
University of Miskolc

Faculty of Mechanical Engineering and Informatics

PhD Dissertation

Author:

Jawad Ahmad Qasem Alshboul

MSc in Data Science, MSc in Computer Science

József Hatvany Doctoral School of

Information Science, Engineering and Technology

Title of the Dissertation

Automatic Generation and Evaluation of Programming Questions from Source Code

Research Area

Applied Computer Science

Research Group

Data and Knowledge Bases, Knowledge Intensive Systems

Head of Doctoral School:

Prof. Dr. László Kovács

Academic Supervisor:

Dr. Erika Baksáné Varga

Miskolc, Hungary 2025

1

Declaration of Authorship

The author hereby declares that this thesis has not been submitted, either in the same or in a different form,

to this or any other university to obtain a PhD degree.

The author confirms that the submitted work is his own, and the appropriate credit has been given where

reference has been made to the work of others.

Author's Declaration

I, the undersigned, Jawad Ahmad Qasem Alshboul, declare that I have prepared this doctoral dissertation

and have used only the sources provided.

All parts that I have taken from another source, either directly or in the same content but paraphrased, are

clearly marked with the source.

Miskolc, June 2025.

 Jawad Ahmad Qasem Alshboul

2

Acknowledgment

All praise and thanks are due to Allah, the Most Merciful, whose blessings and guidance have

allowed me to reach this milestone in my academic journey. Without His mercy and support, this

accomplishment would not have been possible.

I would like to express my deepest gratitude to my supervisor, Dr. Erika Baksáné Varga, for her

invaluable guidance, encouragement, and patience throughout my doctoral studies. Her insightful

feedback and continuous support have greatly shaped this research and helped me grow both

academically and personally.

My sincere appreciation also goes to Prof. Dr. László Kovács, Head of the Doctoral School, for

his support, facilitation, and the constructive environment provided during my research period.

His leadership and encouragement have been instrumental in enabling me to complete this work.

To my parents, whose endless prayers, love, and sacrifices have been the foundation of every

achievement in my life, I owe more than words can express. I am forever grateful for their

unwavering belief in me. I am also thankful to my brothers and sisters for their support,

understanding, and constant encouragement throughout this journey, even during the most

challenging days.

Jawad Alshboul

3

Table of Contents

Declaration of Authorship .. 1

Acknowledgment .. 2

Table of Contents.. 3

List of Figures ... 6

List of Tables .. 8

List of Abbreviations .. 9

Summary... 10

Chapter 1 Introduction .. 12

1.1 Background ... 12

1.2 Research Motivation ... 14

1.3 Problem Statement .. 15

1.4 Research Aims .. 16

1.5 Research Objectives.. 17

1.6 Scope and Limitations .. 17

1.7 Significance of the Study .. 18

1.8 Dissertation Structure ... 18

Chapter 2 Literature Review ... 20

2.1 Introduction .. 20

2.2 Ontology-Based Instructional Content Generation ... 20

2.3 Static Code Analysis and Graph-Based Representations .. 23

2.3.1 Automatic Question Generation .. 26

2.3.2 Program Analysis... 26

2.3.3 CFG Analyzers .. 26

2.3.4 PDG Analyzers .. 27

2.3.5 Hybrid CFG-PDG Analysis ... 28

2.3.6 Synergistic Use of CFG and PDG ... 28

2.3.7 Question Generation Strategies ... 29

2.4 Template-Based and Question Generation Strategies ... 29

2.5 Bloom’s Taxonomy and Cognitive Alignment ... 29

2.6 Question Types in Programming Education ... 31

2.7 Large Language Models in Programming Question Generation .. 32

2.7.1 Background On Language Models in NLP .. 32

2.7.2 Question Generation with Large Language Models .. 33

2.7.3 Evaluation Metrics for NLP ... 34

2.7.4 State-of-the-art LLMs .. 35

2.8 Evaluation Metrics for Generated Questions from Source Code .. 36

2.9 Conclusion .. 37

Chapter 3 Ontology-Based Automatic Generation of Learning Materials for Python Programming 38

4

3.1 Introduction .. 38

3.2 Methodology ... 40

3.2.1 Ontology-Based Approach for Learning Materials Generation ... 40

3.2.2 Proposed Knowledge Model for The Domain-Specific Concepts ... 44

3.2.3 Proposed Model Implementation ... 46

3.2.4 Proposed Ontology-Based Model Validation and Evaluation ... 50

3.3 Results .. 53

3.4 Discussion ... 56

3.5 Conclusion .. 57

Chapter 4 A Hybrid Approach for Automatic Question Generation from Program Codes....................................... 59

4.1 Introduction .. 59

4.2 Methodology ... 60

4.2.1 Architecture ... 60

4.2.2 Ontology Design .. 62

4.2.3 Parser ... 63

4.2.4 Question Generation .. 64

4.2.5 QuestGen AI .. 64

4.2.6 Hybrid Question Generation from Program Codes .. 65

4.3 Results .. 67

4.4 Discussion ... 72

4.5 Conclusion .. 75

Chapter 5 Evaluating Large Language Models for Generating Programming Questions from Source Code 76

5.1 Introduction .. 76

5.2 Methodology ... 77

5.2.1 Data Collection .. 78

5.2.2 Question Generation .. 79

5.2.3 Performance Metrics .. 81

5.2.4 Experimental Setup .. 81

5.3 Results .. 83

5.3.1 Model Rankings ... 83

5.3.2 Observations and Insights .. 85

5.3.3 Repetitive Evaluation ... 85

5.3.4 Human Evaluation ... 87

5.4 Discussion ... 89

5.5 Conclusion .. 91

Chapter 6 Template-Based Question Generation from Code Using Static Code Analysis 93

6.1 Introduction .. 93

6.2 Methodology ... 94

6.2.1 Language-Specific Parsing .. 94

5

6.2.2 Code Element Extraction ... 95

6.2.3 Template-Based Question Generation ... 96

6.2.4 Cognitive Science-Based Question Design.. 96

6.2.5 Question Post-Processing .. 97

6.2.6 Evaluation Approach ... 98

6.3 Results .. 102

6.4 Discussion ... 109

6.4.1 Research Contributions .. 110

6.4.2 Limitations ... 110

6.4.3 Future Directions ... 111

6.5 Conclusion .. 111

Chapter 7 Multi-Language Static-Analysis System for Automatic Question Generation from Source Code 113

7.1 Introduction .. 113

7.2 Methodology ... 116

7.2.1 System Architecture and Design Philosophy ... 117

7.2.2 Advanced Code Analysis Techniques ... 119

7.2.3 Evaluation Metrics ... 124

7.3 Results .. 125

7.4 Discussion ... 130

7.4.1 The Proposed Systems and the Baseline Comparison ... 131

7.4.2 Research Contributions and Educational Implications .. 133

7.4.3 Research Limitations ... 134

7.4.4 Future Research Directions .. 134

7.5 Conclusion .. 135

Chapter 8 Conclusion .. 137

8.1 Contributions .. 137

8.1.1 Thesis 1 .. 137

8.1.2 Thesis 2 .. 137

8.1.3 Thesis 3 .. 137

8.1.4 Thesis 4 .. 137

8.1.5 Thesis 5 .. 138

8.2 Future work... 138

8.3 Author’s Publications ... 139

References .. 142

6

List of Figures

Figure 1.1 Conceptual framework of AQG from source code .. 12

Figure 1.2 The four-component ITS architecture ... 13

Figure 3.1 General knowledge model for the domain-specific concepts .. 45

Figure 3.2 Specific knowledge model for the domain-specific concepts ... 46

Figure 3.3 Core classes of the presented model .. 47

Figure 3.4 Object property relationships .. 47

Figure 3.5 Domain-specific concepts ontology graph .. 48

Figure 3.6 A SPARQL query for retrieving the concept "python class" and its description 48

Figure 3.7 Controlling the ontology of domain-specific concepts .. 49

Figure 3.8 The result of the ontology of domain-specific concepts .. 49

Figure 3.9 Task assessment generation ... 49

Figure 3.10 Task assessment and result sample .. 50

Figure 3.11 MCQs task assessment .. 50

Figure 3.12 Consistency of the domain-specific concepts ontology ... 51

Figure 3.13 OntOlogy pitfall scanner tool .. 52

Figure 3.14 OntOlogy pitfall scanner tool results ... 52

Figure 3.15 Python MCQ quiz generator flask app .. 56

Figure 4.1 Proposed framework architecture .. 61

Figure 4.2 Ontology design visualization using protégé ... 63

Figure 4.3 Instance definition of Subtraction ... 63

Figure 4.4 Question-generation process ... 64

Figure 4.5 Generating questions directly from code ... 67

Figure 4.6 A code snippet with variable definitions ... 68

Figure 4.7 Generated text from a code snippet ... 68

Figure 4.8 Generated questions for variable definitions ... 68

Figure 4.9 Generated questions without using the proposed approach ... 69

Figure 4.10 Python code for defining classes and objects .. 69

Figure 4.11 Generated explanation of the code in Figure 4.10 ... 69

Figure 4.12 Generated questions for the code in Figure 4.10 ... 70

Figure 4.13 Generated questions without using the proposed model ... 70

Figure 4.14 Code snippet containing a function and arithmetic operations .. 71

Figure 4.15 Generated explanation of the code in Figure 4.14 ... 71

Figure 4.16 Generated questions using the proposed model .. 71

Figure 4.17 Generated questions without using the proposed model ... 71

Figure 4.18 Question performance ranking by validity .. 73

Figure 4.19 Validity score vs. code difficulty level .. 73

Figure 5.1 Sample prompt to generate questions from source code ... 80

file:///D:/DissertationReview/Final/FinalDissertationPrint.docx%23_Toc207100828
file:///D:/DissertationReview/Final/FinalDissertationPrint.docx%23_Toc207100829
file:///D:/DissertationReview/Final/FinalDissertationPrint.docx%23_Toc207100830
file:///D:/DissertationReview/Final/FinalDissertationPrint.docx%23_Toc207100831
file:///D:/DissertationReview/Final/FinalDissertationPrint.docx%23_Toc207100832
file:///D:/DissertationReview/Final/FinalDissertationPrint.docx%23_Toc207100833
file:///D:/DissertationReview/Final/FinalDissertationPrint.docx%23_Toc207100834
file:///D:/DissertationReview/Final/FinalDissertationPrint.docx%23_Toc207100835
file:///D:/DissertationReview/Final/FinalDissertationPrint.docx%23_Toc207100836
file:///D:/DissertationReview/Final/FinalDissertationPrint.docx%23_Toc207100837
file:///D:/DissertationReview/Final/FinalDissertationPrint.docx%23_Toc207100838
file:///D:/DissertationReview/Final/FinalDissertationPrint.docx%23_Toc207100839
file:///D:/DissertationReview/Final/FinalDissertationPrint.docx%23_Toc207100840
file:///D:/DissertationReview/Final/FinalDissertationPrint.docx%23_Toc207100841
file:///D:/DissertationReview/Final/FinalDissertationPrint.docx%23_Toc207100842
file:///D:/DissertationReview/Final/FinalDissertationPrint.docx%23_Toc207100843
file:///D:/DissertationReview/Final/FinalDissertationPrint.docx%23_Toc207100844
file:///D:/DissertationReview/Final/FinalDissertationPrint.docx%23_Toc207100845
file:///D:/DissertationReview/Final/FinalDissertationPrint.docx%23_Toc207100846
file:///D:/DissertationReview/Final/FinalDissertationPrint.docx%23_Toc207100847
file:///D:/DissertationReview/Final/FinalDissertationPrint.docx%23_Toc207100848
file:///D:/DissertationReview/Final/FinalDissertationPrint.docx%23_Toc207100849
file:///D:/DissertationReview/Final/FinalDissertationPrint.docx%23_Toc207100850
file:///D:/DissertationReview/Final/FinalDissertationPrint.docx%23_Toc207100851
file:///D:/DissertationReview/Final/FinalDissertationPrint.docx%23_Toc207100852
file:///D:/DissertationReview/Final/FinalDissertationPrint.docx%23_Toc207100853
file:///D:/DissertationReview/Final/FinalDissertationPrint.docx%23_Toc207100854
file:///D:/DissertationReview/Final/FinalDissertationPrint.docx%23_Toc207100855
file:///D:/DissertationReview/Final/FinalDissertationPrint.docx%23_Toc207100856
file:///D:/DissertationReview/Final/FinalDissertationPrint.docx%23_Toc207100857
file:///D:/DissertationReview/Final/FinalDissertationPrint.docx%23_Toc207100858
file:///D:/DissertationReview/Final/FinalDissertationPrint.docx%23_Toc207100859
file:///D:/DissertationReview/Final/FinalDissertationPrint.docx%23_Toc207100860
file:///D:/DissertationReview/Final/FinalDissertationPrint.docx%23_Toc207100861
file:///D:/DissertationReview/Final/FinalDissertationPrint.docx%23_Toc207100862
file:///D:/DissertationReview/Final/FinalDissertationPrint.docx%23_Toc207100863
file:///D:/DissertationReview/Final/FinalDissertationPrint.docx%23_Toc207100864

7

Figure 5.2 Response to a prompt .. 80

Figure 5.3 Sample Python script ... 80

Figure 5.4 Evaluation of the generated questions ... 81

Figure 5.5 Average win rate against all other models... 85

Figure 5.6 Win rate matrix.. 86

Figure 5.7 Models criteria score comparison .. 86

Figure 6.1 Methodology for multi-language question generation from source code .. 95

Figure 6.2 Sample of templates used for question generation from source code .. 96

Figure 6.3 Bloom's taxonomy coverage ... 104

Figure 6.4 Question difficulty distribution by language ... 104

Figure 6.5 Question quality score by language and difficulty level ... 105

Figure 6.6 Question quality score by language and code complexity ... 105

Figure 6.7 Linguistic complexity by difficulty level .. 106

Figure 6.8 Average question diversity by programming language ... 107

Figure 7.1 Comprehensive pipeline for multi-language question generator and evaluator system 116

Figure 7.2 Quality score per language f or the three approaches compared with the baseline 131

Figure 7.3 Comparison between the proposed approaches and the baseline .. 132

file:///D:/DissertationReview/Final/FinalDissertationPrint.docx%23_Toc207100865
file:///D:/DissertationReview/Final/FinalDissertationPrint.docx%23_Toc207100866
file:///D:/DissertationReview/Final/FinalDissertationPrint.docx%23_Toc207100867
file:///D:/DissertationReview/Final/FinalDissertationPrint.docx%23_Toc207100868
file:///D:/DissertationReview/Final/FinalDissertationPrint.docx%23_Toc207100869
file:///D:/DissertationReview/Final/FinalDissertationPrint.docx%23_Toc207100870
file:///D:/DissertationReview/Final/FinalDissertationPrint.docx%23_Toc207100871
file:///D:/DissertationReview/Final/FinalDissertationPrint.docx%23_Toc207100872
file:///D:/DissertationReview/Final/FinalDissertationPrint.docx%23_Toc207100873
file:///D:/DissertationReview/Final/FinalDissertationPrint.docx%23_Toc207100874
file:///D:/DissertationReview/Final/FinalDissertationPrint.docx%23_Toc207100875
file:///D:/DissertationReview/Final/FinalDissertationPrint.docx%23_Toc207100876
file:///D:/DissertationReview/Final/FinalDissertationPrint.docx%23_Toc207100877
file:///D:/DissertationReview/Final/FinalDissertationPrint.docx%23_Toc207100878
file:///D:/DissertationReview/Final/FinalDissertationPrint.docx%23_Toc207100879
file:///D:/DissertationReview/Final/FinalDissertationPrint.docx%23_Toc207100880
file:///D:/DissertationReview/Final/FinalDissertationPrint.docx%23_Toc207100881

8

List of Tables

Table 2.1 Comparison between the traditional approaches and ontology-based approaches 22

Table 2.2 AST, CFG, and DFG summary table .. 25

Table 3.1 Comparison between the traditional approaches and ontology-based approaches 50

Table 3.2 Evaluation table sample .. 54

Table 3.3 Ontology-based model evaluation: Python programming topics sample .. 55

Table 3.4 Ontology-based model evaluation performance by dataset size ... 55

Table 4.1 Environment settings, tools, and applied libraries .. 62

Table 4.2 Types of syntax covered ... 72

Table 5.1 Selected LLMs .. 79

Table 5.2 Average criteria scores ... 83

Table 5.3 Repetition rates for each model at different question levels ... 87

Table 5.4 Human evaluation summary table .. 88

Table 5.5 Repeated measures ANOVA results ... 88

Table 5.6 Post-hoc pairwise comparisons – relevance (Bonferroni Corrected) .. 88

Table 5.7 Post-hoc pairwise comparisons – educational value (Bonferroni Corrected) ... 89

Table 6.1 A sample transformation from code to question ... 103

Table 6.2 Automatic evaluation results by programming language (N=456) .. 107

Table 6.3 Human evaluation results by programming language (N=40) .. 108

Table 6.4 Paired t-test results for human evaluation differences .. 108

Table 7.1 Bloom's taxonomy distribution ... 126

Table 7.2 Dataset question type distribution... 127

Table 7.3 Automatic evaluation results by approach .. 128

Table 7.4 Quality score by approach per programming language .. 129

Table 7.5 Human evaluation of CFG-PDG results by programming language (N=48) .. 130

Table 7.6 Paired t-test results for human evaluation differences .. 130

9

List of Abbreviations

AI Artificial Intelligence

ANOVA Analysis of Variance

API Application Programming Interface

AQG Automatic Question Generation

AST Abstract Syntax Tree

AWS Amazon Web Services

BERT

BLEU

Bidirectional Encoder Representations from Transformers

Bilingual Evaluation Understudy

CFG

CS

CSV

Control Flow Graph

Computer Science

Comma Separated Values

DF Degrees of Freedom

DFG Data Flow Graph

ELO Elo Rating System (relative model ranking)

F1-Score Harmonic Mean of Precision and Recall

GPT

ITS

Generative Pre-trained Transformer

Intelligent Tutoring Systems

JSON

KGs

JavaScript Object Notation

Knowledge Graphs

LLMs Large Language Models

LMS Learning Management Systems

MCQ

ML

Multiple-Choice Question

Machine Learning

N Number of Samples

NLP

ALMG

Natural Language Processing

Automatic Learning Materials Generation

OWL Web Ontology Language

PDG Program Dependence Graph

p-value Probability Value in Statistical Testing

QG

ROUGE

Question Generation

Recall-Oriented Understudy for Gisting Evaluation

SPARQL SPARQL Protocol and RDF Query Language

TIOBE The Importance of Being Earnest (Programming Languages Popularity Index)

10

Summary

This dissertation addresses the critical issue of developing effective methods for Automatic

Question Generation (AQG) from source code in programming education. The motivation arises

from the increasing demand for scalable and adaptive assessment tools in computer science, where

manual preparation of exercises and tests often places a heavy burden on instructors. The

objectives of this research are to design, implement, and evaluate multiple approaches for

generating meaningful assessment questions directly from program code. The significance of this

work lies in its potential to support personalized learning, reduce instructor workload, and enhance

assessment quality.

To achieve these aims, the dissertation adopts a progressive research design across five interrelated

studies, each addressing specific limitations of earlier approaches and expanding the scope of

AQG in terms of computational techniques, programming language coverage, and pedagogical

contribution. The first study developed an ontology-based system that modeled Python

programming concepts to automatically generate structured learning materials in the form of

questions. Building on this, the second study proposed a hybrid approach that integrated semantic

analysis with template-driven techniques, still within Python, to improve both accuracy and

diversity of questions. The third study shifted toward artificial intelligence by evaluating

transformer-based large language models for their ability to generate semantically rich code-

related questions across C++, Java, and Python. The fourth study introduced a template-based

system employing static code analysis as a baseline for multi-language generation, producing

parameterized questions from C, C++, Java, and Python code. Finally, the fifth study culminated

in the design of a multi-language static-analysis system, which directly addressed the limitations

of the baseline system by broadening scalability and improving question variety while retaining

accuracy across the same four languages. Data collection across studies included generated

question sets, automatic evaluations, and expert reviews.

The ontology-based system demonstrated feasibility for concept-driven AQG but lacked

scalability. The hybrid method produced a wider variety of questions than template-only systems,

enhancing both diversity and contextual relevance. Large language models demonstrated strong

potential in generating semantically rich questions across multiple programming languages but

posed challenges in computational demands and cost. The template-based static code analysis

system achieved high precision in syntactically accurate question generation across four

languages, but creativity and higher-order question types remained constrained. The multi-

language static-analysis system overcame several of these limitations by supporting broader

coverage and improving flexibility, thereby demonstrating scalability and practical deployment

11

potential. Expert evaluations confirmed the accuracy and relevance of the generated questions,

though further enhancement is required for creativity and critical-thinking dimensions.

Taken together, the findings confirm that a multi-approach framework can address the diverse

requirements of AQG from source code in programming education. The dissertation contributes

not only computational methods but also pedagogical insights into assessment design and

linguistic perspectives on question formulation. It advances theoretical understanding while

offering practical tools for scalable programming assessment. Practical implications include

integrating AQG systems into learning management platforms to support automated formative

assessment at scale. Limitations include dependence on source code quality, variation across

programming languages, and the need for validation in authentic classroom contexts. Future

research directions include adaptive AQG, closer integration with intelligent tutoring systems, and

extending applications beyond programming to other domains requiring structured assessment.

12

Chapter 1 Introduction

1.1 Background

Automatic Question Generation (AQG) is the process of creating meaningful and relevant

questions automatically from various types of input, including text, structured data, images, or

videos, using computational methods. In simple terms, it involves designing systems that can

understand content, identify key information or patterns, and generate clear, contextually

appropriate questions to support learning, comprehension assessment, conversational systems, or

data exploration without requiring manual question crafting for each instance [1], [P2]. Figure 1.1

illustrates the conceptual framework of AQG from source code. The system takes source code as

input, processes it through computational analysis and generation techniques, and automatically

produces relevant questions for educational or assessment purposes.

Figure 1.2 illustrates the four-component architecture of Intelligent Tutoring Systems (ITS) as

discussed by the review article [2]. This dissertation focuses specifically on the Domain Model

component through AQG for programming education. This work contributes to the foundational

knowledge representation layer by developing methods to automatically generate contextually

appropriate programming questions that can be integrated into the broader tutoring system

architecture.

The evolution of programming education necessitates a profound reflection on how assessment

has been designed, delivered, and evaluated. Given that coding has become necessary across

academic disciplines and industries, educational institutions increasingly need to develop robust

and scalable ways to assess their students' programming knowledge and problem-solving skills

[3]. Learners today often study multiple programming languages, including Python, Java, C++,

and C, each with unique syntactic and conceptual nuances, making standardized assessment even

more challenging.

Although recent AQG studies have primarily focused on generating questions from natural

language texts and, to a lesser extent, visual data [1], [4], [5], AQG from source code remains

underexplored despite its potential to transform programming education. Academic programming

Figure 1.1 Conceptual framework of AQG from source code

13

textbooks typically include text, images, and code examples, yet most AQG systems rely heavily

on NLP techniques for text-based question generation (QG), with limited exploration of visual

content [1], [P3]. The review paper [P2] advocates for developing QG methods tailored to

programming topics, along with appropriate evaluation criteria.

Traditional methods of question design in programming courses have struggled to keep pace with

this growth. As noted in previous studies, manually crafted questions are time-consuming to

produce [6], difficult to standardize across diverse learners and languages [6], [7], and often fall

short of covering the full spectrum of cognitive skills outlined in Bloom’s Taxonomy [8].

Moreover, they tend to lack scalability, particularly in large or multi-language educational settings

where hundreds of students may require tailored assessment materials [7].

These challenges have driven a growing interest in AQG from source code. Rather than relying

on static repositories of questions, AQG approaches analyze code directly, extracting structure,

semantics, and logic to generate assessment items that dynamically align with the learner’s context

[9]. This dissertation responds to that demand by presenting a unified exploration of five distinct

yet complementary approaches: ontology-driven QG [10], [11], hybrid semantic-to-question

modeling [9], template-based multi-language QG via static code analysis [12], evaluation of large

language models (LLMs) for QG from source code [13], and a comprehensive multi-language

assessment system powered by Control Flow Graphs (CFGs) and Program Dependence Graphs

(PDGs). Collectively, these approaches constitute the novel contributions of this work. I extend

Figure 1.2 The four-component ITS architecture

14

beyond traditional template or ontology-based systems by incorporating formal semantic graph

representations, namely CFGs and PDGs, to anchor QG in actual program structure and behavior.

CFGs model possible execution paths and dependencies across program blocks [14], while PDGs

capture both control and data dependencies among statements [15], providing a richer semantic

foundation for QG. Each approach contributes to a shared objective: to automate programming

QG in a pedagogically grounded, cognitively stratified (Organizing learning or assessment tasks

by levels of thinking, from simple recall to complex problem-solving), and linguistically inclusive

way [7], [16]. The background and motivation for this work emerge directly from the collective

recognition within these studies of the limitations in existing systems and the urgent need for more

intelligent, adaptable, and scalable solutions in programming education assessment [7].

1.2 Research Motivation

Despite significant advancements in artificial intelligence (AI)-driven educational technologies,

several critical gaps persist in the domain of AQG for programming education. The first significant

challenge is the lack of scalable systems capable of generating high-quality, diverse, and

cognitively stratified questions directly from source code [17], [18]. As discussed by Kurdi et al.

(2020), rigid template-based QG methods are often manually constructed, lack linguistic diversity,

and are limited in their ability to produce varied or complex question types. These limitations

hinder their adaptability across different domains and educational objectives [5]. Previous studies

show that manually created questions are time-consuming and struggle to maintain cognitive

coverage across large-scale deployments, reinforcing the necessity for automation that

accommodates a range of programming logic and learner profiles [17]. A second limitation is the

insufficient support for multi-language QG across most existing tools [19]. Template and static

analysis-based methods typically underperform when handling multi-language syntax and

semantics, making them less effective for inclusive educational environments [5]. Additionally,

few frameworks integrate pedagogical models such as Bloom’s Taxonomy in a systematic way,

resulting in assessment items that are either too shallow or mismatched in cognitive depth [20],

[21].

The introduction of the transformer architecture marked a significant advancement in language

modeling by incorporating an attention mechanism. This component enables the model to

dynamically assess the relative importance of input tokens and discern intricate relationships

among them, independent of their sequential positioning. As a result, the model demonstrates

enhanced coherence in its generated outputs and exhibits an improved capacity to preserve

contextual information over extended textual spans [22], [23]. Finally, current evaluation practices

for QG from source code lack standardization and pedagogical alignment. Typical methods often

15

rely on single-reference n-gram similarity metrics such as BLEU (Bilingual Evaluation

Understudy) and ROUGE (Recall-Oriented Understudy for Gisting Evaluation), which fail to

capture the semantic and syntactic diversity needed for robust assessment. Previous efforts have

shown that multi-reference evaluations, especially those enhanced by paraphrases generated

through LLMs, can improve the correlation with human judgment and provide more reliable

evaluation frameworks [24].

Although LLMs like GPT-4 (generative pre-trained transformer) can generate syntactically fluent

questions, their outputs vary considerably in relevance, clarity, and educational value. Benchmarks

such as EQGBench demonstrate that while LLM-generated questions are linguistically coherent,

their practical applicability in educational settings depends heavily on alignment with pedagogical

objectives, which is currently insufficiently addressed [25]. Moreover, expert-validated, multi-

dimensional evaluation frameworks that integrate educational goals and knowledge alignment

remain rare, limiting the instructional reliability (consistent pedagogical appropriateness and

quality) of automatically generated questions. Recent work proposing planning-based frameworks

emphasizes the need for such multi-dimensional, expert-informed approaches to enhance the

pedagogical usefulness and reliability of question generation systems [26].

These limitations underscore the need for a principled and pedagogically grounded approach to

AQG from source code. By integrating semantic modeling (Creating a structured representation

of knowledge so a computer can understand the meaning and relationships between concepts),

cognitive stratification, and rigorous evaluation practices, such an approach can support scalable

and equitable learning assessments in programming education.

1.3 Problem Statement

The global expansion of computer science (CS) education has intensified the need for scalable,

high-quality assessment tools that can effectively serve diverse learners across various

programming languages [3], [7]. Traditionally, the manual development of programming

assessment questions has been labor-intensive, inconsistent, and insufficient to meet the rising

demand for pedagogically sound, comprehensive evaluation materials in programming education

[6], [8], [21]. AQG has emerged as a promising approach for scalable assessment across

educational contexts [1], [4], [5]. However, the current research landscape in AQG reveals a

pronounced imbalance in focus and development across different input modalities. The field has

been dominated by text-based question generation, benefiting from extensive datasets, mature

neural models, and a clear trajectory from rule-based systems to large pre-trained transformers

and LLMs [4], [17], [22]. Similarly, visual QG has seen growing attention, particularly for

generating questions from images and, more recently, educational diagrams, leveraging

16

advancements in multimodal learning [19], [26]. These areas have established robust evaluation

practices and benchmarks, fueling rapid progress and adoption [24], [25]. In contrast, QG from

source code remains significantly underrepresented despite its critical potential in programming

education [9], [12], [17]. Generating meaningful and pedagogically aligned questions directly

from source code presents unique challenges, including understanding code semantics [14], [15],

aligning questions with relevant programming concepts [9], [12], and ensuring cognitive coverage

across difficulty levels [8], [20], [21]. The lack of standardized datasets and well-defined

evaluation metrics further impedes systematic advancements in this domain [13], [24], [25]. Most

existing AQG research has overlooked this research gap in programming education assessment,

and only a few recent studies have begun exploring it, often in isolated or single-language contexts

[9], [12], [17], leaving a substantial gap in the scalable assessment needs of programming

education. To clarify, generating programming questions directly from raw, multi-language source

code requires integrated semantic parsing (AST/CFG/PDG), multi-language normalization,

deliberate Bloom-level coverage, diverse code-centric question types, and multi-metric

evaluation. These requirements are largely absent in existing primarily text-focused or single-

language ontology/LLM studies, leaving the domain underdeveloped and limiting scalable

programming assessment.

Addressing this gap is essential to ensure equitable, effective, and scalable programming

assessment tools that align with modern pedagogical frameworks and can adapt across multiple

programming languages [3], [7], [21], [23]. Advancing AQG from code requires not only robust

generation methods that capture the semantics of source code [14], [15], but also the development

of principled evaluation frameworks tailored to the unique requirements of programming

education [13], [24], [25]. This dissertation aims to address these gaps to advance scalable, high-

quality, and pedagogically aligned AQG systems that support equitable programming education

worldwide.

1.4 Research Aims

This dissertation aims to advance programming education by designing, implementing, and

evaluating automated systems that generate and assess programming questions directly from

source code in a pedagogically grounded, linguistically inclusive, and cognitively diverse manner

[3], [7], [9], [12], [17]. This research seeks to bridge the gap between code-level semantic

understanding and educational assessment, using various techniques including ontologies [10],

[11], template-based static analysis [20], and LLMs [17], [22], [23], [25].

A central aim is to alleviate the manual workload of educators while improving assessment quality

and scalability across multiple programming languages [6], [7], [21]. Another aim is to

17

systematically align generated questions with established cognitive learning models, especially

Bloom’s Taxonomy, to ensure relevance across difficulty levels and educational contexts [8], [16],

[20], [21].

This dissertation also aims to contribute robust evaluation methodologies combining automatic

scoring and expert review [13], [24], [25], improving the reliability and instructional alignment of

automatically generated content [1], [4], [5]. Ultimately, the research aspires to provide an

integrated, technically rigorous, and pedagogically valid foundation for future systems in

programming assessment, especially in multi-language and large-scale learning environments [2],

[3], [23].

These aims collectively shape the trajectory and cohesion of the dissertation’s contributions,

reflecting the interdisciplinary intersection of code analysis, natural language generation, and

educational measurement [1], [4], [17], [22].

1.5 Research Objectives

This dissertation seeks to address the limitations of current programming assessment methods by

pursuing the following core objectives:

1. To design and implement models that automatically generate programming questions

directly from source code.

2. To ensure systematic alignment of generated questions with cognitive learning

frameworks, particularly Bloom’s Taxonomy.

3. To support multiple programming languages (Python, Java, C++, and C) within a unified,

multi-language assessment context.

4. To evaluate both the technical quality and the pedagogical value of generated questions

through automated metrics and expert review.

Together, these objectives establish the foundation of this dissertation’s contribution to advancing

programming education assessment through AI-enhanced, source code–driven QG and evaluation.

1.6 Scope and Limitations

This dissertation is bounded by the following scope and limitations, which reflect the operational

design and methodological constraints of the conducted studies:

1. The primary focus is on source code as input, excluding textbook content and natural-

language problem descriptions.

2. The study is limited to four programming languages: Python, Java, C++, and C.

18

3. The generated question types include multiple-choice questions (MCQs), open-ended

questions, Boolean (yes/no) questions, short-answer questions, code-tracing questions, fill-

in-the-blank questions, error identification (debugging) questions, and creative coding

questions.

4. Evaluation incorporates both automated scoring metrics and expert human review.

5. The scope does not extend to real-time feedback, adaptive learning mechanisms, or

dynamic student modeling.

These boundaries ensure that the dissertation delivers a focused and rigorous contribution to AQG

from source code, while acknowledging the limits of generalizability and leaving room for future

research directions.

1.7 Significance of the Study

This dissertation makes several important contributions to programming education assessment

through AQG:

1. It reduces the manual workload of educators by automating the design of programming

questions aligned with pedagogical frameworks.

2. It enhances inclusivity by enabling multi-language AQG and supporting cognitively

diverse assessment items.

3. It introduces rigorous evaluation pipelines that combine automatic metrics with expert

judgment, thereby improving the reliability and trustworthiness of educational AI.

4. It contributes to the intersection of NLP, machine learning (ML), and programming

pedagogy by applying structured and AI-driven methods to real-world educational

challenges.

Collectively, these contributions position the dissertation as both a technological advancement and

a pedagogical innovation in equitable, scalable, and cognitively aligned programming education.

1.8 Dissertation Structure

This dissertation is organized to reflect the systematic development, evaluation, and integration of

five distinct yet interrelated approaches to AQG from source code.

Chapter 2: Literature Review. This chapter provides an overview of research on programming

assessment, question generation, semantic code analysis, template-based methods, and LLMs.

19

Chapters 3–7: Research Studies. Each chapter presents an independent but interconnected study,

including its introduction, methodology, results, discussion, and conclusion.

Chapter 3: Ontology-Based Automatic Generation of Learning Materials for Python

Programming.

Chapter 4: Hybrid Approach for Automatic Question Generation from Program Codes.

Chapter 5: Evaluating Large Language Models for Generating Programming Questions

from Source Code.

Chapter 6: Template-Based Question Generation from Code Using Static Code Analysis.

Chapter 7: Multi-Language Static-Analysis System for Automatic Question Generation

from Source Code.

Chapter 8: Conclusion. This chapter synthesizes the findings, presents contributions, outlines

future research directions, and lists publications resulting from the dissertation.

While each study stands independently, together they form a cohesive exploration of AQG, from

source code reflecting both the progressive development of the dissertation and its multi-layered

contributions across computational, pedagogical, and linguistic dimensions.

20

Chapter 2 Literature Review

2.1 Introduction

AQG from source code is situated at the intersection of educational assessment, programming

pedagogy, static program analysis, and AI. As programming becomes a fundamental skill in

education and industry, the demand for scalable, cognitively diverse, and pedagogically sound

assessment frameworks has intensified. This chapter synthesizes the foundational literature across

these intersecting domains, organizing contributions and identifying gaps thematically across

ontology-driven instructional content, graph-based static analysis, template-based question

systems, LLMs, multi-language question generation, and the application of Bloom’s Taxonomy

in automated assessment frameworks [9], [17], [21].

2.2 Ontology-Based Instructional Content Generation

Effective instruction in programming education requires comprehensive and adaptive learning

materials [27]. These materials include textual and visual content, interactive exercises, tutorials,

real-world examples, assessment tools, and personalized pathways that reinforce hands-on

practice and real-world applicability. Textual content delivers explanations, code examples, and

problem sets, while interactive exercises and tutorials facilitate active learning and progressive

skill development. Real-world examples bridge theory with practice, and assessment tools

measure student progress and understanding [28]. The overarching aim is to provide accessible,

engaging, and personalized resources that support varied learning preferences. Programming

languages are a central area of study in CS and software development. Developing effective

methods for teaching programming concepts is essential. Interest in QG techniques for

programming languages has grown as a means of creating scalable practice opportunities,

reinforcing learning, and enabling ongoing assessment [P2]. The paper [P3] applied ontology to

develop a QG approach for programming concepts. Several studies have investigated the

possibility of automatic generation of learning materials and their positive impact on enhancing

student engagement and learning outcomes. Vergara et al. [29] found that AI-generated

personalized learning materials boosted students’ motivation and performance in mathematics

courses. At the same time, Liu et al. [30] highlighted how AI-powered tools assist educators by

automating quiz and worksheet creation, reducing manual workload while maintaining

instructional quality. Lin et al. [31] examined the relationship between student engagement and

outcomes in a cyber-flipped course, finding a positive correlation between active participation and

academic performance, thereby underscoring the value of dynamic course materials in blended

learning environments. Over the years, numerous researchers have explored the use of ontologies

21

in education to automatically create and structure learning materials, enhancing personalization

and interoperability within learning management systems (LMS) [32]. For example, the article

[33] proposed an intelligent ontology-based system to automate tasks such as course scheduling

and academic advising, demonstrating improvements in efficiency and student experience through

structured domain knowledge. William and Joselin [32] discussed how ontologies enhance

personalized learning, advocating for their use in shifting away from one-size-fits-all models to

adaptive, student-centered instruction.

In the paper [34], a method for constructing structured knowledge graphs using word embeddings

and NLP techniques was introduced, enabling automated semantic extraction and relationship

mapping from educational content. This structured approach facilitates reference definition

(prerequisites, hierarchy, relatedness), supporting the creation of dynamic, interconnected learning

resources. Similarly, Stephen [35] explored the use of LLMs like GPT-3 to generate CS learning

materials across topics, evaluating quality, relevance, and coherence to propose innovative

methods for scalable CS education. Flanagan et al. [36] proposed leveraging NLP and ML to

structure educational content extracted from various sources, aligning it with learning objectives

to improve digital learning environments. Meanwhile, the paper [37] detailed the construction and

practical application of a knowledge graph within Australian school science curricula, focusing

on personalized learning and adaptive tutoring system integration.

Despite the growth of ontology-driven learning material generation, significant limitations remain:

insufficient knowledge representation structures, limited flexibility and context awareness,

challenges in reusability, and the lack of deep, adaptive personalization. Current systems often

require human oversight, lack the interactivity and nuanced feedback of human instruction, and

fall short in fostering critical problem-solving skills. Continued AI advancements in contextual

understanding and adaptability are necessary to overcome these limitations. Table 2.1 compares

traditional methods with ontology-based approaches, highlighting the latter’s strengths in

semantic structuring, flexibility, scalability, and personalization, which are essential for modern,

learner-centered programming education. The complexity of QG requires expertise, deep content

knowledge, and substantial time investment, especially in online learning contexts since the

emergence of syntax-based and semantic-based QG models in 2014 [38], ontologies have proven

effective for standardizing knowledge representation across domains, including e-learning,

facilitating personalized and efficient learning [P9].

22

Table 2.1 Comparison between the traditional approaches and ontology-based approaches

Feature/Aspect Traditional Approaches Ontology-based Approaches References

Knowledge Structure linear and hierarchical semantic and interconnected [33], [P1]

Flexibility
limited adaptability to new

topics

highly adaptable to new knowledge and

domains
[34], [39]

Context Awareness
minimal context

consideration

rich context understanding through

relationships
[40], [P8]

 Content Reusability low reusability of materials
high reusability due to modular

components
[P3], [P9]

Personalization
basic customization, often

static

dynamic personalization based on learner

profiles
[32], [41]

Scalability
difficult to scale with

growing content

easily scalable with ontological

frameworks
[42], [43]

Interoperability often siloed systems enhanced interoperability across platforms [29], [44]

Knowledge

Representation

simple data structures (e.g.,

text, images)

rich semantic representation using classes,

properties, and relationships
[45], [P13]

Maintenance
time-consuming updates

and revisions

more accessible updates due to modular

ontology design
[46], [47]

Collaboration

Support

limited collaboration

features

facilitates collaboration through shared

ontologies
[35], [P9]

Learning Pathways
predefined and rigid

learning paths

dynamic learning pathways based on

learner needs
[29], [30]

Assessment Tools basic quizzes and tests
adaptive assessments based on learner

progress
[48], [49]

Feedback

Mechanism

limited feedback based on

performance

contextual feedback based on semantic

analysis
[36], [50]

Domain knowledge models, particularly those implemented with Python and Owlready2, offer

flexible and integrable representations for e-learning systems [P8]. They enable adaptive learning

systems capable of tailoring experiences to individual learners, reinforcing efficient knowledge

transfer. Although QG in programming education holds transformative potential, implementation

remains partial in modern contexts. Programming languages, central to CS education, demand

effective teaching methods, with QG approaches enabling scalable practice and assessment

opportunities [P3]. To support learning, Urazova [51] developed a system for automatic UML

database design QG and response evaluation using AI and NLP, providing students with practical,

self-assessment tools. Russell [52] explored automated code-tracing exercises in CS1 courses,

23

demonstrating their utility in reinforcing control flow and problem-solving skills, while

acknowledging challenges in replacing traditional teaching approaches. LLMs have recently been

applied to generate programming tasks and explanations, offering scalable solutions for instructors

[17]. However, challenges remain, including dependence on large-scale models, computational

demands, and difficulties in generating high-quality training data, all of which must be addressed

when implementing these technologies in educational contexts [53].

2.3 Static Code Analysis and Graph-Based Representations

Static code analysis is employed across various domains, particularly in compiler design and

security [54]. Static code analysis is used to automate checking student programming assignments.

It verifies the correctness of student programming assignments concerning assignment instructions

[55]. Many static analysis techniques are based on code representation, and it is critical in

performing other tasks that involve drawing deductions about semantic relationships between

program statements [56]. A proper code representation procedure allows deriving meaningful

source code features that capture different aspects of the source code structure and behavior.

Graph-based structures have mainly been employed in recent innovations in code representation

to capture both the syntactic and the semantic details embedded in the code. The Abstract Syntax

Tree (AST), CFG, PDG, and Data Flow Graph (DFG) are the most commonly used forms of

representation. The definitions of AST, CFG, and DFG are as follows:

Definition 1: AST

An AST for the function 𝑓𝑖 in a program 𝑃 = {𝑓1, 𝑓2, … , 𝑓𝑛} is represented as a graph 𝐺𝐴
𝑖 = (𝑉𝐴

𝑖, 𝐸𝐴
𝑖)

where 𝑉𝐴
𝑖 is the set of leaf nodes and 𝐸𝐴

𝑖 is the set of directed edges, where each edge connects a

parent node to its corresponding child node.

Definition 2: CFG

The CFG for the function 𝑓𝑖 is defined as a graph 𝐺𝐶
𝑖 = (𝑉𝐶

𝑖 , 𝐸𝐶
𝑖) where 𝑉𝐶

𝑖 is a set of nodes and 𝐸𝐶
𝑖

is a set of directed edges representing the control flow between the nodes.

Definition 3: DFG

A DFG for the function 𝑓𝑖 is defined as a graph 𝐺𝐷
𝑖 = (𝑉𝐷

𝑖 , 𝐸𝐷
𝑖) where 𝑉𝐷

𝑖 is a set of nodes and 𝐸𝐷
𝑖

is a set of directed edges capturing variable accesses and modifications during the execution.

The following is a simple example of a small function and shows how its AST, CFG, and DFG

would look in a basic form. This will give the reader a clear idea of how each graph is constructed

and what it represents. A simple Python function illustrates these structures:

24

Example Function

def add(x, y):

 z = x + y

 return z

1. AST: The AST represents the syntactic structure of the code. It focuses on how the source

code is structured, not how it executes or flows.

AST Nodes (simplified):

• FunctionDef

o Name: add

o Parameters: x, y

o Body:

▪ Assignment: z = x + y

▪ Expression: x + y

▪ Return: z

AST Edges:

• Each node connects to its child syntax elements. For example:

o FunctionDef → Assignment

o Assignment → Expression

o Expression → x, Expression → y

o FunctionDef → Return

2. CFG: The CFG shows the control flow from one instruction to another.

CFG Nodes:

1. Start

2. z = x + y

3. return z

4. End

25

CFG Edges:

• Start → Assignment

• Assignment → Return

• Return → End

Note: Since there is no branching (like if or loop), the CFG is linear.

3. DFG: The DFG captures how data (variables) are used and modified.

DFG Nodes (variables): x, y, and z.

DFG Edges:

• x → z (z is computed from x)

• y → z

• z → return (z is used in return)

This tells us that z depends on x and y and is then used in the return statement. Table 2.2 shows a

summary of AST, CFG, and DFG. While the DFG tracks explicit variable flows and value

dependencies across statements, the PDG additionally captures control dependencies (partial

CFG), revealing how both execution conditions and data shape program behavior.

Table 2.2 AST, CFG, and DFG summary table

Graph Type What It Shows Example Focus

AST Code structure z = x + y is an assignment with an addition expression

CFG Execution order Start → Compute → Return

DFG Variable flow x, y → z → return

PDG must be aware of some important control dependencies (which parts of the code are

conditional on others). For example:

 if x > 0:

 y = 5

 return y

The statement y = 5 depends on x > 0 being true (a control dependency). CFG is needed to

determine branching, loops, and execution contexts. So, PDG uses partial control dependencies

from CFG and data dependencies from DFG to build a unified view.

26

2.3.1 Automatic Question Generation

AQG has developed as a considerable scholarly subject in learning technology, and it has been

used in many fields, such as programming education. Early research in this area tended to target

the case of generating natural language questions based on natural language text and not as much

about generating program questions based on program code [P3]. The combination of AST, CFG,

and PDG analyzers and QG systems can considerably improve the quality and relevance of

automatically created questions. A combination of the CFGs to provide program control flow

information with PDGs to provide data dependency information can give a more comprehensive

view of the program's behavior. In education, AI presents not only challenges but also

opportunities, especially in its application to gauge student understanding. The rise of AI-

generated code necessitates rethinking assessment practices to accurately measure student

understanding and effort [57]. Systems using AST, CFG, and PDG have been developed for

grading programming skills [58], demonstrating the potential of structured code analysis for

automated evaluation.

2.3.2 Program Analysis

The problem of code analysis in programming languages has been discussed in several settings,

but little has been said about a particular case of QG. The combination of CFG and PDG, analysis

done when performing code comprehension, has been examined under various settings. The paper

[59] has shown that graph-based neural networks can well be applied to the problem of code

understanding by combining information in ASTs and in DFGs. In the same way, the authors in

[60] employed graph-based forms to enhance bug detection and code completion. These strategies

point to the possibility of using graph-based code analyses to build a better understanding of code

at a deeper level, though they have not been used directly to answer questions. More relevant to

the present work, the authors [61] built a natural language generator that takes a Python code

snippet and generates a natural language description of that code. Their strategy involved a

language-specific parser coupled with standard, intermediate representations, just like the current

work. Nevertheless, they were concerned with code summarization and giving feedback, and did

not discuss the difficulties of achieving balance in coverage of algorithms and cognitive levels.

2.3.3 CFG Analyzers

CFGs are especially useful for program analysis abstractions and indicate all potential paths of

execution in a program. A graph is a model of a program in that each node corresponds to a basic

block of code, and edges indicate the flow of control between blocks. The CFG analyzers exploit

this format to obtain information about the structure of the program, to find out whether or not

there are possible loops and conditional transitions, and to identify unreachable code blocks [56].

27

Such information can be used invaluably in the generation of questions so that one can then be

asked questions that determine how the programmer understands the mechanics of control flows,

including loop invariants, branch conditions, and exception handling. Modeling and analysis of

the execution flow of a program is paramount in its correctness, reliability, and security [62]. It is

possible to extract syntax and semantic information of source code using CFGs, which allows a

more detailed analysis of the behavior of programs [56].

Questions about the order of statement execution, the circumstances under which different blocks

of code are entered, and the possibility of entering an infinite loop or dead code are answerable by

studying the control flow. Suggesting a student to concentrate on the control flow, such questions

may examine his/her grasp of the logic of the program. Also, CFGs can be used to determine

important areas of code that can be looked at in more detail, e.g., performance bottlenecks or error-

prone areas.

2.3.4 PDG Analyzers

PDGs are a contrasting view in that they explicitly specify the data and control dependency

between distinct program statements. Nodes in a PDG are the individual statements, whereas the

edges show whether the value computed by one statement is referenced by another (data

dependence) or whether the evaluation of one statement is conditional on the result of another

(control dependence) [56]. This representation provides an analysis of critical data dependencies,

potential data races, and possibilities of code optimization with PDG analyzers. They give a

structure to how questions can be generated, which tests the understanding of the programmer on

issues like the flow of data, side effects, and effects of changes in a particular variable or statement.

All vulnerable cases of buffer overflows are spatial mistakes, which can be diagnosed with the

assistance of spatial information in a DFG [63]. Buffer overflow can be discovered with the aid of

static data flow analysis.

The PDGs are also capable of determining the inputs that influence or determine specific outputs,

which is an important aspect of numerous security vulnerabilities. Data flow presents an analysis

of how data is directed through a program and what is done to the data [64]. Data flow is a

dependency relationship among variables, with nodes representing variables and edges denoting

what caused the value of a variable [65]. Data flow analysis may discover a variety of bugs and is

among the most frequently used approaches in practice [66]. Following the interdependency of

variables allows determining the possible vulnerabilities, including a buffer overflow or a format

string, to be identified.

28

2.3.5 Hybrid CFG-PDG Analysis

Combining CFG and PDG analyzers provides an effective method to generate questions and thus

allows the generation of questions requiring insight into control flow and data dependencies. This

combination enables the creation of questions that are more complicated and subtle and tests the

reasoning of a learner about the interaction of various program components. The integration of

data and control that has been implemented in applications is more intriguing when designing a

custom architecture [67]. For example, one may pose questions like whether a modification in a

specific variable will affect the execution course of the program or what conditions could cause a

particular data dependency to produce a run-time error. This would allow for coming up with more

difficult and pertinent actual programming situations. Furthermore, CFG-PDG combinations can

also be used to discover the most critical control-sensitive and data-dependent code sections to

generate questions that pinpoint the most important parts of program behavior. Combining these

techniques improves the capability of defining questions that can assess single pieces of code and

code interactions between control flow and data dependency. Beyond QG, the synergy between

CFG and PDG provides broader benefits for comprehensive software understanding and analysis,

as discussed next.

2.3.6 Synergistic Use of CFG and PDG

Studies that expand AST-based code representations to cover paths in CFG and PDG have

demonstrated dramatic performance benefits to software engineering activities like method

naming, classification, and clone detection [68]. This combination of CFG and PDG analyzers

provides a more comprehensive picture of the program behavior. It allows us to generate questions

that will focus on control flow and data dependencies. The study of the interaction between these

two representations can enable the production of questions that demand deeper knowledge

regarding the functionality of the program in general and the possible interactions between the

various sections of the code. Such integration allows the formulation of questions that are more

rigorous and insightful. It results in a more elegant measure of the fairness of assessing the

competency of a programmer. Such a combination presents stronger questions, and the

programmer understands the code better.

The combination of PDGs and CFGs presents a synergistic effect and is useful when it comes to

finding vulnerabilities in code. When control flow and data dependency information are combined,

this capability emerges to discover fine-grained defects that may remain elusive to either of the

techniques individually [69].

29

2.3.7 Question Generation Strategies

Designing effective QG strategies is critically important in the design of assessments that not only

measure the knowledge a programmer has about code, but also measure it accurately. Such

strategies must apply to the characteristics of CFGs and PDGs and utilize the strong points of these

subjects to outline thought-provoking and relevant questions. Among these approaches are

identifying high-priority sections of code, including loops, conditional statements, or function

calls, and creating questions about their behavior. The other way is following data dependencies

with the PDG, forming questions about the information flow in the program. The assessment

should be on relevant issues.

2.4 Template-Based and Question Generation Strategies

Template-based approaches have been widely used in AQG across various domains. The paper

[5] provided a comprehensive survey of template-based QG techniques, highlighting their

effectiveness in ensuring question quality and relevance. It mentioned that the template library is

a major component of QG systems.

The paper [70] addressed educators' challenges in creating exam questions, particularly in remote

learning environments. To tackle these challenges, the authors proposed a new approach that

combines generative software development principles with feature-oriented product line

engineering. This approach was designed to automate the creation of exam questions, specifically

single-choice questions, using written templates.

The proposed generator allows educators to create families of questions that vary based on specific

features and parameters. However, existing template-based AQG methods often fall short in

supporting multi-language contexts, balanced algorithm coverage, and strategic difficulty

alignment. This dissertation builds on these foundations while addressing these limitations,

ensuring multi-language support and cognitive diversity in QG.

2.5 Bloom’s Taxonomy and Cognitive Alignment

Bloom's Taxonomy is a starting point from which a set of questions can be classified according to

the complexity of thinking skills [71]. Bloom's Taxonomy is a foundational framework for

categorizing questions based on cognitive complexity [71]. It includes remembering,

understanding, applying, analyzing, evaluating, and creating [71], [72]. In the paper [73], the

authors have performed a thorough review of factors that complicate introductory programming

tasks and have established several major factors that make questions more or less challenging.

Their result offers valuable information in preparing questions of adequate difficulty based on

30

varying programming languages. The tactical use of programming languages' difficulty level has

been argued on different educational fronts. These learning theories guide us in generating

questions, especially in providing proper cognitive demand, difficulty levels, and language-

specific issues.

Integrating Bloom's Taxonomy into AQG frameworks marked a significant advancement in

aligning educational technology with pedagogical objectives. This integration enables the

generation of assessment items systematically mapped to cognitive skill levels, ensuring that

instruction and evaluation are pedagogically sound and targeted to desired learning outcomes.

Recent AQG systems utilize Bloom’s Taxonomy to classify and generate questions that target

specific cognitive levels, from basic recall (remembering) to higher-order thinking skills like

learners’ cognitive development and support differentiated instruction [20]. It encompasses

remembering, understanding, applying, analyzing, evaluating, and creating [71], [72], [74]. This

taxonomy helps assess the cognitive skills that the questions aim to consider. Bloom's Taxonomy

is used to classify educational learning objectives into levels of complexity and specificity. The

following are the six levels from the simplest to the most complex:

1. Remembering: This is the basic level where learners must recall facts and concepts. It

involves recognizing and recalling relevant knowledge stored in memory.

2. Understanding: Learners demonstrate comprehension by explaining ideas or concepts,

summarizing information, and interpreting meaning.

3. Applying: It involves using knowledge in new situations. Learners can apply what they

have learned to solve problems or complete tasks, demonstrating practical understanding.

4. Analyzing: Learners break down information into parts to understand its structure. They

can differentiate between facts and inferences and identify relationships among various

components.

5. Evaluating: Learners make judgments based on criteria and standards. They can critique

ideas, assess the validity of arguments, and provide justification for their opinions.

6. Creating: This is the highest level of Bloom's Taxonomy, where learners combine elements

to form a coherent or functional whole. They can design new products, propose solutions,

or generate original ideas.

These levels are essential for educators to design assessments and questions that target various

cognitive skills, ensuring a comprehensive evaluation of student learning. In the context of AQG,

understanding these levels is crucial for creating questions that effectively assess students'

knowledge and cognitive abilities.

31

2.6 Question Types in Programming Education

Programming instructors use a variety of question formats to assess and enhance student

understanding, often leveraging AQG from source code. Each question type serves different

learning objectives and challenges. The following are the question types in programming

education:

1- MCQs: MCQs are a popular assessment tool in programming courses. MCQs can be an effective

and motivating way for students to test their understanding of programming concepts [75].

2- Open-Ended Questions: Open-ended questions in programming education require students to

provide an unstructured response, such as explaining code or writing their own solution [76].

3- Boolean (Yes/No) Questions: Yes/No or True/False questions are a simple form of assessment

where students judge the correctness of a statement. In programming education, these judgment

questions are considered a type of closed-ended exercise alongside MCQs and fill-in-the-blanks

[77].

4- Short Answer Questions: Short answer questions require a brief textual or numeric response

rather than selecting from given options. In programming, this format is often seen in questions

like “What is the output of the following code?” or “Give the Big-O time complexity of this

algorithm.” These questions compel students to recall or deduce an answer without cues. They can

assess understanding more directly than MCQs, and recent systems have begun to automatically

grade such answers [78].

5- Code Tracing Questions: Code tracing questions present a piece of code and ask students to

simulate its execution to determine the outcome or state. A typical prompt might be: “Given this

code, what will be the output?” or “What values do the variables hold after execution?” This

question type is well-established in programming education as a way to test understanding of

control flow and state changes [79].

6- Fill-in-the-Blank Questions: Fill-in-the-blank questions in programming provide a code snippet

or sentence with certain parts removed, and students must supply the missing piece. This format

is often used to focus attention on specific syntax or concepts [80].

7- Error Identification (Debugging) Questions: Error identification questions, also known as

debugging tasks, present students with faulty code and ask them to find and/or fix the error. These

questions target a student's ability to read code critically and understand common bugs. For

instance, a prompt may say: “This code is supposed to do X but it does not. What is the error and

how would you fix it?” [81].

32

8- Creative Coding Questions: Creative coding tasks are open-ended prompts that require students

to write original code to achieve some goal, often with room for creative expression or multiple

correct solutions. Unlike the strictly defined answers of the above formats, these questions might

ask students to “Design a program that meets scenario X” or “Create a graphic using code that

accomplishes Y.” The emphasis is on problem-solving, design, and creativity in programming

[82].

2.7 Large Language Models in Programming Question Generation

Advances in NLP have led to the emergence of LLMs. These language models have proven their

potential in different NLP applications, including QG and evaluation [83]. This section reviews

the related works that laid the foundations for developing and evaluating LLMs in generative AI.

2.7.1 Background On Language Models in NLP

The development of LLMs has been influential [84]. In the past decade, the emergence of LLMs

has driven a paradigm shift in NLP [85]. These models are characterized by their immense size,

often containing billions of parameters. They are pre-trained on vast amounts of data, which

enables them to learn patterns, syntax, and semantics of natural language. Pre-training is followed

by fine-tuning specific tasks, making them adaptable to various applications.

Other methods of QG involve building specialized ontologies and integrating them with AI

models, such as the previous research work [P3]. A hybrid ontology and AI approach was

proposed to build an AQG model. However, this work lacks automatic evaluation framework. The

novelty lies in bridging the semantic gap between programming syntax and natural language

understanding, enabling AI-based QG systems to work effectively with source code as input

material (something that was not possible before without extensive manual annotation of code

examples).

OpenAI's GPT models have continuously improved language generation capabilities, starting with

GPT-1 and advancing to GPT-2, GPT-3, and beyond [86]. GPT-3.5, for example, delivered

human-level performance on different language tasks, from translation to question-answering.

LLMs have proved their adaptability in NLP tasks. They perform well in text generation,

summarization, translation, sentiment analysis, and various other tasks. The capacity to understand

and generate text in multiple languages and domains causes such adaptability [86]. While LLMs

are powerful tools, they are not without their challenges. Their massive size demands substantial

computational resources, making them inaccessible to many researchers and organizations. These

models have been criticized for keeping biases in their training data [87]. In the context of

programming question generation, several types of biases are particularly concerning: (1) Gender

33

and cultural biases may manifest in variable names, example scenarios, or assumed contexts (e.g.,

consistently using male names in programming examples or culturally-specific references), (2)

Programming paradigm biases where certain coding styles or approaches are favored over others,

potentially disadvantaging students from different programming backgrounds, and (3) Complexity

biases where questions may systematically favor certain types of programming concepts or

difficulty levels based on the prevalence of such examples in training data. Research efforts to

mitigate these biases and make LLMs fairer have gained attention.

One of LLMs' strengths is their adaptability through fine-tuning [88]. Researchers and

practitioners can customize these models for domain-specific tasks, allowing them to perform well

in specialized domains. The fine-tuning process involves training the model on task-specific data,

enhancing performance and relevance to specific tasks. The growth of LLMs has raised ethical

and societal concerns. The ability of these models to generate coherent, human-like responses also

means they might be used for malicious activities such as misinformation and deepfakes.

Discussions on responsible AI and ethical use are ongoing. LLMs have become the focus of many

studies, ranging from model architecture and training techniques to healthcare, finance, and

education applications. Researchers are exploring ways to harness LLMs' power to benefit society

while mitigating potential harms [89].

2.7.2 Question Generation with Large Language Models

Integrating LLMs into language processing has significantly advanced QG capabilities. Because

of their extensive pre-training on vast text corpora, LLMs have transformed how questions are

generated. This section explores the evolution and impact of LLMs on QG, emphasizing their

contributions to the field of NLP [22].

1) From rule-based to data-driven approach: Before the era of LLMs, QG primarily relied on

templates and rule-based methods. These techniques effectively generated simple questions but

were inadequate in generating relevant and diverse questions. LLMs have adopted a data-driven

approach. Their ability to learn complex language patterns and semantics has led to the generation

of questions customized to the specific content from which they are derived [90].

2) Contextual understanding and coherence: LLMs can contextualize the input text to generate

coherent and relevant outputs, unlike rule-based methods, which often produce disconnected or

irrelevant questions. Contextual understanding is critical when generating questions from

documents with complex structures, technical language, or nuanced information [91].

34

3) Fine-tuning for question generation: Fine-tuning involves adapting pre-trained models to

specific tasks by training them on question-generation datasets [92]. It allows LLMs to learn the

patterns for various contexts, which improves their performance.

4) Challenges and opportunities: LLMs offer great potential in QG, but challenges exist.

Generating clear and concise questions with different levels of complexity and coverage remains

an ongoing research challenge [93]. The current research addresses these challenges by

introducing evaluation criteria such as clarity, conciseness, and coverage to comprehensively

evaluate LLMs in QG.

2.7.3 Evaluation Metrics for NLP

Evaluating language processing models is critical to NLP research and application development.

Effective evaluation metrics allow researchers and practitioners to assess models' performance in

various tasks quantitatively and qualitatively [94].

1) The need for evaluation metrics: Evaluation metrics judge how the performance of NLP models

is measured. NLP tasks have different aspects and often involve generating or processing human

language, making it challenging to assess models’ performance objectively. Metrics provide a

structured framework for evaluating models’ output, identifying strengths and weaknesses,

tracking progress, and guiding model development [95].

2) NLP evaluation metrics: For NLP evaluation, several widely accepted evaluation metrics have

been developed to assess different aspects of model performance. These include clarity, which

measures the similarity between generated and reference text, and ROUGE for text summarization

tasks [96]. These metrics evaluate the generated text’s specific linguistic qualities.

3) Objective evaluation: Objective metrics can be used to assess the capability of NLP models.

For example, clarity provides quantitative scores indicating the clarity between the generated and

reference text. Combining metrics like relevance, coherence, and conciseness offers a more

comprehensive understanding of model performance [97]. Our research adopts this set of criteria

to assess LLMs’ performance in generating questions from program codes.

4) Ethical considerations in metrics: Using evaluation metrics raises ethical concerns. Metrics

should be carefully chosen to avoid reinforcing biases or undesirable behaviors in NLP models

[98]. Responsible AI practices involve developing metrics that encourage fairness and ethical

behavior in NLP models. The approach proposed in the current research addresses these ethical

concerns while evaluating LLMs’ performance and considering issues related to relevance and

clarity in question generation. As LLMs become more powerful, ethical considerations have

become important. Developing responsible AI and mitigating biases in LLMs are critical [99].

35

2.7.4 State-of-the-art LLMs

Various models have emerged, each showing considerable performance across language

processing tasks [89].

1) GPT-4: Building on the success of its predecessors, GPT-4 is known for its language generation

ability [100]. GPT-4 exhibits contextual understanding due to its larger model size, improved

training techniques, and increased parameters [101]. GPT-4-0314 has a smaller context capacity

than GPT-4-0613. GPT-4 has set a high benchmark for other models in question generation.

2) GPT-3.5: It is the updated version of GPT-3; a later version is 3.5-turbo. It supports 4096 tokens,

is free on the web interface, and has a paid application programming interface (API). The

capabilities of GPT3.5-turbo-0613 result in better output than GPT-3 for text processing tasks

[102].

3) Llama-2: Llama-2 specializes in chat-based interactions and is designed to generate human-like

responses [103]. This specialization makes Llama2 a strong candidate for dialogue-based question

generation.

4) H2OGPT Variants: The H2OGPT series features fine-tuned variants for specific domains.

H2OGPT-gm-oasst1-en-2048-falcon-40b and H2OGPT-gm-oasst1-falcon40b offer promising

performance for domain-specific applications [104]. These models are customized to generate

questions from technical content, which aligns with our research’s focus on QG from source code.

Several versions with different parameter sizes are available; all are open-source and can be

optimized for specific domains. Each falcon has a distinct parameter capacity or token size [103].

The following is a brief description of each model:

• H2OGPT-gm-oasst1-en-2048-falcon-40b-v1: It has the largest parameter size in open-

source models, reaching 40 billion parameters, and the precision of text generation and

understanding of NLP is high [105].

• H2OGPT-gm-oasst1-en-2048-falcon-40b-v2: This version is similar to the previous

version, as they both trained on the same dataset; however, different personalization settings

were added. Additionally, both versions support 2048 tokens [105].

• Falcon-40b-sft-top1-560: This model supports up to 2048 tokens and performs very well in

text generation. It was trained on the OSSAT dataset [105].

• H2OGPT-oasst1-falcon-40b: This version is the initial release with 40 billion parameters

and supports 2048 tokens. However, the other versions have more refined training data than

the initial version [105].

36

• H2OGPT-gm-oasst1-en-2048-falcon-7b-v3: This model is significantly smaller than the

other Falcon models; however, it is also trained on the OSSAT data set, and supports the

context length of 2048 [105].

• Falcon-40b-instruct: This model is the newer version of Falcon and uses the same dataset

as the previous ones. However, this version is tuned specifically to perform tasks and follow

instructions precisely. This version performs better on the required tasks than the previous

ones [105].

5) Vicuna-33b: Vicuna-33b focuses on specialized applications [106]. Its model size of 33 billion

parameters combines scalability with domain expertise. Vicuna-33b’s potential for generating

questions in specific technical domains might provide valuable insights into the feasibility of using

such models for specialized tasks.

6) Claude: The Claude model is from Google, and it has a huge input token limit that reaches up

to 100K user input. Claude performs well on multiple-choice tasks [107]. However, at the time of

writing, this model was only available in the USA and the UK, which was considered an access

limitation [108]. The parameter size for this model reaches 130 billion parameters. Furthermore,

for text generation, it is stated that it outperforms GPT-3.5, but GPT-4 remains better at prompt

understanding and coding [109].

2.8 Evaluation Metrics for Generated Questions from Source Code

Evaluating automatically generated questions is still a problematic issue, and multiple metrics and

methods are suggested in the literature. The article [110] developed a framework to measure the

quality of MCQs that are produced automatically in terms of relevance, clarity, and educational

worth. The paper [75] proposed some evaluation measures to gauge the quality and effectiveness

of the generated MCQs. These parameters make questions relevant, varied, and appropriate for

educational programs. The primary measurement criteria include question relevance score,

diversity index, and difficulty alignment accuracy. In another paper [111], the authors mentioned

that LLMs automatically generate MCQs in curricula CS0 and CS1. The course outline of both

CS0 and CS1 is the core input data into the EduCS system. The paper includes a list of evaluation

metrics that will help to evaluate the quality of MCQs provided by the EduCS system. The most

relevant aspects of these assessment measures were clarity, relevance, and difficulty level. As a

knowledge representation technique [P13], ontology has been used to build semantic models for

the Python language [P8], [P9]. The paper [P1] used automatic evaluation measures, bidirectional

encoder representations from transformers (BERT)-based semantic accuracy, to assess the

content. The paper [P3] does not cover automatic evaluation but proposes a hybrid model with

37

human expert evaluations focused on code difficulty and generated question validity. Overall,

assessing the quality of machine-generated questions from source code calls for robust metrics

beyond conventional automated scoring methods.

2.9 Conclusion

This chapter examined the intersection of AQG and programming education, emphasizing how

ontology-driven methods, graph-based code analysis, and LLMs contribute to scalable, high-

quality assessment systems. The chapter reviewed ontology-based instructional content

generation, highlighting its role in structuring and personalizing learning materials for

programming education while enhancing content reuse and consistency. It also explored how static

code analysis techniques, particularly ASTs, CFGs, DFGs, and PDGs, provide a structured

foundation for analyzing code semantics to inform AQG. The integration of these graph-based

representations supports the development of targeted, cognitively diverse programming questions

that align with Bloom’s Taxonomy, ensuring assessments measure varying levels of cognitive

skills. The chapter further discussed template-based approaches and LLMs like GPT-4 and Llama-

2, demonstrating their potential to generate coherent, contextually relevant programming

questions while acknowledging challenges such as bias, scalability, and the need for robust

evaluation frameworks. It highlighted the importance of clear evaluation metrics, including

semantic accuracy, relevance, and cognitive alignment, to assess the quality of automatically

generated questions effectively.

Overall, the chapter established a comprehensive theoretical foundation for the dissertation,

identifying critical limitations of current AQG methods in programming education, particularly

the lack of AQG directly from source codes and the absence of evaluation metrics for such

methods. The gaps identified in this literature review directly inform the research contributions.

While existing work provides valuable foundations in ontology-based content generation, graph-

based code analysis, and LLM applications, no existing systems integrate these approaches for

AQG from source codes, nor do they provide comprehensive evaluation and systematic cognitive

alignment to Bloom's Taxonomy levels.

38

Chapter 3 Ontology-Based Automatic Generation of Learning Materials for Python

Programming

3.1 Introduction

Recently, knowledge graphs (KGs), as structured forms of knowledge representation, have gained

substantial research interests across academia and industry from modern ontology views.

Integrating educational technologies with KGs has an impressive influence on teaching and

learning activities, especially in programming with Python. E-learning platforms provide students

with tools to easily engage and receive ongoing feedback during the e-learning sessions [35]. KGs

are crucial in optimizing the automation of ontology-based learning material generation. They

support the organization, interrelation, and knowledge utilization in a particular field [112]. In

Python programming, KGs can delineate the existing knowledge, relations, and entities [112].

Additionally, ontology-driven systems support more effective comprehension of the context and

relations of various concepts, thus enabling more precise and thorough learning materials

generation [112]. Adding KGs to the ontology-based automatic generation of educational

materials improves content relevance, personalization, interoperability, content reuse, and

efficient knowledge capture [113]. KGs can efficiently organize and manage the structural

knowledge of Python programming [113].

In the information age, one's programming capability is required in many professions, as

accentuated by the availability of resources aimed at teaching and training in programming [30].

Designing high-quality learning materials for programming languages is difficult and requires

substantial resources because of fragmentation in educational programming design, instructional

programming expertise, and difficulty in adaptive personalization [32]. Ontology-based automatic

learning materials generation (ALMG) leverages advanced educational technologies to streamline

this process [39]. This technology will assist educators in saving time and costs by generating

particular and appealing materials for students [39]. Calmon et al. [42] describe an automated

curriculum selection system that tailors educational content to student needs using ML and data

analytics, improving learning effectiveness and institutional delivery. Similarly, Xia et al. [48]

propose adaptive networked learning material delivery, demonstrating how ML can manage

learning processes and enhance student outcomes in networking education.

One of the methods to represent domain models is through ontology-based representation [P13].

Semantic understanding and knowledge representation enable Ontology-based ALMG for Python

programming that produces resources like tutorials, code examples, exercises, and assessments.

The development of an ontology for capturing Python programming concepts, relationships, and

properties is used in this approach. It attempts to create learning materials based on the pedagogical

39

requirements and learning objectives. The ontology-based approach further enables continuously

updating and refining the learning materials to sync with Python programming environment

changes [114]. Ontology-based ALMG for Python programming is a highly efficient and scalable

approach using structured knowledge presentation for automating educational content creation

[32]. With this method, its learning materials remain consistent, high quality, and personalized, all

while allowing for the efficient creation of various resources. Likewise, the existence of the

ontologies makes the routines adaptable to changes in Python programming [115], i.e., updating

the ontologies and automatically regenerating learning materials. Ontologies' automation saves

educators and content creators time and effort and improves a deep semantic understanding of the

Python programming domain for a better generation of learning materials [34]. Manual creation

of Python programming learning materials remains time-consuming and often fails to keep pace

with the ecosystem’s rapid evolution [P3]. An ontology-driven automated approach can address

these challenges, improving learners’ access to high-quality, adaptive, and contextually relevant

resources. The automatic generation of Python learning materials is critical for ensuring

scalability, adaptability, consistency, and accessibility while facilitating innovation in educational

technology and programming pedagogy [49]. It enables diverse, personalized learning experiences

aligned with learners’ needs and learning styles, supporting educational quality while reducing

instructor workload.

This chapter aims to develop a comprehensive ontology for Python programming and design an

ontology-based ALMG system tailored to Python education. It outlines the system’s design and

implementation while exploring potential enhancements and the implications of such a system in

educational contexts. This chapter details the technologies and methodologies underlying

ontology-based ALMG, emphasizing how ontologies capture domain knowledge and facilitate the

automated generation of educational content. It discusses the educational and practical

implications of ontology-based ALMG, illustrating its potential to enhance Python programming

instruction. The objectives of this chapter are to:

1. Design an ontology-based framework that models Python programming concepts and their

interconnections.

2. Develop a system for automatically generating Python programming learning materials

(specifically quizzes) that align with the modeled concepts and relationships. It supports

beginner, intermediate, and advanced difficulty levels.

The structure of this chapter is as follows: Section 3.2 describes the methodology, outlining the

ontology-based approach, domain-specific knowledge modeling, and implementation details,

including validation and evaluation of the proposed model. Sections 3.3 and 3.4 present the results

40

and discussion, respectively, while Section 3.5 concludes the chapter, highlighting practical

implications.

3.2 Methodology

3.2.1 Ontology-Based Approach for Learning Materials Generation

Formal knowledge representation is used in an ontology-based approach that captures domain-

specific concepts, relations, and properties and uses such information to generate learning

materials. The method involves an ontology for the target domain's concepts, relationships, and

properties, such as programming languages. Semantic understanding is captured through

ontology, meaning it results in inferring relationships and categorizing concepts. Learners' needs

and preferences are analyzed based on educational objectives and learner profiles. The ontology

is used to generate content that is coherent and contextually relevant. The materials are presented

using NLP techniques to make the explanation as clear and understandable as possible. Because

it is based on ontology, it allows for continuous updating and refinement as the domain knowledge

changes. The benefits include scalability, adaptability, personalization, consistency, efficiency,

and accessibility. The ontology-based approach can create adaptive, personalized, high-quality

educational content for various domains, such as programming education. The ontology-based

approach for generating learning materials involves structured knowledge representations on a

domain to automatically create the learning materials. Ontologies are leveraged in this process to

map the relationships between different concepts in the subject of a knowledge domain, providing

generated materials that are pedagogically sound and contextually relevant. The primary process

of generating learning materials using an ontology-based approach can be demonstrated in several

steps as follows:

1. Ontology development, which includes domain analysis, is to identify the key concepts,

relationships, and rules within the subject area, and ontology construction to define the concepts

(classes), properties (relationships), and instances (individuals) within the domain, and validation

and refinement ensure that the ontology accurately represents the domain knowledge through

validation and iterative refinement.

2. Knowledge representation involves formalizing the ontology. This formal language provides

precise semantics for the concepts and relationships, axioms, and rules to define axioms and

inference rules to capture the logical constraints and derivations within the domain.

3. Learning materials generation, which contains the content extraction for identifying relevant

content from the ontology based on the learning objectives, content structuring to organize the

extracted content into a coherent structure, following educational best practices (e.g., Bloom's

41

taxonomy), and template application to apply predefined templates to format the content into

various types of learning materials (e.g., textbooks, task assessments, interactive modules).

4. Automated generation algorithms include the input processing to accept inputs such as learning

objectives, target audience, and preferred content format; ontology querying, which uses

description logic queries to retrieve relevant concepts, relationships, and instances from the

ontology, material assembly to assemble the retrieved information into structured learning

materials using the defined templates, and output generation for producing the final learning

materials in the desired format (e.g., HTML, e-learning platform).

AGLM involves a complex pipeline integrating NLP, ML, and educational technology. The

following is an algorithmic approach to automatically generating learning materials from an

ontology. AGLM in the programming domain involves several tailored steps. The following is a

general pipeline for AGLM in the programming domain:

Inputs:

• Programming Language: The specific language (Python).

• Learning Objectives: Skills or concepts to be covered (e.g., syntax, data structures, algorithms).

• Content Sources: Online tutorials, documentation, code repositories.

• Format Preferences: Code snippets, quizzes, text explanation.

• Target Audience: Beginner, intermediate, or advanced learners.

Steps:

1. Content Retrieval:

• Query content sources using APIs or web scraping to gather relevant programming resources.

• Use NLP techniques to filter and categorize content based on relevance and complexity.

2. Content Analysis:

• Analyze the retrieved content for key programming concepts, syntax rules, common pitfalls, and

best practices.

• Identify gaps in the content that need to be addressed to fulfill the learning objectives.

3. Content Structuring:

• Organize the content into a logical flow, such as:

• Introduction to the language

• Basic syntax and constructs

42

• Control structures (loops, conditionals)

• Data structures (arrays, lists, dictionaries)

• Functions and modules

• Advanced topics (e.g., OOP, frameworks)

• Create outlines or flowcharts to visualize the structure.

4. Material Creation:

• Generate text explanations for each section using NLP techniques.

• Create code examples and snippets that illustrate each concept.

• Develop quizzes or coding challenges based on the key concepts identified.

• Design multimedia elements (like screencasts or infographics) if applicable.

5. Customization:

• Tailor the generated materials to fit the target audience's skill level.

• Adjust complexity by simplifying explanations or introducing advanced topics as needed.

6. Interactive Elements:

• Integrate coding environments (like Jupyter Notebooks or online IDEs) where learners can

practice coding directly within the material.

• Include live coding demonstrations or interactive simulations.

7. Feedback Loop:

• Incorporate user feedback mechanisms (like quizzes and surveys) to evaluate understanding and

engagement.

• Use ML to refine content generation based on user performance data.

8. Output Generation:

• Compile all materials into a cohesive format (e.g., HTML pages, PDF documents, online course

modules).

• Ensure accessibility standards are met (e.g., code readability, alt text for images).

9. Review and Iteration:

• Implement a review process where educators or experienced programmers can evaluate the

generated materials.

43

• Iterate on the content based on feedback and updates in programming language features or best

practices.

Outputs:

• Comprehensive learning materials tailored to programming topics and audiences.

• Code snippets and examples for hands-on practice.

• Quizzes and coding challenges to reinforce learning.

While the complete AGLM pipeline outlined above provides necessary context for understanding

AGLM, the focus of the current research (ontology-based MCQs generation with BERT

similarity) is on some parts of this general pipeline. Algorithm 3.1 automatically generates MCQs

quizzes aligned with Python programming concepts using a domain-specific ontology. It aims to

deliver personalized and contextually accurate assessments while ensuring semantic alignment

with reference materials through BERT-based similarity checks (implemented and deployed on a

Flask App).

Algorithm 3.1: Ontology-Based MCQ Generation

Input: Domain, Difficulty, Number_of_Questions

Output: Random_MCQ_Quiz, Similarity_Score

1: PROCEDURE BUILD_PYTHON_ONTOLOGY()

2: ontology ← ONTOLOGY_STRUCTURE()

3: RETURN ontology

4: END PROCEDURE

5: PROCEDURE GENERATE_MCQ_DATASET()

6: mcq_bank ← ∅

7: for each domain_template do

8: questions ← TEMPLATE_BASED_GENERATION(domain_template)

9: mcq_bank.ADD(domain, questions)

10: end for

11: SAVE_TO_CSV(mcq_bank, "mcq_dataset.csv")

12: END PROCEDURE

13: PROCEDURE SERVE_QUIZ(domain, difficulty, num_questions)

14: questions ← LOAD_FROM_CSV("mcq_dataset.csv")

15: filtered ← FILTER_BY_DIFFICULTY(questions[domain], difficulty)

16: selected ← RANDOM_SAMPLE(filtered, num_questions)

17: similarity ← BERT_SIMILARITY(ontology_material[domain], domain)

18: RETURN FLASK_RESPONSE(selected, similarity)

19: END PROCEDURE

The process begins by building a domain ontology for Python programming. This ontology

formalizes concepts such as data types, control structures, functions, and OOP, capturing

relationships and properties necessary for the semantic structuring of learning materials. For each

domain concept template, the system uses a template-based generation approach to create relevant

MCQs, systematically organizing these questions into a structured MCQs bank. This bank is then

saved in a comma separated values (CSV) format for efficient retrieval and further processing.

44

When a learner requests a quiz, the system loads the MCQs dataset, filters questions based on the

desired difficulty level, randomly selects the required number of questions, computes semantic

similarity using BERT embeddings to compare the learner’s domain with reference materials,

ensuring that the questions are contextually aligned and relevant, and returns the personalized quiz

alongside similarity metrics for evaluation. This approach enables scalable, automated generation

of high-quality, semantically accurate quizzes in programming education, reducing manual effort

while enhancing learning personalization and alignment with learning objectives.

3.2.2 Proposed Knowledge Model for The Domain-Specific Concepts

The domain-specific concept is the system's knowledge module, organizing the domain

knowledge structure, including its central concepts and their relationships. This model facilitates

the automatic generation of learning materials for the educational process. It focuses on

constructing and organizing domain-specific concepts and their interrelations [47].

A knowledge module consists of guidelines to identify all vocabulary concepts to illustrate or

solve problems. It is purely declarative and does not provide instructions on how learners can

utilize it to address practical issues [116]. Two categories of ontology modules have been

developed based on the characteristics of the learning materials: general domain-specific concepts

ontology and specific domain-specific concepts knowledge module ontology. These modules

represent the knowledge concepts needed for learning, provide input to the knowledge module,

offer particular feedback, select problems, create learning materials, and support the student

model. A domain-specific concepts knowledge module has been proposed based on current

research, as illustrated in Figure 3.1. This model is fundamentally based on domain concepts,

properties, task assessments, material resources, learning objectives, learning rules, learning

levels, and their interrelationships.

To generate learning materials and reuse the knowledge module in the learning process, ontologies

organize and represent the domain-specific concepts in the knowledge module. The advantage of

this model is its ability to personalize and automatically generate learning materials for learners.

Based on the general domain-specific concepts ontology shown in Figure 3.1, domain concepts,

domain properties, task assessments, material resources, learning objectives, learning rules, and

learning levels terminologies refer to the following:

• Domain concepts present domain-specific knowledge or a comprehensive learning material or

course overview.

• Domain properties represent learning material or domain-specific properties within a domain

knowledge model.

45

• Task assessments explain how the application system can assess or measure the required learner

activities within a specific period.

• Material resources are physical or digital items used in educational settings to support and

facilitate learning. They include textbooks, web resources, software, multimedia tools, and

laboratory equipment.

• Learning objectives are clear, measurable goals that outline students' expected learning

outcomes. They guide teachers in planning instruction, designing assessments, and evaluating

progress. Aligned with curriculum and instructional standards, they provide a framework for

effective teaching and assessment.

• Learning rules are principles or guidelines that describe how learning occurs and how new

information is acquired and processed. These rules help educators understand student learning and

inform instructional strategies while helping students become more effective learners by

optimizing their learning processes.

• Learning levels are the stages of proficiency and understanding that individuals progress through

as they acquire new knowledge, skills, and competencies. They are crucial in education and

instructional design, as they help educators tailor teaching methods and materials to support

students at different stages of their learning journey.

Figure 3.2 displays the design and structure of a selected ontology knowledge module for the

domain-specific concepts case study for the Python programming domain. Several relationships

are applied to the domain-specific concepts selected in case examples. The relationships are

generalization or specialization, dependency, and containment. Containment indicates that a

specific domain concept within a given domain contains various concepts (has-a). The

Figure 3.1 General knowledge model for the domain-specific concepts

46

generalization or specialization shows particular topics or domains with specific concepts (is-a).

Based on Figure 3.1 and Figure 3.2, the following displays a temporary explanation of a domain

concept:

• Domain concepts: Class, Function.

• Domain properties: syntax.

• Task assessments: program, code review, project.

• Material resources: textbooks, web resources.

3.2.3 Proposed Model Implementation

CS and Information Technology disciplines offer numerous language modules and packages for

developing and managing ontology models. Python is one of the most widely used and favored

languages for implementing an ontology for domain-specific concept models. This interpreted,

object-oriented, and extensible programming language is known for its exceptional clarity and

versatility across various fields [40]. The paper [P8] used Python and Owlready2 to create the

ontology and implement the domain knowledge. The domain-specific concept explored in this

work is the "Basics of Computer Programming." The ontology is constructed using the "Python

Programming Language." Python and Owlready2 modules implement domain-specific concepts

within the ontology. Owlready2 facilitates transparent access to ontologies, allowing for the

manipulation of classes, individuals, object properties, data properties, annotations, property

domains, ranges, constrained datatypes, disjoints, and class expressions, including intersections,

unions, property value restrictions, and more. Python offers some functions and modules for

Figure 3.2 Specific knowledge model for the domain-specific concepts

47

managing ontologies to implement, create, and modify ontologies. The get_ontology() function

allows building an empty ontology from its IRI using the Owlready2 module. Owlready2 uses the

syntax "with ontology: ..." to demonstrate the ontology that will receive the new RDF triples. For

creating an ontology, the following short code is used:

from owlready2 import *

ontology = get_ontology()

with ontology: <Python code>

Concerning the implementation of the domain-specific concepts and the construction of its

components: the domain concepts, learning objectives, domain properties, task assessments,

learning rules, material resources, and learning levels. Figure 3.3 shows a code dealing with the

design of the core classes of the presented model. Figure 3.4 corresponds with some of the object

property relationships defined for the constructed components of the selected model. Several tools

are available to display the ontology graph. The tools are Synaptica, OWLGrEd, and Protégé.

Figure 3.3 Core classes of the presented model

Figure 3.4 Object property relationships

48

Protégé is the most commonly used tool to display the ontology graph of domain-specific

concepts, as shown in Figure 3.5. The ontology visualization employs different types of

connecting lines to represent various relationships between concepts. Solid arrows indicate direct

hierarchical relationships, where parent concepts contain or encompass child concepts. Dashed

lines represent dependency relationships, showing that one concept relies on or requires

understanding of another concept. The circular relationship lines in Figure 3.5 demonstrate the

interconnected nature of programming concepts, where each topic can depend on another topic

and contain subtopics. For example, the iterative loop depends on variables, logical operators, and

relational operators, as shown by the dashed dependency lines. Control sentences contain

conditional sentences and iterative sentences, illustrated through solid hierarchical arrows. Figure

3.6 presents a SPARQL query as an example of visualizing all the domain concepts in the selected

ontology domain-specific concepts regarding retrieving the domain concept and its description.

Figure 3.5 Domain-specific concepts ontology graph

Figure 3.6 A SPARQL query for retrieving the concept "python class" and its description

49

NLP is used for automatic learning material generation, applying the Spacy module in Python and

the rdflib module. Figure 3.7 and Figure 3.8 present the code that controls the ontology of domain-

specific concepts. Figure 3.9 and Figure 3.10 display snapshots of SPARQL for generating task

assessment and query results according to SPARQL selecting concepts. The results are domain

concepts, task assessment, and asking questions in the form of MCQs. Regarding automatic

learning materials generation, the system randomly generates task assessments as MCQs for the

learner. The learner is asked to answer the question, and according to the answer, whether it is

correct or not, the system will automatically generate learning materials for further reading. Figure

3.11 shows a snapshot of a task assessment question, whether the answer is correct, and the

suggested learning material for the selected task. Table 3.1 shows a comparison between traditional

vs. ontology-based learning material creation.

Figure 3.7 Controlling the ontology of domain-specific concepts

Figure 3.8 The result of the ontology of domain-specific concepts

Figure 3.9 Task assessment generation

50

Table 3.1 Comparison between the traditional approaches and ontology-based approaches

3.2.4 Proposed Ontology-Based Model Validation and Evaluation

For ontology-based model validation and evaluation, various tools can be utilized to ensure the

ontology's accuracy, consistency, completeness, and pedagogical effectiveness. Among these,

OOPS! and HermiT were selected for this work due to their compatibility with OWL ontologies,

Feature
Traditional Learning Material

Creation

Ontology-Based Learning Material

Creation

Content

Organization
Linear and structured manually

Hierarchical and dynamically structured

using ontology

Customization Limited personalization
Highly personalized based on learners'

needs

Content Reusability Low content created from scratch
High, modular content reuse across

different topics

Automation Mostly manual work AI-assisted generation and annotation

Content Consistency It can be inconsistent across materials Ensures uniform structure and terminology

Adaptability Hard to update and adapt
Easily adaptable to new knowledge and

learning trends

Efficiency Time-consuming Faster and more efficient due to automation

Interactivity Mostly static content
Dynamic and interactive learning

experiences

Scalability Difficult to scale
Easily scalable across different subjects and

learners

Figure 3.10 Task assessment and result sample

Figure 3.11 MCQs task assessment

51

Protégé integration, and support for logical reasoning and pitfall detection. Using these tools, you

can comprehensively validate and evaluate ontology-based models to ensure high-quality, effective

learning materials. A robust continuous improvement framework is based on combining automated

tools with expert reviews.

1. Ontology Evaluation: Ontology evaluation tools are essential in assessing ontology quality,

reliability, and utility in many domains [50]. Ontology quality is measured with several metrics and

methods, including quality metrics, consistency checkers, structural analysis tools, domain-specific

evaluation tools, and usability evaluation tools [50]. Moreover, these tools also maintain the

integrity and usefulness of ontologies across different domains. Automation, usability,

interoperability, domain-specific adaptations, and capabilities for dynamic evaluation can be

improved [50]. IRI_Debug is an ontology evaluation tool that enables detecting and correcting

issues in the Internationalized Resource Identifiers (IRIs) [46]. It provides IRI validation, validation

of errors, consistency checking, namespace control, and an easy-to-use interface [46]. However, it

is unsatisfactory due to the effectiveness of ontology complexity and IRI usage patterns in ontology

development, maintenance, and educational use. Continuous updates are necessary for evolving

standards [46]. Owlready2 offers many reasoners for manipulating the domain ontology, such as

Pellet, ELK, and HermiT. The HermiT reasoner is used, as shown in Figure 3.12, to check that the

constructed ontology is consistent and allows the classification, instance checking, class

satisfiability, and conjunctive query answering of the developed domain ontology for the selected

model. It is the most commonly used in ontology engineering.

 2. Ontology Validation: Ontology validation tools ensure ontologies' quality, reliability, and

usability [117]. They identify issues related to consistency, completeness, correctness, and

adherence to best practices [117]. Popular tools include OOPS!, OntoQA, OQuaRE, Pellet and

Hermit, OntoMetric, BioPortal and AgroPortal, and OntoClean. OOPS! is a tool that helps ontology

developers identify and address common pitfalls in ontology design [118]. It uses a set of pitfalls

from best practices and expert recommendations, covering naming conventions, ontology structure,

Figure 3.12 Consistency of the domain-specific concepts ontology

52

and logical inconsistencies [118]. The tool generates detailed reports detailing pitfalls, severity, and

affected elements and provides recommendations for correcting each [118]. It can be integrated

into ontology environments like Protégé, enhancing usability and promoting best practices [118].

Figure 3.13 shows the OntOlogy Pitfall Scanner tool for ontology validation, which is used for the

validation process. The input values for this tool can be ontology URL or RDF file code. Figure

3.14 shows the OntOlogy Pitfall Scanner tool validation results.

Figure 3.13 OntOlogy pitfall scanner tool

Figure 3.14 OntOlogy pitfall scanner tool results

53

3.3 Results

The ontology-based AGLM in the Python programming domain as a solution provides a more

sophisticated system for generating learning materials. Assessing their quality accuracy, 98.5%,

makes it a valuable tool in educational technology and content generation. The dataset used in this

experiment is the Python programming language ontology [119]. To generate the learning

materials, BERT embeddings have been used to measure the semantic similarity of generated

learning materials to predefined reference materials. It also generates an evaluation table, Table

3.2, summarizing the results for each domain concept, as explained in the following steps:

1. Ontology and learning materials: An ontology is defined for various domain concepts (e.g.,

Python Programming, Data Structures), and learning materials are generated for each domain

concept using predefined content.

2. BERT-based accuracy calculation: BERT model from the sentence-transformers library is used

to compute embeddings for the generated learning materials and predefined reference materials.

The cosine similarity is then calculated between these embeddings to determine the semantic

accuracy of the generated content.

3. MCQ generation: MCQs are generated for each domain concept and assess how much the learner

understands it.

4. Evaluation Table: Table 3.2 shows how the create_evaluation_table function collected generated

learning materials, accuracy scores, MCQs, and a brief description of results from the results set

into a structured evaluation table with the help of pandas. Descriptions of the accuracy are offered

as a categorical measure based upon the thresholds, "Excellent alignment" being the case when the

accuracy is greater than 90%, "Good alignment" for anything from 70% to 90%, and "Moderate

alignment" for a value that is less than 70%.

Table 3.3 compares the ontology-based model's performance across numerous samples of the

Python programming topic Data Types, Control Flow, Functions, Error Handling, and OOP

(Object-Oriented Programming), respectively. It shows how effectively the system can generate

learning materials and assessments for each topic. As shown in Table 3.4, the ontology-based

model's performance also changes according to the dataset size when presented with the task of

generating Python programming learning materials. It shows accuracy and other improvements as

the model processes more datasets and proves its scalability. Using the following formulas, the

evaluation metrics such as accuracy, precision, recall, and harmonic mean of precision and recall

(F1-Score) are calculated by the formulas from 3.1 to 3.4.

54

Accuracy = (True Positives + True Negatives) / (Total Instances) (3.1)

Precision = True Positives / (True Positives + False Positives) (3.2)

Recall = True Positives / (True Positives + False Negatives) (3.3)

F1_Score = 2 ∗ (Precision ∗ Recall) / (Precision + Recall) (3.4)

Data is split into training (80%) and testing (20%) sets using the train_test_split function from

sklearn.model_selection. The final parameter is the split with test_size=0.2, and random_state=42

ensures reproducibility. Using dataset size, the training and testing percentages are calculated. The

values for these datasets are explicitly defined and printed in the run_evaluation function to make

it clear for model training and evaluating the dataset distribution. In this case, the accuracy

calculation was measured using the BERT-based semantic similarity. A pre-trained BERT model

was used to transform the generated and reference texts into vector embeddings. These embeddings

were computed into cosine similarity values measuring their semantic closeness. A predefined

threshold was set to verify if the generated content was accurate (e.g., 0.8 or 0.9). The accuracy

was calculated as the percentage of correctly matched samples over the total number of samples.

Table 3.2 Evaluation table sample

Domain

Concept
Generated Learning Material

Accuracy

Score

(%)

MCQs Description

Python

Programming

Python is a versatile programming language

known for its simplicity and readability. It

supports multiple programming paradigms,

including procedural, object-oriented, and

functional programming.

98.50%

Q: What keyword is

used to define a

function in Python?

- def - function - func -

define Answer: def

Excellent

alignment with

reference

material.

Data

Structures

Common data structures in Python include

lists, dictionaries, sets, and tuples. Each

structure has unique properties and use

cases.

95.85%

Q: Which of the

following is an

unordered collection in

Python?

- List - Tuple -

Dictionary - String

Answer: Dictionary

Excellent

alignment with

reference

material.

Algorithms

Algorithms are step-by-step procedures for

solving problems. In Python, you can

implement algorithms for sorting,

searching, and manipulating data in Python.

92.30%

Q: What is the time

complexity of binary

search? \n - O(n) \n -

O(log n) \n - O(n log

n)

Answer: O(log n)

Excellent

alignment with

reference

material.

55

Table 3.3 Ontology-based model evaluation: Python programming topics sample

Python Topic
Number of

examples
Percentage Accuracy Precision Recall

F1-

Score

Data Types (int, float, str) 390 39% 0.95 0.93 0.96 0.94

Control Flow (if, else, loops) 170 17% 0.91 0.89 0.92 0.90

Functions (def, arguments, return) 70 7% 0.93 0.91 0.94 0.92

Error Handling (try, except) 70 7% 0.89 0.86 0.91 0.88

Object-Oriented Programming (OOP) 360 36% 0.90 0.87 0.92 0.89

Table 3.4 Ontology-based model evaluation performance by dataset size

Dataset Size (Records) Accuracy Precision Recall F1-Score

Small (500) 0.88 0.85 0.89 0.87

Medium (1500) 0.91 0.89 0.92 0.90

Large (5000) 0.985 0.92 0.95 0.93

One final point to clarify: the literature lacks comprehensive and domain-specific evaluation

metrics tailored to QG from source code. Traditional text-based metrics like BERT score do not

fully capture the nuances of the generation process in AQG from code. Finally, the proposed system

was deployed using Flask App, as shown in Figure 3.15. The final ontology-driven dataset

contained 5,000 structured quiz examples. For the current research, the dropdown menus (e.g.,

domain and difficulty) are not dynamically populated from the ontology. Each Example consists of

a question, four options to choose from as an answer, and the correct answer. This study implements

an ontology-driven quiz generation system that leverages structured knowledge representation to

enhance Python programming education. By systematically aligning quiz content with formal

ontological structures, the system introduces difficulty mapping and semantic similarity evaluation,

ensuring learners engage with contextually relevant and appropriately challenging material. This

principled approach differentiates itself from generic quiz generators by providing a structured

framework that supports meaningful assessment while maintaining domain specificity. The

semantic analysis components refine content alignment and facilitate the generation of quizzes. As

part of its future trajectory, the system is designed to incorporate advanced NLP techniques to

enhance semantic alignment and QG quality, thereby positioning this work at the intersection of

56

structured knowledge representation and adaptive educational technology within the context of

programming education.

3.4 Discussion

Ontology-based AGLM is a technology that can potentially enhance learning experiences in almost

any educational environment. From an instructor's point of view, it operates as a tool that can

initiate customized tests based on the students' diagnostic results. In this way, it enables the

emergence of personalized learning materials directed to certain weak spots and saves quiz creation

and grading time. This technology can provide a personalized learning path for learners,

particularly Python programming students. An independent learner might start with a diagnostic

test that covers basic topics such as data types, control flow, and functions. It can create debug

tasks, discussions, and interactive lessons personalized to the student's needs based on their

performance. It can also generate automatic feedback to highlight task errors, syntax errors, and

possible solutions for student advancement. The instructor can use the same feedback to identify

challenges faced by students and correspondingly grade the difficulty level of exercises so that

support may be made more specific. This technology is excellent for use in both self-paced and

instructor-led learning environments. In a blended learning model, for example, a self-paced learner

could work through the function modules, and an instructor could give the diagnostic quizzes to

track progress. Real-time performance tracking enables educators to identify learning gaps and

intervene effectively. Advanced learners can also use the system to focus on specialized topics,

such as data manipulation using Pandas, with automatically generated complex coding tasks to

support skill advancement.

Figure 3.15 Python MCQ quiz generator flask app

57

Overall, the ontology-based approach allows instructors to align learning materials with specific

learning objectives, ensuring learners receive contextually relevant, personalized content that

enhances engagement and retention while improving instructional efficiency. For the future work,

the ontology should be completely dynamic. Consequently, the dropdown menus of the Flask App

(e.g., domain and difficulty) are planned to be dynamically populated directly from the ontology

after adding the dynamic facility in the generation process. The literature lacks comprehensive and

relevant evaluation metrics dedicated to QG from source codes. BERT and other text-based metrics

do not offer the overall picture of the generation process for AQG from source codes.

Regarding positioning the developed system within the literature, prior ontology-driven question

generation has largely focused on domain-agnostic ontologies and the production of MCQs from

concept graphs [120], [121], [122]. These approaches often leverage OWL/RDF structures and

Bloom-aligned templates rather than code semantics. Items are derived from ontology triples and

evaluated primarily through expert judgment at scale, rather than program analysis of executable

artifacts. By contrast, Chapter 3 system employs a Python-specific ontology to generate MCQs

directly from source code, linking programming constructs and relationships to pedagogical

objectives, thereby shifting from triple-verbalization to a code-aware, concept-driven generation

process. Unlike MCQ pipelines that repurpose general knowledge bases (e.g., Biology or multi-

domain ontologies), the current approach models Python concepts directly and integrates them with

generation strategies designed specifically for programming education. This distinguishes it not

only from general ontology-based AQG but also from recent programming ontology efforts aimed

at computational thinking across multiple languages [114], by focusing narrowly and deeply on

Python constructs to support pedagogical alignment. In doing so, the approach addresses a gap

noted in systematic reviews of AQG methods [38]. This code-centric, language-specific ontology

thus extends ontology-based AQG beyond text and knowledge-graph settings and establishes a

foundation that subsequent chapters compare with template and LLM-based approaches.

3.5 Conclusion

In the digital age, programming skills have become a requisite for practice in almost every

professional sphere, increasing the need for the most effective learning materials in programming

study and training. Generating educational resources of computer programming based on ontology

is a promising way to improve the quality and efficiency of educational resources of computer

programming.

This chapter designed and developed an ontology-based framework to model Python programming

concepts and their relationships, enabling the automatic generation of quizzes and learning

materials aligned with these structures. Using BERT-based semantic similarity evaluations, the

58

system achieved a high accuracy rate of 98.5%, validating its effectiveness in producing relevant,

accurate, and pedagogically coherent content.

The novelty of this approach lies in its integration of structured ontological modeling with

automated quiz generation, ensuring difficulty levels, semantic relevance, and alignment with

instructional objectives in Python programming education.

Despite its contributions, this study acknowledges limitations. First, it primarily focused on Python

programming, which may limit the generalizability of findings. Second, it requires further testing

through controlled trials comparing ontology-based learning materials with traditional resources to

evaluate impacts on retention, engagement, and mastery. Third, the ontology-based generation

process is not completely dynamic. Fourth, the literature lacks comprehensive and relevant

evaluation metrics dedicated to QG from source codes (BERT metrics does not offer the overall

picture of the generation process for AQG from source codes). Future research should expand the

system to support multi-language programming education, assess its effectiveness through

controlled experiments, and integrate adaptive feedback mechanisms and advanced NLP to further

enhance QG quality.

Thesis 1: I developed an ontology-based system that automatically generates programming-related

assessment questions directly from source code. By leveraging structured domain knowledge, the

system semantically interprets programming constructs to support concept-aware question

generation, without relying on adaptive learning mechanisms. [P1, P2]

59

Chapter 4 A Hybrid Approach for Automatic Question Generation from Program Codes

4.1 Introduction

AQG has become significant with the increasing trend of online learning and its scalability in recent

years. Technical courses like learning programming languages are more popular, and there is a

massive demand for such subjects. Questions are the primary approach used to evaluate student

knowledge [123]. Therefore, creating questions becomes more challenging as the constant growth

of e-learning continues, more courses are made, and the pressure on teachers is high. Intelligent

and deliberate questions can enhance student understanding and reduce the gap between theory and

practice in programming subjects [124]. For example, the article [125] monitors the performance

and behavior of students who engage in courses with self-assessment methods in programming and

problem-solving. The research in [126] observes the decentralized practice by monitoring the

intensity and timing of the impact on student learning and problem-solving in programming

languages. The research paper [127] addresses interactivity while solving problems in

programming languages based on learning objects. The article [128] tries to enhance the use of

digital resources for students and instructors. The research papers [129] and [130] address the

learning objects that can be used in different contexts using Web3. Finally, the article [131]

suggests collaborative learning to help instructors engage students in generating and evaluating

questions. The proposed method in this chapter focuses on translating Python code into text and

uses an AI-based framework to generate questions from the text. Ontology is also used to connect

and conceptualize the logic of the programming language. Applying ontology ensures

interoperability with other systems and reduces the overhead on educational platforms. This chapter

contributes to e-learning platforms and improves the overall experience of programming language

instructors. It also enhances the learning path for students who like to learn and do exercises without

repeating the same questions. The outcome of this research is to generate meaningful questions

based on Python code to assist instructors in creating more questions in a timely manner, thus

ensuring student proper learning of the potential programming language. Unlike similar works,

most recent research focuses on generating questions from text, while some research focuses on

generating questions from visuals or images [132].

This chapter focuses on generating questions from code snippets using semantic relations to extract

the concepts. Generating questions from unconventional sources, such as code snippets, becomes

important in providing a better learning experience to large groups of students, especially when

dealing with limited information. The main goal of this chapter is to assist instructors and students

in properly evaluating student performance by generating Python-based programming questions

from existing materials (i.e., code snippets). The AQG from code snippets will add the possibility

60

of generating a different set of questions based on the same code snippet. Therefore, it leads to a

better understanding of the given topic. The research objectives of this chapter are to implement a

framework that can interpret Python programming language into text, and enable the framework

to comprehend the text and build connections between the programming structures and the

semantic concepts for AQG. There are several differences in purpose and methodology between

the two approaches presented in Chapters 3 and 4. These two chapters present two completely

separate approaches. Chapter 3 focused on developing a general ontology-driven learning

materials generation in the form of MCQs using structured knowledge representation. Chapter 3

used Python programming concepts to extract the concepts and build the structured knowledge

representation, and the QG process was not fully dynamic. On the other hand, Chapter 4 focuses

on dynamic QG from direct Python source codes. Chapter 4 develops a hybrid approach that

combines AST, NLP, programming ontology, and an AI model for dynamic code-to-QG. Chapter

4 presents multi-type dynamic generation of questions (Boolean, short-answer, and open-ended).

The chapter is structured as follows: Section 4.2 details the methodology and framework. Sections

4.3 and 4.4 present results and discussion, respectively. Section 4.5 concludes the chapter.

4.2 Methodology

QG involves computer understanding of the available materials to propose plausible questions to

students. However, two approaches are usually effective: AI-based or semantic-based. The current

work uses a combination of semantic and AI methods to properly generate questions from code

snippets based on semantic code conversion. The primary motivation for using the semantic

approach is maintaining concept relations in the programming language keywords to increase

system intelligence on the programming language rules. Other approaches would not accurately

represent the programming language rules, keywords, and concepts. This section will detail the

QG framework architecture, the technology used, and the approach to generating questions.

4.2.1 Architecture

To generate questions from existing Python code snippets, an interpreter is needed to translate the

code into more understandable concepts. Python or any other programming language is

constructed using operators, variables, and functions. Operators such as +,-,AND usually do the

actual computing. At the same time, variables are used to store values and recall them with

operators to perform specific tasks. Functions contain a list of variables, loops, and operators to

be executed in order. The ontology will categorize and conceptualize the list of commands (i.e.,

variables, operators, etc.) and the relationships between the concepts in the script. It will build an

explained version of the code by processing the code line by line and creating semantic

relationships based on the input. Subsequently, the translated code is generated and inserted into

61

an AI question generator called “QuestGen” [133]. This model will generate Boolean, short-

answer, and open-ended questions. Figure 4.1 shows the framework data flow and its components.

Awareness of existing technologies and software is essential to construct any framework or

software. Such awareness can improve productivity and help address many issues that take a long

time. As a result, I implemented a framework using various third-party software in this chapter.

Table 4.1 describes this case's environment settings, tools, and applied libraries. The QuestGen AI

model, an open-source NLP library dedicated to creating simple question-generation methods, has

been used. It has been on a mission to become the world's most sophisticated question-generation

AI by utilizing cutting-edge transformer models like T5, BERT, and OpenAI GPT-2, among

others. The primary objective of QuestGen AI is to simplify the QG process, providing support to

educators, content creators, and learners in developing educational materials. This tool

significantly enhances the efficiency of teaching and learning resource development through

automation, ultimately facilitating a more effective educational experience.

Before generating questions, the QuestGen AI model expects a text as input. The ontology

mentioned next is responsible for converting the snippet code from the Python programming

language into text that humans can understand. Subsequently, this model can generate questions

based on the inserted text. The QuestGen AI model supports four types of questions, and they are

as follows:

• Questions with Several Choices (MCQs)

• Boolean (Yes/No) Questions

• Open-ended Questions

• Question Paraphrase

Figure 4.1 Proposed framework architecture

62

The current study considers Boolean, short, and open-ended questions. Since learning a

programming language focuses on understanding the content of a code, such questions are more

suitable for assessing student knowledge properly.

Table 4.1 Environment settings, tools, and applied libraries

Name Description

OwlReady2 Python library to implement Ontology V 0.37

Protege Software Application for viewing and modifying ontology

Jupyter Notebook IDE to develop the framework

QuestGen AI-based application to generate questions from the text

Python V 3.11.1

4.2.2 Ontology Design

The ontology is built and compiled using the Owlready2 library in Python. Such a library would

support automating manual activities like adding instances to the ontology. However, the main

components and the relationships between concepts should be implemented manually to maintain

logical correctness. Translating code into text starts with assigning keywords to ontology classes

and describing these keywords. For example, the "=" sign is described in the ontology as an "equal

sign", a value of the Assignment subclass in the operator class. The output of the ontology

implemented in Python and Owlready2 is then imported into Protégé for visualization purposes,

since the visualization is not yet supported on Owlready2. Figure 4.2 shows the visualization of

the ontology design in Protégé.

Logical correctness would enforce semantic meaning on the written script. For example, an “elif”

statement syntax is valid in Python. However, it cannot exist without having an “if” statement

before it. An “elif” should only come after an “if”. Furthermore, logical correctness would connect

all the keywords and describe the semantic relationship between steps. Most essential aspects of

the Python programming language in the designed ontology are classified as classes and

subclasses. For example, in this study, the Python language elements and constructs have been

categorized into four main classes: Control Structure, Function, Library, and Operator. Each

subclass of the Operator class contains several instances that would map each instance to the

operator class. Such mapping would assist in enforcing the logical correctness of the translated

snippet. Figure 4.3 shows an instance definition from the constructed ontology. The ontology's

capabilities aim to structure the Python programming language to ensure that the computer can

collect vocabulary text about the keywords and build sentences based on the combination of the

63

programming language keywords, which can be fed later into the QG model. The main limitation

is that the ontology should be built manually by adding the explanation of all instances, which can

be challenging to implement. Further research is needed to improve this approach.

4.2.3 Parser

The parser's job is to detach a block of code into pieces that can match the ontology based on

keywords and custom conditions. These conditions are adjusted depending on the inserted

snippets. This model uses the ontology to create sentences. It analyzes keywords in the parser and

generates sentences explaining the code. For example, a=10, the parser would create “a is a

variable. a value is 10”. AST helps turn Python code (and maybe other types later) into sentences

using a set of rules. It maintains whatever logic the ontology possesses about the code. Then, it is

Figure 4.2 Ontology design visualization using protégé

Figure 4.3 Instance definition of Subtraction

64

fed into the AI model to generate proper questions based on the code interpretation by the

ontology. The 'explained code' is passed to the QuestGen AI framework to generate questions.

4.2.4 Question Generation

Over time, there is a growing demand for QG, a trend that could significantly alleviate the burden

on educators and trainers. This is particularly beneficial for scalable learning formats such as

online courses. Many models exist for generating questions from regular text; however,

understanding code and generating questions from code snippets is not applied due to its

complexity. Code-to-text conversion is a challenging task. However, the semantic relationships

between the concepts in the ontology are an excellent solution. Figure 4.4 shows the whole

procedure for translating code into text. In Figure 4.4, the code undergoes validation by a parser

checker responsible for scrutinizing its syntax. Once the code is confirmed as error-free, the

checker directs it to the ontological translator, acting as the parser within our architecture. This

parser transforms the code into coherent sentences, forwarding them to the QG AI model to

generate reasonable questions. An explanation of the QG AI model is provided in the subsequent

section.

4.2.5 QuestGen AI

The QuestGen AI model is an AI model that can generate questions using AI. The QuestGen

project is available in an open-source format [18]. The model is already trained and can generate

high-quality questions based on text fed into the model. Instructors can choose the type of question

that can be generated; however, Boolean, short, and open-ended questions have only been applied

for this study. The results summarized in the subsequent section show that the AI model can

generate reasonable questions based on the input text and its level of clarity.

• Input: The model can process various types of input, including structured, unstructured, and

context-based content such as passages, documents, and articles.

Figure 4.4 Question-generation process

65

• Field of application: The model is tailored to support the education field across diverse

disciplines such as science, history, language arts, and more. However, it does not have the

capability to execute or generate programming language code (at the time of this research).

• Generation method: It is a semantic-based model designed to comprehend inserted text by

leveraging concepts and contextual awareness. This procedure is divided into two main

steps. Firstly, it begins with entity recognition, wherein the model extracts crucial

information such as dates, names, and relationships, employing part-of-speech tagging.

Next, the model applies question templates to the extracted information to match the most

suitable predefined question template. To improve question quality, various methods are

employed, including probabilistic approaches to refine wording and phrasing within the

questions.

• Question format: The model can propose various formats, including open-ended, multiple

choice, true/false, and short answer.

• Response format: The responses are generated in both text and JavaScript object notation

(JSON) formats. Each type of question has its own format. For instance, MCQs prompt the

system to produce the question stem and its corresponding answer choices. This distinction

applies to all question types, and the resulting output is tailored accordingly.

• Example: The sentence inserted into the model is “In Python, a function is defined using

the 'def' keyword, followed by the function name and parentheses containing any

parameters. The function body is indented and contains statements that define the function's

behavior.”

• The generated questions for a true/false type of question are:

o “Is a function in Python defined using the 'def' keyword?”.

o “Do parentheses follow the function name in a Python function?”.

o “Does the function body in Python need to be indented?”.

4.2.6 Hybrid Question Generation from Program Codes

Algorithm 4.1 is a hybrid approach employed to automate the generation of programming-related

questions from Python source code by integrating structural parsing with ontology-based semantic

enrichment. Initially, source code samples are parsed using Python AST to identify constructs

such as function definitions, class structures, variable assignments, and control flow statements.

An ontology is constructed to represent these extracted elements and their semantic relationships,

capturing contextual information regarding code dependencies and logical flow within the

66

program. Using this enriched representation, the system generates diverse question types,

including Boolean, short-answer, and open-ended questions, through either the QuestGen neural

generation model or a heuristic fallback mechanism when computational resources are limited.

Algorithm 4.1: Hybrid Approach for QG from Program Codes

Input: Python source file path P

Output: Question set Q = {Q_b, Q_s, Q_o}

Parameters: max_questions, question_type

1: O ← BuildOntology()

2: C ← ReadFile(P)

3: AST ← Parse(C)

4: T ← ∅

5: for each node ∈ AST do

6: switch node.type do

7: case Assignment:

8: ind ← Variable(node.target, node.value)

9: case FunctionDef:

10: ind ← Function(node.name, node.args)

11: case ClassDef:

12: ind ← Class(node.name, node.bases)

13: case Call:

14: ind ← Object(node.target, node.func)

15: case Import, ControlFlow:

16: ind ← CreateIndividual(node)

17: end switch

18: AddToOntology(O, ind)

19: semantic_desc ← QueryOntologyRelations(O, ind)

20: T ← T ∪ {semantic_desc}

21: end for

22: text ← Concatenate(T)

23: if QuestGen_Available() then

24: Q ← QuestGen_AI_Model(text, max_questions, question_type)

25: else

26: Q ← HeuristicFallback(text, max_questions, question_type)

27: end if

28: return Q

The suggested hybrid method is aimed at semantic correctness as well as parsing robustness

through a three-tier processing pipeline that morphs code structure into semantic text while

keeping the door open for AI-assisted QG. Python AST parser is adopted as a rule-based

deterministic parser, retaining the original code structure and accounting for various syntactical

elements of Python including variables, functions, classes, operators, and control structures.

Structural construction is maintained directly through mapping from AST nodes to ontology, such

that every construction/coding entity relates to the specialized classes in programming ontology

themselves (variable, function, class, control_structures), while the function

analyze_variable_type() actually holds the type representation intact and traces the direct

hierarchical relationships back to the code context of that construct throughout the journey of

conversion. The programming-specific ontology acts as a semantic link that guides code structure

interpretation and generation of structured semantic text, which can then be fed into the QuestGen

AI model to produce programming-related educational questions that are cohesively tied to code

67

concepts through the quality of the semantic input developed. The AST-based parsing mechanism

handles diverse code constructs from simple assignments to more complex object-oriented

hierarchies with nested functions and inheritance relationships, thereby laying down a sound

structure for performing code-to-text conversion, although in the future it can be extended to

include automated question validation mechanisms and quantitative metrics for domain alignment

to further cement the educational assessment capacities and verify end-to-end semantic

preservation of the system.

4.3 Results

The results are generated in two versions, one utilizing our proposed model and the other without

its use (i.e., by directly inserting the code into the QuestGen AI), as depicted in Figure 4.5.

The implemented framework facilitates the QG process, empowering teachers to automatically

generate Python programming language assessment questions for testing students' knowledge.

Three different Python code examples were tested to see how well the system works compared to

a baseline model. Each example shows a different type of programming that students and

developers commonly work with. Example 1 in Figure 4.6: This is a basic script that just defines

some variables (strings, lists, and numbers). It is the kind of simple code seen in introductory

programming lessons, so it tests whether the system can explain fundamental Python concepts

clearly. Example 2 in Figure 4.10: It offers classes and inheritance, a Person class and a Student

class that builds on it. This example checks if the system can handle more advanced topics like

object-oriented programming, which can be tricky to explain well. Example 3 in Figure 4.14: This

one imports the math library to calculate a circle's area. It tests how the system deals with

functions, imported libraries, and mathematical operations (pretty common stuff in real

programming projects). These three examples were picked because they cover different skill levels

and programming concepts. Starting with basic variables, moving to classes, and ending with

functions and imports gives a good range to test the system thoroughly. Figure 4.6 depicts a

straightforward code snippet featuring variable definitions. This figure illustrates specific

variables alongside their assigned values, incorporated as a script within the ontology. A Python

Figure 4.5 Generating questions directly from code

68

parser is employed to validate the text as proper code before generating any flawed or erroneous

questions to mitigate the potential for incorrect syntax within the inserted code. Figure 4.7 displays

the translated text derived from the code, providing a textual interpretation for each line. The

interpreter presents the variable type and specifies the assigned value for each variable. Figure 4.8

showcases the outcomes resulting from inserting the aforementioned text into the QuestGen AI

model. It is worth mentioning that the evaluation was based on human evaluation.

Figure 4.6 A code snippet with variable definitions

Figure 4.8 Generated questions for variable definitions

Figure 4.7 Generated text from a code snippet

69

Figure 4.9 can be seen without having a context. The question generator failed to produce any

meaningful questions except for the list variable, where it managed to generate a relevant question.

However, the AI model could not comprehend all the lines, hence the presence of the ZERO {}

symbol.

Figure 4.10 exhibits a Python code comprising class and object definitions presented as a string

and passed through an ontology to translate it into text. Subsequently, this text is fed into the

QuestGen model to generate questions. In the subsequent examples, only the generated questions

and context from QuestGen AI will be showcased, omitting the complete outputs. Moving on to

Figure 4.11, it explains the preceding code snippet depicted in Figure 4.10 using natural language,

preparing it for input into the AI generator.

Figure 4.9 Generated questions without using the proposed approach

Figure 4.10 Python code for defining classes and objects

Figure 4.11 Generated explanation of the code in Figure 4.10

70

Following this, Figure 4.12 displays the questions generated from the snippet description,

demonstrating the relevance of the generated questions. However, Figure 4.13 illustrates the

outcome of generating questions without providing a snippet description, resulting in improper

questions marked by ZERO{} symbols and inaccuracies. This indicates the necessity of providing

a description for accurate QG.

In the third example, depicted in Figure 4.14, a function is defined to compute the area of a circle

based on its radius. This code incorporates arithmetic operations and utilizes Python's 'math'

module. Subsequently, Figure 4.15 exhibits the output resulting from describing the

aforementioned code to input into the AI model. Meanwhile, Figure 4.16 displays the generated

questions derived from the description of the code snippet involving mathematical operations.

Conversely, Figure 4.17 showcases a question generated without describing the snippet. The

results depicted in all figures are formatted in JSON, containing both the question and its solution.

Figure 4.12 Generated questions for the code in Figure 4.10

Figure 4.13 Generated questions without using the proposed model

71

The QuestGen model provides the answer alongside the question if it available, excluding the

options. It is worth noting that there are warnings due to deprecated libraries utilized by the

QuestGen AI model, prompting necessary updates by the authors. Results indicate that generating

questions directly from code without semantic translation yields poor quality, while ontology-

based translation enables the generation of meaningful, contextually aligned questions using

QuestGen.

Figure 4.14 Code snippet containing a function and arithmetic operations

Figure 4.15 Generated explanation of the code in Figure 4.14

Figure 4.16 Generated questions using the proposed model

Figure 4.17 Generated questions without using the proposed model

72

4.4 Discussion

In this experiment, various code snippets were tested for translation using the proposed ontology

and fed into the QuestGen model to create questions. Table 4.2 outlines the test cases, the

generated questions, and the difficulty level of the tested code. It was noticed that human

evaluation of AQG results is more accurate than automatic assessments [132]. Based on the

literature, no evaluation metrics are specific to QG from source code. The evaluation was

conducted by a qualified human evaluator. The validity of the generated code is rated on a scale

of 1 to 5, where one represents the least validity and five indicates the highest validity. Difficulty

is assessed based on script logic, with five denoting complexity and one representing simplicity.

For instance, identifying variable assignments is relatively straightforward, while understanding

inheritance is more challenging. Generating appropriate questions from sophisticated or advanced

code snippets, such as those utilizing third-party libraries, still presents limitations. Composing

accurate questions becomes increasingly tricky as code complexity and inter-line relationships

grow. Consequently, further development is necessary to enhance outcomes. Addressing this need

will lead to more advanced results. Nevertheless, this study introduces a new dimension to e-

learning and supplements existing QG approaches that have proven effective in textual sources.

Table 4.2 Types of syntax covered

Test case Code level of

difficulty

A generated

question

Context Generated

question validity

a) Variable declaration

1
What is the value of

xfoo?

xfoo is a string

variable and its

value is 'foo'

4

b) List declaration

2

'What are the items

in the list variable

ab?

'ab is a list

variable and it has

2 items'

5

c) Class declaration
3 What is a person?

Person is a class

definition
5

d) Instance and

property

initialization

4
What is a school an

instance of?

'school is an

instance of the

property'

3

e) Variable

initialization,

instance

initialization,

property.

5
'What is var1 an

instance of?'

var1 is an

instance of the

Person class with

name 'Jane' and

age 25"

4

f) Inheritance

identification
5

Who does a student

inherit from?

Student inherits

from Person
5

g) Libraries import

4

What is the name of

the module that is

imported?

Imported module:

math
4

h) Functions
4

What is a method

definition?

area is a method

definition
3

i) Variable type
4 What is r?

'r is a variable of

type unknown'
4

j) Functions result

5

'What is the

calculated area of the

circle?

'a' represents the

calculated area of

the circle.

5

73

From Table 4.2, mean validity score is 4.20. Concept coverage analysis indicated a somewhat

balanced distribution of validity scores across the evaluated topic areas, with no major weaknesses

found. Advanced Topics and Functions managed an 80% average validity (4.00 out 5), with a

slightly weaker performance since it was more consistently done in other categories. Basic syntax

and object-oriented concepts did slightly better, achieving 87% validity each (4.33 out of 5),

indicating high clarity and alignment with the intended learning outcomes. The implication of

these results is that while all areas are being seen to have good educational value (educational

effectiveness is 80% for validity score>=4), just slight refinements in advanced and function-based

questions may help align their effectiveness with the top two-performing categories. Specific areas

such as instance and property initialization, along with certain function-related items, emerged as

opportunities for improvement as shown in Figure 4.18. Figure 4.19 demonstrates that there is no

strong linear relationship between code difficulty and validity scores (r = -0.042).

It is important to note that the experiments involving QuestGen AI were conducted in mid-2023,

during a period when state-of-the-art LLMs, including ChatGPT, had not yet reached their current

level of maturity. At that time, direct code input into QuestGen often resulted in poor question

generation, particularly due to limited understanding of Python syntax and structure. This

limitation motivated the development of the proposed hybrid pipeline architecture.

Figure 4.19 Validity score vs. code difficulty level

Figure 4.18 Question performance ranking by validity

74

Regarding positioning the developed system within the literature, prior research in AQG from

source code has mostly taken single-paradigm approaches. For example, the article [134] focused

on generating challenge questions from student code using program analysis, but their work lacks

semantic or ontology integration. Similarly, the research paper [135] proposed Jask, which

generates questions about learners’ Java code via static analysis, but it remains language-specific

and ontology-free. More recently, Goodfellow and colleagues [136] developed AutoMCQ, an

LLM-based system for automatically generating code comprehension MCQs; while scalable, this

approach is entirely prompt-driven and does not ensure semantic control. Parallel work such as

the article [12] introduced a “meaning tree” approach for mass generation of programming

problems from repositories, though it emphasizes problem synthesis rather than semantically

guided, question-level assessment. It is evident that the majority of systems fall into one of three

categories: template-based, driven by code analysis, or entirely neural, which creates an

opportunity for hybrid systems that combine semantic control with adherence to program

structure.

Chapter 4’s hybrid approach is novel because it combines program analysis (e.g., AST/control

flow parsing) with an ontology-driven semantic layer to steer both the intent and linguistic

realization of generated questions. This helps create questions that are not only grammatically

correct but also educationally useful, including the generation of meaningful distractors. In

contrast, Chapter 3 addressed ontology-based generation of only conceptual MCQs; Chapter 4

advances further by producing more question types, bridging structural code analysis with

ontology-guided semantics, which is a combination absent in earlier studies.

Finally, Semantic accuracy is achieved through a deterministic Python AST traversal that maps

each code element to an ontology individual before language generation. This rule-based process

ensures reliable coverage of constructs such as assignments, functions, classes, control flow,

imports, and object creation, while the ontology restricts vocabulary to code-backed entities to

prevent out‑of‑scope concepts. Because no standardized automatic metrics exist at that time for

AQG from source code, evaluation was conducted through expert human judgment. Generated

questions were evaluated using two complementary rubrics. A programming instructor rated

question validity on a 1–5 scale, where higher scores reflected semantic accuracy, clarity, and

pedagogical usefulness. Source code difficulty was assessed separately, considering both

structural and conceptual factors such as control flow depth, inheritance, and use of external

libraries. Future work will focus on developing dedicated evaluation metrics for automatic

question generation from source code.

75

4.5 Conclusion

E-learning has become very popular recently, notably accelerated by the onset of the pandemic.

One area that has gained considerable attention among researchers is AQG derived from learning

materials. However, the predominant focus of existing efforts lies in generating questions from

textual content. This work, however, concentrates on generating questions tailored for Python

programming language learners derived explicitly from code snippets found in textbooks and

course materials. Leveraging ontologies, this approach demands fewer computational resources,

enhancing the scalability of the framework across diverse systems. The proposed framework

harnesses ontological mapping, associating each syntactic element with its corresponding meaning

and explanation. The process involves translating code into text and subsequently feeding this

translated text into an AI-based model for question generation. It aims to alleviate the burden on

educators and reduce the repetition of the same questions for different groups of students.

Moreover, the generated questions from code snippets serve to evaluate students' general

understanding. The method used to achieve this goal combines the QuestGen AI model and

ontology based on semantic code conversion. The results produced are questions based on the

code snippets provided. The evaluation criteria were code complexity and question validity. This

work has great potential for improving the e-learning platforms to improve the overall experience

for both learners and instructors. The hybrid pipeline architecture is the main contribution, while

a comprehensive evaluation layer is a priority for future work that builds on the hybrid pipeline

architecture. Results indicate that generating questions directly from code without semantic

translation yields poor quality, while ontology-based translation enables the generation of

meaningful, contextually aligned questions using QuestGen AI model. However, the proposed

approach still has some limitations. The generation of questions relies solely on the QuestGen AI

model, which can occasionally result in poorly phrased questions due to its AI nature.

Additionally, the model might struggle to identify certain third-party libraries in complex code

snippets. Hence, it represents an opportunity for future work to facilitate the insertion and

categorization of concepts from all libraries. Finally, exploring alternative models such as GPT

and expanding the framework to recursively process all imported libraries would enable a deeper

understanding of complex syntactic structures. This enhancement would empower the ontology to

explain code snippets better and generate more nuanced and fitting questions. Future work is

needed to develop dedicated evaluation metrics for AQG from source code.

Thesis 2: I developed a hybrid system that combines static code analysis, ontology, and natural

language processing using word embeddings to generate programming-related questions from

source code. [P3]

76

Chapter 5 Evaluating Large Language Models for Generating Programming Questions from

Source Code

5.1 Introduction

The field of NLP has witnessed unprecedented strides, and the enabling factors have been the

increased availability of digital resources in text and the advancement of language modeling. GPT-

3.5, GPT-4, Llama, Falcon, and Vicuna are among the most prominent LLMs. These models have

successfully understood and generated human language, and their impacts have been felt in other

areas like code generation and analysis. The number and complexity of datasets used in language

modeling have recently increased. The general domain of coding and software engineering has

adopted the computational capacity of these models to automate code-related question

construction. Consider a script written in a programming language like Python. This script is

considered input to these large language models through an application programming interface

(API) connection. The output would be a collection of relevant questions about the input (e.g.,

Python script).

The large number of accessible language models creates a challenge. With all these options

available, comparing them in terms of performance and output quality is necessary. The present

study addresses this challenge by conducting a comparative evaluation of popular LLMs. This

study proposes a set of evaluation criteria to assess and benchmark these models' performance

systematically. These criteria represent essential aspects, including relevance, clarity and

coherence, conciseness, and coverage. Every aspect has been examined to assess the performance

of the LLMs under investigation. This study evaluates these models, clarifying their distinctive

characteristics and shortcomings.

This chapter seeks to uncover insights that may be vital in various applications. Highlighting these

best performers would allow educators, developers, and researchers to make informed decisions

about adopting LLMs for code-related QG tasks. The chapter evaluates a diverse set of state-of-

the-art LLMs. Chapters 3 and 4 presented two distinct approaches for AQG from Python source

code. Chapter 3 discussed an ontology-driven approach which allowed the structured

representation of knowledge that would yield MCQs automatically from Python programs.

Chapter 4 extended that thesis by providing a hybrid approach, the ontology combined with the

QuestGen AI model, to make the generation process dynamic and grab semantic understanding

better. Though they both made headway, the two approaches suffer mainly in their limited scope

in one aspect. No systematic evaluation metric is provided to benchmark the quality of the

questions generated from source codes across the different dimensions. Hence the evaluation was

very much a subjective measure that limits comparisons of results systematically with other AQG

77

methods. Chapter 5 goes on to cover this gap by extending AQG research into a multi-language

context including Java, C++, and Python. With a broader scope, the performance of LLMs in

forming questions from codes rooted in different source code paradigms with individual syntaxes,

semantics, and idiomatic usages could be evaluated. A structured evaluation framework

established by this chapter would assess AQG systems in terms of comprehensiveness, reliability,

and reproducibility in model, language, and approach comparisons. Thus, Chapter 5 naturally

follows from the methodological foundations laid in Chapters 3 and 4 and directly addresses their

limitation in evaluations-driven framework for AQG from source code. The primary objectives of

this chapter are as follows:

1. To define a set of evaluation criteria, including relevance, clarity and coherence, conciseness,

and coverage, to measure the quality of questions generated by LLMs.

2. To develop an approach for evaluating and comparing the performance of LLMs in QG from

program codes.

3. To empirically evaluate and rank the selected LLMs based on their performance in QG from

program codes.

This chapter is structured as follows. Section 5.2 outlines the methodology, describes the dataset

used for evaluation, and provides a detailed account of the experimental setup. Section 5.3 presents

the evaluation results along with the ranking of the LLMs. Section 5.4 discusses the findings and

explores the potential applications of LLMs in QG from program code. Section 5.5 concludes the

chapter.

5.2 Methodology

The methodology explains how the evaluation and comparison are made regarding the proficiency

of various LLMs to create questions from the given source code. This section outlines all the

events leading to data collection and preparation, model selection, evaluation metric selection,

experiment execution, and ranking of the models. In this context, a comprehensive and impartial

exercise is carried out to identify the models best suited for relevant QG tasks concerning

programming code. The languages chosen for the experiment were Python, C++, and Java. These

languages were focused on during the research, with the possibility of applying such methods to

other structurally similar programming languages. The sequence selected aids in rendering clear

views into the strengths and weaknesses of each of the models, thereby allowing a deeper

understanding of questions pertaining to the future of this research. Previous studies have

undertaken related efforts, like [137], [138], and [139]. Algorithm 5.1 shows the pipeline of the

proposed framework. It compares LLMs on how well they generate questions about code, using a

78

reference evaluator model, and produce quantitative metrics. Given a set of code samples, each

model generates questions for each sample using a consistent prompting strategy. A reference

model then evaluates these generated questions to assess their quality based on dimensions like

relevance and clarity. The algorithm computes the average score for each model and optionally

tracks repetition rates to measure question diversity. It further constructs pairwise win matrices,

computes win rates, and calculates Elo ratings to rank models based on relative performance. The

outputs are then summarized, including average scores, win rates, Elo ratings, repetition rates, and

comparison matrices.

Algorithm 5.1: Multi-Model Code QG and Evaluation

Input: Set of Code Samples (D), List of LLM Model Names (MODELS),

 Reference Evaluation Model (EVAL_MODEL)

Output: Summary of Model Performance Metrics (SMPM)

1: Initialize scores_by_model, reps_by_model, results as empty.

2: For each sample in D do:

 3: For each model_name in MODELS do:

 4: prompt ← build_generation_prompt(sample.code, sample.language)

 5: questions ← LLM(model_name).generate_questions(prompt)

 6: metrics ← evaluate_questions(questions, EVAL_MODEL)

 7: score ← average_scores(metrics)

 8: repetition ← repetition_rate(questions) // optional

 9: Store (model_name, sample, metrics) in results

 10: Append score to scores_by_model[model_name]

 11: Append repetition to reps_by_model[model_name]

 12: End For

13: End For

14: wins, comparisons ← build_win_matrix(scores_by_model)

15: win_rate ← win_rates(wins, comparisons)

16: elo ← elo_ratings(scores_by_model)

17: repetition ← aggregate_repetition(reps_by_model)

18: Construct SMPM as {ranking(scores_by_model), win_rate, elo, repetition, wins, comparisons}

5.2.1 Data Collection

The dataset is already prepared for the study; it contains a rich collection of code snippets written

in Python, Java, and C++ [140]. These languages were chosen to reflect a wide variety of syntax

structures prevalent in all of these languages. Each LLM was then tasked using a custom-

developed software tool to generate questions from the selected code samples. After generation,

the printed questions underwent assessment against the predefined criteria. Each model was thus

analyzed and ranked based on the ability of the questions it generated to meet those evaluation

standards. These models have a wide range of diversity in size, architecture, and capabilities, from

smaller, old-fashioned models to innovative, gigantic ones. These models were chosen to

encompass various sizes, ensuring a comprehensive performance evaluation. Table 5.1 shows each

model's name and its number of parameters. All the models are based on transformer architecture;

therefore, the architecture is not mentioned in the table. A curated set of Python, C++, and Java

79

scripts prepared covering an array of programming concepts, complexities, and domains. Three

programs were used: procedural, object-oriented, and general. The general code was taken from

online sources. The two other codes were prepared. In these programs, diverse programming

elements were collected so that all basic topics (from the Python/C++/Java language reference)

are represented. Note on Nomenclature: In this chapter, model names combine official branding

and repository-specific identifiers (e.g., Hugging Face, API documentation) to ensure consistency

and replicability throughout the text.

Table 5.1 Selected LLMs

Model Parameters Availability

GPT-4-0314 175B Paid

llama-2-70b-chat 70B Free

GPT-4-0613 175B Paid

llama-2-13b-chat 13B Free

claude-2 130B Paid

GPT-3.5-turbo-0613 175B Paid

falcon-40b-v1 40B Free

falcon-40b-v2 40B Free

vicuna-33b-v1.3 33B Free

llama-65b 65B Free

falcon-40b-sft-top1-560 40B Free

mixtral-8x7b-instruct-v0.1 56B Free

falcon-7b-v3 7B Free

falcon-40b-instruct 40B Free

falcon-7b 7B Free

5.2.2 Question Generation

The next phase involved instructing the selected LLMs to generate diverse questions based on the

attached scripts. This process required the formulation of a carefully crafted prompt, which was

used as input for each LLM. All the models used the same role and content to get measurable

results. The prompt served as a crucial communication channel between the software and the

models, guiding them to generate questions relevant to the script provided. The entire script was

passed to each of the abovementioned LLMs as part of the prompt. The models were instructed to

generate diverse questions based on the attached script. The prompt utilized for generating the

question set is given in Figure 5.1. It was designed to be informative and specific; generating

questions from the Python/C++/Java script to the LLMs. Figure 5.2 shows an example of

responses to the presented prompt. A Python script, taken from the prepared collection, was

80

provided as input to each LLM as part of the prompt. Figure 5.3 shows an example of a Python

script. Each script in the dataset was processed sequentially, and the LLMs were prompted to

generate 50 questions based on each attached script. The scripts are publicly available on GitHub

[140]. As the questions were generated, they were associated with the script from which they were

derived. This association was needed in the evaluation process as it allowed accurately assess the

generated questions’ relevance to the script content. Combining different LLMs and well-prepared

scripts is the foundation for systematically evaluating these models in generating questions. At

this point, each LLM under evaluation created a question set for each associated script in the

dataset, leading to a direly massive output that could be analyzed afterward. These question sets

were then evaluated according to the criteria described in the following sections.

Figure 5.1 Sample prompt to generate questions from source code

Figure 5.3 Sample Python script

Figure 5.2 Response to a prompt

81

5.2.3 Performance Metrics

The generated questions were assessed for their quality to analyze differences in performance

regarding the selected LLMs. Each question gets evaluated on a scale from 1 to 10 based on the

evaluation metric by GPT-4-0314 as a judge. This study used objective and subjective evaluation

modes, touching on the primary indicators. Relevance means how closely the generated questions

match the source code. Clarity and coherence measure questions' phrasing and how logic is

structured in them. Conciseness assesses whether the questions were brief by examining their

length and checking for unnecessary detail or verbosity. Coverage involves how well each

question covered the entire scope of the input script. It also involved whether the questions

reflected different sections or key components of the code, and not just focused narrowly on

isolated elements. In addition to automated scoring, human reviewers were involved to provide a

pedagogical perspective on the top-performing LLM. Their insights helped validate the results and

brought attention to the educational value of the questions. Human feedback added important

context about classroom relevance, teaching goals, and practical usefulness, which are things that

automated systems alone cannot fully capture. Evaluators kept in mind relevance and educational

value when making their judgments. The approach encompassed a mix of different input data sets,

multiple LLMs, stringent evaluation criteria, and automated and human judgment. The results and

examples, from inputs to generated questions, are discussed in the next section. Parts of this output

and the evaluation deconstruction are illustrated in Figure 5.4.

5.2.4 Experimental Setup

This section provides a detailed description of the experimental setup employed for evaluating the

performance of the selected models in generating questions from codes. The objective of this setup

was to get a collection of reliable results that would facilitate the comparison of LLMs and the

identification of the top-performing models. A custom software was developed to serve this

Figure 5.4 Evaluation of the generated questions

82

purpose. This software accepts program codes as input, invokes the selected LLMs via API calls,

and collects the generated questions. For each LLM, the software collected a substantial sample

of questions for analysis.

5.2.4.1 Software Environment

The software environment was configured based on Amazon Web Services (AWS) Instances in

which different AWS instances were used to deploy open-source LLMs. Windows 10 Pro

distribution was used to provide a stable and efficient computing environment. Python was the

programming language to implement the custom software tool that interfaces with the LLMs.

PyTorch 2.1 and Hugging Face v3 Transformers library were employed for managing and

interfacing with the LLMs. Finally, different APIs were used for every model.

5.2.4.2 Data Splitting

To ensure the robustness and reliability of the experiments, a collection of code scripts was

submitted at once to provide context to the model and, therefore, assist in generating more robust

questions. Thereafter, the LLMs were instructed to generate questions based on the input.

5.2.4.3 Evaluation Metrics

The LLM-generated questions were evaluated using a combination of quantitative and qualitative

metrics. As mentioned in the methodology section, these metrics include relevance, clarity and

coherence, conciseness, and coverage. While the human evaluation metrics include relevance and

educational value. Relevance in human evaluation is manually judged by human evaluators and it

relies on subjective human judgment rather than algorithmic similarity (unlike the automatic

relevance judged by LLM algorithmic similarity).

5.2.4.4 Model Execution

Execution of the experiments was a systematic approach. Each LLM was fed scripts individually

as prompts through the custom software. The LLMs generated a set of questions for each script,

which were recorded. The generated questions were associated with their script for accurate

evaluation. The experiments were executed sequentially for all selected LLMs to maintain

consistency and avoid potential bias that may arise from parallel execution.

5.2.4.5 Model Ranking Criteria

The model ranking criteria were established based on the aggregated performance results across

the evaluation metrics. The models that showed high performance across these criteria were

identified as the top-performing LLMs for the task of generating questions from source codes.

83

This experimental setup was designed to provide a reliable and comprehensive assessment of

LLMs’ capabilities in QG from program codes.

5.2.4.6 Repetition Rate

This criterion determines if questions are repeated in any model based on each 10-question batch

increase. For instance, each model is required to generate the first 10 questions, then 20, then 30,

and so on. The goal is to calculate the repeated questions generated for each model.

5.3 Results

This part presents the results of the extensive evaluation of various LLMs in generating questions

from program codes, examined through multiple metrics, like relevance, clarity and coherence,

conciseness, and coverage. Based on the amassed data and just-mentioned evaluation criteria, the

LLMs are ranked, highlighting their strengths and weaknesses in question generation.

5.3.1 Model Rankings

Table 5.2 presents the average scores for each model across all criteria based on the question

generated.

Table 5.2 Average criteria scores

Model Relevance Clarity and Coherence Conciseness Coverage

GPT-4-0314 9.85 8.87 8.13 8.57

GPT-4-0613 8.46 8.23 8.80 9.22

GPT-3.5-turbo-0613 9.37 7.84 8.69 7.61

claude-2 7.86 7.97 8.80 7.96

falcon-7b-v3 8.45 8.52 8.26 7.32

vicuna-33b-v1.3 8.84 8.04 7.51 7.88

falcon-40b-v2 7.93 8.38 7.59 7.65

llama-2-13b-chat 7.69 7.71 6.27 7.60

llama-2-70b-chat 7.76 8.22 7.63 8.14

mixtral-8x7b-instruct-v0.1 6.51 6.55 7.62 7.46

falcon-40b-v1 6.63 7.53 6.68 6.36

falcon-40b-sft-top1-560 7.51 7.88 6.54 7.29

llama-65b 7.45 6.85 7.54 7.53

falcon-7b 7.23 7.83 6.83 7.76

falcon-40b-instruct 7.12 8.03 6.83 7.58

The model average score is established by summing the scores of each criterion across all

questions, and higher scores in each criterion indicate better accuracy in script-to-question

84

generation. The rankings show that GPT-4-0314 obtained the first rank confirming its

effectiveness in generating relevant, high-quality questions. Moreover, it was analytically carried

out on an average win rate account of all other models to get an all-round perspective on the

performance of LLMs under evaluation. The term win rate refers to a cumulative score for every

model and helps determine the best-performing model among them. For example, if a question is

generated by GPT-4-0314 model and compared to the claude-2 model, and the winner for that

particular question is GPT-4-0314, this would add a point to the GPT-4-0314 model. Then, GPT-

4-0314 is compared to other models; if any model wins a point, its score grows, and then finally,

all the models’ scores are calculated, and the highest winner is ranked first. The approach allows

identification of models that have similar win rates to other models. This analysis offers valuable

insights into how each LLM fared directly compared to its peers, assuming uniform sampling and

no ties in the evaluation metrics. Figure 5.5 shows the models that consistently outperformed

others in QG. The following Equations (5.1) and (5.2), would calculate the New Rating and the

Predicted Rating, respectively [141]. This technique is used here for the AI evaluation domain; it

is derived from tournaments in sports, where it is often used.

New Rating = Old Rating + K × (W − P) (5.1)

Where K refers to the maximum adjusted value, in this context, it is a constant integer number like

32; W is the actual result of the game (1 for a win, 0.5 for a draw, and 0 for a loss); finally, P is

the expected result, calculated using the logistic function in equation 5.2.

P =
1

1 + 10
(Mo−Mp)

score point

 (5.2)

Where P stands for the expected outcome for a given model, Mo for model opponent, and Mp for

model player. The constants relating to 1 and 10 are customized; these traditional constants have

been customized in the context to mean that the score point is 400. The two equations constitute

the basis of the Elo rating methodology created initially by Arpad Elo [18] to enable fair and

dynamic ranking of chess players based on match outcomes. Because of its simplicity and

efficiency in tracking relative skill levels, the Elo rating system gradually found acceptance in

areas other than chess, like online games, sporting events, and AI benchmarking. The second

equation calculates the expected probability of one player winning against the other depending on

their rating difference, and the first updates the player's rating after every game depending on the

actual and expected result. The combination of both ensures that the rating system accommodates

rating adjustments to reward the unexpected win and penalize against the loss when a rating would

become obsolete in view of actual performance. This means that the average win rate measure

85

provides a clear and quantitative indication of the relative strength of the models and competitive

standing in question generation. Figure 5.5 shows the average win rate of each language model

against all others in the evaluation, assuming uniform sampling and no ties. The average win rate

is a valuable metric for understanding how each LLM performed directly compared to its peers in

generating questions from program codes. Figure 5.6 shows the win rate matrix for every model

and together with Figure 5.5 they indicate that GPT-4-0314 as the top-performing model.

5.3.2 Observations and Insights

The model GPT-4-0314 consistently outperformed the others across multiple evaluation criteria.

It demonstrated a strong ability to generate relevant, clear, and comprehensive questions. Its top

positions highlight its suitability for question-generation tasks related to the scripts. It also excelled

in relevance, providing questions that were contextually connected to the script content and clearly

articulated. Some models, like falcon-40b-v1 and mixtral-8x7b-instructv0.1 demonstrated limited

coverage, with questions that missed certain key aspects of the scripts. Figure 5.7 shows the metric

score for the models and compares relevance, clarity and coherence, conciseness, and coverage.

Finally, GPT-4-0314 shows superiority compared to the other LLMs.

5.3.3 Repetitive Evaluation

Table 5.3 shows the repeated question rate results. The table shows that GPT-4-0314 has the best

rate among the other models. It is apparent that GPT-4-0314 had the lowest rate of question

repetition. On the other hand, falcon-7b had the highest number of repeated questions.

Figure 5.5 Average win rate against all other models

86

Figure 5.6 Win rate matrix

Figure 5.7 Models criteria score comparison

87

Table 5.3 Repetition rates for each model at different question levels

Model 10 questions 20 questions 30 questions 40 questions 50 questions

GPT-4-0314 0 0 0 1 1

llama-2-70b-chat 0 0 1 1 2

GPT-4-0613 0 0 1 1 2

llama-2-13b-chat 0 1 1 2 2

claude-2 0 1 1 2 3

GPT-3.5-turbo-0613 0 1 1 2 3

falcon-40b-v2 1 1 2 2 3

vicuna-33b-v1.3 1 2 3 3 4

falcon-40b-v1 1 2 3 3 4

llama-65b 2 3 3 4 5

falcon-40b-sft-top1-560 2 3 3 4 5

mixtral-8x7b-instruct-v0.1 3 4 4 5 6

falcon-7b-v3 3 4 4 5 6

falcon-40b-instruc 3 4 4 5 6

falcon-7b 3 4 5 6 7

5.3.4 Human Evaluation

While the study incorporates well-defined automated evaluation metrics, relying solely on

algorithmic assessment can limit the contextual and pedagogical nuance captured in generated

questions. To address this limitation, human evaluation was introduced as a complementary

measure and it was conducted on the top-performing LLM based on the automatic evaluation

(GPT-4-0314). Five educators independently assessed a stratified sample of 45 automatically

generated questions; 15 per programming language (C++, Java, and Python). Each question was

rated on a 5-point Likert scale (1 = poor, 5 = excellent). Table 5.4 summarizes the human

evaluation scores across the three programming languages and code types. Table 5.5 presents the

results of the repeated-measures analysis of variance (ANOVA) on relevance and educational

value metrics. F denotes the F-statistic, DF refers to degrees of freedom, Num indicates the

numerator degrees of freedom, Den indicates the denominator degrees of freedom, and p is the p-

value. The analysis revealed no statistically significant differences across programming languages

88

F(2,8) = 0.96, p = 0.4239, suggesting that language choice did not affect perceived question

relevance meaningfully. A similar pattern was observed for the educational value metric p =

0.0689, which approached but did not reach the conventional threshold for significance α = 0.05.

Post-hoc pairwise comparisons, summarized in Table 5.6 and Table 5.7, support this finding. No

significant differences emerged between language pairs concerning relevance, as all adjusted p-

values exceeded the threshold for statistical significance. About educational value, the comparison

between C++ and Python yielded the lowest p-value (p = 0.0186); however, after applying the

Bonferroni correction, the adjusted p-value rose to 0.0557. This result may be considered

marginally significant. A weak positive correlation (r = 0.30) was found between relevance and

educational value, indicating partial overlap between the two metrics. It suggests that while the

two metrics are related, they capture distinct aspects of human-perceived question quality.

Table 5.4 Human evaluation summary table

Language Code Type Relevance Educational Value

Python General 4.8 4.75

Python Procedural 4.85 4.83

Python Object-Oriented 4.95 4.87

Java General 4.85 4.78

Java Procedural 4.88 4.86

Java Object-Oriented 4.94 4.92

C++ General 4.65 4.58

C++ Procedural 4.72 4.65

C++ Object-Oriented 4.85 4.8

Average Score All 4.83 4.78

Table 5.5 Repeated measures ANOVA results

Metric F-value Num DF Den DF p-value

Relevance 0.957 2 8 0.424

Educational Value 3.808 2 8 0.069

Table 5.6 Post-hoc pairwise comparisons – relevance (Bonferroni Corrected)

Language 1 Language 2 t-stat p-value Bonferroni Adjusted p

C++ Java 0.784 0.477 1.000

C++ Python -0.459 0.670 1.000

Java Python -1.633 0.178 0.533

89

Table 5.7 Post-hoc pairwise comparisons – educational value (Bonferroni Corrected)

Language 1 Language 2 t-stat p-value Bonferroni Adjusted p

C++ Java -1.907 0.129 0.388

C++ Python -3.833 0.019 0.056

Java Python -0.514 0.634 1.000

The established statistical techniques were used to evaluate the reliability of the human evaluation

results and their significance. The use of repeated measures ANOVA, as in Table 5.5, is

appropriate to test whether there are overall differences in relevance and educational value scores

across programming languages, as it accounts for within-subject variability and is standard

practice for such comparisons. The reported p-values in Table 5.5 represent these omnibus tests

that comment on significant effects across all groups. For Tables 5.6 and 5.7, Bonferroni-corrected

p-values were used for post-hoc pairwise comparisons. This adjustment is necessary because

multiple comparisons increase the risk of Type I error (false positives). The Bonferroni correction

is a widely accepted method to control for this risk, ensuring that any significant findings in the

pairwise tests are robust and not due to chance. In summary, the use of standard p-values for the

initial ANOVA (Table 5.5) and Bonferroni-adjusted p-values for post-hoc comparisons (Tables

5.6 and 5.7) reflects best practices in statistical analysis. This approach provides a rigorous and

transparent assessment of the human evaluation data, enhancing the scientific credibility of the

study’s findings.

5.4 Discussion

This research is particularly unique as it addresses a gap in the literature concerning AI-based QG

for programming education. Earlier studies, such as the one conducted by Maity et al. [142],

focused on how LLMs can generate different kinds of questions, including open-ended and

multiple-choice formats. Although these studies focused on generating questions about multi-

language and multi-format general educational purposes, they did not consider programming-

related artifacts such as program codes. Similarly, Tran et al. [143] and Doughty et al. [144]

addressed the use of LLMs for generating and answering MCQs in computing education. Still,

their focus was mainly on modifying existing questions rather than generating new ones from

program codes. Their work indicated how effective models like GPT-3 and GPT-4 are in assessing

and generating MCQs related to specific learning objectives. The current research builds on this

existing work by utilizing LLMs to generate new questions directly from program code, an area

that has not been extensively explored. Unlike previous research that depended on text-based

90

datasets or learners' input, the proposed method assesses how well LLMs can convert program

codes into educational questions. This method addresses a significant gap by providing automated,

context-specific QG tools tailored to programming education.

Studies such as those by Baral et al. [145] and Kargupta et al. [146] worked on the assessment

capabilities of LLMs. They focused on evaluating student responses rather than generating

questions. The current study complements these initiatives by focusing on the initial phase of

educational assessments (developing high-quality questions that align with programming

curricula). The current research enhances understanding of LLM capabilities using evaluation

metrics such as relevance, clarity and coherence, conciseness, and coverage. These metrics offer

a more detailed perspective than previous studies, which typically focused on general performance

benchmarks. These findings improve the use of AI-driven tools in programming education,

providing scalable solutions for educators and learners alike. The rankings and observations from

this evaluation have significant implications for applications that involve generating questions

from program codes. The models GPT-4-0314, GPT-4-0613, and llama-2-70b-chat are well-suited

for tasks where the generation of questions that are both relevant and coherent with the script

content is critical. Moreover, this research also highlights the importance of using a combination

of metrics to comprehensively evaluate LLMs for QG. The four metrics and the win rate offer a

well-rounded view of a model’s performance in this complex task. The proposed framework can

assist teachers and online instructors in assessing and testing student knowledge with a large

question base. Furthermore, different tests are performed on various models to assist in selecting

the best one. The framework also helps in testing model capability in case other models are

released in the future.

The proposed LLMs-based framework outperforms some existing approaches in programming

education assessment by addressing their core limitations. The ontology-based system [P1],

though structured via semantic similarity using BERT embeddings (98.5% accuracy), is

constrained to Python and lacks human evaluation, limiting its pedagogical depth. It fails to assess

cognitive alignment or instructional appropriateness, which are essential for effective educational

questions. The hybrid semantic-AI method [P3], relying solely on human evaluation, introduces

scalability challenges and conceptual limitations. Its single-language focus and absence of

automatic metrics hinder systematic, repeatable assessment across broader educational contexts.

The template-based approach [P5] supports multiple programming languages and incorporates

both human and automated evaluation. However, low quality scores (0.57–0.59) indicate limited

effectiveness, with constrained adaptability to diverse programming constructs. In contrast, the

proposed multi-language LLM-based system (Python, C++, Java) integrates both robust automatic

91

metrics (GPT-4-0314 e.g., relevance: 9.85, clarity and coherence: 8.87, conciseness: 8.13, and

coverage: 8.57) and expert human evaluation (relevance: 4.83, and educational value: 4.78). This

dual-layered assessment ensures both technical correctness and pedagogical soundness, offering

comprehensive coverage and educational alignment previously unmet by prior models.

Regarding positioning the proposed LLMs-based evaluation framework within the literature,

recent work has begun to evaluate LLMs and LLM-based pipelines for producing programming

exercises and assessment items, but gaps remain in systematic, code-grounded question

evaluation. The paper [136] demonstrates a Generative AI pipeline (LLMs) to automatically

generate code-comprehension MCQs integrated with an assessment platform. It illustrates

scalability but relying primarily on prompt engineering without deep semantic/code-grounding

checks. Studies on LLMs for code understanding, like [17], [147], show that models can generate

exercises and explanations (e.g., Codex work) but frequently require human refinement and lack

standardized benchmarks for question quality and code-faithfulness. The study presented in [148]

conducts large-scale empirical analyses to investigate how effectively LLMs comprehend code,

particularly through mutation testing and fault localization techniques. These analyses uncover

critical failure modes, such as hallucinations and limited fault sensitivity, that highlight the

limitations of current evaluation practices. Consequently, the findings underscore the need for

specialized metrics tailored to assessing LLMs-generated items derived from code. Benchmarks

tailored to code comprehension (e.g., CodeMMLU) further illustrate the value of multiple-choice

style, code-focused benchmarks for measuring reasoning depth rather than surface fluency [149].

Finally, recent surveys and benchmark papers synthesize evaluation metrics and point out that

general code-generation benchmarks do not fully capture question quality [150], while others like

[151] highlight that code-generation benchmarks often suffer from prompt quality issues which

compromise their pedagogical alignment and semantic relevance to real-world developer tasks.

In summary, the evaluation has provided valuable insights into the capabilities of various LLMs

in generating questions from program codes. The top-performing models can be valuable assets

in applications such as educational platforms, code analysis, and automated documentation

generation, where high-quality QG is essential.

5.5 Conclusion

AI and LLMs are growing rapidly. E-learning platforms demand effective QG methods, and LLMs

have made this process much easier. While recent studies have focused on generating questions

from text, no prior research has evaluated LLMs’ ability to generate questions from program

codes. This study introduces a framework for assessing LLMs’ performance in generating

questions from program codes. LLMs have been extensively investigated for their capability to

92

formulate questions from source code. Python, C++, and Java program codes were considered as

inputs in this regard. The study considered a diverse range of LLMs for evaluating QG from source

codes. A dataset of questions was compiled and systematically analyzed using these models. The

method adopted a combination of relevance, clarity and coherence, conciseness, and coverage as

evaluation metrics to assess comprehensively their potential for QG. Human evaluation was also

considered as an additional measure. Results from the present research were clear and compelling.

Across the board, the models were ranked topmost among the evaluated LLMs: GPT-4-0314,

GPT-4-0613, and llama-2-70b-chat. They proved proficiency in contextually relevant QG in terms

of clarity, conciseness, and comprehensive coverage of source code content. Their performance

underlines their potential as utilities within educational platforms, automated documentation

generation, and code analysis applications. These metrics offered some quantitative insights into

the syntactic and semantic correctness of the generated questions. The ratings were carried out

using automatic AI evaluations (GPT-4-0314) to ensure the generated questions were

grammatically correct, semantically sound, and contextually appropriate. The real implications of

the findings stretch far beyond question generation. They have practical ramifications for learning

outcome assessment efforts in any domain requiring natural language understanding and

generation. As AI systems increasingly mediate human-computer interactions, it is crucial to

comprehend the strengths and weaknesses of LLMs. Though GPT-4-0314 was at the very top of

the ranks, other evaluated LLMs proved to have some value in specific use cases and may come

in handy for tasks with particular emphasis on QG attributes. Performance evaluation has created

a valuable resource for decision-makers employing LLMs in various applications. Results indicate

that further along, advancing with AI technologies, systems such as GPT-4-0314, GPT-4-0613,

and llama-2-70b-chat set new standards in the natural language generation area, thus propelling

innovation and possibilities across numerous fields.

Thesis 3: I developed a systematic evaluation framework to assess the QG capabilities of LLMs,

using automatic evaluation metrics and complemented by human-centered evaluation metrics for

the top-performer LLM. The findings provide insights into their strengths and limitations in

generating programming-related assessment questions for potential educational use in the

programming domain. [P4]

93

Chapter 6 Template-Based Question Generation from Code Using Static Code Analysis

6.1 Introduction

The manual creation of programming exercises remains time-consuming for educators, often

taking hours to ensure questions align with specific learning objectives and code complexity levels

[P2]. This challenge intensifies in multi-language educational settings where instructors must

simultaneously maintain question banks for multiple programming languages. Recent advances in

static analysis frameworks and attribute grammar systems have laid the technical foundation for

AQG tools that parse code structures, extract semantic elements, and populate pedagogical

templates [152], [153]. Traditional AQG systems relied heavily on template-based approaches that

limited question diversity and contextual relevance [P3]. Integrating AST analysis with reference

attribute grammars has enabled more sophisticated code element extraction, particularly for

object-oriented languages like Java and C++ [154], [155], [156]. These technological

advancements coincide with growing pedagogical demands for personalized learning pathways

and competency-based assessment frameworks in CS education [5]. Cross-language QG

introduces unique parsing challenges due to varying syntax rules and programming paradigms.

There is no agreed-upon or standard evaluation metric for AQG from source code for educational

purposes. The current few systems deal with one programming language (single-language)

without fully automated evaluation [P2], [P3]. As a result, the main added value of this chapter is

dealing with multi-language AQG from source code and automating the evaluation process.

The methodology presented in Chapter 6 represents a significant departure from the approaches

detailed in Chapters 3, 4, and 5. Chapter 3 was limited to QG using engineered ontologies specific

to providing support for only Python via a reasoning engine and conceptual hierarchies. Chapter

4 blended the hybrid model of ontology and NLP (QuestGen) approaches, translating the Python

code into text, prior to the generation of the question. Then, in Chapter 5, custom evaluation

metrics were framed for benchmarking evaluation of LLM-based systems, among them GPT-4,

LLaMA, and Falcon. LLMs, introduced in Chapter 5, are highly effective for QG from source

code; however, they demand substantial financial and computational resources. This chapter

presents a multi-language code question generator capable of automatically producing assessment

questions for Python, C++, Java, and C codes. It focuses on QG from source code using static

code analysis. Static code analysis is adopted to generate questions from program code. It offers

pattern-based algorithm detection, structural analysis, and question templates. Pattern-based

algorithm detection is performed through regex patterns. Structural analysis examines functions,

loops, conditionals, and variables to generate relevant questions. Question templates involve

predefined templates for different code elements to create varied questions. This template-based

94

approach serves as a lightweight baseline for the future version alternative to the LLMs discussed

in Chapter 5, offering lower computational requirements, greater interpretability, and faster

processing for large-scale deployment. The research objectives of this study are:

1. Developing a multi-language code question generator capable of automatically producing

assessment questions for Python, C++, Java, and C codes (AQG from source code).

2. Establishing an approach for automatically evaluating the proposed system based on a set

of evaluation criteria through experiments on a real-world dataset to demonstrate its

effectiveness in generating questions from source codes.

This chapter is structured as follows: Section 6.2 outlines the methodology and the system

architecture. Section 6.3 presents the results of the multi-language QG and evaluation. Section 6.4

discusses the findings, contributions, and limitations. Section 6.5 concludes the chapter with key

insights.

6.2 Methodology

This chapter proposes a multi-language code question generator capable of automatically

producing assessment questions for Python, C++, Java, and C codes. The four programming

languages were chosen based on the up-to-date The Importance Of Being Earnest (TIOBE) Index,

which indicates the popularity of programming languages. Python, C++, Java, and C are the most

popular programming languages worldwide according to the TIOBE Index as of May 2025 [157].

While the paper [71] primarily focuses on general educational applications, it is important to note

that modern adaptations of Bloom's Taxonomy can be tailored to specific domains, like

programming. This adaptation allows for evaluating cognitive tasks unique to programming

education, ensuring that the generated questions are relevant and effective for learners in that field.

As a result, the methodology in the current research adopts Bloom’s Taxonomy evaluation levels:

remembering, understanding, applying, analyzing, evaluating, and creating. Figure 6.1 shows the

proposed methodology for a multi-language question generator from source code. The research

methodology behind the multi-language question generator involves several interconnected

components that work together to analyze code snippets and generate relevant questions. A

detailed explanation of the methodology follows.

6.2.1 Language-Specific Parsing

Parsing is the process of checking the structure of the code and identifying elements like keywords

and variables. The foundation of the system is a modular parser that handles multiple programming

languages:

95

1. Language detection: The system first identifies the programming language of the input code

using heuristic pattern matching. This detection is based on language-specific keywords,

syntax patterns, and structures.

2. Language-specific parsers: Each supported language (Python, Java, C++, and C) has a

dedicated parser that implements the common code parser interface. This enables

polymorphic handling of different languages while accounting for their unique

characteristics.

3. Python parser implementation: For Python, the system leverages the AST module to

perform deep structural analysis of the code. This provides detailed information about

functions, loops, conditionals, and variables.

4. Other language parsers: For Java, C++, and C, the system implements regex-based parsers

that identify key structural elements despite the lack of native AST support in Python for

these languages.

6.2.2 Code Element Extraction

After parsing, the system extracts various structural elements from the code:

1. Function analysis: The system extracts information about functions, including their names,

parameters, return statements, and recursion patterns.

Figure 6.1 Methodology for multi-language question generation from source code

96

2. Loop detection: The system identifies different types of loops (for/while) and extracts

information about their variables and conditions.

3. Conditional statement analysis: For conditional statements (if/else), the system extracts

conditions, identifies branch patterns, and determines nesting levels.

4. Variable tracking: The system extracts variables, their data types (when possible),

initialization values, and their modifications throughout the code.

5. Algorithm identification: Using a dictionary of algorithm-specific regex patterns, the

system identifies common algorithms implemented in the code (e.g., binary search, sorting

algorithms, and graph traversals).

6.2.3 Template-Based Question Generation

The QG process uses templates customized for different code elements and difficulty levels, as

shown in Figure 6.2:

1. Difficulty stratification: Questions are categorized into three difficulty levels - beginner,

intermediate, and advanced - aligned with increasing cognitive complexity.

2. Element-specific templates: Each code element type (functions, loops, conditionals,

variables, algorithms) has specific question templates designed to test understanding at

different levels.

3. Dynamic template parameters: The system dynamically fills template parameters with

specific code elements. For example, function parameter examples are generated based on

parameter names using heuristic rules.

6.2.4 Cognitive Science-Based Question Design

The templates are designed based on principles from cognitive science and educational theory, as

shown in Figure 6.2:

1. Bloom's Taxonomy alignment:

a) Beginner questions focus on remembering and understanding (e.g., "What is the purpose

of function X?").

 'loop': { DifficultyLevel.BEGINNER: [

"What is the purpose of the {type} loop on line {line_num}?", "How many times will the {type} loop on line

{line_num} execute with typical input?", "What happens in each iteration of the {type} loop on line {line_num}?",],

Figure 6.2 Sample of templates used for question generation from source code

97

b) Intermediate questions target applying and analyzing (e.g., "Trace the execution of

function X with inputs Y").

c) Advanced questions emphasize evaluating and creating (e.g., "How could you optimize

function X?").

2. Contextual relevance: Questions directly reference specific code elements, line numbers,

and variable names from the input code to create contextually relevant assessments.

3. Balanced coverage: The system distributes questions across different code elements to

ensure a comprehensive assessment of the code snippet.

6.2.5 Question Post-Processing

After generating candidate questions, the system applies several post-processing steps:

1. De-duplication: Eliminates duplicate or highly similar questions to ensure variety.

2. Shuffling: Randomizes the order of questions to prevent predictable patterns.

3. Limiting: Controls the number of questions to prevent overwhelming the user, while

maintaining a balance of difficulty levels.

4. Fallback strategies: If specific elements cannot be extracted (e.g., due to parsing errors), the

system falls back to more general questions about the code.

Each language-specific parser yields a common intermediate representation (lists of dictionaries

for functions, loops, conditionals, variables) so that downstream template selection is language-

agnostic. Python leverages AST traversal for recursion and loop-depth heuristics, while

Java/C/C++ currently rely on regex signatures adequate for introductory educational patterns

(single method declarations, simple loops, flat conditionals). Advanced constructs (e.g., pointer

arithmetic nuance, method overloading resolution, templates/generics) are intentionally out-of-

scope for this baseline but can be incorporated by swapping parsers without altering the generation

layer. The system presently employs 177 Bloom-tagged templates (function: 37, loop: 35,

condition: 35, variable: 35, algorithm: 35) spanning three difficulty tiers. Parameterization injects

code-derived identifiers (names, line numbers, inferred complexity) to avoid generic phrasing.

Current templates are structure-sensitive at the element presence level but not yet adaptive to

deeper nesting or compound branching. There are three diversity controls: stochastic selection

across applicable templates, element-level breadth (functions, loops, conditionals, variables,

algorithm), and Bloom soft-cap (≤40% any level) to reduce repetitive output. This baseline does

not yet adapt template probability to structural complexity (e.g., nesting depth), which is planned

for future work. Multi-language static analysis is the non-executive extraction of language-specific

98

structures unified into an intermediate representation via a shared parser interface. Python employs

AST traversal, whereas Java, C, and C++ use deterministic regex extractors. This abstraction

standardizes template-engine behavior across languages while supporting parser substitution,

including tree-sitter, without architectural change. The regex-based parsers were evaluated against

76 implementations of algorithms (19 algorithms across 4 languages) without any observed

extraction failures. Although this level of performance is sufficient for canonical educational

patterns, the absence of a formal gold-standard extraction audit is recognized. Planned

improvements in Chapter 7 include the substitution of the current approach with more advanced

parsers capable of handling complex language constructs such as nested generics and pointer

arithmetic.

6.2.6 Evaluation Approach

The methodology includes an evaluation approach to assess the quality of the generated questions.

The evaluation of the proposed system is designed around a set of defined criteria. It uses

experiments conducted on a real-world dataset to demonstrate its effectiveness in generating

questions from source code. The methodology involves a structured approach to assess the quality

of the generated questions across several key dimensions:

1. Bloom's Taxonomy: The Bloom’s Taxonomy cognitive level distribution is computed using

Bloom's Taxonomy alignment to assess cognitive level distribution (remembering,

understanding, applying, analyzing, evaluating, and creating).

2. Difficulty distribution: The questions are analyzed across three difficulty levels (Beginner,

Intermediate, Advanced) for four programming languages: C, C++, Java, and Python.

3. Linguistic complexity: This dimension combines word count, sentence count, Flesch-Kincaid

Grade Level, and average sentence length. All values are normalized to a 0–1 scale, with

sentence length capped at 25 words and grade level capped at 10. The final score is computed

using the formula:

Linguistic Complexity = {
0.6 ∙ Normalized Grade Level

+ 0.4 ∙ Normalized Sentence Length

(6.1)

4. Code coverage: Measures how comprehensively the generated questions address different code

components. The score is calculated as:

Code Coverage = {
0.4 ∙ Variables Coverage

+ 0.6 ∙ Functions Coverage

(6.2)

99

5. Precision: Defined as the ratio of relevant or correct questions to the total number of questions

generated by the system.

Precision = True Positives / (True Positives + False Positives) (6.3)

6. Recall: Assesses the system’s ability to generate all relevant or expected questions, using code

coverage as a proxy indicator for recall.

Recall = True Positives / (True Positives + False Negatives) (6.4)

F1_Score = 2 ∗ (Precision ∗ Recall) / (Precision + Recall) (6.5)

7. Novelty: Measures the originality of the generated questions using the formula:

Novelty = {
0.4 ∙ Bloom Score + 0.3 ∙ Code Elements

+ 0.3 ∙ Advanced Question Types

(6.6)

8. Educational alignment: Evaluates how well the questions align with predefined learning

objectives. The score is computed as:

Educational Alignment = {
0.7 ∙ Expected Bloom Match

+ 0.3 ∙ Expected Linguistic Complexity Match

(6.7)

9. Cognitive diversity: Captures the diversity of cognitive skills involved in answering the

questions. The formula used is:

Cognitive Diversity = 0.4 ∙ Bloom Score/6 + 0.6 ∙ Entropy (6.8)

Entropy = −∑ p ∙ log(p) log(6)⁄ (6.9)

and p denotes the proportion of questions at each Bloom’s level. The weighted values are

flexible and open to future refinement. For instance, future researchers might introduce

additional variables, such as the density of technical terms, to further improve linguistic

complexity estimation.

10. Question quality score by language and difficulty: The score is calculated through a multi-step

process. First, computing eight different quality metrics for each question (linguistic

complexity, code coverage, Bloom’s distribution, precision, recall, novelty, educational

alignment, and cognitive diversity). Second, combining these metrics with predetermined

weights. Third, aggregating the scores by programming language and difficulty level.

100

11. Quality score by code complexity: The score is calculated through a multi-step process. First,

computing eight different quality metrics for each question (linguistic complexity, code

coverage, Bloom’s distribution, precision, recall, novelty, educational alignment, and

cognitive diversity). Second, combining these metrics with predetermined weights. Third,

aggregating the scores by language and code complexity (simple, moderate, or complex).

Linguistic complexity: 0.15, code coverage: 0.20, bloom’s distribution: 0.15, precision: 0.15,

recall: 0.10, novelty: 0.10, educational alignment: 0.10, and cognitive diversity: 0.05 are the

suggested weights. Algorithm 6.1 shows a multi-language template-based QG and evaluation

algorithm. A template-based pipeline aligned with Bloom’s taxonomy and difficulty levels is

utilized to generate and evaluate high-quality programming questions from code samples across

multiple programming languages. In this pipeline, source code samples undergo parsing using

language-specific parsers to enable accurate syntactic and structural analysis. From the parsed

code, meaningful elements such as functions, loops, and conditional statements are extracted, and

ASTs are constructed to represent the hierarchical structure of the code. Relevant predefined

templates are then selected and instantiated based on the extracted elements, generating candidate

questions contextualized to each specific code sample. The generated questions are post-processed

to enhance linguistic clarity, eliminate redundancy, and align with pedagogical standards. Each

question is labelled with the corresponding Bloom’s level and an estimated difficulty tag to

facilitate adaptive learning scenarios. The generated questions are subsequently evaluated using

automated metrics to assess quality, novelty, and cognitive diversity, and the labelled questions,

along with the evaluation statistics, are aggregated and stored for further analysis and visualization

within the system’s reporting modules. To summarize the overall generation process, the multi-

language question generator algorithm is the main engine that orchestrates the entire QG process.

It first detects the programming language of the code snippet, selects the appropriate parser, and

parses the code. It then extracts various code elements (functions, loops, conditionals, variables)

and identifies the algorithm implemented in the code. Based on the language and extracted

elements, it generates appropriate questions. It falls back to generic questions if no specific

questions can be generated. It then shuffles the questions and returns the requested number. Next,

language detection algorithm uses pattern matching to identify the programming language of the

code snippet. It looks for language-specific keywords and syntax patterns to differentiate between

Python, Java, C++, and C. Following this, algorithm identification uses regex pattern matching to

identify common programming algorithms in the code. Each language parser maintains a

dictionary of algorithm names mapped to regex patterns. It returns the name of the first matching

algorithm or null if none is detected. Afterward, QG by element type generates questions for a

101

specific type of code element (functions, loops, conditionals, etc.). It also uses predefined

templates for each element type and difficulty level.

Algorithm 6.1: Multi-Language Template-Based QG and Evaluation

Input: Set of code samples in various programming languages (SourceCodeSamples),

 Predefined question templates mapped to Bloom’s taxonomy and difficulty levels (Templates)

Output: Generated questions with Bloom’s level and difficulty tags (LabelledQuestions),

 Evaluation statistics for generated questions (EvaluationMetrics)

1: for each CodeSample in SourceCodeSamples do

2: ParsedCode ← Parse(CodeSample, LanguageSpecificParser)

3: CodeElements ← ExtractCodeElements(ParsedCode)

4: AbstractRep ← GenerateAST(ParsedCode)

5: CandidateQuestions ← ∅

6: for each Element in CodeElements do

7: RelevantTemplates ← SelectTemplates(Element, Templates)

8: for each Template in RelevantTemplates do

9: Question ← InstantiateTemplate(Template, Element)

10: CandidateQuestions ← CandidateQuestions ∪ {Question}

11: end for

12: end for

13: FilteredQuestions ← Postprocess(CandidateQuestions)

14: LabelledQuestions ← LabelQuestions(FilteredQuestions)

15: EvaluationMetrics ← Evaluate(LabelledQuestions, CodeSample)

16: Store(LabelledQuestions, EvaluationMetrics)

17: end for

18: GenerateReportsAndVisualizations()

Finally, mixed-difficulty QG generates questions at beginner, intermediate, and advanced

difficulty levels. It combines questions from different difficulty levels and eliminates duplicate

questions to ensure variety. Final clarification regarding handling multi-language parsing, the

system employs a modular parsing architecture to accommodate the syntactic and semantic

diversity of Python, C++, Java, and C. For Python, the built-in AST module is utilized to perform

deep structural analysis. For C, C++, and Java, custom regex-based parsers are implemented to

extract functions, loops, conditionals, and variables. Each language is supported by a dedicated

parser class that adheres to a common interface, enabling polymorphic handling and normalization

of code elements. Templates are mapped to these normalized elements, ensuring that question

generation logic remains consistent across languages despite syntactic differences. While the

current implementation focuses on common structural features, such as functions and loops, the

architecture is extensible and can be adapted to handle language-specific constructs (e.g., pointers,

method overloading) in future work. Templates are manually crafted but are designed to be

generalizable across all supported languages. Each element type (function, loop, condition,

variable, algorithm) has approximately 6 templates at the Beginner level and about 15 templates

each at Intermediate and Advanced levels. The template repository consists of a diversity of

templates for all code elements (functions, loops, conditionals, variables, algorithms) that have

been categorized in terms of levels of difficulty into beginner, intermediate, and advanced. For

102

any specific code element and difficulty level, a number of templates have been created, which

add up to several dozen templates in the repositories. These templates are parameterized, and with

the help of code-specific details like variable names and line numbers, the placeholders are filled

with these details dynamically. The system considers the random shuffling and deduplicating the

questions during the post-processing stage. Random-selection of applicable templates even further

increases variability and lowers the chances of generating repetitively or shallowly elaborated

questions. The even spread across different Bloom's taxonomy levels among the various code

elements ensures that the exams are satisfactory without being overly fitted to a small number of

fixed patterns. Finally, the weights used in the evaluation formulas (e.g., 0.6, 0.4) are not fixed

and were determined based on a combination of literature review, domain expertise, and practical

judgment. For example, in the linguistic complexity metric, a lower weight was assigned to

sentence length (0.4) than to grade level (0.6), reflecting the assessment that grade level more

directly impacts comprehension in programming contexts, while sentence length, though relevant,

has less influence due to its design for general natural language. These choices were informed by

the understanding of the field and are open to future refinement. Human evaluations were also

incorporated complement automated metrics. Future work may empirically optimize these weights

or introduce additional variables, such as technical term density, to further enhance metric validity.

6.3 Results

This chapter presents a multi-language question generator from source code capable of

automatically producing assessment questions across the top four programming languages

(Python, C++, Java, and C) chosen according to the TIOBE Index. The system analyzes code

structure using language-specific parsers and generates questions at varying difficulty levels. The

114 questions for each programming language are evaluated based on 19 different algorithms and

across three complexity levels (simple, moderate, and complex). The dataset of code snippets used

is available on GitHub [158]. There are six generated questions for each algorithm in each

programming language: two for beginners, two for intermediates, and two for advanced learners.

The total number of generated questions is 456. Established educational assessment metrics,

outlined in section 6.2.6 of the methodology, were used to evaluate the generated questions. The

algorithms used are listed based on their fundamental categories:

1. Sorting Algorithms (Bubble Sort, Insertion Sort, Selection Sort, Merge Sort, and Quick

Sort).

2. Searching Algorithms (Binary Search, Linear Search, and Knuth-Morris-Pratt).

103

3. Graph Traversal Algorithms (Depth-First Search, Breadth-First Search, and Topological

Sort).

4. Shortest Path Algorithms (Dijkstra's, Floyd-Warshall, and A* Search).

5. Minimum Spanning Tree Algorithms (Kruskal's and Prim's).

6. Optimization & Problem-Solving Approaches (Dynamic Programming, Greedy, and

Huffman Coding).

For the collected and prepared dataset, the following attributes are included:

1. Functions, Loops, Conditionals, and Variables: Each attribute is binary - 0 means the feature

is not present in the code snippet, while 1 indicates it is present. All selected code examples

include at least one instance of each of these four elements.

2. Lines: This attribute captures the length of the code, measured by the number of lines in

each snippet.

3. Complexity: This is a categorical attribute with three levels - simple, moderate, and complex

- reflecting the overall complexity of the code.

4. Generated Questions: The questions are primarily designed to require explanatory answers

rather than simple yes/no or multiple-choice responses (open-ended questions). This field

contains six automatically difficulty-tiered generated questions based on the input code: two

aimed at beginner-level learners, two at intermediate level, and two at advanced level.

 A sample transformation from code to question is presented in Table 6.1.

Table 6.1 A sample transformation from code to question

Original Code Template Generated Question

def calculate_area (radius):

return 3.14∙radius∙radius

"What does the {function_name}

function calculate using

{parameter}?"

"What does the calculate_area

function calculate using radius?"

class Student: def __init__(self, name,

age): self.name = name self.age = age

"What attributes does the

{class_name} class initialize?"

"What attributes does the Student

class initialize?"

try: result = x/y except

ZeroDivisionError: result = 0

"What happens in this code when

{error_type} occurs?"

"What happens in this code when

ZeroDivisionError occurs?"

Figure 6.3 presents Bloom's Taxonomy coverage. Bloom’s Taxonomy cognitive level distribution

was computed using a detailed multi-step process. Each question was first analyzed to detect its

cognitive level using keyword matching, with the level determined based on the highest number

of keyword matches from Bloom’s taxonomy. These levels were then mapped to numeric values

(1 to 6) and normalized to a 0–1 scale for further analysis. For example, the system calculated the

104

percentage of questions falling under each level, resulting in distributions of 16% for "Remember"

and 8% for "Create". The generated questions demonstrated good coverage across cognitive levels,

with a distribution of Remember: 16%, Understand: 24%, Apply: 16%, Analyze: 22%, Evaluate:

14%, and Create: 8%. This distribution indicates a balanced approach with room for improvement

in higher-order thinking (Create level). Figure 6.4 shows the distribution of question difficulty

levels (Advanced, Intermediate, and Beginner) across four programming languages: C, C++, Java,

and Python. The proportions of difficulty levels are identical across all four languages. There is

no noticeable skew toward a particular difficulty level for any specific language. In short, the

difficulty level distribution is very evenly balanced across these languages. By default, the

distribution of generated questions is set to a 2:2:2 ratio - two beginner, two intermediate, and two

advanced. This deliberate balance ensures that one-third of the questions target each difficulty

level, providing a well-rounded assessment experience.

Figure 6.3 Bloom's taxonomy coverage

Figure 6.4 Question difficulty distribution by language

105

Figure 6.5 reveals the question quality score by language and difficulty level. The scores shown

in this visualization were calculated through a multi-step process. The overall quality scores

cluster around the 0.55–0.60 range, indicating fairly consistent quality across difficulty levels and

languages. It looks like beginner questions are generally better crafted or better received, perhaps

because they are simpler and easier to generate and validate. Figure 6.6 focuses on the question

quality score by language and code complexity. The scores shown in this visualization were

calculated through a multi-step process. Across the board, none of the complexity levels dominate

quality scores universally, which suggests that the quality of a question is not strictly tied to how

simple or complex the code is.

Figure 6.7 visualizes the linguistic complexity of different programming languages (C, C++, Java,

and Python) across three difficulty levels: Beginner, Intermediate, and Advanced. In general,

linguistic complexity often tends to increase with difficulty level. The linguistic complexity scores

Figure 6.6 Question quality score by language and code complexity

Figure 6.5 Question quality score by language and difficulty level

106

were calculated using a structured, multi-step process. First, basic text metrics, including word

and sentence counts, were computed for each question to analyze sentence structure and length.

Next, readability metrics - including Flesch-Kincaid Grade Level - were generated using the

Textstat library to assess how readable and educationally appropriate the questions were. To

further evaluate syntactic complexity, the average sentence length was calculated. All these

metrics were then normalized to a 0–1 scale for comparability, with sentence length capped at 25

words and the grade level normalized to a maximum of 10. Using these normalized values, a final

linguistic complexity score was derived using a weighted formula: 0.6 times the normalized

Flesch-Kincaid Grade plus 0.4 times the normalized sentence length. Finally, the scores were

aggregated based on difficulty level - Beginner, Intermediate, and Advanced - to analyze patterns

in linguistic complexity across question tiers.

Figure 6.8 shows that the average question diversity scores varied by language, ranging from 0.63

for C to 0.55 for C++. The diversity scores were calculated through a structured, multi-step process

using Shannon entropy to measure how evenly questions were distributed across different question

templates and types. This differs from cognitive diversity, which specifically measures the

distribution of Bloom's taxonomy levels. The question diversity metric aggregates scores by

programming language by collecting template usage patterns across different algorithms and

averaging them across each language's question set. All diversity scores were normalized to a 0–

1 scale for cross-language comparison. The results suggest that C code naturally elicits the most

diverse range of question types (0.63), followed by Java (0.59) and Python (0.57), while C++

generates the least diverse questions (0.55). This variation may reflect the inherent structural

differences between programming languages, with C's lower-level constructs potentially offering

Figure 6.7 Linguistic complexity by difficulty level

107

more varied questioning opportunities compared to C++'s more standardized object-oriented

patterns.

Table 6.2 shows automatic evaluation metrics for AQG from source code across four

programming languages. C achieved a slightly higher overall quality score of 0.59, while the other

languages scored 0.57. C code tends to be less syntactically ambiguous, allowing the system’s

static analysis and template-matching components to extract structural elements slightly better. N

denotes number of samples.

Table 6.2 Automatic evaluation results by programming language (N=456)

Performance Metric C C++ Java Python Statistical Significance

Overall Quality Score 0.59 0.57 0.57 0.57 F(3,452) = 5.01, p < 0.01

Linguistic Complexity 0.35 0.37 0.39 0.44 F(3,452) = 8.73, p < 0.001

Code Coverage 1.00 1.00 1.00 1.00 No significant difference

Precision 0.36 0.35 0.35 0.39 F(3,452) = 6.40, p < 0.001

Recall 1.00 1.00 1.00 1.00 Perfect recall across all languages

F1-Score 0.53 0.52 0.52 0.56 F(3,452) = 5.71, p < 0.001

Novelty Score 0.17 0.14 0.15 0.15 F(3,452) = 3.35, p < 0.05

Educational Alignment 0.48 0.42 0.42 0.42 F(3,452) = 7.91, p < 0.001

Cognitive Diversity 0.53 0.50 0.52 0.50 F(3,452) = 4.61, p < 0.01

There is no agreed-upon or standard evaluation metric for QG from source code for educational

purposes. While the study employs well-defined metrics, the absence of human evaluation limits

the contextual accuracy of generated questions. As a result, two human evaluators were used to

Figure 6.8 Average question diversity by programming language

108

complement the automatic evaluation. The manual metrics used are relevance and educational

value of the questions. The human evaluators were allowed to rate based on their teaching

experience. Relevance can cover code topic match, code context understanding, difficulty

appropriateness, and clarity. Educational value can cover concept coverage, cognitive challenge,

feedback potential, and engagement. The two evaluators were given the same 40 questions divided

evenly and stratified between the four programming languages. Table 6.3 shows human evaluation

metrics for QG from source code across four programming languages. Table 6.3 shows C leads

slightly. Python, Java, and C++ are tied at 3.45, showing a fairly even performance. Two tests

were conducted to understand whether this slight difference has statistical significance. First, a

paired t-test compares C versus each of the average scores of Python, Java, and C++, as shown in

Table 6.4. Two, one-way ANOVA comparing average scores across all four languages (F-statistic:

48.44, p-value: 1.01e-12 (very low)). The difference between C and other languages is very slight.

Based on the table of paired t-tests and ANOVA results, the differences between C and the other

languages are statistically significant, even if they were very slight.

Table 6.3 Human evaluation results by programming language (N=40)

Metric Python Java C++ C

Relevance 3.8 3.7 3.7 3.8

Educational Value 3.1 3.2 3.2 3.2

Average Score 3.45 3.45 3.45 3.50

Table 6.4 Paired t-test results for human evaluation differences

Comparison t-statistic p-value Significant? (α=0.05)

C vs Python 7.22 0.00005 (very low) Yes

C vs Java 9.64 0.000005 (very low) Yes

C vs C++ 16.10 0.00000006 (very low) Yes

Table 6.2 shows slight differences in quality scores across languages. Of those differences that are

observed in means of quality scores across languages, although they are small numerically (0.59

vs. 0.57), statistical significance indicates the fact that such differences are less likely due to the

randomness in the sample itself. Of course, it should be mentioned explicitly that what is

statistically significant is not always practically or educationally significant. The effect sizes are

small and that those minimal deltas probably would not register as significant difference in student

learning outcomes in actual classroom environments. Thus, the greater value of reporting these

109

results is to show that the system performs equally across languages and highlight areas in need

of further improvement, rather than to make a claim of large practical impacts on the basis of such

small score differences.

The human evaluation complements the automated evaluation by validating key findings while

providing educators’ perspective on question quality. Both approaches consistently identified C

as a better performer, though human evaluation revealed more balanced performance across

languages than suggested by automated metrics alone. The convergence between automated

educational alignment scores and human-assessed educational value demonstrates the validity of

computational metrics for educational applications. However, the human evaluation's emphasis

on practical teaching utility provides essential context that purely computational measures cannot

capture, highlighting the importance of multi-faceted evaluation approaches in educational

technology research.

6.4 Discussion

Regarding positioning the proposed system within the literature, most prior work on AQG that

uses templates follows a single-paradigm, deterministic design: template libraries map extracted

elements to question patterns and are widely used as an alternative to AI-driven question

generation methods, which may require large datasets and can produce lower-quality results.

Template-driven generators (e.g., general template generators for single-choice questions)

demonstrate reliable scalability and easy LMS integration but are limited in diversity and semantic

sensitivity [70]. Complementary work, such as [159], has explored mass problem synthesis from

public code and general template AQG across domains. These approaches emphasize throughput

and template parametrization rather than semantic grounding or pedagogically adaptive distractor

generation. It mines open-source code to generate large banks of valid expression-evaluation and

program-tracing problems for introductory programming. Its approach leverages tree structures

(like ASTs) from code analysis to parametrize problem templates, emphasizing high throughput

and scalability. It is worth noting that external baseline comparisons with prior template-based

AQG systems were not conducted due to their single-language scope, differing semantic pipelines,

and the lack of publicly available, standardized multi-language static-analysis benchmark corpora.

Additionally, experimenting with all 19 algorithms presented in this chapter using LLMs would

have incurred prohibitively high computational costs. The present work therefore establishes an

internal, fully reproducible baseline to enable future controlled cross-system studies as richer

benchmark datasets become available.

110

6.4.1 Research Contributions

This methodology introduces several key contributions to automated programming QG. Unlike

many existing systems focusing on a single programming language, this approach handles four

languages with a unified framework. It combines AST-based parsing (for Python) with regex-

based parsing (for other languages) to achieve broad language coverage without sacrificing depth

of analysis. It implements a pattern-based approach to identify common algorithms in code,

enabling algorithm-specific questions. It systematically categorizes questions into different

difficulty levels based on cognitive complexity rather than arbitrary designations. It generates

example parameters for function calls based on parameter names, creating more realistic and

contextually appropriate questions. Finally, it ensures questions cover multiple aspects of

programming knowledge. The evaluation framework developed for this system is fully automated.

The evaluation pipeline uses a detailed taxonomy including linguistic complexity (word and

sentence counts, Flesch-Kincaid grade level), code coverage (how much of the code elements are

referenced by the questions), distribution according to Bloom's taxonomy (detection of cognitive

levels through keywords), precision and recall (heuristic estimates based on code element

coverage), novelty (originality of questions generated), educational alignment (Bloom/difficulty

level expected vs. actual standards), and cognitive diversity (entropy of levels in Bloom). These

metrics collectively assess both the structural and educational quality of the generated questions.

While the evaluation process is primarily automatic, it is complemented by human validation: two

expert evaluators rated a subset of questions for relevance and educational value, as detailed in

Tables 6.3 and 6.4. The evaluation pipeline was newly developed for this research, though certain

metrics (e.g., F1-score, precision, recall, relevance, educational value) are adapted from those used

in Chapters 3-5 to suit the template-based context.

6.4.2 Limitations

While this chapter's results are promising, it is important to acknowledge certain limitations. The

current methodology has several limitations that suggest directions for future research. The regex-

based parsing for Java, C++, and C is less precise than AST-based parsing, which may affect

question quality. The current approach relies on static code analysis and does not include dynamic

runtime behavior analysis. The system recognizes structural patterns but has limited understanding

of the semantic purpose of the code. The fixed templates may become predictable with extended

use. Finally, the extraction phase of a system collects some attributes that can then be accessed for

template use, for generating questions on these code structures. Notably, the regex-based parsers

have limitations in their ability to capture deeply nested or highly unconventional constructs. In

111

practical use, however, the system might cover typical nesting and recursion patterns found in

most educational codes but would not inherently support very complex codes.

6.4.3 Future Directions

Future improvements could include using language-specific parsers for each supported language,

incorporating ML for more adaptive QG, adding dynamic code execution analysis, implementing

more sophisticated algorithm detection, developing context-aware template generation, and

investigating the educational effectiveness of automatically generated questions through student

performance analysis.

6.5 Conclusion

This chapter developed and evaluated a template-based approach using static code analysis for

AQG from source code. By leveraging ASTs and predefined templates, the system effectively

generated contextually relevant questions across multiple programming languages, addressing a

core challenge in programming education. A dataset of 456 questions from 19 algorithms and

three code complexity levels was used. Although nearly all existing systems support a single

programming language, this approach integrates four languages into a unified framework. The

system was evaluated using several metrics, including the overall quality score. Experimental

results showed consistent quality across C (0.59), Java (0.57), Python (0.57), and C++ (0.57).

Expert evaluations rated the system's utility between 3.45 and 3.50 across languages, with

significant statistical support (F = 48.44, p = 1.01e-12), confirming its practical applicability. The

generated questions spanned all six Bloom’s taxonomy levels. The levels are 16% Remember,

24% Understand, 16% Apply, 22% Analyze, 14% Evaluate, and 8% Create, maintaining an

identical distribution across all languages. This somewhat balanced cognitive coverage

underscores the system’s ability to support comprehensive learning assessments. This work offers

a multi-language question generator from source code capable of automatically producing

assessment questions for Python, C++, Java, and C codes and an approach for automatically

evaluating the proposed system based on a set of evaluation criteria complemented by human

evaluation metrics. While performance was consistent, the approach may not capture advanced or

creative problem-solving nuances. Current diversity and quality scores highlight room for

improvement. Future work should expand template libraries, improve QG filtering process to

increase precision, incorporate ML to enhance quality, and conduct longitudinal studies to assess

learning outcomes over time. The proposed system provides a validated foundation for scalable,

automated assessment in programming education. With strong quantitative support (quality: 0.59–

0.57; cognitive diversity: 0.50–0.53; expert rating: 3.45–3.50), it offers a practical, adaptable tool

for educators. The automatic evaluation shows that C achieved a slightly higher overall quality

112

score of 0.59, while the other languages scored 0.57. Human evaluation complements the

automated evaluation, providing educators’ perspective on question quality. In summary, this

work marks a promising early-stage (baseline) system toward intelligent, scalable assessment

systems, bridging static analysis and educational theory to meet the evolving demands of CS

education. This template-based approach serves as a lightweight baseline for the future version

alternative to the LLMs discussed in Chapter 5, offering lower computational requirements,

greater interpretability, and faster processing for large-scale deployment.

Thesis 4: I developed a modular system for AQG and evaluation using template-based static code

analysis, enabling modular QG designed to be extensible with minimal integration overhead. The

framework supports multiple programming languages through customizable parsing templates

within a unified architecture. [P5]

113

Chapter 7 Multi-Language Static-Analysis System for Automatic Question Generation from

Source Code

7.1 Introduction

AQG has become an important approach as the assessment in programming education has grown

into a significant challenge. Computer programming education is considered increasingly

important in the age of technology, and coding education is now regarded as a fundamental skill

in many fields other than CS [160]. The growth of programming education is accompanied by the

increasing difficulty of educators in defining a diverse and high-quality set of assessment

applications that can reasonably assess student knowledge of various programming languages,

algorithms, and problem-solving abilities in different cognitive levels [P2]. AQG from program

code has also become a major research topic, with the demand growing for resourceful education

tools and automatic assessment models in CS [161]. AQG has become popular, especially in

education, when individualized assessment is required [P2], [P3]. Manual development of

questions is time-consuming. Thus, the automatic formulation has been investigated [162]. The

creation of questions manually is time-consuming and labor-intensive. It may lead to weak

coverage of programming concepts and cognitive skills, which causes large gaps in student

assessment and learning outcomes.

CFG and PDG are important intermediate representations and are structured views of the

complicated control and data dependences in a program [163]. The graphs are useful in building

a strong basis that extracts semantically useful information that can be used to develop interesting

and challenging questions. More recent developments in deep learning have resulted in the

development of code-generation models that can generate source code based on natural language

and code-based hints with high accuracy [164]. Automatic programming, as a field, seeks to

reduce human interaction in the production of executable code and has singled out code search,

code generation, and program repair as the major topics [165]. The main purpose of this chapter

is to discuss a synergistic combination of CFG-based and PDG-based analyzers regarding the

scenario of generating questions about program codes, including the approaches, results, and

possible future aspects.

It has been suggested to use graphs to encode both the syntactic and semantic structure of code

and then use graph-based deep learning algorithms to either learn or reason about program

structures [59]. Such methods fail to capture dependencies over long distances that are created

when the same variable or function is used in widely separated places. Static analysis tools are

used to analyze code and provide suggestions for auto-completion, which are usually organized

alphabetically [166]. Modern integrated development environments have the code completion

114

feature, contributing greatly to programming efficiency and eliminating code errors [166]. Graph-

based program representations, such as CFGs and PDGs, increase the avenues of understanding

behavior offered by encoding control flow and data dependency graph representations. This more

elaborate representation permits the generation of questions to focus on particular elements of

functionality, logic, and possible code weaknesses, thus facilitating a more thorough evaluation of

the programmer's knowledge [59].

There is a specific challenge related to the multi-language nature of programming education.

During their studies, students study a variety of programming languages, beginning at lower

levels, such as Python, and moving on to systems programming languages, such as C and C++,

and to object-oriented languages, such as Java. All languages have distinct paradigms, syntaxes,

and idiomatic constructs and need specialized parsing and analysis algorithms. These challenges

are further added by the difficulty of programming education today. Learners are required to learn

through numerous programming languages, learn the different paradigms of thinking

algorithmically, and acquire skills at several cognitive levels, including concrete syntax recall,

abstract problem-solving, and code-writing. Conventional evaluation methods have a problem

covering these dimensions comprehensively and sustaining consistency and quality. This

shortcoming is especially acute in large-scale education contexts where hundreds or thousands of

students need tailored assessment materials. A general question generator must cover this multi-

language aspect across languages with uniform quality and coverage. The chapter deals with the

background of multi-language nature in the context of education in programming by proposing a

consistent model for code analysis and QG in four commonly accepted programming languages.

It presents a force-balanced generation procedure, which works to ensure even coverage in

multiple dimensions, a serious shortcoming of other current technologies. This shows that at all

levels of cognitive difficulty, advanced graph-based code analysis techniques can effectively

generate higher-quality questions, and the whole scope of assessment can be increased. It offers a

strategic scheme to assign different difficulty levels to programming languages per the general CS

learning route. It comes up with a list of general evaluation criteria to determine the future of

research and development on AQG. Such contributions open up major implications in

programming education, especially by easing a potential burden on educators, providing higher

quality and broader assessment coverage, and an enhanced learning experience for students in

various programming languages and levels of proficiency.

The graph-based pipelines in this chapter are meant to complement not compete with the approach

of early LLM methods discussed in Chapter 5 and of the template-based static baseline discussed

in Chapter 6. Chapter 6 has given a lightweight and reproducible baseline across languages but

115

also revealed some pitfalls of regex parsing, including low precision, limited novelty, and a cap

on structural depth. In this chapter, that layer is replaced by language-specific parsers (Python

AST, javalang, and Clang/LLVM) that are integrated through a normalization interface to ensure

consistent treatment of functions, methods, loops, conditionals, and variables across Python, Java,

C++, and C. Building on such normalized elements, CFG and PDG construction adds structural

insights, such as control paths, branching, and complexity, alongside semantic insights such as

data dependencies and variable lifecycles. The force-balanced generation mechanism then adjusts

in real time from course to emphasizing under-represented Bloom levels, question types, and

algorithm families to achieve more well-rounded coverage rather than chance distribution across

all levels of variety in the methodology. This generates improved precision, a richer language,

greater novelty, and broader cognitive diversity, while remaining interpretable, deterministic, and

free per item. LLMs sometimes fail to deliver due to budgetary, privacy, or accreditation

constraints. The result is an explainable and adaptable layer that can also support future hybrid

pipelines, such as using curated CFG/PDG summaries to guide LLMs in producing more creative,

higher-order variations. In practice, this clarifies when each method is best suited: LLMs excel in

breadth and stylistic variety, while graph fusion offers transparent, coverage-controlled, and

semantically grounded assessment. The research objectives of this chapter are:

1. To design and implement three automated pipelines (CFG-based, PDG-based, and CFG-

PDG Synergetic) for QG from source code, each leveraging different code analysis

strategies to explore their effectiveness in producing high-quality, pedagogically aligned

questions.

2. To develop an organizational multi-dimensional evaluation system to measure the system

performance in terms of coverage balance, quality of questions, linguistic complexity, and

diversity in all dimensions. This framework encompasses automated measures along with

human assessment measures.

The remainder of this chapter is organized as follows: Section 7.2 presents the multi-language

question generator system methodology, including the system architecture, language-specific

parsing techniques, and advanced code analysis methods. Section 7.3 presents the system

evaluation results, including coverage balance, question quality, linguistic complexity, diversity

metrics, and human evaluation metrics. Section 7.4 discusses the implications of the results, the

contributions and limitations of the study, and directions for future research. Section 7.5 concludes

the chapter.

116

7.2 Methodology

This chapter introduces a multi-language generator and evaluator system that takes source code as

input and is capable of generating coding questions in various programming languages, including

Python, C++, Java, and C. These four language choices were the result of being some of the most

popular languages at the moment, as classified by the May 2025 listing of the TIOBE Index and

ranking software development languages and their current popularity list [157]. It uses an

advanced pipeline structure to transform source code written in several programming languages

into good-quality assessment questions distributed across different dimensions in a reasonably

balanced manner. This section presents a comprehensive description of every element within the

pipeline and interconnected characteristics and functions of the general system. Figure 7.1 shows

the comprehensive pipeline for multi-language question generator and evaluator system.

The methodology is a complex of several important elements that interact with each other to

interpret code fragments and generate useful, applicative questions. The following sections have

a step-by-step analysis of how everything works. This section delivers the complete multi-

language question generator and evaluator system methodology, in which the architecture,

implementation, and evaluation framework are outlined. The system was developed to tackle

Figure 7.1 Comprehensive pipeline for multi-language question generator and evaluator system

117

severe shortcomings of available automated assessment frameworks on programming education

with novel parsing, analysis, generation, and evaluation strategies.

7.2.1 System Architecture and Design Philosophy

The objective of building a multi-language question generator and evaluator system is to support

the growing demands to meet the assessment issues in programming education, which traditional

manual methods cannot prospectively accommodate the demands of scaling with an expanding

enrollment base and range of curriculum needs. Four basic design principles that informed each

detail of architecture and implementation governed the system:

1. Language Inclusivity Principle: The system supports Python, Java, C++, and C programming

languages, as these are the four most taught programming languages in CS education, as per

the TIOBE Index. This multi-language strategy curbs the limitations of current systems by

being multi-language to the level that students could get constant assessment throughout their

whole programming program.

2. Algorithmic Diversity Principle: The system includes a collection of 19 fundamental

algorithms offered in 6 categories: sorting algorithms (Bubble Sort, Insertion Sort, Selection

Sort, Merge Sort, Quick Sort), searching algorithms (Binary Search, Linear Search, Knuth-

Morris-Pratt), graph traversal algorithms (Depth-First Search, Breadth-First Search,

Topological Sort), shortest path algorithms (Dijkstra algorithm, Floyd Warshall algorithm, A*

Search), minimum spanning tree algorithms (Kruskal, Prim), and optimization techniques

(Dynamic Programming, Greedy Algorithms, Huffman Coding). This extensive coverage will

allow the students to be assessed on the entire range of algorithmic concepts required in CS

learning. Employing additional algorithms and more diverse source codes is recommended for

future enhancements.

3. Cognitive Alignment Principle: The system creates questions that cover each of the six levels

of Bloom’s Taxonomy: remembering, understanding, applying, analyzing, evaluating, and

creating, so that the cognitive information is thoroughly assessed at both ends of the spectrum

in recollection and way high up in terms of solving problems and also devising codes. Such

consistency with pre-existing structures in education generates questions predisposed toward

gradual skill-building hierarchies and critical thinking.

4. Comprehensive Evaluation Principle: The system consists of an automated measure in addition

to human assessment by subject matter experts, to ensure that the questions generated are of

high quality and pedagogically sound for use in education.

118

The pipeline shown in Figure 7.1 starts by feeding in source code, possibly choosing four

supported programming languages: Python, Java, C++, or C. This is used as a preliminary before

further analysis and to clear up any problems with encoding, remove comments, normalize

whitespace, and do other simple preprocessing chores. The system accepts codes with diverse

levels of complexity, which may range from simple to intricate codes of implementation

algorithms. The architecture has seven interconnected parts that run code snippets via a chain of

specialized transformations and analyses:

1. Language Detection: The system detects the programming language of the code by passing a

language identifier.

2. Language-Specific Parsing: It uses language-specific optimized parsers: Python AST module

with ast2json and astunparse extensions to provide full syntax tree capabilities, javalang library

to provide structured Java code coverage, Clang to provide support of C code, and a custom

Clang and LLVM-based parser to provide C++ coverage.

3. Element Extraction: It automatically recognizes and stores programming elements such as

functions, classes, variables, loops, conditionals, data structures, and language-specific

constructs into an index. This component applies language-specific extraction rules and

consistently covers as many pertinent programming elements as possible across languages.

4. Advanced Code Analysis: It incorporates CFG and PDG construction employing NetworkX-

based implementations. CFG identifies loops, execution paths, and branching conditionals.

PDG captures variable relationships and data dependencies. These graphical representations

allow a more complex analysis of the program behavior and the algorithmic patterns.

5. Force-Balanced Generation: It takes dynamic measures to ensure the selection probabilities

are readjusted during the final stages of generating solutions.

6. Quality Evaluation: It integrates automated and human-based evaluation to assess question

quality on technical accuracy, semantic relevance, educational value, and linguistic clarity.

7. Output Generation: It generates structured questions with detailed metadata that contains the

type of question, the difficulty, the level of Bloom's taxonomy, and the question. Due to the

output format, the content can be easily scaffolded into LMSs and educational platforms.

The Python parsing component can use the built-in AST module in Python and additional libraries

to analyze and manipulate code in detail. This style gives good insight into the syntactic structure

of Python code and is compatible with the complete Python language specification. Java parsing

component supports Java analysis, using the javalang library to examine Java sources and

incorporating the latest Java features like generics, annotations, lambda expressions, and modular

119

programming constructs. The C parser was first implemented using the pycparser library, which

deals with the C programming language. But it was skipping much of the code. As a result, Clang

was adopted for C parsing. The C++ parsing unit uses the Clang/LLVM system to execute the

analysis of all modern C++ code.

The system uses a common parser interface, which offers uniform access to language-specific

language-niche parsing features without sacrificing individual parser features and capabilities.

This is facilitated by the unified parser interface, which allows the seamless addition of language-

specific parsing capabilities with the flexibility of using the individual advantages of different

parsers. This architecture helps in an eventual expansion to other programming languages and

parsing methods while still being compatible with the current parts.

7.2.2 Advanced Code Analysis Techniques

CFG analysis helps one understand the program flow and control structures needed to formulate

complex instructions for a program. It enables the full generation and analysis of CFGs with

NetworkX-based representations of programs that provide the complete control flow behavior of

programs over all supported languages.

PDGs analyze the program dependency and relationships between variables and the information

about the control flow given by a CFG analysis. The ability in PDG generation and analysis of the

programs in the form of NetworkX-based graph representations facilitates the generation of

questions regarding data flow, variable scope, and program semantics. The component of PDG

analysis creates detailed representations of all dependencies within programs that reveal the

critical data flow and control relationships.

The resulting PDGs supplement CFG analysis to give a fully rounded view of both program form

and behavior, allowing complex QG aimed at both semantics and data flow knowledge of

programs.

Algorithm 7.1 shows the CFG pipeline algorithm for code QG and evaluation. Its main objective

is to generate questions by extracting control flow information from code. It parses code to extract

CFG nodes (basic blocks) and edges (control transitions). Then, it analyzes control paths, loops,

and branching structures. Finally, it generates questions like tracing, MCQ, and basic error-

identification questions based on flow paths.

Algorithm 7.2 shows the PDG pipeline algorithm for code QG and evaluation. Its main objective

is to generate questions using data and control dependencies in the program. It parses code and

extracts PDG, capturing data dependencies, variable usage, and control dependencies. Then, it

120

analyzes data flows, variable lifetimes, and semantic relationships. Finally, it generates questions

like dependency, comprehension, and advanced error-identification questions.

Algorithm 7.3 shows the CFG-PDG pipeline algorithm for code QG and evaluation. Its main

objective is to generate advanced, diverse questions using a synergistic integration of CFG and

PDG. It parses and simultaneously extracts CFG and PDG representations. Next, it integrates

structural (CFG) and semantic (PDG) information. Then, it identifies algorithm types. Finally, it

generates a reasonably balanced set of questions, including creative coding and higher-order

Bloom questions.

Algorithm 7.1: CFG Pipeline for Code QG and Evaluation

Input: Source Code (SC)

Output: Question Set (QS)

1: Parse SC using language-specific parser.

2: Construct CFG from SC.

3: Identify algorithm type using CFG patterns.

4: Compute cyclomatic complexity for difficulty estimation.

5: Select Bloom-level-aligned templates for CFG-based QG.

6: Fill placeholders using CFG nodes and control paths.

7: Generate QS (e.g., tracing, MCQ, and error-identification questions).

8: Evaluate QS using quality and diversity metrics.

Algorithm 7.2: PDG Pipeline for Code QG and Evaluation

Input: Source Code (SC)

Output: Question Set (QS)

1: Parse SC using language-specific parser.

2: Construct PDG from SC.

3: Identify algorithm type using PDG and textual features.

4: Analyze data dependencies for semantic complexity estimation.

5: Select Bloom-level-aligned templates for PDG-based QG.

6: Fill placeholders using PDG nodes and dependency structures.

7: Generate QS (e.g., dependency, error identification, and comprehension questions).

8: Evaluate QS using quality and diversity metrics.

121

Algorithm 7.3: CFG&PDG Synergetic Pipeline for Code QG and Evaluation

Input: Source Code (SC)

Output: Question Set (QS)

1: Parse SC using language-specific parser.

2: Construct CFG and PDG from SC.

3: Integrate CFG and PDG for a unified structural-semantic representation.

4: Identify algorithm type using integrated features.

5: Compute complexity and dependency scores for difficulty estimation.

6: Select templates aligned with Bloom’s taxonomy and algorithm type.

7: Fill placeholders using CFG paths and PDG dependencies.

8: Generate QS (e.g., tracing, dependency, error identification, creative coding, and MCQs).

9: Evaluate QS using comprehensive quality, novelty, and diversity metrics.

The following is a simple scenario that demonstrates how QG works. The system analyzes the

CFGs and PDGs and then performs motif detection to find patterns in structures and semantics,

such as loops with conditionals, branching nodes, dependency chains, or variables with multiple

reaching definitions. From each motif, triggering generation events, the generation events are

balanced under the balancing mechanism to ensure proportional coverage across Bloom's

taxonomy levels that define question types and programming languages.

The templates are rule-driven and indexed to specific motifs; thus, for instance, a branch motif

will lead to a tracing or a branch-outcome question while a dependency chain would lead to a data-

flow explanation. Bloom levels are seeded by the motif type and are then fine-tuned using

heuristics based on cyclomatic complexity, path length, and fan-out, which also determine relative

difficulty. Before finalization, placeholder symbols and spans are validated against the symbol

table, dependency paths are checked for consistency, and duplicates are filtered out to preserve

semantic correctness. For example, the function sum_positive(nums) initializes an accumulator,

iterates through a list, updates the total conditionally, and returns the total. From the CFG analysis,

these nodes are: initialization, looping, branching, updating, and returning, which is further

clarified by the PDG, which illustrates its dependencies between the loop variable, condition,

update, and final return. Motifs would include that of a loop that has an internal conditional

(mapped to Apply/Analyze - level tracing questions) and of a data dependency chain from inputs

to the output (mapped to Analyze - level explanation tasks). Instantiating the relevant templates

would produce questions such as: "After executing sum_positive on [−2, 3, 5], what value is

returned?" (Apply, Beginner) and "Describe the data flow from each positive element in nums to

the final result" (Analyze, Intermediate). In effect, the entire framework turns graphical motifs

into well-scoped questions that are semantically valid to cover simple constructs but also nested

ones, with distributions engineered rather than left to emergence.

122

To illustrate the process more concretely, after CFG and PDG analysis identifies the loop-with-

conditional and data-dependency motifs, the system triggers QG events. These events map to

predefined templates indexed by motif type. The initial Bloom levels are seeded according to motif

characteristics and further adjusted using heuristics such as cyclomatic complexity, path length,

and fan-out, which also inform relative difficulty. Placeholders are validated against the symbol

table, dependency paths are checked for consistency, and duplicates are removed. Once candidate

questions are generated, the force-balanced stage works to ensure proportional coverage across

Bloom levels. The system groups questions by level, finds the smallest group size, and uniformly

samples questions to enforce parity. Importantly, this step does not modify question content, it

simply balances the distribution and shuffles the order to remove potential ordering bias. As a

result, the final question set is semantically valid, reproducible, and engineered to provide a fairer

cognitive profile, avoiding overrepresentation of “remember” or “understand” questions derived

from simpler motifs.

At this stage, the system treats all algorithms uniformly. Template selection relies on detected

structures (loops, branches, updates) and pre-assigned Bloom levels. Although current category

labels (from 19 algorithms spanning six conceptual families) are used for reporting, the

architecture supports future extensions: routing algorithms toward specialized template families

and empirically calibrating difficulty, while maintaining transparency and reproducibility. The

framework does not explicitly map algorithm categories to Bloom levels or template pools. All

templates are triggered from structural motifs alone. Category-specific tendencies can still be

observed even though the system treats all algorithms uniformly. Sorting algorithms (Bubble,

Insertion, Selection, Merge, Quick) are loop-intensive, with nested iterations and repeated

comparisons, which often produce Apply-level questions that focus on execution tracing and state

prediction (e.g., “After the first outer iteration of Bubble Sort, what is the value of index j?”). This

ensures generalizability and language-independence, but it also limits the ability to design

questions tailored to the pedagogical nuances of each algorithm family.

Finally, CFGs and PDGs play complementary roles in the question generation process: CFGs

capture execution flow and branching, leading to questions such as “Which statement executes

after the conditional at line X?”, while PDGs trace variable dependencies and data flow, prompting

tasks like “How does variable X influence the final result?” For example, in binary search, CFG

analysis highlights branching structures that generate path-tracing questions, whereas PDG

analysis reveals links such as def_left → use_left → def_mid, supporting dependency-based

questions about how values shape later comparisons. When combined, CFG and PDG perspectives

allow for higher-order prompts like “The variable mid is computed at line 27 (PDG) and used in

123

the conditional at line 30 (CFG). Would moving this computation inside the conditional affect

correctness?” This integration expands Bloom-level coverage by blending structural and semantic

analysis, while lightweight pattern-matching heuristics (e.g., nested loops for sorting, index

updates for searching, recursion for divide-and-conquer) enable contextualization without

sacrificing generality. The following is a concrete example using a Python code fragment to

demonstrate the direct mapping from code structure → graph motifs → pedagogically-aligned

questions with semantic correctness guaranteed:

def count_positives(numbers):

 count = 0

 for num in numbers:

 if num > 0:

 count += 1

 return count

1. Graph Construction: CFG captures control flow (function → initialization → loop →

conditional → update → return); PDG tracks data dependencies (count definition → conditional

update → return use).

2. Motif Detection:

• Loop-with-conditional motif (for-loop containing if-statement).

• Accumulator pattern (initialize → conditionally update → return).

• Def-use chain for count variable.

3. Automatically Generated Questions:

• Apply (Tracing): "Trace the value of count after each iteration for input [-1, 3, 0, 5]".

• Analyze (Dataflow Open-Ended): "Explain how the variable count flows from line 2 to

line 6".

• Evaluate (Error Detection): "If line 4's condition were num >= 0, what would happen with

input [0, -2, 3]?"

4. Validation: All variable references (count, num) verified in symbol table and line numbers

confirmed in CFG paths.

5. Force Balancing: If multiple Apply-level questions were generated, the system would trim

excess to match representation of higher Bloom levels. The system uses this technique to make

the generated questions reasonably balanced across various cognitive or question types. However,

further work is needed to achieve a more evenly balanced distribution in future enhancements.

124

To clarify the distinct roles and advantages of CFG, PDG, and their synergistic combination for

QG, three simple concrete examples are presented. CFGs capture execution ordering and control

flow, enabling questions about path selection and iteration. PDGs encode data dependencies and

variable lifetimes, supporting questions about value propagation and semantic correctness.

Combined CFG+PDG enables higher-order questions requiring both control and data analysis.

Three Concrete Examples:

1. CFG-Based Question (Control Flow):

if x > 0:

 result = x * 2

else:

 result = x * -1

Generated question (Apply): "For input x = -3, which branch executes and what is the final value

of result?" CFG enables tracing execution paths through conditional branches.

2. PDG-Based Question (Data Dependencies):

total = 0

for i in range(5):

 total += i * 2

return total

Generated question (Analyze): "Trace how the variable 'total' is defined, updated, and used. Which

line's definition ultimately determines the returned value?" PDG reveals def-use chains and

variable lifetime dependencies.

3. CFG+PDG Synergistic Question (Control + Data):

def safe_divide(a, b):

 if b != 0:

 return a / b

 return 0

Generated question (Evaluate): "Explain how the control guard (b != 0) protects the data

dependency between parameters and the division operation. What happens if this guard is

removed?" Combined analysis enables questions about correctness and robustness requiring both

control flow understanding and data dependency tracking.

This demonstrates how CFG targets execution tracing, PDG targets dependency analysis, and

CFG+PDG enables higher-order correctness evaluation.

7.2.3 Evaluation Metrics

The same automatic evaluation metrics as the baseline model (6.2.6 Evaluation Approach) are

utilized in the system, such as overall quality score, linguistic complexity, precision, recall, F1-

125

score, novelty score, educational alignment, and cognitive diversity [P5]. Overall quality score

aggregates linguistic quality, technical correctness, and clarity. Linguistic complexity measures

readability and sophistication. Precision and recall evaluate generation accuracy and coverage. F1-

Score balances precision and recall. Novelty score measures uniqueness across questions.

Educational alignment measures alignment with programming learning objectives. Cognitive

diversity measures distribution across Bloom’s taxonomy levels. Relevance and educational value

measures were adopted from the baseline system [P5] for human evaluation metrics. Five human-

evaluated dimensions are conceptualized to measure the pedagogical soundness, clarity, and

cognitive relevance of generated programming questions to measure their quality beyond

automatic metrics:

1. Relevance: This metric addresses how well a question aligns with the programming education

goal and profession. It encompasses curriculum fit (e.g., ACM/IEEE standards), relevance to

real-world scenarios, alignment with learning objectives, significance, and suitability with the

target programming language.

2. Difficulty appropriateness: It quantifies the extent to which an author designed a question to

unequivocally appear at the cognitive level (Beginner versus Intermediate versus Advanced)

to which it is targeted. It considers the prerequisite knowledge needed, the cognitive load, the

complexity of the problem, the duration required to solve the problem, and whether the

question is scaffolded appropriately for the learners.

3. Clarity: The aspects of how clearly a question is and whether or not it is ambiguous. It

encompasses the quality of the grammar, instructional accuracy, suitability of terminology,

visual presentation (e.g., readability of the code), and the removal of possible ambiguities.

4. Educational value: This value reflects the question's ability to foster learning and skill

acquisition. Evaluation is based on the depth of understanding of the underlying concept,

capability to develop programming skills, portability to other situations, interest and value of

engagement, and contribution to learning.

5. Cognitive level match: Analysis of the question focuses on the level of Bloom's taxonomy. It

evaluates to what extent relevant those cognitive operations included (e.g., remembering,

applying, analyzing), the promotion of higher-order thinking, and whether the question was a

valid instrument of cognitive assessment.

7.3 Results

The experimental evaluation demonstrated the effectiveness of the proposed approach in

generating relevant and challenging questions from program codes. The system successfully

126

generated comprehensive programming questions datasets spread across Bloom levels. Table 7.1

demonstrates how CFG-based, PDG-based, and CFG-PDG approaches distribute across Bloom’s

Taxonomy, illustrating their alignment with cognitive engagement in algorithm learning. The

PDG-based method supports lower to mid-level cognitive processes, particularly remembering,

understanding, and analyzing, through its visual and structural program representations. In

contrast, CFG-based and CFG-PDG approaches maintain consistent engagement at higher-order

levels, specifically in evaluating and creating tasks related to algorithm design and optimization.

This distribution highlights how each approach differentially contributes to fostering cognitive

development, providing a nuanced basis for aligning teaching strategies with targeted learning

outcomes in programming education. The dataset of code snippets used is available on GitHub

[158], the same dataset used for the baseline system [P5]. Established educational assessment

metrics, outlined in section “7.2.3 Evaluation Metrics” of the methodology, were used to evaluate

the generated questions.

Table 7.1 Bloom's taxonomy distribution

Cognitive Level CFG-Based PDG-Based CFG-PDG Primary Focus Areas

Remembering 76 370 57 Algorithm facts, terminology, syntax

Understanding 76 357 38 Code behavior, step-by-step execution

Applying 76 95 57 Algorithm adaptation, implementation

Analyzing 76 370 57 Efficiency analysis, code structure

Evaluating 76 40 17 Algorithm selection, trade-off analysis

Creating 76 - 38 Algorithm design, optimization

Table 7.2 outlines how various question types are distributed across CFG-based, PDG-based, and

CFG-PDG, illustrating their alignment with cognitive skill development in algorithm learning.

Multiple-choice, code tracing, and fill-in-the-blank formats are prevalent across all approaches.

PDG-based shows higher frequencies, underscoring their effectiveness in reinforcing fundamental

concepts and procedural fluency. Error identification tasks appear exclusively within CFG-based

activities, aligning with its strengths in syntax analysis and debugging practices. Open-ended

questions, promoting reflective reasoning and synthesis, are most prominent in CFG-based tasks

but are also utilized within PDG-based and CFG-PDG contexts, supporting deeper cognitive

engagement. Creative coding tasks in PDG-based and CFG-PDG approaches highlight these

methods’ emphasis on practical application and design-oriented learning. This distribution

127

demonstrates a strategic alignment of question types with each pedagogical strength of the

approach, ensuring targeted cognitive development within programming education.

Table 7.2 Dataset question type distribution

Cognitive Level CFG-Based PDG-Based CFG-PDG

Multiple Choice 76 357 57

Code Tracing 76 370 57

Fill-in-the-Blank 76 370 57

Error Identification 76 - 17

Open-Ended 152 40 38

Creative Coding - 95 38

Table 7.3 presents the comparative evaluation of the CFG-based, PDG-based, and CFG-PDG

synergistic pipelines, demonstrating clear advancements in AQG for programming education. The

CFG-PDG synergistic pipeline consistently achieved the highest overall quality and linguistic

complexity scores (0.83), outperforming both the CFG-based (0.78, 0.77) and PDG-based (0.72,

0.62) pipelines. This indicates that the integration of structural (CFG) and semantic (PDG)

analyses contributes to the generation of questions that are not only technically sound but also

pedagogically rich and linguistically diverse. Precision was similarly highest in the CFG-PDG

pipeline (0.83), underscoring its effectiveness in producing relevant, accurate questions. Recall

showed the lowest scores across all systems, indicating a shared opportunity for future expansion

in question variety. The CFG-PDG pipeline maintained a balanced F1-score (0.15), competitive

with CFG-based (0.19) and superior to PDG-based (0.11), demonstrating its capacity to balance

quality with breadth despite the inherent challenges in automatic assessment generation. The

novelty scores were notably high for both the CFG-PDG (0.96) and PDG-based (0.95) pipelines,

illustrating the semantic depth added by PDG analysis, which enhances the diversity of questions

beyond surface-level syntax. All systems achieved maximum educational alignment (1.00),

reflecting their capacity to generate questions aligned with Bloom’s taxonomy and curriculum

goals. The metric reflects the proportion of questions that have both a valid Bloom’s taxonomy

level and an appropriate curriculum tag. Since the tagging process is built into the pipeline and

applied to every question by default, the score consistently comes out as 1.00, indicating a shared

need for future review. Importantly, the CFG-PDG pipeline achieved the highest cognitive

diversity (0.31), supporting a broader range of question types that facilitate deeper learning and

higher-order cognitive engagement. Collectively, these results affirm the CFG-PDG synergistic

128

pipeline as the most robust and effective approach for scalable, high-quality, and cognitively

diverse QG from source code. It successfully bridges the structural strengths of CFG analysis and

the semantic insights of PDG analysis, meeting the evolving needs of programming education.

Future research should focus on enhancing recall and extending template libraries for rare

constructs. Based on Table 7.1 and Table 7.2, the three pipelines have not fully resolved the

balance issue, highlighting the need for a future solution.

Table 7.3 Automatic evaluation results by approach

Performance Metric CFG-Based PDG-Based CFG-PDG

Overall Quality Score 0.78 0.72 0.83

Linguistic Complexity 0.77 0.62 0.83

Precision 0.77 0.62 0.83

Recall 0.11 0.06 0.08

F1-Score 0.19 0.11 0.15

Novelty Score 0.86 0.95 0.96

Educational Alignment 1.00 1.00 1.00

Cognitive Diversity 0.20 0.29 0.31

Table 7.4 underscores the superiority of the CFG-PDG synergistic pipeline in generating high-

quality programming assessment questions across C, C++, Java, and Python. This integrated

approach consistently achieved the highest quality scores (0.81–0.85), demonstrating its

adaptability across procedural, object-oriented, and scripting languages. The CFG-based pipeline

also performed reliably (0.77–0.78), highlighting the value of structural (control-flow) analysis

for generating clear and pedagogically sound questions.

In contrast, the PDG-based pipeline scored lower (0.71–0.72), reflecting its strength in semantic

insight while revealing limitations when used without structural context. These results confirm

that combining CFG and PDG analysis is essential for producing scalable, high-quality, language-

agnostic QG, addressing a critical challenge in automated programming education assessment.

The CFG-PDG synergistic pipeline thus emerges as a robust solution for educators seeking

consistent, meaningful, and pedagogically aligned assessments across diverse programming

curricula.

129

Table 7.4 Quality score by approach per programming language

Programming Language CFG-Based PDG-Based CFG-PDG

C 0.77 0.72 0.84

C++ 0.78 0.71 0.85

Java 0.77 0.71 0.82

Python 0.78 0.72 0.81

While the study employs well-defined metrics, the absence of human evaluation limits the

contextual accuracy of generated questions. As a result, human evaluators were used to

complement the automatic evaluation. Human evaluation was conducted exclusively on the top-

performing approach through automated assessment (CFG-PDG pipeline). Five educators

independently evaluated a stratified sample of 48 automatically generated questions (12 per

programming language, 2 per Bloom level). Each question was assessed using a 5-point Likert

scale, where 1 represented poor performance and 5 represented excellent performance. The

evaluation covered five dimensions: relevance, difficulty, appropriateness, clarity, educational

value, and cognitive level alignment. Table 7.5 shows human evaluation metrics for QG from

source code using CFG-PDG across four programming languages. Table 7.5 shows C++ leads

slightly. Two tests were conducted to understand whether this slight difference has statistical

significance. First is a paired t-test comparing the average of the C++ versus each of the Python,

Java, and C scores, as shown in Table 7.6. Two is a one-way ANOVA comparing average scores

across all four languages (F-statistic: 1.20, p-value: 0.3098). The difference between C++ and

other languages is very slight. Based on the table of paired t-tests and ANOVA results, the

differences between C++ and the other languages are statistically significant, even if they were

slight. Table 7.6 shows that all three comparisons show that C++ received significantly higher

evaluation scores than C, Java, and Python, confirming that C++ questions were rated most

favorably by human evaluators across all metrics.

C++'s advantage appears to stem from LLVM's libclang parser, which generates more detailed

ASTs and denser CFG/PDG graphs than the Python or Java parsers. Its expressive syntax provides

richer structural input for QG. The human evaluation is a valuable counterpart to automated

assessment, reinforcing core findings while offering critical insights from an educational

perspective regarding question quality. Both methods consistently identified C++ as the stronger

performer; however, human reviewers observed a noticeable performance difference across

different languages than automated metrics initially indicated. The fact that there should be no

difference between automated educational scoring and the evaluations of a human being highlights

130

the validity of using computers in educational settings. However, human involvement in

consideration of practical classroom application brings in a critical context that purely algorithmic

approaches do not have, reinforcing the need for a multidimensional measurement framework in

educational technology research.

Table 7.5 Human evaluation of CFG-PDG results by programming language (N=48)

Metric C C++ Java Python

Relevance 4.31 4.39 4.15 4.07

Difficulty Appropriateness 4.31 4.40 4.17 4.09

Clarity 4.29 4.42 4.17 4.02

Educational Value 4.33 4.41 4.21 4.05

Cognitive Level Alignment 4.27 4.42 4.16 4.01

Average Score 4.30 4.41 4.17 4.05

Table 7.6 Paired t-test results for human evaluation differences

Comparison t-statistic p-value Significant? (α=0.05)

C++ vs. C 2.847 0.031 Yes

C++ vs. Java 6.172 0.001 Yes

C++ vs. Python 8.924 <0.001 Yes

7.4 Discussion

Current representative work in the field explores neuro-symbolic integration, wherein static

analysis is used as a form of weak supervision to guide neural generative models. Empirical results

demonstrate that this approach yields a marked improvement in the semantic fidelity of

synthetically generated code, reducing errors such as type violations and uninitialized variable

access [167]. Recent research has empirically validated the cross-language feasibility of systems

that integrate static analysis with LLMs for automated test and code generation. While these

pipelines demonstrate practical utility across languages such as Java, Python, and Kotlin, their

application remains predominantly focused on these technical tasks rather than on pedagogically-

oriented objectives, such as generating instructional questions for programming education [168],

[169]. The empirical analysis of the study [170] concludes that the static analysis capabilities of

code LLMs are fundamentally limited and do not generalize to improved performance on code

intelligence tasks. This limitation motivates a hybrid approach, where LLMs are augmented with

131

deterministic analyzers to provide the fault sensitivity and correctness guarantees that LLMs alone

cannot achieve. The article [12] presents a fully automated pipeline for generating a massive bank

of programming exercises by mining code from public repositories. Its core innovation is a

language-independent 'meaning tree' representation that allows code snippets to be translated and

used across C++, Java, and Python. The method leverages static analysis to parse code, extract

expressions, and auto-generate problems annotated with pedagogical metadata like required skills

and common errors, enabling scalable content creation for intelligent tutoring systems without

human intervention. This section critically analyzes and breaks down the findings of the

experiments and presents their overall implications on programming education, automated

assessment, and educational technology. The discussion delves into the implications of the

findings, limitations and challenges, and the broader impact of multi-language QG from source

code on CS education.

7.4.1 The Proposed Systems and the Baseline Comparison

Figure 7.2 shows a clear performance metric improvement across the four programming languages

in the new systems compared to the baseline template-based AQG system introduced in Chapter

6. The comparison between the new systems and the baseline shown in Figure 7.3 reveals

substantial improvements across nearly all performance metrics, indicating that the new systems

are significantly more effective in generating high-quality programming questions.

Figure 7.2 Quality score per language f or the three approaches compared with the baseline

132

Figure 7.3 compares the CFG-based, PDG-based, CFG-PDG synergistic, and the baseline

template-based AQG system across the evaluation metrics. CFG-PDG synergistic pipeline

consistently demonstrates better performance, achieving the highest overall quality score (0.83)

and linguistic complexity (0.83). This suggests that integrating control-flow and semantic

dependency analyses enables the generation of questions that are technically accurate and

articulated in linguistically rich and varied forms, essential for maintaining learner engagement

and supporting nuanced comprehension. The CFG-based pipeline follows closely (0.78, 0.77),

indicating that control-flow analysis provides a reliable structure for generating clear and

pedagogically aligned questions.

However, it lacks the semantic depth required for advanced comprehension and higher-order

question types. The PDG-based pipeline, while lower in quality (0.72) and linguistic complexity

(0.62), contributes semantic insights that enhance novelty and cognitive diversity, albeit with

challenges in clarity and consistency when used independently. In contrast, the baseline template-

based AQG system underperforms (0.58 quality, 0.39 linguistic complexity), revealing the

limitations of shallow syntax-based approaches that cannot capture deeper structures or semantics

of code, often resulting in repetitive and low-cognitive-load questions. The CFG-PDG pipeline

demonstrates high precision (0.83), improving upon the CFG-based (0.77) and outperforming the

PDG-based (0.62) and baseline (0.36) systems. This indicates the system’s capacity to generate

relevant, targeted questions with minimal irrelevant outputs, ensuring assessment quality.

However, recall remains a shared challenge across all graph-based systems, with scores of 0.08

(CFG-PDG), 0.11 (CFG-based), and 0.06 (PDG-based), compared to the baseline system’s

Figure 7.3 Comparison between the proposed approaches and the baseline

133

inflated recall (1.00). The baseline’s maximum recall is misleading; it achieves high coverage by

generating a large volume of low-quality, repetitive questions, reflected in its low quality and

linguistic complexity scores. The CFG-PDG pipeline, while generating fewer questions,

prioritizes relevance and cognitive alignment, as demonstrated by its higher precision, ensuring

that the generated assessments are meaningful rather than voluminous. In contrast, the CFG-PDG

pipeline favors precision and cognitive alignment, generating fewer but more meaningful

questions. Its F1-score (0.15), though lower than the baseline’s (0.53), reflects a deliberate trade-

off prioritizing quality over quantity. This underscores that high F1-scores driven by excessive

recall may not translate into pedagogically effective assessments. Notably, the CFG-PDG pipeline

achieves the highest novelty score (0.96), marginally surpassing the PDG-Based (0.95) and

outperforming the CFG-Based (0.86) and Baseline (0.15). This indicates that incorporating

semantic dependency analysis allows the system to generate diverse, non-trivial questions that

push learners beyond rote memorization, enhancing engagement and learning outcomes.

Educational alignment remains maximum (1.00) across all graph-based systems, underscoring

their consistent alignment with learning objectives and Bloom’s Taxonomy levels. Since the

tagging process is built into the pipeline and applied to every question by default, the score

consistently comes out as 1.00, indicating a shared need for future review. In contrast, the baseline

system’s lower alignment score (0.44) highlights its inadequacy in maintaining pedagogical

coherence. Cognitive diversity is highest in the CFG-PDG pipeline (0.31), followed by the PDG-

Based (0.29) and CFG-Based (0.20), indicating the CFG-PDG pipeline’s ability to generate

questions spanning various cognitive levels, including analysis, evaluation, and creative coding.

Despite a numeric cognitive diversity score of 0.51, the baseline system often produces

superficially diverse but low-order questions, lacking depth and true cognitive challenge. Finally,

the low recall of CFG-PDG reflects its reliance on a few templates that cover basic patterns,

suggesting the need to expand templates and leverage CFG-PDG complexity or ML approaches

to capture a broader range of valid questions while keeping precision high.

7.4.2 Research Contributions and Educational Implications

The generator is a key event in automatic assessment. Its capability to produce reasonably

balanced content in terms of languages, Bloom's taxonomy, and the form and types of questions

helps address the bias inherent to manual QG. The proposed study contributes to educational

technology by showing that rich computational modeling strategies can reliably operationalize

abstract educational concepts like cognitive complexity, difficulty progression, and content

balance. Automating cognitive assessment in programming instruction confirms that Bloom's

taxonomy was applied systematically, proving its feasibility in programming education. The four

134

programming languages are empirically supported with consistent performance based on theories

that focus on conceptual rather than memorization of languages. The fact that it included all 19

fundamental algorithms and divided them into six categories covers areas of common curriculum

deficiencies, with some algorithms being emphasized more than others. The pedagogical system

ensures that the students will get an in-depth exposure to algorithmic concepts needed to learn CS.

7.4.3 Research Limitations

The focus on 19 algorithms excludes advanced topics (e.g., ML, cryptography). Limited language

support (Python, Java, C++, C) misses functional and web languages. The system emphasizes

algorithmic tasks over higher-order software engineering skills. Standardized formats may not

fully capture real-world complexity or creativity. Static analysis limits insight into run-time

behavior. At present, the framework does not explicitly map algorithm categories to Bloom levels

or template pools. All templates are triggered from structural motifs alone. This ensures

generalizability and language-independence, but it also limits the ability to design questions

tailored to the pedagogical nuances of each algorithm family. Finally, the three pipelines have not

fully resolved the balance issue, highlighting the need for a future solution.

7.4.4 Future Research Directions

Future development should prioritize expansion to additional programming languages,

particularly those representing different paradigms such as functional programming, concurrent

programming, and domain-specific languages. The modular architecture provides a foundation for

such expansion, though each new language will require careful consideration of paradigm-specific

concepts and assessment approaches. Integration with adaptive learning platforms could provide

personalized educational experiences based on individual student progress and learning patterns.

Longitudinal studies of student learning outcomes would provide crucial evidence for the

educational effectiveness of automated QG. Such studies should examine immediate learning

gains, retention, transfer to new contexts, and development of expert-like problem-solving skills.

Future extensions may incorporate lightweight category detection to enable algorithm-aware

generation. For instance, sorting motifs could unlock invariant and complexity analysis templates,

graph traversal motifs could emphasize reachability and connectivity, and dynamic programming

motifs could surface recurrence-based reasoning tasks. Such refinements would enrich question

diversity while retaining the current framework’s transparency and reproducibility.

Finally, a promising extension of this work lies in integrating LLMs with the CFG-PDG

framework. The modular design of the current system already provides clear entry points for such

hybridization, where LLMs can be guided by structural program representations rather than

generating questions in isolation. By using CFG and PDG graphs as guardrails, LLMs could enrich

135

QG with greater semantic variety and higher-order reasoning while maintaining alignment with

Bloom’s taxonomy and algorithmic correctness. This hybrid approach has the potential to address

the current limitation of low recall, enable more adaptive question complexity, and balance

structural rigor with semantic richness.

7.5 Conclusion

The increasing demand for high-quality and cognitively aligned assessments in programming

education presents a significant challenge for educators, particularly within multi-language, large-

scale instructional settings. This study presents a robust, scalable, and pedagogically aligned

system for AQG from source code, leveraging CFG, PDG, and a synergistic CFG-PDG pipeline

to address this challenge across Python, Java, C++, and C. The system systematically covers 19

fundamental algorithms, six levels of Bloom’s taxonomy, and a diverse range of question types,

with reasonably balanced distributions. Empirical results demonstrated that the CFG-PDG

synergistic pipeline consistently outperformed standalone CFG-based and PDG-based pipelines,

achieving an overall quality score of 0.83, linguistic complexity of 0.83, precision of 0.83, and

novelty of 0.96. Compared to CFG-based and PDG-based pipelines, it also achieved enhanced

cognitive diversity (0.31), supporting the generation of semantically rich, cognitively engaging

questions spanning higher-order cognitive levels and promoting deeper learning engagement.

Human evaluations further confirmed its pedagogical value, with C++ questions receiving slightly

high ratings while maintaining consistent quality across all languages. Despite these

advancements, limitations remain, particularly in expanding coverage to functional and web

languages and in capturing dynamic program behaviors. The system maintained maximum

educational alignment (1.00) across all pipelines, confirming its compatibility with curriculum

goals and facilitating integration into adaptive learning platforms and scalable online courses.

Since the tagging process is built into the pipeline and applied to every question by default, the

score consistently comes out as 1.00, indicating a shared need for future work. The low recall of

CFG-PDG reflects its reliance on a few templates that cover basic patterns, suggesting the need to

expand templates and leverage CFG-PDG complexity or ML approaches to capture a broader

range of valid questions while keeping precision high. Future work will prioritize template library

expansion, dynamic analysis integration, and longitudinal studies to assess the system’s impact on

learning outcomes, engagement, and skill retention in diverse learning contexts. In conclusion,

this work establishes a foundational advancement in automated programming assessment, offering

a practical, effective tool for educators to deliver high-quality, equitable, and cognitively diverse

evaluations in CS education.

136

Thesis 5: I developed a modular static analysis framework for AQG across multiple programming

languages. The system integrates language-specific analyzers within a unified architecture

designed to support consistency in QG across the four programming languages (C, C++, Java, and

Python). [P6]

137

Chapter 8 Conclusion

8.1 Contributions

This dissertation has established a comprehensive, systematic approach to advancing

programming education through automated, high-quality, and pedagogically aligned QG and

learning material creation. Across ontology-based models, hybrid AI frameworks, template-driven

static analysis, LLM evaluation, CFG pipeline, PDG pipeline, and CFG–PDG pipeline, the

research consistently demonstrates scalable, effective methodologies that address critical gaps in

assessment practices within multi-language programming education. The findings provide

educators and technology developers with validated, actionable frameworks to enhance learning

engagement, assessment quality, and instructional efficiency, paving the way for further

innovations in automated programming education tools. The main scientific results achieved

during the completion of this research are summarized in five thesis points.

8.1.1 Thesis 1

I developed an ontology-based system that automatically generates programming-related

assessment questions directly from source code. By leveraging structured domain knowledge, the

system semantically interprets programming constructs to support concept-aware question

generation, without relying on adaptive learning mechanisms. [P1, P2]

8.1.2 Thesis 2

I developed a hybrid system that combines static code analysis, ontology, and natural language

processing using word embeddings to generate programming-related questions from source code.

[P3]

8.1.3 Thesis 3

I developed a systematic evaluation framework to assess the QG capabilities of LLMs, using

automatic evaluation metrics and complemented by human-centered evaluation metrics for the

top-performer LLM. The findings provide insights into their strengths and limitations in

generating programming-related assessment questions for potential educational use in the

programming domain. [P4]

8.1.4 Thesis 4

I developed a modular system for AQG and evaluation using template-based static code analysis,

enabling modular QG designed to be extensible with minimal integration overhead. The

framework supports multiple programming languages through customizable parsing templates

within a unified architecture. [P5]

138

8.1.5 Thesis 5

I developed a modular static analysis framework for AQG across multiple programming

languages. The system integrates language-specific analyzers within a unified architecture

designed to support consistency in QG across the four programming languages (C, C++, Java, and

Python). [P6]

8.2 Future work

Each of the five thesis points opens up unique and practical directions for continued research. The

following recommendations aim to build on their individual contributions, offering ways to refine

current methods, broaden their reach, and address some of the open challenges highlighted

throughout the dissertation.

1. Ontology-Based Automatic Generation of Learning Materials for Python Programming:

Future research could extend the ontology-based approach beyond Python to include a broader

range of programming languages. This would involve designing cross-language ontological

frameworks or language-specific extensions that preserve semantic coherence across diverse

syntactic constructs. Additionally, conducting controlled experimental studies comparing

ontology-generated questions with manually crafted ones could yield valuable insights into

their educational effectiveness, particularly in terms of learner comprehension, retention, and

perceived usefulness.

2. A Hybrid Approach for Automatic Question Generation from Python Program Codes: One

promising direction is to enhance the system’s ability to process more complex programming

structures, especially those involving third-party libraries, nested functions, and

interdependent statements. Improving the semantic interpretation pipeline, possibly by

incorporating deeper NLP techniques or lightweight learning models, could help generate

more sophisticated and context-aware questions. Future research may also explore how to

adapt the system automatically to different code domains or programming paradigms.

3. Evaluating Large Language Models for Generating Programming Questions from Code:

Future work in this area could involve refining the evaluation framework to capture more

nuanced aspects of question quality, such as semantic subtlety, creativity, and alignment with

pedagogical goals. Incorporating qualitative feedback from educators alongside quantitative

metrics could further ground the evaluation process in real instructional needs. Additionally,

exploring emerging models, including domain-specific LLMs or those designed to support

multiple programming languages, may offer deeper insights into their effectiveness across

diverse educational contexts.

139

4. Template-Based Question Generation from Code Using Static Code Analysis: Subsequent

research may focus on developing dedicated language-specific parsers for Java, C++, and C

to improve upon the current reliance on pattern-based extraction methods. Adding runtime

analysis or symbolic execution could improve the system’s contextual accuracy and support

questions based on actual program behavior. The integration of adaptive or ML-driven

components might also enable context-sensitive template selection. Longitudinal classroom

studies would help assess how such systems impact student learning and engagement over

time.

5. Multi-Language Static-Analysis System for Automatic Question Generation from Source

Code: Further development could extend the system to include functional, concurrent, and

domain-specific languages, making it more adaptable to a wide range of curricular needs. By

combining dynamic and static program analysis, the system could generate richer, behavior-

aware questions, especially in tasks involving edge-case reasoning or algorithmic logic.

Another important direction involves linking the framework with adaptive learning platforms

that personalize questions based on individual learner progress. Conducting long-term

educational studies would provide essential data on how the system influences knowledge

retention, problem-solving skills, and transfer of learning across different instructional

settings. Finally, a promising extension of this work lies in integrating LLMs with the CFG-

PDG framework. The modular design of the current system already provides clear entry points

for such hybridization, where LLMs can be guided by structural program representations rather

than generating questions in isolation. By using CFG and PDG graphs as guardrails, LLMs

could enrich QG with greater semantic variety and higher-order reasoning while maintaining

alignment with Bloom’s taxonomy and algorithmic correctness. This hybrid approach has the

potential to address the current limitation of low recall, enable more adaptive question

complexity, and balance structural rigor with semantic richness.

8.3 Author’s Publications

Publications Related to the Dissertation

Journal Articles in Q Ranking

[P1] J. Alshboul and E. Baksa-Varga, “Ontology-Based Automatic Generation of Learning

Materials for Python Programming,” International Journal of Advanced Computer Science and

Applications, vol. 16, no. 5, 2025, doi: 10.14569/IJACSA.2025.0160508. Quartile: Q3.

140

[P2] J. Alshboul and E. Baksa-Varga, “A Review of Automatic Question Generation in Teaching

Programming,” International Journal of Advanced Computer Science and Applications, vol. 13,

no. 10, 2022, doi: 10.14569/IJACSA.2022.0131006. Quartile: Q3.

[P3] J. Alshboul and E. Baksa-Varga, “A Hybrid Approach for Automatic Question Generation

from Program Codes,” International Journal of Advanced Computer Science and Applications,

vol. 15, no. 1, 2024, doi: 10.14569/IJACSA.2024.0150102. Quartile: Q3.

[P4] J. Alshboul and E. Baksa-Varga, “Evaluating Large Language Models for Generating

Programming Questions from Code,” Pollack Periodica: An International Journal for Engineering

and Information Sciences, Status: Accepted/Minor Revision, doi: 10.1556/606.2025.01471.

Quartile: Q3.

[P5] J. Alshboul and E. Baksa-Varga, “Template-Based Question Generation from Code Using

Static Code Analysis,” Pollack Periodica: An International Journal for Engineering and

Information Sciences, Status: Under Review. Quartile: Q3.

[P6] J. Alshboul and E. Baksa-Varga, “Multi-Language Static-Analysis System for Automatic

Question Generation from Source Code,” Status: To Be Submitted.

Other Publications

Journal Articles in Q Ranking

[P7] S. Mokhtar, J. A. Q. Alshboul, and G. O. A. Shahin, “Towards Data-driven Education with

Learning Analytics for Educator 4.0,” Journal of Physics: Conference Series, vol. 1339, no. 1339,

p. 012079, Dec. 2019, doi: https://doi.org/10.1088/1742-6596/1339/1/012079. Quartile: Q4.

[P8] H. A. A. Ghanim, J. Alshboul, and L. Kovacs, “Development of Ontology-based Domain

Knowledge Model for IT Domain in e-Tutor Systems,” International Journal of Advanced

Computer Science and Applications, vol. 13, no. 5, 2022, doi: 10.14569/IJACSA.2022.0130505.

Quartile: Q3.

International Journals

[P9] J. Alshboul, H. A. A. Ghanim, and E. Baksa-Varga, Semantic Modeling for Learning

Materials in E-tutor Systems, Journal of Software Engineering & Intelligent Systems 6(2) pp. 1-

5. (2021), Journal Article.

Local Journals

[P10] J. Alshboul and E. Baksáné-Varga. “Student Academic Performance Prediction,”

Production Systems and Information Engineering, vol. 9, no. 1, pp. 36–53, 2020, Accessed: July.

09, 2025. [Online]. Available: https://ojs.uni-miskolc.hu/index.php/psaie/article/view/3822.

141

International Conference Proceedings

[P11] 17th Miklós Iványi International Ph.D. & DLA Symposium: Architectural, Engineering

and Information Sciences. Title: Development of A Semantic Model for Learning Materials in

Intelligent Tutoring Systems. Organizer: Faculty of Engineering and Information Technology,

University of Pécs, Pécs, Hungary. Date: 25th-26th October, 2021.

[P12] Language in the Human-Machine Era Training School. Title: E-Learning and Automatic

Resource Generation for Learning Materials. Date: 05th to 9th June 2023. Location: University of

Pristina, Kosovo. Organizer: EU agency "European Cooperation in Science and Technology".

Local Conference Proceedings

[P13] J. Alshboul and E. Baksáné-Varga. A Survey of Domain Model Representations in

Intelligent Tutoring Systems. Miskolc, Hungary: Faculty of Mechanical Engineering and

Informatics PhD Forum Proceedings Book, University of Miskolc, 2021.

[P14] J. Alshboul and E. Baksáné-Varga. Code, Feedback, And Question Generation on

Programming Topics Using ChatGPT API. Miskolc, Hungary: Faculty of Mechanical Engineering

and Informatics PhD Forum Proceedings Book, University of Miskolc, 2023.

Book of Abstract

[P15] J. Alshboul, H. A. A. Ghanim, and E. Baksa-Varga. Development of a Semantic Model for

Learning Materials in Intelligent Tutoring Systems, International PhD & DLA Symposium 2021,

Pollack Press (2021). pp. 91-91, Abstract.

[P16] J. Alshboul and E. Baksa-Varga. A Generator-Evaluator Framework for Automatic

Question Generation from Program Codes, International Conference on AI Transformation

2024, Publisher: Corvinus University of Budapest (2024). pp. 19-20, Abstract.

142

References

[1] N. Mulla and P. Gharpure, “Automatic Question Generation: A Review of Methodologies, Datasets, Evaluation

Metrics, and Applications,” Progress in Artificial Intelligence, vol. 12, no. 1, pp. 1–32, Jan. 2023, doi:

10.1007/s13748-023-00295-9.

[2] M. Zerkouk, M. Mihoubi, and B. Chikhaoui, “A Comprehensive Review of AI-based Intelligent Tutoring

Systems: Applications and Challenges,” Jul. 25, 2025, arXiv. doi: 10.48550/arXiv.2507.18882.

[3] M. Vinueza-Morales, J. Rodas-Silva, C. Vidal-Silva, J. Córdova-Morán, and E. Cevallos-Ayón, “Teaching

programming in higher education: a bibliometric analysis of trends, technologies, and pedagogical approaches,”

Frontiers in Education, vol. 10, Mar. 2025, doi: 10.3389/feduc.2025.1525917.

[4] S. Al Faraby, A. Adiwijaya, and A. Romadhony, “Review on Neural Question Generation for Education

Purposes,” International Journal of Artificial Intelligence in Education, vol. 34, no. 3, pp. 1008–1045, Sep. 2024,

doi: 10.1007/s40593-023-00374-x.

[5] G. Kurdi, J. Leo, B. Parsia, U. Sattler, and S. Al-Emari, “A Systematic Review of Automatic Question Generation

for Educational Purposes,” International Journal of Artificial Intelligence in Education, vol. 30, no. 1, pp. 121–

204, Mar. 2020, doi: 10.1007/s40593-019-00186-y.

[6] R. Queirós, J. C. Paiva, and J. P. Leal, “Programming Exercises Interoperability: The Case of a Non-Picky

Consumer,” in 10th Symposium on Languages, Applications and Technologies (SLATE 2021), R. Queirós, M.

Pinto, A. Simões, F. Portela, and M. J. Pereira, Eds., in Open Access Series in Informatics (OASIcs), vol. 94.

Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021, p. 5:1-5:9. doi:

10.4230/OASIcs.SLATE.2021.5.

[7] I. Mekterović, L. Brkić, and M. Horvat, “Scaling Automated Programming Assessment Systems,” Electronics,

vol. 12, no. 4, 2023, doi: 10.3390/electronics12040942.

[8] H. S. Wankhede and A. W. Kiwelekar, “Qualitative Assessment of Software Engineering Examination Questions

with Bloom’s Taxonomy,” Indian Journal of Science and Technology, vol. 9, no. 6, Mar. 2016, doi:

10.17485/ijst/2016/v9i6/85012.

[9] L. J. Tamang, R. Banjade, J. Chapagain, and V. Rus, “Automatic Question Generation for Scaffolding Self-

explanations for Code Comprehension,” in Artificial Intelligence in Education, M. M. Rodrigo, N. Matsuda, A.

I. Cristea, and V. Dimitrova, Eds., Cham: Springer International Publishing, 2022, pp. 743–748.

[10] O. Sitthisak, L. Gilbert, and D. Albert, “Ontology-Driven Automatic Generation of Questions from Competency

Models,” in The 9th International Conference on Computing and InformationTechnology (IC2IT2013), P.

Meesad, H. Unger, and S. Boonkrong, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 145–154.

[11] S. Alkhuzaey, F. Grasso, T. R. Payne, and V. Tamma, “Evaluating the Fitness of Ontologies for the Task of

Question Generation,” Apr. 08, 2025, arXiv. doi: 10.48550/arXiv.2504.07994.

[12] O. Sychev and D. Shashkov, “Mass Generation of Programming Learning Problems from Public Code

Repositories,” Big Data and Cognitive Computing, vol. 9, no. 3, 2025, doi: 10.3390/bdcc9030057.

[13] E. Logacheva, A. Hellas, J. Prather, S. Sarsa, and J. Leinonen, “Evaluating Contextually Personalized

Programming Exercises Created with Generative AI,” in Proceedings of the 2024 ACM Conference on

International Computing Education Research - Volume 1, in ICER ’24. New York, NY, USA: Association for

Computing Machinery, 2024, pp. 95–113. doi: 10.1145/3632620.3671103.

[14] K. Zhu, Y. Lu, H. Huang, L. Yu, and J. Zhao, “Constructing More Complete Control Flow Graphs Utilizing

Directed Gray-Box Fuzzing,” Applied Sciences, vol. 11, no. 3, 2021, doi: 10.3390/app11031351.

[15] Y. Yan, N. Cooper, K. Moran, G. Bavota, D. Poshyvanyk, and S. Rich, “Enhancing Code Understanding for

Impact Analysis by Combining Transformers and Program Dependence Graphs,” Proc. ACM Softw. Eng., vol.

1, no. FSE, Jul. 2024, doi: 10.1145/3643770.

[16] S. K. Patil and M. M. Shreyas, “A Comparative Study of Question Bank Classification based on Revised Bloom’s

Taxonomy using SVM and K-NN,” in 2017 2nd International Conference On Emerging Computation and

Information Technologies (ICECIT), 2017, pp. 1–7. doi: 10.1109/ICECIT.2017.8453305.

[17] S. Sarsa, P. Denny, A. Hellas, and J. Leinonen, “Automatic Generation of Programming Exercises and Code

Explanations Using Large Language Models,” presented at the International Computing Education Research,

Lugano, Switzerland: ACM, Aug. 2022, pp. 27–43. doi: https://doi.org/10.1145/3501385.3543957.

143

[18] P. Nema, A. K. Mohankumar, M. M. Khapra, B. V. Srinivasan, and B. Ravindran, “Let’s Ask Again: Refine

Network for Automatic Question Generation,” in Proceedings of the 2019 Conference on Empirical Methods in

Natural Language Processing and the 9th International Joint Conference on Natural Language Processing

(EMNLP-IJCNLP), K. Inui, J. Jiang, V. Ng, and X. Wan, Eds., Hong Kong, China: Association for

Computational Linguistics, Nov. 2019, pp. 3314–3323. doi: 10.18653/v1/D19-1326.

[19] A. Ushio, F. Alva-Manchego, and J. Camacho-Collados, “A Practical Toolkit for Multilingual Question and

Answer Generation,” in Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics

(Volume 3: System Demonstrations), D. Bollegala, R. Huang, and A. Ritter, Eds., Toronto, Canada: Association

for Computational Linguistics, Jul. 2023, pp. 86–94. doi: 10.18653/v1/2023.acl-demo.8.

[20] D. Gnanasekaran, R. Kothandaraman, and K. Kaliyan, “An Automatic Question Generation System Using Rule-

Based Approach in Bloom’s Taxonomy,” Recent Advances in Computer Science and Communications, vol. 14,

no. 5, pp. 1477–1487, 2021, doi: 10.2174/2213275912666191113143335.

[21] Z. Ullah, A. Lajis, M. Jamjoom, A. Altalhi, and F. Saleem, “Bloom’s taxonomy: A beneficial tool for learning

and assessing students’ competency levels in computer programming using empirical analysis,” Computer

Applications in Engineering Education, vol. 28, no. 6, pp. 1628–1640, 2020, doi:

https://doi.org/10.1002/cae.22339.

[22] H. Naveed, A. U. Khan, S. Qiu, M. Saqib, S. Anwar, M. Usman, N. Akhtar, N. Barnes, and A. Mian, “A

Comprehensive Overview of Large Language Models,” ACM Trans. Intell. Syst. Technol., vol. 16, no. 5, Aug.

2025, doi: 10.1145/3744746.

[23] E. Kasneci et al., “ChatGPT for good? On opportunities and challenges of large language models for education,”

Learning and Individual Differences, vol. 103, p. 102274, 2023, doi:

https://doi.org/10.1016/j.lindif.2023.102274.

[24] B. Nguyen, M. Yu, Y. Huang, and M. Jiang, “Reference-based Metrics Disprove Themselves in Question

Generation,” in Findings of the Association for Computational Linguistics: EMNLP 2024, Y. Al-Onaizan, M.

Bansal, and Y.-N. Chen, Eds., Miami, Florida, USA: Association for Computational Linguistics, Nov. 2024, pp.

13651–13666. doi: 10.18653/v1/2024.findings-emnlp.798.

[25] C. Zhou, M. Wang, T. Zhang, Q. Zhu, J. Li, and H. Huang, “From Answers to Questions: EQGBench for

Evaluating LLMs’ Educational Question Generation,” Aug. 05, 2025, arXiv. doi: 10.48550/arXiv.2508.10005.

[26] C. Cheng, Z. Huang, G. Zhao, Y. Guo, X. Lin, J. Wu, X. Li, and S. Wang, “From Objectives to Questions: A

Planning-based Framework for Educational Mathematical Question Generation,” in Proceedings of the 63rd

Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), W. Che, J. Nabende,

E. Shutova, and M. T. Pilehvar, Eds., Vienna, Austria: Association for Computational Linguistics, Jul. 2025, pp.

12836–12856. doi: 10.18653/v1/2025.acl-long.628.

[27] H.-C. Ling and H.-S. Chiang, “Learning Performance in Adaptive Learning Systems: A Case Study of Web

Programming Learning Recommendations,” Frontiers in Psychology, vol. Volume 13-2022, 2022, doi:

10.3389/fpsyg.2022.770637.

[28] Y. Zhou, “Towards Contextualized Programming Education by Developing a Learnersourcing Workflow,”

Purdue University, 2024. Accessed: Jun. 18, 2025. [Online]. Available:

https://hammer.purdue.edu/articles/thesis/Towards_Contextualized_Programming_Education_by_Developing_

a_Learnersourcing_Workflow/25631865

[29] D. Vergara, M. L. Fernández, and M. Lorenzo, “Enhancing student motivation in secondary school mathematics

courses: A methodological approach,” Educ. Sci, vol. 9, no. 2, 2019, doi: 10.3390/educsci9020083.

[30] M. Liu, Y. Ren, L. M. Nyagoga, F. Stonier, Z. Wu, and L. Yu, “Future of education in the era of generative

artificial intelligence: Consensus among Chinese scholars on applications of ChatGPT in schools,” Futur. Educ.

Res, vol. 1, no. 1, pp. 72-101, 2023, doi: 10.1002/fer3.10.

[31] L.-C. Lin, I.-C. Hung, Kinshuk, and N.-S. Chen, “The impact of student engagement on learning outcomes in a

cyber-flipped course,” Educ. Technol. Res. Dev, vol. 67, pp. 1573-1591, 2019.

[32] W. Villegas-Ch and J. García-Ortiz, “Enhancing Learning Personalization in Educational Environments through

Ontology-Based Knowledge Representation,” Computers, vol. 12, no. 10, 2023, doi:

10.3390/computers12100199.

[33] N. A. Alrehaili, M. A. Aslam, D. H. Alahmadi, D. A. Alrehaili, M. Asif, and M. S. A. Malik, “Ontology-Based

Smart System to Automate Higher Education Activities,” Complexity, vol. 2021, 2021, doi:

10.1155/2021/5588381.

144

[34] Q. U. Ain, M. A. Chatti, K. G. C. Bakar, S. Joarder, and R. Alatrash, “Automatic Construction of Educational

Knowledge Graphs: A Word Embedding-Based Approach,” Inf, vol. 14, no. 10, 2023, doi:

10.3390/info14100526.

[35] S. MacNeil, Automatically Generating CS Learning Materials with Large Language Models, vol. 1, no. 1.

Association for Computing Machinery, 2022.

[36] B. Flanagan, G. Akçapinar, R. Majumdar, and H. Ogata, “Automatic generation of contents models for digital

learning materials,” in ICCE 2018 - 26th Int. Conf. Comput. Educ. Main Conf. Proc, 2018, pp. 804–806.

[37] K. Zhuang, “The Knowledge Graph Construction in the Educational Domain : Take an Australian School Science

Course as an Example The Knowledge Graph Construction in the Educational Domain : Take an Australian

School Science Course as an Example.” 2023.

[38] G. Kurdi, J. Leo, B. Parsia, U. Sattler, and S. Al-Emari, “A Systematic Review of Automatic Question Generation

for Educational Purposes,” International Journal of Artificial Intelligence in Education, vol. 30, no. 1, pp. 121–

204, Mar. 2020, doi: 10.1007/s40593-019-00186-y.

[39] C. Diwan, S. Srinivasa, G. Suri, S. Agarwal, and P. Ram, “AI-based learning content generation and learning

pathway augmentation to increase learner engagement,” Comput. Educ. Artif. Intell, vol. 4, no. February, p.

100110, 2022, doi: 10.1016/j.caeai.2022.100110.

[40] C. Pierrakeas, G. Solomou, and A. Kameas, “An ontology-based approach in learning programming languages,”

Proc, pp. 393-398, 2012, doi: 10.1109/PCi.2012.78.

[41] N. A. Anindyaputri, R. A. Yuana, and P. Hatta, “Enhancing Students’ Ability in Learning Process of

Programming Language using Adaptive Learning Systems: A Literature Review,” Open Eng, vol. 10, no. 1, pp.

820-829, 2020, doi: 10.1515/eng-2020-0092.

[42] F. D. Calmon, R. Kokku, and A. Vempaty, “Automatic learning curriculum generation,” Google Patents, 2019.

[43] T. Guber, “A translational approach to portable ontologies,” Knowl. Acquis, vol. 5, no. 2, pp. 199-229, 1993.

[44] K. Chen, Q. Huang, H. Palangi, P. Smolensky, K. Forbus, and J. Gao, “Mapping natural-language problems to

formal-language solutions using structured neural representations,” in International Conference on Machine

Learning, 2020, pp. 1566–1575.

[45] F. Baader, I. Horrocks, C. Lutz, and U. Sattler, Introduction to description logic. Cambridge University Press,

2017.

[46] V. Lama, A. Patel, N. C. Debnath, and S. Jain, “IRI_Debug: An Ontology Evaluation Tool,” New Generation

Computing, vol. 42, no. 1, pp. 177-197, 2024, doi: 10.1007/s00354-024-00246-5.

[47] A. Ramírez-Noriega, “Towards the Automatic Construction of an Intelligent Tutoring System: Domain Module,”

Adv. Intell. Syst. Comput, vol. 930, no. 3, pp. 293-302, 2019, doi: 10.1007/978-3-030-16181-1_28.

[48] Z. Xia, Y. Zhou, F. Y. Yan, and J. Jiang, “Automatic curriculum generation for learning adaptation in

networking.” 2022.

[49] P. Brusilovsky, B. J. Ericson, C. Zilles, C. S. Horstmann, C. Servin, and F. Vahid, “The Future of Computing

Education Materials,” Comput. Sci. Curricula, Curricula Pract, vol. 1, no. 1, pp. 1-8, 2023.

[50] N. C. Debnath and A. Patel, “Ontology Evaluation Tools: Current and Future Research,” Recent Adv. Comput.

Sci. Commun, 2022, [Online]. Available: https://api.semanticscholar.org/CorpusID:248138690.

[51] T. Urazova, “Building a System for Automated Question Generation and Evaluation to Assist Students Learning

UML Database Design,” University of British Columbia, 2022. [Online]. Available:

https://open.library.ubc.ca/soa/cIRcle/collections/undergraduateresearch/52966/items/1.0413656

[52] S. Russell, “Automated Code Tracing Exercises for CS1,” presented at the Computing Education Practice 2022,

Durham, United Kingdom: ACM, Jan. 2022, pp. 13–16. doi: https://doi.org/10.1145/3498343.3498347.

[53] M. Sh. Murtazina and T. V. Avdeenko, “The Constructing of Cognitive Functions Ontology,” presented at the

14th International Symposium "Intelligent Systems, Moscow, Russia: Procedia Computer Science, 2021, pp.

595–602. doi: https://doi.org/10.1016/j.procs.2021.04.181.

[54] M. Alqaradaghi, G. Morse, and T. Kozsik, “Detecting Security Vulnerabilities with Static Analysis - A Case

Study,” Pollack Periodica, vol. 17, no. 2, pp. 1–7, Sep. 2021, doi: 10.1556/606.2021.00454.

145

[55] K. Sterner, “Automated Checking of Programming Assignments Using Static Analysis,” Mälardalens University,

Sweden, 2021. Accessed: Apr. 25, 2025. [Online]. Available: https://mdh.diva-

portal.org/smash/record.jsf?pid=diva2%3A1526100&dswid=6624

[56] S. Cao, X. Sun, L. Bo, Y. Wei, and B. Li, “BGNN4VD: Constructing Bidirectional Graph Neural-Network for

Vulnerability Detection,” Information and Software Technology, vol. 136, p. 106576, 2021, doi:

https://doi.org/10.1016/j.infsof.2021.106576.

[57] R. Zviel-Girshin, “The Good and Bad of AI Tools in Novice Programming Education,” Education Sciences, vol.

14, no. 10, 2024, doi: 10.3390/educsci14101089.

[58] S. Srikant and V. Aggarwal, “A System to Grade Computer Programming Skills using Machine Learning,” in

Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining, 2014,

pp. 1887–1896. doi: http://dx.doi.org/10.1145/2623330.2623377.

[59] M. Allamanis, M. Brockschmidt, and M. Khademi, “Learning to Represent Programs with Graphs,” May 04,

2018. doi: https://doi.org/10.48550/arXiv.1711.00740.

[60] T. H. M. Le, H. Chen, and M. A. Babar, “Deep Learning for Source Code Modeling and Generation: Models,

Applications, and Challenges,” ACM Comput. Surv., vol. 53, no. 3, Jun. 2020, doi: 10.1145/3383458.

[61] S. Bhatia, P. Kohli, and R. Singh, “Neuro-Symbolic Program Corrector for Introductory Programming

Assignments,” in Proceedings of the 40th International Conference on Software Engineering, in ICSE ’18. New

York, NY, USA: Association for Computing Machinery, 2018, pp. 60–70. doi: 10.1145/3180155.3180219.

[62] N. Emamdoost, “Better Program Analysis for Security via Data Flow Tracking and Symbolic Execution,” PhD

Thesis, 2021. Accessed: Jun. 06, 2025. [Online]. Available: https://hdl.handle.net/11299/225000

[63] Z. Wang, L. Yu, S. Wang, and P. Liu, “Spotting Silent Buffer Overflows in Execution Trace through Graph

Neural Network Assisted Data Flow Analysis,” Feb. 20, 2021, ArXiv. doi:

https://doi.org/10.48550/arXiv.2102.10452.

[64] W. Hasselbring, M. Wojcieszak, and S. Dustdar, “Control Flow Versus Data Flow in Distributed Systems

Integration: Revival of Flow-Based Programming for the Industrial Internet of Things,” IEEE Internet

Computing, vol. 25, no. 4, pp. 5–12, 2021, doi: 10.1109/MIC.2021.3053712.

[65] D. Guo et al., “GraphCodeBERT: Pre-training Code Representations with Data Flow,” in ICLR 2021, Vienna,

Austria, May 2021. doi: https://doi.org/10.48550/arXiv.2009.08366.

[66] B. Steenhoek, H. Gao, and W. Le, “Dataflow Analysis-Inspired Deep Learning for Efficient Vulnerability

Detection,” in Proceedings of the IEEE/ACM 46th International Conference on Software Engineering, in ICSE

’24. New York, NY, USA: Association for Computing Machinery, 2024. doi: 10.1145/3597503.3623345.

[67] J. Phillips, A. Sudarsanam, H. Samala, R. Kallam, J. Carver, and A. Dasu, “Methodology To Derive Context

Adaptable Architectures for FPGAS,” IET Computers & Digital Techniques, vol. 3, no. 1, pp. 124–141, Jan.

2009, doi: 10.1049/iet-cdt:20070099.

[68] K. C. Swarna, N. S. Mathews, D. Vagavolu, and S. Chimalakonda, “On The Impact of Multiple Source Code

Representations on Software Engineering Tasks — An Empirical Study,” Journal of Systems and Software, vol.

210, p. 111941, 2024, doi: https://doi.org/10.1016/j.jss.2023.111941.

[69] A. S. Saimbhi, “Enhancing Software Vulnerability Detection Using Code Property Graphs and Convolutional

Neural Networks,” in 2025 International Conference on Computational, Communication and Information

Technology (ICCCIT), Indore, India: IEEE, 2025, pp. 435–440. doi: 10.1109/ICCCIT62592.2025.10928033.

[70] N. Willert and J. Thiemann, “Template-Based Generator for Single-Choice Questions,” Technology, Knowledge

and Learning, vol. 29, no. 1, pp. 355–370, Mar. 2024, doi: 10.1007/s10758-023-09659-5.

[71] L. L. Shwe, S. Matayong, and S. Witosurapot, “Enabling Cognitive and Unified Similarity-Based Difficulty

Ranking Mechanisms for AQG On Multimedia Content,” Expert Systems with Applications, vol. 277, p. 127244,

Jun. 2025, doi: 10.1016/j.eswa.2025.127244.

[72] B. Khoy, “Unlocking Cognitive Learning Objectives: A Comprehensive Evaluation of How Textbooks and

Syllabi Align with Revised Bloom’s Taxonomy Across Disciplines,” Curriculum Perspectives, Jan. 2025, doi:

10.1007/s41297-024-00295-2.

[73] A. Luxton-Reilly, B. A. Becker, Y. Cao, R. McDermott, C. Mirolo, A. Mühling, A. Petersen, K. Sanders, Simon,

and J. Whalley, “Developing Assessments to Determine Mastery of Programming Fundamentals,” in

Proceedings of the 2017 ITiCSE Conference on Working Group Reports, in ITiCSE-WGR ’17. New York, NY,

USA: Association for Computing Machinery, 2018, pp. 47–69. doi: 10.1145/3174781.3174784.

146

[74] E. H. S. Y. Elim, “Promoting Cognitive Skills in AI-Supported Learning Environments: The Integration of

Bloom’s Taxonomy,” Education 3-13, pp. 1–11, Apr. 2024, doi: 10.1080/03004279.2024.2332469.

[75] M. Shoaib, G. Husnain, N. Sayed, Y. Yasin Ghadi, M. Alajmi, and A. Qahmash, “Automated Generation of

Multiple-Choice Questions for Computer Science Education Using Conditional Generative Adversarial

Networks,” IEEE Access, vol. 13, pp. 16697–16715, 2025, doi: 10.1109/ACCESS.2025.3530474.

[76] N. Liu, Z. Wang, R. Baraniuk, and A. Lan, “Open-ended Knowledge Tracing for Computer Science Education,”

in Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, Y. Goldberg, Z.

Kozareva, and Y. Zhang, Eds., Abu Dhabi, United Arab Emirates: Association for Computational Linguistics,

Dec. 2022, pp. 3849–3862. doi: 10.18653/v1/2022.emnlp-main.254.

[77] Y. Wu, H. Zhu, C. Wang, F. Song, H. Zhu, Y. Chen, Q. Zheng, and F. Tian, “Programming knowledge tracing

based on heterogeneous graph representation,” Knowledge-Based Systems, vol. 300, p. 112161, 2024, doi:

https://doi.org/10.1016/j.knosys.2024.112161.

[78] O. H. T. Lu, A. Y. Q. Huang, D. C. L. Tsai, and S. J. H. Yang, “Expert-Authored and Machine-Generated Short-

Answer Questions for Assessing Students Learning Performance,” Educational Technology & Society, vol. 24,

no. 3, pp. 159–173, 2021.

[79] M. Hassan and C. Zilles, “On Students’ Usage of Tracing for Understanding Code,” in Proceedings of the 54th

ACM Technical Symposium on Computer Science Education V. 1, in SIGCSE 2023. New York, NY, USA:

Association for Computing Machinery, 2023, pp. 129–136. doi: 10.1145/3545945.3569741.

[80] M. Murata, N. Kato, M. Ohtsuki, and T. Kakeshita, “Fill-in-the-blank Questions for Object-Oriented

Programming Education and Its Preliminary Evaluation,” International Journal of Learning Technologies and

Learning Environments, vol. 6, pp. 1–1, Jan. 2023, doi: 10.52731/ijltle.v6.i1.699.

[81] S. Kyaw, Nobuo Funabiki, and W.-C. Kao, “A Proposal of Code Amendment Problem in Java Programming

Learning Assistant System,” International Journal of Information and Education Technology, vol. 10, no. 10,

pp. 751–756, 2020, doi: 10.18178/ijiet.2020.10.10.1453.

[82] T. Terroso and M. Pinto, “Programming for Non-Programmers: An Approach Using Creative Coding in Higher

Education,” in Third International Computer Programming Education Conference (ICPEC 2022), A. Simões

and J. C. Silva, Eds., in Open Access Series in Informatics (OASIcs), vol. 102. Dagstuhl, Germany: Schloss

Dagstuhl – Leibniz-Zentrum für Informatik, 2022, p. 13:1-13:8. doi: 10.4230/OASIcs.ICPEC.2022.13.

[83] I. Lauriola, A. Lavelli, and F. Aiolli, “An introduction to deep learning in natural language processing: Models,

techniques, and tools,” Neurocomputing, vol. 470, pp. 443–456, 2022.

[84] Y. Kang, Z. Cai, C.-W. Tan, Q. Huang, and H. Liu, “Natural language processing (NLP) in management research:

A literature review,” Journal of Management Analytics, vol. 7, no. 2, pp. 139–172, May 2020, doi:

10.1080/23270012.2020.1756939.

[85] J. Eisenstein, Introduction to natural language processing. MIT Press, 2019.

[86] H. Liu, R. Ning, Z. Teng, J. Liu, Q. Zhou, and Y. Zhang, “Evaluating the logical reasoning ability of chatgpt and

gpt-4,” May 05, 2023, ArXiv. doi: 10.48550/arXiv.2304.03439.

[87] S. L. Blodgett, S. Barocas, H. Daumé III, and H. Wallach, “Language (Technology) is Power: A Critical Survey

of ‘Bias’ in NLP,” in Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics,

Association for Computational Linguistics, Jul. 2020, pp. 5454–5476. doi: 10.18653/v1/2020.acl-main.485.

[88] J. Wei et al., “Emergent abilities of large language models,” arXiv preprint arXiv:2206.07682, 2022.

[89] M. Zhou, N. Duan, S. Liu, and H.-Y. Shum, “Progress in Neural NLP: Modeling, Learning, and Reasoning,”

Engineering, vol. 6, no. 3, pp. 275–290, 2020, doi: 10.1016/j.eng.2019.12.014.

[90] M. Mitchell and D. C. Krakauer, “The debate over understanding in AI’s large language models,” Proceedings

of the National Academy of Sciences, vol. 120, no. 13, p. e2215907120, Feb. 2023, doi:

10.1073/pnas.2215907120.

[91] D. Sykes, A. Grivas, C. Grover, R. Tobin, C. Sudlow, W. Whiteley, A. Mcintosh, H. Whalley, and B. Alex,

“Comparison of rule-based and neural network models for negation detection in radiology reports,” Natural

Language Engineering, vol. 27, no. 2, pp. 203–224, Mar. 2021, doi: 10.1017/S1351324920000509.

[92] L. Ouyang et al., “Training language models to follow instructions with human feedback,” in Proceedings of the

36th International Conference on Neural Information Processing Systems, New Orleans LA USA: Curran

Associates Inc., Nov. 2022, pp. 27730–27744.

147

[93] J. Kaddour, J. Harris, M. Mozes, H. Bradley, R. Raileanu, and R. McHardy, “Challenges and Applications of

Large Language Models,” Jul. 2023.

[94] M. Chen et al., “Evaluating large language models trained on code,” Jul. 14, 2021, arXiv. doi:

10.48550/arXiv.2107.03374.

[95] A. Sottana, B. Liang, K. Zou, and Z. Yuan, “Evaluation Metrics in the Era of GPT-4: Reliably Evaluating Large

Language Models on Sequence to Sequence Tasks,” Oct. 2023.

[96] Z. Guo et al., “Evaluating Large Language Models: A Comprehensive Survey,” Nov. 25, 2023, ArXiv. doi:

10.48550/arXiv.2310.19736.

[97] A. Mohammadshahi, T. Scialom, M. Yazdani, P. Yanki, A. Fan, J. Henderson, and M. Saeidi, “RQUGE:

Reference-Free Metric for Evaluating Question Generation by Answering the Question,” in Findings of the

Association for Computational Linguistics: ACL 2023, Toronto, Canada: Association for Computational

Linguistics, 2023, pp. 6845–6867. [Online]. Available: https://aclanthology.org/2023.findings-acl.428/

[98] C. Kooli, “Chatbots in Education and Research: A Critical Examination of Ethical Implications and Solutions,”

Sustainability, vol. 15, no. 7, p. 5614, Mar. 2023, doi: 10.3390/su15075614.

[99] D. Hupkes et al., “A taxonomy and review of generalization research in NLP,” Nature Machine Intelligence, vol.

5, pp. 1161–1174, Oct. 2023, doi: 10.1038/s42256-023-00729-y.

[100] L. Moussiades and G. Zografos, “OpenAi’s GPT4 as coding assistant,” Sep. 22, 2023, ArXiv. doi:

10.48550/arXiv.2309.12732.

[101] J. A. Baktash and M. Dawodi, “Gpt-4: A Review on Advancements and Opportunities in Natural Language

Processing,” May 04, 2023, ArXiv. doi: 10.48550/arXiv.2305.03195.

[102] A. Belfathi, N. Hernandez, and L. Monceaux, “Harnessing GPT-3.5-Turbo for Rhetorical Role Prediction in

Legal Cases,” Oct. 26, 2023, arXiv. doi: 10.48550/arXiv.2310.17413.

[103] H. Touvron et al., “Llama: Open and efficient foundation language models,” Feb. 27, 2023, ArXiv. doi:

10.48550/arXiv.2302.13971.

[104] A. Candel et al., “h2oGPT: Democratizing Large Language Models,” Jun. 16, 2023, ArXiv. doi:

10.48550/arXiv.2306.08161.

[105] Hugging Face, “Hugging Face Models,” Hugging Face. Accessed: Jan. 12, 2025. [Online]. Available:

https://huggingface.co/models

[106] Vicuna: An Instruction-following LLaMA-based Model. (2023). [Chinese-Vicuna]. Available:

https://github.com/Facico/Chinese-Vicuna

[107] L. Caruccio, S. Cirillo, G. Polese, G. Solimando, S. Sundaramurthy, and G. Tortora, “Claude 2.0 large

language model: Tackling a real-world classification problem with a new iterative prompt engineering approach,”

Intelligent Systems with Applications, vol. 21, p. 200336, Mar. 2024, doi: 10.1016/j.iswa.2024.200336.

[108] Anthropic, “Claude 2 Anthropic.” [Online]. Available: https://www.anthropic.com/news/claude-2

[109] E. Portakal, “Claude 2 Parameters (Parameter Size, Context Window.),” TextCortex AI. [Online]. Available:

https://textcortex.com/post/claude-2-parameters

[110] Y. Susanti, T. Tokunaga, H. Nishikawa, and H. Obari, “Evaluation of Automatically Generated English

Vocabulary Questions,” Research and Practice in Technology Enhanced Learning, vol. 12, no. 1, p. 11, Mar.

2017, doi: 10.1186/s41039-017-0051-y.

[111] T. Song, Q. Tian, Y. Xiao, and S. Liu, “Automatic Generation of Multiple-Choice Questions for CS0 and

CS1 Curricula Using Large Language Models,” in Computer Science and Education. Computer Science and

Technology, W. Hong and G. Kanaparan, Eds., Singapore: Springer Nature Singapore, 2024, pp. 314–324.

[112] B. Abu-Salih and S. Alotaibi, “A systematic literature review of knowledge graph construction and

application in education,” Heliyon, vol. 10, no. 3, p. 25383, 2024, doi: 10.1016/j.heliyon.2024.e25383.

[113] E. Rajabi and K. Etminani, “Knowledge-graph-based explainable AI: A systematic review,” J. Inf. Sci, 2022,

doi: 10.1177/01655515221112844.

[114] L. N. Nongkhai, J. Wang, and T. Mendori, “Developing An Ontology of Multiple Programming Languages

from The Perspective of Computational Thinking Education,” in Proceeedings of the 19th International

Conference on Cognition and Exploratory Learning in the Digital Age (CELDA 2022), Lisbon, Portugal:

148

International Association for Development of the Information Society (IADIS), 2022, pp. 66–72. doi:

10.33965/celda2022_202207l009.

[115] W. Nie, K. Vita, and T. Masood, “An ontology for defining and characterizing demonstration environments,”

J. Intell. Manuf, 2023, doi: 10.1007/s10845-023-02213-1.

[116] W. Yathongchai, J. Angskun, and C. C. Fung, “An Ontology Model for Developing a SQL Personalized

Intelligent Tutoring System,” Naresuan Univ. J. Sci. Technol, vol. 25, no. 4, pp. 88-96, 2017.

[117] A. Fernández-Izquierdo and R. García-Castro, “Themis: A tool for validating ontologies through

requirements,” in Proc. Int. Conf. Softw. Eng. Knowl. Eng. SEKE, 2019, pp. 573-578,.

[118] M. Poveda-Villalón, M. C. Suárez-Figueroa, and A. Gómez-Pérez, “Validating Ontologies with OOPS !

State of the Art,” Knowl. Eng. Knowl. Manag, pp. 267-281, 2012.

[119] “Ontology Generation and Ontology Data Set.” Accessed: Apr. 24, 2025. [Online]. Available:

https://github.com/jalshboul/Python-Ontology-GLM

[120] T. Alsubait, B. Parsia, and U. Sattler, “Ontology-Based Multiple Choice Question Generation,” KI -

Künstliche Intelligenz, vol. 30, no. 2, pp. 183–188, Jun. 2016, doi: 10.1007/s13218-015-0405-9.

[121] K. Stasaski and M. A. Hearst, “Multiple Choice Question Generation Utilizing An Ontology,” in

Proceedings of the 12th Workshop on Innovative Use of NLP for Building Educational Applications, J. Tetreault,

J. Burstein, C. Leacock, and H. Yannakoudakis, Eds., Copenhagen, Denmark: Association for Computational

Linguistics, Sep. 2017, pp. 303–312. doi: 10.18653/v1/W17-5034.

[122] M. Cubric and M. Tosic, “Design and evaluation of an ontology-based tool for generating multiple-choice

questions,” Interactive Technology and Smart Education, vol. 17, no. 2, pp. 109–131, Feb. 2020, doi:

10.1108/ITSE-05-2019-0023.

[123] Y. Ham and B. Myers, “Supporting Guided Inquiry with Cooperative Learning in Computer Organization,”

in Proceedings of the 50th ACM Technical Symposium on Computer Science Education, Minneapolis, USA:

ACM, Feb. 2019, pp. 273–279. doi: https://doi.org/10.1145/3287324.3287355.

[124] R. S. J. d Baker, A. T. Corbett, and V. Aleven, “More Accurate Student Modeling through Contextual

Estimation of Slip and Guess Probabilities in Bayesian Knowledge Tracing,” presented at the International

Conference on Intelligent Tutoring Systems, in Lecture Notes in Computer Science, vol. 5091. Montreal, Canada:

Springer Berlin Heidelberg, Jun. 2008, pp. 406–415. doi: https://doi.org/10.1007/978-3-540-69132-7_44.

[125] C.-Y. Chung and I.-H. Hsiao, “Investigating Patterns of Study Persistence on Self-Assessment Platform of

Programming Problem-Solving,” in Proceedings of the 51st ACM Technical Symposium on Computer Science

Education, ACM, Feb. 2020, pp. 162–168. doi: https://doi.org/10.1145/3328778.3366827.

[126] C.-Y. Chung, C. Y. C. Edu, and I.-H. Hsiao, “From Detail to Context: Modeling Distributed Practice

Intensity and Timing by Multiresolution Signal Analysis,” presented at the 14th International Conference on

Educational Data Mining, Virtual: International Educational Data Mining Society, Jul. 2021. [Online]. Available:

https://educationaldatamining.org/edm2021/

[127] P. Brusilovsky, M. Yudelson, and I.-H. Hsiao, “Problem Solving Examples as First Class Objects in

Educational Digital Libraries: Three Obstacles to Overcome Problem Solving Examples as Interactive Learning

Objects for Educational Digital Libraries,” Journal of Educational Multimedia and Hypermedia, vol. 18, no. 3,

pp. 267–288, Jul. 2009.

[128] R. Cafolla, “Project MERLOT: Bringing Peer Review to Web-Based Educational Resources,” Journal of

Information Technology for Teacher Education, vol. 14, no. 2, Apr. 2006.

[129] H. K. M. Al-Chalabi, “Evaluation of a Multi-Parameter E-learning System using Web 3.0 Technologies,”

presented at the 13th International Conference on Electronics, Computers and Artificial Intelligence (ECAI),

Pitesti, Romania: IEEE, Jul. 2021, pp. 1–4. doi: https://doi.org/10.1109/ECAI52376.2021.9515191.

[130] H. K. M. Al-Chalabi and U. C. Apoki, “A Semantic Approach to Multi-parameter Personalisation of E-

Learning Systems,” presented at the International Conference on Modelling and Development of Intelligent

Systems, in Communications in Computer and Information Science, vol. 1341. Sibiu, Romania: Springer

International Publishing, 2021, pp. 381–393. doi: https://doi.org/10.1007/978-3-030-68527-0_24.

[131] P. Denny, A. Luxton-Reilly, and J. Hamer, “The PeerWise System of Student Contributed Assessment

Questions,” in Proceedings of the tenth conference on Australasian computing education, Wollongong,

Australia, Jan. 2008, pp. 69–74. doi: https://dl.acm.org/doi/10.5555/1379249.1379255.

149

[132] N. Mulla and P. Gharpure, “Automatic Question Generation: A Review of Methodologies, Datasets,

Evaluation Metrics, and Applications,” Progress in Artificial Intelligence, vol. 12, no. 1, pp. 1–32, Jan. 2023,

doi: https://doi.org/10.1007/s13748-023-00295-9.

[133] R. G. Golla, V. Tiwari, P. Chokhra, and H. Okada, “QuestGen AI.” [Online]. Available:

https://github.com/ramsrigouthamg/Questgen.ai

[134] A. Boubaker and Y. Fang, “Automated Generation of Challenge Questions for Student Code Evaluation

Using Abstract Syntax Tree Embeddings and RAG: An Exploratory Study,” in Proceedings of the 2024 7th

International Conference on Educational Technology Management, in ICETM ’24. New York, NY, USA:

Association for Computing Machinery, 2025, pp. 277–282. doi: 10.1145/3711403.3711450.

[135] A. Santos, T. Soares, N. Garrido, and T. Lehtinen, “Jask: Generation of Questions About Learners’ Code in

Java,” in Proceedings of the 27th ACM Conference on on Innovation and Technology in Computer Science

Education Vol. 1, in ITiCSE ’22. New York, NY, USA: Association for Computing Machinery, 2022, pp. 117–

123. doi: 10.1145/3502718.3524761.

[136] M. Goodfellow, R. Booth, A. Fagan, and A. Lambert, “AutoMCQ - Automatically Generate Code

Comprehension Questions using GenAI,” in Proceedings of the 30th ACM Conference on Innovation and

Technology in Computer Science Education V. 2, in ITiCSE 2025. New York, NY, USA: Association for

Computing Machinery, 2025, pp. 737–738. doi: 10.1145/3724389.3731266.

[137] J. Li, T. Tang, W. X. Zhao, J.-Y. Nie, and J.-R. Wen, “Pretrained Language Models for Text Generation: A

Survey,” May 13, 2022, ArXiv. doi: 10.48550/arXiv.2201.05273.

[138] X.-Q. Dao, “Performance Comparison of Large Language Models on VNHSGE English Dataset: OpenAI

ChatGPT, Microsoft Bing Chat, and Google Bard,” Jul. 20, 2023, ArXiv. doi: 10.48550/arXiv.2307.02288.

[139] A. Koubaa, “GPT-4 vs. GPT-3.5: A concise showdown,” Apr. 07, 2023, TechRxiv. doi:

10.36227/techrxiv.22312330.v2.

[140] J. Alshboul, “Generator-Evaluator: Dataset-Codes,” GitHub Dataset. GitHub, 2025. Accessed: Jun. 20,

2025. [Online]. Available: https://github.com/jalshboul/Generator-Evaluator

[141] United States Chess Federation, “Approximating formulas for the US Chess rating system.” Apr. 2017.

[Online]. Available: http://www.glicko.net/ratings/approx.pdf

[142] S. Maity and A. Deroy, “The Future of Learning in the Age of Generative AI: Automated Question

Generation and Assessment with Large Language Models,” Oct. 12, 2024, ArXiv. doi:

10.48550/arXiv.2410.09576.

[143] A. Tran, K. Angelikas, E. Rama, C. Okechukwu, D. H. Smith, and S. MacNeil, “Generating Multiple Choice

Questions for Computing Courses Using Large Language Models,” in 2023 IEEE Frontiers in Education

Conference (FIE), Oct. 2023, pp. 1–8. doi: 10.1109/FIE58773.2023.10342898.

[144] J. Doughty et al., “A Comparative Study of AI-Generated (GPT-4) and Human-crafted MCQs in

Programming Education,” in Proceedings of the 26th Australasian Computing Education Conference, in ACE

’24. New York, NY, USA: Association for Computing Machinery, 2024, pp. 114–123. doi:

10.1145/3636243.3636256.

[145] S. Baral, E. Worden, W.-C. Lim, Z. Luo, C. Santorelli, and A. Gurung, “Automated Assessment in Math

Education: A Comparative Analysis of LLMs for Open-Ended Responses,” in Proceedings of the 17th

International Conference on Educational Data Mining, B. PaaÃŸen and C. D. Epp, Eds., Atlanta, Georgia, USA:

International Educational Data Mining Society, Jul. 2024, pp. 732–737. doi: 10.5281/zenodo.12729932.

[146] P. Kargupta, I. Agarwal, D. H. Tur, and J. Han, “Instruct, Not Assist: LLM-based Multi-Turn Planning and

Hierarchical Questioning for Socratic Code Debugging,” in Findings of the Association for Computational

Linguistics: EMNLP 2024, Y. Al-Onaizan, M. Bansal, and Y.-N. Chen, Eds., Miami, Florida, USA: Association

for Computational Linguistics, Nov. 2024, pp. 9475–9495. doi: 10.18653/v1/2024.findings-emnlp.553.

[147] E. Frankford, I. Höhn, C. Sauerwein, and R. Breu, “A Survey Study on the State of the Art of Programming

Exercise Generation Using Large Language Models,” in 2024 36th International Conference on Software

Engineering Education and Training (CSEE&T), 2024, pp. 1–5. doi: 10.1109/CSEET62301.2024.10662990.

[148] S. Haroon, A. F. Khan, A. Humayun, W. Gill, A. H. Amjad, A. R. Butt, M. T. Khan, and M. A. Gulzar,

“How Accurately Do Large Language Models Understand Code?,” Apr. 09, 2025, arXiv. doi:

10.48550/arXiv.2504.04372.

150

[149] D. N. Manh, T. P. Chau, N. L. Hai, T. T. Doan, N. V. Nguyen, Q. Pham, and N. D. Q. Bui, “CodeMMLU:

A Multi-Task Benchmark for Assessing Code Understanding & Reasoning Capabilities of CodeLLMs,” Apr. 09,

2025, arXiv. doi: 10.48550/arXiv.2410.01999.

[150] L. Chen et al., “A Survey on Evaluating Large Language Models in Code Generation Tasks,” Mar. 04, 2025,

arXiv. doi: 10.48550/arXiv.2408.16498.

[151] M. L. Siddiq, S. Dristi, J. Saha, and J. C. S. Santos, “The Fault in our Stars: Quality Assessment of Code

Generation Benchmarks,” in 2024 IEEE International Conference on Source Code Analysis and Manipulation

(SCAM), Los Alamitos, CA, USA: IEEE Computer Society, Oct. 2024, pp. 201–212. doi:

10.1109/SCAM63643.2024.00028.

[152] I. Riouak, N. Fors, J. Öqvist, G. Hedin, and C. Reichenbach, “Efficient Demand Evaluation of Fixed-Point

Attributes using Static Analysis,” in Proceedings of the 17th ACM SIGPLAN International Conference on

Software Language Engineering, in SLE ’24. New York, NY, USA: Association for Computing Machinery,

2024, pp. 56–69. doi: 10.1145/3687997.3695644.

[153] G. Son, H. Ko, H. Lee, Y. Kim, and S. Hong, “Multilingual Challenges in Automated Evaluators: A Case

Study on English and Korean,” OpenReview. Accessed: May 16, 2025. [Online]. Available:

https://openreview.net/forum?id=8NIUi6Ha1f

[154] M. Hidvégi, G. Mezei, and S. Bácsi, “The Challenges of Visualizing DMLA Models,” Pollack Periodica,

vol. 16, no. 3, pp. 13–19, 2021, doi: 10.1556/606.2021.00345.

[155] S. Breese, A. Milanova, and B. Cutler, “Using Static Analysis for Automated Assignment Grading in

Introductory Programming Classes,” in Proceedings of the 2017 ACM SIGCSE Technical Symposium on

Computer Science Education, in SIGCSE ’17. New York, NY, USA: Association for Computing Machinery,

2017, p. 704. doi: 10.1145/3017680.3022440.

[156] S. Rakangor and Y. Ghodasara, “Literature Review of Automatic Question Generation Systems,”

International Journal of Scientific and Research Publications, vol. 5, no. 1, 2015, Accessed: Jan. 01, 2025.

[Online]. Available: https://www.ijsrp.org/research-paper-0115/ijsrp-p3757.pdf

[157] Paul Jansen, “The TIOBE Programming Community Index,” Tiobe.com. Accessed: May 16, 2025. [Online].

Available: https://www.tiobe.com/tiobe-index/

[158] J. Alshboul, “MultilingualCodeBasedQG,” GitHub. Accessed: May 16, 2025. [Online]. Available:

https://github.com/jalshboul/MultilingualCodeBasedQG

[159] A. Prokudin, O. Sychev, and M. Denisov, “Learning problem generator for introductory programming

courses,” Software Impacts, vol. 17, p. 100519, 2023, doi: https://doi.org/10.1016/j.simpa.2023.100519.

[160] K. A. Mills, J. Cope, L. Scholes, and L. Rowe, “Coding and Computational Thinking Across the Curriculum:

A Review of Educational Outcomes,” Review of Educational Research, vol. 95, no. 3, pp. 581–618, 2025, doi:

10.3102/00346543241241327.

[161] J. Savelka, A. Agarwal, C. Bogart, and M. Sakr, “Large Language Models (GPT) Struggle to Answer

Multiple-Choice Questions about Code,” Mar. 09, 2023. doi: https://doi.org/10.48550/arXiv.2303.08033.

[162] P. V. L. Pham, A. V. Duc, N. M. Hoang, X. L. Do, and A. T. Luu, “ChatGPT as a Math Questioner?

Evaluating ChatGPT on Generating Pre-university Math Questions,” in Proceedings of the 39th ACM/SIGAPP

Symposium on Applied Computing, in SAC ’24. New York, NY, USA: Association for Computing Machinery,

2024, pp. 65–73. doi: 10.1145/3605098.3636030.

[163] S. Ito, “Semantical Equivalence of the Control Flow Graph and the Program Dependence Graph,” Mar. 08,

2018. doi: https://doi.org/10.48550/arXiv.1803.02976 Focus to learn more.

[164] J. Prather, B. N. Reeves, P. Denny, B. A. Becker, J. Leinonen, A. Luxton-Reilly, G. Powell, J. Finnie-Ansley,

and E. A. Santos, “‘It’s Weird That it Knows What I Want’: Usability and Interactions with Copilot for Novice

Programmers,” ACM Trans. Comput.-Hum. Interact., vol. 31, no. 1, Nov. 2023, doi: 10.1145/3617367.

[165] Q. Zhang, C. Fang, Y. Shang, T. Zhang, S. Yu, and Z. Chen, “No Man is an Island: Towards Fully Automatic

Programming by Code Search, Code Generation and Program Repair,” Sep. 05, 2024. doi:

https://doi.org/10.48550/arXiv.2409.03267.

[166] Q. Zhu and W. Zhang, “Code Generation Based on Deep Learning: A Brief Review,” Jul. 04, 2021. doi:

arXiv:2106.08253v4.

151

[167] R. Mukherjee, Y. Wen, D. Chaudhari, T. W. Reps, S. Chaudhuri, and C. Jermaine, “Neural program

generation modulo static analysis,” in Proceedings of the 35th International Conference on Neural Information

Processing Systems, in NIPS ’21. Red Hook, NY, USA: Curran Associates Inc., 2021.

[168] R. Pan, M. Kim, R. Krishna, R. Pavuluri, and S. Sinha, “ASTER: Natural and Multi-language Unit Test

Generation with LLMs,” Jan. 15, 2025, arXiv. doi: 10.48550/arXiv.2409.03093.

[169] D. Shaikhelislamov, M. Drobyshevskiy, and A. Belevantsev, CodePatchLLM: Configuring code generation

using a static analyzer. ACM, 2024. Accessed: Jun. 24, 2025. [Online]. Available: https://genai-evaluation-

kdd2024.github.io/genai-evalution-kdd2024/assets/papers/GenAI_Evaluation_KDD2024_paper_25.pdf

[170] C.-Y. Su and C. McMillan, “Do Code LLMs Do Static Analysis?,” May 17, 2025, arXiv. doi:

10.48550/arXiv.2505.12118.

