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Summary 

This dissertation addresses the critical issue of developing effective methods for Automatic 

Question Generation (AQG) from source code in programming education. The motivation arises 

from the increasing demand for scalable and adaptive assessment tools in computer science, where 

manual preparation of exercises and tests often places a heavy burden on instructors. The 

objectives of this research are to design, implement, and evaluate multiple approaches for 

generating meaningful assessment questions directly from program code. The significance of this 

work lies in its potential to support personalized learning, reduce instructor workload, and enhance 

assessment quality. 

To achieve these aims, the dissertation adopts a progressive research design across five interrelated 

studies, each addressing specific limitations of earlier approaches and expanding the scope of 

AQG in terms of computational techniques, programming language coverage, and pedagogical 

contribution. The first study developed an ontology-based system that modeled Python 

programming concepts to automatically generate structured learning materials in the form of 

questions. Building on this, the second study proposed a hybrid approach that integrated semantic 

analysis with template-driven techniques, still within Python, to improve both accuracy and 

diversity of questions. The third study shifted toward artificial intelligence by evaluating 

transformer-based large language models for their ability to generate semantically rich code-

related questions across C++, Java, and Python. The fourth study introduced a template-based 

system employing static code analysis as a baseline for multi-language generation, producing 

parameterized questions from C, C++, Java, and Python code. Finally, the fifth study culminated 

in the design of a multi-language static-analysis system, which directly addressed the limitations 

of the baseline system by broadening scalability and improving question variety while retaining 

accuracy across the same four languages. Data collection across studies included generated 

question sets, automatic evaluations, and expert reviews. 

The ontology-based system demonstrated feasibility for concept-driven AQG but lacked 

scalability. The hybrid method produced a wider variety of questions than template-only systems, 

enhancing both diversity and contextual relevance. Large language models demonstrated strong 

potential in generating semantically rich questions across multiple programming languages but 

posed challenges in computational demands and cost. The template-based static code analysis 

system achieved high precision in syntactically accurate question generation across four 

languages, but creativity and higher-order question types remained constrained. The multi-

language static-analysis system overcame several of these limitations by supporting broader 

coverage and improving flexibility, thereby demonstrating scalability and practical deployment 
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potential. Expert evaluations confirmed the accuracy and relevance of the generated questions, 

though further enhancement is required for creativity and critical-thinking dimensions. 

Taken together, the findings confirm that a multi-approach framework can address the diverse 

requirements of AQG from source code in programming education. The dissertation contributes 

not only computational methods but also pedagogical insights into assessment design and 

linguistic perspectives on question formulation. It advances theoretical understanding while 

offering practical tools for scalable programming assessment. Practical implications include 

integrating AQG systems into learning management platforms to support automated formative 

assessment at scale. Limitations include dependence on source code quality, variation across 

programming languages, and the need for validation in authentic classroom contexts. Future 

research directions include adaptive AQG, closer integration with intelligent tutoring systems, and 

extending applications beyond programming to other domains requiring structured assessment. 
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Chapter 1 Introduction 

1.1 Background 

Automatic Question Generation (AQG) is the process of creating meaningful and relevant 

questions automatically from various types of input, including text, structured data, images, or 

videos, using computational methods. In simple terms, it involves designing systems that can 

understand content, identify key information or patterns, and generate clear, contextually 

appropriate questions to support learning, comprehension assessment, conversational systems, or 

data exploration without requiring manual question crafting for each instance [1], [P2]. Figure 1.1 

illustrates the conceptual framework of AQG from source code. The system takes source code as 

input, processes it through computational analysis and generation techniques, and automatically 

produces relevant questions for educational or assessment purposes. 

Figure 1.2 illustrates the four-component architecture of Intelligent Tutoring Systems (ITS) as 

discussed by the review article [2]. This dissertation focuses specifically on the Domain Model 

component through AQG for programming education. This work contributes to the foundational 

knowledge representation layer by developing methods to automatically generate contextually 

appropriate programming questions that can be integrated into the broader tutoring system 

architecture. 

The evolution of programming education necessitates a profound reflection on how assessment 

has been designed, delivered, and evaluated. Given that coding has become necessary across 

academic disciplines and industries, educational institutions increasingly need to develop robust 

and scalable ways to assess their students' programming knowledge and problem-solving skills 

[3]. Learners today often study multiple programming languages, including Python, Java, C++, 

and C, each with unique syntactic and conceptual nuances, making standardized assessment even 

more challenging.  

Although recent AQG studies have primarily focused on generating questions from natural 

language texts and, to a lesser extent, visual data [1], [4], [5], AQG from source code remains 

underexplored despite its potential to transform programming education. Academic programming 

 
Figure 1.1 Conceptual framework of AQG from source code 
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textbooks typically include text, images, and code examples, yet most AQG systems rely heavily 

on NLP techniques for text-based question generation (QG), with limited exploration of visual 

content [1], [P3]. The review paper [P2] advocates for developing QG methods tailored to 

programming topics, along with appropriate evaluation criteria. 

Traditional methods of question design in programming courses have struggled to keep pace with 

this growth. As noted in previous studies, manually crafted questions are time-consuming to 

produce [6], difficult to standardize across diverse learners and languages [6], [7], and often fall 

short of covering the full spectrum of cognitive skills outlined in Bloom’s Taxonomy [8]. 

Moreover, they tend to lack scalability, particularly in large or multi-language educational settings 

where hundreds of students may require tailored assessment materials [7]. 

These challenges have driven a growing interest in AQG from source code. Rather than relying 

on static repositories of questions, AQG approaches analyze code directly, extracting structure, 

semantics, and logic to generate assessment items that dynamically align with the learner’s context 

[9]. This dissertation responds to that demand by presenting a unified exploration of five distinct 

yet complementary approaches: ontology-driven QG [10], [11], hybrid semantic-to-question 

modeling [9], template-based multi-language QG via static code analysis [12], evaluation of large 

language models (LLMs) for QG from source code [13], and a comprehensive multi-language 

assessment system powered by Control Flow Graphs (CFGs) and Program Dependence Graphs 

(PDGs). Collectively, these approaches constitute the novel contributions of this work. I extend 

 
Figure 1.2 The four-component ITS architecture  
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beyond traditional template or ontology-based systems by incorporating formal semantic graph 

representations, namely CFGs and PDGs, to anchor QG in actual program structure and behavior. 

CFGs model possible execution paths and dependencies across program blocks [14], while PDGs 

capture both control and data dependencies among statements [15], providing a richer semantic 

foundation for QG. Each approach contributes to a shared objective: to automate programming 

QG in a pedagogically grounded, cognitively stratified (Organizing learning or assessment tasks 

by levels of thinking, from simple recall to complex problem-solving), and linguistically inclusive 

way [7], [16]. The background and motivation for this work emerge directly from the collective 

recognition within these studies of the limitations in existing systems and the urgent need for more 

intelligent, adaptable, and scalable solutions in programming education assessment [7]. 

1.2 Research Motivation 

Despite significant advancements in artificial intelligence (AI)-driven educational technologies, 

several critical gaps persist in the domain of AQG for programming education. The first significant 

challenge is the lack of scalable systems capable of generating high-quality, diverse, and 

cognitively stratified questions directly from source code [17], [18]. As discussed by Kurdi et al. 

(2020), rigid template-based QG methods are often manually constructed, lack linguistic diversity, 

and are limited in their ability to produce varied or complex question types. These limitations 

hinder their adaptability across different domains and educational objectives [5]. Previous studies 

show that manually created questions are time-consuming and struggle to maintain cognitive 

coverage across large-scale deployments, reinforcing the necessity for automation that 

accommodates a range of programming logic and learner profiles [17]. A second limitation is the 

insufficient support for multi-language QG across most existing tools [19]. Template and static 

analysis-based methods typically underperform when handling multi-language syntax and 

semantics, making them less effective for inclusive educational environments [5]. Additionally, 

few frameworks integrate pedagogical models such as Bloom’s Taxonomy in a systematic way, 

resulting in assessment items that are either too shallow or mismatched in cognitive depth [20], 

[21]. 

The introduction of the transformer architecture marked a significant advancement in language 

modeling by incorporating an attention mechanism. This component enables the model to 

dynamically assess the relative importance of input tokens and discern intricate relationships 

among them, independent of their sequential positioning. As a result, the model demonstrates 

enhanced coherence in its generated outputs and exhibits an improved capacity to preserve 

contextual information over extended textual spans [22], [23]. Finally, current evaluation practices 

for QG from source code lack standardization and pedagogical alignment. Typical methods often 
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rely on single-reference n-gram similarity metrics such as BLEU (Bilingual Evaluation 

Understudy) and ROUGE (Recall-Oriented Understudy for Gisting Evaluation), which fail to 

capture the semantic and syntactic diversity needed for robust assessment. Previous efforts have 

shown that multi-reference evaluations, especially those enhanced by paraphrases generated 

through LLMs, can improve the correlation with human judgment and provide more reliable 

evaluation frameworks [24].  

Although LLMs like GPT-4 (generative pre-trained transformer) can generate syntactically fluent 

questions, their outputs vary considerably in relevance, clarity, and educational value. Benchmarks 

such as EQGBench demonstrate that while LLM-generated questions are linguistically coherent, 

their practical applicability in educational settings depends heavily on alignment with pedagogical 

objectives, which is currently insufficiently addressed [25]. Moreover, expert-validated, multi-

dimensional evaluation frameworks that integrate educational goals and knowledge alignment 

remain rare, limiting the instructional reliability (consistent pedagogical appropriateness and 

quality) of automatically generated questions. Recent work proposing planning-based frameworks 

emphasizes the need for such multi-dimensional, expert-informed approaches to enhance the 

pedagogical usefulness and reliability of question generation systems [26].  

These limitations underscore the need for a principled and pedagogically grounded approach to 

AQG from source code. By integrating semantic modeling (Creating a structured representation 

of knowledge so a computer can understand the meaning and relationships between concepts), 

cognitive stratification, and rigorous evaluation practices, such an approach can support scalable 

and equitable learning assessments in programming education. 

1.3 Problem Statement 

The global expansion of computer science (CS) education has intensified the need for scalable, 

high-quality assessment tools that can effectively serve diverse learners across various 

programming languages [3], [7]. Traditionally, the manual development of programming 

assessment questions has been labor-intensive, inconsistent, and insufficient to meet the rising 

demand for pedagogically sound, comprehensive evaluation materials in programming education 

[6], [8], [21]. AQG has emerged as a promising approach for scalable assessment across 

educational contexts [1], [4], [5]. However, the current research landscape in AQG reveals a 

pronounced imbalance in focus and development across different input modalities. The field has 

been dominated by text-based question generation, benefiting from extensive datasets, mature 

neural models, and a clear trajectory from rule-based systems to large pre-trained transformers 

and LLMs [4], [17], [22]. Similarly, visual QG has seen growing attention, particularly for 

generating questions from images and, more recently, educational diagrams, leveraging 
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advancements in multimodal learning [19], [26]. These areas have established robust evaluation 

practices and benchmarks, fueling rapid progress and adoption [24], [25]. In contrast, QG from 

source code remains significantly underrepresented despite its critical potential in programming 

education [9], [12], [17]. Generating meaningful and pedagogically aligned questions directly 

from source code presents unique challenges, including understanding code semantics [14], [15], 

aligning questions with relevant programming concepts [9], [12], and ensuring cognitive coverage 

across difficulty levels [8], [20], [21]. The lack of standardized datasets and well-defined 

evaluation metrics further impedes systematic advancements in this domain [13], [24], [25]. Most 

existing AQG research has overlooked this research gap in programming education assessment, 

and only a few recent studies have begun exploring it, often in isolated or single-language contexts 

[9], [12], [17], leaving a substantial gap in the scalable assessment needs of programming 

education. To clarify, generating programming questions directly from raw, multi-language source 

code requires integrated semantic parsing (AST/CFG/PDG), multi-language normalization, 

deliberate Bloom-level coverage, diverse code-centric question types, and multi-metric 

evaluation. These requirements are largely absent in existing primarily text-focused or single-

language ontology/LLM studies, leaving the domain underdeveloped and limiting scalable 

programming assessment.  

Addressing this gap is essential to ensure equitable, effective, and scalable programming 

assessment tools that align with modern pedagogical frameworks and can adapt across multiple 

programming languages [3], [7], [21], [23]. Advancing AQG from code requires not only robust 

generation methods that capture the semantics of source code [14], [15], but also the development 

of principled evaluation frameworks tailored to the unique requirements of programming 

education [13], [24], [25]. This dissertation aims to address these gaps to advance scalable, high-

quality, and pedagogically aligned AQG systems that support equitable programming education 

worldwide. 

1.4 Research Aims 

This dissertation aims to advance programming education by designing, implementing, and 

evaluating automated systems that generate and assess programming questions directly from 

source code in a pedagogically grounded, linguistically inclusive, and cognitively diverse manner 

[3], [7], [9], [12], [17]. This research seeks to bridge the gap between code-level semantic 

understanding and educational assessment, using various techniques including ontologies [10], 

[11], template-based static analysis [20], and LLMs [17], [22], [23], [25]. 

A central aim is to alleviate the manual workload of educators while improving assessment quality 

and scalability across multiple programming languages [6], [7], [21]. Another aim is to 
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systematically align generated questions with established cognitive learning models, especially 

Bloom’s Taxonomy, to ensure relevance across difficulty levels and educational contexts [8], [16], 

[20], [21]. 

This dissertation also aims to contribute robust evaluation methodologies combining automatic 

scoring and expert review [13], [24], [25], improving the reliability and instructional alignment of 

automatically generated content [1], [4], [5]. Ultimately, the research aspires to provide an 

integrated, technically rigorous, and pedagogically valid foundation for future systems in 

programming assessment, especially in multi-language and large-scale learning environments [2], 

[3], [23]. 

These aims collectively shape the trajectory and cohesion of the dissertation’s contributions, 

reflecting the interdisciplinary intersection of code analysis, natural language generation, and 

educational measurement [1], [4], [17], [22]. 

1.5 Research Objectives 

This dissertation seeks to address the limitations of current programming assessment methods by 

pursuing the following core objectives: 

1. To design and implement models that automatically generate programming questions 

directly from source code. 

2. To ensure systematic alignment of generated questions with cognitive learning 

frameworks, particularly Bloom’s Taxonomy. 

3. To support multiple programming languages (Python, Java, C++, and C) within a unified, 

multi-language assessment context. 

4. To evaluate both the technical quality and the pedagogical value of generated questions 

through automated metrics and expert review. 

Together, these objectives establish the foundation of this dissertation’s contribution to advancing 

programming education assessment through AI-enhanced, source code–driven QG and evaluation. 

1.6 Scope and Limitations 

This dissertation is bounded by the following scope and limitations, which reflect the operational 

design and methodological constraints of the conducted studies: 

1. The primary focus is on source code as input, excluding textbook content and natural-

language problem descriptions. 

2. The study is limited to four programming languages: Python, Java, C++, and C. 
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3. The generated question types include multiple-choice questions (MCQs), open-ended 

questions, Boolean (yes/no) questions, short-answer questions, code-tracing questions, fill-

in-the-blank questions, error identification (debugging) questions, and creative coding 

questions. 

4. Evaluation incorporates both automated scoring metrics and expert human review. 

5. The scope does not extend to real-time feedback, adaptive learning mechanisms, or 

dynamic student modeling. 

These boundaries ensure that the dissertation delivers a focused and rigorous contribution to AQG 

from source code, while acknowledging the limits of generalizability and leaving room for future 

research directions. 

1.7 Significance of the Study 

This dissertation makes several important contributions to programming education assessment 

through AQG: 

1. It reduces the manual workload of educators by automating the design of programming 

questions aligned with pedagogical frameworks. 

2. It enhances inclusivity by enabling multi-language AQG and supporting cognitively 

diverse assessment items. 

3. It introduces rigorous evaluation pipelines that combine automatic metrics with expert 

judgment, thereby improving the reliability and trustworthiness of educational AI. 

4. It contributes to the intersection of NLP, machine learning (ML), and programming 

pedagogy by applying structured and AI-driven methods to real-world educational 

challenges. 

Collectively, these contributions position the dissertation as both a technological advancement and 

a pedagogical innovation in equitable, scalable, and cognitively aligned programming education. 

1.8 Dissertation Structure 

This dissertation is organized to reflect the systematic development, evaluation, and integration of 

five distinct yet interrelated approaches to AQG from source code. 

Chapter 2: Literature Review. This chapter provides an overview of research on programming 

assessment, question generation, semantic code analysis, template-based methods, and LLMs. 
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Chapters 3–7: Research Studies. Each chapter presents an independent but interconnected study, 

including its introduction, methodology, results, discussion, and conclusion. 

Chapter 3: Ontology-Based Automatic Generation of Learning Materials for Python 

Programming. 

Chapter 4: Hybrid Approach for Automatic Question Generation from Program Codes. 

Chapter 5: Evaluating Large Language Models for Generating Programming Questions 

from Source Code. 

Chapter 6: Template-Based Question Generation from Code Using Static Code Analysis. 

Chapter 7: Multi-Language Static-Analysis System for Automatic Question Generation 

from Source Code. 

Chapter 8: Conclusion. This chapter synthesizes the findings, presents contributions, outlines 

future research directions, and lists publications resulting from the dissertation. 

While each study stands independently, together they form a cohesive exploration of AQG, from 

source code reflecting both the progressive development of the dissertation and its multi-layered 

contributions across computational, pedagogical, and linguistic dimensions. 
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Chapter 2 Literature Review 

2.1 Introduction 

AQG from source code is situated at the intersection of educational assessment, programming 

pedagogy, static program analysis, and AI. As programming becomes a fundamental skill in 

education and industry, the demand for scalable, cognitively diverse, and pedagogically sound 

assessment frameworks has intensified. This chapter synthesizes the foundational literature across 

these intersecting domains, organizing contributions and identifying gaps thematically across 

ontology-driven instructional content, graph-based static analysis, template-based question 

systems, LLMs, multi-language question generation, and the application of Bloom’s Taxonomy 

in automated assessment frameworks [9], [17], [21]. 

2.2 Ontology-Based Instructional Content Generation 

Effective instruction in programming education requires comprehensive and adaptive learning 

materials [27]. These materials include textual and visual content, interactive exercises, tutorials, 

real-world examples, assessment tools, and personalized pathways that reinforce hands-on 

practice and real-world applicability. Textual content delivers explanations, code examples, and 

problem sets, while interactive exercises and tutorials facilitate active learning and progressive 

skill development. Real-world examples bridge theory with practice, and assessment tools 

measure student progress and understanding [28]. The overarching aim is to provide accessible, 

engaging, and personalized resources that support varied learning preferences. Programming 

languages are a central area of study in CS and software development. Developing effective 

methods for teaching programming concepts is essential. Interest in QG techniques for 

programming languages has grown as a means of creating scalable practice opportunities, 

reinforcing learning, and enabling ongoing assessment [P2]. The paper [P3] applied ontology to 

develop a QG approach for programming concepts. Several studies have investigated the 

possibility of automatic generation of learning materials and their positive impact on enhancing 

student engagement and learning outcomes. Vergara et al. [29] found that AI-generated 

personalized learning materials boosted students’ motivation and performance in mathematics 

courses. At the same time, Liu et al. [30] highlighted how AI-powered tools assist educators by 

automating quiz and worksheet creation, reducing manual workload while maintaining 

instructional quality. Lin et al. [31] examined the relationship between student engagement and 

outcomes in a cyber-flipped course, finding a positive correlation between active participation and 

academic performance, thereby underscoring the value of dynamic course materials in blended 

learning environments. Over the years, numerous researchers have explored the use of ontologies 
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in education to automatically create and structure learning materials, enhancing personalization 

and interoperability within learning management systems (LMS) [32]. For example, the article 

[33] proposed an intelligent ontology-based system to automate tasks such as course scheduling 

and academic advising, demonstrating improvements in efficiency and student experience through 

structured domain knowledge. William and Joselin [32] discussed how ontologies enhance 

personalized learning, advocating for their use in shifting away from one-size-fits-all models to 

adaptive, student-centered instruction. 

In the paper [34], a method for constructing structured knowledge graphs using word embeddings 

and NLP techniques was introduced, enabling automated semantic extraction and relationship 

mapping from educational content. This structured approach facilitates reference definition 

(prerequisites, hierarchy, relatedness), supporting the creation of dynamic, interconnected learning 

resources. Similarly, Stephen [35] explored the use of LLMs like GPT-3 to generate CS learning 

materials across topics, evaluating quality, relevance, and coherence to propose innovative 

methods for scalable CS education. Flanagan et al. [36] proposed leveraging NLP and ML to 

structure educational content extracted from various sources, aligning it with learning objectives 

to improve digital learning environments. Meanwhile, the paper [37] detailed the construction and 

practical application of a knowledge graph within Australian school science curricula, focusing 

on personalized learning and adaptive tutoring system integration. 

Despite the growth of ontology-driven learning material generation, significant limitations remain: 

insufficient knowledge representation structures, limited flexibility and context awareness, 

challenges in reusability, and the lack of deep, adaptive personalization. Current systems often 

require human oversight, lack the interactivity and nuanced feedback of human instruction, and 

fall short in fostering critical problem-solving skills. Continued AI advancements in contextual 

understanding and adaptability are necessary to overcome these limitations. Table 2.1 compares 

traditional methods with ontology-based approaches, highlighting the latter’s strengths in 

semantic structuring, flexibility, scalability, and personalization, which are essential for modern, 

learner-centered programming education. The complexity of QG requires expertise, deep content 

knowledge, and substantial time investment, especially in online learning contexts since the 

emergence of syntax-based and semantic-based QG models in 2014 [38], ontologies have proven 

effective for standardizing knowledge representation across domains, including e-learning, 

facilitating personalized and efficient learning [P9]. 
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Table 2.1 Comparison between the traditional approaches and ontology-based approaches 

Feature/Aspect Traditional Approaches Ontology-based Approaches References 

Knowledge Structure linear and hierarchical semantic and interconnected [33], [P1] 

Flexibility 
limited adaptability to new 

topics 

highly adaptable to new knowledge and 

domains 
[34], [39] 

Context Awareness 
minimal context 

consideration 

rich context understanding through 

relationships 
[40], [P8] 

 Content Reusability low reusability of materials 
high reusability due to modular 

components 
[P3], [P9] 

Personalization 
basic customization, often 

static 

dynamic personalization based on learner 

profiles 
[32], [41] 

Scalability 
difficult to scale with 

growing content 

easily scalable with ontological 

frameworks 
[42], [43] 

Interoperability often siloed systems enhanced interoperability across platforms [29], [44] 

Knowledge 

Representation 

simple data structures (e.g., 

text, images) 

rich semantic representation using classes, 

properties, and relationships 
[45], [P13] 

Maintenance 
time-consuming updates 

and revisions 

more accessible updates due to modular 

ontology design 
[46], [47] 

Collaboration 

Support 

limited collaboration 

features 

facilitates collaboration through shared 

ontologies 
[35], [P9] 

Learning Pathways 
predefined and rigid 

learning paths 

dynamic learning pathways based on 

learner needs 
[29], [30] 

Assessment Tools basic quizzes and tests 
adaptive assessments based on learner 

progress 
[48], [49] 

Feedback 

Mechanism 

limited feedback based on 

performance 

contextual feedback based on semantic 

analysis 
[36], [50] 

 

Domain knowledge models, particularly those implemented with Python and Owlready2, offer 

flexible and integrable representations for e-learning systems [P8]. They enable adaptive learning 

systems capable of tailoring experiences to individual learners, reinforcing efficient knowledge 

transfer. Although QG in programming education holds transformative potential, implementation 

remains partial in modern contexts. Programming languages, central to CS education, demand 

effective teaching methods, with QG approaches enabling scalable practice and assessment 

opportunities [P3]. To support learning, Urazova [51] developed a system for automatic UML 

database design QG and response evaluation using AI and NLP, providing students with practical, 

self-assessment tools. Russell [52] explored automated code-tracing exercises in CS1 courses, 
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demonstrating their utility in reinforcing control flow and problem-solving skills, while 

acknowledging challenges in replacing traditional teaching approaches. LLMs have recently been 

applied to generate programming tasks and explanations, offering scalable solutions for instructors 

[17]. However, challenges remain, including dependence on large-scale models, computational 

demands, and difficulties in generating high-quality training data, all of which must be addressed 

when implementing these technologies in educational contexts [53]. 

2.3 Static Code Analysis and Graph-Based Representations 

Static code analysis is employed across various domains, particularly in compiler design and 

security [54]. Static code analysis is used to automate checking student programming assignments. 

It verifies the correctness of student programming assignments concerning assignment instructions 

[55]. Many static analysis techniques are based on code representation, and it is critical in 

performing other tasks that involve drawing deductions about semantic relationships between 

program statements [56]. A proper code representation procedure allows deriving meaningful 

source code features that capture different aspects of the source code structure and behavior. 

Graph-based structures have mainly been employed in recent innovations in code representation 

to capture both the syntactic and the semantic details embedded in the code. The Abstract Syntax 

Tree (AST), CFG, PDG, and Data Flow Graph (DFG) are the most commonly used forms of 

representation. The definitions of AST, CFG, and DFG are as follows: 

Definition 1: AST 

An AST for the function 𝑓𝑖 in a program 𝑃 = {𝑓1, 𝑓2, … , 𝑓𝑛} is represented as a graph 𝐺𝐴
𝑖 = (𝑉𝐴

𝑖, 𝐸𝐴
𝑖 ) 

where 𝑉𝐴
𝑖 is the set of leaf nodes and 𝐸𝐴

𝑖  is the set of directed edges, where each edge connects a 

parent node to its corresponding child node. 

Definition 2: CFG 

The CFG for the function 𝑓𝑖 is defined as a graph 𝐺𝐶
𝑖 = (𝑉𝐶

𝑖 , 𝐸𝐶
𝑖 ) where 𝑉𝐶

𝑖 is a set of nodes and 𝐸𝐶
𝑖  

is a set of directed edges representing the control flow between the nodes. 

Definition 3: DFG 

A DFG for the function 𝑓𝑖 is defined as a graph 𝐺𝐷
𝑖 = (𝑉𝐷

𝑖 , 𝐸𝐷
𝑖 ) where 𝑉𝐷

𝑖  is a set of nodes and 𝐸𝐷
𝑖  

is a set of directed edges capturing variable accesses and modifications during the execution. 

The following is a simple example of a small function and shows how its AST, CFG, and DFG 

would look in a basic form. This will give the reader a clear idea of how each graph is constructed  

and what it represents. A simple Python function illustrates these structures: 
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# Example Function 

def add(x, y): 

    z = x + y 

    return z 

1. AST: The AST represents the syntactic structure of the code. It focuses on how the source 

code is structured, not how it executes or flows. 

AST Nodes (simplified): 

• FunctionDef 

o Name: add 

o Parameters: x, y 

o Body: 

▪ Assignment: z = x + y 

▪ Expression: x + y 

▪ Return: z 

AST Edges: 

• Each node connects to its child syntax elements. For example: 

o FunctionDef → Assignment 

o Assignment → Expression 

o Expression → x, Expression → y 

o FunctionDef → Return 

2. CFG: The CFG shows the control flow from one instruction to another. 

CFG Nodes: 

1. Start 

2. z = x + y 

3. return z 

4. End 
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CFG Edges: 

• Start → Assignment 

• Assignment → Return 

• Return → End 

Note: Since there is no branching (like if or loop), the CFG is linear. 

3. DFG: The DFG captures how data (variables) are used and modified. 

DFG Nodes (variables): x, y, and z. 

DFG Edges: 

• x → z (z is computed from x) 

• y → z 

• z → return (z is used in return) 

This tells us that z depends on x and y and is then used in the return statement. Table 2.2 shows a 

summary of AST, CFG, and DFG. While the DFG tracks explicit variable flows and value 

dependencies across statements, the PDG additionally captures control dependencies (partial 

CFG), revealing how both execution conditions and data shape program behavior.   

Table 2.2 AST, CFG, and DFG summary table 

Graph Type What It Shows Example Focus 

AST Code structure z = x + y is an assignment with an addition expression 

CFG Execution order Start → Compute → Return 

DFG Variable flow x, y → z → return 

 

PDG must be aware of some important control dependencies (which parts of the code are 

conditional on others). For example:  

     if x > 0: 

             y = 5 

    return y 

The statement y = 5 depends on x > 0 being true (a control dependency). CFG is needed to 

determine branching, loops, and execution contexts. So, PDG uses partial control dependencies 

from CFG and data dependencies from DFG to build a unified view. 
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2.3.1 Automatic Question Generation 

AQG has developed as a considerable scholarly subject in learning technology, and it has been 

used in many fields, such as programming education. Early research in this area tended to target 

the case of generating natural language questions based on natural language text and not as much 

about generating program questions based on program code [P3]. The combination of AST, CFG, 

and PDG analyzers and QG systems can considerably improve the quality and relevance of 

automatically created questions. A combination of the CFGs to provide program control flow 

information with PDGs to provide data dependency information can give a more comprehensive 

view of the program's behavior. In education, AI presents not only challenges but also 

opportunities, especially in its application to gauge student understanding. The rise of AI-

generated code necessitates rethinking assessment practices to accurately measure student 

understanding and effort [57]. Systems using AST, CFG, and PDG have been developed for 

grading programming skills [58], demonstrating the potential of structured code analysis for 

automated evaluation. 

2.3.2 Program Analysis 

The problem of code analysis in programming languages has been discussed in several settings, 

but little has been said about a particular case of QG. The combination of CFG and PDG, analysis 

done when performing code comprehension, has been examined under various settings. The paper 

[59] has shown that graph-based neural networks can well be applied to the problem of code 

understanding by combining information in ASTs and in DFGs. In the same way, the authors in 

[60] employed graph-based forms to enhance bug detection and code completion. These strategies 

point to the possibility of using graph-based code analyses to build a better understanding of code 

at a deeper level, though they have not been used directly to answer questions. More relevant to 

the present work, the authors [61] built a natural language generator that takes a Python code 

snippet and generates a natural language description of that code. Their strategy involved a 

language-specific parser coupled with standard, intermediate representations, just like the current 

work. Nevertheless, they were concerned with code summarization and giving feedback, and did 

not discuss the difficulties of achieving balance in coverage of algorithms and cognitive levels.  

2.3.3 CFG Analyzers 

CFGs are especially useful for program analysis abstractions and indicate all potential paths of 

execution in a program. A graph is a model of a program in that each node corresponds to a basic 

block of code, and edges indicate the flow of control between blocks. The CFG analyzers exploit 

this format to obtain information about the structure of the program, to find out whether or not 

there are possible loops and conditional transitions, and to identify unreachable code blocks [56]. 
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Such information can be used invaluably in the generation of questions so that one can then be 

asked questions that determine how the programmer understands the mechanics of control flows, 

including loop invariants, branch conditions, and exception handling. Modeling and analysis of 

the execution flow of a program is paramount in its correctness, reliability, and security [62]. It is 

possible to extract syntax and semantic information of source code using CFGs, which allows a 

more detailed analysis of the behavior of programs [56]. 

Questions about the order of statement execution, the circumstances under which different blocks 

of code are entered, and the possibility of entering an infinite loop or dead code are answerable by 

studying the control flow. Suggesting a student to concentrate on the control flow, such questions 

may examine his/her grasp of the logic of the program. Also, CFGs can be used to determine 

important areas of code that can be looked at in more detail, e.g., performance bottlenecks or error-

prone areas. 

2.3.4 PDG Analyzers 

PDGs are a contrasting view in that they explicitly specify the data and control dependency 

between distinct program statements. Nodes in a PDG are the individual statements, whereas the 

edges show whether the value computed by one statement is referenced by another (data 

dependence) or whether the evaluation of one statement is conditional on the result of another 

(control dependence) [56]. This representation provides an analysis of critical data dependencies, 

potential data races, and possibilities of code optimization with PDG analyzers. They give a 

structure to how questions can be generated, which tests the understanding of the programmer on 

issues like the flow of data, side effects, and effects of changes in a particular variable or statement. 

All vulnerable cases of buffer overflows are spatial mistakes, which can be diagnosed with the 

assistance of spatial information in a DFG [63]. Buffer overflow can be discovered with the aid of 

static data flow analysis. 

The PDGs are also capable of determining the inputs that influence or determine specific outputs, 

which is an important aspect of numerous security vulnerabilities. Data flow presents an analysis 

of how data is directed through a program and what is done to the data [64]. Data flow is a 

dependency relationship among variables, with nodes representing variables and edges denoting 

what caused the value of a variable [65]. Data flow analysis may discover a variety of bugs and is 

among the most frequently used approaches in practice [66]. Following the interdependency of 

variables allows determining the possible vulnerabilities, including a buffer overflow or a format 

string, to be identified. 
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2.3.5 Hybrid CFG-PDG Analysis 

Combining CFG and PDG analyzers provides an effective method to generate questions and thus 

allows the generation of questions requiring insight into control flow and data dependencies. This 

combination enables the creation of questions that are more complicated and subtle and tests the 

reasoning of a learner about the interaction of various program components. The integration of 

data and control that has been implemented in applications is more intriguing when designing a 

custom architecture [67]. For example, one may pose questions like whether a modification in a 

specific variable will affect the execution course of the program or what conditions could cause a 

particular data dependency to produce a run-time error. This would allow for coming up with more 

difficult and pertinent actual programming situations. Furthermore, CFG-PDG combinations can 

also be used to discover the most critical control-sensitive and data-dependent code sections to 

generate questions that pinpoint the most important parts of program behavior. Combining these 

techniques improves the capability of defining questions that can assess single pieces of code and 

code interactions between control flow and data dependency. Beyond QG, the synergy between 

CFG and PDG provides broader benefits for comprehensive software understanding and analysis, 

as discussed next. 

2.3.6 Synergistic Use of CFG and PDG 

Studies that expand AST-based code representations to cover paths in CFG and PDG have 

demonstrated dramatic performance benefits to software engineering activities like method 

naming, classification, and clone detection [68]. This combination of CFG and PDG analyzers 

provides a more comprehensive picture of the program behavior. It allows us to generate questions 

that will focus on control flow and data dependencies. The study of the interaction between these 

two representations can enable the production of questions that demand deeper knowledge 

regarding the functionality of the program in general and the possible interactions between the 

various sections of the code. Such integration allows the formulation of questions that are more 

rigorous and insightful. It results in a more elegant measure of the fairness of assessing the 

competency of a programmer. Such a combination presents stronger questions, and the 

programmer understands the code better.  

The combination of PDGs and CFGs presents a synergistic effect and is useful when it comes to 

finding vulnerabilities in code. When control flow and data dependency information are combined, 

this capability emerges to discover fine-grained defects that may remain elusive to either of the 

techniques individually [69]. 

 



29 

 

 

2.3.7 Question Generation Strategies 

Designing effective QG strategies is critically important in the design of assessments that not only 

measure the knowledge a programmer has about code, but also measure it accurately. Such 

strategies must apply to the characteristics of CFGs and PDGs and utilize the strong points of these 

subjects to outline thought-provoking and relevant questions. Among these approaches are 

identifying high-priority sections of code, including loops, conditional statements, or function 

calls, and creating questions about their behavior. The other way is following data dependencies 

with the PDG, forming questions about the information flow in the program. The assessment 

should be on relevant issues. 

2.4 Template-Based and Question Generation Strategies 

Template-based approaches have been widely used in AQG across various domains. The paper 

[5] provided a comprehensive survey of template-based QG techniques, highlighting their 

effectiveness in ensuring question quality and relevance. It mentioned that the template library is 

a major component of QG systems.  

The paper [70] addressed educators' challenges in creating exam questions, particularly in remote 

learning environments. To tackle these challenges, the authors proposed a new approach that 

combines generative software development principles with feature-oriented product line 

engineering. This approach was designed to automate the creation of exam questions, specifically 

single-choice questions, using written templates.  

The proposed generator allows educators to create families of questions that vary based on specific 

features and parameters. However, existing template-based AQG methods often fall short in 

supporting multi-language contexts, balanced algorithm coverage, and strategic difficulty 

alignment.  This dissertation builds on these foundations while addressing these limitations, 

ensuring multi-language support and cognitive diversity in QG. 

2.5 Bloom’s Taxonomy and Cognitive Alignment 

Bloom's Taxonomy is a starting point from which a set of questions can be classified according to 

the complexity of thinking skills [71]. Bloom's Taxonomy is a foundational framework for 

categorizing questions based on cognitive complexity [71]. It includes remembering, 

understanding, applying, analyzing, evaluating, and creating [71], [72]. In the paper [73], the 

authors have performed a thorough review of factors that complicate introductory programming 

tasks and have established several major factors that make questions more or less challenging. 

Their result offers valuable information in preparing questions of adequate difficulty based on 
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varying programming languages. The tactical use of programming languages' difficulty level has 

been argued on different educational fronts. These learning theories guide us in generating 

questions, especially in providing proper cognitive demand, difficulty levels, and language-

specific issues. 

Integrating Bloom's Taxonomy into AQG frameworks marked a significant advancement in 

aligning educational technology with pedagogical objectives. This integration enables the 

generation of assessment items systematically mapped to cognitive skill levels, ensuring that 

instruction and evaluation are pedagogically sound and targeted to desired learning outcomes. 

Recent AQG systems utilize Bloom’s Taxonomy to classify and generate questions that target 

specific cognitive levels, from basic recall (remembering) to higher-order thinking skills like 

learners’ cognitive development and support differentiated instruction [20]. It encompasses 

remembering, understanding, applying, analyzing, evaluating, and creating [71], [72], [74]. This 

taxonomy helps assess the cognitive skills that the questions aim to consider. Bloom's Taxonomy 

is used to classify educational learning objectives into levels of complexity and specificity. The 

following are the six levels from the simplest to the most complex: 

1. Remembering: This is the basic level where learners must recall facts and concepts. It 

involves recognizing and recalling relevant knowledge stored in memory. 

2. Understanding: Learners demonstrate comprehension by explaining ideas or concepts, 

summarizing information, and interpreting meaning. 

3. Applying: It involves using knowledge in new situations. Learners can apply what they 

have learned to solve problems or complete tasks, demonstrating practical understanding. 

4. Analyzing: Learners break down information into parts to understand its structure. They 

can differentiate between facts and inferences and identify relationships among various 

components. 

5. Evaluating: Learners make judgments based on criteria and standards. They can critique 

ideas, assess the validity of arguments, and provide justification for their opinions. 

6. Creating: This is the highest level of Bloom's Taxonomy, where learners combine elements 

to form a coherent or functional whole. They can design new products, propose solutions, 

or generate original ideas. 

These levels are essential for educators to design assessments and questions that target various 

cognitive skills, ensuring a comprehensive evaluation of student learning. In the context of AQG, 

understanding these levels is crucial for creating questions that effectively assess students' 

knowledge and cognitive abilities.  
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2.6 Question Types in Programming Education 

Programming instructors use a variety of question formats to assess and enhance student 

understanding, often leveraging AQG from source code. Each question type serves different 

learning objectives and challenges. The following are the question types in programming 

education: 

1- MCQs: MCQs are a popular assessment tool in programming courses. MCQs can be an effective 

and motivating way for students to test their understanding of programming concepts [75]. 

2- Open-Ended Questions: Open-ended questions in programming education require students to 

provide an unstructured response, such as explaining code or writing their own solution [76]. 

3- Boolean (Yes/No) Questions: Yes/No or True/False questions are a simple form of assessment 

where students judge the correctness of a statement. In programming education, these judgment 

questions are considered a type of closed-ended exercise alongside MCQs and fill-in-the-blanks 

[77]. 

4- Short Answer Questions: Short answer questions require a brief textual or numeric response 

rather than selecting from given options. In programming, this format is often seen in questions 

like “What is the output of the following code?” or “Give the Big-O time complexity of this 

algorithm.” These questions compel students to recall or deduce an answer without cues. They can 

assess understanding more directly than MCQs, and recent systems have begun to automatically 

grade such answers [78]. 

5- Code Tracing Questions: Code tracing questions present a piece of code and ask students to 

simulate its execution to determine the outcome or state. A typical prompt might be: “Given this 

code, what will be the output?” or “What values do the variables hold after execution?” This 

question type is well-established in programming education as a way to test understanding of 

control flow and state changes [79]. 

6- Fill-in-the-Blank Questions: Fill-in-the-blank questions in programming provide a code snippet 

or sentence with certain parts removed, and students must supply the missing piece. This format 

is often used to focus attention on specific syntax or concepts [80]. 

7- Error Identification (Debugging) Questions: Error identification questions, also known as 

debugging tasks, present students with faulty code and ask them to find and/or fix the error. These 

questions target a student's ability to read code critically and understand common bugs. For 

instance, a prompt may say: “This code is supposed to do X but it does not. What is the error and 

how would you fix it?” [81]. 
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8- Creative Coding Questions: Creative coding tasks are open-ended prompts that require students 

to write original code to achieve some goal, often with room for creative expression or multiple 

correct solutions. Unlike the strictly defined answers of the above formats, these questions might 

ask students to “Design a program that meets scenario X” or “Create a graphic using code that 

accomplishes Y.” The emphasis is on problem-solving, design, and creativity in programming 

[82]. 

2.7 Large Language Models in Programming Question Generation 

Advances in NLP have led to the emergence of LLMs. These language models have proven their 

potential in different NLP applications, including QG and evaluation [83]. This section reviews 

the related works that laid the foundations for developing and evaluating LLMs in generative AI. 

2.7.1 Background On Language Models in NLP 

The development of LLMs has been influential [84]. In the past decade, the emergence of LLMs 

has driven a paradigm shift in NLP [85]. These models are characterized by their immense size, 

often containing billions of parameters. They are pre-trained on vast amounts of data, which 

enables them to learn patterns, syntax, and semantics of natural language. Pre-training is followed 

by fine-tuning specific tasks, making them adaptable to various applications. 

Other methods of QG involve building specialized ontologies and integrating them with AI 

models, such as the previous research work [P3]. A hybrid ontology and AI approach was 

proposed to build an AQG model. However, this work lacks automatic evaluation framework. The 

novelty lies in bridging the semantic gap between programming syntax and natural language 

understanding, enabling AI-based QG systems to work effectively with source code as input 

material (something that was not possible before without extensive manual annotation of code 

examples). 

OpenAI's GPT models have continuously improved language generation capabilities, starting with 

GPT-1 and advancing to GPT-2, GPT-3, and beyond [86]. GPT-3.5, for example, delivered 

human-level performance on different language tasks, from translation to question-answering.  

LLMs have proved their adaptability in NLP tasks. They perform well in text generation, 

summarization, translation, sentiment analysis, and various other tasks. The capacity to understand 

and generate text in multiple languages and domains causes such adaptability [86]. While LLMs 

are powerful tools, they are not without their challenges. Their massive size demands substantial 

computational resources, making them inaccessible to many researchers and organizations. These 

models have been criticized for keeping biases in their training data [87]. In the context of 

programming question generation, several types of biases are particularly concerning: (1) Gender 
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and cultural biases may manifest in variable names, example scenarios, or assumed contexts (e.g., 

consistently using male names in programming examples or culturally-specific references), (2) 

Programming paradigm biases where certain coding styles or approaches are favored over others, 

potentially disadvantaging students from different programming backgrounds, and (3) Complexity 

biases where questions may systematically favor certain types of programming concepts or 

difficulty levels based on the prevalence of such examples in training data. Research efforts to 

mitigate these biases and make LLMs fairer have gained attention. 

One of LLMs' strengths is their adaptability through fine-tuning [88]. Researchers and 

practitioners can customize these models for domain-specific tasks, allowing them to perform well 

in specialized domains. The fine-tuning process involves training the model on task-specific data, 

enhancing performance and relevance to specific tasks. The growth of LLMs has raised ethical 

and societal concerns. The ability of these models to generate coherent, human-like responses also 

means they might be used for malicious activities such as misinformation and deepfakes. 

Discussions on responsible AI and ethical use are ongoing. LLMs have become the focus of many 

studies, ranging from model architecture and training techniques to healthcare, finance, and 

education applications. Researchers are exploring ways to harness LLMs' power to benefit society 

while mitigating potential harms [89]. 

2.7.2 Question Generation with Large Language Models 

Integrating LLMs into language processing has significantly advanced QG capabilities. Because 

of their extensive pre-training on vast text corpora, LLMs have transformed how questions are 

generated. This section explores the evolution and impact of LLMs on QG, emphasizing their 

contributions to the field of NLP [22]. 

1) From rule-based to data-driven approach: Before the era of LLMs, QG primarily relied on 

templates and rule-based methods. These techniques effectively generated simple questions but 

were inadequate in generating relevant and diverse questions. LLMs have adopted a data-driven 

approach. Their ability to learn complex language patterns and semantics has led to the generation 

of questions customized to the specific content from which they are derived [90].  

2) Contextual understanding and coherence: LLMs can contextualize the input text to generate 

coherent and relevant outputs, unlike rule-based methods, which often produce disconnected or 

irrelevant questions. Contextual understanding is critical when generating questions from 

documents with complex structures, technical language, or nuanced information [91]. 
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3) Fine-tuning for question generation: Fine-tuning involves adapting pre-trained models to 

specific tasks by training them on question-generation datasets [92]. It allows LLMs to learn the 

patterns for various contexts, which improves their performance. 

4) Challenges and opportunities: LLMs offer great potential in QG, but challenges exist. 

Generating clear and concise questions with different levels of complexity and coverage remains 

an ongoing research challenge [93]. The current research addresses these challenges by 

introducing evaluation criteria such as clarity, conciseness, and coverage to comprehensively 

evaluate LLMs in QG. 

2.7.3 Evaluation Metrics for NLP 

Evaluating language processing models is critical to NLP research and application development. 

Effective evaluation metrics allow researchers and practitioners to assess models' performance in 

various tasks quantitatively and qualitatively [94]. 

1) The need for evaluation metrics: Evaluation metrics judge how the performance of NLP models 

is measured. NLP tasks have different aspects and often involve generating or processing human 

language, making it challenging to assess models’ performance objectively. Metrics provide a 

structured framework for evaluating models’ output, identifying strengths and weaknesses, 

tracking progress, and guiding model development [95]. 

2) NLP evaluation metrics: For NLP evaluation, several widely accepted evaluation metrics have 

been developed to assess different aspects of model performance. These include clarity, which 

measures the similarity between generated and reference text, and ROUGE for text summarization 

tasks [96]. These metrics evaluate the generated text’s specific linguistic qualities. 

3) Objective evaluation: Objective metrics can be used to assess the capability of NLP models. 

For example, clarity provides quantitative scores indicating the clarity between the generated and 

reference text. Combining metrics like relevance, coherence, and conciseness offers a more 

comprehensive understanding of model performance [97]. Our research adopts this set of criteria 

to assess LLMs’ performance in generating questions from program codes. 

4) Ethical considerations in metrics: Using evaluation metrics raises ethical concerns. Metrics 

should be carefully chosen to avoid reinforcing biases or undesirable behaviors in NLP models 

[98]. Responsible AI practices involve developing metrics that encourage fairness and ethical 

behavior in NLP models. The approach proposed in the current research addresses these ethical 

concerns while evaluating LLMs’ performance and considering issues related to relevance and 

clarity in question generation. As LLMs become more powerful, ethical considerations have 

become important. Developing responsible AI and mitigating biases in LLMs are critical [99]. 
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2.7.4 State-of-the-art LLMs 

Various models have emerged, each showing considerable performance across language 

processing tasks [89]. 

1) GPT-4: Building on the success of its predecessors, GPT-4 is known for its language generation 

ability [100]. GPT-4 exhibits contextual understanding due to its larger model size, improved 

training techniques, and increased parameters [101]. GPT-4-0314 has a smaller context capacity 

than GPT-4-0613. GPT-4 has set a high benchmark for other models in question generation. 

2) GPT-3.5: It is the updated version of GPT-3; a later version is 3.5-turbo. It supports 4096 tokens, 

is free on the web interface, and has a paid application programming interface (API). The 

capabilities of GPT3.5-turbo-0613 result in better output than GPT-3 for text processing tasks 

[102]. 

3) Llama-2: Llama-2 specializes in chat-based interactions and is designed to generate human-like 

responses [103]. This specialization makes Llama2 a strong candidate for dialogue-based question 

generation. 

4) H2OGPT Variants: The H2OGPT series features fine-tuned variants for specific domains. 

H2OGPT-gm-oasst1-en-2048-falcon-40b and H2OGPT-gm-oasst1-falcon40b offer promising 

performance for domain-specific applications [104]. These models are customized to generate 

questions from technical content, which aligns with our research’s focus on QG from source code. 

Several versions with different parameter sizes are available; all are open-source and can be 

optimized for specific domains. Each falcon has a distinct parameter capacity or token size [103]. 

The following is a brief description of each model: 

• H2OGPT-gm-oasst1-en-2048-falcon-40b-v1: It has the largest parameter size in open-

source models, reaching 40 billion parameters, and the precision of text generation and 

understanding of NLP is high [105]. 

• H2OGPT-gm-oasst1-en-2048-falcon-40b-v2: This version is similar to the previous 

version, as they both trained on the same dataset; however, different personalization settings 

were added. Additionally, both versions support 2048 tokens [105]. 

• Falcon-40b-sft-top1-560: This model supports up to 2048 tokens and performs very well in 

text generation. It was trained on the OSSAT dataset [105]. 

• H2OGPT-oasst1-falcon-40b: This version is the initial release with 40 billion parameters 

and supports 2048 tokens. However, the other versions have more refined training data than 

the initial version [105]. 
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• H2OGPT-gm-oasst1-en-2048-falcon-7b-v3: This model is significantly smaller than the 

other Falcon models; however, it is also trained on the OSSAT data set, and supports the 

context length of 2048 [105]. 

• Falcon-40b-instruct: This model is the newer version of Falcon and uses the same dataset 

as the previous ones. However, this version is tuned specifically to perform tasks and follow 

instructions precisely. This version performs better on the required tasks than the previous 

ones [105]. 

5) Vicuna-33b: Vicuna-33b focuses on specialized applications [106]. Its model size of 33 billion 

parameters combines scalability with domain expertise. Vicuna-33b’s potential for generating 

questions in specific technical domains might provide valuable insights into the feasibility of using 

such models for specialized tasks. 

6) Claude: The Claude model is from Google, and it has a huge input token limit that reaches up 

to 100K user input. Claude performs well on multiple-choice tasks [107]. However, at the time of 

writing, this model was only available in the USA and the UK, which was considered an access 

limitation [108]. The parameter size for this model reaches 130 billion parameters. Furthermore, 

for text generation, it is stated that it outperforms GPT-3.5, but GPT-4 remains better at prompt 

understanding and coding [109]. 

2.8 Evaluation Metrics for Generated Questions from Source Code 

Evaluating automatically generated questions is still a problematic issue, and multiple metrics and 

methods are suggested in the literature. The article [110] developed a framework to measure the 

quality of MCQs that are produced automatically in terms of relevance, clarity, and educational 

worth. The paper [75] proposed some evaluation measures to gauge the quality and effectiveness 

of the generated MCQs. These parameters make questions relevant, varied, and appropriate for 

educational programs. The primary measurement criteria include question relevance score, 

diversity index, and difficulty alignment accuracy. In another paper [111], the authors mentioned 

that LLMs automatically generate MCQs in curricula CS0 and CS1. The course outline of both 

CS0 and CS1 is the core input data into the EduCS system. The paper includes a list of evaluation 

metrics that will help to evaluate the quality of MCQs provided by the EduCS system. The most 

relevant aspects of these assessment measures were clarity, relevance, and difficulty level. As a 

knowledge representation technique [P13], ontology has been used to build semantic models for 

the Python language [P8], [P9]. The paper [P1] used automatic evaluation measures, bidirectional 

encoder representations from transformers (BERT)-based semantic accuracy, to assess the 

content. The paper [P3] does not cover automatic evaluation but proposes a hybrid model with 
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human expert evaluations focused on code difficulty and generated question validity. Overall, 

assessing the quality of machine-generated questions from source code calls for robust metrics 

beyond conventional automated scoring methods. 

2.9 Conclusion 

This chapter examined the intersection of AQG and programming education, emphasizing how 

ontology-driven methods, graph-based code analysis, and LLMs contribute to scalable, high-

quality assessment systems. The chapter reviewed ontology-based instructional content 

generation, highlighting its role in structuring and personalizing learning materials for 

programming education while enhancing content reuse and consistency. It also explored how static 

code analysis techniques, particularly ASTs, CFGs, DFGs, and PDGs, provide a structured 

foundation for analyzing code semantics to inform AQG. The integration of these graph-based 

representations supports the development of targeted, cognitively diverse programming questions 

that align with Bloom’s Taxonomy, ensuring assessments measure varying levels of cognitive 

skills. The chapter further discussed template-based approaches and LLMs like GPT-4 and Llama-

2, demonstrating their potential to generate coherent, contextually relevant programming 

questions while acknowledging challenges such as bias, scalability, and the need for robust 

evaluation frameworks. It highlighted the importance of clear evaluation metrics, including 

semantic accuracy, relevance, and cognitive alignment, to assess the quality of automatically 

generated questions effectively. 

Overall, the chapter established a comprehensive theoretical foundation for the dissertation, 

identifying critical limitations of current AQG methods in programming education, particularly 

the lack of AQG directly from source codes and the absence of evaluation metrics for such 

methods. The gaps identified in this literature review directly inform the research contributions. 

While existing work provides valuable foundations in ontology-based content generation, graph-

based code analysis, and LLM applications, no existing systems integrate these approaches for 

AQG from source codes, nor do they provide comprehensive evaluation and systematic cognitive 

alignment to Bloom's Taxonomy levels.
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Chapter 3 Ontology-Based Automatic Generation of Learning Materials for Python 

Programming

3.1 Introduction 

Recently, knowledge graphs (KGs), as structured forms of knowledge representation, have gained 

substantial research interests across academia and industry from modern ontology views. 

Integrating educational technologies with KGs has an impressive influence on teaching and 

learning activities, especially in programming with Python. E-learning platforms provide students 

with tools to easily engage and receive ongoing feedback during the e-learning sessions [35]. KGs 

are crucial in optimizing the automation of ontology-based learning material generation. They 

support the organization, interrelation, and knowledge utilization in a particular field [112]. In 

Python programming, KGs can delineate the existing knowledge, relations, and entities [112]. 

Additionally, ontology-driven systems support more effective comprehension of the context and 

relations of various concepts, thus enabling more precise and thorough learning materials 

generation [112]. Adding KGs to the ontology-based automatic generation of educational 

materials improves content relevance, personalization, interoperability, content reuse, and 

efficient knowledge capture [113]. KGs can efficiently organize and manage the structural 

knowledge of Python programming [113]. 

In the information age, one's programming capability is required in many professions, as 

accentuated by the availability of resources aimed at teaching and training in programming [30]. 

Designing high-quality learning materials for programming languages is difficult and requires 

substantial resources because of fragmentation in educational programming design, instructional 

programming expertise, and difficulty in adaptive personalization [32]. Ontology-based automatic 

learning materials generation (ALMG) leverages advanced educational technologies to streamline 

this process [39]. This technology will assist educators in saving time and costs by generating 

particular and appealing materials for students [39]. Calmon et al. [42] describe an automated 

curriculum selection system that tailors educational content to student needs using ML and data 

analytics, improving learning effectiveness and institutional delivery. Similarly, Xia et al. [48] 

propose adaptive networked learning material delivery, demonstrating how ML can manage 

learning processes and enhance student outcomes in networking education. 

One of the methods to represent domain models is through ontology-based representation [P13]. 

Semantic understanding and knowledge representation enable Ontology-based ALMG for Python 

programming that produces resources like tutorials, code examples, exercises, and assessments. 

The development of an ontology for capturing Python programming concepts, relationships, and 

properties is used in this approach. It attempts to create learning materials based on the pedagogical 
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requirements and learning objectives. The ontology-based approach further enables continuously 

updating and refining the learning materials to sync with Python programming environment 

changes [114]. Ontology-based ALMG for Python programming is a highly efficient and scalable 

approach using structured knowledge presentation for automating educational content creation 

[32]. With this method, its learning materials remain consistent, high quality, and personalized, all 

while allowing for the efficient creation of various resources. Likewise, the existence of the 

ontologies makes the routines adaptable to changes in Python programming [115], i.e., updating 

the ontologies and automatically regenerating learning materials. Ontologies' automation saves 

educators and content creators time and effort and improves a deep semantic understanding of the 

Python programming domain for a better generation of learning materials [34]. Manual creation 

of Python programming learning materials remains time-consuming and often fails to keep pace 

with the ecosystem’s rapid evolution [P3]. An ontology-driven automated approach can address 

these challenges, improving learners’ access to high-quality, adaptive, and contextually relevant 

resources. The automatic generation of Python learning materials is critical for ensuring 

scalability, adaptability, consistency, and accessibility while facilitating innovation in educational 

technology and programming pedagogy [49]. It enables diverse, personalized learning experiences 

aligned with learners’ needs and learning styles, supporting educational quality while reducing 

instructor workload. 

This chapter aims to develop a comprehensive ontology for Python programming and design an 

ontology-based ALMG system tailored to Python education. It outlines the system’s design and 

implementation while exploring potential enhancements and the implications of such a system in 

educational contexts. This chapter details the technologies and methodologies underlying 

ontology-based ALMG, emphasizing how ontologies capture domain knowledge and facilitate the 

automated generation of educational content. It discusses the educational and practical 

implications of ontology-based ALMG, illustrating its potential to enhance Python programming 

instruction. The objectives of this chapter are to: 

1. Design an ontology-based framework that models Python programming concepts and their 

interconnections. 

2. Develop a system for automatically generating Python programming learning materials 

(specifically quizzes) that align with the modeled concepts and relationships. It supports 

beginner, intermediate, and advanced difficulty levels. 

The structure of this chapter is as follows: Section 3.2 describes the methodology, outlining the 

ontology-based approach, domain-specific knowledge modeling, and implementation details, 

including validation and evaluation of the proposed model. Sections 3.3 and 3.4 present the results 
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and discussion, respectively, while Section 3.5 concludes the chapter, highlighting practical 

implications. 

3.2 Methodology 

3.2.1 Ontology-Based Approach for Learning Materials Generation 

Formal knowledge representation is used in an ontology-based approach that captures domain-

specific concepts, relations, and properties and uses such information to generate learning 

materials. The method involves an ontology for the target domain's concepts, relationships, and 

properties, such as programming languages. Semantic understanding is captured through 

ontology, meaning it results in inferring relationships and categorizing concepts. Learners' needs 

and preferences are analyzed based on educational objectives and learner profiles. The ontology 

is used to generate content that is coherent and contextually relevant. The materials are presented 

using NLP techniques to make the explanation as clear and understandable as possible. Because 

it is based on ontology, it allows for continuous updating and refinement as the domain knowledge 

changes. The benefits include scalability, adaptability, personalization, consistency, efficiency, 

and accessibility. The ontology-based approach can create adaptive, personalized, high-quality 

educational content for various domains, such as programming education. The ontology-based 

approach for generating learning materials involves structured knowledge representations on a 

domain to automatically create the learning materials. Ontologies are leveraged in this process to 

map the relationships between different concepts in the subject of a knowledge domain, providing 

generated materials that are pedagogically sound and contextually relevant. The primary process 

of generating learning materials using an ontology-based approach can be demonstrated in several 

steps as follows: 

1. Ontology development, which includes domain analysis, is to identify the key concepts, 

relationships, and rules within the subject area, and ontology construction to define the concepts 

(classes), properties (relationships), and instances (individuals) within the domain, and validation 

and refinement ensure that the ontology accurately represents the domain knowledge through 

validation and iterative refinement. 

2. Knowledge representation involves formalizing the ontology. This formal language provides 

precise semantics for the concepts and relationships, axioms, and rules to define axioms and 

inference rules to capture the logical constraints and derivations within the domain. 

3. Learning materials generation, which contains the content extraction for identifying relevant 

content from the ontology based on the learning objectives, content structuring to organize the 

extracted content into a coherent structure, following educational best practices (e.g., Bloom's 
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taxonomy), and template application to apply predefined templates to format the content into 

various types of learning materials (e.g., textbooks, task assessments, interactive modules). 

4. Automated generation algorithms include the input processing to accept inputs such as learning 

objectives, target audience, and preferred content format; ontology querying, which uses 

description logic queries to retrieve relevant concepts, relationships, and instances from the 

ontology, material assembly to assemble the retrieved information into structured learning 

materials using the defined templates, and output generation for producing the final learning 

materials in the desired format (e.g., HTML, e-learning platform). 

AGLM involves a complex pipeline integrating NLP, ML, and educational technology. The 

following is an algorithmic approach to automatically generating learning materials from an 

ontology. AGLM in the programming domain involves several tailored steps. The following is a 

general pipeline for AGLM in the programming domain: 

Inputs: 

• Programming Language: The specific language (Python). 

• Learning Objectives: Skills or concepts to be covered (e.g., syntax, data structures, algorithms). 

• Content Sources: Online tutorials, documentation, code repositories. 

• Format Preferences: Code snippets, quizzes, text explanation. 

• Target Audience: Beginner, intermediate, or advanced learners. 

Steps: 

1. Content Retrieval: 

• Query content sources using APIs or web scraping to gather relevant programming resources. 

• Use NLP techniques to filter and categorize content based on relevance and complexity. 

2. Content Analysis: 

• Analyze the retrieved content for key programming concepts, syntax rules, common pitfalls, and 

best practices. 

• Identify gaps in the content that need to be addressed to fulfill the learning objectives. 

3. Content Structuring: 

• Organize the content into a logical flow, such as: 

• Introduction to the language 

• Basic syntax and constructs 
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• Control structures (loops, conditionals) 

• Data structures (arrays, lists, dictionaries) 

• Functions and modules 

• Advanced topics (e.g., OOP, frameworks) 

• Create outlines or flowcharts to visualize the structure. 

4. Material Creation: 

• Generate text explanations for each section using NLP techniques. 

• Create code examples and snippets that illustrate each concept. 

• Develop quizzes or coding challenges based on the key concepts identified. 

• Design multimedia elements (like screencasts or infographics) if applicable. 

5. Customization: 

• Tailor the generated materials to fit the target audience's skill level. 

• Adjust complexity by simplifying explanations or introducing advanced topics as needed. 

6. Interactive Elements: 

• Integrate coding environments (like Jupyter Notebooks or online IDEs) where learners can 

practice coding directly within the material. 

• Include live coding demonstrations or interactive simulations. 

7. Feedback Loop: 

• Incorporate user feedback mechanisms (like quizzes and surveys) to evaluate understanding and 

engagement. 

• Use ML to refine content generation based on user performance data. 

8. Output Generation: 

• Compile all materials into a cohesive format (e.g., HTML pages, PDF documents, online course 

modules). 

• Ensure accessibility standards are met (e.g., code readability, alt text for images). 

9. Review and Iteration: 

• Implement a review process where educators or experienced programmers can evaluate the 

generated materials. 
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• Iterate on the content based on feedback and updates in programming language features or best 

practices. 

Outputs: 

• Comprehensive learning materials tailored to programming topics and audiences. 

• Code snippets and examples for hands-on practice. 

• Quizzes and coding challenges to reinforce learning. 

While the complete AGLM pipeline outlined above provides necessary context for understanding 

AGLM, the focus of the current research (ontology-based MCQs generation with BERT 

similarity) is on some parts of this general pipeline. Algorithm 3.1 automatically generates MCQs 

quizzes aligned with Python programming concepts using a domain-specific ontology. It aims to 

deliver personalized and contextually accurate assessments while ensuring semantic alignment 

with reference materials through BERT-based similarity checks (implemented and deployed on a 

Flask App).  

Algorithm 3.1: Ontology-Based MCQ Generation 

Input: Domain, Difficulty, Number_of_Questions 

Output: Random_MCQ_Quiz, Similarity_Score 

1:  PROCEDURE BUILD_PYTHON_ONTOLOGY() 

2:      ontology ← ONTOLOGY_STRUCTURE()    

3:      RETURN ontology 

4:  END PROCEDURE 

5:  PROCEDURE GENERATE_MCQ_DATASET() 

6:      mcq_bank ← ∅ 

7:      for each domain_template do 

8:          questions ← TEMPLATE_BASED_GENERATION(domain_template) 

9:          mcq_bank.ADD(domain, questions) 

10:     end for 

11:     SAVE_TO_CSV(mcq_bank, "mcq_dataset.csv") 

12: END PROCEDURE 

13: PROCEDURE SERVE_QUIZ(domain, difficulty, num_questions) 

14:     questions ← LOAD_FROM_CSV("mcq_dataset.csv") 

15:     filtered ← FILTER_BY_DIFFICULTY(questions[domain], difficulty) 

16:     selected ← RANDOM_SAMPLE(filtered, num_questions) 

17:     similarity ← BERT_SIMILARITY(ontology_material[domain], domain) 

18:     RETURN FLASK_RESPONSE(selected, similarity) 

19: END PROCEDURE 

 

The process begins by building a domain ontology for Python programming. This ontology 

formalizes concepts such as data types, control structures, functions, and OOP, capturing 

relationships and properties necessary for the semantic structuring of learning materials. For each 

domain concept template, the system uses a template-based generation approach to create relevant 

MCQs, systematically organizing these questions into a structured MCQs bank. This bank is then 

saved in a comma separated values (CSV) format for efficient retrieval and further processing. 
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When a learner requests a quiz, the system loads the MCQs dataset, filters questions based on the 

desired difficulty level, randomly selects the required number of questions, computes semantic 

similarity using BERT embeddings to compare the learner’s domain with reference materials, 

ensuring that the questions are contextually aligned and relevant, and returns the personalized quiz 

alongside similarity metrics for evaluation. This approach enables scalable, automated generation 

of high-quality, semantically accurate quizzes in programming education, reducing manual effort 

while enhancing learning personalization and alignment with learning objectives. 

3.2.2 Proposed Knowledge Model for The Domain-Specific Concepts 

The domain-specific concept is the system's knowledge module, organizing the domain 

knowledge structure, including its central concepts and their relationships. This model facilitates 

the automatic generation of learning materials for the educational process. It focuses on 

constructing and organizing domain-specific concepts and their interrelations [47].  

A knowledge module consists of guidelines to identify all vocabulary concepts to illustrate or 

solve problems. It is purely declarative and does not provide instructions on how learners can 

utilize it to address practical issues [116]. Two categories of ontology modules have been 

developed based on the characteristics of the learning materials: general domain-specific concepts 

ontology and specific domain-specific concepts knowledge module ontology. These modules 

represent the knowledge concepts needed for learning, provide input to the knowledge module, 

offer particular feedback, select problems, create learning materials, and support the student 

model. A domain-specific concepts knowledge module has been proposed based on current 

research, as illustrated in Figure 3.1. This model is fundamentally based on domain concepts, 

properties, task assessments, material resources, learning objectives, learning rules, learning 

levels, and their interrelationships.  

To generate learning materials and reuse the knowledge module in the learning process, ontologies 

organize and represent the domain-specific concepts in the knowledge module. The advantage of 

this model is its ability to personalize and automatically generate learning materials for learners.  

Based on the general domain-specific concepts ontology shown in Figure 3.1, domain concepts, 

domain properties, task assessments, material resources, learning objectives, learning rules, and 

learning levels terminologies refer to the following: 

• Domain concepts present domain-specific knowledge or a comprehensive learning material or 

course overview. 

• Domain properties represent learning material or domain-specific properties within a domain 

knowledge model. 
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• Task assessments explain how the application system can assess or measure the required learner 

activities within a specific period. 

• Material resources are physical or digital items used in educational settings to support and 

facilitate learning. They include textbooks, web resources, software, multimedia tools, and 

laboratory equipment.  

• Learning objectives are clear, measurable goals that outline students' expected learning 

outcomes. They guide teachers in planning instruction, designing assessments, and evaluating 

progress. Aligned with curriculum and instructional standards, they provide a framework for 

effective teaching and assessment.  

• Learning rules are principles or guidelines that describe how learning occurs and how new 

information is acquired and processed. These rules help educators understand student learning and 

inform instructional strategies while helping students become more effective learners by 

optimizing their learning processes.  

• Learning levels are the stages of proficiency and understanding that individuals progress through 

as they acquire new knowledge, skills, and competencies. They are crucial in education and 

instructional design, as they help educators tailor teaching methods and materials to support 

students at different stages of their learning journey. 

Figure 3.2 displays the design and structure of a selected ontology knowledge module for the 

domain-specific concepts case study for the Python programming domain. Several relationships 

are applied to the domain-specific concepts selected in case examples. The relationships are 

generalization or specialization, dependency, and containment. Containment indicates that a 

specific domain concept within a given domain contains various concepts (has-a). The 

 
Figure 3.1 General knowledge model for the domain-specific concepts 
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generalization or specialization shows particular topics or domains with specific concepts (is-a). 

Based on Figure 3.1 and Figure 3.2, the following displays a temporary explanation of a domain 

concept: 

• Domain concepts: Class, Function. 

• Domain properties: syntax. 

• Task assessments: program, code review, project.  

• Material resources: textbooks, web resources. 

 

3.2.3 Proposed Model Implementation 

CS and Information Technology disciplines offer numerous language modules and packages for 

developing and managing ontology models. Python is one of the most widely used and favored 

languages for implementing an ontology for domain-specific concept models. This interpreted, 

object-oriented, and extensible programming language is known for its exceptional clarity and 

versatility across various fields [40]. The paper [P8] used Python and Owlready2 to create the 

ontology and implement the domain knowledge. The domain-specific concept explored in this 

work is the "Basics of Computer Programming." The ontology is constructed using the "Python 

Programming Language." Python and Owlready2 modules implement domain-specific concepts 

within the ontology. Owlready2 facilitates transparent access to ontologies, allowing for the 

manipulation of classes, individuals, object properties, data properties, annotations, property 

domains, ranges, constrained datatypes, disjoints, and class expressions, including intersections, 

unions, property value restrictions, and more. Python offers some functions and modules for 

 
Figure 3.2 Specific knowledge model for the domain-specific concepts 

 



 

47 

 

 

managing ontologies to implement, create, and modify ontologies. The get_ontology() function 

allows building an empty ontology from its IRI using the Owlready2 module. Owlready2 uses the 

syntax "with ontology: ..." to demonstrate the ontology that will receive the new RDF triples. For 

creating an ontology, the following short code is used:  

from owlready2 import *  

ontology = get_ontology() 

with ontology: <Python code> 

Concerning the implementation of the domain-specific concepts and the construction of its 

components: the domain concepts, learning objectives, domain properties, task assessments, 

learning rules, material resources, and learning levels. Figure 3.3 shows a code dealing with the 

design of the core classes of the presented model. Figure 3.4 corresponds with some of the object 

property relationships defined for the constructed components of the selected model. Several tools 

are available to display the ontology graph. The tools are Synaptica, OWLGrEd, and Protégé.  

 
Figure 3.3 Core classes of the presented model 

 

 
Figure 3.4 Object property relationships 
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Protégé is the most commonly used tool to display the ontology graph of domain-specific 

concepts, as shown in Figure 3.5. The ontology visualization employs different types of 

connecting lines to represent various relationships between concepts. Solid arrows indicate direct 

hierarchical relationships, where parent concepts contain or encompass child concepts. Dashed 

lines represent dependency relationships, showing that one concept relies on or requires 

understanding of another concept. The circular relationship lines in Figure 3.5 demonstrate the 

interconnected nature of programming concepts, where each topic can depend on another topic 

and contain subtopics. For example, the iterative loop depends on variables, logical operators, and 

relational operators, as shown by the dashed dependency lines. Control sentences contain 

conditional sentences and iterative sentences, illustrated through solid hierarchical arrows. Figure 

3.6 presents a SPARQL query as an example of visualizing all the domain concepts in the selected 

ontology domain-specific concepts regarding retrieving the domain concept and its description. 

 

 
Figure 3.5 Domain-specific concepts ontology graph 

 
 

 
Figure 3.6 A SPARQL query for retrieving the concept "python class" and its description 
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NLP is used for automatic learning material generation, applying the Spacy module in Python and 

the rdflib module. Figure 3.7 and Figure 3.8 present the code that controls the ontology of domain-

specific concepts. Figure 3.9 and Figure 3.10 display snapshots of SPARQL for generating task 

assessment and query results according to SPARQL selecting concepts. The results are domain 

concepts, task assessment, and asking questions in the form of MCQs. Regarding automatic 

learning materials generation, the system randomly generates task assessments as MCQs for the 

learner. The learner is asked to answer the question, and according to the answer, whether it is 

correct or not, the system will automatically generate learning materials for further reading. Figure 

3.11 shows a snapshot of a task assessment question, whether the answer is correct, and the 

suggested learning material for the selected task. Table 3.1 shows a comparison between traditional 

vs. ontology-based learning material creation.  

 
Figure 3.7 Controlling the ontology of domain-specific concepts 

 
 

 
Figure 3.8 The result of the ontology of domain-specific concepts 

 

 
Figure 3.9 Task assessment generation 
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Table 3.1 Comparison between the traditional approaches and ontology-based approaches 

 

3.2.4 Proposed Ontology-Based Model Validation and Evaluation  

For ontology-based model validation and evaluation, various tools can be utilized to ensure the 

ontology's accuracy, consistency, completeness, and pedagogical effectiveness. Among these, 

OOPS! and HermiT were selected for this work due to their compatibility with OWL ontologies, 

Feature 
Traditional Learning Material 

Creation 

Ontology-Based Learning Material 

Creation 

Content 

Organization 
Linear and structured manually 

Hierarchical and dynamically structured 

using ontology 

Customization Limited personalization 
Highly personalized based on learners' 

needs 

Content Reusability Low content created from scratch 
High, modular content reuse across 

different topics 

Automation Mostly manual work AI-assisted generation and annotation 

Content Consistency It can be inconsistent across materials Ensures uniform structure and terminology 

Adaptability Hard to update and adapt 
Easily adaptable to new knowledge and 

learning trends 

Efficiency Time-consuming Faster and more efficient due to automation 

Interactivity Mostly static content 
Dynamic and interactive learning 

experiences 

Scalability Difficult to scale 
Easily scalable across different subjects and 

learners 

 
Figure 3.10 Task assessment and result sample 

 

 
Figure 3.11 MCQs task assessment 
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Protégé integration, and support for logical reasoning and pitfall detection. Using these tools, you 

can comprehensively validate and evaluate ontology-based models to ensure high-quality, effective 

learning materials. A robust continuous improvement framework is based on combining automated 

tools with expert reviews.  

1. Ontology Evaluation: Ontology evaluation tools are essential in assessing ontology quality, 

reliability, and utility in many domains [50]. Ontology quality is measured with several metrics and 

methods, including quality metrics, consistency checkers, structural analysis tools, domain-specific 

evaluation tools, and usability evaluation tools [50]. Moreover, these tools also maintain the 

integrity and usefulness of ontologies across different domains. Automation, usability, 

interoperability, domain-specific adaptations, and capabilities for dynamic evaluation can be 

improved [50]. IRI_Debug is an ontology evaluation tool that enables detecting and correcting 

issues in the Internationalized Resource Identifiers (IRIs) [46]. It provides IRI validation, validation 

of errors, consistency checking, namespace control, and an easy-to-use interface [46]. However, it 

is unsatisfactory due to the effectiveness of ontology complexity and IRI usage patterns in ontology 

development, maintenance, and educational use. Continuous updates are necessary for evolving 

standards [46]. Owlready2 offers many reasoners for manipulating the domain ontology, such as 

Pellet, ELK, and HermiT. The HermiT reasoner is used, as shown in Figure 3.12, to check that the 

constructed ontology is consistent and allows the classification, instance checking, class 

satisfiability, and conjunctive query answering of the developed domain ontology for the selected 

model. It is the most commonly used in ontology engineering. 

 2. Ontology Validation: Ontology validation tools ensure ontologies' quality, reliability, and 

usability [117]. They identify issues related to consistency, completeness, correctness, and 

adherence to best practices [117]. Popular tools include OOPS!, OntoQA, OQuaRE, Pellet and 

Hermit, OntoMetric, BioPortal and AgroPortal, and OntoClean. OOPS! is a tool that helps ontology 

developers identify and address common pitfalls in ontology design [118]. It uses a set of pitfalls 

from best practices and expert recommendations, covering naming conventions, ontology structure, 

 
Figure 3.12 Consistency of the domain-specific concepts ontology 
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and logical inconsistencies [118]. The tool generates detailed reports detailing pitfalls, severity, and 

affected elements and provides recommendations for correcting each [118]. It can be integrated 

into ontology environments like Protégé, enhancing usability and promoting best practices [118]. 

Figure 3.13 shows the OntOlogy Pitfall Scanner tool for ontology validation, which is used for the 

validation process. The input values for this tool can be ontology URL or RDF file code. Figure 

3.14 shows the OntOlogy Pitfall Scanner tool validation results. 

 

 
Figure 3.13 OntOlogy pitfall scanner tool 

 

 

 

 
Figure 3.14 OntOlogy pitfall scanner tool results 
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3.3 Results 

The ontology-based AGLM in the Python programming domain as a solution provides a more 

sophisticated system for generating learning materials. Assessing their quality accuracy, 98.5%, 

makes it a valuable tool in educational technology and content generation. The dataset used in this 

experiment is the Python programming language ontology [119]. To generate the learning 

materials, BERT embeddings have been used to measure the semantic similarity of generated 

learning materials to predefined reference materials. It also generates an evaluation table, Table 

3.2, summarizing the results for each domain concept, as explained in the following steps: 

1. Ontology and learning materials: An ontology is defined for various domain concepts (e.g., 

Python Programming, Data Structures), and learning materials are generated for each domain 

concept using predefined content. 

2. BERT-based accuracy calculation: BERT model from the sentence-transformers library is used 

to compute embeddings for the generated learning materials and predefined reference materials. 

The cosine similarity is then calculated between these embeddings to determine the semantic 

accuracy of the generated content. 

3. MCQ generation: MCQs are generated for each domain concept and assess how much the learner 

understands it. 

4. Evaluation Table: Table 3.2 shows how the create_evaluation_table function collected generated 

learning materials, accuracy scores, MCQs, and a brief description of results from the results set 

into a structured evaluation table with the help of pandas. Descriptions of the accuracy are offered 

as a categorical measure based upon the thresholds, "Excellent alignment" being the case when the 

accuracy is greater than 90%, "Good alignment" for anything from 70% to 90%, and "Moderate 

alignment" for a value that is less than 70%. 

Table 3.3 compares the ontology-based model's performance across numerous samples of the 

Python programming topic Data Types, Control Flow, Functions, Error Handling, and OOP 

(Object-Oriented Programming), respectively. It shows how effectively the system can generate 

learning materials and assessments for each topic. As shown in Table 3.4, the ontology-based 

model's performance also changes according to the dataset size when presented with the task of 

generating Python programming learning materials. It shows accuracy and other improvements as 

the model processes more datasets and proves its scalability. Using the following formulas, the 

evaluation metrics such as accuracy, precision, recall, and harmonic mean of precision and recall 

(F1-Score) are calculated by the formulas from 3.1 to 3.4. 
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Accuracy =  (True Positives +  True Negatives) / (Total Instances) (3.1) 

Precision =  True Positives / (True Positives +  False Positives) (3.2) 

Recall =  True Positives / (True Positives +  False Negatives) (3.3) 

F1_Score =  2 ∗  (Precision ∗  Recall) / (Precision +  Recall) (3.4) 

Data is split into training (80%) and testing (20%) sets using the train_test_split function from 

sklearn.model_selection. The final parameter is the split with test_size=0.2, and random_state=42 

ensures reproducibility. Using dataset size, the training and testing percentages are calculated. The 

values for these datasets are explicitly defined and printed in the run_evaluation function to make 

it clear for model training and evaluating the dataset distribution. In this case, the accuracy 

calculation was measured using the BERT-based semantic similarity. A pre-trained BERT model 

was used to transform the generated and reference texts into vector embeddings. These embeddings 

were computed into cosine similarity values measuring their semantic closeness. A predefined 

threshold was set to verify if the generated content was accurate (e.g., 0.8 or 0.9). The accuracy 

was calculated as the percentage of correctly matched samples over the total number of samples.  

 

Table 3.2 Evaluation table sample 

Domain 

Concept 
Generated Learning Material 

Accuracy 

Score 

(%) 

MCQs Description 

Python 

Programming 

Python is a versatile programming language 

known for its simplicity and readability. It 

supports multiple programming paradigms, 

including procedural, object-oriented, and 

functional programming. 

98.50% 

Q: What keyword is 

used to define a 

function in Python? 

- def - function - func - 

define Answer: def 

Excellent 

alignment with 

reference 

material. 

Data 

Structures 

Common data structures in Python include 

lists, dictionaries, sets, and tuples. Each 

structure has unique properties and use 

cases. 

95.85% 

Q: Which of the 

following is an 

unordered collection in 

Python? 

- List - Tuple - 

Dictionary - String 

Answer: Dictionary 

Excellent 

alignment with 

reference 

material. 

Algorithms 

Algorithms are step-by-step procedures for 

solving problems. In Python, you can 

implement algorithms for sorting, 

searching, and manipulating data in Python. 

92.30% 

Q: What is the time 

complexity of binary 

search? \n - O(n) \n - 

O(log n) \n - O(n log 

n) 

Answer: O(log n) 

Excellent 

alignment with 

reference 

material. 
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Table 3.3 Ontology-based model evaluation: Python programming topics sample 

Python Topic 
Number of 

examples 
Percentage Accuracy Precision Recall 

F1-

Score 

Data Types (int, float, str) 390 39% 0.95 0.93 0.96 0.94 

Control Flow (if, else, loops) 170 17% 0.91 0.89 0.92 0.90 

Functions (def, arguments, return) 70 7% 0.93 0.91 0.94 0.92 

Error Handling (try, except) 70 7% 0.89 0.86 0.91 0.88 

Object-Oriented Programming (OOP) 360 36% 0.90 0.87 0.92 0.89 

 

Table 3.4 Ontology-based model evaluation performance by dataset size 

Dataset Size (Records) Accuracy Precision Recall F1-Score 

Small (500) 0.88 0.85 0.89 0.87 

Medium (1500) 0.91 0.89 0.92 0.90 

Large (5000) 0.985 0.92 0.95 0.93 

 

One final point to clarify: the literature lacks comprehensive and domain-specific evaluation 

metrics tailored to QG from source code. Traditional text-based metrics like BERT score do not 

fully capture the nuances of the generation process in AQG from code. Finally, the proposed system 

was deployed using Flask App, as shown in Figure 3.15. The final ontology-driven dataset 

contained 5,000 structured quiz examples. For the current research, the dropdown menus (e.g., 

domain and difficulty) are not dynamically populated from the ontology. Each Example consists of 

a question, four options to choose from as an answer, and the correct answer. This study implements 

an ontology-driven quiz generation system that leverages structured knowledge representation to 

enhance Python programming education. By systematically aligning quiz content with formal 

ontological structures, the system introduces difficulty mapping and semantic similarity evaluation, 

ensuring learners engage with contextually relevant and appropriately challenging material. This 

principled approach differentiates itself from generic quiz generators by providing a structured 

framework that supports meaningful assessment while maintaining domain specificity. The 

semantic analysis components refine content alignment and facilitate the generation of quizzes. As 

part of its future trajectory, the system is designed to incorporate advanced NLP techniques to 

enhance semantic alignment and QG quality, thereby positioning this work at the intersection of 
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structured knowledge representation and adaptive educational technology within the context of 

programming education. 

 

3.4 Discussion 

Ontology-based AGLM is a technology that can potentially enhance learning experiences in almost 

any educational environment. From an instructor's point of view, it operates as a tool that can 

initiate customized tests based on the students' diagnostic results. In this way, it enables the 

emergence of personalized learning materials directed to certain weak spots and saves quiz creation 

and grading time. This technology can provide a personalized learning path for learners, 

particularly Python programming students. An independent learner might start with a diagnostic 

test that covers basic topics such as data types, control flow, and functions. It can create debug 

tasks, discussions, and interactive lessons personalized to the student's needs based on their 

performance. It can also generate automatic feedback to highlight task errors, syntax errors, and 

possible solutions for student advancement. The instructor can use the same feedback to identify 

challenges faced by students and correspondingly grade the difficulty level of exercises so that 

support may be made more specific. This technology is excellent for use in both self-paced and 

instructor-led learning environments. In a blended learning model, for example, a self-paced learner 

could work through the function modules, and an instructor could give the diagnostic quizzes to 

track progress. Real-time performance tracking enables educators to identify learning gaps and 

intervene effectively. Advanced learners can also use the system to focus on specialized topics, 

such as data manipulation using Pandas, with automatically generated complex coding tasks to 

support skill advancement. 

 
Figure 3.15 Python MCQ quiz generator flask app 
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Overall, the ontology-based approach allows instructors to align learning materials with specific 

learning objectives, ensuring learners receive contextually relevant, personalized content that 

enhances engagement and retention while improving instructional efficiency. For the future work, 

the ontology should be completely dynamic. Consequently, the dropdown menus of the Flask App 

(e.g., domain and difficulty) are planned to be dynamically populated directly from the ontology 

after adding the dynamic facility in the generation process. The literature lacks comprehensive and 

relevant evaluation metrics dedicated to QG from source codes. BERT and other text-based metrics 

do not offer the overall picture of the generation process for AQG from source codes. 

Regarding positioning the developed system within the literature, prior ontology-driven question 

generation has largely focused on domain-agnostic ontologies and the production of MCQs from 

concept graphs [120], [121], [122]. These approaches often leverage OWL/RDF structures and 

Bloom-aligned templates rather than code semantics. Items are derived from ontology triples and 

evaluated primarily through expert judgment at scale, rather than program analysis of executable 

artifacts. By contrast, Chapter 3 system employs a Python-specific ontology to generate MCQs 

directly from source code, linking programming constructs and relationships to pedagogical 

objectives, thereby shifting from triple-verbalization to a code-aware, concept-driven generation 

process. Unlike MCQ pipelines that repurpose general knowledge bases (e.g., Biology or multi-

domain ontologies), the current approach models Python concepts directly and integrates them with 

generation strategies designed specifically for programming education. This distinguishes it not 

only from general ontology-based AQG but also from recent programming ontology efforts aimed 

at computational thinking across multiple languages [114], by focusing narrowly and deeply on 

Python constructs to support pedagogical alignment. In doing so, the approach addresses a gap 

noted in systematic reviews of AQG methods [38]. This code-centric, language-specific ontology 

thus extends ontology-based AQG beyond text and knowledge-graph settings and establishes a 

foundation that subsequent chapters compare with template and LLM-based approaches. 

3.5 Conclusion  

In the digital age, programming skills have become a requisite for practice in almost every 

professional sphere, increasing the need for the most effective learning materials in programming 

study and training. Generating educational resources of computer programming based on ontology 

is a promising way to improve the quality and efficiency of educational resources of computer 

programming.  

This chapter designed and developed an ontology-based framework to model Python programming 

concepts and their relationships, enabling the automatic generation of quizzes and learning 

materials aligned with these structures. Using BERT-based semantic similarity evaluations, the 
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system achieved a high accuracy rate of 98.5%, validating its effectiveness in producing relevant, 

accurate, and pedagogically coherent content. 

The novelty of this approach lies in its integration of structured ontological modeling with 

automated quiz generation, ensuring difficulty levels, semantic relevance, and alignment with 

instructional objectives in Python programming education.  

Despite its contributions, this study acknowledges limitations. First, it primarily focused on Python 

programming, which may limit the generalizability of findings. Second, it requires further testing 

through controlled trials comparing ontology-based learning materials with traditional resources to 

evaluate impacts on retention, engagement, and mastery. Third, the ontology-based generation 

process is not completely dynamic. Fourth, the literature lacks comprehensive and relevant 

evaluation metrics dedicated to QG from source codes (BERT metrics does not offer the overall 

picture of the generation process for AQG from source codes). Future research should expand the 

system to support multi-language programming education, assess its effectiveness through 

controlled experiments, and integrate adaptive feedback mechanisms and advanced NLP to further 

enhance QG quality. 

Thesis 1: I developed an ontology-based system that automatically generates programming-related 

assessment questions directly from source code. By leveraging structured domain knowledge, the 

system semantically interprets programming constructs to support concept-aware question 

generation, without relying on adaptive learning mechanisms. [P1, P2] 
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Chapter 4 A Hybrid Approach for Automatic Question Generation from Program Codes 

4.1 Introduction 

AQG has become significant with the increasing trend of online learning and its scalability in recent 

years. Technical courses like learning programming languages are more popular, and there is a 

massive demand for such subjects. Questions are the primary approach used to evaluate student 

knowledge [123]. Therefore, creating questions becomes more challenging as the constant growth 

of e-learning continues, more courses are made, and the pressure on teachers is high. Intelligent 

and deliberate questions can enhance student understanding and reduce the gap between theory and 

practice in programming subjects [124]. For example, the article [125] monitors the performance 

and behavior of students who engage in courses with self-assessment methods in programming and 

problem-solving. The research in [126] observes the decentralized practice by monitoring the 

intensity and timing of the impact on student learning and problem-solving in programming 

languages. The research paper [127] addresses interactivity while solving problems in 

programming languages based on learning objects. The article [128] tries to enhance the use of 

digital resources for students and instructors. The research papers [129] and [130] address the 

learning objects that can be used in different contexts using Web3. Finally, the article [131] 

suggests collaborative learning to help instructors engage students in generating and evaluating 

questions. The proposed method in this chapter focuses on translating Python code into text and 

uses an AI-based framework to generate questions from the text. Ontology is also used to connect 

and conceptualize the logic of the programming language. Applying ontology ensures 

interoperability with other systems and reduces the overhead on educational platforms. This chapter 

contributes to e-learning platforms and improves the overall experience of programming language 

instructors. It also enhances the learning path for students who like to learn and do exercises without 

repeating the same questions. The outcome of this research is to generate meaningful questions 

based on Python code to assist instructors in creating more questions in a timely manner, thus 

ensuring student proper learning of the potential programming language. Unlike similar works, 

most recent research focuses on generating questions from text, while some research focuses on 

generating questions from visuals or images [132].  

This chapter focuses on generating questions from code snippets using semantic relations to extract 

the concepts. Generating questions from unconventional sources, such as code snippets, becomes 

important in providing a better learning experience to large groups of students, especially when 

dealing with limited information. The main goal of this chapter is to assist instructors and students 

in properly evaluating student performance by generating Python-based programming questions 

from existing materials (i.e., code snippets). The AQG from code snippets will add the possibility 
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of generating a different set of questions based on the same code snippet. Therefore, it leads to a 

better understanding of the given topic. The research objectives of this chapter are to implement a 

framework that can interpret Python programming language into text, and enable the framework 

to comprehend the text and build connections between the programming structures and the 

semantic concepts for AQG. There are several differences in purpose and methodology between 

the two approaches presented in Chapters 3 and 4. These two chapters present two completely 

separate approaches. Chapter 3 focused on developing a general ontology-driven learning 

materials generation in the form of MCQs using structured knowledge representation. Chapter 3 

used Python programming concepts to extract the concepts and build the structured knowledge 

representation, and the QG process was not fully dynamic. On the other hand, Chapter 4 focuses 

on dynamic QG from direct Python source codes. Chapter 4 develops a hybrid approach that 

combines AST, NLP, programming ontology, and an AI model for dynamic code-to-QG. Chapter 

4 presents multi-type dynamic generation of questions (Boolean, short-answer, and open-ended). 

The chapter is structured as follows: Section 4.2 details the methodology and framework. Sections 

4.3 and 4.4 present results and discussion, respectively. Section 4.5 concludes the chapter.  

4.2 Methodology 

QG involves computer understanding of the available materials to propose plausible questions to 

students. However, two approaches are usually effective: AI-based or semantic-based. The current 

work uses a combination of semantic and AI methods to properly generate questions from code 

snippets based on semantic code conversion. The primary motivation for using the semantic 

approach is maintaining concept relations in the programming language keywords to increase 

system intelligence on the programming language rules. Other approaches would not accurately 

represent the programming language rules, keywords, and concepts. This section will detail the 

QG framework architecture, the technology used, and the approach to generating questions.  

4.2.1 Architecture 

To generate questions from existing Python code snippets, an interpreter is needed to translate the 

code into more understandable concepts. Python or any other programming language is 

constructed using operators, variables, and functions. Operators such as +,-,AND usually do the 

actual computing. At the same time, variables are used to store values and recall them with 

operators to perform specific tasks. Functions contain a list of variables, loops, and operators to 

be executed in order. The ontology will categorize and conceptualize the list of commands (i.e., 

variables, operators, etc.) and the relationships between the concepts in the script. It will build an 

explained version of the code by processing the code line by line and creating semantic 

relationships based on the input. Subsequently, the translated code is generated and inserted into 



 

61 

 

 

an AI question generator called “QuestGen” [133]. This model will generate Boolean, short-

answer, and open-ended questions. Figure 4.1 shows the framework data flow and its components. 

Awareness of existing technologies and software is essential to construct any framework or 

software. Such awareness can improve productivity and help address many issues that take a long 

time. As a result, I implemented a framework using various third-party software in this chapter. 

Table 4.1 describes this case's environment settings, tools, and applied libraries. The QuestGen AI 

model, an open-source NLP library dedicated to creating simple question-generation methods, has 

been used. It has been on a mission to become the world's most sophisticated question-generation 

AI by utilizing cutting-edge transformer models like T5, BERT, and OpenAI GPT-2, among 

others. The primary objective of QuestGen AI is to simplify the QG process, providing support to 

educators, content creators, and learners in developing educational materials. This tool 

significantly enhances the efficiency of teaching and learning resource development through 

automation, ultimately facilitating a more effective educational experience. 

 

Before generating questions, the QuestGen AI model expects a text as input. The ontology 

mentioned next is responsible for converting the snippet code from the Python programming 

language into text that humans can understand. Subsequently, this model can generate questions 

based on the inserted text. The QuestGen AI model supports four types of questions, and they are 

as follows: 

• Questions with Several Choices (MCQs) 

• Boolean (Yes/No) Questions 

• Open-ended Questions 

• Question Paraphrase 

 
Figure 4.1 Proposed framework architecture 
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The current study considers Boolean, short, and open-ended questions. Since learning a 

programming language focuses on understanding the content of a code, such questions are more 

suitable for assessing student knowledge properly. 

Table 4.1 Environment settings, tools, and applied libraries 

Name Description 

OwlReady2 Python library to implement Ontology V 0.37 

Protege Software Application for viewing and modifying ontology 

Jupyter Notebook IDE to develop the framework 

QuestGen AI-based application to generate questions from the text  

Python  V 3.11.1 

 

4.2.2 Ontology Design 

The ontology is built and compiled using the Owlready2 library in Python. Such a library would 

support automating manual activities like adding instances to the ontology. However, the main 

components and the relationships between concepts should be implemented manually to maintain 

logical correctness. Translating code into text starts with assigning keywords to ontology classes 

and describing these keywords. For example, the "=" sign is described in the ontology as an "equal 

sign", a value of the Assignment subclass in the operator class. The output of the ontology 

implemented in Python and Owlready2 is then imported into Protégé for visualization purposes, 

since the visualization is not yet supported on Owlready2.  Figure 4.2 shows the visualization of 

the ontology design in Protégé. 

Logical correctness would enforce semantic meaning on the written script. For example, an “elif” 

statement syntax is valid in Python. However, it cannot exist without having an “if” statement 

before it. An “elif” should only come after an “if”. Furthermore, logical correctness would connect 

all the keywords and describe the semantic relationship between steps. Most essential aspects of 

the Python programming language in the designed ontology are classified as classes and 

subclasses. For example, in this study, the Python language elements and constructs have been 

categorized into four main classes: Control Structure, Function, Library, and Operator. Each 

subclass of the Operator class contains several instances that would map each instance to the 

operator class. Such mapping would assist in enforcing the logical correctness of the translated 

snippet. Figure 4.3 shows an instance definition from the constructed ontology. The ontology's 

capabilities aim to structure the Python programming language to ensure that the computer can 

collect vocabulary text about the keywords and build sentences based on the combination of the 
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programming language keywords, which can be fed later into the QG model. The main limitation 

is that the ontology should be built manually by adding the explanation of all instances, which can 

be challenging to implement. Further research is needed to improve this approach. 

4.2.3 Parser 

The parser's job is to detach a block of code into pieces that can match the ontology based on 

keywords and custom conditions. These conditions are adjusted depending on the inserted 

snippets. This model uses the ontology to create sentences. It analyzes keywords in the parser and 

generates sentences explaining the code. For example, a=10, the parser would create “a is a 

variable. a value is 10”. AST helps turn Python code (and maybe other types later) into sentences 

using a set of rules. It maintains whatever logic the ontology possesses about the code. Then, it is 

 
Figure 4.2 Ontology design visualization using protégé 

 

 
Figure 4.3 Instance definition of Subtraction 
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fed into the AI model to generate proper questions based on the code interpretation by the 

ontology. The 'explained code' is passed to the QuestGen AI framework to generate questions. 

4.2.4 Question Generation 

Over time, there is a growing demand for QG, a trend that could significantly alleviate the burden 

on educators and trainers.  This is particularly beneficial for scalable learning formats such as 

online courses. Many models exist for generating questions from regular text; however, 

understanding code and generating questions from code snippets is not applied due to its 

complexity. Code-to-text conversion is a challenging task. However, the semantic relationships 

between the concepts in the ontology are an excellent solution. Figure 4.4 shows the whole 

procedure for translating code into text. In Figure 4.4, the code undergoes validation by a parser 

checker responsible for scrutinizing its syntax. Once the code is confirmed as error-free, the 

checker directs it to the ontological translator, acting as the parser within our architecture. This 

parser transforms the code into coherent sentences, forwarding them to the QG AI model to 

generate reasonable questions. An explanation of the QG AI model is provided in the subsequent 

section. 

4.2.5 QuestGen AI 

The QuestGen AI model is an AI model that can generate questions using AI. The QuestGen 

project is available in an open-source format [18]. The model is already trained and can generate 

high-quality questions based on text fed into the model. Instructors can choose the type of question 

that can be generated; however, Boolean, short, and open-ended questions have only been applied 

for this study. The results summarized in the subsequent section show that the AI model can 

generate reasonable questions based on the input text and its level of clarity.  

• Input: The model can process various types of input, including structured, unstructured, and 

context-based content such as passages, documents, and articles. 

 
Figure 4.4 Question-generation process  
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• Field of application: The model is tailored to support the education field across diverse 

disciplines such as science, history, language arts, and more. However, it does not have the 

capability to execute or generate programming language code (at the time of this research). 

• Generation method: It is a semantic-based model designed to comprehend inserted text by 

leveraging concepts and contextual awareness. This procedure is divided into two main 

steps. Firstly, it begins with entity recognition, wherein the model extracts crucial 

information such as dates, names, and relationships, employing part-of-speech tagging. 

Next, the model applies question templates to the extracted information to match the most 

suitable predefined question template. To improve question quality, various methods are 

employed, including probabilistic approaches to refine wording and phrasing within the 

questions. 

• Question format: The model can propose various formats, including open-ended, multiple 

choice, true/false, and short answer. 

• Response format: The responses are generated in both text and JavaScript object notation 

(JSON) formats. Each type of question has its own format. For instance, MCQs prompt the 

system to produce the question stem and its corresponding answer choices. This distinction 

applies to all question types, and the resulting output is tailored accordingly. 

• Example: The sentence inserted into the model is “In Python, a function is defined using 

the 'def' keyword, followed by the function name and parentheses containing any 

parameters. The function body is indented and contains statements that define the function's 

behavior.”  

• The generated questions for a true/false type of question are: 

o “Is a function in Python defined using the 'def' keyword?”. 

o “Do parentheses follow the function name in a Python function?”. 

o “Does the function body in Python need to be indented?”. 

4.2.6 Hybrid Question Generation from Program Codes 

Algorithm 4.1 is a hybrid approach employed to automate the generation of programming-related 

questions from Python source code by integrating structural parsing with ontology-based semantic 

enrichment. Initially, source code samples are parsed using Python AST to identify constructs 

such as function definitions, class structures, variable assignments, and control flow statements. 

An ontology is constructed to represent these extracted elements and their semantic relationships, 

capturing contextual information regarding code dependencies and logical flow within the 



 

66 

 

 

program. Using this enriched representation, the system generates diverse question types, 

including Boolean, short-answer, and open-ended questions, through either the QuestGen neural 

generation model or a heuristic fallback mechanism when computational resources are limited.  

Algorithm 4.1: Hybrid Approach for QG from Program Codes 

Input: Python source file path P 

Output: Question set Q = {Q_b, Q_s, Q_o} 

Parameters: max_questions, question_type 

1:  O ← BuildOntology()   

2:  C ← ReadFile(P) 

3:  AST ← Parse(C) 

4:  T ← ∅ 

5:  for each node ∈ AST do 

6:      switch node.type do 

7:          case Assignment: 

8:              ind ← Variable(node.target, node.value) 

9:          case FunctionDef: 

10:             ind ← Function(node.name, node.args) 

11:         case ClassDef: 

12:             ind ← Class(node.name, node.bases) 

13:         case Call: 

14:             ind ← Object(node.target, node.func) 

15:         case Import, ControlFlow: 

16:             ind ← CreateIndividual(node) 

17:     end switch 

18:     AddToOntology(O, ind) 

19:     semantic_desc ← QueryOntologyRelations(O, ind)   

20:     T ← T ∪ {semantic_desc} 

21: end for 

22: text ← Concatenate(T) 

23: if QuestGen_Available() then 

24:     Q ← QuestGen_AI_Model(text, max_questions, question_type) 

25: else 

26:     Q ← HeuristicFallback(text, max_questions, question_type) 

27: end if 

28: return Q 

 

The suggested hybrid method is aimed at semantic correctness as well as parsing robustness 

through a three-tier processing pipeline that morphs code structure into semantic text while 

keeping the door open for AI-assisted QG. Python AST parser is adopted as a rule-based 

deterministic parser, retaining the original code structure and accounting for various syntactical 

elements of Python including variables, functions, classes, operators, and control structures. 

Structural construction is maintained directly through mapping from AST nodes to ontology, such 

that every construction/coding entity relates to the specialized classes in programming ontology 

themselves (variable, function, class, control_structures), while the function 

analyze_variable_type() actually holds the type representation intact and traces the direct 

hierarchical relationships back to the code context of that construct throughout the journey of 

conversion. The programming-specific ontology acts as a semantic link that guides code structure 

interpretation and generation of structured semantic text, which can then be fed into the QuestGen 

AI model to produce programming-related educational questions that are cohesively tied to code 
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concepts through the quality of the semantic input developed. The AST-based parsing mechanism 

handles diverse code constructs from simple assignments to more complex object-oriented 

hierarchies with nested functions and inheritance relationships, thereby laying down a sound 

structure for performing code-to-text conversion, although in the future it can be extended to 

include automated question validation mechanisms and quantitative metrics for domain alignment 

to further cement the educational assessment capacities and verify end-to-end semantic 

preservation of the system.   

4.3 Results 

The results are generated in two versions, one utilizing our proposed model and the other without 

its use (i.e., by directly inserting the code into the QuestGen AI), as depicted in Figure 4.5.  

The implemented framework facilitates the QG process, empowering teachers to automatically 

generate Python programming language assessment questions for testing students' knowledge. 

Three different Python code examples were tested to see how well the system works compared to 

a baseline model. Each example shows a different type of programming that students and 

developers commonly work with. Example 1 in Figure 4.6: This is a basic script that just defines 

some variables (strings, lists, and numbers). It is the kind of simple code seen in introductory 

programming lessons, so it tests whether the system can explain fundamental Python concepts 

clearly. Example 2 in Figure 4.10: It offers classes and inheritance, a Person class and a Student 

class that builds on it. This example checks if the system can handle more advanced topics like 

object-oriented programming, which can be tricky to explain well. Example 3 in Figure 4.14: This 

one imports the math library to calculate a circle's area. It tests how the system deals with 

functions, imported libraries, and mathematical operations (pretty common stuff in real 

programming projects). These three examples were picked because they cover different skill levels 

and programming concepts. Starting with basic variables, moving to classes, and ending with 

functions and imports gives a good range to test the system thoroughly. Figure 4.6 depicts a 

straightforward code snippet featuring variable definitions. This figure illustrates specific 

variables alongside their assigned values, incorporated as a script within the ontology. A Python 

 
Figure 4.5 Generating questions directly from code 
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parser is employed to validate the text as proper code before generating any flawed or erroneous 

questions to mitigate the potential for incorrect syntax within the inserted code. Figure 4.7 displays 

the translated text derived from the code, providing a textual interpretation for each line. The 

interpreter presents the variable type and specifies the assigned value for each variable. Figure 4.8 

showcases the outcomes resulting from inserting the aforementioned text into the QuestGen AI 

model. It is worth mentioning that the evaluation was based on human evaluation. 

 
Figure 4.6 A code snippet with variable definitions 

 

 
Figure 4.8 Generated questions for variable definitions 

 

 
Figure 4.7 Generated text from a code snippet 
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Figure 4.9 can be seen without having a context. The question generator failed to produce any 

meaningful questions except for the list variable, where it managed to generate a relevant question. 

However, the AI model could not comprehend all the lines, hence the presence of the ZERO {} 

symbol.  

Figure 4.10 exhibits a Python code comprising class and object definitions presented as a string 

and passed through an ontology to translate it into text. Subsequently, this text is fed into the 

QuestGen model to generate questions. In the subsequent examples, only the generated questions 

and context from QuestGen AI will be showcased, omitting the complete outputs. Moving on to 

Figure 4.11, it explains the preceding code snippet depicted in Figure 4.10 using natural language, 

preparing it for input into the AI generator. 

 

 

 
Figure 4.9 Generated questions without using the proposed approach 

 

 
Figure 4.10 Python code for defining classes and objects 

 

 
Figure 4.11 Generated explanation of the code in Figure 4.10 
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Following this, Figure 4.12 displays the questions generated from the snippet description, 

demonstrating the relevance of the generated questions. However, Figure 4.13 illustrates the 

outcome of generating questions without providing a snippet description, resulting in improper 

questions marked by ZERO{} symbols and inaccuracies. This indicates the necessity of providing 

a description for accurate QG.  

In the third example, depicted in Figure 4.14, a function is defined to compute the area of a circle 

based on its radius. This code incorporates arithmetic operations and utilizes Python's 'math' 

module. Subsequently, Figure 4.15 exhibits the output resulting from describing the 

aforementioned code to input into the AI model.  Meanwhile, Figure 4.16 displays the generated 

questions derived from the description of the code snippet involving mathematical operations. 

Conversely, Figure 4.17 showcases a question generated without describing the snippet. The 

results depicted in all figures are formatted in JSON, containing both the question and its solution. 

 
Figure 4.12 Generated questions for the code in Figure 4.10 

 

 
Figure 4.13 Generated questions without using the proposed model 
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The QuestGen model provides the answer alongside the question if it available, excluding the 

options. It is worth noting that there are warnings due to deprecated libraries utilized by the 

QuestGen AI model, prompting necessary updates by the authors. Results indicate that generating 

questions directly from code without semantic translation yields poor quality, while ontology-

based translation enables the generation of meaningful, contextually aligned questions using 

QuestGen. 

 

 

 

 
Figure 4.14 Code snippet containing a function and arithmetic operations 

 

 
Figure 4.15 Generated explanation of the code in Figure 4.14 

 

 
Figure 4.16 Generated questions using the proposed model 

 

 
Figure 4.17 Generated questions without using the proposed model 
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4.4 Discussion 

In this experiment, various code snippets were tested for translation using the proposed ontology 

and fed into the QuestGen model to create questions. Table 4.2 outlines the test cases, the 

generated questions, and the difficulty level of the tested code. It was noticed that human 

evaluation of AQG results is more accurate than automatic assessments [132]. Based on the 

literature, no evaluation metrics are specific to QG from source code. The evaluation was 

conducted by a qualified human evaluator. The validity of the generated code is rated on a scale 

of 1 to 5, where one represents the least validity and five indicates the highest validity. Difficulty 

is assessed based on script logic, with five denoting complexity and one representing simplicity. 

For instance, identifying variable assignments is relatively straightforward, while understanding 

inheritance is more challenging. Generating appropriate questions from sophisticated or advanced 

code snippets, such as those utilizing third-party libraries, still presents limitations. Composing 

accurate questions becomes increasingly tricky as code complexity and inter-line relationships 

grow. Consequently, further development is necessary to enhance outcomes. Addressing this need 

will lead to more advanced results. Nevertheless, this study introduces a new dimension to e-

learning and supplements existing QG approaches that have proven effective in textual sources.  

Table 4.2 Types of syntax covered 

Test case Code level of 

difficulty  

A generated 

question 

Context Generated 

question validity  

a) Variable declaration 

1 
What is the value of 

xfoo? 

xfoo is a string 

variable and its 

value is 'foo' 

4 

b) List declaration 

2 

'What are the items 

in the list variable 

ab? 

'ab is a list 

variable and it has 

2 items' 

5 

c) Class declaration 
3 What is a person? 

Person is a class 

definition 
5 

d) Instance and 

property 

initialization 

4 
What is a school an 

instance of? 

'school is an 

instance of the 

property' 

3 

e) Variable 

initialization, 

instance 

initialization, 

property. 

5 
'What is var1 an 

instance of?' 

var1 is an 

instance of the 

Person class with 

name 'Jane' and 

age 25" 

4 

f) Inheritance 

identification 
5 

Who does a student 

inherit from? 

Student inherits 

from Person 
5 

g) Libraries import 

4 

What is the name of 

the module that is 

imported? 

Imported module: 

math 
4 

h) Functions 
4 

What is a method 

definition? 

area is a method 

definition 
3 

i) Variable type 
4 What is r? 

'r is a variable of 

type unknown' 
4 

j) Functions result 

5 

'What is the 

calculated area of the 

circle? 

'a' represents the 

calculated area of 

the circle. 

5 
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From Table 4.2, mean validity score is 4.20. Concept coverage analysis indicated a somewhat 

balanced distribution of validity scores across the evaluated topic areas, with no major weaknesses 

found. Advanced Topics and Functions managed an 80% average validity (4.00 out 5), with a 

slightly weaker performance since it was more consistently done in other categories. Basic syntax 

and object-oriented concepts did slightly better, achieving 87% validity each (4.33 out of 5), 

indicating high clarity and alignment with the intended learning outcomes. The implication of 

these results is that while all areas are being seen to have good educational value (educational 

effectiveness is 80% for validity score>=4), just slight refinements in advanced and function-based 

questions may help align their effectiveness with the top two-performing categories. Specific areas 

such as instance and property initialization, along with certain function-related items, emerged as 

opportunities for improvement as shown in Figure 4.18. Figure 4.19 demonstrates that there is no 

strong linear relationship between code difficulty and validity scores (r = -0.042).  

It is important to note that the experiments involving QuestGen AI were conducted in mid-2023, 

during a period when state-of-the-art LLMs, including ChatGPT, had not yet reached their current 

level of maturity. At that time, direct code input into QuestGen often resulted in poor question 

generation, particularly due to limited understanding of Python syntax and structure. This 

limitation motivated the development of the proposed hybrid pipeline architecture. 

 

 
Figure 4.19 Validity score vs. code difficulty level 

 

 
Figure 4.18 Question performance ranking by validity 
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Regarding positioning the developed system within the literature, prior research in AQG from 

source code has mostly taken single-paradigm approaches. For example, the article [134] focused 

on generating challenge questions from student code using program analysis, but their work lacks 

semantic or ontology integration. Similarly, the research paper [135] proposed Jask, which 

generates questions about learners’ Java code via static analysis, but it remains language-specific 

and ontology-free. More recently, Goodfellow and colleagues [136] developed AutoMCQ, an 

LLM-based system for automatically generating code comprehension MCQs; while scalable, this 

approach is entirely prompt-driven and does not ensure semantic control. Parallel work such as 

the article [12] introduced a “meaning tree” approach for mass generation of programming 

problems from repositories, though it emphasizes problem synthesis rather than semantically 

guided, question-level assessment. It is evident that the majority of systems fall into one of three 

categories: template-based, driven by code analysis, or entirely neural, which creates an 

opportunity for hybrid systems that combine semantic control with adherence to program 

structure. 

Chapter 4’s hybrid approach is novel because it combines program analysis (e.g., AST/control 

flow parsing) with an ontology-driven semantic layer to steer both the intent and linguistic 

realization of generated questions. This helps create questions that are not only grammatically 

correct but also educationally useful, including the generation of meaningful distractors. In 

contrast, Chapter 3 addressed ontology-based generation of only conceptual MCQs; Chapter 4 

advances further by producing more question types, bridging structural code analysis with 

ontology-guided semantics, which is a combination absent in earlier studies. 

Finally, Semantic accuracy is achieved through a deterministic Python AST traversal that maps 

each code element to an ontology individual before language generation. This rule-based process 

ensures reliable coverage of constructs such as assignments, functions, classes, control flow, 

imports, and object creation, while the ontology restricts vocabulary to code-backed entities to 

prevent out‑of‑scope concepts. Because no standardized automatic metrics exist at that time for 

AQG from source code, evaluation was conducted through expert human judgment. Generated 

questions were evaluated using two complementary rubrics. A programming instructor rated 

question validity on a 1–5 scale, where higher scores reflected semantic accuracy, clarity, and 

pedagogical usefulness. Source code difficulty was assessed separately, considering both 

structural and conceptual factors such as control flow depth, inheritance, and use of external 

libraries. Future work will focus on developing dedicated evaluation metrics for automatic 

question generation from source code. 
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4.5 Conclusion 

E-learning has become very popular recently, notably accelerated by the onset of the pandemic. 

One area that has gained considerable attention among researchers is AQG derived from learning 

materials. However, the predominant focus of existing efforts lies in generating questions from 

textual content. This work, however, concentrates on generating questions tailored for Python 

programming language learners derived explicitly from code snippets found in textbooks and 

course materials. Leveraging ontologies, this approach demands fewer computational resources, 

enhancing the scalability of the framework across diverse systems. The proposed framework 

harnesses ontological mapping, associating each syntactic element with its corresponding meaning 

and explanation. The process involves translating code into text and subsequently feeding this 

translated text into an AI-based model for question generation. It aims to alleviate the burden on 

educators and reduce the repetition of the same questions for different groups of students. 

Moreover, the generated questions from code snippets serve to evaluate students' general 

understanding. The method used to achieve this goal combines the QuestGen AI model and 

ontology based on semantic code conversion. The results produced are questions based on the 

code snippets provided. The evaluation criteria were code complexity and question validity. This 

work has great potential for improving the e-learning platforms to improve the overall experience 

for both learners and instructors. The hybrid pipeline architecture is the main contribution, while 

a comprehensive evaluation layer is a priority for future work that builds on the hybrid pipeline 

architecture. Results indicate that generating questions directly from code without semantic 

translation yields poor quality, while ontology-based translation enables the generation of 

meaningful, contextually aligned questions using QuestGen AI model. However, the proposed 

approach still has some limitations. The generation of questions relies solely on the QuestGen AI 

model, which can occasionally result in poorly phrased questions due to its AI nature. 

Additionally, the model might struggle to identify certain third-party libraries in complex code 

snippets. Hence, it represents an opportunity for future work to facilitate the insertion and 

categorization of concepts from all libraries. Finally, exploring alternative models such as GPT 

and expanding the framework to recursively process all imported libraries would enable a deeper 

understanding of complex syntactic structures. This enhancement would empower the ontology to 

explain code snippets better and generate more nuanced and fitting questions. Future work is 

needed to develop dedicated evaluation metrics for AQG from source code. 

Thesis 2: I developed a hybrid system that combines static code analysis, ontology, and natural 

language processing using word embeddings to generate programming-related questions from 

source code. [P3] 
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Chapter 5 Evaluating Large Language Models for Generating Programming Questions from 

Source Code 

5.1 Introduction 

The field of NLP has witnessed unprecedented strides, and the enabling factors have been the 

increased availability of digital resources in text and the advancement of language modeling. GPT-

3.5, GPT-4, Llama, Falcon, and Vicuna are among the most prominent LLMs. These models have 

successfully understood and generated human language, and their impacts have been felt in other 

areas like code generation and analysis. The number and complexity of datasets used in language 

modeling have recently increased. The general domain of coding and software engineering has 

adopted the computational capacity of these models to automate code-related question 

construction. Consider a script written in a programming language like Python. This script is 

considered input to these large language models through an application programming interface 

(API) connection. The output would be a collection of relevant questions about the input (e.g., 

Python script).  

The large number of accessible language models creates a challenge. With all these options 

available, comparing them in terms of performance and output quality is necessary. The present 

study addresses this challenge by conducting a comparative evaluation of popular LLMs. This 

study proposes a set of evaluation criteria to assess and benchmark these models' performance 

systematically. These criteria represent essential aspects, including relevance, clarity and 

coherence, conciseness, and coverage. Every aspect has been examined to assess the performance 

of the LLMs under investigation. This study evaluates these models, clarifying their distinctive 

characteristics and shortcomings.  

This chapter seeks to uncover insights that may be vital in various applications. Highlighting these 

best performers would allow educators, developers, and researchers to make informed decisions 

about adopting LLMs for code-related QG tasks. The chapter evaluates a diverse set of state-of-

the-art LLMs. Chapters 3 and 4 presented two distinct approaches for AQG from Python source 

code. Chapter 3 discussed an ontology-driven approach which allowed the structured 

representation of knowledge that would yield MCQs automatically from Python programs. 

Chapter 4 extended that thesis by providing a hybrid approach, the ontology combined with the 

QuestGen AI model, to make the generation process dynamic and grab semantic understanding 

better. Though they both made headway, the two approaches suffer mainly in their limited scope 

in one aspect. No systematic evaluation metric is provided to benchmark the quality of the 

questions generated from source codes across the different dimensions. Hence the evaluation was 

very much a subjective measure that limits comparisons of results systematically with other AQG 
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methods. Chapter 5 goes on to cover this gap by extending AQG research into a multi-language 

context including Java, C++, and Python. With a broader scope, the performance of LLMs in 

forming questions from codes rooted in different source code paradigms with individual syntaxes, 

semantics, and idiomatic usages could be evaluated. A structured evaluation framework 

established by this chapter would assess AQG systems in terms of comprehensiveness, reliability, 

and reproducibility in model, language, and approach comparisons. Thus, Chapter 5 naturally 

follows from the methodological foundations laid in Chapters 3 and 4 and directly addresses their 

limitation in evaluations-driven framework for AQG from source code. The primary objectives of 

this chapter are as follows: 

1. To define a set of evaluation criteria, including relevance, clarity and coherence, conciseness, 

and coverage, to measure the quality of questions generated by LLMs. 

2. To develop an approach for evaluating and comparing the performance of LLMs in QG from 

program codes. 

3. To empirically evaluate and rank the selected LLMs based on their performance in QG from 

program codes. 

This chapter is structured as follows. Section 5.2 outlines the methodology, describes the dataset 

used for evaluation, and provides a detailed account of the experimental setup. Section 5.3 presents 

the evaluation results along with the ranking of the LLMs. Section 5.4 discusses the findings and 

explores the potential applications of LLMs in QG from program code. Section 5.5 concludes the 

chapter. 

5.2 Methodology 

The methodology explains how the evaluation and comparison are made regarding the proficiency 

of various LLMs to create questions from the given source code. This section outlines all the 

events leading to data collection and preparation, model selection, evaluation metric selection, 

experiment execution, and ranking of the models. In this context, a comprehensive and impartial 

exercise is carried out to identify the models best suited for relevant QG tasks concerning 

programming code. The languages chosen for the experiment were Python, C++, and Java. These 

languages were focused on during the research, with the possibility of applying such methods to 

other structurally similar programming languages. The sequence selected aids in rendering clear 

views into the strengths and weaknesses of each of the models, thereby allowing a deeper 

understanding of questions pertaining to the future of this research. Previous studies have 

undertaken related efforts, like [137], [138], and [139]. Algorithm 5.1 shows the pipeline of the 

proposed framework. It compares LLMs on how well they generate questions about code, using a 
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reference evaluator model, and produce quantitative metrics. Given a set of code samples, each 

model generates questions for each sample using a consistent prompting strategy. A reference 

model then evaluates these generated questions to assess their quality based on dimensions like 

relevance and clarity. The algorithm computes the average score for each model and optionally 

tracks repetition rates to measure question diversity. It further constructs pairwise win matrices, 

computes win rates, and calculates Elo ratings to rank models based on relative performance. The 

outputs are then summarized, including average scores, win rates, Elo ratings, repetition rates, and 

comparison matrices. 

Algorithm 5.1: Multi-Model Code QG and Evaluation 

Input: Set of Code Samples (D), List of LLM Model Names (MODELS),  

           Reference Evaluation Model (EVAL_MODEL) 

Output: Summary of Model Performance Metrics (SMPM) 

1: Initialize scores_by_model, reps_by_model, results as empty. 

2: For each sample in D do: 

     3: For each model_name in MODELS do: 

      4: prompt ← build_generation_prompt(sample.code, sample.language) 

      5: questions ← LLM(model_name).generate_questions(prompt) 

      6: metrics ← evaluate_questions(questions, EVAL_MODEL) 

      7: score ← average_scores(metrics) 

      8: repetition ← repetition_rate(questions) // optional 

      9: Store (model_name, sample, metrics) in results 

      10: Append score to scores_by_model[model_name] 

      11: Append repetition to reps_by_model[model_name] 

     12: End For 

13: End For 

14: wins, comparisons ← build_win_matrix(scores_by_model) 

15: win_rate ← win_rates(wins, comparisons) 

16: elo ← elo_ratings(scores_by_model) 

17: repetition ← aggregate_repetition(reps_by_model) 

18: Construct SMPM as {ranking(scores_by_model), win_rate, elo, repetition, wins, comparisons} 

 

5.2.1 Data Collection 

The dataset is already prepared for the study; it contains a rich collection of code snippets written 

in Python, Java, and C++ [140]. These languages were chosen to reflect a wide variety of syntax 

structures prevalent in all of these languages. Each LLM was then tasked using a custom-

developed software tool to generate questions from the selected code samples. After generation, 

the printed questions underwent assessment against the predefined criteria. Each model was thus 

analyzed and ranked based on the ability of the questions it generated to meet those evaluation 

standards. These models have a wide range of diversity in size, architecture, and capabilities, from 

smaller, old-fashioned models to innovative, gigantic ones. These models were chosen to 

encompass various sizes, ensuring a comprehensive performance evaluation. Table 5.1 shows each 

model's name and its number of parameters. All the models are based on transformer architecture; 

therefore, the architecture is not mentioned in the table. A curated set of Python, C++, and Java 
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scripts prepared covering an array of programming concepts, complexities, and domains. Three 

programs were used: procedural, object-oriented, and general. The general code was taken from 

online sources. The two other codes were prepared. In these programs, diverse programming 

elements were collected so that all basic topics (from the Python/C++/Java language reference) 

are represented. Note on Nomenclature: In this chapter, model names combine official branding 

and repository-specific identifiers (e.g., Hugging Face, API documentation) to ensure consistency 

and replicability throughout the text. 

Table 5.1 Selected LLMs 

Model Parameters Availability 

GPT-4-0314 175B Paid 

llama-2-70b-chat 70B Free 

GPT-4-0613 175B Paid 

llama-2-13b-chat 13B Free 

claude-2 130B Paid 

GPT-3.5-turbo-0613 175B Paid 

falcon-40b-v1 40B Free 

falcon-40b-v2 40B Free 

vicuna-33b-v1.3 33B Free 

llama-65b 65B Free 

falcon-40b-sft-top1-560 40B Free 

mixtral-8x7b-instruct-v0.1 56B Free 

falcon-7b-v3 7B Free 

falcon-40b-instruct 40B Free 

falcon-7b 7B Free 

5.2.2 Question Generation 

The next phase involved instructing the selected LLMs to generate diverse questions based on the 

attached scripts. This process required the formulation of a carefully crafted prompt, which was 

used as input for each LLM. All the models used the same role and content to get measurable 

results. The prompt served as a crucial communication channel between the software and the 

models, guiding them to generate questions relevant to the script provided.  The entire script was 

passed to each of the abovementioned LLMs as part of the prompt. The models were instructed to 

generate diverse questions based on the attached script. The prompt utilized for generating the 

question set is given in Figure 5.1. It was designed to be informative and specific; generating 

questions from the Python/C++/Java script to the LLMs. Figure 5.2 shows an example of 

responses to the presented prompt. A Python script, taken from the prepared collection, was 
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provided as input to each LLM as part of the prompt. Figure 5.3 shows an example of a Python 

script. Each script in the dataset was processed sequentially, and the LLMs were prompted to 

generate 50 questions based on each attached script. The scripts are publicly available on GitHub 

[140]. As the questions were generated, they were associated with the script from which they were 

derived. This association was needed in the evaluation process as it allowed accurately assess the 

generated questions’ relevance to the script content. Combining different LLMs and well-prepared 

scripts is the foundation for systematically evaluating these models in generating questions. At 

this point, each LLM under evaluation created a question set for each associated script in the 

dataset, leading to a direly massive output that could be analyzed afterward. These question sets 

were then evaluated according to the criteria described in the following sections. 

 

 

 

 

Figure 5.1 Sample prompt to generate questions from source code 

 

 

 

Figure 5.3 Sample Python script 

 

 

 

Figure 5.2 Response to a prompt 
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5.2.3 Performance Metrics 

The generated questions were assessed for their quality to analyze differences in performance 

regarding the selected LLMs. Each question gets evaluated on a scale from 1 to 10 based on the 

evaluation metric by GPT-4-0314 as a judge. This study used objective and subjective evaluation 

modes, touching on the primary indicators. Relevance means how closely the generated questions 

match the source code. Clarity and coherence measure questions' phrasing and how logic is 

structured in them. Conciseness assesses whether the questions were brief by examining their 

length and checking for unnecessary detail or verbosity. Coverage involves how well each 

question covered the entire scope of the input script. It also involved whether the questions 

reflected different sections or key components of the code, and not just focused narrowly on 

isolated elements. In addition to automated scoring, human reviewers were involved to provide a 

pedagogical perspective on the top-performing LLM. Their insights helped validate the results and 

brought attention to the educational value of the questions. Human feedback added important 

context about classroom relevance, teaching goals, and practical usefulness, which are things that 

automated systems alone cannot fully capture. Evaluators kept in mind relevance and educational 

value when making their judgments. The approach encompassed a mix of different input data sets, 

multiple LLMs, stringent evaluation criteria, and automated and human judgment. The results and 

examples, from inputs to generated questions, are discussed in the next section. Parts of this output 

and the evaluation deconstruction are illustrated in Figure 5.4. 

5.2.4 Experimental Setup 

This section provides a detailed description of the experimental setup employed for evaluating the 

performance of the selected models in generating questions from codes. The objective of this setup 

was to get a collection of reliable results that would facilitate the comparison of LLMs and the 

identification of the top-performing models. A custom software was developed to serve this 

 

Figure 5.4 Evaluation of the generated questions 
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purpose. This software accepts program codes as input, invokes the selected LLMs via API calls, 

and collects the generated questions. For each LLM, the software collected a substantial sample 

of questions for analysis.  

5.2.4.1 Software Environment 

The software environment was configured based on Amazon Web Services (AWS) Instances in 

which different AWS instances were used to deploy open-source LLMs. Windows 10 Pro 

distribution was used to provide a stable and efficient computing environment. Python was the 

programming language to implement the custom software tool that interfaces with the LLMs. 

PyTorch 2.1 and Hugging Face v3 Transformers library were employed for managing and 

interfacing with the LLMs. Finally, different APIs were used for every model. 

5.2.4.2 Data Splitting 

To ensure the robustness and reliability of the experiments, a collection of code scripts was 

submitted at once to provide context to the model and, therefore, assist in generating more robust 

questions. Thereafter, the LLMs were instructed to generate questions based on the input. 

5.2.4.3 Evaluation Metrics 

The LLM-generated questions were evaluated using a combination of quantitative and qualitative 

metrics. As mentioned in the methodology section, these metrics include relevance, clarity and 

coherence, conciseness, and coverage. While the human evaluation metrics include relevance and 

educational value. Relevance in human evaluation is manually judged by human evaluators and it 

relies on subjective human judgment rather than algorithmic similarity (unlike the automatic 

relevance judged by LLM algorithmic similarity). 

5.2.4.4 Model Execution  

Execution of the experiments was a systematic approach. Each LLM was fed scripts individually 

as prompts through the custom software. The LLMs generated a set of questions for each script, 

which were recorded. The generated questions were associated with their script for accurate 

evaluation. The experiments were executed sequentially for all selected LLMs to maintain 

consistency and avoid potential bias that may arise from parallel execution. 

5.2.4.5 Model Ranking Criteria 

The model ranking criteria were established based on the aggregated performance results across 

the evaluation metrics. The models that showed high performance across these criteria were 

identified as the top-performing LLMs for the task of generating questions from source codes. 
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This experimental setup was designed to provide a reliable and comprehensive assessment of 

LLMs’ capabilities in QG from program codes. 

5.2.4.6 Repetition Rate 

This criterion determines if questions are repeated in any model based on each 10-question batch 

increase. For instance, each model is required to generate the first 10 questions, then 20, then 30, 

and so on. The goal is to calculate the repeated questions generated for each model. 

5.3 Results 

This part presents the results of the extensive evaluation of various LLMs in generating questions 

from program codes, examined through multiple metrics, like relevance, clarity and coherence, 

conciseness, and coverage. Based on the amassed data and just-mentioned evaluation criteria, the 

LLMs are ranked, highlighting their strengths and weaknesses in question generation.  

5.3.1 Model Rankings 

Table 5.2 presents the average scores for each model across all criteria based on the question 

generated. 

Table 5.2 Average criteria scores 

Model Relevance Clarity and Coherence Conciseness Coverage 

GPT-4-0314 9.85 8.87 8.13 8.57 

GPT-4-0613 8.46 8.23 8.80 9.22 

GPT-3.5-turbo-0613 9.37 7.84 8.69 7.61 

claude-2 7.86 7.97 8.80 7.96 

falcon-7b-v3 8.45 8.52 8.26 7.32 

vicuna-33b-v1.3 8.84 8.04 7.51 7.88 

falcon-40b-v2 7.93 8.38 7.59 7.65 

llama-2-13b-chat 7.69 7.71 6.27 7.60 

llama-2-70b-chat 7.76 8.22 7.63 8.14 

mixtral-8x7b-instruct-v0.1 6.51 6.55 7.62 7.46 

falcon-40b-v1 6.63 7.53 6.68 6.36 

falcon-40b-sft-top1-560 7.51 7.88 6.54 7.29 

llama-65b 7.45 6.85 7.54 7.53 

falcon-7b 7.23 7.83 6.83 7.76 

falcon-40b-instruct 7.12 8.03 6.83 7.58 

 

The model average score is established by summing the scores of each criterion across all 

questions, and higher scores in each criterion indicate better accuracy in script-to-question 



 

84 

 

 

generation. The rankings show that GPT-4-0314 obtained the first rank confirming its 

effectiveness in generating relevant, high-quality questions. Moreover, it was analytically carried 

out on an average win rate account of all other models to get an all-round perspective on the 

performance of LLMs under evaluation. The term win rate refers to a cumulative score for every 

model and helps determine the best-performing model among them. For example, if a question is 

generated by GPT-4-0314 model and compared to the claude-2 model, and the winner for that 

particular question is GPT-4-0314, this would add a point to the GPT-4-0314 model. Then, GPT-

4-0314 is compared to other models; if any model wins a point, its score grows, and then finally, 

all the models’ scores are calculated, and the highest winner is ranked first. The approach allows 

identification of models that have similar win rates to other models. This analysis offers valuable 

insights into how each LLM fared directly compared to its peers, assuming uniform sampling and 

no ties in the evaluation metrics. Figure 5.5 shows the models that consistently outperformed 

others in QG. The following Equations (5.1) and (5.2), would calculate the New Rating and the 

Predicted Rating, respectively [141]. This technique is used here for the AI evaluation domain; it 

is derived from tournaments in sports, where it is often used. 

New Rating =  Old Rating + K × (W − P) (5.1) 

Where K refers to the maximum adjusted value, in this context, it is a constant integer number like 

32; W is the actual result of the game (1 for a win, 0.5 for a draw, and 0 for a loss); finally, P is 

the expected result, calculated using the logistic function in equation 5.2. 

P =
1

1 + 10
(Mo−Mp)

score point

         (5.2) 

Where P stands for the expected outcome for a given model, Mo for model opponent, and Mp for 

model player. The constants relating to 1 and 10 are customized; these traditional constants have 

been customized in the context to mean that the score point is 400. The two equations constitute 

the basis of the Elo rating methodology created initially by Arpad Elo [18] to enable fair and 

dynamic ranking of chess players based on match outcomes. Because of its simplicity and 

efficiency in tracking relative skill levels, the Elo rating system gradually found acceptance in 

areas other than chess, like online games, sporting events, and AI benchmarking. The second 

equation calculates the expected probability of one player winning against the other depending on 

their rating difference, and the first updates the player's rating after every game depending on the 

actual and expected result. The combination of both ensures that the rating system accommodates 

rating adjustments to reward the unexpected win and penalize against the loss when a rating would 

become obsolete in view of actual performance. This means that the average win rate measure 
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provides a clear and quantitative indication of the relative strength of the models and competitive 

standing in question generation. Figure 5.5 shows the average win rate of each language model 

against all others in the evaluation, assuming uniform sampling and no ties. The average win rate 

is a valuable metric for understanding how each LLM performed directly compared to its peers in 

generating questions from program codes. Figure 5.6 shows the win rate matrix for every model 

and together with Figure 5.5 they indicate that GPT-4-0314 as the top-performing model. 

5.3.2 Observations and Insights 

The model GPT-4-0314 consistently outperformed the others across multiple evaluation criteria. 

It demonstrated a strong ability to generate relevant, clear, and comprehensive questions. Its top 

positions highlight its suitability for question-generation tasks related to the scripts. It also excelled 

in relevance, providing questions that were contextually connected to the script content and clearly 

articulated. Some models, like falcon-40b-v1 and mixtral-8x7b-instructv0.1 demonstrated limited 

coverage, with questions that missed certain key aspects of the scripts. Figure 5.7 shows the metric 

score for the models and compares relevance, clarity and coherence, conciseness, and coverage. 

Finally, GPT-4-0314 shows superiority compared to the other LLMs.  

5.3.3 Repetitive Evaluation 

Table 5.3 shows the repeated question rate results. The table shows that GPT-4-0314 has the best 

rate among the other models. It is apparent that GPT-4-0314 had the lowest rate of question 

repetition. On the other hand, falcon-7b had the highest number of repeated questions. 

 

Figure 5.5 Average win rate against all other models 
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Figure 5.6 Win rate matrix 

 

 

 

Figure 5.7 Models criteria score comparison 
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Table 5.3 Repetition rates for each model at different question levels 

Model 10 questions 20 questions 30 questions 40 questions 50 questions 

GPT-4-0314 0 0 0 1 1 

llama-2-70b-chat 0 0 1 1 2 

GPT-4-0613 0 0 1 1 2 

llama-2-13b-chat 0 1 1 2 2 

claude-2 0 1 1 2 3 

GPT-3.5-turbo-0613 0 1 1 2 3 

falcon-40b-v2 1 1 2 2 3 

vicuna-33b-v1.3 1 2 3 3 4 

falcon-40b-v1 1 2 3 3 4 

llama-65b 2 3 3 4 5 

falcon-40b-sft-top1-560 2 3 3 4 5 

mixtral-8x7b-instruct-v0.1 3 4 4 5 6 

falcon-7b-v3 3 4 4 5 6 

falcon-40b-instruc 3 4 4 5 6 

falcon-7b 3 4 5 6 7 

 

5.3.4 Human Evaluation 

While the study incorporates well-defined automated evaluation metrics, relying solely on 

algorithmic assessment can limit the contextual and pedagogical nuance captured in generated 

questions. To address this limitation, human evaluation was introduced as a complementary 

measure and it was conducted on the top-performing LLM based on the automatic evaluation 

(GPT-4-0314). Five educators independently assessed a stratified sample of 45 automatically 

generated questions; 15 per programming language (C++, Java, and Python). Each question was 

rated on a 5-point Likert scale (1 = poor, 5 = excellent). Table 5.4 summarizes the human 

evaluation scores across the three programming languages and code types. Table 5.5 presents the 

results of the repeated-measures analysis of variance (ANOVA) on relevance and educational 

value metrics. F denotes the F-statistic, DF refers to degrees of freedom, Num indicates the 

numerator degrees of freedom, Den indicates the denominator degrees of freedom, and p is the p-

value. The analysis revealed no statistically significant differences across programming languages 
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F(2,8) = 0.96, p = 0.4239, suggesting that language choice did not affect perceived question 

relevance meaningfully. A similar pattern was observed for the educational value metric p = 

0.0689, which approached but did not reach the conventional threshold for significance α = 0.05. 

Post-hoc pairwise comparisons, summarized in Table 5.6 and Table 5.7, support this finding. No 

significant differences emerged between language pairs concerning relevance, as all adjusted p-

values exceeded the threshold for statistical significance. About educational value, the comparison 

between C++ and Python yielded the lowest p-value (p = 0.0186); however, after applying the 

Bonferroni correction, the adjusted p-value rose to 0.0557. This result may be considered 

marginally significant. A weak positive correlation (r = 0.30) was found between relevance and 

educational value, indicating partial overlap between the two metrics. It suggests that while the 

two metrics are related, they capture distinct aspects of human-perceived question quality. 

Table 5.4 Human evaluation summary table 

Language Code Type Relevance Educational Value 

Python General 4.8 4.75 

Python Procedural 4.85 4.83 

Python Object-Oriented 4.95 4.87 

Java General 4.85 4.78 

Java Procedural 4.88 4.86 

Java Object-Oriented 4.94 4.92 

C++ General 4.65 4.58 

C++ Procedural 4.72 4.65 

C++ Object-Oriented 4.85 4.8 

Average Score All 4.83 4.78 

 

Table 5.5 Repeated measures ANOVA results 

Metric F-value Num DF Den DF p-value 

Relevance 0.957 2 8 0.424 

Educational Value 3.808 2 8 0.069 

 

Table 5.6 Post-hoc pairwise comparisons – relevance (Bonferroni Corrected) 

Language 1 Language 2 t-stat p-value Bonferroni Adjusted p 

C++ Java 0.784 0.477 1.000 

C++ Python -0.459 0.670 1.000 

Java Python -1.633 0.178 0.533 
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Table 5.7 Post-hoc pairwise comparisons – educational value (Bonferroni Corrected) 

Language 1 Language 2 t-stat p-value Bonferroni Adjusted p 

C++ Java -1.907 0.129 0.388 

C++ Python -3.833 0.019 0.056  

Java Python -0.514 0.634 1.000 

 

The established statistical techniques were used to evaluate the reliability of the human evaluation 

results and their significance. The use of repeated measures ANOVA, as in Table 5.5, is 

appropriate to test whether there are overall differences in relevance and educational value scores 

across programming languages, as it accounts for within-subject variability and is standard 

practice for such comparisons. The reported p-values in Table 5.5 represent these omnibus tests 

that comment on significant effects across all groups. For Tables 5.6 and 5.7, Bonferroni-corrected 

p-values were used for post-hoc pairwise comparisons. This adjustment is necessary because 

multiple comparisons increase the risk of Type I error (false positives). The Bonferroni correction 

is a widely accepted method to control for this risk, ensuring that any significant findings in the 

pairwise tests are robust and not due to chance. In summary, the use of standard p-values for the 

initial ANOVA (Table 5.5) and Bonferroni-adjusted p-values for post-hoc comparisons (Tables 

5.6 and 5.7) reflects best practices in statistical analysis. This approach provides a rigorous and 

transparent assessment of the human evaluation data, enhancing the scientific credibility of the 

study’s findings. 

5.4 Discussion 

This research is particularly unique as it addresses a gap in the literature concerning AI-based QG 

for programming education. Earlier studies, such as the one conducted by Maity et al. [142], 

focused on how LLMs can generate different kinds of questions, including open-ended and 

multiple-choice formats. Although these studies focused on generating questions about multi-

language and multi-format general educational purposes, they did not consider programming-

related artifacts such as program codes. Similarly, Tran et al. [143] and Doughty et al. [144] 

addressed the use of LLMs for generating and answering MCQs in computing education. Still, 

their focus was mainly on modifying existing questions rather than generating new ones from 

program codes. Their work indicated how effective models like GPT-3 and GPT-4 are in assessing 

and generating MCQs related to specific learning objectives. The current research builds on this 

existing work by utilizing LLMs to generate new questions directly from program code, an area 

that has not been extensively explored. Unlike previous research that depended on text-based 
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datasets or learners' input, the proposed method assesses how well LLMs can convert program 

codes into educational questions. This method addresses a significant gap by providing automated, 

context-specific QG tools tailored to programming education.  

Studies such as those by Baral et al. [145] and Kargupta et al. [146] worked on the assessment 

capabilities of LLMs. They focused on evaluating student responses rather than generating 

questions. The current study complements these initiatives by focusing on the initial phase of 

educational assessments (developing high-quality questions that align with programming 

curricula). The current research enhances understanding of LLM capabilities using evaluation 

metrics such as relevance, clarity and coherence, conciseness, and coverage. These metrics offer 

a more detailed perspective than previous studies, which typically focused on general performance 

benchmarks. These findings improve the use of AI-driven tools in programming education, 

providing scalable solutions for educators and learners alike. The rankings and observations from 

this evaluation have significant implications for applications that involve generating questions 

from program codes. The models GPT-4-0314, GPT-4-0613, and llama-2-70b-chat are well-suited 

for tasks where the generation of questions that are both relevant and coherent with the script 

content is critical. Moreover, this research also highlights the importance of using a combination 

of metrics to comprehensively evaluate LLMs for QG. The four metrics and the win rate offer a 

well-rounded view of a model’s performance in this complex task. The proposed framework can 

assist teachers and online instructors in assessing and testing student knowledge with a large 

question base. Furthermore, different tests are performed on various models to assist in selecting 

the best one. The framework also helps in testing model capability in case other models are 

released in the future. 

The proposed LLMs-based framework outperforms some existing approaches in programming 

education assessment by addressing their core limitations. The ontology-based system [P1], 

though structured via semantic similarity using BERT embeddings (98.5% accuracy), is 

constrained to Python and lacks human evaluation, limiting its pedagogical depth. It fails to assess 

cognitive alignment or instructional appropriateness, which are essential for effective educational 

questions. The hybrid semantic-AI method [P3], relying solely on human evaluation, introduces 

scalability challenges and conceptual limitations. Its single-language focus and absence of 

automatic metrics hinder systematic, repeatable assessment across broader educational contexts. 

The template-based approach [P5] supports multiple programming languages and incorporates 

both human and automated evaluation. However, low quality scores (0.57–0.59) indicate limited 

effectiveness, with constrained adaptability to diverse programming constructs. In contrast, the 

proposed multi-language LLM-based system (Python, C++, Java) integrates both robust automatic 
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metrics (GPT-4-0314 e.g., relevance: 9.85, clarity and coherence: 8.87, conciseness: 8.13, and 

coverage: 8.57) and expert human evaluation (relevance: 4.83, and educational value: 4.78). This 

dual-layered assessment ensures both technical correctness and pedagogical soundness, offering 

comprehensive coverage and educational alignment previously unmet by prior models. 

Regarding positioning the proposed LLMs-based evaluation framework within the literature, 

recent work has begun to evaluate LLMs and LLM-based pipelines for producing programming 

exercises and assessment items, but gaps remain in systematic, code-grounded question 

evaluation. The paper [136] demonstrates a Generative AI pipeline (LLMs) to automatically 

generate code-comprehension MCQs integrated with an assessment platform. It illustrates 

scalability but relying primarily on prompt engineering without deep semantic/code-grounding 

checks. Studies on LLMs for code understanding, like [17], [147], show that models can generate 

exercises and explanations (e.g., Codex work) but frequently require human refinement and lack 

standardized benchmarks for question quality and code-faithfulness. The study presented in [148] 

conducts large-scale empirical analyses to investigate how effectively LLMs comprehend code, 

particularly through mutation testing and fault localization techniques. These analyses uncover 

critical failure modes, such as hallucinations and limited fault sensitivity, that highlight the 

limitations of current evaluation practices. Consequently, the findings underscore the need for 

specialized metrics tailored to assessing LLMs-generated items derived from code. Benchmarks 

tailored to code comprehension (e.g., CodeMMLU) further illustrate the value of multiple-choice 

style, code-focused benchmarks for measuring reasoning depth rather than surface fluency [149]. 

Finally, recent surveys and benchmark papers synthesize evaluation metrics and point out that 

general code-generation benchmarks do not fully capture question quality [150], while others like 

[151] highlight that code-generation benchmarks often suffer from prompt quality issues which 

compromise their pedagogical alignment and semantic relevance to real-world developer tasks. 

In summary, the evaluation has provided valuable insights into the capabilities of various LLMs 

in generating questions from program codes. The top-performing models can be valuable assets 

in applications such as educational platforms, code analysis, and automated documentation 

generation, where high-quality QG is essential.  

5.5 Conclusion 

AI and LLMs are growing rapidly. E-learning platforms demand effective QG methods, and LLMs 

have made this process much easier. While recent studies have focused on generating questions 

from text, no prior research has evaluated LLMs’ ability to generate questions from program 

codes. This study introduces a framework for assessing LLMs’ performance in generating 

questions from program codes. LLMs have been extensively investigated for their capability to 
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formulate questions from source code. Python, C++, and Java program codes were considered as 

inputs in this regard. The study considered a diverse range of LLMs for evaluating QG from source 

codes. A dataset of questions was compiled and systematically analyzed using these models. The 

method adopted a combination of relevance, clarity and coherence, conciseness, and coverage as 

evaluation metrics to assess comprehensively their potential for QG. Human evaluation was also 

considered as an additional measure. Results from the present research were clear and compelling. 

Across the board, the models were ranked topmost among the evaluated LLMs: GPT-4-0314, 

GPT-4-0613, and llama-2-70b-chat. They proved proficiency in contextually relevant QG in terms 

of clarity, conciseness, and comprehensive coverage of source code content. Their performance 

underlines their potential as utilities within educational platforms, automated documentation 

generation, and code analysis applications. These metrics offered some quantitative insights into 

the syntactic and semantic correctness of the generated questions. The ratings were carried out 

using automatic AI evaluations (GPT-4-0314) to ensure the generated questions were 

grammatically correct, semantically sound, and contextually appropriate. The real implications of 

the findings stretch far beyond question generation. They have practical ramifications for learning 

outcome assessment efforts in any domain requiring natural language understanding and 

generation. As AI systems increasingly mediate human-computer interactions, it is crucial to 

comprehend the strengths and weaknesses of LLMs. Though GPT-4-0314 was at the very top of 

the ranks, other evaluated LLMs proved to have some value in specific use cases and may come 

in handy for tasks with particular emphasis on QG attributes. Performance evaluation has created 

a valuable resource for decision-makers employing LLMs in various applications. Results indicate 

that further along, advancing with AI technologies, systems such as GPT-4-0314, GPT-4-0613, 

and llama-2-70b-chat set new standards in the natural language generation area, thus propelling 

innovation and possibilities across numerous fields.  

Thesis 3: I developed a systematic evaluation framework to assess the QG capabilities of LLMs, 

using automatic evaluation metrics and complemented by human-centered evaluation metrics for 

the top-performer LLM. The findings provide insights into their strengths and limitations in 

generating programming-related assessment questions for potential educational use in the 

programming domain. [P4] 
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Chapter 6 Template-Based Question Generation from Code Using Static Code Analysis 

6.1 Introduction 

The manual creation of programming exercises remains time-consuming for educators, often 

taking hours to ensure questions align with specific learning objectives and code complexity levels 

[P2]. This challenge intensifies in multi-language educational settings where instructors must 

simultaneously maintain question banks for multiple programming languages. Recent advances in 

static analysis frameworks and attribute grammar systems have laid the technical foundation for 

AQG tools that parse code structures, extract semantic elements, and populate pedagogical 

templates [152], [153]. Traditional AQG systems relied heavily on template-based approaches that 

limited question diversity and contextual relevance [P3]. Integrating AST analysis with reference 

attribute grammars has enabled more sophisticated code element extraction, particularly for 

object-oriented languages like Java and C++ [154], [155], [156]. These technological 

advancements coincide with growing pedagogical demands for personalized learning pathways 

and competency-based assessment frameworks in CS education [5]. Cross-language QG 

introduces unique parsing challenges due to varying syntax rules and programming paradigms. 

There is no agreed-upon or standard evaluation metric for AQG from source code for educational 

purposes. The current few systems deal with one programming language (single-language) 

without fully automated evaluation [P2], [P3]. As a result, the main added value of this chapter is 

dealing with multi-language AQG from source code and automating the evaluation process.  

The methodology presented in Chapter 6 represents a significant departure from the approaches 

detailed in Chapters 3, 4, and 5. Chapter 3 was limited to QG using engineered ontologies specific 

to providing support for only Python via a reasoning engine and conceptual hierarchies. Chapter 

4 blended the hybrid model of ontology and NLP (QuestGen) approaches, translating the Python 

code into text, prior to the generation of the question. Then, in Chapter 5, custom evaluation 

metrics were framed for benchmarking evaluation of LLM-based systems, among them GPT-4, 

LLaMA, and Falcon. LLMs, introduced in Chapter 5, are highly effective for QG from source 

code; however, they demand substantial financial and computational resources. This chapter 

presents a multi-language code question generator capable of automatically producing assessment 

questions for Python, C++, Java, and C codes. It focuses on QG from source code using static 

code analysis. Static code analysis is adopted to generate questions from program code. It offers 

pattern-based algorithm detection, structural analysis, and question templates. Pattern-based 

algorithm detection is performed through regex patterns. Structural analysis examines functions, 

loops, conditionals, and variables to generate relevant questions. Question templates involve 

predefined templates for different code elements to create varied questions. This template-based 
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approach serves as a lightweight baseline for the future version alternative to the LLMs discussed 

in Chapter 5, offering lower computational requirements, greater interpretability, and faster 

processing for large-scale deployment. The research objectives of this study are: 

1. Developing a multi-language code question generator capable of automatically producing 

assessment questions for Python, C++, Java, and C codes (AQG from source code). 

2. Establishing an approach for automatically evaluating the proposed system based on a set 

of evaluation criteria through experiments on a real-world dataset to demonstrate its 

effectiveness in generating questions from source codes. 

This chapter is structured as follows: Section 6.2 outlines the methodology and the system 

architecture. Section 6.3 presents the results of the multi-language QG and evaluation. Section 6.4 

discusses the findings, contributions, and limitations. Section 6.5 concludes the chapter with key 

insights.  

6.2 Methodology 

This chapter proposes a multi-language code question generator capable of automatically 

producing assessment questions for Python, C++, Java, and C codes. The four programming 

languages were chosen based on the up-to-date The Importance Of Being Earnest (TIOBE) Index, 

which indicates the popularity of programming languages. Python, C++, Java, and C are the most 

popular programming languages worldwide according to the TIOBE Index as of May 2025 [157]. 

While the paper [71] primarily focuses on general educational applications, it is important to note 

that modern adaptations of Bloom's Taxonomy can be tailored to specific domains, like 

programming. This adaptation allows for evaluating cognitive tasks unique to programming 

education, ensuring that the generated questions are relevant and effective for learners in that field. 

As a result, the methodology in the current research adopts Bloom’s Taxonomy evaluation levels: 

remembering, understanding, applying, analyzing, evaluating, and creating. Figure 6.1 shows the 

proposed methodology for a multi-language question generator from source code. The research 

methodology behind the multi-language question generator involves several interconnected 

components that work together to analyze code snippets and generate relevant questions. A 

detailed explanation of the methodology follows.  

6.2.1 Language-Specific Parsing 

Parsing is the process of checking the structure of the code and identifying elements like keywords 

and variables. The foundation of the system is a modular parser that handles multiple programming 

languages: 
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1. Language detection: The system first identifies the programming language of the input code 

using heuristic pattern matching. This detection is based on language-specific keywords, 

syntax patterns, and structures. 

2. Language-specific parsers: Each supported language (Python, Java, C++, and C) has a 

dedicated parser that implements the common code parser interface. This enables 

polymorphic handling of different languages while accounting for their unique 

characteristics. 

3. Python parser implementation: For Python, the system leverages the AST module to 

perform deep structural analysis of the code. This provides detailed information about 

functions, loops, conditionals, and variables. 

4. Other language parsers: For Java, C++, and C, the system implements regex-based parsers 

that identify key structural elements despite the lack of native AST support in Python for 

these languages. 

6.2.2 Code Element Extraction 

After parsing, the system extracts various structural elements from the code: 

1. Function analysis: The system extracts information about functions, including their names, 

parameters, return statements, and recursion patterns.  

 
Figure 6.1 Methodology for multi-language question generation from source code 
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2. Loop detection: The system identifies different types of loops (for/while) and extracts 

information about their variables and conditions. 

3. Conditional statement analysis: For conditional statements (if/else), the system extracts 

conditions, identifies branch patterns, and determines nesting levels. 

4. Variable tracking: The system extracts variables, their data types (when possible), 

initialization values, and their modifications throughout the code. 

5. Algorithm identification: Using a dictionary of algorithm-specific regex patterns, the 

system identifies common algorithms implemented in the code (e.g., binary search, sorting 

algorithms, and graph traversals). 

6.2.3 Template-Based Question Generation 

The QG process uses templates customized for different code elements and difficulty levels, as 

shown in Figure 6.2: 

1. Difficulty stratification: Questions are categorized into three difficulty levels - beginner, 

intermediate, and advanced - aligned with increasing cognitive complexity. 

2. Element-specific templates: Each code element type (functions, loops, conditionals, 

variables, algorithms) has specific question templates designed to test understanding at 

different levels. 

3. Dynamic template parameters: The system dynamically fills template parameters with 

specific code elements. For example, function parameter examples are generated based on 

parameter names using heuristic rules. 

6.2.4 Cognitive Science-Based Question Design 

The templates are designed based on principles from cognitive science and educational theory, as 

shown in Figure 6.2: 

1. Bloom's Taxonomy alignment:  

a) Beginner questions focus on remembering and understanding (e.g., "What is the purpose 

of function X?"). 

 'loop': { DifficultyLevel.BEGINNER: [ 

"What is the purpose of the {type} loop on line {line_num}?", "How many times will the {type} loop on line 

{line_num} execute with typical input?", "What happens in each iteration of the {type} loop on line {line_num}?",], 
 

Figure 6.2 Sample of templates used for question generation from source code 
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b) Intermediate questions target applying and analyzing (e.g., "Trace the execution of 

function X with inputs Y"). 

c) Advanced questions emphasize evaluating and creating (e.g., "How could you optimize 

function X?"). 

2. Contextual relevance: Questions directly reference specific code elements, line numbers, 

and variable names from the input code to create contextually relevant assessments. 

3. Balanced coverage: The system distributes questions across different code elements to 

ensure a comprehensive assessment of the code snippet.  

6.2.5 Question Post-Processing 

After generating candidate questions, the system applies several post-processing steps: 

1. De-duplication: Eliminates duplicate or highly similar questions to ensure variety. 

2. Shuffling: Randomizes the order of questions to prevent predictable patterns. 

3. Limiting: Controls the number of questions to prevent overwhelming the user, while 

maintaining a balance of difficulty levels. 

4. Fallback strategies: If specific elements cannot be extracted (e.g., due to parsing errors), the 

system falls back to more general questions about the code. 

Each language-specific parser yields a common intermediate representation (lists of dictionaries 

for functions, loops, conditionals, variables) so that downstream template selection is language-

agnostic. Python leverages AST traversal for recursion and loop-depth heuristics, while 

Java/C/C++ currently rely on regex signatures adequate for introductory educational patterns 

(single method declarations, simple loops, flat conditionals). Advanced constructs (e.g., pointer 

arithmetic nuance, method overloading resolution, templates/generics) are intentionally out-of-

scope for this baseline but can be incorporated by swapping parsers without altering the generation 

layer. The system presently employs 177 Bloom-tagged templates (function: 37, loop: 35, 

condition: 35, variable: 35, algorithm: 35) spanning three difficulty tiers. Parameterization injects 

code-derived identifiers (names, line numbers, inferred complexity) to avoid generic phrasing. 

Current templates are structure-sensitive at the element presence level but not yet adaptive to 

deeper nesting or compound branching. There are three diversity controls: stochastic selection 

across applicable templates, element-level breadth (functions, loops, conditionals, variables, 

algorithm), and Bloom soft-cap (≤40% any level) to reduce repetitive output. This baseline does 

not yet adapt template probability to structural complexity (e.g., nesting depth), which is planned 

for future work. Multi-language static analysis is the non-executive extraction of language-specific 
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structures unified into an intermediate representation via a shared parser interface. Python employs 

AST traversal, whereas Java, C, and C++ use deterministic regex extractors. This abstraction 

standardizes template-engine behavior across languages while supporting parser substitution, 

including tree-sitter, without architectural change. The regex-based parsers were evaluated against 

76 implementations of algorithms (19 algorithms across 4 languages) without any observed 

extraction failures. Although this level of performance is sufficient for canonical educational 

patterns, the absence of a formal gold-standard extraction audit is recognized. Planned 

improvements in Chapter 7 include the substitution of the current approach with more advanced 

parsers capable of handling complex language constructs such as nested generics and pointer 

arithmetic. 

6.2.6 Evaluation Approach 

The methodology includes an evaluation approach to assess the quality of the generated questions. 

The evaluation of the proposed system is designed around a set of defined criteria. It uses 

experiments conducted on a real-world dataset to demonstrate its effectiveness in generating 

questions from source code. The methodology involves a structured approach to assess the quality 

of the generated questions across several key dimensions: 

1. Bloom's Taxonomy: The Bloom’s Taxonomy cognitive level distribution is computed using 

Bloom's Taxonomy alignment to assess cognitive level distribution (remembering, 

understanding, applying, analyzing, evaluating, and creating). 

2. Difficulty distribution: The questions are analyzed across three difficulty levels (Beginner, 

Intermediate, Advanced) for four programming languages: C, C++, Java, and Python. 

3. Linguistic complexity: This dimension combines word count, sentence count, Flesch-Kincaid 

Grade Level, and average sentence length. All values are normalized to a 0–1 scale, with 

sentence length capped at 25 words and grade level capped at 10. The final score is computed 

using the formula: 

Linguistic Complexity = {
0.6 ∙ Normalized Grade Level

+ 0.4 ∙ Normalized Sentence Length
 

(6.1) 

4. Code coverage: Measures how comprehensively the generated questions address different code 

components. The score is calculated as:  

Code Coverage = {
0.4 ∙ Variables Coverage

+ 0.6 ∙ Functions Coverage
 

(6.2) 
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5. Precision: Defined as the ratio of relevant or correct questions to the total number of questions 

generated by the system.   

Precision =  True Positives / (True Positives +  False Positives) (6.3) 

6. Recall: Assesses the system’s ability to generate all relevant or expected questions, using code 

coverage as a proxy indicator for recall.  

Recall =  True Positives / (True Positives +  False Negatives) (6.4) 

F1_Score =  2 ∗  (Precision ∗  Recall) / (Precision +  Recall) (6.5) 

7. Novelty: Measures the originality of the generated questions using the formula: 

Novelty = {
0.4 ∙ Bloom Score +  0.3 ∙ Code Elements

+ 0.3 ∙ Advanced Question Types
 

(6.6) 

8. Educational alignment: Evaluates how well the questions align with predefined learning 

objectives. The score is computed as: 

Educational Alignment = {
0.7 ∙ Expected Bloom Match

+ 0.3 ∙ Expected Linguistic Complexity Match
 

(6.7) 

9. Cognitive diversity: Captures the diversity of cognitive skills involved in answering the 

questions. The formula used is:  

Cognitive Diversity = 0.4 ∙ Bloom Score/6 +  0.6 ∙ Entropy (6.8) 

Entropy =  −∑ p ∙ log(p) log(6)⁄  (6.9) 

and p denotes the proportion of questions at each Bloom’s level. The weighted values are 

flexible and open to future refinement. For instance, future researchers might introduce 

additional variables, such as the density of technical terms, to further improve linguistic 

complexity estimation. 

10. Question quality score by language and difficulty: The score is calculated through a multi-step 

process. First, computing eight different quality metrics for each question (linguistic 

complexity, code coverage, Bloom’s distribution, precision, recall, novelty, educational 

alignment, and cognitive diversity). Second, combining these metrics with predetermined 

weights. Third, aggregating the scores by programming language and difficulty level. 
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11. Quality score by code complexity: The score is calculated through a multi-step process. First, 

computing eight different quality metrics for each question (linguistic complexity, code 

coverage, Bloom’s distribution, precision, recall, novelty, educational alignment, and 

cognitive diversity). Second, combining these metrics with predetermined weights. Third, 

aggregating the scores by language and code complexity (simple, moderate, or complex).  

Linguistic complexity: 0.15, code coverage: 0.20, bloom’s distribution: 0.15, precision: 0.15, 

recall: 0.10, novelty: 0.10, educational alignment: 0.10, and cognitive diversity: 0.05 are the 

suggested weights. Algorithm 6.1 shows a multi-language template-based QG and evaluation 

algorithm. A template-based pipeline aligned with Bloom’s taxonomy and difficulty levels is 

utilized to generate and evaluate high-quality programming questions from code samples across 

multiple programming languages. In this pipeline, source code samples undergo parsing using 

language-specific parsers to enable accurate syntactic and structural analysis. From the parsed 

code, meaningful elements such as functions, loops, and conditional statements are extracted, and 

ASTs are constructed to represent the hierarchical structure of the code. Relevant predefined 

templates are then selected and instantiated based on the extracted elements, generating candidate 

questions contextualized to each specific code sample. The generated questions are post-processed 

to enhance linguistic clarity, eliminate redundancy, and align with pedagogical standards. Each 

question is labelled with the corresponding Bloom’s level and an estimated difficulty tag to 

facilitate adaptive learning scenarios. The generated questions are subsequently evaluated using 

automated metrics to assess quality, novelty, and cognitive diversity, and the labelled questions, 

along with the evaluation statistics, are aggregated and stored for further analysis and visualization 

within the system’s reporting modules. To summarize the overall generation process, the multi-

language question generator algorithm is the main engine that orchestrates the entire QG process. 

It first detects the programming language of the code snippet, selects the appropriate parser, and 

parses the code. It then extracts various code elements (functions, loops, conditionals, variables) 

and identifies the algorithm implemented in the code. Based on the language and extracted 

elements, it generates appropriate questions. It falls back to generic questions if no specific 

questions can be generated. It then shuffles the questions and returns the requested number. Next, 

language detection algorithm uses pattern matching to identify the programming language of the 

code snippet. It looks for language-specific keywords and syntax patterns to differentiate between 

Python, Java, C++, and C. Following this, algorithm identification uses regex pattern matching to 

identify common programming algorithms in the code. Each language parser maintains a 

dictionary of algorithm names mapped to regex patterns. It returns the name of the first matching 

algorithm or null if none is detected. Afterward, QG by element type generates questions for a 



 

101 

 

 

specific type of code element (functions, loops, conditionals, etc.). It also uses predefined 

templates for each element type and difficulty level.  

Algorithm 6.1: Multi-Language Template-Based QG and Evaluation 

Input: Set of code samples in various programming languages (SourceCodeSamples),  

           Predefined question templates mapped to Bloom’s taxonomy and difficulty levels (Templates) 

Output: Generated questions with Bloom’s level and difficulty tags (LabelledQuestions),  

             Evaluation statistics for generated questions (EvaluationMetrics) 

1:  for each CodeSample in SourceCodeSamples do 

2:      ParsedCode ← Parse(CodeSample, LanguageSpecificParser) 

3:      CodeElements ← ExtractCodeElements(ParsedCode) 

4:      AbstractRep ← GenerateAST(ParsedCode) 

5:      CandidateQuestions ← ∅ 

6:      for each Element in CodeElements do 

7:          RelevantTemplates ← SelectTemplates(Element, Templates) 

8:          for each Template in RelevantTemplates do 

9:              Question ← InstantiateTemplate(Template, Element) 

10:             CandidateQuestions ← CandidateQuestions ∪ {Question} 

11:         end for 

12:     end for 

13:     FilteredQuestions ← Postprocess(CandidateQuestions) 

14:     LabelledQuestions ← LabelQuestions(FilteredQuestions) 

15:     EvaluationMetrics ← Evaluate(LabelledQuestions, CodeSample) 

16:     Store(LabelledQuestions, EvaluationMetrics) 

17: end for 

18: GenerateReportsAndVisualizations() 

 

Finally, mixed-difficulty QG generates questions at beginner, intermediate, and advanced 

difficulty levels. It combines questions from different difficulty levels and eliminates duplicate 

questions to ensure variety. Final clarification regarding handling multi-language parsing, the 

system employs a modular parsing architecture to accommodate the syntactic and semantic 

diversity of Python, C++, Java, and C. For Python, the built-in AST module is utilized to perform 

deep structural analysis. For C, C++, and Java, custom regex-based parsers are implemented to 

extract functions, loops, conditionals, and variables. Each language is supported by a dedicated 

parser class that adheres to a common interface, enabling polymorphic handling and normalization 

of code elements. Templates are mapped to these normalized elements, ensuring that question 

generation logic remains consistent across languages despite syntactic differences. While the 

current implementation focuses on common structural features, such as functions and loops, the 

architecture is extensible and can be adapted to handle language-specific constructs (e.g., pointers, 

method overloading) in future work. Templates are manually crafted but are designed to be 

generalizable across all supported languages. Each element type (function, loop, condition, 

variable, algorithm) has approximately 6 templates at the Beginner level and about 15 templates 

each at Intermediate and Advanced levels. The template repository consists of a diversity of 

templates for all code elements (functions, loops, conditionals, variables, algorithms) that have 

been categorized in terms of levels of difficulty into beginner, intermediate, and advanced. For 



 

102 

 

 

any specific code element and difficulty level, a number of templates have been created, which 

add up to several dozen templates in the repositories. These templates are parameterized, and with 

the help of code-specific details like variable names and line numbers, the placeholders are filled 

with these details dynamically. The system considers the random shuffling and deduplicating the 

questions during the post-processing stage. Random-selection of applicable templates even further 

increases variability and lowers the chances of generating repetitively or shallowly elaborated 

questions. The even spread across different Bloom's taxonomy levels among the various code 

elements ensures that the exams are satisfactory without being overly fitted to a small number of 

fixed patterns. Finally, the weights used in the evaluation formulas (e.g., 0.6, 0.4) are not fixed 

and were determined based on a combination of literature review, domain expertise, and practical 

judgment. For example, in the linguistic complexity metric, a lower weight was assigned to 

sentence length (0.4) than to grade level (0.6), reflecting the assessment that grade level more 

directly impacts comprehension in programming contexts, while sentence length, though relevant, 

has less influence due to its design for general natural language. These choices were informed by 

the understanding of the field and are open to future refinement. Human evaluations were also 

incorporated complement automated metrics. Future work may empirically optimize these weights 

or introduce additional variables, such as technical term density, to further enhance metric validity. 

6.3 Results 

This chapter presents a multi-language question generator from source code capable of 

automatically producing assessment questions across the top four programming languages 

(Python, C++, Java, and C) chosen according to the TIOBE Index. The system analyzes code 

structure using language-specific parsers and generates questions at varying difficulty levels. The 

114 questions for each programming language are evaluated based on 19 different algorithms and 

across three complexity levels (simple, moderate, and complex). The dataset of code snippets used 

is available on GitHub [158]. There are six generated questions for each algorithm in each 

programming language: two for beginners, two for intermediates, and two for advanced learners. 

The total number of generated questions is 456. Established educational assessment metrics, 

outlined in section 6.2.6 of the methodology, were used to evaluate the generated questions. The 

algorithms used are listed based on their fundamental categories: 

1. Sorting Algorithms (Bubble Sort, Insertion Sort, Selection Sort, Merge Sort, and Quick 

Sort). 

2. Searching Algorithms (Binary Search, Linear Search, and Knuth-Morris-Pratt). 
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3. Graph Traversal Algorithms (Depth-First Search, Breadth-First Search, and Topological 

Sort). 

4. Shortest Path Algorithms (Dijkstra's, Floyd-Warshall, and A* Search). 

5. Minimum Spanning Tree Algorithms (Kruskal's and Prim's). 

6. Optimization & Problem-Solving Approaches (Dynamic Programming, Greedy, and 

Huffman Coding). 

For the collected and prepared dataset, the following attributes are included: 

1. Functions, Loops, Conditionals, and Variables: Each attribute is binary - 0 means the feature 

is not present in the code snippet, while 1 indicates it is present. All selected code examples 

include at least one instance of each of these four elements. 

2. Lines: This attribute captures the length of the code, measured by the number of lines in 

each snippet. 

3. Complexity: This is a categorical attribute with three levels - simple, moderate, and complex 

- reflecting the overall complexity of the code. 

4. Generated Questions: The questions are primarily designed to require explanatory answers 

rather than simple yes/no or multiple-choice responses (open-ended questions). This field 

contains six automatically difficulty-tiered generated questions based on the input code: two 

aimed at beginner-level learners, two at intermediate level, and two at advanced level.  

 A  sample transformation from code to question is presented in Table 6.1. 

Table 6.1 A sample transformation from code to question 

Original Code Template Generated Question 

def calculate_area (radius):  

return 3.14∙radius∙radius 

"What does the {function_name} 

function calculate using 

{parameter}?" 

"What does the calculate_area 

function calculate using radius?" 

class Student: def __init__(self, name, 

age): self.name = name self.age = age 

"What attributes does the 

{class_name} class initialize?" 

"What attributes does the Student 

class initialize?" 

try: result = x/y except 

ZeroDivisionError: result = 0 

"What happens in this code when 

{error_type} occurs?" 

"What happens in this code when 

ZeroDivisionError occurs?" 

 

Figure 6.3 presents Bloom's Taxonomy coverage. Bloom’s Taxonomy cognitive level distribution 

was computed using a detailed multi-step process. Each question was first analyzed to detect its 

cognitive level using keyword matching, with the level determined based on the highest number 

of keyword matches from Bloom’s taxonomy. These levels were then mapped to numeric values 

(1 to 6) and normalized to a 0–1 scale for further analysis. For example, the system calculated the 
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percentage of questions falling under each level, resulting in distributions of 16% for "Remember" 

and 8% for "Create". The generated questions demonstrated good coverage across cognitive levels, 

with a distribution of Remember: 16%, Understand: 24%, Apply: 16%, Analyze: 22%, Evaluate: 

14%, and Create: 8%. This distribution indicates a balanced approach with room for improvement 

in higher-order thinking (Create level). Figure 6.4 shows the distribution of question difficulty 

levels (Advanced, Intermediate, and Beginner) across four programming languages: C, C++, Java, 

and Python. The proportions of difficulty levels are identical across all four languages. There is 

no noticeable skew toward a particular difficulty level for any specific language. In short, the 

difficulty level distribution is very evenly balanced across these languages. By default, the 

distribution of generated questions is set to a 2:2:2 ratio - two beginner, two intermediate, and two 

advanced. This deliberate balance ensures that one-third of the questions target each difficulty 

level, providing a well-rounded assessment experience.   

 

Figure 6.3 Bloom's taxonomy coverage 

 

 

 

Figure 6.4 Question difficulty distribution by language 

 
 



 

105 

 

 

Figure 6.5 reveals the question quality score by language and difficulty level. The scores shown 

in this visualization were calculated through a multi-step process. The overall quality scores 

cluster around the 0.55–0.60 range, indicating fairly consistent quality across difficulty levels and 

languages. It looks like beginner questions are generally better crafted or better received, perhaps 

because they are simpler and easier to generate and validate. Figure 6.6 focuses on the question 

quality score by language and code complexity. The scores shown in this visualization were 

calculated through a multi-step process. Across the board, none of the complexity levels dominate 

quality scores universally, which suggests that the quality of a question is not strictly tied to how 

simple or complex the code is. 

 

Figure 6.7 visualizes the linguistic complexity of different programming languages (C, C++, Java, 

and Python) across three difficulty levels: Beginner, Intermediate, and Advanced. In general, 

linguistic complexity often tends to increase with difficulty level. The linguistic complexity scores 

 

Figure 6.6 Question quality score by language and code complexity 

 

 

 

Figure 6.5 Question quality score by language and difficulty level 
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were calculated using a structured, multi-step process. First, basic text metrics, including word 

and sentence counts, were computed for each question to analyze sentence structure and length. 

Next, readability metrics - including Flesch-Kincaid Grade Level - were generated using the 

Textstat library to assess how readable and educationally appropriate the questions were. To 

further evaluate syntactic complexity, the average sentence length was calculated. All these 

metrics were then normalized to a 0–1 scale for comparability, with sentence length capped at 25 

words and the grade level normalized to a maximum of 10. Using these normalized values, a final 

linguistic complexity score was derived using a weighted formula: 0.6 times the normalized 

Flesch-Kincaid Grade plus 0.4 times the normalized sentence length. Finally, the scores were 

aggregated based on difficulty level - Beginner, Intermediate, and Advanced - to analyze patterns 

in linguistic complexity across question tiers. 

 

Figure 6.8 shows that the average question diversity scores varied by language, ranging from 0.63 

for C to 0.55 for C++. The diversity scores were calculated through a structured, multi-step process 

using Shannon entropy to measure how evenly questions were distributed across different question 

templates and types. This differs from cognitive diversity, which specifically measures the 

distribution of Bloom's taxonomy levels. The question diversity metric aggregates scores by 

programming language by collecting template usage patterns across different algorithms and 

averaging them across each language's question set. All diversity scores were normalized to a 0–

1 scale for cross-language comparison. The results suggest that C code naturally elicits the most 

diverse range of question types (0.63), followed by Java (0.59) and Python (0.57), while C++ 

generates the least diverse questions (0.55). This variation may reflect the inherent structural 

differences between programming languages, with C's lower-level constructs potentially offering 

 

Figure 6.7 Linguistic complexity by difficulty level 
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more varied questioning opportunities compared to C++'s more standardized object-oriented 

patterns.  

Table 6.2 shows automatic evaluation metrics for AQG from source code across four 

programming languages. C achieved a slightly higher overall quality score of 0.59, while the other 

languages scored 0.57. C code tends to be less syntactically ambiguous, allowing the system’s 

static analysis and template-matching components to extract structural elements slightly better. N 

denotes number of samples. 

Table 6.2 Automatic evaluation results by programming language  (N=456) 

Performance Metric C C++ Java Python Statistical Significance 

Overall Quality Score 0.59 0.57 0.57 0.57 F(3,452) = 5.01, p < 0.01 

Linguistic Complexity 0.35 0.37 0.39 0.44 F(3,452) = 8.73, p < 0.001 

Code Coverage 1.00 1.00 1.00 1.00 No significant difference 

Precision 0.36 0.35 0.35 0.39 F(3,452) = 6.40, p < 0.001 

Recall 1.00 1.00 1.00 1.00 Perfect recall across all languages 

F1-Score 0.53 0.52 0.52 0.56 F(3,452) = 5.71, p < 0.001 

Novelty Score 0.17 0.14 0.15 0.15 F(3,452) = 3.35, p < 0.05 

Educational Alignment 0.48 0.42 0.42 0.42 F(3,452) = 7.91, p < 0.001 

Cognitive Diversity 0.53 0.50 0.52 0.50 F(3,452) = 4.61, p < 0.01 

 

There is no agreed-upon or standard evaluation metric for QG from source code for educational 

purposes. While the study employs well-defined metrics, the absence of human evaluation limits 

the contextual accuracy of generated questions. As a result, two human evaluators were used to 

 

Figure 6.8 Average question diversity by programming language 
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complement the automatic evaluation. The manual metrics used are relevance and educational 

value of the questions. The human evaluators were allowed to rate based on their teaching 

experience. Relevance can cover code topic match, code context understanding, difficulty 

appropriateness, and clarity. Educational value can cover concept coverage, cognitive challenge, 

feedback potential, and engagement. The two evaluators were given the same 40 questions divided 

evenly and stratified between the four programming languages. Table 6.3 shows human evaluation 

metrics for QG from source code across four programming languages. Table 6.3 shows C leads 

slightly. Python, Java, and C++ are tied at 3.45, showing a fairly even performance. Two tests 

were conducted to understand whether this slight difference has statistical significance. First, a 

paired t-test compares C versus each of the average scores of Python, Java, and C++, as shown in 

Table 6.4. Two, one-way ANOVA comparing average scores across all four languages (F-statistic: 

48.44, p-value: 1.01e-12 (very low)). The difference between C and other languages is very slight. 

Based on the table of paired t-tests and ANOVA results, the differences between C and the other 

languages are statistically significant, even if they were very slight. 

Table 6.3 Human evaluation results by programming language (N=40) 

Metric Python Java C++ C 

Relevance 3.8 3.7 3.7 3.8 

Educational Value 3.1 3.2 3.2 3.2 

Average Score 3.45 3.45 3.45 3.50 

 

Table 6.4 Paired t-test results for human evaluation differences 

Comparison t-statistic p-value Significant? (α=0.05) 

C vs Python 7.22 0.00005 (very low) Yes 

C vs Java 9.64 0.000005 (very low) Yes 

C vs C++ 16.10 0.00000006 (very low) Yes 

 

Table 6.2 shows slight differences in quality scores across languages. Of those differences that are 

observed in means of quality scores across languages, although they are small numerically (0.59 

vs. 0.57), statistical significance indicates the fact that such differences are less likely due to the 

randomness in the sample itself. Of course, it should be mentioned explicitly that what is 

statistically significant is not always practically or educationally significant. The effect sizes are 

small and that those minimal deltas probably would not register as significant difference in student 

learning outcomes in actual classroom environments. Thus, the greater value of reporting these 
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results is to show that the system performs equally across languages and highlight areas in need 

of further improvement, rather than to make a claim of large practical impacts on the basis of such 

small score differences.  

The human evaluation complements the automated evaluation by validating key findings while 

providing educators’ perspective on question quality. Both approaches consistently identified C 

as a better performer, though human evaluation revealed more balanced performance across 

languages than suggested by automated metrics alone. The convergence between automated 

educational alignment scores and human-assessed educational value demonstrates the validity of 

computational metrics for educational applications. However, the human evaluation's emphasis 

on practical teaching utility provides essential context that purely computational measures cannot 

capture, highlighting the importance of multi-faceted evaluation approaches in educational 

technology research.  

6.4 Discussion 

Regarding positioning the proposed system within the literature, most prior work on AQG that 

uses templates follows a single-paradigm, deterministic design: template libraries map extracted 

elements to question patterns and are widely used as an alternative to AI-driven question 

generation methods, which may require large datasets and can produce lower-quality results. 

Template-driven generators (e.g., general template generators for single-choice questions) 

demonstrate reliable scalability and easy LMS integration but are limited in diversity and semantic 

sensitivity [70]. Complementary work, such as [159], has explored mass problem synthesis from 

public code and general template AQG across domains. These approaches emphasize throughput 

and template parametrization rather than semantic grounding or pedagogically adaptive distractor 

generation. It mines open-source code to generate large banks of valid expression-evaluation and 

program-tracing problems for introductory programming. Its approach leverages tree structures 

(like ASTs) from code analysis to parametrize problem templates, emphasizing high throughput 

and scalability. It is worth noting that external baseline comparisons with prior template-based 

AQG systems were not conducted due to their single-language scope, differing semantic pipelines, 

and the lack of publicly available, standardized multi-language static-analysis benchmark corpora. 

Additionally, experimenting with all 19 algorithms presented in this chapter using LLMs would 

have incurred prohibitively high computational costs. The present work therefore establishes an 

internal, fully reproducible baseline to enable future controlled cross-system studies as richer 

benchmark datasets become available. 
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6.4.1 Research Contributions 

This methodology introduces several key contributions to automated programming QG. Unlike 

many existing systems focusing on a single programming language, this approach handles four 

languages with a unified framework. It combines AST-based parsing (for Python) with regex-

based parsing (for other languages) to achieve broad language coverage without sacrificing depth 

of analysis. It implements a pattern-based approach to identify common algorithms in code, 

enabling algorithm-specific questions. It systematically categorizes questions into different 

difficulty levels based on cognitive complexity rather than arbitrary designations. It generates 

example parameters for function calls based on parameter names, creating more realistic and 

contextually appropriate questions. Finally, it ensures questions cover multiple aspects of 

programming knowledge. The evaluation framework developed for this system is fully automated. 

The evaluation pipeline uses a detailed taxonomy including linguistic complexity (word and 

sentence counts, Flesch-Kincaid grade level), code coverage (how much of the code elements are 

referenced by the questions), distribution according to Bloom's taxonomy (detection of cognitive 

levels through keywords), precision and recall (heuristic estimates based on code element 

coverage), novelty (originality of questions generated), educational alignment (Bloom/difficulty 

level expected vs. actual standards), and cognitive diversity (entropy of levels in Bloom). These 

metrics collectively assess both the structural and educational quality of the generated questions. 

While the evaluation process is primarily automatic, it is complemented by human validation: two 

expert evaluators rated a subset of questions for relevance and educational value, as detailed in 

Tables 6.3 and 6.4. The evaluation pipeline was newly developed for this research, though certain 

metrics (e.g., F1-score, precision, recall, relevance, educational value) are adapted from those used 

in Chapters 3-5 to suit the template-based context. 

6.4.2 Limitations 

While this chapter's results are promising, it is important to acknowledge certain limitations. The 

current methodology has several limitations that suggest directions for future research. The regex-

based parsing for Java, C++, and C is less precise than AST-based parsing, which may affect 

question quality. The current approach relies on static code analysis and does not include dynamic 

runtime behavior analysis. The system recognizes structural patterns but has limited understanding 

of the semantic purpose of the code. The fixed templates may become predictable with extended 

use. Finally, the extraction phase of a system collects some attributes that can then be accessed for 

template use, for generating questions on these code structures. Notably, the regex-based parsers 

have limitations in their ability to capture deeply nested or highly unconventional constructs. In 
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practical use, however, the system might cover typical nesting and recursion patterns found in 

most educational codes but would not inherently support very complex codes. 

6.4.3 Future Directions 

Future improvements could include using language-specific parsers for each supported language, 

incorporating ML for more adaptive QG, adding dynamic code execution analysis, implementing 

more sophisticated algorithm detection, developing context-aware template generation, and 

investigating the educational effectiveness of automatically generated questions through student 

performance analysis.  

6.5 Conclusion 

This chapter developed and evaluated a template-based approach using static code analysis for 

AQG from source code. By leveraging ASTs and predefined templates, the system effectively 

generated contextually relevant questions across multiple programming languages, addressing a 

core challenge in programming education. A dataset of 456 questions from 19 algorithms and 

three code complexity levels was used. Although nearly all existing systems support a single 

programming language, this approach integrates four languages into a unified framework. The 

system was evaluated using several metrics, including the overall quality score. Experimental 

results showed consistent quality across C (0.59), Java (0.57), Python (0.57), and C++ (0.57). 

Expert evaluations rated the system's utility between 3.45 and 3.50 across languages, with 

significant statistical support (F = 48.44, p = 1.01e-12), confirming its practical applicability. The 

generated questions spanned all six Bloom’s taxonomy levels. The levels are 16% Remember, 

24% Understand, 16% Apply, 22% Analyze, 14% Evaluate, and 8% Create, maintaining an 

identical distribution across all languages. This somewhat balanced cognitive coverage 

underscores the system’s ability to support comprehensive learning assessments. This work offers 

a multi-language question generator from source code capable of automatically producing 

assessment questions for Python, C++, Java, and C codes and an approach for automatically 

evaluating the proposed system based on a set of evaluation criteria complemented by human 

evaluation metrics. While performance was consistent, the approach may not capture advanced or 

creative problem-solving nuances. Current diversity and quality scores highlight room for 

improvement. Future work should expand template libraries, improve QG filtering process to 

increase precision, incorporate ML to enhance quality, and conduct longitudinal studies to assess 

learning outcomes over time. The proposed system provides a validated foundation for scalable, 

automated assessment in programming education. With strong quantitative support (quality: 0.59–

0.57; cognitive diversity: 0.50–0.53; expert rating: 3.45–3.50), it offers a practical, adaptable tool 

for educators. The automatic evaluation shows that C achieved a slightly higher overall quality 
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score of 0.59, while the other languages scored 0.57. Human evaluation complements the 

automated evaluation, providing educators’ perspective on question quality. In summary, this 

work marks a promising early-stage (baseline) system toward intelligent, scalable assessment 

systems, bridging static analysis and educational theory to meet the evolving demands of CS 

education. This template-based approach serves as a lightweight baseline for the future version 

alternative to the LLMs discussed in Chapter 5, offering lower computational requirements, 

greater interpretability, and faster processing for large-scale deployment. 

Thesis 4: I developed a modular system for AQG and evaluation using template-based static code 

analysis, enabling modular QG designed to be extensible with minimal integration overhead. The 

framework supports multiple programming languages through customizable parsing templates 

within a unified architecture. [P5] 
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Chapter 7 Multi-Language Static-Analysis System for Automatic Question Generation from 

Source Code 

7.1 Introduction 

AQG has become an important approach as the assessment in programming education has grown 

into a significant challenge. Computer programming education is considered increasingly 

important in the age of technology, and coding education is now regarded as a fundamental skill 

in many fields other than CS [160]. The growth of programming education is accompanied by the 

increasing difficulty of educators in defining a diverse and high-quality set of assessment 

applications that can reasonably assess student knowledge of various programming languages, 

algorithms, and problem-solving abilities in different cognitive levels [P2]. AQG from program 

code has also become a major research topic, with the demand growing for resourceful education 

tools and automatic assessment models in CS [161]. AQG has become popular, especially in 

education, when individualized assessment is required [P2], [P3]. Manual development of 

questions is time-consuming. Thus, the automatic formulation has been investigated [162]. The 

creation of questions manually is time-consuming and labor-intensive. It may lead to weak 

coverage of programming concepts and cognitive skills, which causes large gaps in student 

assessment and learning outcomes. 

CFG and PDG are important intermediate representations and are structured views of the 

complicated control and data dependences in a program [163]. The graphs are useful in building 

a strong basis that extracts semantically useful information that can be used to develop interesting 

and challenging questions. More recent developments in deep learning have resulted in the 

development of code-generation models that can generate source code based on natural language 

and code-based hints with high accuracy [164]. Automatic programming, as a field, seeks to 

reduce human interaction in the production of executable code and has singled out code search, 

code generation, and program repair as the major topics [165]. The main purpose of this chapter 

is to discuss a synergistic combination of CFG-based and PDG-based analyzers regarding the 

scenario of generating questions about program codes, including the approaches, results, and 

possible future aspects. 

It has been suggested to use graphs to encode both the syntactic and semantic structure of code 

and then use graph-based deep learning algorithms to either learn or reason about program 

structures [59]. Such methods fail to capture dependencies over long distances that are created 

when the same variable or function is used in widely separated places. Static analysis tools are 

used to analyze code and provide suggestions for auto-completion, which are usually organized 

alphabetically [166]. Modern integrated development environments have the code completion 
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feature, contributing greatly to programming efficiency and eliminating code errors [166]. Graph-

based program representations, such as CFGs and PDGs, increase the avenues of understanding 

behavior offered by encoding control flow and data dependency graph representations. This more 

elaborate representation permits the generation of questions to focus on particular elements of 

functionality, logic, and possible code weaknesses, thus facilitating a more thorough evaluation of 

the programmer's knowledge [59]. 

There is a specific challenge related to the multi-language nature of programming education. 

During their studies, students study a variety of programming languages, beginning at lower 

levels, such as Python, and moving on to systems programming languages, such as C and C++, 

and to object-oriented languages, such as Java. All languages have distinct paradigms, syntaxes, 

and idiomatic constructs and need specialized parsing and analysis algorithms. These challenges 

are further added by the difficulty of programming education today. Learners are required to learn 

through numerous programming languages, learn the different paradigms of thinking 

algorithmically, and acquire skills at several cognitive levels, including concrete syntax recall, 

abstract problem-solving, and code-writing. Conventional evaluation methods have a problem 

covering these dimensions comprehensively and sustaining consistency and quality. This 

shortcoming is especially acute in large-scale education contexts where hundreds or thousands of 

students need tailored assessment materials. A general question generator must cover this multi-

language aspect across languages with uniform quality and coverage. The chapter deals with the 

background of multi-language nature in the context of education in programming by proposing a 

consistent model for code analysis and QG in four commonly accepted programming languages. 

It presents a force-balanced generation procedure, which works to ensure even coverage in 

multiple dimensions, a serious shortcoming of other current technologies. This shows that at all 

levels of cognitive difficulty, advanced graph-based code analysis techniques can effectively 

generate higher-quality questions, and the whole scope of assessment can be increased. It offers a 

strategic scheme to assign different difficulty levels to programming languages per the general CS 

learning route. It comes up with a list of general evaluation criteria to determine the future of 

research and development on AQG. Such contributions open up major implications in 

programming education, especially by easing a potential burden on educators, providing higher 

quality and broader assessment coverage, and an enhanced learning experience for students in 

various programming languages and levels of proficiency.  

The graph-based pipelines in this chapter are meant to complement not compete with the approach 

of early LLM methods discussed in Chapter 5 and of the template-based static baseline discussed 

in Chapter 6. Chapter 6 has given a lightweight and reproducible baseline across languages but 
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also revealed some pitfalls of regex parsing, including low precision, limited novelty, and a cap 

on structural depth. In this chapter, that layer is replaced by language-specific parsers (Python 

AST, javalang, and Clang/LLVM) that are integrated through a normalization interface to ensure 

consistent treatment of functions, methods, loops, conditionals, and variables across Python, Java, 

C++, and C. Building on such normalized elements, CFG and PDG construction adds structural 

insights, such as control paths, branching, and complexity, alongside semantic insights such as 

data dependencies and variable lifecycles. The force-balanced generation mechanism then adjusts 

in real time from course to emphasizing under-represented Bloom levels, question types, and 

algorithm families to achieve more well-rounded coverage rather than chance distribution across 

all levels of variety in the methodology. This generates improved precision, a richer language, 

greater novelty, and broader cognitive diversity, while remaining interpretable, deterministic, and 

free per item. LLMs sometimes fail to deliver due to budgetary, privacy, or accreditation 

constraints. The result is an explainable and adaptable layer that can also support future hybrid 

pipelines, such as using curated CFG/PDG summaries to guide LLMs in producing more creative, 

higher-order variations. In practice, this clarifies when each method is best suited: LLMs excel in 

breadth and stylistic variety, while graph fusion offers transparent, coverage-controlled, and 

semantically grounded assessment. The research objectives of this chapter are: 

1. To design and implement three automated pipelines (CFG-based, PDG-based, and CFG-

PDG Synergetic) for QG from source code, each leveraging different code analysis 

strategies to explore their effectiveness in producing high-quality, pedagogically aligned 

questions. 

2. To develop an organizational multi-dimensional evaluation system to measure the system 

performance in terms of coverage balance, quality of questions, linguistic complexity, and 

diversity in all dimensions. This framework encompasses automated measures along with 

human assessment measures. 

The remainder of this chapter is organized as follows: Section 7.2 presents the multi-language 

question generator system methodology, including the system architecture, language-specific 

parsing techniques, and advanced code analysis methods. Section 7.3 presents the system 

evaluation results, including coverage balance, question quality, linguistic complexity, diversity 

metrics, and human evaluation metrics. Section 7.4 discusses the implications of the results, the 

contributions and limitations of the study, and directions for future research. Section 7.5 concludes 

the chapter. 

 



 

116 

 

 

7.2 Methodology 

This chapter introduces a multi-language generator and evaluator system that takes source code as 

input and is capable of generating coding questions in various programming languages, including 

Python, C++, Java, and C. These four language choices were the result of being some of the most 

popular languages at the moment, as classified by the May 2025 listing of the TIOBE Index and 

ranking software development languages and their current popularity list [157]. It uses an 

advanced pipeline structure to transform source code written in several programming languages 

into good-quality assessment questions distributed across different dimensions in a reasonably 

balanced manner. This section presents a comprehensive description of every element within the 

pipeline and interconnected characteristics and functions of the general system. Figure 7.1 shows 

the comprehensive pipeline for multi-language question generator and evaluator system.  

The methodology is a complex of several important elements that interact with each other to 

interpret code fragments and generate useful, applicative questions. The following sections have 

a step-by-step analysis of how everything works. This section delivers the complete multi-

language question generator and evaluator system methodology, in which the architecture, 

implementation, and evaluation framework are outlined. The system was developed to tackle 

 

Figure 7.1 Comprehensive pipeline for multi-language question generator and evaluator system 
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severe shortcomings of available automated assessment frameworks on programming education 

with novel parsing, analysis, generation, and evaluation strategies. 

7.2.1 System Architecture and Design Philosophy 

The objective of building a multi-language question generator and evaluator system is to support 

the growing demands to meet the assessment issues in programming education, which traditional 

manual methods cannot prospectively accommodate the demands of scaling with an expanding 

enrollment base and range of curriculum needs. Four basic design principles that informed each 

detail of architecture and implementation governed the system: 

1. Language Inclusivity Principle: The system supports Python, Java, C++, and C programming 

languages, as these are the four most taught programming languages in CS education, as per 

the TIOBE Index. This multi-language strategy curbs the limitations of current systems by 

being multi-language to the level that students could get constant assessment throughout their 

whole programming program. 

2. Algorithmic Diversity Principle: The system includes a collection of 19 fundamental 

algorithms offered in 6 categories: sorting algorithms (Bubble Sort, Insertion Sort, Selection 

Sort, Merge Sort, Quick Sort), searching algorithms (Binary Search, Linear Search, Knuth-

Morris-Pratt), graph traversal algorithms (Depth-First Search, Breadth-First Search, 

Topological Sort), shortest path algorithms (Dijkstra algorithm, Floyd Warshall algorithm, A* 

Search), minimum spanning tree algorithms (Kruskal, Prim), and optimization techniques 

(Dynamic Programming, Greedy Algorithms, Huffman Coding). This extensive coverage will 

allow the students to be assessed on the entire range of algorithmic concepts required in CS 

learning. Employing additional algorithms and more diverse source codes is recommended for 

future enhancements.  

3. Cognitive Alignment Principle: The system creates questions that cover each of the six levels 

of Bloom’s Taxonomy: remembering, understanding, applying, analyzing, evaluating, and 

creating, so that the cognitive information is thoroughly assessed at both ends of the spectrum 

in recollection and way high up in terms of solving problems and also devising codes. Such 

consistency with pre-existing structures in education generates questions predisposed toward 

gradual skill-building hierarchies and critical thinking. 

4. Comprehensive Evaluation Principle: The system consists of an automated measure in addition 

to human assessment by subject matter experts, to ensure that the questions generated are of 

high quality and pedagogically sound for use in education.  
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The pipeline shown in Figure 7.1 starts by feeding in source code, possibly choosing four 

supported programming languages: Python, Java, C++, or C. This is used as a preliminary before 

further analysis and to clear up any problems with encoding, remove comments, normalize 

whitespace, and do other simple preprocessing chores. The system accepts codes with diverse 

levels of complexity, which may range from simple to intricate codes of implementation 

algorithms. The architecture has seven interconnected parts that run code snippets via a chain of 

specialized transformations and analyses: 

1. Language Detection: The system detects the programming language of the code by passing a 

language identifier. 

2. Language-Specific Parsing: It uses language-specific optimized parsers: Python AST module 

with ast2json and astunparse extensions to provide full syntax tree capabilities, javalang library 

to provide structured Java code coverage, Clang to provide support of C code, and a custom 

Clang and LLVM-based parser to provide C++ coverage. 

3. Element Extraction: It automatically recognizes and stores programming elements such as 

functions, classes, variables, loops, conditionals, data structures, and language-specific 

constructs into an index. This component applies language-specific extraction rules and 

consistently covers as many pertinent programming elements as possible across languages. 

4. Advanced Code Analysis: It incorporates CFG and PDG construction employing NetworkX-

based implementations. CFG identifies loops, execution paths, and branching conditionals. 

PDG captures variable relationships and data dependencies. These graphical representations 

allow a more complex analysis of the program behavior and the algorithmic patterns. 

5. Force-Balanced Generation: It takes dynamic measures to ensure the selection probabilities 

are readjusted during the final stages of generating solutions.  

6. Quality Evaluation: It integrates automated and human-based evaluation to assess question 

quality on technical accuracy, semantic relevance, educational value, and linguistic clarity.  

7. Output Generation: It generates structured questions with detailed metadata that contains the 

type of question, the difficulty, the level of Bloom's taxonomy, and the question. Due to the 

output format, the content can be easily scaffolded into LMSs and educational platforms. 

The Python parsing component can use the built-in AST module in Python and additional libraries 

to analyze and manipulate code in detail. This style gives good insight into the syntactic structure 

of Python code and is compatible with the complete Python language specification. Java parsing 

component supports Java analysis, using the javalang library to examine Java sources and 

incorporating the latest Java features like generics, annotations, lambda expressions, and modular 
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programming constructs. The C parser was first implemented using the pycparser library, which 

deals with the C programming language. But it was skipping much of the code. As a result, Clang 

was adopted for C parsing. The C++ parsing unit uses the Clang/LLVM system to execute the 

analysis of all modern C++ code.  

The system uses a common parser interface, which offers uniform access to language-specific 

language-niche parsing features without sacrificing individual parser features and capabilities. 

This is facilitated by the unified parser interface, which allows the seamless addition of language-

specific parsing capabilities with the flexibility of using the individual advantages of different 

parsers. This architecture helps in an eventual expansion to other programming languages and 

parsing methods while still being compatible with the current parts. 

7.2.2 Advanced Code Analysis Techniques 

CFG analysis helps one understand the program flow and control structures needed to formulate 

complex instructions for a program. It enables the full generation and analysis of CFGs with 

NetworkX-based representations of programs that provide the complete control flow behavior of 

programs over all supported languages.  

PDGs analyze the program dependency and relationships between variables and the information 

about the control flow given by a CFG analysis. The ability in PDG generation and analysis of the 

programs in the form of NetworkX-based graph representations facilitates the generation of 

questions regarding data flow, variable scope, and program semantics. The component of PDG 

analysis creates detailed representations of all dependencies within programs that reveal the 

critical data flow and control relationships.  

The resulting PDGs supplement CFG analysis to give a fully rounded view of both program form 

and behavior, allowing complex QG aimed at both semantics and data flow knowledge of 

programs.  

Algorithm 7.1 shows the CFG pipeline algorithm for code QG and evaluation. Its main objective 

is to generate questions by extracting control flow information from code. It parses code to extract 

CFG nodes (basic blocks) and edges (control transitions). Then, it analyzes control paths, loops, 

and branching structures. Finally, it generates questions like tracing, MCQ, and basic error-

identification questions based on flow paths.  

Algorithm 7.2 shows the PDG pipeline algorithm for code QG and evaluation. Its main objective 

is to generate questions using data and control dependencies in the program. It parses code and 

extracts PDG, capturing data dependencies, variable usage, and control dependencies. Then, it 
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analyzes data flows, variable lifetimes, and semantic relationships. Finally, it generates questions 

like dependency, comprehension, and advanced error-identification questions.  

Algorithm 7.3 shows the CFG-PDG pipeline algorithm for code QG and evaluation. Its main 

objective is to generate advanced, diverse questions using a synergistic integration of CFG and 

PDG. It parses and simultaneously extracts CFG and PDG representations. Next, it integrates 

structural (CFG) and semantic (PDG) information. Then, it identifies algorithm types. Finally, it 

generates a reasonably balanced set of questions, including creative coding and higher-order 

Bloom questions. 

 
Algorithm 7.1: CFG Pipeline for Code QG and Evaluation 

Input: Source Code (SC) 

Output: Question Set (QS) 

1: Parse SC using language-specific parser. 

2: Construct CFG from SC. 

3: Identify algorithm type using CFG patterns. 

4: Compute cyclomatic complexity for difficulty estimation. 

5: Select Bloom-level-aligned templates for CFG-based QG. 

6: Fill placeholders using CFG nodes and control paths. 

7: Generate QS (e.g., tracing, MCQ, and error-identification questions). 

8: Evaluate QS using quality and diversity metrics. 

 

 

 

Algorithm 7.2: PDG Pipeline for Code QG and Evaluation 

Input: Source Code (SC) 

Output: Question Set (QS) 

1: Parse SC using language-specific parser. 

2: Construct PDG from SC. 

3: Identify algorithm type using PDG and textual features. 

4: Analyze data dependencies for semantic complexity estimation. 

5: Select Bloom-level-aligned templates for PDG-based QG. 

6: Fill placeholders using PDG nodes and dependency structures. 

7: Generate QS (e.g., dependency, error identification, and comprehension questions). 

8: Evaluate QS using quality and diversity metrics. 
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Algorithm 7.3: CFG&PDG Synergetic Pipeline for Code QG and Evaluation 

Input: Source Code (SC) 

Output: Question Set (QS) 

1: Parse SC using language-specific parser. 

2: Construct CFG and PDG from SC. 

3: Integrate CFG and PDG for a unified structural-semantic representation. 

4: Identify algorithm type using integrated features. 

5: Compute complexity and dependency scores for difficulty estimation. 

6: Select templates aligned with Bloom’s taxonomy and algorithm type. 

7: Fill placeholders using CFG paths and PDG dependencies. 

8: Generate QS (e.g., tracing, dependency, error identification, creative coding, and MCQs). 

9: Evaluate QS using comprehensive quality, novelty, and diversity metrics. 

 

The following is a simple scenario that demonstrates how QG works. The system analyzes the 

CFGs and PDGs and then performs motif detection to find patterns in structures and semantics, 

such as loops with conditionals, branching nodes, dependency chains, or variables with multiple 

reaching definitions. From each motif, triggering generation events, the generation events are 

balanced under the balancing mechanism to ensure proportional coverage across Bloom's 

taxonomy levels that define question types and programming languages.  

The templates are rule-driven and indexed to specific motifs; thus, for instance, a branch motif 

will lead to a tracing or a branch-outcome question while a dependency chain would lead to a data-

flow explanation. Bloom levels are seeded by the motif type and are then fine-tuned using 

heuristics based on cyclomatic complexity, path length, and fan-out, which also determine relative 

difficulty. Before finalization, placeholder symbols and spans are validated against the symbol 

table, dependency paths are checked for consistency, and duplicates are filtered out to preserve 

semantic correctness. For example, the function sum_positive(nums) initializes an accumulator, 

iterates through a list, updates the total conditionally, and returns the total. From the CFG analysis, 

these nodes are: initialization, looping, branching, updating, and returning, which is further 

clarified by the PDG, which illustrates its dependencies between the loop variable, condition, 

update, and final return. Motifs would include that of a loop that has an internal conditional 

(mapped to Apply/Analyze - level tracing questions) and of a data dependency chain from inputs 

to the output (mapped to Analyze - level explanation tasks). Instantiating the relevant templates 

would produce questions such as: "After executing sum_positive on [−2, 3, 5], what value is 

returned?" (Apply, Beginner) and "Describe the data flow from each positive element in nums to 

the final result" (Analyze, Intermediate). In effect, the entire framework turns graphical motifs 

into well-scoped questions that are semantically valid to cover simple constructs but also nested 

ones, with distributions engineered rather than left to emergence. 
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To illustrate the process more concretely, after CFG and PDG analysis identifies the loop-with-

conditional and data-dependency motifs, the system triggers QG events. These events map to 

predefined templates indexed by motif type. The initial Bloom levels are seeded according to motif 

characteristics and further adjusted using heuristics such as cyclomatic complexity, path length, 

and fan-out, which also inform relative difficulty. Placeholders are validated against the symbol 

table, dependency paths are checked for consistency, and duplicates are removed. Once candidate 

questions are generated, the force-balanced stage works to ensure proportional coverage across 

Bloom levels. The system groups questions by level, finds the smallest group size, and uniformly 

samples questions to enforce parity. Importantly, this step does not modify question content, it 

simply balances the distribution and shuffles the order to remove potential ordering bias. As a 

result, the final question set is semantically valid, reproducible, and engineered to provide a fairer 

cognitive profile, avoiding overrepresentation of “remember” or “understand” questions derived 

from simpler motifs. 

At this stage, the system treats all algorithms uniformly. Template selection relies on detected 

structures (loops, branches, updates) and pre-assigned Bloom levels. Although current category 

labels (from 19 algorithms spanning six conceptual families) are used for reporting, the 

architecture supports future extensions: routing algorithms toward specialized template families 

and empirically calibrating difficulty, while maintaining transparency and reproducibility. The 

framework does not explicitly map algorithm categories to Bloom levels or template pools. All 

templates are triggered from structural motifs alone. Category-specific tendencies can still be 

observed even though the system treats all algorithms uniformly. Sorting algorithms (Bubble, 

Insertion, Selection, Merge, Quick) are loop-intensive, with nested iterations and repeated 

comparisons, which often produce Apply-level questions that focus on execution tracing and state 

prediction (e.g., “After the first outer iteration of Bubble Sort, what is the value of index j?”). This 

ensures generalizability and language-independence, but it also limits the ability to design 

questions tailored to the pedagogical nuances of each algorithm family.  

Finally, CFGs and PDGs play complementary roles in the question generation process: CFGs 

capture execution flow and branching, leading to questions such as “Which statement executes 

after the conditional at line X?”, while PDGs trace variable dependencies and data flow, prompting 

tasks like “How does variable X influence the final result?” For example, in binary search, CFG 

analysis highlights branching structures that generate path-tracing questions, whereas PDG 

analysis reveals links such as def_left → use_left → def_mid, supporting dependency-based 

questions about how values shape later comparisons. When combined, CFG and PDG perspectives 

allow for higher-order prompts like “The variable mid is computed at line 27 (PDG) and used in 
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the conditional at line 30 (CFG). Would moving this computation inside the conditional affect 

correctness?” This integration expands Bloom-level coverage by blending structural and semantic 

analysis, while lightweight pattern-matching heuristics (e.g., nested loops for sorting, index 

updates for searching, recursion for divide-and-conquer) enable contextualization without 

sacrificing generality. The following is a concrete example using a Python code fragment to 

demonstrate the direct mapping from code structure → graph motifs → pedagogically-aligned 

questions with semantic correctness guaranteed: 

def count_positives(numbers): 

    count = 0 

    for num in numbers: 

        if num > 0: 

            count += 1 

    return count 

1. Graph Construction: CFG captures control flow (function → initialization → loop → 

conditional → update → return); PDG tracks data dependencies (count definition → conditional 

update → return use). 

2. Motif Detection:  

• Loop-with-conditional motif (for-loop containing if-statement). 

• Accumulator pattern (initialize → conditionally update → return). 

• Def-use chain for count variable. 

3. Automatically Generated Questions:  

• Apply (Tracing): "Trace the value of count after each iteration for input [-1, 3, 0, 5]". 

• Analyze (Dataflow Open-Ended): "Explain how the variable count flows from line 2 to 

line 6".  

• Evaluate (Error Detection): "If line 4's condition were num >= 0, what would happen with 

input [0, -2, 3]?" 

4. Validation: All variable references (count, num) verified in symbol table and line numbers 

confirmed in CFG paths. 

5. Force Balancing: If multiple Apply-level questions were generated, the system would trim 

excess to match representation of higher Bloom levels. The system uses this technique to make 

the generated questions reasonably balanced across various cognitive or question types. However, 

further work is needed to achieve a more evenly balanced distribution in future enhancements. 
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To clarify the distinct roles and advantages of CFG, PDG, and their synergistic combination for 

QG, three simple concrete examples are presented. CFGs capture execution ordering and control 

flow, enabling questions about path selection and iteration. PDGs encode data dependencies and 

variable lifetimes, supporting questions about value propagation and semantic correctness. 

Combined CFG+PDG enables higher-order questions requiring both control and data analysis. 

Three Concrete Examples: 

1. CFG-Based Question (Control Flow): 

if x > 0: 

    result = x * 2 

else: 

    result = x * -1 

Generated question (Apply): "For input x = -3, which branch executes and what is the final value 

of result?" CFG enables tracing execution paths through conditional branches. 

2. PDG-Based Question (Data Dependencies): 

total = 0 

for i in range(5): 

    total += i * 2 

return total 

Generated question (Analyze): "Trace how the variable 'total' is defined, updated, and used. Which 

line's definition ultimately determines the returned value?" PDG reveals def-use chains and 

variable lifetime dependencies. 

3. CFG+PDG Synergistic Question (Control + Data): 

def safe_divide(a, b): 

    if b != 0: 

        return a / b 

    return 0 

Generated question (Evaluate): "Explain how the control guard (b != 0) protects the data 

dependency between parameters and the division operation. What happens if this guard is 

removed?" Combined analysis enables questions about correctness and robustness requiring both 

control flow understanding and data dependency tracking. 

This demonstrates how CFG targets execution tracing, PDG targets dependency analysis, and 

CFG+PDG enables higher-order correctness evaluation. 

7.2.3 Evaluation Metrics 

The same automatic evaluation metrics as the baseline model (6.2.6 Evaluation Approach) are 

utilized in the system, such as overall quality score, linguistic complexity, precision, recall, F1-
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score, novelty score, educational alignment, and cognitive diversity [P5]. Overall quality score 

aggregates linguistic quality, technical correctness, and clarity. Linguistic complexity measures 

readability and sophistication. Precision and recall evaluate generation accuracy and coverage. F1-

Score balances precision and recall. Novelty score measures uniqueness across questions. 

Educational alignment measures alignment with programming learning objectives. Cognitive 

diversity measures distribution across Bloom’s taxonomy levels. Relevance and educational value 

measures were adopted from the baseline system [P5] for human evaluation metrics. Five human-

evaluated dimensions are conceptualized to measure the pedagogical soundness, clarity, and 

cognitive relevance of generated programming questions to measure their quality beyond 

automatic metrics: 

1. Relevance: This metric addresses how well a question aligns with the programming education 

goal and profession. It encompasses curriculum fit (e.g., ACM/IEEE standards), relevance to 

real-world scenarios, alignment with learning objectives, significance, and suitability with the 

target programming language. 

2. Difficulty appropriateness: It quantifies the extent to which an author designed a question to 

unequivocally appear at the cognitive level (Beginner versus Intermediate versus Advanced) 

to which it is targeted. It considers the prerequisite knowledge needed, the cognitive load, the 

complexity of the problem, the duration required to solve the problem, and whether the 

question is scaffolded appropriately for the learners. 

3. Clarity: The aspects of how clearly a question is and whether or not it is ambiguous. It 

encompasses the quality of the grammar, instructional accuracy, suitability of terminology, 

visual presentation (e.g., readability of the code), and the removal of possible ambiguities. 

4. Educational value: This value reflects the question's ability to foster learning and skill 

acquisition. Evaluation is based on the depth of understanding of the underlying concept, 

capability to develop programming skills, portability to other situations, interest and value of 

engagement, and contribution to learning. 

5. Cognitive level match: Analysis of the question focuses on the level of Bloom's taxonomy. It 

evaluates to what extent relevant those cognitive operations included (e.g., remembering, 

applying, analyzing), the promotion of higher-order thinking, and whether the question was a 

valid instrument of cognitive assessment. 

7.3 Results 

The experimental evaluation demonstrated the effectiveness of the proposed approach in 

generating relevant and challenging questions from program codes. The system successfully 
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generated comprehensive programming questions datasets spread across Bloom levels. Table 7.1 

demonstrates how CFG-based, PDG-based, and CFG-PDG approaches distribute across Bloom’s 

Taxonomy, illustrating their alignment with cognitive engagement in algorithm learning. The 

PDG-based method supports lower to mid-level cognitive processes, particularly remembering, 

understanding, and analyzing, through its visual and structural program representations. In 

contrast, CFG-based and CFG-PDG approaches maintain consistent engagement at higher-order 

levels, specifically in evaluating and creating tasks related to algorithm design and optimization. 

This distribution highlights how each approach differentially contributes to fostering cognitive 

development, providing a nuanced basis for aligning teaching strategies with targeted learning 

outcomes in programming education. The dataset of code snippets used is available on GitHub 

[158], the same dataset used for the baseline system [P5]. Established educational assessment 

metrics, outlined in section “7.2.3 Evaluation Metrics” of the methodology, were used to evaluate 

the generated questions.   

Table 7.1 Bloom's taxonomy distribution 

Cognitive Level CFG-Based PDG-Based CFG-PDG Primary Focus Areas 

Remembering 76 370 57 Algorithm facts, terminology, syntax 

Understanding 76 357 38 Code behavior, step-by-step execution 

Applying 76 95 57 Algorithm adaptation, implementation 

Analyzing 76 370 57 Efficiency analysis, code structure 

Evaluating 76 40 17 Algorithm selection, trade-off analysis 

Creating 76 - 38 Algorithm design, optimization 

 

Table 7.2 outlines how various question types are distributed across CFG-based, PDG-based, and 

CFG-PDG, illustrating their alignment with cognitive skill development in algorithm learning. 

Multiple-choice, code tracing, and fill-in-the-blank formats are prevalent across all approaches. 

PDG-based shows higher frequencies, underscoring their effectiveness in reinforcing fundamental 

concepts and procedural fluency. Error identification tasks appear exclusively within CFG-based 

activities, aligning with its strengths in syntax analysis and debugging practices. Open-ended 

questions, promoting reflective reasoning and synthesis, are most prominent in CFG-based tasks 

but are also utilized within PDG-based and CFG-PDG contexts, supporting deeper cognitive 

engagement. Creative coding tasks in PDG-based and CFG-PDG approaches highlight these 

methods’ emphasis on practical application and design-oriented learning. This distribution 
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demonstrates a strategic alignment of question types with each pedagogical strength of the 

approach, ensuring targeted cognitive development within programming education. 

Table 7.2 Dataset question type distribution 

Cognitive Level CFG-Based PDG-Based CFG-PDG 

Multiple Choice 76 357 57 

Code Tracing 76 370 57 

Fill-in-the-Blank 76 370 57 

Error Identification 76 - 17 

Open-Ended 152 40 38 

Creative Coding - 95 38 

 

Table 7.3 presents the comparative evaluation of the CFG-based, PDG-based, and CFG-PDG 

synergistic pipelines, demonstrating clear advancements in AQG for programming education. The 

CFG-PDG synergistic pipeline consistently achieved the highest overall quality and linguistic 

complexity scores (0.83), outperforming both the CFG-based (0.78, 0.77) and PDG-based (0.72, 

0.62) pipelines. This indicates that the integration of structural (CFG) and semantic (PDG) 

analyses contributes to the generation of questions that are not only technically sound but also 

pedagogically rich and linguistically diverse. Precision was similarly highest in the CFG-PDG 

pipeline (0.83), underscoring its effectiveness in producing relevant, accurate questions. Recall 

showed the lowest scores across all systems, indicating a shared opportunity for future expansion 

in question variety. The CFG-PDG pipeline maintained a balanced F1-score (0.15), competitive 

with CFG-based (0.19) and superior to PDG-based (0.11), demonstrating its capacity to balance 

quality with breadth despite the inherent challenges in automatic assessment generation. The 

novelty scores were notably high for both the CFG-PDG (0.96) and PDG-based (0.95) pipelines, 

illustrating the semantic depth added by PDG analysis, which enhances the diversity of questions 

beyond surface-level syntax. All systems achieved maximum educational alignment (1.00), 

reflecting their capacity to generate questions aligned with Bloom’s taxonomy and curriculum 

goals. The metric reflects the proportion of questions that have both a valid Bloom’s taxonomy 

level and an appropriate curriculum tag. Since the tagging process is built into the pipeline and 

applied to every question by default, the score consistently comes out as 1.00, indicating a shared 

need for future review. Importantly, the CFG-PDG pipeline achieved the highest cognitive 

diversity (0.31), supporting a broader range of question types that facilitate deeper learning and 

higher-order cognitive engagement. Collectively, these results affirm the CFG-PDG synergistic 
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pipeline as the most robust and effective approach for scalable, high-quality, and cognitively 

diverse QG from source code. It successfully bridges the structural strengths of CFG analysis and 

the semantic insights of PDG analysis, meeting the evolving needs of programming education. 

Future research should focus on enhancing recall and extending template libraries for rare 

constructs. Based on Table 7.1 and Table 7.2, the three pipelines have not fully resolved the 

balance issue, highlighting the need for a future solution. 

Table 7.3 Automatic evaluation results by approach  

Performance Metric CFG-Based PDG-Based CFG-PDG 

Overall Quality Score 0.78 0.72 0.83 

Linguistic Complexity 0.77 0.62 0.83 

Precision 0.77 0.62 0.83 

Recall 0.11 0.06 0.08 

F1-Score 0.19 0.11 0.15 

Novelty Score 0.86 0.95 0.96 

Educational Alignment 1.00 1.00 1.00 

Cognitive Diversity 0.20 0.29 0.31 

 

Table 7.4 underscores the superiority of the CFG-PDG synergistic pipeline in generating high-

quality programming assessment questions across C, C++, Java, and Python. This integrated 

approach consistently achieved the highest quality scores (0.81–0.85), demonstrating its 

adaptability across procedural, object-oriented, and scripting languages. The CFG-based pipeline 

also performed reliably (0.77–0.78), highlighting the value of structural (control-flow) analysis 

for generating clear and pedagogically sound questions.  

In contrast, the PDG-based pipeline scored lower (0.71–0.72), reflecting its strength in semantic 

insight while revealing limitations when used without structural context. These results confirm 

that combining CFG and PDG analysis is essential for producing scalable, high-quality, language-

agnostic QG, addressing a critical challenge in automated programming education assessment. 

The CFG-PDG synergistic pipeline thus emerges as a robust solution for educators seeking 

consistent, meaningful, and pedagogically aligned assessments across diverse programming 

curricula. 
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Table 7.4 Quality score by approach per programming language 

Programming Language CFG-Based PDG-Based CFG-PDG 

C 0.77 0.72 0.84 

C++ 0.78 0.71 0.85 

Java 0.77 0.71 0.82 

Python 0.78 0.72 0.81 

 

While the study employs well-defined metrics, the absence of human evaluation limits the 

contextual accuracy of generated questions. As a result, human evaluators were used to 

complement the automatic evaluation. Human evaluation was conducted exclusively on the top-

performing approach through automated assessment (CFG-PDG pipeline). Five educators 

independently evaluated a stratified sample of 48 automatically generated questions (12 per 

programming language, 2 per Bloom level). Each question was assessed using a 5-point Likert 

scale, where 1 represented poor performance and 5 represented excellent performance. The 

evaluation covered five dimensions: relevance, difficulty, appropriateness, clarity, educational 

value, and cognitive level alignment. Table 7.5 shows human evaluation metrics for QG from 

source code using CFG-PDG across four programming languages. Table 7.5 shows C++ leads 

slightly. Two tests were conducted to understand whether this slight difference has statistical 

significance. First is a paired t-test comparing the average of the C++ versus each of the Python, 

Java, and C scores, as shown in Table 7.6. Two is a one-way ANOVA comparing average scores 

across all four languages (F-statistic: 1.20, p-value: 0.3098). The difference between C++ and 

other languages is very slight. Based on the table of paired t-tests and ANOVA results, the 

differences between C++ and the other languages are statistically significant, even if they were 

slight. Table 7.6 shows that all three comparisons show that C++ received significantly higher 

evaluation scores than C, Java, and Python, confirming that C++ questions were rated most 

favorably by human evaluators across all metrics.  

C++'s advantage appears to stem from LLVM's libclang parser, which generates more detailed 

ASTs and denser CFG/PDG graphs than the Python or Java parsers. Its expressive syntax provides 

richer structural input for QG. The human evaluation is a valuable counterpart to automated 

assessment, reinforcing core findings while offering critical insights from an educational 

perspective regarding question quality. Both methods consistently identified C++ as the stronger 

performer; however, human reviewers observed a noticeable performance difference across 

different languages than automated metrics initially indicated. The fact that there should be no 

difference between automated educational scoring and the evaluations of a human being highlights 
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the validity of using computers in educational settings. However, human involvement in 

consideration of practical classroom application brings in a critical context that purely algorithmic 

approaches do not have, reinforcing the need for a multidimensional measurement framework in 

educational technology research. 

Table 7.5 Human evaluation of CFG-PDG results by programming language (N=48) 

Metric C C++ Java Python 

Relevance 4.31 4.39 4.15 4.07 

Difficulty Appropriateness 4.31 4.40 4.17 4.09 

Clarity 4.29 4.42 4.17 4.02 

Educational Value 4.33 4.41 4.21 4.05 

Cognitive Level Alignment 4.27 4.42 4.16 4.01 

Average Score 4.30 4.41 4.17 4.05 

 

Table 7.6 Paired t-test results for human evaluation differences 

Comparison t-statistic p-value Significant? (α=0.05) 

C++ vs. C 2.847 0.031 Yes 

C++ vs. Java 6.172 0.001 Yes 

C++ vs. Python 8.924 <0.001 Yes 

 

7.4 Discussion 

Current representative work in the field explores neuro-symbolic integration, wherein static 

analysis is used as a form of weak supervision to guide neural generative models. Empirical results 

demonstrate that this approach yields a marked improvement in the semantic fidelity of 

synthetically generated code, reducing errors such as type violations and uninitialized variable 

access [167]. Recent research has empirically validated the cross-language feasibility of systems 

that integrate static analysis with LLMs for automated test and code generation. While these 

pipelines demonstrate practical utility across languages such as Java, Python, and Kotlin, their 

application remains predominantly focused on these technical tasks rather than on pedagogically-

oriented objectives, such as generating instructional questions for programming education [168], 

[169]. The empirical analysis of the study [170] concludes that the static analysis capabilities of 

code LLMs are fundamentally limited and do not generalize to improved performance on code 

intelligence tasks. This limitation motivates a hybrid approach, where LLMs are augmented with 
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deterministic analyzers to provide the fault sensitivity and correctness guarantees that LLMs alone 

cannot achieve. The article [12] presents a fully automated pipeline for generating a massive bank 

of programming exercises by mining code from public repositories. Its core innovation is a 

language-independent 'meaning tree' representation that allows code snippets to be translated and 

used across C++, Java, and Python. The method leverages static analysis to parse code, extract 

expressions, and auto-generate problems annotated with pedagogical metadata like required skills 

and common errors, enabling scalable content creation for intelligent tutoring systems without 

human intervention. This section critically analyzes and breaks down the findings of the 

experiments and presents their overall implications on programming education, automated 

assessment, and educational technology. The discussion delves into the implications of the 

findings, limitations and challenges, and the broader impact of multi-language QG from source 

code on CS education. 

7.4.1 The Proposed Systems and the Baseline Comparison 

Figure 7.2 shows a clear performance metric improvement across the four programming languages 

in the new systems compared to the baseline template-based AQG system introduced in Chapter 

6. The comparison between the new systems and the baseline shown in Figure 7.3 reveals 

substantial improvements across nearly all performance metrics, indicating that the new systems 

are significantly more effective in generating high-quality programming questions. 

 

Figure 7.2 Quality score per language f or the three approaches compared with the baseline 
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Figure 7.3 compares the CFG-based, PDG-based, CFG-PDG synergistic, and the baseline 

template-based AQG system across the evaluation metrics. CFG-PDG synergistic pipeline 

consistently demonstrates better performance, achieving the highest overall quality score (0.83) 

and linguistic complexity (0.83). This suggests that integrating control-flow and semantic 

dependency analyses enables the generation of questions that are technically accurate and 

articulated in linguistically rich and varied forms, essential for maintaining learner engagement 

and supporting nuanced comprehension. The CFG-based pipeline follows closely (0.78, 0.77), 

indicating that control-flow analysis provides a reliable structure for generating clear and 

pedagogically aligned questions. 

However, it lacks the semantic depth required for advanced comprehension and higher-order 

question types. The PDG-based pipeline, while lower in quality (0.72) and linguistic complexity 

(0.62), contributes semantic insights that enhance novelty and cognitive diversity, albeit with 

challenges in clarity and consistency when used independently. In contrast, the baseline template-

based AQG system underperforms (0.58 quality, 0.39 linguistic complexity), revealing the 

limitations of shallow syntax-based approaches that cannot capture deeper structures or semantics 

of code, often resulting in repetitive and low-cognitive-load questions. The CFG-PDG pipeline 

demonstrates high precision (0.83), improving upon the CFG-based (0.77) and outperforming the 

PDG-based (0.62) and baseline (0.36) systems. This indicates the system’s capacity to generate 

relevant, targeted questions with minimal irrelevant outputs, ensuring assessment quality. 

However, recall remains a shared challenge across all graph-based systems, with scores of 0.08 

(CFG-PDG), 0.11 (CFG-based), and 0.06 (PDG-based), compared to the baseline system’s 

 

Figure 7.3 Comparison between the proposed approaches and the baseline 
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inflated recall (1.00). The baseline’s maximum recall is misleading; it achieves high coverage by 

generating a large volume of low-quality, repetitive questions, reflected in its low quality and 

linguistic complexity scores. The CFG-PDG pipeline, while generating fewer questions, 

prioritizes relevance and cognitive alignment, as demonstrated by its higher precision, ensuring 

that the generated assessments are meaningful rather than voluminous. In contrast, the CFG-PDG 

pipeline favors precision and cognitive alignment, generating fewer but more meaningful 

questions. Its F1-score (0.15), though lower than the baseline’s (0.53), reflects a deliberate trade-

off prioritizing quality over quantity. This underscores that high F1-scores driven by excessive 

recall may not translate into pedagogically effective assessments. Notably, the CFG-PDG pipeline 

achieves the highest novelty score (0.96), marginally surpassing the PDG-Based (0.95) and 

outperforming the CFG-Based (0.86) and Baseline (0.15). This indicates that incorporating 

semantic dependency analysis allows the system to generate diverse, non-trivial questions that 

push learners beyond rote memorization, enhancing engagement and learning outcomes. 

Educational alignment remains maximum (1.00) across all graph-based systems, underscoring 

their consistent alignment with learning objectives and Bloom’s Taxonomy levels. Since the 

tagging process is built into the pipeline and applied to every question by default, the score 

consistently comes out as 1.00, indicating a shared need for future review. In contrast, the baseline 

system’s lower alignment score (0.44) highlights its inadequacy in maintaining pedagogical 

coherence. Cognitive diversity is highest in the CFG-PDG pipeline (0.31), followed by the PDG-

Based (0.29) and CFG-Based (0.20), indicating the CFG-PDG pipeline’s ability to generate 

questions spanning various cognitive levels, including analysis, evaluation, and creative coding. 

Despite a numeric cognitive diversity score of 0.51, the baseline system often produces 

superficially diverse but low-order questions, lacking depth and true cognitive challenge. Finally, 

the low recall of CFG-PDG reflects its reliance on a few templates that cover basic patterns, 

suggesting the need to expand templates and leverage CFG-PDG complexity or ML approaches 

to capture a broader range of valid questions while keeping precision high. 

7.4.2 Research Contributions and Educational Implications 

The generator is a key event in automatic assessment. Its capability to produce reasonably 

balanced content in terms of languages, Bloom's taxonomy, and the form and types of questions 

helps address the bias inherent to manual QG. The proposed study contributes to educational 

technology by showing that rich computational modeling strategies can reliably operationalize 

abstract educational concepts like cognitive complexity, difficulty progression, and content 

balance. Automating cognitive assessment in programming instruction confirms that Bloom's 

taxonomy was applied systematically, proving its feasibility in programming education. The four 
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programming languages are empirically supported with consistent performance based on theories 

that focus on conceptual rather than memorization of languages. The fact that it included all 19 

fundamental algorithms and divided them into six categories covers areas of common curriculum 

deficiencies, with some algorithms being emphasized more than others. The pedagogical system 

ensures that the students will get an in-depth exposure to algorithmic concepts needed to learn CS. 

7.4.3 Research Limitations 

The focus on 19 algorithms excludes advanced topics (e.g., ML, cryptography). Limited language 

support (Python, Java, C++, C) misses functional and web languages. The system emphasizes 

algorithmic tasks over higher-order software engineering skills. Standardized formats may not 

fully capture real-world complexity or creativity. Static analysis limits insight into run-time 

behavior. At present, the framework does not explicitly map algorithm categories to Bloom levels 

or template pools. All templates are triggered from structural motifs alone. This ensures 

generalizability and language-independence, but it also limits the ability to design questions 

tailored to the pedagogical nuances of each algorithm family. Finally, the three pipelines have not 

fully resolved the balance issue, highlighting the need for a future solution. 

7.4.4 Future Research Directions 

Future development should prioritize expansion to additional programming languages, 

particularly those representing different paradigms such as functional programming, concurrent 

programming, and domain-specific languages. The modular architecture provides a foundation for 

such expansion, though each new language will require careful consideration of paradigm-specific 

concepts and assessment approaches. Integration with adaptive learning platforms could provide 

personalized educational experiences based on individual student progress and learning patterns. 

Longitudinal studies of student learning outcomes would provide crucial evidence for the 

educational effectiveness of automated QG. Such studies should examine immediate learning 

gains, retention, transfer to new contexts, and development of expert-like problem-solving skills. 

Future extensions may incorporate lightweight category detection to enable algorithm-aware 

generation. For instance, sorting motifs could unlock invariant and complexity analysis templates, 

graph traversal motifs could emphasize reachability and connectivity, and dynamic programming 

motifs could surface recurrence-based reasoning tasks. Such refinements would enrich question 

diversity while retaining the current framework’s transparency and reproducibility.  

Finally, a promising extension of this work lies in integrating LLMs with the CFG-PDG 

framework. The modular design of the current system already provides clear entry points for such 

hybridization, where LLMs can be guided by structural program representations rather than 

generating questions in isolation. By using CFG and PDG graphs as guardrails, LLMs could enrich 
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QG with greater semantic variety and higher-order reasoning while maintaining alignment with 

Bloom’s taxonomy and algorithmic correctness. This hybrid approach has the potential to address 

the current limitation of low recall, enable more adaptive question complexity, and balance 

structural rigor with semantic richness. 

7.5 Conclusion 

The increasing demand for high-quality and cognitively aligned assessments in programming 

education presents a significant challenge for educators, particularly within multi-language, large-

scale instructional settings. This study presents a robust, scalable, and pedagogically aligned 

system for AQG from source code, leveraging CFG, PDG, and a synergistic CFG-PDG pipeline 

to address this challenge across Python, Java, C++, and C. The system systematically covers 19 

fundamental algorithms, six levels of Bloom’s taxonomy, and a diverse range of question types, 

with reasonably balanced distributions. Empirical results demonstrated that the CFG-PDG 

synergistic pipeline consistently outperformed standalone CFG-based and PDG-based pipelines, 

achieving an overall quality score of 0.83, linguistic complexity of 0.83, precision of 0.83, and 

novelty of 0.96. Compared to CFG-based and PDG-based pipelines, it also achieved enhanced 

cognitive diversity (0.31), supporting the generation of semantically rich, cognitively engaging 

questions spanning higher-order cognitive levels and promoting deeper learning engagement. 

Human evaluations further confirmed its pedagogical value, with C++ questions receiving slightly 

high ratings while maintaining consistent quality across all languages. Despite these 

advancements, limitations remain, particularly in expanding coverage to functional and web 

languages and in capturing dynamic program behaviors. The system maintained maximum 

educational alignment (1.00) across all pipelines, confirming its compatibility with curriculum 

goals and facilitating integration into adaptive learning platforms and scalable online courses. 

Since the tagging process is built into the pipeline and applied to every question by default, the 

score consistently comes out as 1.00, indicating a shared need for future work. The low recall of 

CFG-PDG reflects its reliance on a few templates that cover basic patterns, suggesting the need to 

expand templates and leverage CFG-PDG complexity or ML approaches to capture a broader 

range of valid questions while keeping precision high. Future work will prioritize template library 

expansion, dynamic analysis integration, and longitudinal studies to assess the system’s impact on 

learning outcomes, engagement, and skill retention in diverse learning contexts. In conclusion, 

this work establishes a foundational advancement in automated programming assessment, offering 

a practical, effective tool for educators to deliver high-quality, equitable, and cognitively diverse 

evaluations in CS education. 
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Thesis 5: I developed a modular static analysis framework for AQG across multiple programming 

languages. The system integrates language-specific analyzers within a unified architecture 

designed to support consistency in QG across the four programming languages (C, C++, Java, and 

Python). [P6] 
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Chapter 8 Conclusion 

8.1 Contributions 

This dissertation has established a comprehensive, systematic approach to advancing 

programming education through automated, high-quality, and pedagogically aligned QG and 

learning material creation. Across ontology-based models, hybrid AI frameworks, template-driven 

static analysis, LLM evaluation, CFG pipeline, PDG pipeline, and CFG–PDG pipeline, the 

research consistently demonstrates scalable, effective methodologies that address critical gaps in 

assessment practices within multi-language programming education. The findings provide 

educators and technology developers with validated, actionable frameworks to enhance learning 

engagement, assessment quality, and instructional efficiency, paving the way for further 

innovations in automated programming education tools. The main scientific results achieved 

during the completion of this research are summarized in five thesis points. 

8.1.1 Thesis 1 

I developed an ontology-based system that automatically generates programming-related 

assessment questions directly from source code. By leveraging structured domain knowledge, the 

system semantically interprets programming constructs to support concept-aware question 

generation, without relying on adaptive learning mechanisms. [P1, P2] 

8.1.2 Thesis 2 

I developed a hybrid system that combines static code analysis, ontology, and natural language 

processing using word embeddings to generate programming-related questions from source code. 

[P3] 

8.1.3 Thesis 3 

I developed a systematic evaluation framework to assess the QG capabilities of LLMs, using 

automatic evaluation metrics and complemented by human-centered evaluation metrics for the 

top-performer LLM. The findings provide insights into their strengths and limitations in 

generating programming-related assessment questions for potential educational use in the 

programming domain. [P4] 

8.1.4 Thesis 4 

I developed a modular system for AQG and evaluation using template-based static code analysis, 

enabling modular QG designed to be extensible with minimal integration overhead. The 

framework supports multiple programming languages through customizable parsing templates 

within a unified architecture. [P5] 
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8.1.5 Thesis 5 

I developed a modular static analysis framework for AQG across multiple programming 

languages. The system integrates language-specific analyzers within a unified architecture 

designed to support consistency in QG across the four programming languages (C, C++, Java, and 

Python). [P6] 

8.2 Future work 

Each of the five thesis points opens up unique and practical directions for continued research. The 

following recommendations aim to build on their individual contributions, offering ways to refine 

current methods, broaden their reach, and address some of the open challenges highlighted 

throughout the dissertation. 

1. Ontology-Based Automatic Generation of Learning Materials for Python Programming: 

Future research could extend the ontology-based approach beyond Python to include a broader 

range of programming languages. This would involve designing cross-language ontological 

frameworks or language-specific extensions that preserve semantic coherence across diverse 

syntactic constructs. Additionally, conducting controlled experimental studies comparing 

ontology-generated questions with manually crafted ones could yield valuable insights into 

their educational effectiveness, particularly in terms of learner comprehension, retention, and 

perceived usefulness. 

2. A Hybrid Approach for Automatic Question Generation from Python Program Codes: One 

promising direction is to enhance the system’s ability to process more complex programming 

structures, especially those involving third-party libraries, nested functions, and 

interdependent statements. Improving the semantic interpretation pipeline, possibly by 

incorporating deeper NLP techniques or lightweight learning models, could help generate 

more sophisticated and context-aware questions. Future research may also explore how to 

adapt the system automatically to different code domains or programming paradigms. 

3. Evaluating Large Language Models for Generating Programming Questions from Code: 

Future work in this area could involve refining the evaluation framework to capture more 

nuanced aspects of question quality, such as semantic subtlety, creativity, and alignment with 

pedagogical goals. Incorporating qualitative feedback from educators alongside quantitative 

metrics could further ground the evaluation process in real instructional needs. Additionally, 

exploring emerging models, including domain-specific LLMs or those designed to support 

multiple programming languages, may offer deeper insights into their effectiveness across 

diverse educational contexts. 



 

139 

 

 

4. Template-Based Question Generation from Code Using Static Code Analysis: Subsequent 

research may focus on developing dedicated language-specific parsers for Java, C++, and C 

to improve upon the current reliance on pattern-based extraction methods. Adding runtime 

analysis or symbolic execution could improve the system’s contextual accuracy and support 

questions based on actual program behavior. The integration of adaptive or ML-driven 

components might also enable context-sensitive template selection. Longitudinal classroom 

studies would help assess how such systems impact student learning and engagement over 

time. 

5. Multi-Language Static-Analysis System for Automatic Question Generation from Source 

Code: Further development could extend the system to include functional, concurrent, and 

domain-specific languages, making it more adaptable to a wide range of curricular needs. By 

combining dynamic and static program analysis, the system could generate richer, behavior-

aware questions, especially in tasks involving edge-case reasoning or algorithmic logic. 

Another important direction involves linking the framework with adaptive learning platforms 

that personalize questions based on individual learner progress. Conducting long-term 

educational studies would provide essential data on how the system influences knowledge 

retention, problem-solving skills, and transfer of learning across different instructional 

settings. Finally, a promising extension of this work lies in integrating LLMs with the CFG-

PDG framework. The modular design of the current system already provides clear entry points 

for such hybridization, where LLMs can be guided by structural program representations rather 

than generating questions in isolation. By using CFG and PDG graphs as guardrails, LLMs 

could enrich QG with greater semantic variety and higher-order reasoning while maintaining 

alignment with Bloom’s taxonomy and algorithmic correctness. This hybrid approach has the 

potential to address the current limitation of low recall, enable more adaptive question 

complexity, and balance structural rigor with semantic richness. 
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