025. [Online]. Available: https://ojs.uni-miskolc.hu/index.php/psaie/article/view/3822.

International Conference Proceedings

[P11] 17th Miklós Iványi International Ph.D. & DLA Symposium: Architectural, Engineering and Information Sciences. Title: Development of A Semantic Model for Learning Materials in Intelligent Tutoring Systems. Organizer: Faculty of Engineering and Information Technology, University of Pécs, Pécs, Hungary. Date: 25th-26th October, 2021.

[P12] Language in the Human-Machine Era Training School. Title: E-Learning and Automatic Resource Generation for Learning Materials. Date: 05th to 9th June 2023. Location: University of Pristina, Kosovo. Organizer: EU agency "European Cooperation in Science and Technology".

Local Conference Proceedings

- [P13] J. Alshboul and E. Baksáné-Varga. A Survey of Domain Model Representations in Intelligent Tutoring Systems. Miskolc, Hungary: Faculty of Mechanical Engineering and Informatics PhD Forum Proceedings Book, University of Miskolc, 2021.
- [P14] J. Alshboul and E. Baksáné-Varga. Code, Feedback, And Question Generation on Programming Topics Using ChatGPT API. Miskolc, Hungary: Faculty of Mechanical Engineering and Informatics PhD Forum Proceedings Book, University of Miskolc, 2023.

Book of Abstract

- [P15] J. Alshboul, H. A. A. Ghanim, and E. Baksa-Varga. Development of a Semantic Model for Learning Materials in Intelligent Tutoring Systems, International PhD & DLA Symposium 2021, Pollack Press (2021). pp. 91-91, Abstract.
- [P16] J. Alshboul and E. Baksa-Varga. A Generator-Evaluator Framework for Automatic Question Generation from Program Codes, International Conference on AI Transformation 2024, Publisher: Corvinus University of Budapest (2024). pp. 19-20, Abstract.

References

- [1] N. Mulla and P. Gharpure, "Automatic Question Generation: A Review of Methodologies, Datasets, Evaluation Metrics, and Applications," *Progress in Artificial Intelligence*, vol. 12, no. 1, pp. 1–32, Jan. 2023, doi: 10.1007/s13748-023-00295-9.
- [2] M. Zerkouk, M. Mihoubi, and B. Chikhaoui, "A Comprehensive Review of AI-based Intelligent Tutoring Systems: Applications and Challenges," Jul. 25, 2025, *arXiv*. doi: 10.48550/arXiv.2507.18882.
- [3] M. Vinueza-Morales, J. Rodas-Silva, C. Vidal-Silva, J. Córdova-Morán, and E. Cevallos-Ayón, "Teaching programming in higher education: a bibliometric analysis of trends, technologies, and pedagogical approaches," *Frontiers in Education*, vol. 10, Mar. 2025, doi: 10.3389/feduc.2025.1525917.
- [4] S. Al Faraby, A. Adiwijaya, and A. Romadhony, "Review on Neural Question Generation for Education Purposes," *International Journal of Artificial Intelligence in Education*, vol. 34, no. 3, pp. 1008–1045, Sep. 2024, doi: 10.1007/s40593-023-00374-x.
- [5] G. Kurdi, J. Leo, B. Parsia, U. Sattler, and S. Al-Emari, "A Systematic Review of Automatic Question Generation for Educational Purposes," *International Journal of Artificial Intelligence in Education*, vol. 30, no. 1, pp. 121–204, Mar. 2020, doi: 10.1007/s40593-019-00186-y.
- [6] R. Queirós, J. C. Paiva, and J. P. Leal, "Programming Exercises Interoperability: The Case of a Non-Picky Consumer," in *10th Symposium on Languages, Applications and Technologies (SLATE 2021)*, R. Queirós, M. Pinto, A. Simões, F. Portela, and M. J. Pereira, Eds., in Open Access Series in Informatics (OASIcs), vol. 94. Dagstuhl, Germany: Schloss Dagstuhl Leibniz-Zentrum für Informatik, 2021, p. 5:1-5:9. doi: 10.4230/OASIcs.SLATE.2021.5.
- [7] I. Mekterović, L. Brkić, and M. Horvat, "Scaling Automated Programming Assessment Systems," *Electronics*, vol. 12, no. 4, 2023, doi: 10.3390/electronics12040942.
- [8] H. S. Wankhede and A. W. Kiwelekar, "Qualitative Assessment of Software Engineering Examination Questions with Bloom's Taxonomy," *Indian Journal of Science and Technology*, vol. 9, no. 6, Mar. 2016, doi: 10.17485/ijst/2016/v9i6/85012.
- [9] L. J. Tamang, R. Banjade, J. Chapagain, and V. Rus, "Automatic Question Generation for Scaffolding Self-explanations for Code Comprehension," in *Artificial Intelligence in Education*, M. M. Rodrigo, N. Matsuda, A. I. Cristea, and V. Dimitrova, Eds., Cham: Springer International Publishing, 2022, pp. 743–748.
- [10] O. Sitthisak, L. Gilbert, and D. Albert, "Ontology-Driven Automatic Generation of Questions from Competency Models," in *The 9th International Conference on Computing and InformationTechnology (IC2IT2013)*, P. Meesad, H. Unger, and S. Boonkrong, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 145–154.
- [11] S. Alkhuzaey, F. Grasso, T. R. Payne, and V. Tamma, "Evaluating the Fitness of Ontologies for the Task of Question Generation," Apr. 08, 2025, *arXiv*. doi: 10.48550/arXiv.2504.07994.
- [12] O. Sychev and D. Shashkov, "Mass Generation of Programming Learning Problems from Public Code Repositories," *Big Data and Cognitive Computing*, vol. 9, no. 3, 2025, doi: 10.3390/bdcc9030057.
- [13] E. Logacheva, A. Hellas, J. Prather, S. Sarsa, and J. Leinonen, "Evaluating Contextually Personalized Programming Exercises Created with Generative AI," in *Proceedings of the 2024 ACM Conference on International Computing Education Research Volume 1*, in ICER '24. New York, NY, USA: Association for Computing Machinery, 2024, pp. 95–113. doi: 10.1145/3632620.3671103.
- [14] K. Zhu, Y. Lu, H. Huang, L. Yu, and J. Zhao, "Constructing More Complete Control Flow Graphs Utilizing Directed Gray-Box Fuzzing," *Applied Sciences*, vol. 11, no. 3, 2021, doi: 10.3390/app11031351.
- [15] Y. Yan, N. Cooper, K. Moran, G. Bavota, D. Poshyvanyk, and S. Rich, "Enhancing Code Understanding for Impact Analysis by Combining Transformers and Program Dependence Graphs," *Proc. ACM Softw. Eng.*, vol. 1, no. FSE, Jul. 2024, doi: 10.1145/3643770.
- [16] S. K. Patil and M. M. Shreyas, "A Comparative Study of Question Bank Classification based on Revised Bloom's Taxonomy using SVM and K-NN," in 2017 2nd International Conference On Emerging Computation and Information Technologies (ICECIT), 2017, pp. 1–7. doi: 10.1109/ICECIT.2017.8453305.
- [17] S. Sarsa, P. Denny, A. Hellas, and J. Leinonen, "Automatic Generation of Programming Exercises and Code Explanations Using Large Language Models," presented at the International Computing Education Research, Lugano, Switzerland: ACM, Aug. 2022, pp. 27–43. doi: https://doi.org/10.1145/3501385.3543957.

- [18] P. Nema, A. K. Mohankumar, M. M. Khapra, B. V. Srinivasan, and B. Ravindran, "Let's Ask Again: Refine Network for Automatic Question Generation," in *Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)*, K. Inui, J. Jiang, V. Ng, and X. Wan, Eds., Hong Kong, China: Association for Computational Linguistics, Nov. 2019, pp. 3314–3323. doi: 10.18653/v1/D19-1326.
- [19] A. Ushio, F. Alva-Manchego, and J. Camacho-Collados, "A Practical Toolkit for Multilingual Question and Answer Generation," in *Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics* (*Volume 3: System Demonstrations*), D. Bollegala, R. Huang, and A. Ritter, Eds., Toronto, Canada: Association for Computational Linguistics, Jul. 2023, pp. 86–94. doi: 10.18653/v1/2023.acl-demo.8.
- [20] D. Gnanasekaran, R. Kothandaraman, and K. Kaliyan, "An Automatic Question Generation System Using Rule-Based Approach in Bloom's Taxonomy," *Recent Advances in Computer Science and Communications*, vol. 14, no. 5, pp. 1477–1487, 2021, doi: 10.2174/2213275912666191113143335.
- [21] Z. Ullah, A. Lajis, M. Jamjoom, A. Altalhi, and F. Saleem, "Bloom's taxonomy: A beneficial tool for learning and assessing students' competency levels in computer programming using empirical analysis," *Computer Applications in Engineering Education*, vol. 28, no. 6, pp. 1628–1640, 2020, doi: https://doi.org/10.1002/cae.22339.
- [22] H. Naveed, A. U. Khan, S. Qiu, M. Saqib, S. Anwar, M. Usman, N. Akhtar, N. Barnes, and A. Mian, "A Comprehensive Overview of Large Language Models," *ACM Trans. Intell. Syst. Technol.*, vol. 16, no. 5, Aug. 2025, doi: 10.1145/3744746.
- [23] E. Kasneci *et al.*, "ChatGPT for good? On opportunities and challenges of large language models for education," *Learning and Individual Differences*, vol. 103, p. 102274, 2023, doi: https://doi.org/10.1016/j.lindif.2023.102274.
- [24] B. Nguyen, M. Yu, Y. Huang, and M. Jiang, "Reference-based Metrics Disprove Themselves in Question Generation," in *Findings of the Association for Computational Linguistics: EMNLP 2024*, Y. Al-Onaizan, M. Bansal, and Y.-N. Chen, Eds., Miami, Florida, USA: Association for Computational Linguistics, Nov. 2024, pp. 13651–13666. doi: 10.18653/v1/2024.findings-emnlp.798.
- [25] C. Zhou, M. Wang, T. Zhang, Q. Zhu, J. Li, and H. Huang, "From Answers to Questions: EQGBench for Evaluating LLMs' Educational Question Generation," Aug. 05, 2025, *arXiv*. doi: 10.48550/arXiv.2508.10005.
- [26] C. Cheng, Z. Huang, G. Zhao, Y. Guo, X. Lin, J. Wu, X. Li, and S. Wang, "From Objectives to Questions: A Planning-based Framework for Educational Mathematical Question Generation," in *Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, W. Che, J. Nabende, E. Shutova, and M. T. Pilehvar, Eds., Vienna, Austria: Association for Computational Linguistics, Jul. 2025, pp. 12836–12856. doi: 10.18653/v1/2025.acl-long.628.
- [27] H.-C. Ling and H.-S. Chiang, "Learning Performance in Adaptive Learning Systems: A Case Study of Web Programming Learning Recommendations," *Frontiers in Psychology*, vol. Volume 13-2022, 2022, doi: 10.3389/fpsyg.2022.770637.
- [28] Y. Zhou, "Towards Contextualized Programming Education by Developing a Learnersourcing Workflow," Purdue University, 2024. Accessed: Jun. 18, 2025. [Online]. Available: https://hammer.purdue.edu/articles/thesis/Towards_Contextualized_Programming_Education_by_Developing_a_Learnersourcing_Workflow/25631865
- [29] D. Vergara, M. L. Fernández, and M. Lorenzo, "Enhancing student motivation in secondary school mathematics courses: A methodological approach," *Educ. Sci*, vol. 9, no. 2, 2019, doi: 10.3390/educsci9020083.
- [30] M. Liu, Y. Ren, L. M. Nyagoga, F. Stonier, Z. Wu, and L. Yu, "Future of education in the era of generative artificial intelligence: Consensus among Chinese scholars on applications of ChatGPT in schools," *Futur. Educ. Res*, vol. 1, no. 1, pp. 72-101, 2023, doi: 10.1002/fer3.10.
- [31] L.-C. Lin, I.-C. Hung, Kinshuk, and N.-S. Chen, "The impact of student engagement on learning outcomes in a cyber-flipped course," *Educ. Technol. Res. Dev*, vol. 67, pp. 1573-1591, 2019.
- [32] W. Villegas-Ch and J. García-Ortiz, "Enhancing Learning Personalization in Educational Environments through Ontology-Based Knowledge Representation," *Computers*, vol. 12, no. 10, 2023, doi: 10.3390/computers12100199.
- [33] N. A. Alrehaili, M. A. Aslam, D. H. Alahmadi, D. A. Alrehaili, M. Asif, and M. S. A. Malik, "Ontology-Based Smart System to Automate Higher Education Activities," *Complexity*, vol. 2021, 2021, doi: 10.1155/2021/5588381.

- [34] Q. U. Ain, M. A. Chatti, K. G. C. Bakar, S. Joarder, and R. Alatrash, "Automatic Construction of Educational Knowledge Graphs: A Word Embedding-Based Approach," *Inf*, vol. 14, no. 10, 2023, doi: 10.3390/info14100526.
- [35] S. MacNeil, Automatically Generating CS Learning Materials with Large Language Models, vol. 1, no. 1. Association for Computing Machinery, 2022.
- [36] B. Flanagan, G. Akçapinar, R. Majumdar, and H. Ogata, "Automatic generation of contents models for digital learning materials," in *ICCE 2018 26th Int. Conf. Comput. Educ. Main Conf. Proc*, 2018, pp. 804–806.
- [37] K. Zhuang, "The Knowledge Graph Construction in the Educational Domain: Take an Australian School Science Course as an Example The Knowledge Graph Construction in the Educational Domain: Take an Australian School Science Course as an Example." 2023.
- [38] G. Kurdi, J. Leo, B. Parsia, U. Sattler, and S. Al-Emari, "A Systematic Review of Automatic Question Generation for Educational Purposes," *International Journal of Artificial Intelligence in Education*, vol. 30, no. 1, pp. 121–204, Mar. 2020, doi: 10.1007/s40593-019-00186-y.
- [39] C. Diwan, S. Srinivasa, G. Suri, S. Agarwal, and P. Ram, "AI-based learning content generation and learning pathway augmentation to increase learner engagement," *Comput. Educ. Artif. Intell*, vol. 4, no. February, p. 100110, 2022, doi: 10.1016/j.caeai.2022.100110.
- [40] C. Pierrakeas, G. Solomou, and A. Kameas, "An ontology-based approach in learning programming languages," *Proc*, pp. 393-398, 2012, doi: 10.1109/PCi.2012.78.
- [41] N. A. Anindyaputri, R. A. Yuana, and P. Hatta, "Enhancing Students' Ability in Learning Process of Programming Language using Adaptive Learning Systems: A Literature Review," *Open Eng*, vol. 10, no. 1, pp. 820-829, 2020, doi: 10.1515/eng-2020-0092.
- [42] F. D. Calmon, R. Kokku, and A. Vempaty, "Automatic learning curriculum generation," Google Patents, 2019.
- [43] T. Guber, "A translational approach to portable ontologies," Knowl. Acquis, vol. 5, no. 2, pp. 199-229, 1993.
- [44] K. Chen, Q. Huang, H. Palangi, P. Smolensky, K. Forbus, and J. Gao, "Mapping natural-language problems to formal-language solutions using structured neural representations," in *International Conference on Machine Learning*, 2020, pp. 1566–1575.
- [45] F. Baader, I. Horrocks, C. Lutz, and U. Sattler, *Introduction to description logic*. Cambridge University Press, 2017.
- [46] V. Lama, A. Patel, N. C. Debnath, and S. Jain, "IRI_Debug: An Ontology Evaluation Tool," *New Generation Computing*, vol. 42, no. 1, pp. 177-197, 2024, doi: 10.1007/s00354-024-00246-5.
- [47] A. Ramírez-Noriega, "Towards the Automatic Construction of an Intelligent Tutoring System: Domain Module," *Adv. Intell. Syst. Comput*, vol. 930, no. 3, pp. 293-302, 2019, doi: 10.1007/978-3-030-16181-1_28.
- [48] Z. Xia, Y. Zhou, F. Y. Yan, and J. Jiang, "Automatic curriculum generation for learning adaptation in networking." 2022.
- [49] P. Brusilovsky, B. J. Ericson, C. Zilles, C. S. Horstmann, C. Servin, and F. Vahid, "The Future of Computing Education Materials," *Comput. Sci. Curricula, Curricula Pract*, vol. 1, no. 1, pp. 1-8, 2023.
- [50] N. C. Debnath and A. Patel, "Ontology Evaluation Tools: Current and Future Research," *Recent Adv. Comput. Sci. Commun*, 2022, [Online]. Available: https://api.semanticscholar.org/CorpusID:248138690.
- [51] T. Urazova, "Building a System for Automated Question Generation and Evaluation to Assist Students Learning UML Database Design," University of British Columbia, 2022. [Online]. Available: https://open.library.ubc.ca/soa/cIRcle/collections/undergraduateresearch/52966/items/1.0413656
- [52] S. Russell, "Automated Code Tracing Exercises for CS1," presented at the Computing Education Practice 2022, Durham, United Kingdom: ACM, Jan. 2022, pp. 13–16. doi: https://doi.org/10.1145/3498343.3498347.
- [53] M. Sh. Murtazina and T. V. Avdeenko, "The Constructing of Cognitive Functions Ontology," presented at the 14th International Symposium "Intelligent Systems, Moscow, Russia: Procedia Computer Science, 2021, pp. 595–602. doi: https://doi.org/10.1016/j.procs.2021.04.181.
- [54] M. Alqaradaghi, G. Morse, and T. Kozsik, "Detecting Security Vulnerabilities with Static Analysis A Case Study," *Pollack Periodica*, vol. 17, no. 2, pp. 1–7, Sep. 2021, doi: 10.1556/606.2021.00454.

- [55] K. Sterner, "Automated Checking of Programming Assignments Using Static Analysis," Mälardalens University, Sweden, 2021. Accessed: Apr. 25, 2025. [Online]. Available: https://mdh.diva-portal.org/smash/record.jsf?pid=diva2%3A1526100&dswid=6624
- [56] S. Cao, X. Sun, L. Bo, Y. Wei, and B. Li, "BGNN4VD: Constructing Bidirectional Graph Neural-Network for Vulnerability Detection," *Information and Software Technology*, vol. 136, p. 106576, 2021, doi: https://doi.org/10.1016/j.infsof.2021.106576.
- [57] R. Zviel-Girshin, "The Good and Bad of AI Tools in Novice Programming Education," *Education Sciences*, vol. 14, no. 10, 2024, doi: 10.3390/educsci14101089.
- [58] S. Srikant and V. Aggarwal, "A System to Grade Computer Programming Skills using Machine Learning," in *Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining*, 2014, pp. 1887–1896. doi: http://dx.doi.org/10.1145/2623330.2623377.
- [59] M. Allamanis, M. Brockschmidt, and M. Khademi, "Learning to Represent Programs with Graphs," May 04, 2018. doi: https://doi.org/10.48550/arXiv.1711.00740.
- [60] T. H. M. Le, H. Chen, and M. A. Babar, "Deep Learning for Source Code Modeling and Generation: Models, Applications, and Challenges," *ACM Comput. Surv.*, vol. 53, no. 3, Jun. 2020, doi: 10.1145/3383458.
- [61] S. Bhatia, P. Kohli, and R. Singh, "Neuro-Symbolic Program Corrector for Introductory Programming Assignments," in *Proceedings of the 40th International Conference on Software Engineering*, in ICSE '18. New York, NY, USA: Association for Computing Machinery, 2018, pp. 60–70. doi: 10.1145/3180155.3180219.
- [62] N. Emamdoost, "Better Program Analysis for Security via Data Flow Tracking and Symbolic Execution," PhD Thesis, 2021. Accessed: Jun. 06, 2025. [Online]. Available: https://hdl.handle.net/11299/225000
- [63] Z. Wang, L. Yu, S. Wang, and P. Liu, "Spotting Silent Buffer Overflows in Execution Trace through Graph Neural Network Assisted Data Flow Analysis," Feb. 20, 2021, ArXiv. doi: https://doi.org/10.48550/arXiv.2102.10452.
- [64] W. Hasselbring, M. Wojcieszak, and S. Dustdar, "Control Flow Versus Data Flow in Distributed Systems Integration: Revival of Flow-Based Programming for the Industrial Internet of Things," *IEEE Internet Computing*, vol. 25, no. 4, pp. 5–12, 2021, doi: 10.1109/MIC.2021.3053712.
- [65] D. Guo *et al.*, "GraphCodeBERT: Pre-training Code Representations with Data Flow," in *ICLR 2021*, Vienna, Austria, May 2021. doi: https://doi.org/10.48550/arXiv.2009.08366.
- [66] B. Steenhoek, H. Gao, and W. Le, "Dataflow Analysis-Inspired Deep Learning for Efficient Vulnerability Detection," in *Proceedings of the IEEE/ACM 46th International Conference on Software Engineering*, in ICSE '24. New York, NY, USA: Association for Computing Machinery, 2024. doi: 10.1145/3597503.3623345.
- [67] J. Phillips, A. Sudarsanam, H. Samala, R. Kallam, J. Carver, and A. Dasu, "Methodology To Derive Context Adaptable Architectures for FPGAS," *IET Computers & Digital Techniques*, vol. 3, no. 1, pp. 124–141, Jan. 2009, doi: 10.1049/iet-cdt:20070099.
- [68] K. C. Swarna, N. S. Mathews, D. Vagavolu, and S. Chimalakonda, "On The Impact of Multiple Source Code Representations on Software Engineering Tasks An Empirical Study," *Journal of Systems and Software*, vol. 210, p. 111941, 2024, doi: https://doi.org/10.1016/j.jss.2023.111941.
- [69] A. S. Saimbhi, "Enhancing Software Vulnerability Detection Using Code Property Graphs and Convolutional Neural Networks," in 2025 International Conference on Computational, Communication and Information Technology (ICCCIT), Indore, India: IEEE, 2025, pp. 435–440. doi: 10.1109/ICCCIT62592.2025.10928033.
- [70] N. Willert and J. Thiemann, "Template-Based Generator for Single-Choice Questions," *Technology, Knowledge and Learning*, vol. 29, no. 1, pp. 355–370, Mar. 2024, doi: 10.1007/s10758-023-09659-5.
- [71] L. L. Shwe, S. Matayong, and S. Witosurapot, "Enabling Cognitive and Unified Similarity-Based Difficulty Ranking Mechanisms for AQG On Multimedia Content," *Expert Systems with Applications*, vol. 277, p. 127244, Jun. 2025, doi: 10.1016/j.eswa.2025.127244.
- [72] B. Khoy, "Unlocking Cognitive Learning Objectives: A Comprehensive Evaluation of How Textbooks and Syllabi Align with Revised Bloom's Taxonomy Across Disciplines," *Curriculum Perspectives*, Jan. 2025, doi: 10.1007/s41297-024-00295-2.
- [73] A. Luxton-Reilly, B. A. Becker, Y. Cao, R. McDermott, C. Mirolo, A. Mühling, A. Petersen, K. Sanders, Simon, and J. Whalley, "Developing Assessments to Determine Mastery of Programming Fundamentals," in *Proceedings of the 2017 ITiCSE Conference on Working Group Reports*, in ITiCSE-WGR '17. New York, NY, USA: Association for Computing Machinery, 2018, pp. 47–69. doi: 10.1145/3174781.3174784.

- [74] E. H. S. Y. Elim, "Promoting Cognitive Skills in AI-Supported Learning Environments: The Integration of Bloom's Taxonomy," *Education 3-13*, pp. 1–11, Apr. 2024, doi: 10.1080/03004279.2024.2332469.
- [75] M. Shoaib, G. Husnain, N. Sayed, Y. Yasin Ghadi, M. Alajmi, and A. Qahmash, "Automated Generation of Multiple-Choice Questions for Computer Science Education Using Conditional Generative Adversarial Networks," *IEEE Access*, vol. 13, pp. 16697–16715, 2025, doi: 10.1109/ACCESS.2025.3530474.
- [76] N. Liu, Z. Wang, R. Baraniuk, and A. Lan, "Open-ended Knowledge Tracing for Computer Science Education," in *Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing*, Y. Goldberg, Z. Kozareva, and Y. Zhang, Eds., Abu Dhabi, United Arab Emirates: Association for Computational Linguistics, Dec. 2022, pp. 3849–3862. doi: 10.18653/v1/2022.emnlp-main.254.
- [77] Y. Wu, H. Zhu, C. Wang, F. Song, H. Zhu, Y. Chen, Q. Zheng, and F. Tian, "Programming knowledge tracing based on heterogeneous graph representation," *Knowledge-Based Systems*, vol. 300, p. 112161, 2024, doi: https://doi.org/10.1016/j.knosys.2024.112161.
- [78] O. H. T. Lu, A. Y. Q. Huang, D. C. L. Tsai, and S. J. H. Yang, "Expert-Authored and Machine-Generated Short-Answer Questions for Assessing Students Learning Performance," *Educational Technology & Society*, vol. 24, no. 3, pp. 159–173, 2021.
- [79] M. Hassan and C. Zilles, "On Students' Usage of Tracing for Understanding Code," in *Proceedings of the 54th ACM Technical Symposium on Computer Science Education V. 1*, in SIGCSE 2023. New York, NY, USA: Association for Computing Machinery, 2023, pp. 129–136. doi: 10.1145/3545945.3569741.
- [80] M. Murata, N. Kato, M. Ohtsuki, and T. Kakeshita, "Fill-in-the-blank Questions for Object-Oriented Programming Education and Its Preliminary Evaluation," *International Journal of Learning Technologies and Learning Environments*, vol. 6, pp. 1–1, Jan. 2023, doi: 10.52731/ijltle.v6.i1.699.
- [81] S. Kyaw, Nobuo Funabiki, and W.-C. Kao, "A Proposal of Code Amendment Problem in Java Programming Learning Assistant System," *International Journal of Information and Education Technology*, vol. 10, no. 10, pp. 751–756, 2020, doi: 10.18178/ijiet.2020.10.10.1453.
- [82] T. Terroso and M. Pinto, "Programming for Non-Programmers: An Approach Using Creative Coding in Higher Education," in *Third International Computer Programming Education Conference (ICPEC 2022)*, A. Simões and J. C. Silva, Eds., in Open Access Series in Informatics (OASIcs), vol. 102. Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022, p. 13:1-13:8. doi: 10.4230/OASIcs.ICPEC.2022.13.
- [83] I. Lauriola, A. Lavelli, and F. Aiolli, "An introduction to deep learning in natural language processing: Models, techniques, and tools," *Neurocomputing*, vol. 470, pp. 443–456, 2022.
- [84] Y. Kang, Z. Cai, C.-W. Tan, Q. Huang, and H. Liu, "Natural language processing (NLP) in management research: A literature review," *Journal of Management Analytics*, vol. 7, no. 2, pp. 139–172, May 2020, doi: 10.1080/23270012.2020.1756939.
- [85] J. Eisenstein, Introduction to natural language processing. MIT Press, 2019.
- [86] H. Liu, R. Ning, Z. Teng, J. Liu, Q. Zhou, and Y. Zhang, "Evaluating the logical reasoning ability of chatgpt and gpt-4," May 05, 2023, *ArXiv*. doi: 10.48550/arXiv.2304.03439.
- [87] S. L. Blodgett, S. Barocas, H. Daumé III, and H. Wallach, "Language (Technology) is Power: A Critical Survey of 'Bias' in NLP," in *Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics*, Association for Computational Linguistics, Jul. 2020, pp. 5454–5476. doi: 10.18653/v1/2020.acl-main.485.
- [88] J. Wei et al., "Emergent abilities of large language models," arXiv preprint arXiv:2206.07682, 2022.
- [89] M. Zhou, N. Duan, S. Liu, and H.-Y. Shum, "Progress in Neural NLP: Modeling, Learning, and Reasoning," *Engineering*, vol. 6, no. 3, pp. 275–290, 2020, doi: 10.1016/j.eng.2019.12.014.
- [90] M. Mitchell and D. C. Krakauer, "The debate over understanding in AI's large language models," *Proceedings of the National Academy of Sciences*, vol. 120, no. 13, p. e2215907120, Feb. 2023, doi: 10.1073/pnas.2215907120.
- [91] D. Sykes, A. Grivas, C. Grover, R. Tobin, C. Sudlow, W. Whiteley, A. Mcintosh, H. Whalley, and B. Alex, "Comparison of rule-based and neural network models for negation detection in radiology reports," *Natural Language Engineering*, vol. 27, no. 2, pp. 203–224, Mar. 2021, doi: 10.1017/S1351324920000509.
- [92] L. Ouyang et al., "Training language models to follow instructions with human feedback," in *Proceedings of the 36th International Conference on Neural Information Processing Systems*, New Orleans LA USA: Curran Associates Inc., Nov. 2022, pp. 27730–27744.

- [93] J. Kaddour, J. Harris, M. Mozes, H. Bradley, R. Raileanu, and R. McHardy, "Challenges and Applications of Large Language Models," Jul. 2023.
- [94] M. Chen *et al.*, "Evaluating large language models trained on code," Jul. 14, 2021, *arXiv*. doi: 10.48550/arXiv.2107.03374.
- [95] A. Sottana, B. Liang, K. Zou, and Z. Yuan, "Evaluation Metrics in the Era of GPT-4: Reliably Evaluating Large Language Models on Sequence to Sequence Tasks," Oct. 2023.
- [96] Z. Guo *et al.*, "Evaluating Large Language Models: A Comprehensive Survey," Nov. 25, 2023, *ArXiv*. doi: 10.48550/arXiv.2310.19736.
- [97] A. Mohammadshahi, T. Scialom, M. Yazdani, P. Yanki, A. Fan, J. Henderson, and M. Saeidi, "RQUGE: Reference-Free Metric for Evaluating Question Generation by Answering the Question," in *Findings of the Association for Computational Linguistics: ACL 2023*, Toronto, Canada: Association for Computational Linguistics, 2023, pp. 6845–6867. [Online]. Available: https://aclanthology.org/2023.findings-acl.428/
- [98] C. Kooli, "Chatbots in Education and Research: A Critical Examination of Ethical Implications and Solutions," *Sustainability*, vol. 15, no. 7, p. 5614, Mar. 2023, doi: 10.3390/su15075614.
- [99] D. Hupkes *et al.*, "A taxonomy and review of generalization research in NLP," *Nature Machine Intelligence*, vol. 5, pp. 1161–1174, Oct. 2023, doi: 10.1038/s42256-023-00729-y.
- [100] L. Moussiades and G. Zografos, "OpenAi's GPT4 as coding assistant," Sep. 22, 2023, ArXiv. doi: 10.48550/arXiv.2309.12732.
- [101] J. A. Baktash and M. Dawodi, "Gpt-4: A Review on Advancements and Opportunities in Natural Language Processing," May 04, 2023, *ArXiv*. doi: 10.48550/arXiv.2305.03195.
- [102] A. Belfathi, N. Hernandez, and L. Monceaux, "Harnessing GPT-3.5-Turbo for Rhetorical Role Prediction in Legal Cases," Oct. 26, 2023, *arXiv*. doi: 10.48550/arXiv.2310.17413.
- [103] H. Touvron *et al.*, "Llama: Open and efficient foundation language models," Feb. 27, 2023, *ArXiv*. doi: 10.48550/arXiv.2302.13971.
- [104] A. Candel *et al.*, "h2oGPT: Democratizing Large Language Models," Jun. 16, 2023, *ArXiv*. doi: 10.48550/arXiv.2306.08161.
- [105] Hugging Face, "Hugging Face Models," Hugging Face. Accessed: Jan. 12, 2025. [Online]. Available: https://huggingface.co/models
- [106] Vicuna: An Instruction-following LLaMA-based Model. (2023). [Chinese-Vicuna]. Available: https://github.com/Facico/Chinese-Vicuna
- [107] L. Caruccio, S. Cirillo, G. Polese, G. Solimando, S. Sundaramurthy, and G. Tortora, "Claude 2.0 large language model: Tackling a real-world classification problem with a new iterative prompt engineering approach," *Intelligent Systems with Applications*, vol. 21, p. 200336, Mar. 2024, doi: 10.1016/j.iswa.2024.200336.
- [108] Anthropic, "Claude 2 Anthropic." [Online]. Available: https://www.anthropic.com/news/claude-2
- [109] E. Portakal, "Claude 2 Parameters (Parameter Size, Context Window.)," TextCortex AI. [Online]. Available: https://textcortex.com/post/claude-2-parameters
- [110] Y. Susanti, T. Tokunaga, H. Nishikawa, and H. Obari, "Evaluation of Automatically Generated English Vocabulary Questions," *Research and Practice in Technology Enhanced Learning*, vol. 12, no. 1, p. 11, Mar. 2017, doi: 10.1186/s41039-017-0051-y.
- [111] T. Song, Q. Tian, Y. Xiao, and S. Liu, "Automatic Generation of Multiple-Choice Questions for CS0 and CS1 Curricula Using Large Language Models," in *Computer Science and Education. Computer Science and Technology*, W. Hong and G. Kanaparan, Eds., Singapore: Springer Nature Singapore, 2024, pp. 314–324.
- [112] B. Abu-Salih and S. Alotaibi, "A systematic literature review of knowledge graph construction and application in education," *Heliyon*, vol. 10, no. 3, p. 25383, 2024, doi: 10.1016/j.heliyon.2024.e25383.
- [113] E. Rajabi and K. Etminani, "Knowledge-graph-based explainable AI: A systematic review," *J. Inf. Sci*, 2022, doi: 10.1177/01655515221112844.
- [114] L. N. Nongkhai, J. Wang, and T. Mendori, "Developing An Ontology of Multiple Programming Languages from The Perspective of Computational Thinking Education," in *Proceedings of the 19th International Conference on Cognition and Exploratory Learning in the Digital Age (CELDA 2022)*, Lisbon, Portugal:

- International Association for Development of the Information Society (IADIS), 2022, pp. 66–72. doi: 10.33965/celda2022_2022071009.
- [115] W. Nie, K. Vita, and T. Masood, "An ontology for defining and characterizing demonstration environments," *J. Intell. Manuf*, 2023, doi: 10.1007/s10845-023-02213-1.
- [116] W. Yathongchai, J. Angskun, and C. C. Fung, "An Ontology Model for Developing a SQL Personalized Intelligent Tutoring System," *Naresuan Univ. J. Sci. Technol*, vol. 25, no. 4, pp. 88-96, 2017.
- [117] A. Fernández-Izquierdo and R. García-Castro, "Themis: A tool for validating ontologies through requirements," in *Proc. Int. Conf. Softw. Eng. Knowl. Eng. SEKE*, 2019, pp. 573-578,
- [118] M. Poveda-Villalón, M. C. Suárez-Figueroa, and A. Gómez-Pérez, "Validating Ontologies with OOPS! State of the Art," *Knowl. Eng. Knowl. Manag*, pp. 267-281, 2012.
- [119] "Ontology Generation and Ontology Data Set." Accessed: Apr. 24, 2025. [Online]. Available: https://github.com/jalshboul/Python-Ontology-GLM
- [120] T. Alsubait, B. Parsia, and U. Sattler, "Ontology-Based Multiple Choice Question Generation," KI Künstliche Intelligenz, vol. 30, no. 2, pp. 183–188, Jun. 2016, doi: 10.1007/s13218-015-0405-9.
- [121] K. Stasaski and M. A. Hearst, "Multiple Choice Question Generation Utilizing An Ontology," in *Proceedings of the 12th Workshop on Innovative Use of NLP for Building Educational Applications*, J. Tetreault, J. Burstein, C. Leacock, and H. Yannakoudakis, Eds., Copenhagen, Denmark: Association for Computational Linguistics, Sep. 2017, pp. 303–312. doi: 10.18653/v1/W17-5034.
- [122] M. Cubric and M. Tosic, "Design and evaluation of an ontology-based tool for generating multiple-choice questions," *Interactive Technology and Smart Education*, vol. 17, no. 2, pp. 109–131, Feb. 2020, doi: 10.1108/TTSE-05-2019-0023.
- [123] Y. Ham and B. Myers, "Supporting Guided Inquiry with Cooperative Learning in Computer Organization," in *Proceedings of the 50th ACM Technical Symposium on Computer Science Education*, Minneapolis, USA: ACM, Feb. 2019, pp. 273–279. doi: https://doi.org/10.1145/3287324.3287355.
- [124] R. S. J. d Baker, A. T. Corbett, and V. Aleven, "More Accurate Student Modeling through Contextual Estimation of Slip and Guess Probabilities in Bayesian Knowledge Tracing," presented at the International Conference on Intelligent Tutoring Systems, in Lecture Notes in Computer Science, vol. 5091. Montreal, Canada: Springer Berlin Heidelberg, Jun. 2008, pp. 406–415. doi: https://doi.org/10.1007/978-3-540-69132-7_44.
- [125] C.-Y. Chung and I.-H. Hsiao, "Investigating Patterns of Study Persistence on Self-Assessment Platform of Programming Problem-Solving," in *Proceedings of the 51st ACM Technical Symposium on Computer Science Education*, ACM, Feb. 2020, pp. 162–168. doi: https://doi.org/10.1145/3328778.3366827.
- [126] C.-Y. Chung, C. Y. C. Edu, and I.-H. Hsiao, "From Detail to Context: Modeling Distributed Practice Intensity and Timing by Multiresolution Signal Analysis," presented at the 14th International Conference on Educational Data Mining, Virtual: International Educational Data Mining Society, Jul. 2021. [Online]. Available: https://educationaldatamining.org/edm2021/
- [127] P. Brusilovsky, M. Yudelson, and I.-H. Hsiao, "Problem Solving Examples as First Class Objects in Educational Digital Libraries: Three Obstacles to Overcome Problem Solving Examples as Interactive Learning Objects for Educational Digital Libraries," *Journal of Educational Multimedia and Hypermedia*, vol. 18, no. 3, pp. 267–288, Jul. 2009.
- [128] R. Cafolla, "Project MERLOT: Bringing Peer Review to Web-Based Educational Resources," *Journal of Information Technology for Teacher Education*, vol. 14, no. 2, Apr. 2006.
- [129] H. K. M. Al-Chalabi, "Evaluation of a Multi-Parameter E-learning System using Web 3.0 Technologies," presented at the 13th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), Pitesti, Romania: IEEE, Jul. 2021, pp. 1–4. doi: https://doi.org/10.1109/ECAI52376.2021.9515191.
- [130] H. K. M. Al-Chalabi and U. C. Apoki, "A Semantic Approach to Multi-parameter Personalisation of E-Learning Systems," presented at the International Conference on Modelling and Development of Intelligent Systems, in Communications in Computer and Information Science, vol. 1341. Sibiu, Romania: Springer International Publishing, 2021, pp. 381–393. doi: https://doi.org/10.1007/978-3-030-68527-0_24.
- [131] P. Denny, A. Luxton-Reilly, and J. Hamer, "The PeerWise System of Student Contributed Assessment Questions," in *Proceedings of the tenth conference on Australasian computing education*, Wollongong, Australia, Jan. 2008, pp. 69–74. doi: https://dl.acm.org/doi/10.5555/1379249.1379255.

- [132] N. Mulla and P. Gharpure, "Automatic Question Generation: A Review of Methodologies, Datasets, Evaluation Metrics, and Applications," *Progress in Artificial Intelligence*, vol. 12, no. 1, pp. 1–32, Jan. 2023, doi: https://doi.org/10.1007/s13748-023-00295-9.
- [133] R. G. Golla, V. Tiwari, P. Chokhra, and H. Okada, "QuestGen AI." [Online]. Available: https://github.com/ramsrigouthamg/Questgen.ai
- [134] A. Boubaker and Y. Fang, "Automated Generation of Challenge Questions for Student Code Evaluation Using Abstract Syntax Tree Embeddings and RAG: An Exploratory Study," in *Proceedings of the 2024 7th International Conference on Educational Technology Management*, in ICETM '24. New York, NY, USA: Association for Computing Machinery, 2025, pp. 277–282. doi: 10.1145/3711403.3711450.
- [135] A. Santos, T. Soares, N. Garrido, and T. Lehtinen, "Jask: Generation of Questions About Learners' Code in Java," in *Proceedings of the 27th ACM Conference on on Innovation and Technology in Computer Science Education Vol. 1*, in ITiCSE '22. New York, NY, USA: Association for Computing Machinery, 2022, pp. 117–123. doi: 10.1145/3502718.3524761.
- [136] M. Goodfellow, R. Booth, A. Fagan, and A. Lambert, "AutoMCQ Automatically Generate Code Comprehension Questions using GenAI," in *Proceedings of the 30th ACM Conference on Innovation and Technology in Computer Science Education V. 2*, in ITiCSE 2025. New York, NY, USA: Association for Computing Machinery, 2025, pp. 737–738. doi: 10.1145/3724389.3731266.
- [137] J. Li, T. Tang, W. X. Zhao, J.-Y. Nie, and J.-R. Wen, "Pretrained Language Models for Text Generation: A Survey," May 13, 2022, *ArXiv*. doi: 10.48550/arXiv.2201.05273.
- [138] X.-Q. Dao, "Performance Comparison of Large Language Models on VNHSGE English Dataset: OpenAI ChatGPT, Microsoft Bing Chat, and Google Bard," Jul. 20, 2023, *ArXiv*. doi: 10.48550/arXiv.2307.02288.
- [139] A. Koubaa, "GPT-4 vs. GPT-3.5: A concise showdown," Apr. 07, 2023, *TechRxiv*. doi: 10.36227/techrxiv.22312330.v2.
- [140] J. Alshboul, "Generator-Evaluator: Dataset-Codes," *GitHub Dataset*. GitHub, 2025. Accessed: Jun. 20, 2025. [Online]. Available: https://github.com/jalshboul/Generator-Evaluator
- [141] United States Chess Federation, "Approximating formulas for the US Chess rating system." Apr. 2017. [Online]. Available: http://www.glicko.net/ratings/approx.pdf
- [142] S. Maity and A. Deroy, "The Future of Learning in the Age of Generative AI: Automated Question Generation and Assessment with Large Language Models," Oct. 12, 2024, *ArXiv*. doi: 10.48550/arXiv.2410.09576.
- [143] A. Tran, K. Angelikas, E. Rama, C. Okechukwu, D. H. Smith, and S. MacNeil, "Generating Multiple Choice Questions for Computing Courses Using Large Language Models," in *2023 IEEE Frontiers in Education Conference (FIE)*, Oct. 2023, pp. 1–8. doi: 10.1109/FIE58773.2023.10342898.
- [144] J. Doughty *et al.*, "A Comparative Study of AI-Generated (GPT-4) and Human-crafted MCQs in Programming Education," in *Proceedings of the 26th Australasian Computing Education Conference*, in ACE '24. New York, NY, USA: Association for Computing Machinery, 2024, pp. 114–123. doi: 10.1145/3636243.3636256.
- [145] S. Baral, E. Worden, W.-C. Lim, Z. Luo, C. Santorelli, and A. Gurung, "Automated Assessment in Math Education: A Comparative Analysis of LLMs for Open-Ended Responses," in *Proceedings of the 17th International Conference on Educational Data Mining*, B. Paaßen and C. D. Epp, Eds., Atlanta, Georgia, USA: International Educational Data Mining Society, Jul. 2024, pp. 732–737. doi: 10.5281/zenodo.12729932.
- [146] P. Kargupta, I. Agarwal, D. H. Tur, and J. Han, "Instruct, Not Assist: LLM-based Multi-Turn Planning and Hierarchical Questioning for Socratic Code Debugging," in *Findings of the Association for Computational Linguistics: EMNLP 2024*, Y. Al-Onaizan, M. Bansal, and Y.-N. Chen, Eds., Miami, Florida, USA: Association for Computational Linguistics, Nov. 2024, pp. 9475–9495. doi: 10.18653/v1/2024.findings-emnlp.553.
- [147] E. Frankford, I. Höhn, C. Sauerwein, and R. Breu, "A Survey Study on the State of the Art of Programming Exercise Generation Using Large Language Models," in 2024 36th International Conference on Software Engineering Education and Training (CSEE&T), 2024, pp. 1–5. doi: 10.1109/CSEET62301.2024.10662990.
- [148] S. Haroon, A. F. Khan, A. Humayun, W. Gill, A. H. Amjad, A. R. Butt, M. T. Khan, and M. A. Gulzar, "How Accurately Do Large Language Models Understand Code?," Apr. 09, 2025, *arXiv*. doi: 10.48550/arXiv.2504.04372.

- [149] D. N. Manh, T. P. Chau, N. L. Hai, T. T. Doan, N. V. Nguyen, Q. Pham, and N. D. Q. Bui, "CodeMMLU: A Multi-Task Benchmark for Assessing Code Understanding & Reasoning Capabilities of CodeLLMs," Apr. 09, 2025, *arXiv*. doi: 10.48550/arXiv.2410.01999.
- [150] L. Chen *et al.*, "A Survey on Evaluating Large Language Models in Code Generation Tasks," Mar. 04, 2025, *arXiv*. doi: 10.48550/arXiv.2408.16498.
- [151] M. L. Siddiq, S. Dristi, J. Saha, and J. C. S. Santos, "The Fault in our Stars: Quality Assessment of Code Generation Benchmarks," in 2024 IEEE International Conference on Source Code Analysis and Manipulation (SCAM), Los Alamitos, CA, USA: IEEE Computer Society, Oct. 2024, pp. 201–212. doi: 10.1109/SCAM63643.2024.00028.
- [152] I. Riouak, N. Fors, J. Öqvist, G. Hedin, and C. Reichenbach, "Efficient Demand Evaluation of Fixed-Point Attributes using Static Analysis," in *Proceedings of the 17th ACM SIGPLAN International Conference on Software Language Engineering*, in SLE '24. New York, NY, USA: Association for Computing Machinery, 2024, pp. 56–69. doi: 10.1145/3687997.3695644.
- [153] G. Son, H. Ko, H. Lee, Y. Kim, and S. Hong, "Multilingual Challenges in Automated Evaluators: A Case Study on English and Korean," OpenReview. Accessed: May 16, 2025. [Online]. Available: https://openreview.net/forum?id=8NIUi6Ha1f
- [154] M. Hidvégi, G. Mezei, and S. Bácsi, "The Challenges of Visualizing DMLA Models," *Pollack Periodica*, vol. 16, no. 3, pp. 13–19, 2021, doi: 10.1556/606.2021.00345.
- [155] S. Breese, A. Milanova, and B. Cutler, "Using Static Analysis for Automated Assignment Grading in Introductory Programming Classes," in *Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science Education*, in SIGCSE '17. New York, NY, USA: Association for Computing Machinery, 2017, p. 704. doi: 10.1145/3017680.3022440.
- [156] S. Rakangor and Y. Ghodasara, "Literature Review of Automatic Question Generation Systems," *International Journal of Scientific and Research Publications*, vol. 5, no. 1, 2015, Accessed: Jan. 01, 2025. [Online]. Available: https://www.ijsrp.org/research-paper-0115/ijsrp-p3757.pdf
- [157] Paul Jansen, "The TIOBE Programming Community Index," Tiobe.com. Accessed: May 16, 2025. [Online]. Available: https://www.tiobe.com/tiobe-index/
- [158] J. Alshboul, "MultilingualCodeBasedQG," GitHub. Accessed: May 16, 2025. [Online]. Available: https://github.com/jalshboul/MultilingualCodeBasedQG
- [159] A. Prokudin, O. Sychev, and M. Denisov, "Learning problem generator for introductory programming courses," *Software Impacts*, vol. 17, p. 100519, 2023, doi: https://doi.org/10.1016/j.simpa.2023.100519.
- [160] K. A. Mills, J. Cope, L. Scholes, and L. Rowe, "Coding and Computational Thinking Across the Curriculum: A Review of Educational Outcomes," *Review of Educational Research*, vol. 95, no. 3, pp. 581–618, 2025, doi: 10.3102/00346543241241327.
- [161] J. Savelka, A. Agarwal, C. Bogart, and M. Sakr, "Large Language Models (GPT) Struggle to Answer Multiple-Choice Questions about Code," Mar. 09, 2023. doi: https://doi.org/10.48550/arXiv.2303.08033.
- [162] P. V. L. Pham, A. V. Duc, N. M. Hoang, X. L. Do, and A. T. Luu, "ChatGPT as a Math Questioner? Evaluating ChatGPT on Generating Pre-university Math Questions," in *Proceedings of the 39th ACM/SIGAPP Symposium on Applied Computing*, in SAC '24. New York, NY, USA: Association for Computing Machinery, 2024, pp. 65–73. doi: 10.1145/3605098.3636030.
- [163] S. Ito, "Semantical Equivalence of the Control Flow Graph and the Program Dependence Graph," Mar. 08, 2018. doi: https://doi.org/10.48550/arXiv.1803.02976 Focus to learn more.
- [164] J. Prather, B. N. Reeves, P. Denny, B. A. Becker, J. Leinonen, A. Luxton-Reilly, G. Powell, J. Finnie-Ansley, and E. A. Santos, "It's Weird That it Knows What I Want': Usability and Interactions with Copilot for Novice Programmers," *ACM Trans. Comput.-Hum. Interact.*, vol. 31, no. 1, Nov. 2023, doi: 10.1145/3617367.
- [165] Q. Zhang, C. Fang, Y. Shang, T. Zhang, S. Yu, and Z. Chen, "No Man is an Island: Towards Fully Automatic Programming by Code Search, Code Generation and Program Repair," Sep. 05, 2024. doi: https://doi.org/10.48550/arXiv.2409.03267.
- [166] Q. Zhu and W. Zhang, "Code Generation Based on Deep Learning: A Brief Review," Jul. 04, 2021. doi: arXiv:2106.08253v4.

- [167] R. Mukherjee, Y. Wen, D. Chaudhari, T. W. Reps, S. Chaudhuri, and C. Jermaine, "Neural program generation modulo static analysis," in *Proceedings of the 35th International Conference on Neural Information Processing Systems*, in NIPS '21. Red Hook, NY, USA: Curran Associates Inc., 2021.
- [168] R. Pan, M. Kim, R. Krishna, R. Pavuluri, and S. Sinha, "ASTER: Natural and Multi-language Unit Test Generation with LLMs," Jan. 15, 2025, *arXiv*. doi: 10.48550/arXiv.2409.03093.
- [169] D. Shaikhelislamov, M. Drobyshevskiy, and A. Belevantsev, *CodePatchLLM: Configuring code generation using a static analyzer*. ACM, 2024. Accessed: Jun. 24, 2025. [Online]. Available: https://genai-evaluation-kdd2024.github.io/genai-evaluation-kdd2024/assets/papers/GenAI_Evaluation_KDD2024_paper_25.pdf
- [170] C.-Y. Su and C. McMillan, "Do Code LLMs Do Static Analysis?," May 17, 2025, *arXiv*. doi: 10.48550/arXiv.2505.12118.