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Summary

This dissertation addresses the critical issue of developing effective methods for Automatic
Question Generation (AQG) from source code in programming education. The motivation arises
from the increasing demand for scalable and adaptive assessment tools in computer science, where
manual preparation of exercises and tests often places a heavy burden on instructors. The
objectives of this research are to design, implement, and evaluate multiple approaches for
generating meaningful assessment questions directly from program code. The significance of this
work lies in its potential to support personalized learning, reduce instructor workload, and enhance

assessment quality.

To achieve these aims, the dissertation adopts a progressive research design across five interrelated
studies, each addressing specific limitations of earlier approaches and expanding the scope of
AQG in terms of computational techniques, programming language coverage, and pedagogical
contribution. The first study developed an ontology-based system that modeled Python
programming concepts to automatically generate structured learning materials in the form of
questions. Building on this, the second study proposed a hybrid approach that integrated semantic
analysis with template-driven techniques, still within Python, to improve both accuracy and
diversity of questions. The third study shifted toward artificial intelligence by evaluating
transformer-based large language models for their ability to generate semantically rich code-
related questions across C++, Java, and Python. The fourth study introduced a template-based
system employing static code analysis as a baseline for multi-language generation, producing
parameterized questions from C, C++, Java, and Python code. Finally, the fifth study culminated
in the design of a multi-language static-analysis system, which directly addressed the limitations
of the baseline system by broadening scalability and improving question variety while retaining
accuracy across the same four languages. Data collection across studies included generated

question sets, automatic evaluations, and expert reviews.

The ontology-based system demonstrated feasibility for concept-driven AQG but lacked
scalability. The hybrid method produced a wider variety of questions than template-only systems,
enhancing both diversity and contextual relevance. Large language models demonstrated strong
potential in generating semantically rich questions across multiple programming languages but
posed challenges in computational demands and cost. The template-based static code analysis
system achieved high precision in syntactically accurate question generation across four
languages, but creativity and higher-order question types remained constrained. The multi-
language static-analysis system overcame several of these limitations by supporting broader

coverage and improving flexibility, thereby demonstrating scalability and practical deployment

10



potential. Expert evaluations confirmed the accuracy and relevance of the generated questions,

though further enhancement is required for creativity and critical-thinking dimensions.

Taken together, the findings confirm that a multi-approach framework can address the diverse
requirements of AQG from source code in programming education. The dissertation contributes
not only computational methods but also pedagogical insights into assessment design and
linguistic perspectives on question formulation. It advances theoretical understanding while
offering practical tools for scalable programming assessment. Practical implications include
integrating AQG systems into learning management platforms to support automated formative
assessment at scale. Limitations include dependence on source code quality, variation across
programming languages, and the need for validation in authentic classroom contexts. Future
research directions include adaptive AQG, closer integration with intelligent tutoring systems, and

extending applications beyond programming to other domains requiring structured assessment.
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Chapter 1 Introduction

1.1 Background

Automatic Question Generation (AQG) is the process of creating meaningful and relevant
questions automatically from various types of input, including text, structured data, images, or
videos, using computational methods. In simple terms, it involves designing systems that can
understand content, identify key information or patterns, and generate clear, contextually
appropriate questions to support learning, comprehension assessment, conversational systems, or
data exploration without requiring manual question crafting for each instance [1], [P2]. Figure 1.1
illustrates the conceptual framework of AQG from source code. The system takes source code as
input, processes it through computational analysis and generation techniques, and automatically

produces relevant questions for educational or assessment purposes.

Source Code Questions
AQG System
def add(a, b): ¥ ) ) ¥ * What does this function do?
return  + b Analysis & Generation « What are the parameters?

«What is returned?

Figure 1.1 Conceptual framework of AQG from source code
Figure 1.2 illustrates the four-component architecture of Intelligent Tutoring Systems (ITS) as
discussed by the review article [2]. This dissertation focuses specifically on the Domain Model
component through AQG for programming education. This work contributes to the foundational
knowledge representation layer by developing methods to automatically generate contextually
appropriate programming questions that can be integrated into the broader tutoring system
architecture.

The evolution of programming education necessitates a profound reflection on how assessment
has been designed, delivered, and evaluated. Given that coding has become necessary across
academic disciplines and industries, educational institutions increasingly need to develop robust
and scalable ways to assess their students' programming knowledge and problem-solving skills
[3]. Learners today often study multiple programming languages, including Python, Java, C++,
and C, each with unique syntactic and conceptual nuances, making standardized assessment even

more challenging.

Although recent AQG studies have primarily focused on generating questions from natural
language texts and, to a lesser extent, visual data [1], [4], [5], AQG from source code remains

underexplored despite its potential to transform programming education. Academic programming
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textbooks typically include text, images, and code examples, yet most AQG systems rely heavily
on NLP techniques for text-based question generation (QG), with limited exploration of visual
content [1], [P3]. The review paper [P2] advocates for developing QG methods tailored to

programming topics, along with appropriate evaluation criteria.

Intelligent Tutoring System

Domain Model

» Knowledge Representation
= Curriculum Structure
» Content Organization

» Automatic Question Generation
(Research Confribution)

Tutoring Model

» Pedagogical Strategies ol
» Decision Making

f

User Interface <
—

- Learning Environment User/Learner
- Interaction Management

Student Model

» Learning Progress
= Cognitive Abilities

Figure 1.2 The four-component ITS architecture

Traditional methods of question design in programming courses have struggled to keep pace with
this growth. As noted in previous studies, manually crafted questions are time-consuming to
produce [6], difficult to standardize across diverse learners and languages [6], [7], and often fall
short of covering the full spectrum of cognitive skills outlined in Bloom’s Taxonomy [8].
Moreover, they tend to lack scalability, particularly in large or multi-language educational settings

where hundreds of students may require tailored assessment materials [7].

These challenges have driven a growing interest in AQG from source code. Rather than relying
on static repositories of questions, AQG approaches analyze code directly, extracting structure,
semantics, and logic to generate assessment items that dynamically align with the learner’s context
[9]. This dissertation responds to that demand by presenting a unified exploration of five distinct
yet complementary approaches: ontology-driven QG [10], [11], hybrid semantic-to-question
modeling [9], template-based multi-language QG via static code analysis [12], evaluation of large
language models (LLMs) for QG from source code [13], and a comprehensive multi-language
assessment system powered by Control Flow Graphs (CFGs) and Program Dependence Graphs

(PDGs). Collectively, these approaches constitute the novel contributions of this work. I extend
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beyond traditional template or ontology-based systems by incorporating formal semantic graph
representations, namely CFGs and PDGs, to anchor QG in actual program structure and behavior.
CFGs model possible execution paths and dependencies across program blocks [14], while PDGs
capture both control and data dependencies among statements [15], providing a richer semantic
foundation for QG. Each approach contributes to a shared objective: to automate programming
QG in a pedagogically grounded, cognitively stratified (Organizing learning or assessment tasks
by levels of thinking, from simple recall to complex problem-solving), and linguistically inclusive
way [7], [16]. The background and motivation for this work emerge directly from the collective
recognition within these studies of the limitations in existing systems and the urgent need for more

intelligent, adaptable, and scalable solutions in programming education assessment [7].

1.2 Research Motivation

Despite significant advancements in artificial intelligence (Al)-driven educational technologies,
several critical gaps persist in the domain of AQG for programming education. The first significant
challenge is the lack of scalable systems capable of generating high-quality, diverse, and
cognitively stratified questions directly from source code [17], [18]. As discussed by Kurdi et al.
(2020), rigid template-based QG methods are often manually constructed, lack linguistic diversity,
and are limited in their ability to produce varied or complex question types. These limitations
hinder their adaptability across different domains and educational objectives [5]. Previous studies
show that manually created questions are time-consuming and struggle to maintain cognitive
coverage across large-scale deployments, reinforcing the necessity for automation that
accommodates a range of programming logic and learner profiles [17]. A second limitation is the
insufficient support for multi-language QG across most existing tools [19]. Template and static
analysis-based methods typically underperform when handling multi-language syntax and
semantics, making them less effective for inclusive educational environments [5]. Additionally,
few frameworks integrate pedagogical models such as Bloom’s Taxonomy in a systematic way,
resulting in assessment items that are either too shallow or mismatched in cognitive depth [20],
[21].

The introduction of the transformer architecture marked a significant advancement in language
modeling by incorporating an attention mechanism. This component enables the model to
dynamically assess the relative importance of input tokens and discern intricate relationships
among them, independent of their sequential positioning. As a result, the model demonstrates
enhanced coherence in its generated outputs and exhibits an improved capacity to preserve
contextual information over extended textual spans [22], [23]. Finally, current evaluation practices

for QG from source code lack standardization and pedagogical alignment. Typical methods often
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rely on single-reference n-gram similarity metrics such as BLEU (Bilingual Evaluation
Understudy) and ROUGE (Recall-Oriented Understudy for Gisting Evaluation), which fail to
capture the semantic and syntactic diversity needed for robust assessment. Previous efforts have
shown that multi-reference evaluations, especially those enhanced by paraphrases generated
through LLMs, can improve the correlation with human judgment and provide more reliable

evaluation frameworks [24].

Although LLMs like GPT-4 (generative pre-trained transformer) can generate syntactically fluent
questions, their outputs vary considerably in relevance, clarity, and educational value. Benchmarks
such as EQGBench demonstrate that while LLM-generated questions are linguistically coherent,
their practical applicability in educational settings depends heavily on alignment with pedagogical
objectives, which is currently insufficiently addressed [25]. Moreover, expert-validated, multi-
dimensional evaluation frameworks that integrate educational goals and knowledge alignment
remain rare, limiting the instructional reliability (consistent pedagogical appropriateness and
quality) of automatically generated questions. Recent work proposing planning-based frameworks
emphasizes the need for such multi-dimensional, expert-informed approaches to enhance the

pedagogical usefulness and reliability of question generation systems [26].

These limitations underscore the need for a principled and pedagogically grounded approach to
AQG from source code. By integrating semantic modeling (Creating a structured representation
of knowledge so a computer can understand the meaning and relationships between concepts),
cognitive stratification, and rigorous evaluation practices, such an approach can support scalable

and equitable learning assessments in programming education.

1.3 Problem Statement

The global expansion of computer science (CS) education has intensified the need for scalable,
high-quality assessment tools that can effectively serve diverse learners across various
programming languages [3], [7]. Traditionally, the manual development of programming
assessment questions has been labor-intensive, inconsistent, and insufficient to meet the rising
demand for pedagogically sound, comprehensive evaluation materials in programming education
[6], [8], [21]. AQG has emerged as a promising approach for scalable assessment across
educational contexts [1], [4], [5]. However, the current research landscape in AQG reveals a
pronounced imbalance in focus and development across different input modalities. The field has
been dominated by text-based question generation, benefiting from extensive datasets, mature
neural models, and a clear trajectory from rule-based systems to large pre-trained transformers
and LLMs [4], [17], [22]. Similarly, visual QG has seen growing attention, particularly for

generating questions from images and, more recently, educational diagrams, leveraging
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advancements in multimodal learning [19], [26]. These areas have established robust evaluation
practices and benchmarks, fueling rapid progress and adoption [24], [25]. In contrast, QG from
source code remains significantly underrepresented despite its critical potential in programming
education [9], [12], [17]. Generating meaningful and pedagogically aligned questions directly
from source code presents unique challenges, including understanding code semantics [14], [15],
aligning questions with relevant programming concepts [9], [12], and ensuring cognitive coverage
across difficulty levels [8], [20], [21]. The lack of standardized datasets and well-defined
evaluation metrics further impedes systematic advancements in this domain [13], [24], [25]. Most
existing AQG research has overlooked this research gap in programming education assessment,
and only a few recent studies have begun exploring it, often in isolated or single-language contexts
[9], [12], [17], leaving a substantial gap in the scalable assessment needs of programming
education. To clarify, generating programming questions directly from raw, multi-language source
code requires integrated semantic parsing (AST/CFG/PDG), multi-language normalization,
deliberate Bloom-level coverage, diverse code-centric question types, and multi-metric
evaluation. These requirements are largely absent in existing primarily text-focused or single-
language ontology/LLM studies, leaving the domain underdeveloped and limiting scalable

programming assessment.

Addressing this gap is essential to ensure equitable, effective, and scalable programming
assessment tools that align with modern pedagogical frameworks and can adapt across multiple
programming languages [3], [7], [21], [23]. Advancing AQG from code requires not only robust
generation methods that capture the semantics of source code [14], [15], but also the development
of principled evaluation frameworks tailored to the unique requirements of programming
education [13], [24], [25]. This dissertation aims to address these gaps to advance scalable, high-
quality, and pedagogically aligned AQG systems that support equitable programming education

worldwide.

1.4 Research Aims

This dissertation aims to advance programming education by designing, implementing, and
evaluating automated systems that generate and assess programming questions directly from
source code in a pedagogically grounded, linguistically inclusive, and cognitively diverse manner
[31, [7], [9], [12], [17]. This research seeks to bridge the gap between code-level semantic
understanding and educational assessment, using various techniques including ontologies [10],
[11], template-based static analysis [20], and LLMs [17], [22], [23], [25].

A central aim is to alleviate the manual workload of educators while improving assessment quality

and scalability across multiple programming languages [6], [7], [21]. Another aim is to
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systematically align generated questions with established cognitive learning models, especially

Bloom’s Taxonomy, to ensure relevance across difficulty levels and educational contexts [8], [16],
[20], [21].

This dissertation also aims to contribute robust evaluation methodologies combining automatic
scoring and expert review [13], [24], [25], improving the reliability and instructional alignment of
automatically generated content [1], [4], [5]. Ultimately, the research aspires to provide an
integrated, technically rigorous, and pedagogically valid foundation for future systems in
programming assessment, especially in multi-language and large-scale learning environments [2],
[3]. [23].

These aims collectively shape the trajectory and cohesion of the dissertation’s contributions,
reflecting the interdisciplinary intersection of code analysis, natural language generation, and
educational measurement [1], [4], [17], [22].

1.5 Research Objectives

This dissertation seeks to address the limitations of current programming assessment methods by
pursuing the following core objectives:

1. To design and implement models that automatically generate programming gquestions

directly from source code.

2. To ensure systematic alignment of generated questions with cognitive learning

frameworks, particularly Bloom’s Taxonomy.

3. To support multiple programming languages (Python, Java, C++, and C) within a unified,

multi-language assessment context.

4. To evaluate both the technical quality and the pedagogical value of generated questions

through automated metrics and expert review.
Together, these objectives establish the foundation of this dissertation’s contribution to advancing
programming education assessment through Al-enhanced, source code—driven QG and evaluation.
1.6 Scope and Limitations

This dissertation is bounded by the following scope and limitations, which reflect the operational

design and methodological constraints of the conducted studies:

1. The primary focus is on source code as input, excluding textbook content and natural-

language problem descriptions.

2. The study is limited to four programming languages: Python, Java, C++, and C.
17



3. The generated question types include multiple-choice questions (MCQs), open-ended
questions, Boolean (yes/no) questions, short-answer questions, code-tracing questions, fill-
in-the-blank questions, error identification (debugging) questions, and creative coding

questions.
4. Evaluation incorporates both automated scoring metrics and expert human review.

5. The scope does not extend to real-time feedback, adaptive learning mechanisms, or

dynamic student modeling.

These boundaries ensure that the dissertation delivers a focused and rigorous contribution to AQG
from source code, while acknowledging the limits of generalizability and leaving room for future
research directions.

1.7 Significance of the Study

This dissertation makes several important contributions to programming education assessment
through AQG:

1. It reduces the manual workload of educators by automating the design of programming

questions aligned with pedagogical frameworks.

2. It enhances inclusivity by enabling multi-language AQG and supporting cognitively

diverse assessment items.

3. It introduces rigorous evaluation pipelines that combine automatic metrics with expert
judgment, thereby improving the reliability and trustworthiness of educational Al.

4. 1t contributes to the intersection of NLP, machine learning (ML), and programming
pedagogy by applying structured and Al-driven methods to real-world educational

challenges.
Collectively, these contributions position the dissertation as both a technological advancement and
a pedagogical innovation in equitable, scalable, and cognitively aligned programming education.
1.8 Dissertation Structure

This dissertation is organized to reflect the systematic development, evaluation, and integration of

five distinct yet interrelated approaches to AQG from source code.

Chapter 2: Literature Review. This chapter provides an overview of research on programming

assessment, question generation, semantic code analysis, template-based methods, and LLMs.
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Chapters 3—7: Research Studies. Each chapter presents an independent but interconnected study,

including its introduction, methodology, results, discussion, and conclusion.

Chapter 3: Ontology-Based Automatic Generation of Learning Materials for Python

Programming.
Chapter 4: Hybrid Approach for Automatic Question Generation from Program Codes.

Chapter 5: Evaluating Large Language Models for Generating Programming Questions

from Source Code.
Chapter 6: Template-Based Question Generation from Code Using Static Code Analysis.

Chapter 7: Multi-Language Static-Analysis System for Automatic Question Generation

from Source Code.

Chapter 8: Conclusion. This chapter synthesizes the findings, presents contributions, outlines

future research directions, and lists publications resulting from the dissertation.

While each study stands independently, together they form a cohesive exploration of AQG, from
source code reflecting both the progressive development of the dissertation and its multi-layered

contributions across computational, pedagogical, and linguistic dimensions.
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Chapter 2 Literature Review

2.1 Introduction

AQG from source code is situated at the intersection of educational assessment, programming
pedagogy, static program analysis, and Al. As programming becomes a fundamental skill in
education and industry, the demand for scalable, cognitively diverse, and pedagogically sound
assessment frameworks has intensified. This chapter synthesizes the foundational literature across
these intersecting domains, organizing contributions and identifying gaps thematically across
ontology-driven instructional content, graph-based static analysis, template-based question
systems, LLMs, multi-language question generation, and the application of Bloom’s Taxonomy

in automated assessment frameworks [9], [17], [21].

2.2 Ontology-Based Instructional Content Generation

Effective instruction in programming education requires comprehensive and adaptive learning
materials [27]. These materials include textual and visual content, interactive exercises, tutorials,
real-world examples, assessment tools, and personalized pathways that reinforce hands-on
practice and real-world applicability. Textual content delivers explanations, code examples, and
problem sets, while interactive exercises and tutorials facilitate active learning and progressive
skill development. Real-world examples bridge theory with practice, and assessment tools
measure student progress and understanding [28]. The overarching aim is to provide accessible,
engaging, and personalized resources that support varied learning preferences. Programming
languages are a central area of study in CS and software development. Developing effective
methods for teaching programming concepts is essential. Interest in QG techniques for
programming languages has grown as a means of creating scalable practice opportunities,
reinforcing learning, and enabling ongoing assessment [P2]. The paper [P3] applied ontology to
develop a QG approach for programming concepts. Several studies have investigated the
possibility of automatic generation of learning materials and their positive impact on enhancing
student engagement and learning outcomes. Vergara et al. [29] found that Al-generated
personalized learning materials boosted students’ motivation and performance in mathematics
courses. At the same time, Liu et al. [30] highlighted how Al-powered tools assist educators by
automating quiz and worksheet creation, reducing manual workload while maintaining
instructional quality. Lin et al. [31] examined the relationship between student engagement and
outcomes in a cyber-flipped course, finding a positive correlation between active participation and
academic performance, thereby underscoring the value of dynamic course materials in blended

learning environments. Over the years, numerous researchers have explored the use of ontologies
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in education to automatically create and structure learning materials, enhancing personalization
and interoperability within learning management systems (LMS) [32]. For example, the article
[33] proposed an intelligent ontology-based system to automate tasks such as course scheduling
and academic advising, demonstrating improvements in efficiency and student experience through
structured domain knowledge. William and Joselin [32] discussed how ontologies enhance
personalized learning, advocating for their use in shifting away from one-size-fits-all models to
adaptive, student-centered instruction.

In the paper [34], a method for constructing structured knowledge graphs using word embeddings
and NLP techniques was introduced, enabling automated semantic extraction and relationship
mapping from educational content. This structured approach facilitates reference definition
(prerequisites, hierarchy, relatedness), supporting the creation of dynamic, interconnected learning
resources. Similarly, Stephen [35] explored the use of LLMs like GPT-3 to generate CS learning
materials across topics, evaluating quality, relevance, and coherence to propose innovative
methods for scalable CS education. Flanagan et al. [36] proposed leveraging NLP and ML to
structure educational content extracted from various sources, aligning it with learning objectives
to improve digital learning environments. Meanwhile, the paper [37] detailed the construction and
practical application of a knowledge graph within Australian school science curricula, focusing

on personalized learning and adaptive tutoring system integration.

Despite the growth of ontology-driven learning material generation, significant limitations remain:
insufficient knowledge representation structures, limited flexibility and context awareness,
challenges in reusability, and the lack of deep, adaptive personalization. Current systems often
require human oversight, lack the interactivity and nuanced feedback of human instruction, and
fall short in fostering critical problem-solving skills. Continued Al advancements in contextual
understanding and adaptability are necessary to overcome these limitations. Table 2.1 compares
traditional methods with ontology-based approaches, highlighting the latter’s strengths in
semantic structuring, flexibility, scalability, and personalization, which are essential for modern,
learner-centered programming education. The complexity of QG requires expertise, deep content
knowledge, and substantial time investment, especially in online learning contexts since the
emergence of syntax-based and semantic-based QG models in 2014 [38], ontologies have proven
effective for standardizing knowledge representation across domains, including e-learning,

facilitating personalized and efficient learning [P9].
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Table 2.1 Comparison between the traditional approaches and ontology-based approaches

Feature/Aspect Traditional Approaches Ontology-based Approaches References
Knowledge Structure | linear and hierarchical semantic and interconnected [33], [P1]
Flexibility I|m_|ted adaptability to new hlghly adaptable to new knowledge and [34], [39]

topics domains
Context Awareness mlnlmal cc_)ntext rich .conte_xt understanding through [40], [P8]
consideration relationships
Content Reusability | low reusability of materials high reusability due to modular [P3], [P9]
components
Personalization bas!c customization, often dyna}mlc personalization based on learner 132], [41]
static profiles
Scalability dlfflc_ult to scale with easily scalable with ontological [42], [43]
growing content frameworks
Interoperability often siloed systems enhanced interoperability across platforms [29], [44]
Knowledge simple data structures (e.g., | rich semantic representation using classes,
. - . . . [45], [P13]
Representation text, images) properties, and relationships

. time-consuming updates more accessible updates due to modular
Maintenance and revisions ontology design [46], [47]
Collaboration limited collaboration facilitates collaboration through shared [35], [P9]
Support features ontologies '
Learning Pathways prede_fmed and rigid dynamic learning pathways based on [29], [30]

learning paths learner needs
Assessment Tools basic quizzes and tests adaptive assessments based on learner [48], [49]
progress
Feedback limited feedback based on contextual feedback based on semantic [36], [50]
Mechanism performance analysis '

Domain knowledge models, particularly those implemented with Python and Owlready?2, offer
flexible and integrable representations for e-learning systems [P8]. They enable adaptive learning
systems capable of tailoring experiences to individual learners, reinforcing efficient knowledge
transfer. Although QG in programming education holds transformative potential, implementation
remains partial in modern contexts. Programming languages, central to CS education, demand
effective teaching methods, with QG approaches enabling scalable practice and assessment
opportunities [P3]. To support learning, Urazova [51] developed a system for automatic UML
database design QG and response evaluation using Al and NLP, providing students with practical,

self-assessment tools. Russell [52] explored automated code-tracing exercises in CS1 courses,
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demonstrating their utility in reinforcing control flow and problem-solving skills, while
acknowledging challenges in replacing traditional teaching approaches. LLMs have recently been
applied to generate programming tasks and explanations, offering scalable solutions for instructors
[17]. However, challenges remain, including dependence on large-scale models, computational
demands, and difficulties in generating high-quality training data, all of which must be addressed

when implementing these technologies in educational contexts [53].

2.3 Static Code Analysis and Graph-Based Representations

Static code analysis is employed across various domains, particularly in compiler design and
security [54]. Static code analysis is used to automate checking student programming assignments.
It verifies the correctness of student programming assignments concerning assignment instructions
[55]. Many static analysis techniques are based on code representation, and it is critical in
performing other tasks that involve drawing deductions about semantic relationships between
program statements [56]. A proper code representation procedure allows deriving meaningful
source code features that capture different aspects of the source code structure and behavior.
Graph-based structures have mainly been employed in recent innovations in code representation
to capture both the syntactic and the semantic details embedded in the code. The Abstract Syntax
Tree (AST), CFG, PDG, and Data Flow Graph (DFG) are the most commonly used forms of
representation. The definitions of AST, CFG, and DFG are as follows:

Definition 1: AST
An AST for the function f; inaprogram P = {f, f», ..., f,.} is represented as a graph G} = (V}, EL)

where V} is the set of leaf nodes and E} is the set of directed edges, where each edge connects a

parent node to its corresponding child node.
Definition 2: CFG

The CFG for the function f; is defined as a graph G = (V/, EL) where V} is a set of nodes and E:

is a set of directed edges representing the control flow between the nodes.

Definition 3: DFG

A DFG for the function f; is defined as a graph G5 = (V, E) where V} is a set of nodes and E}

is a set of directed edges capturing variable accesses and modifications during the execution.

The following is a simple example of a small function and shows how its AST, CFG, and DFG

would look in a basic form. This will give the reader a clear idea of how each graph is constructed

and what it represents. A simple Python function illustrates these structures:
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# Example Function
def add(x, y):
Z=XxX+y
return z

1. AST: The AST represents the syntactic structure of the code. It focuses on how the source

code is structured, not how it executes or flows.
AST Nodes (simplified):
e FunctionDef
o Name: add
o Parameters: X, y
o Body:
= Assignment:z=x+y
= Expression: x +y
= Return: z
AST Edges:
o Each node connects to its child syntax elements. For example:
o FunctionDef — Assignment
o Assignment — Expression
o Expression — x, Expression — y
o FunctionDef — Return
2. CFG: The CFG shows the control flow from one instruction to another.
CFG Nodes:
1. Start
2. Z=X+Yy
3. returnz

4. End
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CFG Edges:

e Start — Assignment

e Assignment — Return

e Return — End
Note: Since there is no branching (like if or loop), the CFG is linear.
3. DFG: The DFG captures how data (variables) are used and modified.
DFG Nodes (variables): x, y, and z.
DFG Edges:

e X — z(zis computed from x)

. y—oz

ez — return (z is used in return)

This tells us that z depends on x and y and is then used in the return statement. Table 2.2 shows a
summary of AST, CFG, and DFG. While the DFG tracks explicit variable flows and value
dependencies across statements, the PDG additionally captures control dependencies (partial
CFG), revealing how both execution conditions and data shape program behavior.

Table 2.2 AST, CFG, and DFG summary table

Graph Type What It Shows Example Focus
AST Code structure z =X +y is an assignment with an addition expression
CFG Execution order Start — Compute — Return
DFG Variable flow X,y — z — return

PDG must be aware of some important control dependencies (which parts of the code are

conditional on others). For example:
if x>0:
y=5
return y

The statement y = 5 depends on x > 0 being true (a control dependency). CFG is needed to
determine branching, loops, and execution contexts. So, PDG uses partial control dependencies

from CFG and data dependencies from DFG to build a unified view.
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2.3.1 Automatic Question Generation

AQG has developed as a considerable scholarly subject in learning technology, and it has been
used in many fields, such as programming education. Early research in this area tended to target
the case of generating natural language questions based on natural language text and not as much
about generating program questions based on program code [P3]. The combination of AST, CFG,
and PDG analyzers and QG systems can considerably improve the quality and relevance of
automatically created questions. A combination of the CFGs to provide program control flow
information with PDGs to provide data dependency information can give a more comprehensive
view of the program's behavior. In education, Al presents not only challenges but also
opportunities, especially in its application to gauge student understanding. The rise of Al-
generated code necessitates rethinking assessment practices to accurately measure student
understanding and effort [57]. Systems using AST, CFG, and PDG have been developed for
grading programming skills [58], demonstrating the potential of structured code analysis for

automated evaluation.
2.3.2 Program Analysis

The problem of code analysis in programming languages has been discussed in several settings,
but little has been said about a particular case of QG. The combination of CFG and PDG, analysis
done when performing code comprehension, has been examined under various settings. The paper
[59] has shown that graph-based neural networks can well be applied to the problem of code
understanding by combining information in ASTs and in DFGs. In the same way, the authors in
[60] employed graph-based forms to enhance bug detection and code completion. These strategies
point to the possibility of using graph-based code analyses to build a better understanding of code
at a deeper level, though they have not been used directly to answer questions. More relevant to
the present work, the authors [61] built a natural language generator that takes a Python code
snippet and generates a natural language description of that code. Their strategy involved a
language-specific parser coupled with standard, intermediate representations, just like the current
work. Nevertheless, they were concerned with code summarization and giving feedback, and did

not discuss the difficulties of achieving balance in coverage of algorithms and cognitive levels.
2.3.3 CFG Analyzers

CFGs are especially useful for program analysis abstractions and indicate all potential paths of
execution in a program. A graph is a model of a program in that each node corresponds to a basic
block of code, and edges indicate the flow of control between blocks. The CFG analyzers exploit
this format to obtain information about the structure of the program, to find out whether or not

there are possible loops and conditional transitions, and to identify unreachable code blocks [56].
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Such information can be used invaluably in the generation of questions so that one can then be
asked questions that determine how the programmer understands the mechanics of control flows,
including loop invariants, branch conditions, and exception handling. Modeling and analysis of
the execution flow of a program is paramount in its correctness, reliability, and security [62]. It is
possible to extract syntax and semantic information of source code using CFGs, which allows a

more detailed analysis of the behavior of programs [56].

Questions about the order of statement execution, the circumstances under which different blocks
of code are entered, and the possibility of entering an infinite loop or dead code are answerable by
studying the control flow. Suggesting a student to concentrate on the control flow, such questions
may examine his/her grasp of the logic of the program. Also, CFGs can be used to determine
important areas of code that can be looked at in more detail, e.g., performance bottlenecks or error-

prone areas.
2.3.4 PDG Analyzers

PDGs are a contrasting view in that they explicitly specify the data and control dependency
between distinct program statements. Nodes in a PDG are the individual statements, whereas the
edges show whether the value computed by one statement is referenced by another (data
dependence) or whether the evaluation of one statement is conditional on the result of another
(control dependence) [56]. This representation provides an analysis of critical data dependencies,
potential data races, and possibilities of code optimization with PDG analyzers. They give a
structure to how questions can be generated, which tests the understanding of the programmer on
issues like the flow of data, side effects, and effects of changes in a particular variable or statement.
All vulnerable cases of buffer overflows are spatial mistakes, which can be diagnosed with the
assistance of spatial information in a DFG [63]. Buffer overflow can be discovered with the aid of

static data flow analysis.

The PDGs are also capable of determining the inputs that influence or determine specific outputs,
which is an important aspect of numerous security vulnerabilities. Data flow presents an analysis
of how data is directed through a program and what is done to the data [64]. Data flow is a
dependency relationship among variables, with nodes representing variables and edges denoting
what caused the value of a variable [65]. Data flow analysis may discover a variety of bugs and is
among the most frequently used approaches in practice [66]. Following the interdependency of
variables allows determining the possible vulnerabilities, including a buffer overflow or a format

string, to be identified.
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2.3.5 Hybrid CFG-PDG Analysis

Combining CFG and PDG analyzers provides an effective method to generate questions and thus
allows the generation of questions requiring insight into control flow and data dependencies. This
combination enables the creation of questions that are more complicated and subtle and tests the
reasoning of a learner about the interaction of various program components. The integration of
data and control that has been implemented in applications is more intriguing when designing a
custom architecture [67]. For example, one may pose questions like whether a modification in a
specific variable will affect the execution course of the program or what conditions could cause a
particular data dependency to produce a run-time error. This would allow for coming up with more
difficult and pertinent actual programming situations. Furthermore, CFG-PDG combinations can
also be used to discover the most critical control-sensitive and data-dependent code sections to
generate questions that pinpoint the most important parts of program behavior. Combining these
techniques improves the capability of defining questions that can assess single pieces of code and
code interactions between control flow and data dependency. Beyond QG, the synergy between
CFG and PDG provides broader benefits for comprehensive software understanding and analysis,

as discussed next.
2.3.6 Synergistic Use of CFG and PDG

Studies that expand AST-based code representations to cover paths in CFG and PDG have
demonstrated dramatic performance benefits to software engineering activities like method
naming, classification, and clone detection [68]. This combination of CFG and PDG analyzers
provides a more comprehensive picture of the program behavior. It allows us to generate questions
that will focus on control flow and data dependencies. The study of the interaction between these
two representations can enable the production of questions that demand deeper knowledge
regarding the functionality of the program in general and the possible interactions between the
various sections of the code. Such integration allows the formulation of questions that are more
rigorous and insightful. It results in a more elegant measure of the fairness of assessing the
competency of a programmer. Such a combination presents stronger questions, and the

programmer understands the code better.

The combination of PDGs and CFGs presents a synergistic effect and is useful when it comes to
finding vulnerabilities in code. When control flow and data dependency information are combined,
this capability emerges to discover fine-grained defects that may remain elusive to either of the

techniques individually [69].
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2.3.7 Question Generation Strategies

Designing effective QG strategies is critically important in the design of assessments that not only
measure the knowledge a programmer has about code, but also measure it accurately. Such
strategies must apply to the characteristics of CFGs and PDGs and utilize the strong points of these
subjects to outline thought-provoking and relevant questions. Among these approaches are
identifying high-priority sections of code, including loops, conditional statements, or function
calls, and creating questions about their behavior. The other way is following data dependencies
with the PDG, forming questions about the information flow in the program. The assessment

should be on relevant issues.

2.4 Template-Based and Question Generation Strategies

Template-based approaches have been widely used in AQG across various domains. The paper
[5] provided a comprehensive survey of template-based QG techniques, highlighting their
effectiveness in ensuring question quality and relevance. It mentioned that the template library is

a major component of QG systems.

The paper [70] addressed educators' challenges in creating exam questions, particularly in remote
learning environments. To tackle these challenges, the authors proposed a new approach that
combines generative software development principles with feature-oriented product line
engineering. This approach was designed to automate the creation of exam questions, specifically
single-choice questions, using written templates.

The proposed generator allows educators to create families of questions that vary based on specific
features and parameters. However, existing template-based AQG methods often fall short in
supporting multi-language contexts, balanced algorithm coverage, and strategic difficulty
alignment. This dissertation builds on these foundations while addressing these limitations,

ensuring multi-language support and cognitive diversity in QG.

2.5 Bloom’s Taxonomy and Cognitive Alignment

Bloom's Taxonomy is a starting point from which a set of questions can be classified according to
the complexity of thinking skills [71]. Bloom's Taxonomy is a foundational framework for
categorizing questions based on cognitive complexity [71]. It includes remembering,
understanding, applying, analyzing, evaluating, and creating [71], [72]. In the paper [73], the
authors have performed a thorough review of factors that complicate introductory programming
tasks and have established several major factors that make questions more or less challenging.

Their result offers valuable information in preparing questions of adequate difficulty based on
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varying programming languages. The tactical use of programming languages' difficulty level has
been argued on different educational fronts. These learning theories guide us in generating
questions, especially in providing proper cognitive demand, difficulty levels, and language-

specific issues.

Integrating Bloom's Taxonomy into AQG frameworks marked a significant advancement in
aligning educational technology with pedagogical objectives. This integration enables the
generation of assessment items systematically mapped to cognitive skill levels, ensuring that
instruction and evaluation are pedagogically sound and targeted to desired learning outcomes.
Recent AQG systems utilize Bloom’s Taxonomy to classify and generate questions that target
specific cognitive levels, from basic recall (remembering) to higher-order thinking skills like
learners’ cognitive development and support differentiated instruction [20]. It encompasses
remembering, understanding, applying, analyzing, evaluating, and creating [71], [72], [74]. This
taxonomy helps assess the cognitive skills that the questions aim to consider. Bloom's Taxonomy
is used to classify educational learning objectives into levels of complexity and specificity. The
following are the six levels from the simplest to the most complex:

1. Remembering: This is the basic level where learners must recall facts and concepts. It

involves recognizing and recalling relevant knowledge stored in memory.

2. Understanding: Learners demonstrate comprehension by explaining ideas or concepts,

summarizing information, and interpreting meaning.

3. Applying: It involves using knowledge in new situations. Learners can apply what they

have learned to solve problems or complete tasks, demonstrating practical understanding.

4. Analyzing: Learners break down information into parts to understand its structure. They
can differentiate between facts and inferences and identify relationships among various

components.

5. Evaluating: Learners make judgments based on criteria and standards. They can critique

ideas, assess the validity of arguments, and provide justification for their opinions.

6. Creating: This is the highest level of Bloom's Taxonomy, where learners combine elements
to form a coherent or functional whole. They can design new products, propose solutions,

or generate original ideas.

These levels are essential for educators to design assessments and questions that target various
cognitive skills, ensuring a comprehensive evaluation of student learning. In the context of AQG,
understanding these levels is crucial for creating questions that effectively assess students'
knowledge and cognitive abilities.
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2.6 Question Types in Programming Education

Programming instructors use a variety of question formats to assess and enhance student
understanding, often leveraging AQG from source code. Each question type serves different
learning objectives and challenges. The following are the question types in programming

education:

1- MCQs: MCQs are a popular assessment tool in programming courses. MCQs can be an effective

and motivating way for students to test their understanding of programming concepts [75].

2- Open-Ended Questions: Open-ended questions in programming education require students to

provide an unstructured response, such as explaining code or writing their own solution [76].

3- Boolean (YYes/No) Questions: Yes/No or True/False questions are a simple form of assessment
where students judge the correctness of a statement. In programming education, these judgment
questions are considered a type of closed-ended exercise alongside MCQs and fill-in-the-blanks
[77].

4- Short Answer Questions: Short answer questions require a brief textual or numeric response
rather than selecting from given options. In programming, this format is often seen in questions
like “What is the output of the following code?” or “Give the Big-O time complexity of this
algorithm.” These questions compel students to recall or deduce an answer without cues. They can
assess understanding more directly than MCQs, and recent systems have begun to automatically
grade such answers [78].

5- Code Tracing Questions: Code tracing questions present a piece of code and ask students to
simulate its execution to determine the outcome or state. A typical prompt might be: “Given this
code, what will be the output?” or “What values do the variables hold after execution?”” This
question type is well-established in programming education as a way to test understanding of

control flow and state changes [79].

6- Fill-in-the-Blank Questions: Fill-in-the-blank questions in programming provide a code snippet
or sentence with certain parts removed, and students must supply the missing piece. This format

is often used to focus attention on specific syntax or concepts [80].

7- Error ldentification (Debugging) Questions: Error identification questions, also known as
debugging tasks, present students with faulty code and ask them to find and/or fix the error. These
questions target a student's ability to read code critically and understand common bugs. For
instance, a prompt may say: “This code is supposed to do X but it does not. What is the error and
how would you fix it?” [81].
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8- Creative Coding Questions: Creative coding tasks are open-ended prompts that require students
to write original code to achieve some goal, often with room for creative expression or multiple
correct solutions. Unlike the strictly defined answers of the above formats, these questions might
ask students to “Design a program that meets scenario X’ or “Create a graphic using code that
accomplishes Y.” The emphasis is on problem-solving, design, and creativity in programming
[82].

2.7 Large Language Models in Programming Question Generation

Advances in NLP have led to the emergence of LLMs. These language models have proven their
potential in different NLP applications, including QG and evaluation [83]. This section reviews

the related works that laid the foundations for developing and evaluating LLMs in generative Al.
2.7.1 Background On Language Models in NLP

The development of LLMSs has been influential [84]. In the past decade, the emergence of LLMs
has driven a paradigm shift in NLP [85]. These models are characterized by their immense size,
often containing billions of parameters. They are pre-trained on vast amounts of data, which
enables them to learn patterns, syntax, and semantics of natural language. Pre-training is followed

by fine-tuning specific tasks, making them adaptable to various applications.

Other methods of QG involve building specialized ontologies and integrating them with Al
models, such as the previous research work [P3]. A hybrid ontology and Al approach was
proposed to build an AQG model. However, this work lacks automatic evaluation framework. The
novelty lies in bridging the semantic gap between programming syntax and natural language
understanding, enabling Al-based QG systems to work effectively with source code as input
material (something that was not possible before without extensive manual annotation of code
examples).

OpenAl's GPT models have continuously improved language generation capabilities, starting with
GPT-1 and advancing to GPT-2, GPT-3, and beyond [86]. GPT-3.5, for example, delivered

human-level performance on different language tasks, from translation to question-answering.

LLMs have proved their adaptability in NLP tasks. They perform well in text generation,
summarization, translation, sentiment analysis, and various other tasks. The capacity to understand
and generate text in multiple languages and domains causes such adaptability [86]. While LLMs
are powerful tools, they are not without their challenges. Their massive size demands substantial
computational resources, making them inaccessible to many researchers and organizations. These
models have been criticized for keeping biases in their training data [87]. In the context of
programming question generation, several types of biases are particularly concerning: (1) Gender
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and cultural biases may manifest in variable names, example scenarios, or assumed contexts (e.g.,
consistently using male names in programming examples or culturally-specific references), (2)
Programming paradigm biases where certain coding styles or approaches are favored over others,
potentially disadvantaging students from different programming backgrounds, and (3) Complexity
biases where questions may systematically favor certain types of programming concepts or
difficulty levels based on the prevalence of such examples in training data. Research efforts to
mitigate these biases and make LLMs fairer have gained attention.

One of LLMs' strengths is their adaptability through fine-tuning [88]. Researchers and
practitioners can customize these models for domain-specific tasks, allowing them to perform well
in specialized domains. The fine-tuning process involves training the model on task-specific data,
enhancing performance and relevance to specific tasks. The growth of LLMs has raised ethical
and societal concerns. The ability of these models to generate coherent, human-like responses also
means they might be used for malicious activities such as misinformation and deepfakes.
Discussions on responsible Al and ethical use are ongoing. LLMs have become the focus of many
studies, ranging from model architecture and training techniques to healthcare, finance, and
education applications. Researchers are exploring ways to harness LLMs' power to benefit society

while mitigating potential harms [89].
2.7.2 Question Generation with Large Language Models

Integrating LLMs into language processing has significantly advanced QG capabilities. Because
of their extensive pre-training on vast text corpora, LLMs have transformed how questions are
generated. This section explores the evolution and impact of LLMs on QG, emphasizing their
contributions to the field of NLP [22].

1) From rule-based to data-driven approach: Before the era of LLMs, QG primarily relied on
templates and rule-based methods. These techniques effectively generated simple questions but
were inadequate in generating relevant and diverse questions. LLMs have adopted a data-driven
approach. Their ability to learn complex language patterns and semantics has led to the generation
of questions customized to the specific content from which they are derived [90].

2) Contextual understanding and coherence: LLMs can contextualize the input text to generate
coherent and relevant outputs, unlike rule-based methods, which often produce disconnected or
irrelevant questions. Contextual understanding is critical when generating questions from

documents with complex structures, technical language, or nuanced information [91].
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3) Fine-tuning for question generation: Fine-tuning involves adapting pre-trained models to
specific tasks by training them on question-generation datasets [92]. It allows LLMs to learn the

patterns for various contexts, which improves their performance.

4) Challenges and opportunities: LLMs offer great potential in QG, but challenges exist.
Generating clear and concise questions with different levels of complexity and coverage remains
an ongoing research challenge [93]. The current research addresses these challenges by
introducing evaluation criteria such as clarity, conciseness, and coverage to comprehensively
evaluate LLMs in QG.

2.7.3 Evaluation Metrics for NLP

Evaluating language processing models is critical to NLP research and application development.
Effective evaluation metrics allow researchers and practitioners to assess models' performance in

various tasks quantitatively and qualitatively [94].

1) The need for evaluation metrics: Evaluation metrics judge how the performance of NLP models
is measured. NLP tasks have different aspects and often involve generating or processing human
language, making it challenging to assess models’ performance objectively. Metrics provide a
structured framework for evaluating models’ output, identifying strengths and weaknesses,

tracking progress, and guiding model development [95].

2) NLP evaluation metrics: For NLP evaluation, several widely accepted evaluation metrics have
been developed to assess different aspects of model performance. These include clarity, which
measures the similarity between generated and reference text, and ROUGE for text summarization

tasks [96]. These metrics evaluate the generated text’s specific linguistic qualities.

3) Objective evaluation: Objective metrics can be used to assess the capability of NLP models.
For example, clarity provides quantitative scores indicating the clarity between the generated and
reference text. Combining metrics like relevance, coherence, and conciseness offers a more
comprehensive understanding of model performance [97]. Our research adopts this set of criteria

to assess LLMs’ performance in generating questions from program codes.

4) Ethical considerations in metrics: Using evaluation metrics raises ethical concerns. Metrics
should be carefully chosen to avoid reinforcing biases or undesirable behaviors in NLP models
[98]. Responsible Al practices involve developing metrics that encourage fairness and ethical
behavior in NLP models. The approach proposed in the current research addresses these ethical
concerns while evaluating LLMs’ performance and considering issues related to relevance and
clarity in question generation. As LLMs become more powerful, ethical considerations have

become important. Developing responsible Al and mitigating biases in LLMs are critical [99].
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2.7.4 State-of-the-art LLMs

Various models have emerged, each showing considerable performance across language
processing tasks [89].

1) GPT-4: Building on the success of its predecessors, GPT-4 is known for its language generation
ability [100]. GPT-4 exhibits contextual understanding due to its larger model size, improved
training techniques, and increased parameters [101]. GPT-4-0314 has a smaller context capacity
than GPT-4-0613. GPT-4 has set a high benchmark for other models in question generation.

2) GPT-3.5: Itis the updated version of GPT-3; a later version is 3.5-turbo. It supports 4096 tokens,
is free on the web interface, and has a paid application programming interface (API). The
capabilities of GPT3.5-turbo-0613 result in better output than GPT-3 for text processing tasks
[102].

3) Llama-2: Llama-2 specializes in chat-based interactions and is designed to generate human-like
responses [103]. This specialization makes Llama2 a strong candidate for dialogue-based question

generation.

4) H20GPT Variants: The H20GPT series features fine-tuned variants for specific domains.
H20GPT-gm-oasst1-en-2048-falcon-40b and H2OGPT-gm-oasstl-falcon40b offer promising
performance for domain-specific applications [104]. These models are customized to generate
questions from technical content, which aligns with our research’s focus on QG from source code.
Several versions with different parameter sizes are available; all are open-source and can be
optimized for specific domains. Each falcon has a distinct parameter capacity or token size [103].

The following is a brief description of each model:

e H20OGPT-gm-oasstl-en-2048-falcon-40b-v1: It has the largest parameter size in open-
source models, reaching 40 billion parameters, and the precision of text generation and
understanding of NLP is high [105].

e H20OGPT-gm-oasstl-en-2048-falcon-40b-v2: This version is similar to the previous
version, as they both trained on the same dataset; however, different personalization settings
were added. Additionally, both versions support 2048 tokens [105].

e Falcon-40b-sft-top1-560: This model supports up to 2048 tokens and performs very well in
text generation. It was trained on the OSSAT dataset [105].

e H20GPT-oasst1-falcon-40b: This version is the initial release with 40 billion parameters
and supports 2048 tokens. However, the other versions have more refined training data than

the initial version [105].
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e H20OGPT-gm-oasstl-en-2048-falcon-7b-v3: This model is significantly smaller than the
other Falcon models; however, it is also trained on the OSSAT data set, and supports the
context length of 2048 [105].

e Falcon-40b-instruct: This model is the newer version of Falcon and uses the same dataset
as the previous ones. However, this version is tuned specifically to perform tasks and follow
instructions precisely. This version performs better on the required tasks than the previous
ones [105].

5) Vicuna-33b: Vicuna-33b focuses on specialized applications [106]. Its model size of 33 billion
parameters combines scalability with domain expertise. Vicuna-33b’s potential for generating
questions in specific technical domains might provide valuable insights into the feasibility of using

such models for specialized tasks.

6) Claude: The Claude model is from Google, and it has a huge input token limit that reaches up
to 100K user input. Claude performs well on multiple-choice tasks [107]. However, at the time of
writing, this model was only available in the USA and the UK, which was considered an access
limitation [108]. The parameter size for this model reaches 130 billion parameters. Furthermore,
for text generation, it is stated that it outperforms GPT-3.5, but GPT-4 remains better at prompt
understanding and coding [109].

2.8 Evaluation Metrics for Generated Questions from Source Code

Evaluating automatically generated questions is still a problematic issue, and multiple metrics and
methods are suggested in the literature. The article [110] developed a framework to measure the
quality of MCQs that are produced automatically in terms of relevance, clarity, and educational
worth. The paper [75] proposed some evaluation measures to gauge the quality and effectiveness
of the generated MCQs. These parameters make questions relevant, varied, and appropriate for
educational programs. The primary measurement criteria include question relevance score,
diversity index, and difficulty alignment accuracy. In another paper [111], the authors mentioned
that LLMs automatically generate MCQs in curricula CSO and CS1. The course outline of both
CSO0 and CS1 is the core input data into the EJuCS system. The paper includes a list of evaluation
metrics that will help to evaluate the quality of MCQs provided by the EduCS system. The most
relevant aspects of these assessment measures were clarity, relevance, and difficulty level. As a
knowledge representation technique [P13], ontology has been used to build semantic models for
the Python language [P8], [P9]. The paper [P1] used automatic evaluation measures, bidirectional
encoder representations from transformers (BERT)-based semantic accuracy, to assess the

content. The paper [P3] does not cover automatic evaluation but proposes a hybrid model with
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human expert evaluations focused on code difficulty and generated question validity. Overall,
assessing the quality of machine-generated questions from source code calls for robust metrics

beyond conventional automated scoring methods.

2.9 Conclusion

This chapter examined the intersection of AQG and programming education, emphasizing how
ontology-driven methods, graph-based code analysis, and LLMs contribute to scalable, high-
quality assessment systems. The chapter reviewed ontology-based instructional content
generation, highlighting its role in structuring and personalizing learning materials for
programming education while enhancing content reuse and consistency. It also explored how static
code analysis techniques, particularly ASTs, CFGs, DFGs, and PDGs, provide a structured
foundation for analyzing code semantics to inform AQG. The integration of these graph-based
representations supports the development of targeted, cognitively diverse programming questions
that align with Bloom’s Taxonomy, ensuring assessments measure varying levels of cognitive
skills. The chapter further discussed template-based approaches and LLMs like GPT-4 and Llama-
2, demonstrating their potential to generate coherent, contextually relevant programming
questions while acknowledging challenges such as bias, scalability, and the need for robust
evaluation frameworks. It highlighted the importance of clear evaluation metrics, including
semantic accuracy, relevance, and cognitive alignment, to assess the quality of automatically

generated questions effectively.

Overall, the chapter established a comprehensive theoretical foundation for the dissertation,
identifying critical limitations of current AQG methods in programming education, particularly
the lack of AQG directly from source codes and the absence of evaluation metrics for such
methods. The gaps identified in this literature review directly inform the research contributions.
While existing work provides valuable foundations in ontology-based content generation, graph-
based code analysis, and LLM applications, no existing systems integrate these approaches for
AQG from source codes, nor do they provide comprehensive evaluation and systematic cognitive

alignment to Bloom's Taxonomy levels.
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Chapter 3 Ontology-Based Automatic Generation of Learning Materials for Python

Programming

3.1 Introduction

Recently, knowledge graphs (KGs), as structured forms of knowledge representation, have gained
substantial research interests across academia and industry from modern ontology views.
Integrating educational technologies with KGs has an impressive influence on teaching and
learning activities, especially in programming with Python. E-learning platforms provide students
with tools to easily engage and receive ongoing feedback during the e-learning sessions [35]. KGs
are crucial in optimizing the automation of ontology-based learning material generation. They
support the organization, interrelation, and knowledge utilization in a particular field [112]. In
Python programming, KGs can delineate the existing knowledge, relations, and entities [112].
Additionally, ontology-driven systems support more effective comprehension of the context and
relations of various concepts, thus enabling more precise and thorough learning materials
generation [112]. Adding KGs to the ontology-based automatic generation of educational
materials improves content relevance, personalization, interoperability, content reuse, and
efficient knowledge capture [113]. KGs can efficiently organize and manage the structural

knowledge of Python programming [113].

In the information age, one's programming capability is required in many professions, as
accentuated by the availability of resources aimed at teaching and training in programming [30].
Designing high-quality learning materials for programming languages is difficult and requires
substantial resources because of fragmentation in educational programming design, instructional
programming expertise, and difficulty in adaptive personalization [32]. Ontology-based automatic
learning materials generation (ALMG) leverages advanced educational technologies to streamline
this process [39]. This technology will assist educators in saving time and costs by generating
particular and appealing materials for students [39]. Calmon et al. [42] describe an automated
curriculum selection system that tailors educational content to student needs using ML and data
analytics, improving learning effectiveness and institutional delivery. Similarly, Xia et al. [48]
propose adaptive networked learning material delivery, demonstrating how ML can manage

learning processes and enhance student outcomes in networking education.

One of the methods to represent domain models is through ontology-based representation [P13].
Semantic understanding and knowledge representation enable Ontology-based ALMG for Python
programming that produces resources like tutorials, code examples, exercises, and assessments.
The development of an ontology for capturing Python programming concepts, relationships, and

properties is used in this approach. It attempts to create learning materials based on the pedagogical
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requirements and learning objectives. The ontology-based approach further enables continuously
updating and refining the learning materials to sync with Python programming environment
changes [114]. Ontology-based ALMG for Python programming is a highly efficient and scalable
approach using structured knowledge presentation for automating educational content creation
[32]. With this method, its learning materials remain consistent, high quality, and personalized, all
while allowing for the efficient creation of various resources. Likewise, the existence of the
ontologies makes the routines adaptable to changes in Python programming [115], i.e., updating
the ontologies and automatically regenerating learning materials. Ontologies' automation saves
educators and content creators time and effort and improves a deep semantic understanding of the
Python programming domain for a better generation of learning materials [34]. Manual creation
of Python programming learning materials remains time-consuming and often fails to keep pace
with the ecosystem’s rapid evolution [P3]. An ontology-driven automated approach can address
these challenges, improving learners’ access to high-quality, adaptive, and contextually relevant
resources. The automatic generation of Python learning materials is critical for ensuring
scalability, adaptability, consistency, and accessibility while facilitating innovation in educational
technology and programming pedagogy [49]. It enables diverse, personalized learning experiences
aligned with learners’ needs and learning styles, supporting educational quality while reducing

instructor workload.

This chapter aims to develop a comprehensive ontology for Python programming and design an
ontology-based ALMG system tailored to Python education. It outlines the system’s design and
implementation while exploring potential enhancements and the implications of such a system in
educational contexts. This chapter details the technologies and methodologies underlying
ontology-based ALMG, emphasizing how ontologies capture domain knowledge and facilitate the
automated generation of educational content. It discusses the educational and practical
implications of ontology-based ALMG, illustrating its potential to enhance Python programming

instruction. The objectives of this chapter are to:

1. Design an ontology-based framework that models Python programming concepts and their

interconnections.

2. Develop a system for automatically generating Python programming learning materials
(specifically quizzes) that align with the modeled concepts and relationships. It supports
beginner, intermediate, and advanced difficulty levels.

The structure of this chapter is as follows: Section 3.2 describes the methodology, outlining the
ontology-based approach, domain-specific knowledge modeling, and implementation details,
including validation and evaluation of the proposed model. Sections 3.3 and 3.4 present the results
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and discussion, respectively, while Section 3.5 concludes the chapter, highlighting practical

implications.

3.2 Methodology

3.2.1 Ontology-Based Approach for Learning Materials Generation

Formal knowledge representation is used in an ontology-based approach that captures domain-
specific concepts, relations, and properties and uses such information to generate learning
materials. The method involves an ontology for the target domain's concepts, relationships, and
properties, such as programming languages. Semantic understanding is captured through
ontology, meaning it results in inferring relationships and categorizing concepts. Learners' needs
and preferences are analyzed based on educational objectives and learner profiles. The ontology
is used to generate content that is coherent and contextually relevant. The materials are presented
using NLP techniques to make the explanation as clear and understandable as possible. Because
it is based on ontology, it allows for continuous updating and refinement as the domain knowledge
changes. The benefits include scalability, adaptability, personalization, consistency, efficiency,
and accessibility. The ontology-based approach can create adaptive, personalized, high-quality
educational content for various domains, such as programming education. The ontology-based
approach for generating learning materials involves structured knowledge representations on a
domain to automatically create the learning materials. Ontologies are leveraged in this process to
map the relationships between different concepts in the subject of a knowledge domain, providing
generated materials that are pedagogically sound and contextually relevant. The primary process
of generating learning materials using an ontology-based approach can be demonstrated in several

steps as follows:

1. Ontology development, which includes domain analysis, is to identify the key concepts,
relationships, and rules within the subject area, and ontology construction to define the concepts
(classes), properties (relationships), and instances (individuals) within the domain, and validation
and refinement ensure that the ontology accurately represents the domain knowledge through

validation and iterative refinement.

2. Knowledge representation involves formalizing the ontology. This formal language provides
precise semantics for the concepts and relationships, axioms, and rules to define axioms and

inference rules to capture the logical constraints and derivations within the domain.

3. Learning materials generation, which contains the content extraction for identifying relevant
content from the ontology based on the learning objectives, content structuring to organize the

extracted content into a coherent structure, following educational best practices (e.g., Bloom's
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taxonomy), and template application to apply predefined templates to format the content into

various types of learning materials (e.g., textbooks, task assessments, interactive modules).

4. Automated generation algorithms include the input processing to accept inputs such as learning
objectives, target audience, and preferred content format; ontology querying, which uses
description logic queries to retrieve relevant concepts, relationships, and instances from the
ontology, material assembly to assemble the retrieved information into structured learning
materials using the defined templates, and output generation for producing the final learning

materials in the desired format (e.g., HTML, e-learning platform).

AGLM involves a complex pipeline integrating NLP, ML, and educational technology. The
following is an algorithmic approach to automatically generating learning materials from an
ontology. AGLM in the programming domain involves several tailored steps. The following is a

general pipeline for AGLM in the programming domain:

Inputs:

* Programming Language: The specific language (Python).

» Learning Objectives: Skills or concepts to be covered (e.g., syntax, data structures, algorithms).
« Content Sources: Online tutorials, documentation, code repositories.

* Format Preferences: Code snippets, quizzes, text explanation.

» Target Audience: Beginner, intermediate, or advanced learners.

Steps:

1. Content Retrieval:

* Query content sources using APIs or web scraping to gather relevant programming resources.
» Use NLP techniques to filter and categorize content based on relevance and complexity.

2. Content Analysis:

* Analyze the retrieved content for key programming concepts, syntax rules, common pitfalls, and

best practices.

* Identify gaps in the content that need to be addressed to fulfill the learning objectives.
3. Content Structuring:

* Organize the content into a logical flow, such as:

* Introduction to the language

* Basic syntax and constructs
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* Control structures (loops, conditionals)

* Data structures (arrays, lists, dictionaries)

* Functions and modules

* Advanced topics (e.g., OOP, frameworks)

* Create outlines or flowcharts to visualize the structure.

4. Material Creation:

* Generate text explanations for each section using NLP techniques.

* Create code examples and snippets that illustrate each concept.

* Develop quizzes or coding challenges based on the key concepts identified.
* Design multimedia elements (like screencasts or infographics) if applicable.
5. Customization:

* Tailor the generated materials to fit the target audience's skill level.

» Adjust complexity by simplifying explanations or introducing advanced topics as needed.
6. Interactive Elements:

* Integrate coding environments (like Jupyter Notebooks or online IDEs) where learners can

practice coding directly within the material.
* Include live coding demonstrations or interactive simulations.
7. Feedback Loop:

* Incorporate user feedback mechanisms (like quizzes and surveys) to evaluate understanding and

engagement.
* Use ML to refine content generation based on user performance data.
8. Output Generation:

« Compile all materials into a cohesive format (e.g., HTML pages, PDF documents, online course

modules).
* Ensure accessibility standards are met (e.g., code readability, alt text for images).
9. Review and Iteration:

 Implement a review process where educators or experienced programmers can evaluate the

generated materials.
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* [terate on the content based on feedback and updates in programming language features or best

practices.

Outputs:

» Comprehensive learning materials tailored to programming topics and audiences.
* Code snippets and examples for hands-on practice.

* Quizzes and coding challenges to reinforce learning.

While the complete AGLM pipeline outlined above provides necessary context for understanding
AGLM, the focus of the current research (ontology-based MCQs generation with BERT
similarity) is on some parts of this general pipeline. Algorithm 3.1 automatically generates MCQs
quizzes aligned with Python programming concepts using a domain-specific ontology. It aims to
deliver personalized and contextually accurate assessments while ensuring semantic alignment
with reference materials through BERT-based similarity checks (implemented and deployed on a
Flask App).

Algorithm 3.1: Ontology-Based MCQ Generation

Input: Domain, Difficulty, Number_of Questions

Output: Random_MCQ_Quiz, Similarity_Score

1: PROCEDURE BUILD_PYTHON_ONTOLOGY/()

2:  ontology < ONTOLOGY_ STRUCTURE()

RETURN ontology

: END PROCEDURE

: PROCEDURE GENERATE_MCQ_DATASET()

mcq_bank «— @

for each domain_template do
questions «— TEMPLATE BASED GENERATION(domain_template)
mcg_bank.ADD(domain, questions)

10:  end for

11: SAVE_TO_CSV(mcqg_bank, "mcq_dataset.csv')

12: END PROCEDURE

13: PROCEDURE SERVE_QUIZ(domain, difficulty, num_questions)

14: questions «— LOAD_FROM_CSV("mcq_dataset.csv")

15: filtered «— FILTER BY DIFFICULTY (questions[domain], difficulty)

16: selected < RANDOM_SAMPLE(filtered, num_questions)

17:  similarity «— BERT SIMILARITY (ontology material[domain], domain)

18: RETURN FLASK_RESPONSE(selected, similarity)

19: END PROCEDURE

e A s

The process begins by building a domain ontology for Python programming. This ontology
formalizes concepts such as data types, control structures, functions, and OOP, capturing
relationships and properties necessary for the semantic structuring of learning materials. For each
domain concept template, the system uses a template-based generation approach to create relevant
MCQs, systematically organizing these questions into a structured MCQs bank. This bank is then

saved in a comma separated values (CSV) format for efficient retrieval and further processing.
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When a learner requests a quiz, the system loads the MCQs dataset, filters questions based on the
desired difficulty level, randomly selects the required number of questions, computes semantic
similarity using BERT embeddings to compare the learner’s domain with reference materials,
ensuring that the questions are contextually aligned and relevant, and returns the personalized quiz
alongside similarity metrics for evaluation. This approach enables scalable, automated generation
of high-quality, semantically accurate quizzes in programming education, reducing manual effort

while enhancing learning personalization and alignment with learning objectives.
3.2.2 Proposed Knowledge Model for The Domain-Specific Concepts

The domain-specific concept is the system's knowledge module, organizing the domain
knowledge structure, including its central concepts and their relationships. This model facilitates
the automatic generation of learning materials for the educational process. It focuses on

constructing and organizing domain-specific concepts and their interrelations [47].

A knowledge module consists of guidelines to identify all vocabulary concepts to illustrate or
solve problems. It is purely declarative and does not provide instructions on how learners can
utilize it to address practical issues [116]. Two categories of ontology modules have been
developed based on the characteristics of the learning materials: general domain-specific concepts
ontology and specific domain-specific concepts knowledge module ontology. These modules
represent the knowledge concepts needed for learning, provide input to the knowledge module,
offer particular feedback, select problems, create learning materials, and support the student
model. A domain-specific concepts knowledge module has been proposed based on current
research, as illustrated in Figure 3.1. This model is fundamentally based on domain concepts,
properties, task assessments, material resources, learning objectives, learning rules, learning

levels, and their interrelationships.

To generate learning materials and reuse the knowledge module in the learning process, ontologies
organize and represent the domain-specific concepts in the knowledge module. The advantage of

this model is its ability to personalize and automatically generate learning materials for learners.

Based on the general domain-specific concepts ontology shown in Figure 3.1, domain concepts,
domain properties, task assessments, material resources, learning objectives, learning rules, and

learning levels terminologies refer to the following:

» Domain concepts present domain-specific knowledge or a comprehensive learning material or

course overview.

» Domain properties represent learning material or domain-specific properties within a domain

knowledge model.
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Figure 3.1 General knowledge model for the domain-specific concepts

» Task assessments explain how the application system can assess or measure the required learner

activities within a specific period.

* Material resources are physical or digital items used in educational settings to support and
facilitate learning. They include textbooks, web resources, software, multimedia tools, and

laboratory equipment.

» Learning objectives are clear, measurable goals that outline students' expected learning
outcomes. They guide teachers in planning instruction, designing assessments, and evaluating
progress. Aligned with curriculum and instructional standards, they provide a framework for

effective teaching and assessment.

 Learning rules are principles or guidelines that describe how learning occurs and how new
information is acquired and processed. These rules help educators understand student learning and
inform instructional strategies while helping students become more effective learners by

optimizing their learning processes.

* Learning levels are the stages of proficiency and understanding that individuals progress through
as they acquire new knowledge, skills, and competencies. They are crucial in education and
instructional design, as they help educators tailor teaching methods and materials to support
students at different stages of their learning journey.

Figure 3.2 displays the design and structure of a selected ontology knowledge module for the
domain-specific concepts case study for the Python programming domain. Several relationships
are applied to the domain-specific concepts selected in case examples. The relationships are
generalization or specialization, dependency, and containment. Containment indicates that a

specific domain concept within a given domain contains various concepts (has-a). The
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generalization or specialization shows particular topics or domains with specific concepts (is-a).
Based on Figure 3.1 and Figure 3.2, the following displays a temporary explanation of a domain
concept:

* Domain concepts: Class, Function.
* Domain properties: syntax.
* Task assessments: program, code review, project.

» Material resources: textbooks, web resources.
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Figure 3.2 Specific knowledge model for the domain-specific concepts

3.2.3 Proposed Model Implementation

CS and Information Technology disciplines offer numerous language modules and packages for
developing and managing ontology models. Python is one of the most widely used and favored
languages for implementing an ontology for domain-specific concept models. This interpreted,
object-oriented, and extensible programming language is known for its exceptional clarity and
versatility across various fields [40]. The paper [P8] used Python and Owlready?2 to create the
ontology and implement the domain knowledge. The domain-specific concept explored in this
work is the "Basics of Computer Programming.” The ontology is constructed using the "Python
Programming Language." Python and Owlready2 modules implement domain-specific concepts
within the ontology. Owlready?2 facilitates transparent access to ontologies, allowing for the
manipulation of classes, individuals, object properties, data properties, annotations, property
domains, ranges, constrained datatypes, disjoints, and class expressions, including intersections,

unions, property value restrictions, and more. Python offers some functions and modules for
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managing ontologies to implement, create, and modify ontologies. The get_ontology() function
allows building an empty ontology from its IR1 using the Owlready2 module. Owlready?2 uses the
syntax "with ontology: ..." to demonstrate the ontology that will receive the new RDF triples. For

creating an ontology, the following short code is used:
from owlready2 import *
ontology = get_ontology()
with ontology: <Python code>

Concerning the implementation of the domain-specific concepts and the construction of its
components: the domain concepts, learning objectives, domain properties, task assessments,
learning rules, material resources, and learning levels. Figure 3.3 shows a code dealing with the
design of the core classes of the presented model. Figure 3.4 corresponds with some of the object
property relationships defined for the constructed components of the selected model. Several tools

are available to display the ontology graph. The tools are Synaptica, OWLGrEd, and Protégé.

ontology = get ontology({"http:/ test.org/Domain_Specific_Concepts.owl#™)
#Construction of the Domain Specific Concepits Components
with ontology:
class DomainConcepts{Thing):
def Take():
print({”I take Domain Concepits™)
class LearningObjectiwves (Thing):
de¥ tTtake(self):
print( " Learning Objectives")
class DomainProperties (Thing):
def take(self):
print{ "Domain Properties related to the Domain Concept®)
class TaskAssessments (Thing):
def take(self):
print( " Task Assessments related to the Domain Concept')
class LearningRules (Thing):
def Take(self):
print( " Learning Rules related to the Domain Concept®)
class MaterialResources{(Thing):
de¥ take(self):
print({ "material resource related to the Domain Concept®')
class TextBookResources{MaterialResources): pass
class WebResources(MaterialResources): pass
class LearninglLewvels (Thing):
def take(self):
print{ "Learning Levels related to the Domain Concept™)

Figure 3.3 Core classes of the presented model

#The Object Property Relationships added to the Domain Specijfic Concepis

class hasPart{DomainConcepts >> DomainConcepits): pass

class partOof({(DomainConcepts >> DomainConcepts):
inverse = hasPart

class hasDependency({DomainConcepts »>> DomainConcepts): pass

class dependencyCof{DomainConcepts »>> DomainConcepts):
inverse = hasDependency

class associate(DomainConcepts »>> DomainConcepts): pass

class associatedBy{DomainConcepts »>> DomainConcepts):
inverse = associate

class hasParent({DomainConcepts »>> DomainConcepts)}: pass
class parentOF{DomainConcepts >> DomainConcepts):

inverse = hasParent
class hasProperty{DomainConcepts >> DomainProperties): pass
class propertyOof({DomainProperties »>> DomainConcepts):
inverse = hasProperty

class hasTask({DomainConcepts >> TaskAssessments) :pass
class taskOof(TaskAssessments >> DomainConcepts):

inverse = hasTask
class hasMaterial{DomainConcepts »>»> MaterialResources): pass
class materialOof(MaterialResources »>> DomainConcepts):
inverse = hasMaterial
class hasDRule{DomainConcepts >> LearningRules): pass
class druleUsf{LearningRules >> DomainConcepts):
inverse = hasDRule

Figure 3.4 Object property relationships
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Protégé is the most commonly used tool to display the ontology graph of domain-specific
concepts, as shown in Figure 3.5. The ontology visualization employs different types of
connecting lines to represent various relationships between concepts. Solid arrows indicate direct
hierarchical relationships, where parent concepts contain or encompass child concepts. Dashed

lines represent dependency relationships, showing that one concept relies on or requires
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Figure 3.5 Domain-specific concepts ontology graph

understanding of another concept. The circular relationship lines in Figure 3.5 demonstrate the
interconnected nature of programming concepts, where each topic can depend on another topic
and contain subtopics. For example, the iterative loop depends on variables, logical operators, and
relational operators, as shown by the dashed dependency lines. Control sentences contain
conditional sentences and iterative sentences, illustrated through solid hierarchical arrows. Figure
3.6 presents a SPARQL query as an example of visualizing all the domain concepts in the selected

ontology domain-specific concepts regarding retrieving the domain concept and its description.

result = """PREFIX dn: <http://test.org/Domain_Specific_Concepts.owl#>
SELECT DISTINCT 2domain ?description
WHERE {

?d a dn:DomainConcepts;
dn:domainiame ?domain;
dn:domainDescription ?description.
1

H

gres = g.query(result)
2 for row in gres:
print(" )
print(f"Domain Concept: {row.domain}:\nDomain Description:\n{row.description}")

Domain Concept: Python Class:

Domain Description:

A class is a user-defined blueprint or prototype from which objects are created. Classes provide
a means of bundling data and functionality together. Creating a new class creates a new type of object, allowing new
instances of that type to be made. Each class instance can have attributes attached to it for maintaining its state.
Class instances can alsc have methods (defined by their class) for modifying their state.

Figure 3.6 A SPARQL query for retrieving the concept "python class" and its description
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NLP is used for automatic learning material generation, applying the Spacy module in Python and
the rdflib module. Figure 3.7 and Figure 3.8 present the code that controls the ontology of domain-
specific concepts. Figure 3.9 and Figure 3.10 display snapshots of SPARQL for generating task
assessment and query results according to SPARQL selecting concepts. The results are domain
concepts, task assessment, and asking questions in the form of MCQs. Regarding automatic
learning materials generation, the system randomly generates task assessments as MCQs for the
learner. The learner is asked to answer the question, and according to the answer, whether it is
correct or not, the system will automatically generate learning materials for further reading. Figure
3.11 shows a snapshot of a task assessment question, whether the answer is correct, and the
suggested learning material for the selected task. Table 3.1 shows a comparison between traditional
vs. ontology-based learning material creation.

import rdflib
import spacy
Ffrom spacy.lang.en import English

# Load the English NLP model

nlp = English({)

# Load the omtology

g = rdflib.Graph{)

g.-.parse“"dataset/update_pyv_onto_ module.owl™, format="">xml"™)

# Extract concepts Ffrom the ontology
concepts = [str{concept) FfFor concept in g.subjects()]

# Process the concepts wsing the NLP model

learning materials = []

Ffor concept in concepts:
doc = nlp{concept)
#F Generate Learning materials based on the processed concepit
definition = " The term "{fconcept}” refers to {doc[@].text.lower{}}."

learning_materials . append{definition)

# Print the generated Learning materials
Ffor material in learning materials:
print{(material)

Figure 3.7 Controlling the ontology of domain-specific concepts

The term "http://test.org/Domain Specific_Concepts.owl#c’ refers to http://test.org/domain specific concepts.owlic.

The term "http://test.org/Domain_Specific_Concepts.owl#learningObjectives’ refers to http://test.org/domain_specific_concepts.owl#learningobjectives.
The term "http://test.org/Domain Specific_Concepts.owl#taskl’ refers to http://test.org/domain specific_concepts.owl#taskl.

The term "http://test.org/Domain Specific Concepts.owl#intermediate level® refers to http://test.org/domain_specific_concepts.owl#intermediate level,
The term "http://test.org/Domain_Specific_Concepts.owl#levelDescription’ refers to http://test.org/domain_specific_concepts.owl#leveldescription.
The term "http://test.org/Domain Specific_Concepts.owl#propertylame’ refers to http://test.org/domain_specific_concepts.owl#propertyname.

The term "http://test.org/Domain_Specific_Concepts.owl#ruleSyntax’ refers to http://test.org/domain_specific_concepts.owl#rulesyntax.

The term "http://test.org/Domain Specific_Concepts.owl#associatedBy’ refers to http://test.org/domain_specific_concepts.owl#associatedby.

The term "http://test.org/Domain Specific Concepts.owl#hasProperty’ refers to hitp://test.org/domain_specific concepts.owl#hasproperty.

The term "http://test.org/Domain_Specific_Concepts.owl#taskCatogary' refers to http://test.org/domain_specific_concepts.owl#taskcatogary.

The term "http://test.org/Domain Specific Concepts.owl#ruleID’ refers to http://test.org/domain_specific_concepts.owl#ruleid.

Figure 3.8 The result of the'ont'ology of domain-specific concepts

SELECT DISTIMCT 2?domain task ?question ?ansl Fans2 ans3 ?ans4d
WHERE 4
?d a dn:DomainConcepts; dn:hasTask 2t;
dn:domainMame ?domain.
?* dn:taskMame ?task;
dn:questionSchema ?question;
dn:a ?ansi;

dn:b ?ans2;
dn:c ?ans3;
dn:d ?ans4.
I

Figure 3.9 Task assessment generation
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Task: Python classes
Task Question: What is a class in Python?
a) A module
b) A function
c) A template for creating objects
d) An array
your answer is: c
your answer is correct, because it match the system answer
you can learn more about this domain in the material: Python Classes and Objects
https://ww.geeksforgeeks.org/python-classes-and-objects/

Figure 3.10 Task assessment and result sample

from the following Resources

Domain Concept:
Task Questions
a) The process
B} The process
<} The process
d} The process

Python Class: Task Assessment: Python classes

what is inheritance in Python classes?

of creating multiple instances of a class

of passing attributes and methods from one class to another
of deleting a class object

of defining new methods in a class

Domain Concept:
Task Questions

Python Class: Task Assessment: Python classes
what is the output of the Ffollowing Pwthon code?
class MyClass:
def _ dnit {(sel+f+, walwel:
self.valuse valus

obj = MyClass({la)
printf{obj.wvalus)
a) a
by 1e
)} Error
d} Mone
Figure 3.11 MCQs task assessment
Table 3.1 Comparison between the traditional approaches and ontology-based approaches
Traditional Learning Material Ontology-Based Learning Material
Feature . .
Creation Creation
Content Hierarchical and dynamically structured

Linear and structured manually

Organization using ontology

Customization Highly personalized based on learners

Limited personalization

needs

Content Reusability

Low content created from scratch

High, modular content reuse across
different topics

Automation

Mostly manual work

Al-assisted generation and annotation

Content Consistency

It can be inconsistent across materials

Ensures uniform structure and terminology

Adaptability

Hard to update and adapt

Easily adaptable to new knowledge and
learning trends

Efficiency

Time-consuming

Faster and more efficient due to automation

Interactivity

Mostly static content

Dynamic and interactive learning
experiences

Scalability

Difficult to scale

Easily scalable across different subjects and
learners

3.2.4 Proposed Ontology-Based Model Validation and Evaluation

For ontology-based model validation and evaluation, various tools can be utilized to ensure the
ontology's accuracy, consistency, completeness, and pedagogical effectiveness. Among these,
OOPS! and HermiT were selected for this work due to their compatibility with OWL ontologies,
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Protégé integration, and support for logical reasoning and pitfall detection. Using these tools, you
can comprehensively validate and evaluate ontology-based models to ensure high-quality, effective
learning materials. A robust continuous improvement framework is based on combining automated

tools with expert reviews.

1. Ontology Evaluation: Ontology evaluation tools are essential in assessing ontology quality,
reliability, and utility in many domains [50]. Ontology quality is measured with several metrics and
methods, including quality metrics, consistency checkers, structural analysis tools, domain-specific
evaluation tools, and usability evaluation tools [50]. Moreover, these tools also maintain the
integrity and usefulness of ontologies across different domains. Automation, usability,
interoperability, domain-specific adaptations, and capabilities for dynamic evaluation can be
improved [50]. IRI_Debug is an ontology evaluation tool that enables detecting and correcting
issues in the Internationalized Resource Identifiers (IRIs) [46]. It provides IRI validation, validation
of errors, consistency checking, namespace control, and an easy-to-use interface [46]. However, it
is unsatisfactory due to the effectiveness of ontology complexity and IRI usage patterns in ontology
development, maintenance, and educational use. Continuous updates are necessary for evolving
standards [46]. Owlready2 offers many reasoners for manipulating the domain ontology, such as
Pellet, ELK, and HermiT. The HermiT reasoner is used, as shown in Figure 3.12, to check that the
constructed ontology is consistent and allows the classification, instance checking, class
satisfiability, and conjunctive query answering of the developed domain ontology for the selected

model. It is the most commonly used in ontology engineering.

owlready2.JAVA_EXE = "C:\\Program Files\\Java\\jre-1.8\\bin\\java.exe"
try:

sync_reasoner()

print("Ok, the constructed ontolegy is consistent and allows the classification, instance checking, class satisfiability, and conjunctive query answ
except OwlReadyInconsistentOntologyError:

print("The constructed ontology is inconsistent! and didn't allow the classification, instance checking, class satisfiability, and conjunctive query
. ] b

* Owlready2 * Running HermiT...

C:\Program Files\Java\jre-1.8\bin\java.exe -Xmx28@8M -cp C:\Users\jshbo\Python\Python311\Lib\site-packages\owlready2\hermit;C:\Users\jshbo\Python\Pyt
hon311\Lib\site-packages\owlready2\hermit\HermiT.jar org.semanticweb.HermiT.cli.CommandLine -c -0 -D -I file:///C:/Users/jshbo/AppData/Local/Temp/tmp_grk
j_bf
Ok, the constructed ontology is consistent and allows the classification, instance checking, class satisfiability, and conjunctive query answering.

* Oulready? * HermiT took 1.8713214874267578 seconds
* Owlready * Reparenting Domain_Specific_Concepts.DomainProperties: {owl.Thing} => {Domain_Specific_Concepts.DomainConcepts}
* Owlready * (NB: only changes on entities loaded in Python are shown, other changes are done but not listed)

Figure 3.12 Consistency of the domain-specific concepts ontology

2. Ontology Validation: Ontology validation tools ensure ontologies' quality, reliability, and
usability [117]. They identify issues related to consistency, completeness, correctness, and
adherence to best practices [117]. Popular tools include OOPS!, OntoQA, OQuaRE, Pellet and
Hermit, OntoMetric, BioPortal and AgroPortal, and OntoClean. OOPS! is a tool that helps ontology
developers identify and address common pitfalls in ontology design [118]. It uses a set of pitfalls

from best practices and expert recommendations, covering naming conventions, ontology structure,
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and logical inconsistencies [118]. The tool generates detailed reports detailing pitfalls, severity, and
affected elements and provides recommendations for correcting each [118]. It can be integrated
into ontology environments like Protégé, enhancing usability and promoting best practices [118].
Figure 3.13 shows the OntOlogy Pitfall Scanner tool for ontology validation, which is used for the
validation process. The input values for this tool can be ontology URL or RDF file code. Figure

3.14 shows the OntOlogy Pitfall Scanner tool validation results.

Enter a RI:

(~7=ml version="1.0" 7>
rdf:RDF xmilns="http://tast.org/Domain_Specific_ Concepts.owlE"
xmil:base="http://test.org/Domain_Specific_ Concepts.owl”
xrnlns i owl="http: v w3 .orgf 200207 fonl £
xmins irdf="http:/fvrvnvraw 3.org/ 1999702/ 2 2-rdfsyntax-ns&"

rmins i xmil="http fvovnriw3.org/ XML 1998 namespace”
xrrlns =sd= |1tl:|:l f.l"mﬂ-i' vl ::-rngﬂ'leHMLE‘n:herna#“

Select Pitfalls for Evaluation Classification by Dimension Clasification by Evaluation Criteria

Figure 3.13 OntOlogy pitfall scanner tool

Your ontology does not contain any bad practice detectable by OOPS!. Remember that there are pitfalls that depend on the domain being
modelled or the requirements specified for each particular ontology. Up to now, OOPS! can identify semi-automatically those pitfalls in the
catalogue with the title in bold. We encourage you to keep an aye of those pitfalls that OQOPS! is not able to detect yet. It is a good idea to
revise the ontology manually looking for them.

If your ontology is free of errors, you can use the following conformance badge in your ontology documentation:

You can use the following HTML code:

«a href-"http: //ocps. linkeddata.es"scing
sro="images/conformance/caps_frec.png”

alt="Free of pitfalls" height="E9.&" width="13B" />

Figure 3.14 OntOlogy pitfall scanner tool results
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3.3 Results

The ontology-based AGLM in the Python programming domain as a solution provides a more
sophisticated system for generating learning materials. Assessing their quality accuracy, 98.5%,
makes it a valuable tool in educational technology and content generation. The dataset used in this
experiment is the Python programming language ontology [119]. To generate the learning
materials, BERT embeddings have been used to measure the semantic similarity of generated
learning materials to predefined reference materials. It also generates an evaluation table, Table

3.2, summarizing the results for each domain concept, as explained in the following steps:

1. Ontology and learning materials: An ontology is defined for various domain concepts (e.g.,
Python Programming, Data Structures), and learning materials are generated for each domain
concept using predefined content.

2. BERT-based accuracy calculation: BERT model from the sentence-transformers library is used
to compute embeddings for the generated learning materials and predefined reference materials.
The cosine similarity is then calculated between these embeddings to determine the semantic
accuracy of the generated content.

3. MCQ generation: MCQs are generated for each domain concept and assess how much the learner

understands it.

4. Evaluation Table: Table 3.2 shows how the create_evaluation_table function collected generated
learning materials, accuracy scores, MCQs, and a brief description of results from the results set
into a structured evaluation table with the help of pandas. Descriptions of the accuracy are offered
as a categorical measure based upon the thresholds, "Excellent alignment" being the case when the
accuracy is greater than 90%, "Good alignment” for anything from 70% to 90%, and "Moderate
alignment™ for a value that is less than 70%.

Table 3.3 compares the ontology-based model's performance across numerous samples of the
Python programming topic Data Types, Control Flow, Functions, Error Handling, and OOP
(Object-Oriented Programming), respectively. It shows how effectively the system can generate
learning materials and assessments for each topic. As shown in Table 3.4, the ontology-based
model's performance also changes according to the dataset size when presented with the task of
generating Python programming learning materials. It shows accuracy and other improvements as
the model processes more datasets and proves its scalability. Using the following formulas, the
evaluation metrics such as accuracy, precision, recall, and harmonic mean of precision and recall

(F1-Score) are calculated by the formulas from 3.1 to 3.4.
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Accuracy

Precision

= (True Positives + True Negatives) / (Total Instances)

= True Positives / (True Positives + False Positives)

Recall = True Positives / (True Positives + False Negatives)

F1_Score = 2 * (Precision * Recall) / (Precision + Recall)

(3.1
(3.2)
(3.3)

(3.4)

Data is split into training (80%) and testing (20%) sets using the train_test_split function from

sklearn.model_selection. The final parameter is the split with test_size=0.2, and random_state=42

ensures reproducibility. Using dataset size, the training and testing percentages are calculated. The

values for these datasets are explicitly defined and printed in the run_evaluation function to make

it clear for model training and evaluating the dataset distribution. In this case, the accuracy

calculation was measured using the BERT-based semantic similarity. A pre-trained BERT model

was used to transform the generated and reference texts into vector embeddings. These embeddings

were computed into cosine similarity values measuring their semantic closeness. A predefined

threshold was set to verify if the generated content was accurate (e.g., 0.8 or 0.9). The accuracy

was calculated as the percentage of correctly matched samples over the total number of samples.

Table 3.2 Evaluation table sample

. Accuracy
Domain Generated Learning Material MCQs Description
Concept g Score P
(%)
Python is a versatile programming language Q: What keyword is
its simolici ili used to define a Excellent
Python known for its simplicity and readability. It L alignment with
_ supports multiple programming paradigms, | 98.50% function in Python? ref%rence
Programming including procedural, object-oriented, and - def - function - func - | material.
functional programming. define Answer: def
Q: Which of the
following is an
Common data structures in Python include unordered collection in | Excellent
Data lists, dictionaries, sets, and tuples. Each 95.85% Python? alignment with
Structures structure has unique properties and use ' - List - Tuple - reference
cases. o . material.
Dictionary - String
Answer: Dictionary
Q: What is the time
Algorithms are step-by-step procedures for complexity of binary | Excellent
Aldorithms solving problems. In Python, you can 92.30% search?\n-O(M)\n- | alignment with
g implement algorithms for sorting, o O(log n) \n - O(n log reference
searching, and manipulating data in Python. n) material.

Answer; O(log n)
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Table 3.3 Ontology-based model evaluation: Python programming topics sample

Python Topic l\éi;nnt:;e)lrezf Percentage | Accuracy | Precision | Recall Sl(fglze
Data Types (int, float, str) 390 39% 0.95 0.93 0.96 0.94
Control Flow (if, else, loops) 170 17% 0.91 0.89 0.92 0.90
Functions (def, arguments, return) 70 7% 0.93 0.91 0.94 0.92
Error Handling (try, except) 70 7% 0.89 0.86 0.91 0.88
Object-Oriented Programming (OOP) | 360 36% 0.90 0.87 0.92 0.89

Table 3.4 Ontology-based model evaluation performance by dataset size

Dataset Size (Records) Accuracy Precision Recall F1-Score
Small (500) 0.88 0.85 0.89 0.87
Medium (1500) 0.91 0.89 0.92 0.90
Large (5000) 0.985 0.92 0.95 0.93

One final point to clarify: the literature lacks comprehensive and domain-specific evaluation
metrics tailored to QG from source code. Traditional text-based metrics like BERT score do not
fully capture the nuances of the generation process in AQG from code. Finally, the proposed system
was deployed using Flask App, as shown in Figure 3.15. The final ontology-driven dataset
contained 5,000 structured quiz examples. For the current research, the dropdown menus (e.qg.,
domain and difficulty) are not dynamically populated from the ontology. Each Example consists of
a question, four options to choose from as an answer, and the correct answer. This study implements
an ontology-driven quiz generation system that leverages structured knowledge representation to
enhance Python programming education. By systematically aligning quiz content with formal
ontological structures, the system introduces difficulty mapping and semantic similarity evaluation,
ensuring learners engage with contextually relevant and appropriately challenging material. This
principled approach differentiates itself from generic quiz generators by providing a structured
framework that supports meaningful assessment while maintaining domain specificity. The
semantic analysis components refine content alignment and facilitate the generation of quizzes. As
part of its future trajectory, the system is designed to incorporate advanced NLP techniques to

enhance semantic alignment and QG quality, thereby positioning this work at the intersection of
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structured knowledge representation and adaptive educational technology within the context of

programming education.

) 121.00.1:5000

Python MCQ Quiz Generator

Choose a domain:

Lists Vi

Difficulty:

Beginner v

Number of Questions:

5

Figure 3.15 Python MCQ quiz generator flask app

3.4 Discussion

Ontology-based AGLM is a technology that can potentially enhance learning experiences in almost
any educational environment. From an instructor's point of view, it operates as a tool that can
initiate customized tests based on the students' diagnostic results. In this way, it enables the
emergence of personalized learning materials directed to certain weak spots and saves quiz creation
and grading time. This technology can provide a personalized learning path for learners,
particularly Python programming students. An independent learner might start with a diagnostic
test that covers basic topics such as data types, control flow, and functions. It can create debug
tasks, discussions, and interactive lessons personalized to the student's needs based on their
performance. It can also generate automatic feedback to highlight task errors, syntax errors, and
possible solutions for student advancement. The instructor can use the same feedback to identify
challenges faced by students and correspondingly grade the difficulty level of exercises so that
support may be made more specific. This technology is excellent for use in both self-paced and
instructor-led learning environments. In a blended learning model, for example, a self-paced learner
could work through the function modules, and an instructor could give the diagnostic quizzes to
track progress. Real-time performance tracking enables educators to identify learning gaps and
intervene effectively. Advanced learners can also use the system to focus on specialized topics,
such as data manipulation using Pandas, with automatically generated complex coding tasks to

support skill advancement.
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Overall, the ontology-based approach allows instructors to align learning materials with specific
learning objectives, ensuring learners receive contextually relevant, personalized content that
enhances engagement and retention while improving instructional efficiency. For the future work,
the ontology should be completely dynamic. Consequently, the dropdown menus of the Flask App
(e.g., domain and difficulty) are planned to be dynamically populated directly from the ontology
after adding the dynamic facility in the generation process. The literature lacks comprehensive and
relevant evaluation metrics dedicated to QG from source codes. BERT and other text-based metrics

do not offer the overall picture of the generation process for AQG from source codes.

Regarding positioning the developed system within the literature, prior ontology-driven question
generation has largely focused on domain-agnostic ontologies and the production of MCQs from
concept graphs [120], [121], [122]. These approaches often leverage OWL/RDF structures and
Bloom-aligned templates rather than code semantics. Items are derived from ontology triples and
evaluated primarily through expert judgment at scale, rather than program analysis of executable
artifacts. By contrast, Chapter 3 system employs a Python-specific ontology to generate MCQs
directly from source code, linking programming constructs and relationships to pedagogical
objectives, thereby shifting from triple-verbalization to a code-aware, concept-driven generation
process. Unlike MCQ pipelines that repurpose general knowledge bases (e.g., Biology or multi-
domain ontologies), the current approach models Python concepts directly and integrates them with
generation strategies designed specifically for programming education. This distinguishes it not
only from general ontology-based AQG but also from recent programming ontology efforts aimed
at computational thinking across multiple languages [114], by focusing narrowly and deeply on
Python constructs to support pedagogical alignment. In doing so, the approach addresses a gap
noted in systematic reviews of AQG methods [38]. This code-centric, language-specific ontology
thus extends ontology-based AQG beyond text and knowledge-graph settings and establishes a

foundation that subsequent chapters compare with template and LLM-based approaches.

3.5 Conclusion

In the digital age, programming skills have become a requisite for practice in almost every
professional sphere, increasing the need for the most effective learning materials in programming
study and training. Generating educational resources of computer programming based on ontology
is a promising way to improve the quality and efficiency of educational resources of computer

programming.

This chapter designed and developed an ontology-based framework to model Python programming
concepts and their relationships, enabling the automatic generation of quizzes and learning

materials aligned with these structures. Using BERT-based semantic similarity evaluations, the
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system achieved a high accuracy rate of 98.5%, validating its effectiveness in producing relevant,

accurate, and pedagogically coherent content.

The novelty of this approach lies in its integration of structured ontological modeling with
automated quiz generation, ensuring difficulty levels, semantic relevance, and alignment with

instructional objectives in Python programming education.

Despite its contributions, this study acknowledges limitations. First, it primarily focused on Python
programming, which may limit the generalizability of findings. Second, it requires further testing
through controlled trials comparing ontology-based learning materials with traditional resources to
evaluate impacts on retention, engagement, and mastery. Third, the ontology-based generation
process is not completely dynamic. Fourth, the literature lacks comprehensive and relevant
evaluation metrics dedicated to QG from source codes (BERT metrics does not offer the overall
picture of the generation process for AQG from source codes). Future research should expand the
system to support multi-language programming education, assess its effectiveness through
controlled experiments, and integrate adaptive feedback mechanisms and advanced NLP to further
enhance QG quality.

Thesis 1: | developed an ontology-based system that automatically generates programming-related
assessment questions directly from source code. By leveraging structured domain knowledge, the
system semantically interprets programming constructs to support concept-aware question
generation, without relying on adaptive learning mechanisms. [P1, P2]
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Chapter 4 A Hybrid Approach for Automatic Question Generation from Program Codes

4.1 Introduction

AQG has become significant with the increasing trend of online learning and its scalability in recent
years. Technical courses like learning programming languages are more popular, and there is a
massive demand for such subjects. Questions are the primary approach used to evaluate student
knowledge [123]. Therefore, creating questions becomes more challenging as the constant growth
of e-learning continues, more courses are made, and the pressure on teachers is high. Intelligent
and deliberate questions can enhance student understanding and reduce the gap between theory and
practice in programming subjects [124]. For example, the article [125] monitors the performance
and behavior of students who engage in courses with self-assessment methods in programming and
problem-solving. The research in [126] observes the decentralized practice by monitoring the
intensity and timing of the impact on student learning and problem-solving in programming
languages. The research paper [127] addresses interactivity while solving problems in
programming languages based on learning objects. The article [128] tries to enhance the use of
digital resources for students and instructors. The research papers [129] and [130] address the
learning objects that can be used in different contexts using Web3. Finally, the article [131]
suggests collaborative learning to help instructors engage students in generating and evaluating
questions. The proposed method in this chapter focuses on translating Python code into text and
uses an Al-based framework to generate questions from the text. Ontology is also used to connect
and conceptualize the logic of the programming language. Applying ontology ensures
interoperability with other systems and reduces the overhead on educational platforms. This chapter
contributes to e-learning platforms and improves the overall experience of programming language
instructors. It also enhances the learning path for students who like to learn and do exercises without
repeating the same questions. The outcome of this research is to generate meaningful questions
based on Python code to assist instructors in creating more questions in a timely manner, thus
ensuring student proper learning of the potential programming language. Unlike similar works,
most recent research focuses on generating questions from text, while some research focuses on

generating questions from visuals or images [132].

This chapter focuses on generating questions from code snippets using semantic relations to extract
the concepts. Generating questions from unconventional sources, such as code snippets, becomes
important in providing a better learning experience to large groups of students, especially when
dealing with limited information. The main goal of this chapter is to assist instructors and students
in properly evaluating student performance by generating Python-based programming questions
from existing materials (i.e., code snippets). The AQG from code snippets will add the possibility
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of generating a different set of questions based on the same code snippet. Therefore, it leads to a
better understanding of the given topic. The research objectives of this chapter are to implement a
framework that can interpret Python programming language into text, and enable the framework
to comprehend the text and build connections between the programming structures and the
semantic concepts for AQG. There are several differences in purpose and methodology between
the two approaches presented in Chapters 3 and 4. These two chapters present two completely
separate approaches. Chapter 3 focused on developing a general ontology-driven learning
materials generation in the form of MCQs using structured knowledge representation. Chapter 3
used Python programming concepts to extract the concepts and build the structured knowledge
representation, and the QG process was not fully dynamic. On the other hand, Chapter 4 focuses
on dynamic QG from direct Python source codes. Chapter 4 develops a hybrid approach that
combines AST, NLP, programming ontology, and an Al model for dynamic code-to-QG. Chapter
4 presents multi-type dynamic generation of questions (Boolean, short-answer, and open-ended).
The chapter is structured as follows: Section 4.2 details the methodology and framework. Sections
4.3 and 4.4 present results and discussion, respectively. Section 4.5 concludes the chapter.

4.2 Methodology

QG involves computer understanding of the available materials to propose plausible questions to
students. However, two approaches are usually effective: Al-based or semantic-based. The current
work uses a combination of semantic and Al methods to properly generate questions from code
snippets based on semantic code conversion. The primary motivation for using the semantic
approach is maintaining concept relations in the programming language keywords to increase
system intelligence on the programming language rules. Other approaches would not accurately
represent the programming language rules, keywords, and concepts. This section will detail the

QG framework architecture, the technology used, and the approach to generating questions.
4.2.1 Architecture

To generate questions from existing Python code snippets, an interpreter is needed to translate the
code into more understandable concepts. Python or any other programming language is
constructed using operators, variables, and functions. Operators such as +,-,AND usually do the
actual computing. At the same time, variables are used to store values and recall them with
operators to perform specific tasks. Functions contain a list of variables, loops, and operators to
be executed in order. The ontology will categorize and conceptualize the list of commands (i.e.,
variables, operators, etc.) and the relationships between the concepts in the script. It will build an
explained version of the code by processing the code line by line and creating semantic

relationships based on the input. Subsequently, the translated code is generated and inserted into
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an Al question generator called “QuestGen” [133]. This model will generate Boolean, short-
answer, and open-ended questions. Figure 4.1 shows the framework data flow and its components.
Awareness of existing technologies and software is essential to construct any framework or
software. Such awareness can improve productivity and help address many issues that take a long
time. As a result, I implemented a framework using various third-party software in this chapter.
Table 4.1 describes this case's environment settings, tools, and applied libraries. The QuestGen Al
model, an open-source NLP library dedicated to creating simple question-generation methods, has
been used. It has been on a mission to become the world's most sophisticated question-generation
Al by utilizing cutting-edge transformer models like T5, BERT, and OpenAl GPT-2, among
others. The primary objective of QuestGen Al is to simplify the QG process, providing support to
educators, content creators, and learners in developing educational materials. This tool
significantly enhances the efficiency of teaching and learning resource development through

automation, ultimately facilitating a more effective educational experience.

Figure 4.1 Proposed framework architecture

Before generating questions, the QuestGen Al model expects a text as input. The ontology
mentioned next is responsible for converting the snippet code from the Python programming
language into text that humans can understand. Subsequently, this model can generate questions
based on the inserted text. The QuestGen Al model supports four types of questions, and they are

as follows:
e Questions with Several Choices (MCQs)
e Boolean (Yes/No) Questions
e Open-ended Questions
e Question Paraphrase

61



The current study considers Boolean, short, and open-ended questions. Since learning a
programming language focuses on understanding the content of a code, such questions are more
suitable for assessing student knowledge properly.

Table 4.1 Environment settings, tools, and applied libraries

Name Description

OwlReady?2 Python library to implement Ontology V 0.37

Protege Software Application for viewing and modifying ontology
Jupyter Notebook IDE to develop the framework

QuestGen Al-based application to generate questions from the text
Python V3.11.1

4.2.2 Ontology Design

The ontology is built and compiled using the Owlready?2 library in Python. Such a library would
support automating manual activities like adding instances to the ontology. However, the main
components and the relationships between concepts should be implemented manually to maintain
logical correctness. Translating code into text starts with assigning keywords to ontology classes
and describing these keywords. For example, the "=" sign is described in the ontology as an "equal
sign”, a value of the Assignment subclass in the operator class. The output of the ontology
implemented in Python and Owlready? is then imported into Protégé for visualization purposes,
since the visualization is not yet supported on Owlready2. Figure 4.2 shows the visualization of

the ontology design in Protégé.

Logical correctness would enforce semantic meaning on the written script. For example, an “elif”
statement syntax is valid in Python. However, it cannot exist without having an “if” statement
before it. An “elif” should only come after an “if”. Furthermore, logical correctness would connect
all the keywords and describe the semantic relationship between steps. Most essential aspects of
the Python programming language in the designed ontology are classified as classes and
subclasses. For example, in this study, the Python language elements and constructs have been
categorized into four main classes: Control Structure, Function, Library, and Operator. Each
subclass of the Operator class contains several instances that would map each instance to the
operator class. Such mapping would assist in enforcing the logical correctness of the translated
snippet. Figure 4.3 shows an instance definition from the constructed ontology. The ontology's
capabilities aim to structure the Python programming language to ensure that the computer can

collect vocabulary text about the keywords and build sentences based on the combination of the
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programming language keywords, which can be fed later into the QG model. The main limitation
is that the ontology should be built manually by adding the explanation of all instances, which can
be challenging to implement. Further research is needed to improve this approach.
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Figure 4.2 Ontology design visualization using protégé

<owl:Class rdf:about="#Subtraction"=
<rdfs:subClassOf=
<owl:Restriction>
<owl:onProperty rdf:resource="#has example"/>
<owl:hasValue rdf:datatype="http://www.w3.0org/200 1/XMLSchema#string">Example
usage of Subtraction</owl:hasValue>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction=>
<owl:onProperty rdf:resource="#has_description"/>
<owl:hasValue
rdf:datatype="http://www.w3.0org/2001/XMLSchema#string">Description of
Subtraction</owl:hasValue>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf rdf:resource="#Arithmetic"/>
</owl:Class>

Figure 4.3 Instance definition of Subtraction

4.2.3 Parser

The parser's job is to detach a block of code into pieces that can match the ontology based on
keywords and custom conditions. These conditions are adjusted depending on the inserted
snippets. This model uses the ontology to create sentences. It analyzes keywords in the parser and
generates sentences explaining the code. For example, a=10, the parser would create “a is a
variable. a value is 10”. AST helps turn Python code (and maybe other types later) into sentences

using a set of rules. It maintains whatever logic the ontology possesses about the code. Then, it is
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fed into the Al model to generate proper questions based on the code interpretation by the

ontology. The 'explained code' is passed to the QuestGen Al framework to generate questions.
4.2.4 Question Generation

Over time, there is a growing demand for QG, a trend that could significantly alleviate the burden
on educators and trainers. This is particularly beneficial for scalable learning formats such as
online courses. Many models exist for generating questions from regular text; however,
understanding code and generating questions from code snippets is not applied due to its
complexity. Code-to-text conversion is a challenging task. However, the semantic relationships
between the concepts in the ontology are an excellent solution. Figure 4.4 shows the whole
procedure for translating code into text. In Figure 4.4, the code undergoes validation by a parser
checker responsible for scrutinizing its syntax. Once the code is confirmed as error-free, the
checker directs it to the ontological translator, acting as the parser within our architecture. This
parser transforms the code into coherent sentences, forwarding them to the QG Al model to
generate reasonable questions. An explanation of the QG Al model is provided in the subsequent

section.

Parser check —

Ontological
translator

— y is a string variable
H N 9 equals bar H
: wvariable equals car !
z is a integer : .
: variable equals 10 A B @ [k caELs ;
H one, two :

G i —— | QuestGen Al

G Ab a {integer, list, sIringD

Figure 4.4 Question-generation process
4.2.5 QuestGen Al

The QuestGen Al model is an Al model that can generate questions using Al. The QuestGen
project is available in an open-source format [18]. The model is already trained and can generate
high-quality questions based on text fed into the model. Instructors can choose the type of question
that can be generated; however, Boolean, short, and open-ended questions have only been applied
for this study. The results summarized in the subsequent section show that the Al model can

generate reasonable questions based on the input text and its level of clarity.

¢ Input: The model can process various types of input, including structured, unstructured, and

context-based content such as passages, documents, and articles.
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Field of application: The model is tailored to support the education field across diverse
disciplines such as science, history, language arts, and more. However, it does not have the

capability to execute or generate programming language code (at the time of this research).

Generation method: It is a semantic-based model designed to comprehend inserted text by
leveraging concepts and contextual awareness. This procedure is divided into two main
steps. Firstly, it begins with entity recognition, wherein the model extracts crucial
information such as dates, names, and relationships, employing part-of-speech tagging.
Next, the model applies question templates to the extracted information to match the most
suitable predefined question template. To improve question quality, various methods are
employed, including probabilistic approaches to refine wording and phrasing within the

questions.

Question format: The model can propose various formats, including open-ended, multiple

choice, true/false, and short answer.

Response format: The responses are generated in both text and JavaScript object notation
(JSON) formats. Each type of question has its own format. For instance, MCQs prompt the
system to produce the question stem and its corresponding answer choices. This distinction

applies to all question types, and the resulting output is tailored accordingly.

Example: The sentence inserted into the model is “In Python, a function is defined using
the 'def' keyword, followed by the function name and parentheses containing any
parameters. The function body is indented and contains statements that define the function's

behavior.”

The generated questions for a true/false type of question are:

o “Isafunction in Python defined using the 'def' keyword?”.

o “Do parentheses follow the function name in a Python function?”.

o “Does the function body in Python need to be indented?”.

4.2.6 Hybrid Question Generation from Program Codes

Algorithm 4.1 is a hybrid approach employed to automate the generation of programming-related

questions from Python source code by integrating structural parsing with ontology-based semantic

enrichment. Initially, source code samples are parsed using Python AST to identify constructs

such as function definitions, class structures, variable assignments, and control flow statements.

An ontology is constructed to represent these extracted elements and their semantic relationships,

capturing contextual information regarding code dependencies and logical flow within the
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program. Using this enriched representation, the system generates diverse question types,
including Boolean, short-answer, and open-ended questions, through either the QuestGen neural

generation model or a heuristic fallback mechanism when computational resources are limited.

Algorithm 4.1: Hybrid Approach for QG from Program Codes
Input: Python source file path P

Output: Question set Q ={Q_b, Q_s, Q_o}

Parameters: max_questions, question_type

1: O « BuildOntology()

2: C « ReadFile(P)

3: AST « Parse(C)

4: T«—0

5: for each node € AST do

6:  switch node.type do

7: case Assignment:

8: ind < Variable(node.target, node.value)
9: case FunctionDef:

10: ind < Function(node.name, node.args)
11: case ClassDef:

12: ind « Class(node.name, node.bases)
13: case Call:

14: ind <« Object(node.target, node.func)
15: case Import, ControlFlow:

16: ind « CreateIndividual(node)

17:  end switch

18: AddToOntology(O, ind)

19:  semantic desc < QueryOntologyRelations(O, ind)

20: T« T U {semantic_desc}

21: end for

22: text < Concatenate(T)

23: if QuestGen_Available() then

24:  Q « QuestGen_AI Model(text, max_questions, question_type)
25: else

26: Q « HeuristicFallback(text, max_questions, question_type)
27:end if

28: return Q

The suggested hybrid method is aimed at semantic correctness as well as parsing robustness
through a three-tier processing pipeline that morphs code structure into semantic text while
keeping the door open for Al-assisted QG. Python AST parser is adopted as a rule-based
deterministic parser, retaining the original code structure and accounting for various syntactical
elements of Python including variables, functions, classes, operators, and control structures.
Structural construction is maintained directly through mapping from AST nodes to ontology, such
that every construction/coding entity relates to the specialized classes in programming ontology
themselves  (variable, function, class, control_structures), while the function
analyze variable_type() actually holds the type representation intact and traces the direct
hierarchical relationships back to the code context of that construct throughout the journey of
conversion. The programming-specific ontology acts as a semantic link that guides code structure
interpretation and generation of structured semantic text, which can then be fed into the QuestGen
Al model to produce programming-related educational questions that are cohesively tied to code
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concepts through the quality of the semantic input developed. The AST-based parsing mechanism
handles diverse code constructs from simple assignments to more complex object-oriented
hierarchies with nested functions and inheritance relationships, thereby laying down a sound
structure for performing code-to-text conversion, although in the future it can be extended to
include automated question validation mechanisms and quantitative metrics for domain alignment
to further cement the educational assessment capacities and verify end-to-end semantic

preservation of the system.

4.3 Results

The results are generated in two versions, one utilizing our proposed model and the other without

its use (i.e., by directly inserting the code into the QuestGen Al), as depicted in Figure 4.5.

Code Syntax Checker QuestGen Al

|

Figure 4.5 Generating questions directly from code

The implemented framework facilitates the QG process, empowering teachers to automatically
generate Python programming language assessment questions for testing students' knowledge.
Three different Python code examples were tested to see how well the system works compared to
a baseline model. Each example shows a different type of programming that students and
developers commonly work with. Example 1 in Figure 4.6: This is a basic script that just defines
some variables (strings, lists, and numbers). It is the kind of simple code seen in introductory
programming lessons, so it tests whether the system can explain fundamental Python concepts
clearly. Example 2 in Figure 4.10: It offers classes and inheritance, a Person class and a Student
class that builds on it. This example checks if the system can handle more advanced topics like
object-oriented programming, which can be tricky to explain well. Example 3 in Figure 4.14: This
one imports the math library to calculate a circle's area. It tests how the system deals with
functions, imported libraries, and mathematical operations (pretty common stuff in real
programming projects). These three examples were picked because they cover different skill levels
and programming concepts. Starting with basic variables, moving to classes, and ending with
functions and imports gives a good range to test the system thoroughly. Figure 4.6 depicts a
straightforward code snippet featuring variable definitions. This figure illustrates specific

variables alongside their assigned values, incorporated as a script within the ontology. A Python
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parser is employed to validate the text as proper code before generating any flawed or erroneous
questions to mitigate the potential for incorrect syntax within the inserted code. Figure 4.7 displays
the translated text derived from the code, providing a textual interpretation for each line. The
interpreter presents the variable type and specifies the assigned value for each variable. Figure 4.8
showcases the outcomes resulting from inserting the aforementioned text into the QuestGen Al

model. It is worth mentioning that the evaluation was based on human evaluation.

# Example Python
python_script

script to analyze

*xfoo = "foo™

ab = [Mone”, "two™]

cd = ["a boy", 33, "sudden™]
1a

et =

Figure 4.6 A code snippet with variable definitions

xfoo is a string variable and its value iz "foo'

ab is a list variable and
cd is a list variable and
et is an integer variable

it has 2 items
it has 3 items
and its value is 19

Figure 4.7 Generated text from a code snippet

Funning model for generation
{'questions": [{'Questicn’: "What iz the value of xfoo?, "Answer”: 'foo',
its value 13 'foo™}]}
{'questions": [{'Answer': 'foo,
'Question’: "What 1z the value of xfoo?',
'context: "xfoo is a string variable and its value is "foo'",
id 111,
'statement’: "xfoo 15 a string variable and its value is "foo'™}
Funning model for generation
{'questions": [{'Question’: "What are the items in the list variable ab?,
variable and it has 2 items'} ]}
{'questions”: [{'Answer': 'items’,
'Question’: "What are the items in the list variable ab?,
'comtext’: 'ab iz a list variable and it haz 2 items',
id: 131,
'statement’: 'ab is a list variable and it has 2 items'}
Funning model for generation
{'questions”: [{'Question’: 'How many items does cd have?, "Answer”
and it has 3 items'}]}
{'questions": [{'Answer': 'items’,
'Question” 'How many items does cd have?,
'comtext’: 'cd iz a list variable and it haz 3 items',
id: 131,
'statement’: 'ed iz a list variable and it has 3 items'}
Funning model for generation
{'questions”: [{'Question’: "What is the valoe of ef?, "Answer': 'value',
its value 1s 10'}]}
{'questions”: [{'Answer': 'value',
'Question’: "What 1z the value of ef?',
'comtext’: 'ef is an integer vanable and its value 13 10',
id: 131,
'statement’: 'ef iz an integer variable and its value 15 10'}

Figure 4.8 Generated questions for vari
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Figure 4.9 can be seen without having a context. The question generator failed to produce any
meaningful questions except for the list variable, where it managed to generate a relevant question.
However, the Al model could not comprehend all the lines, hence the presence of the ZERO {}
symbol.

ZERO{}
ZERO(}
Running model for generation
{'questions”: [{'Question’: "What is the meaning of ed = "a boy"?", 'Answer": 'boy’, 1d": 1, "context': 'ed = ["a boy", 33,
"sudden"]'}}
{'questions”: [{'Answer": 'boy’,
'Question’: "What 1s the meaning of ed ="a bay"7,
'context”: 'ed = ["a boy", 33, "sudden"],
d" 1],
'statement” 'cd =["a boy", 33, "sudden"]}
ZERO{}

Figure 4.9 Generated questions without using the proposed approach
Figure 4.10 exhibits a Python code comprising class and object definitions presented as a string
and passed through an ontology to translate it into text. Subsequently, this text is fed into the
QuestGen model to generate questions. In the subsequent examples, only the generated questions
and context from QuestGen Al will be showcased, omitting the complete outputs. Moving on to
Figure 4.11, it explains the preceding code snippet depicted in Figure 4.10 using natural language,

preparing it for input into the Al generator.

# Example Python script to generate explanations
python_script = e
class Persorn:

de+ Anit {s=l+F, mamse, age):
saelf . nams = mame
self.age = age

class Student{Person):
def _ dnit (self, mnmame, age. schooll):
super{)._ dnit {(name., age)
self.schoocl = school

Wwardl
a2

Person{ "Jane™, 25)
Student (" IJohn™ , 2, "ABC School™)

Figure 4.10 Python code for defining classes and objects

Person is a class definition
__init_ is a method
name is an instance of the property
age is an instance of the property
Student iz a class definition
__init_ is a method
school is an instance of the property
Student inherits from the Person class
varl is an instance of the Person class with name 'Jane' and age 25
var2 is an instance of the Student class with name 'John', age 28, and school 'ABC School®
Student inherits from Person

Figure 4.11 Generated explanation of the code in Figure 4.10
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Following this, Figure 4.12 displays the questions generated from the snippet description,
demonstrating the relevance of the generated questions. However, Figure 4.13 illustrates the
outcome of generating questions without providing a snippet description, resulting in improper
questions marked by ZERO{} symbols and inaccuracies. This indicates the necessity of providing

a description for accurate QG.

[{'Question”: "What 15 person?, ‘context” Person 15 a class definition'} |

[{'Question”: "What 15 __tmt 7 'context:' init 1samethod'}]}

[{'Question”: Name 15 an nstance of a property”’'context”: 'name 1s an instance of the property'}]
[{'Question”: "What 15 age an instance of "' 'context'” 'age 1s an nstance of the property'}]
[{'Question”: "What 15 a student a class definition?','context’: 'Student 1s a class definition'}]
[{'Question: "What1s it 7 'context:' init 1samethod'}]

[{'Question”: "What 15 a school?', context': 'school 15 an instance of the property'}]

[{'Question”: "What class does a student inherit from?''context”: "Student inherits from the Person
class'}]

[{'Question”: "What 15 var] an instance of7''context”: "varl 1s an instance of the Person class with
name 'Jane' and age 25"}]

[{'Question”: "What 15 the instance of the Student class with name 'John', age 20, and school
'ABC School?", context’: "var2 is an nstance of the Student class with name 'John', age 20, and
school 'ABC School"'}]

[{'Question”: "Who does a student inherit from?''context”: "Student mherits from Person'}]

Figure 4.12 Generated questions for the code in Figure 4.10

ZERO{}

[{'Question’: "What 1s the age of the person in def _init 7' 'context’: 'def  init  (self, name, age):'}]

ZERO{}

[{'Question’: "What does age mean?', 'context’: 'self age = age self age = age'}]

ZERO{}

[{'Question’: "What 1s the age of the child? 'context”: 'def  imit (self name, age, school):'}]

[{'Question’: "What 1s super().__init (name, age)?' 'context: 'super(). it (name_ age)'}]

[{'Question’: "What 1s self school? 'context”: 'self school = school self school = school'}]

ZERO{}

[{'Question’: "What 15 the value of student{John, 20, "ABC School™)?' 'context’: 'var? = Student("John", 20, "ABC
School")'}]

Figure 4.13 Generated questions without using the proposed model

In the third example, depicted in Figure 4.14, a function is defined to compute the area of a circle
based on its radius. This code incorporates arithmetic operations and utilizes Python's 'math’
module. Subsequently, Figure 4.15 exhibits the output resulting from describing the
aforementioned code to input into the Al model. Meanwhile, Figure 4.16 displays the generated
questions derived from the description of the code snippet involving mathematical operations.
Conversely, Figure 4.17 showcases a question generated without describing the snippet. The

results depicted in all figures are formatted in JSON, containing both the question and its solution.
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The QuestGen model provides the answer alongside the question if it available, excluding the
options. It is worth noting that there are warnings due to deprecated libraries utilized by the
QuestGen Al model, prompting necessary updates by the authors. Results indicate that generating
questions directly from code without semantic translation yields poor quality, while ontology-
based translation enables the generation of meaningful, contextually aligned questions using
QuestGen.

# Define the Python code to be analyzed

python_code = """

import math

def area(radius):

area = math.pi * radius ** 2
return area

L

[A ANy |

a =

rea(r)

Fiaure 4.14 Code snippet containing a function and arithmetic operations

Imported module: math
area_of circle is a method definition
rd is a variable
Its value is Constant(value=5)
ar is a variable
Its value is Call(func=Name(id="area of circle', ctx=Load()), args=[Name(id="r', ctx=Load())], keywords=[])

Figure 4.15 Generated explanation of the code in Figure 4.14

[{'Question’: "What is the name of the module that 15 imported?’, 'context’: 'Tmported module:
math'}]
[{'Question’: "What is a method definition?', 'context’- "area is a method definition'} ]
[{'Question’: "What is r7' 'context’: 'r 1s a variable of type unknown'}]
[{'Question’: "What iz Constant{value=3)7"'context': Tts value is Constant(value=3) Its value is
Constant(value=5)"}]
[{'Question’: "What 1s a variable of type unknown?''context': 'a is a variable of type unknown'}]
[{'Question’: "What is the calculated area of the circle? 'context: "'a’ represents the calculated
area of the circle."}]
[{'Question’: "What 15 the value of the call{func=Name(id="area’. ctx=Load()),
args=[Name(1d="r'", ctx=Load())?" 'context: "Its value is Call(func=Name(id="area’, ctx=Load()),
args=[Name(id="r", ctx=Load())]. keywords=[])"}]

Figure 4.16 Generated questions using the proposed model

ZERO{}
ZERO{}
[{'Question’: "What 15 the area of the math.pt * radius?', ‘context’: "area = math.p1 * radius ** 2'}]
ZERO{}
ZERO{}
ZERO{}

Figure 4.17 Generated questions without using the proposed model

71



4.4 Discussion

In this experiment, various code snippets were tested for translation using the proposed ontology
and fed into the QuestGen model to create questions. Table 4.2 outlines the test cases, the
generated questions, and the difficulty level of the tested code. It was noticed that human
evaluation of AQG results is more accurate than automatic assessments [132]. Based on the
literature, no evaluation metrics are specific to QG from source code. The evaluation was
conducted by a qualified human evaluator. The validity of the generated code is rated on a scale
of 1 to 5, where one represents the least validity and five indicates the highest validity. Difficulty
is assessed based on script logic, with five denoting complexity and one representing simplicity.
For instance, identifying variable assignments is relatively straightforward, while understanding
inheritance is more challenging. Generating appropriate questions from sophisticated or advanced
code snippets, such as those utilizing third-party libraries, still presents limitations. Composing
accurate questions becomes increasingly tricky as code complexity and inter-line relationships
grow. Consequently, further development is necessary to enhance outcomes. Addressing this need
will lead to more advanced results. Nevertheless, this study introduces a new dimension to e-

learning and supplements existing QG approaches that have proven effective in textual sources.

Table 4.2 Types of syntax covered

Test case Code level of A generated Context Generated
difficulty guestion guestion validity
a) Variable declaration What is the value of xfo_o isa strmg
1 variable and its 4
xfoo? coup
value is 'foo
b) List declaration ‘What are the items ‘ab is a list
2 in the list variable variable and ithas | 5
ab? 2 items'
¢) Class declaration 3 What is a person? Per_so_n_ is a class 5
definition
d) Instance and What is a school an _school isan
property 4 . instance of the 3
oY instance of? .
initialization property
e) Variable varlisan
initialization, , . instance of the
. What is varl an .
instance 5 . ) Person class with | 4
A instance of? o
initialization, name 'Jane' and
property. age 25"
f) Inheritance 5 Who does a student | Student inherits 5
identification inherit from? from Person
g) Libraries import What is the name of Imported module:
4 the module that is " "4
. math
imported?
h) Functions 4 What is a method area is a method 3
definition? definition
i) Variable type 4 What is r? risa varlablelof 4
type unknown
j) Functions result '‘What is the 'a’ represents the
5 calculated area of the | calculated area of | 5
circle? the circle.
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From Table 4.2, mean validity score is 4.20. Concept coverage analysis indicated a somewhat
balanced distribution of validity scores across the evaluated topic areas, with no major weaknesses
found. Advanced Topics and Functions managed an 80% average validity (4.00 out 5), with a
slightly weaker performance since it was more consistently done in other categories. Basic syntax
and object-oriented concepts did slightly better, achieving 87% validity each (4.33 out of 5),
indicating high clarity and alignment with the intended learning outcomes. The implication of
these results is that while all areas are being seen to have good educational value (educational
effectiveness is 80% for validity score>=4), just slight refinements in advanced and function-based
questions may help align their effectiveness with the top two-performing categories. Specific areas
such as instance and property initialization, along with certain function-related items, emerged as
opportunities for improvement as shown in Figure 4.18. Figure 4.19 demonstrates that there is no

strong linear relationship between code difficulty and validity scores (r = -0.042).

It is important to note that the experiments involving QuestGen Al were conducted in mid-2023,
during a period when state-of-the-art LLMs, including ChatGPT, had not yet reached their current
level of maturity. At that time, direct code input into QuestGen often resulted in poor question
generation, particularly due to limited understanding of Python syntax and structure. This

limitation motivated the development of the proposed hybrid pipeline architecture.

Question Performance Ranking

Functions result
Inheritance identifi. ..
Class declaration
List declaration
Variable type
Libraries import
Complex initializati...
Variable declaration
Functions

Instance & property ...

0 1 2 3 4 5
Validity Score
Figure 4.18 Question performance ranking by validity
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Regarding positioning the developed system within the literature, prior research in AQG from
source code has mostly taken single-paradigm approaches. For example, the article [134] focused
on generating challenge questions from student code using program analysis, but their work lacks
semantic or ontology integration. Similarly, the research paper [135] proposed Jask, which
generates questions about learners’ Java code via static analysis, but it remains language-specific
and ontology-free. More recently, Goodfellow and colleagues [136] developed AutoMCQ, an
LLM-based system for automatically generating code comprehension MCQs; while scalable, this
approach is entirely prompt-driven and does not ensure semantic control. Parallel work such as
the article [12] introduced a “meaning tree” approach for mass generation of programming
problems from repositories, though it emphasizes problem synthesis rather than semantically
guided, question-level assessment. It is evident that the majority of systems fall into one of three
categories: template-based, driven by code analysis, or entirely neural, which creates an
opportunity for hybrid systems that combine semantic control with adherence to program

structure.

Chapter 4’s hybrid approach is novel because it combines program analysis (e.g., AST/control
flow parsing) with an ontology-driven semantic layer to steer both the intent and linguistic
realization of generated questions. This helps create questions that are not only grammatically
correct but also educationally useful, including the generation of meaningful distractors. In
contrast, Chapter 3 addressed ontology-based generation of only conceptual MCQs; Chapter 4
advances further by producing more question types, bridging structural code analysis with

ontology-guided semantics, which is a combination absent in earlier studies.

Finally, Semantic accuracy is achieved through a deterministic Python AST traversal that maps
each code element to an ontology individual before language generation. This rule-based process
ensures reliable coverage of constructs such as assignments, functions, classes, control flow,
imports, and object creation, while the ontology restricts vocabulary to code-backed entities to
prevent out-of-scope concepts. Because no standardized automatic metrics exist at that time for
AQG from source code, evaluation was conducted through expert human judgment. Generated
questions were evaluated using two complementary rubrics. A programming instructor rated
question validity on a 1-5 scale, where higher scores reflected semantic accuracy, clarity, and
pedagogical usefulness. Source code difficulty was assessed separately, considering both
structural and conceptual factors such as control flow depth, inheritance, and use of external
libraries. Future work will focus on developing dedicated evaluation metrics for automatic

question generation from source code.
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4.5 Conclusion

E-learning has become very popular recently, notably accelerated by the onset of the pandemic.
One area that has gained considerable attention among researchers is AQG derived from learning
materials. However, the predominant focus of existing efforts lies in generating questions from
textual content. This work, however, concentrates on generating questions tailored for Python
programming language learners derived explicitly from code snippets found in textbooks and
course materials. Leveraging ontologies, this approach demands fewer computational resources,
enhancing the scalability of the framework across diverse systems. The proposed framework
harnesses ontological mapping, associating each syntactic element with its corresponding meaning
and explanation. The process involves translating code into text and subsequently feeding this
translated text into an Al-based model for question generation. It aims to alleviate the burden on
educators and reduce the repetition of the same questions for different groups of students.
Moreover, the generated questions from code snippets serve to evaluate students' general
understanding. The method used to achieve this goal combines the QuestGen Al model and
ontology based on semantic code conversion. The results produced are questions based on the
code snippets provided. The evaluation criteria were code complexity and question validity. This
work has great potential for improving the e-learning platforms to improve the overall experience
for both learners and instructors. The hybrid pipeline architecture is the main contribution, while
a comprehensive evaluation layer is a priority for future work that builds on the hybrid pipeline
architecture. Results indicate that generating questions directly from code without semantic
translation yields poor quality, while ontology-based translation enables the generation of
meaningful, contextually aligned questions using QuestGen Al model. However, the proposed
approach still has some limitations. The generation of questions relies solely on the QuestGen Al
model, which can occasionally result in poorly phrased questions due to its Al nature.
Additionally, the model might struggle to identify certain third-party libraries in complex code
snippets. Hence, it represents an opportunity for future work to facilitate the insertion and
categorization of concepts from all libraries. Finally, exploring alternative models such as GPT
and expanding the framework to recursively process all imported libraries would enable a deeper
understanding of complex syntactic structures. This enhancement would empower the ontology to
explain code snippets better and generate more nuanced and fitting questions. Future work is

needed to develop dedicated evaluation metrics for AQG from source code.

Thesis 2: | developed a hybrid system that combines static code analysis, ontology, and natural
language processing using word embeddings to generate programming-related questions from

source code. [P3]
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Chapter 5 Evaluating Large Language Models for Generating Programming Questions from

Source Code

5.1 Introduction

The field of NLP has witnessed unprecedented strides, and the enabling factors have been the
increased availability of digital resources in text and the advancement of language modeling. GPT-
3.5, GPT-4, Llama, Falcon, and Vicuna are among the most prominent LLMs. These models have
successfully understood and generated human language, and their impacts have been felt in other
areas like code generation and analysis. The number and complexity of datasets used in language
modeling have recently increased. The general domain of coding and software engineering has
adopted the computational capacity of these models to automate code-related question
construction. Consider a script written in a programming language like Python. This script is
considered input to these large language models through an application programming interface
(API) connection. The output would be a collection of relevant questions about the input (e.g.,

Python script).

The large number of accessible language models creates a challenge. With all these options
available, comparing them in terms of performance and output quality is necessary. The present
study addresses this challenge by conducting a comparative evaluation of popular LLMs. This
study proposes a set of evaluation criteria to assess and benchmark these models' performance
systematically. These criteria represent essential aspects, including relevance, clarity and
coherence, conciseness, and coverage. Every aspect has been examined to assess the performance
of the LLMs under investigation. This study evaluates these models, clarifying their distinctive

characteristics and shortcomings.

This chapter seeks to uncover insights that may be vital in various applications. Highlighting these
best performers would allow educators, developers, and researchers to make informed decisions
about adopting LLMs for code-related QG tasks. The chapter evaluates a diverse set of state-of-
the-art LLMs. Chapters 3 and 4 presented two distinct approaches for AQG from Python source
code. Chapter 3 discussed an ontology-driven approach which allowed the structured
representation of knowledge that would yield MCQs automatically from Python programs.
Chapter 4 extended that thesis by providing a hybrid approach, the ontology combined with the
QuestGen Al model, to make the generation process dynamic and grab semantic understanding
better. Though they both made headway, the two approaches suffer mainly in their limited scope
in one aspect. No systematic evaluation metric is provided to benchmark the quality of the
questions generated from source codes across the different dimensions. Hence the evaluation was

very much a subjective measure that limits comparisons of results systematically with other AQG
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methods. Chapter 5 goes on to cover this gap by extending AQG research into a multi-language
context including Java, C++, and Python. With a broader scope, the performance of LLMs in
forming questions from codes rooted in different source code paradigms with individual syntaxes,
semantics, and idiomatic usages could be evaluated. A structured evaluation framework
established by this chapter would assess AQG systems in terms of comprehensiveness, reliability,
and reproducibility in model, language, and approach comparisons. Thus, Chapter 5 naturally
follows from the methodological foundations laid in Chapters 3 and 4 and directly addresses their
limitation in evaluations-driven framework for AQG from source code. The primary objectives of

this chapter are as follows:

1. To define a set of evaluation criteria, including relevance, clarity and coherence, conciseness,

and coverage, to measure the quality of questions generated by LLMs.

2. To develop an approach for evaluating and comparing the performance of LLMs in QG from

program codes.

3. To empirically evaluate and rank the selected LLMs based on their performance in QG from
program codes.

This chapter is structured as follows. Section 5.2 outlines the methodology, describes the dataset
used for evaluation, and provides a detailed account of the experimental setup. Section 5.3 presents
the evaluation results along with the ranking of the LLMs. Section 5.4 discusses the findings and
explores the potential applications of LLMs in QG from program code. Section 5.5 concludes the

chapter.

5.2 Methodology

The methodology explains how the evaluation and comparison are made regarding the proficiency
of various LLMs to create questions from the given source code. This section outlines all the
events leading to data collection and preparation, model selection, evaluation metric selection,
experiment execution, and ranking of the models. In this context, a comprehensive and impartial
exercise is carried out to identify the models best suited for relevant QG tasks concerning
programming code. The languages chosen for the experiment were Python, C++, and Java. These
languages were focused on during the research, with the possibility of applying such methods to
other structurally similar programming languages. The sequence selected aids in rendering clear
views into the strengths and weaknesses of each of the models, thereby allowing a deeper
understanding of questions pertaining to the future of this research. Previous studies have
undertaken related efforts, like [137], [138], and [139]. Algorithm 5.1 shows the pipeline of the

proposed framework. It compares LLMs on how well they generate questions about code, using a
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reference evaluator model, and produce quantitative metrics. Given a set of code samples, each
model generates questions for each sample using a consistent prompting strategy. A reference
model then evaluates these generated questions to assess their quality based on dimensions like
relevance and clarity. The algorithm computes the average score for each model and optionally
tracks repetition rates to measure question diversity. It further constructs pairwise win matrices,
computes win rates, and calculates Elo ratings to rank models based on relative performance. The
outputs are then summarized, including average scores, win rates, Elo ratings, repetition rates, and

comparison matrices.

Algorithm 5.1: Multi-Model Code QG and Evaluation

Input: Set of Code Samples (D), List of LLM Model Names (MODELS),

Reference Evaluation Model (EVAL_MODEL)
Output: Summary of Model Performance Metrics (SMPM)
1: Initialize scores_by_model, reps_by_model, results as empty.
2: For each sample in D do:

3: For each model_name in MODELS do:

4: prompt «<— build_generation prompt(sample.code, sample.language)
. questions «— LLM(model name).generate_questions(prompt)
: metrics «— evaluate questions(questions, EVAL_MODEL)
> score «— average_scores(metrics)
: repetition < repetition_rate(questions) // optional
: Store (model_name, sample, metrics) in results

10: Append score to scores_by model[model_name]

11: Append repetition to reps_by_model[model_name]

12: End For

13: End For
14: wins, comparisons «— build win_matrix(scores by model)
15: win_rate «— win_rates(wins, comparisons)
16: elo < elo_ratings(scores by model)
17: repetition «— aggregate repetition(reps_by_model)
18: Construct SMPM as {ranking(scores_by model), win_rate, elo, repetition, wins, comparisons}

© 00 N o o1

5.2.1 Data Collection

The dataset is already prepared for the study; it contains a rich collection of code snippets written
in Python, Java, and C++ [140]. These languages were chosen to reflect a wide variety of syntax
structures prevalent in all of these languages. Each LLM was then tasked using a custom-
developed software tool to generate questions from the selected code samples. After generation,
the printed questions underwent assessment against the predefined criteria. Each model was thus
analyzed and ranked based on the ability of the questions it generated to meet those evaluation
standards. These models have a wide range of diversity in size, architecture, and capabilities, from
smaller, old-fashioned models to innovative, gigantic ones. These models were chosen to
encompass various sizes, ensuring a comprehensive performance evaluation. Table 5.1 shows each
model's name and its number of parameters. All the models are based on transformer architecture;
therefore, the architecture is not mentioned in the table. A curated set of Python, C++, and Java
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scripts prepared covering an array of programming concepts, complexities, and domains. Three
programs were used: procedural, object-oriented, and general. The general code was taken from
online sources. The two other codes were prepared. In these programs, diverse programming
elements were collected so that all basic topics (from the Python/C++/Java language reference)
are represented. Note on Nomenclature: In this chapter, model names combine official branding
and repository-specific identifiers (e.g., Hugging Face, APl documentation) to ensure consistency
and replicability throughout the text.

Table 5.1 Selected LLMs

Model Parameters Availability
GPT-4-0314 175B Paid
Ilama-2-70b-chat 70B Free
GPT-4-0613 175B Paid
Ilama-2-13b-chat 13B Free
claude-2 130B Paid
GPT-3.5-turbo-0613 175B Paid
falcon-40b-v1 40B Free
falcon-40b-v2 40B Free
vicuna-33b-v1.3 33B Free
Ilama-65b 65B Free
falcon-40b-sft-top1-560 40B Free
mixtral-8x7b-instruct-v0.1 56B Free
falcon-7b-v3 7B Free
falcon-40b-instruct 40B Free
falcon-7b 7B Free

5.2.2 Question Generation

The next phase involved instructing the selected LLMs to generate diverse questions based on the
attached scripts. This process required the formulation of a carefully crafted prompt, which was
used as input for each LLM. All the models used the same role and content to get measurable
results. The prompt served as a crucial communication channel between the software and the
models, guiding them to generate questions relevant to the script provided. The entire script was
passed to each of the abovementioned LLMs as part of the prompt. The models were instructed to
generate diverse questions based on the attached script. The prompt utilized for generating the
question set is given in Figure 5.1. It was designed to be informative and specific; generating
questions from the Python/C++/Java script to the LLMs. Figure 5.2 shows an example of

responses to the presented prompt. A Python script, taken from the prepared collection, was
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provided as input to each LLM as part of the prompt. Figure 5.3 shows an example of a Python
script. Each script in the dataset was processed sequentially, and the LLMs were prompted to
generate 50 questions based on each attached script. The scripts are publicly available on GitHub
[140]. As the questions were generated, they were associated with the script from which they were
derived. This association was needed in the evaluation process as it allowed accurately assess the
generated questions’ relevance to the script content. Combining different LLMs and well-prepared
scripts is the foundation for systematically evaluating these models in generating questions. At
this point, each LLM under evaluation created a question set for each associated script in the
dataset, leading to a direly massive output that could be analyzed afterward. These question sets

were then evaluated according to the criteria described in the following sections.

[{"role": "aystem",
"content": "You are a programming instructor with expertise in Python."},
["role": "user",
"content": "Create 7 guestionz that thoroughly examine the uploaded Python 'factorial' code.

Theae guestions should address different sections, variables, and logical flows

within the code to ensure comprehensive coverage."}]

Figure 5.1 Sample prompt to generate questions from source code

"questions": [
"How many iterations does the while loop have in total?",
"What is the final value of 'num' after the loop exits?",
"What is the purpose of the 'factorial' function?",
"How does the 'factorial' function calculate the factorial?",
"What is the purpose of the 'num' variable?",
"Explain the purpose of the 'while' loop in the 'factorial’ function.",

"How are the values of 'num' and 'n' updated in each iteration of the 'while

loop?",

Figure 5.2 Response to a prompt

defF FfacEtoriallim):
Nnum = 1
while n

F = FfFactorialdds)
PEIntEGCER)

Figure 5.3 Sample Python script
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5.2.3 Performance Metrics

The generated questions were assessed for their quality to analyze differences in performance
regarding the selected LLMSs. Each question gets evaluated on a scale from 1 to 10 based on the
evaluation metric by GPT-4-0314 as a judge. This study used objective and subjective evaluation
modes, touching on the primary indicators. Relevance means how closely the generated questions
match the source code. Clarity and coherence measure questions' phrasing and how logic is
structured in them. Conciseness assesses whether the questions were brief by examining their
length and checking for unnecessary detail or verbosity. Coverage involves how well each
question covered the entire scope of the input script. It also involved whether the questions
reflected different sections or key components of the code, and not just focused narrowly on
isolated elements. In addition to automated scoring, human reviewers were involved to provide a
pedagogical perspective on the top-performing LLM. Their insights helped validate the results and
brought attention to the educational value of the questions. Human feedback added important
context about classroom relevance, teaching goals, and practical usefulness, which are things that
automated systems alone cannot fully capture. Evaluators kept in mind relevance and educational
value when making their judgments. The approach encompassed a mix of different input data sets,
multiple LLMs, stringent evaluation criteria, and automated and human judgment. The results and
examples, from inputs to generated questions, are discussed in the next section. Parts of this output
and the evaluation deconstruction are illustrated in Figure 5.4.

"question": "How many iterations does the while loop have in total?",
"criteria_scores": {

"Relevance": 9,

"Clardty": 9;

"Coherence": 9,

"Conciseness": 9,

"Coverage": 8,

"Average": 8.8
}

"question": "What is the final value of 'num' after the loop exits?",
"criteria_scores": {

"Relevance": 8,

"Clarlty": '9;

"Coherence": 9,

"Conciseness": 8,

"Coverage": 8,

"Average": 8.4

Figure 5.4 Evaluation of the generated questions

5.2.4 Experimental Setup

This section provides a detailed description of the experimental setup employed for evaluating the
performance of the selected models in generating questions from codes. The objective of this setup
was to get a collection of reliable results that would facilitate the comparison of LLMs and the

identification of the top-performing models. A custom software was developed to serve this

81



purpose. This software accepts program codes as input, invokes the selected LLMs via API calls,
and collects the generated questions. For each LLM, the software collected a substantial sample
of questions for analysis.

5.2.4.1 Software Environment

The software environment was configured based on Amazon Web Services (AWS) Instances in
which different AWS instances were used to deploy open-source LLMs. Windows 10 Pro
distribution was used to provide a stable and efficient computing environment. Python was the
programming language to implement the custom software tool that interfaces with the LLMs.
PyTorch 2.1 and Hugging Face v3 Transformers library were employed for managing and

interfacing with the LLMs. Finally, different APIs were used for every model.
5.2.4.2 Data Splitting

To ensure the robustness and reliability of the experiments, a collection of code scripts was
submitted at once to provide context to the model and, therefore, assist in generating more robust

questions. Thereafter, the LLMs were instructed to generate questions based on the input.
5.2.4.3 Evaluation Metrics

The LLM-generated questions were evaluated using a combination of quantitative and qualitative
metrics. As mentioned in the methodology section, these metrics include relevance, clarity and
coherence, conciseness, and coverage. While the human evaluation metrics include relevance and
educational value. Relevance in human evaluation is manually judged by human evaluators and it
relies on subjective human judgment rather than algorithmic similarity (unlike the automatic

relevance judged by LLM algorithmic similarity).
5.2.4.4 Model Execution

Execution of the experiments was a systematic approach. Each LLM was fed scripts individually
as prompts through the custom software. The LLMs generated a set of questions for each script,
which were recorded. The generated questions were associated with their script for accurate
evaluation. The experiments were executed sequentially for all selected LLMs to maintain

consistency and avoid potential bias that may arise from parallel execution.

5.2.4.5 Model Ranking Criteria

The model ranking criteria were established based on the aggregated performance results across
the evaluation metrics. The models that showed high performance across these criteria were

identified as the top-performing LLMs for the task of generating questions from source codes.
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This experimental setup was designed to provide a reliable and comprehensive assessment of

LLMs’ capabilities in QG from program codes.
5.2.4.6 Repetition Rate

This criterion determines if questions are repeated in any model based on each 10-question batch
increase. For instance, each model is required to generate the first 10 questions, then 20, then 30,

and so on. The goal is to calculate the repeated questions generated for each model.

5.3 Results

This part presents the results of the extensive evaluation of various LLMSs in generating questions
from program codes, examined through multiple metrics, like relevance, clarity and coherence,
conciseness, and coverage. Based on the amassed data and just-mentioned evaluation criteria, the
LLMs are ranked, highlighting their strengths and weaknesses in question generation.

5.3.1 Model Rankings

Table 5.2 presents the average scores for each model across all criteria based on the question

generated.
Table 5.2 Average criteria scores
Model Relevance Clarity and Coherence Conciseness Coverage
GPT-4-0314 9.85 8.87 8.13 8.57
GPT-4-0613 8.46 8.23 8.80 9.22
GPT-3.5-turbo-0613 9.37 7.84 8.69 7.61
claude-2 7.86 7.97 8.80 7.96
falcon-7b-v3 8.45 8.52 8.26 7.32
vicuna-33b-v1.3 8.84 8.04 7.51 7.88
falcon-40b-v2 7.93 8.38 7.59 7.65
llama-2-13b-chat 7.69 7.71 6.27 7.60
llama-2-70b-chat 7.76 8.22 7.63 8.14
mixtral-8x7b-instruct-v0.1 | 6.51 6.55 7.62 7.46
falcon-40b-v1 6.63 7.53 6.68 6.36
falcon-40b-sft-top1-560 7.51 7.88 6.54 7.29
Ilama-65b 7.45 6.85 7.54 7.53
falcon-7b 7.23 7.83 6.83 7.76
falcon-40b-instruct 7.12 8.03 6.83 7.58

The model average score is established by summing the scores of each criterion across all

questions, and higher scores in each criterion indicate better accuracy in script-to-question
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generation. The rankings show that GPT-4-0314 obtained the first rank confirming its
effectiveness in generating relevant, high-quality questions. Moreover, it was analytically carried
out on an average win rate account of all other models to get an all-round perspective on the
performance of LLMs under evaluation. The term win rate refers to a cumulative score for every
model and helps determine the best-performing model among them. For example, if a question is
generated by GPT-4-0314 model and compared to the claude-2 model, and the winner for that
particular question is GPT-4-0314, this would add a point to the GPT-4-0314 model. Then, GPT-
4-0314 is compared to other models; if any model wins a point, its score grows, and then finally,
all the models’ scores are calculated, and the highest winner is ranked first. The approach allows
identification of models that have similar win rates to other models. This analysis offers valuable
insights into how each LLM fared directly compared to its peers, assuming uniform sampling and
no ties in the evaluation metrics. Figure 5.5 shows the models that consistently outperformed
others in QG. The following Equations (5.1) and (5.2), would calculate the New Rating and the
Predicted Rating, respectively [141]. This technique is used here for the Al evaluation domain; it

is derived from tournaments in sports, where it is often used.
New Rating = Old Rating + K x (W —P) (5.1)

Where K refers to the maximum adjusted value, in this context, it is a constant integer number like
32; W is the actual result of the game (1 for a win, 0.5 for a draw, and 0 for a loss); finally, P is

the expected result, calculated using the logistic function in equation 5.2.

1
b= (Mo~ Mp) (52)
1 + 1(0score point

Where P stands for the expected outcome for a given model, Mo for model opponent, and Mp for
model player. The constants relating to 1 and 10 are customized; these traditional constants have
been customized in the context to mean that the score point is 400. The two equations constitute
the basis of the Elo rating methodology created initially by Arpad Elo [18] to enable fair and
dynamic ranking of chess players based on match outcomes. Because of its simplicity and
efficiency in tracking relative skill levels, the Elo rating system gradually found acceptance in
areas other than chess, like online games, sporting events, and Al benchmarking. The second
equation calculates the expected probability of one player winning against the other depending on
their rating difference, and the first updates the player's rating after every game depending on the
actual and expected result. The combination of both ensures that the rating system accommodates
rating adjustments to reward the unexpected win and penalize against the loss when a rating would

become obsolete in view of actual performance. This means that the average win rate measure
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provides a clear and quantitative indication of the relative strength of the models and competitive
standing in question generation. Figure 5.5 shows the average win rate of each language model
against all others in the evaluation, assuming uniform sampling and no ties. The average win rate
is a valuable metric for understanding how each LLM performed directly compared to its peers in
generating questions from program codes. Figure 5.6 shows the win rate matrix for every model

and together with Figure 5.5 they indicate that GPT-4-0314 as the top-performing model.

Model Average Win Rate Comparison

10 0.92
0.9 1
o 987 072 072 071
© 0.7 0.67 0.66
o
c 0.6 0.56
2 051 0.47 0.47
()
3044' 036 034
$ 03] 026 024 023 g3
0.2 1
0.1
0.0 , .
™ < " a & 0 o NG D& N
AT N S B AR S O . e g F X
K A K ~ (& Q ) ' 2 9 & o @
>4 \ Q v 3 o > o N X \C
C C ¥ s> «(2}(' N «(b\(' 2 & @ >
N & o © N &
\4 \4 & o 0 N
© &P @
>
N
LGRS
&
Model

Figure 5.5 Average win rate against all other models

5.3.2 Observations and Insights

The model GPT-4-0314 consistently outperformed the others across multiple evaluation criteria.
It demonstrated a strong ability to generate relevant, clear, and comprehensive questions. Its top
positions highlight its suitability for question-generation tasks related to the scripts. It also excelled
in relevance, providing questions that were contextually connected to the script content and clearly
articulated. Some models, like falcon-40b-v1 and mixtral-8x7b-instructv0.1 demonstrated limited
coverage, with questions that missed certain key aspects of the scripts. Figure 5.7 shows the metric
score for the models and compares relevance, clarity and coherence, conciseness, and coverage.

Finally, GPT-4-0314 shows superiority compared to the other LLMs.
5.3.3 Repetitive Evaluation

Table 5.3 shows the repeated question rate results. The table shows that GPT-4-0314 has the best
rate among the other models. It is apparent that GPT-4-0314 had the lowest rate of question

repetition. On the other hand, falcon-7b had the highest number of repeated questions.

85



Model vs Model Win Rate Matrix

GPT-4-0314 055 056 058 058 0.61 0.66 0.67 0.79

GPT-4-0613 - 0.46 0.51 052 054 054 0.57 063 063 X 0.77
llama-2-70b-chat - 0.45 0.53 053 057 0.62 062 0.76
llama-2-13b-chat- 0.44 o0.4s 053 056 062 0.62 0.76
Claude-2 - 042 046 047 0.54 0.59 0.60

GPT-3.5-turbo-0613 - 0.42 046 047 047

0.54 059 0.60

falcon-40b-v2 - 039 043 043 044 046

0.55 0.56

vicuna-33b-v1.3- 0.34 0.38 038 038 041 041 0.64 0.66 0.66 0.67 —n_q%
=
falcon-40b-v1 - 033 037 038 038 040 040 0.64 0.66 066 0.67
llama-65b 058 0.60 0.60 0.61 -0.3
falcon-40b-sft-top1-560 0.50 0.61
mixtral-8x7b-instruct-v0.1 036 042 0.53 02
falcon-7b-v3 0.34 0.40 0.51
falcon-7b 0.34 0.40 0.48 ot
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Figure 5.6 Win rate matrix
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Table 5.3 Repetition rates for each model at different question levels

Model 10 questions | 20 questions 30 questions 40 questions 50 questions
GPT-4-0314 0 0 0 1 1
Ilama-2-70b-chat 0 0 1 1 2
GPT-4-0613 0 0 1 1 2
Ilama-2-13b-chat 0 1 1 2 2
claude-2 0 1 1 2 3
GPT-3.5-turbo-0613 0 1 1 2 3
falcon-40b-v2 1 1 2 2 3
vicuna-33b-v1.3 1 2 3 3 4
falcon-40b-v1 1 2 3 3 4
Ilama-65b 2 3 3 4 5
falcon-40b-sft-top1-560 2 3 3 4 5
mixtral-8x7b-instruct-v0.1 | 3 4 4 5 6
falcon-7b-v3 3 4 4 5 6
falcon-40b-instruc 3 4 4 5 6
falcon-7b 3 4 5 6 7

5.3.4 Human Evaluation

While the study incorporates well-defined automated evaluation metrics, relying solely on
algorithmic assessment can limit the contextual and pedagogical nuance captured in generated
questions. To address this limitation, human evaluation was introduced as a complementary
measure and it was conducted on the top-performing LLM based on the automatic evaluation
(GPT-4-0314). Five educators independently assessed a stratified sample of 45 automatically
generated questions; 15 per programming language (C++, Java, and Python). Each question was
rated on a 5-point Likert scale (1 = poor, 5 = excellent). Table 5.4 summarizes the human
evaluation scores across the three programming languages and code types. Table 5.5 presents the
results of the repeated-measures analysis of variance (ANOVA) on relevance and educational
value metrics. F denotes the F-statistic, DF refers to degrees of freedom, Num indicates the
numerator degrees of freedom, Den indicates the denominator degrees of freedom, and p is the p-

value. The analysis revealed no statistically significant differences across programming languages
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F(2,8) = 0.96, p = 0.4239, suggesting that language choice did not affect perceived question
relevance meaningfully. A similar pattern was observed for the educational value metric p =
0.0689, which approached but did not reach the conventional threshold for significance a = 0.05.
Post-hoc pairwise comparisons, summarized in Table 5.6 and Table 5.7, support this finding. No
significant differences emerged between language pairs concerning relevance, as all adjusted p-
values exceeded the threshold for statistical significance. About educational value, the comparison
between C++ and Python yielded the lowest p-value (p = 0.0186); however, after applying the
Bonferroni correction, the adjusted p-value rose to 0.0557. This result may be considered
marginally significant. A weak positive correlation (r = 0.30) was found between relevance and
educational value, indicating partial overlap between the two metrics. It suggests that while the
two metrics are related, they capture distinct aspects of human-perceived question quality.

Table 5.4 Human evaluation summary table

Language Code Type Relevance Educational Value
Python General 4.8 4.75
Python Procedural 4.85 4.83
Python Object-Oriented 4.95 4.87
Java General 4.85 4.78
Java Procedural 4.88 4.86
Java Object-Oriented 4.94 4.92
C++ General 4.65 4.58
C++ Procedural 4.72 4.65
C++ Object-Oriented 4.85 4.8
Average Score All 4.83 4.78

Table 5.5 Repeated measures ANOVA results

Metric F-value Num DF Den DF p-value
Relevance 0.957 2 8 0.424
Educational Value 3.808 2 8 0.069

Table 5.6 Post-hoc pairwise comparisons — relevance (Bonferroni Corrected)

Language 1 Language 2 t-stat p-value Bonferroni Adjusted p
C++ Java 0.784 0.477 1.000
C++ Python -0.459 0.670 1.000
Java Python -1.633 0.178 0.533
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Table 5.7 Post-hoc pairwise comparisons — educational value (Bonferroni Corrected)

Language 1 Language 2 t-stat p-value Bonferroni Adjusted p
C++ Java -1.907 0.129 0.388
C++ Python -3.833 0.019 0.056
Java Python -0.514 0.634 1.000

The established statistical techniques were used to evaluate the reliability of the human evaluation
results and their significance. The use of repeated measures ANOVA, as in Table 5.5, is
appropriate to test whether there are overall differences in relevance and educational value scores
across programming languages, as it accounts for within-subject variability and is standard
practice for such comparisons. The reported p-values in Table 5.5 represent these omnibus tests
that comment on significant effects across all groups. For Tables 5.6 and 5.7, Bonferroni-corrected
p-values were used for post-hoc pairwise comparisons. This adjustment is necessary because
multiple comparisons increase the risk of Type | error (false positives). The Bonferroni correction
is a widely accepted method to control for this risk, ensuring that any significant findings in the
pairwise tests are robust and not due to chance. In summary, the use of standard p-values for the
initial ANOVA (Table 5.5) and Bonferroni-adjusted p-values for post-hoc comparisons (Tables
5.6 and 5.7) reflects best practices in statistical analysis. This approach provides a rigorous and
transparent assessment of the human evaluation data, enhancing the scientific credibility of the

study’s findings.

5.4 Discussion

This research is particularly unique as it addresses a gap in the literature concerning Al-based QG
for programming education. Earlier studies, such as the one conducted by Maity et al. [142],
focused on how LLMs can generate different kinds of questions, including open-ended and
multiple-choice formats. Although these studies focused on generating questions about multi-
language and multi-format general educational purposes, they did not consider programming-
related artifacts such as program codes. Similarly, Tran et al. [143] and Doughty et al. [144]
addressed the use of LLMs for generating and answering MCQs in computing education. Still,
their focus was mainly on modifying existing questions rather than generating new ones from
program codes. Their work indicated how effective models like GPT-3 and GPT-4 are in assessing
and generating MCQs related to specific learning objectives. The current research builds on this
existing work by utilizing LLMs to generate new questions directly from program code, an area

that has not been extensively explored. Unlike previous research that depended on text-based
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datasets or learners' input, the proposed method assesses how well LLMs can convert program
codes into educational questions. This method addresses a significant gap by providing automated,
context-specific QG tools tailored to programming education.

Studies such as those by Baral et al. [145] and Kargupta et al. [146] worked on the assessment
capabilities of LLMs. They focused on evaluating student responses rather than generating
questions. The current study complements these initiatives by focusing on the initial phase of
educational assessments (developing high-quality questions that align with programming
curricula). The current research enhances understanding of LLM capabilities using evaluation
metrics such as relevance, clarity and coherence, conciseness, and coverage. These metrics offer
amore detailed perspective than previous studies, which typically focused on general performance
benchmarks. These findings improve the use of Al-driven tools in programming education,
providing scalable solutions for educators and learners alike. The rankings and observations from
this evaluation have significant implications for applications that involve generating questions
from program codes. The models GPT-4-0314, GPT-4-0613, and llama-2-70b-chat are well-suited
for tasks where the generation of questions that are both relevant and coherent with the script
content is critical. Moreover, this research also highlights the importance of using a combination
of metrics to comprehensively evaluate LLMs for QG. The four metrics and the win rate offer a
well-rounded view of a model’s performance in this complex task. The proposed framework can
assist teachers and online instructors in assessing and testing student knowledge with a large
question base. Furthermore, different tests are performed on various models to assist in selecting
the best one. The framework also helps in testing model capability in case other models are

released in the future.

The proposed LLMs-based framework outperforms some existing approaches in programming
education assessment by addressing their core limitations. The ontology-based system [P1],
though structured via semantic similarity using BERT embeddings (98.5% accuracy), is
constrained to Python and lacks human evaluation, limiting its pedagogical depth. It fails to assess
cognitive alignment or instructional appropriateness, which are essential for effective educational
questions. The hybrid semantic-Al method [P3], relying solely on human evaluation, introduces
scalability challenges and conceptual limitations. Its single-language focus and absence of
automatic metrics hinder systematic, repeatable assessment across broader educational contexts.
The template-based approach [P5] supports multiple programming languages and incorporates
both human and automated evaluation. However, low quality scores (0.57—-0.59) indicate limited
effectiveness, with constrained adaptability to diverse programming constructs. In contrast, the

proposed multi-language LLM-based system (Python, C++, Java) integrates both robust automatic
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metrics (GPT-4-0314 e.g., relevance: 9.85, clarity and coherence: 8.87, conciseness: 8.13, and
coverage: 8.57) and expert human evaluation (relevance: 4.83, and educational value: 4.78). This
dual-layered assessment ensures both technical correctness and pedagogical soundness, offering

comprehensive coverage and educational alignment previously unmet by prior models.

Regarding positioning the proposed LLMs-based evaluation framework within the literature,
recent work has begun to evaluate LLMs and LLM-based pipelines for producing programming
exercises and assessment items, but gaps remain in systematic, code-grounded question
evaluation. The paper [136] demonstrates a Generative Al pipeline (LLMs) to automatically
generate code-comprehension MCQs integrated with an assessment platform. It illustrates
scalability but relying primarily on prompt engineering without deep semantic/code-grounding
checks. Studies on LLMs for code understanding, like [17], [147], show that models can generate
exercises and explanations (e.g., Codex work) but frequently require human refinement and lack
standardized benchmarks for question quality and code-faithfulness. The study presented in [148]
conducts large-scale empirical analyses to investigate how effectively LLMs comprehend code,
particularly through mutation testing and fault localization techniques. These analyses uncover
critical failure modes, such as hallucinations and limited fault sensitivity, that highlight the
limitations of current evaluation practices. Consequently, the findings underscore the need for
specialized metrics tailored to assessing LLMs-generated items derived from code. Benchmarks
tailored to code comprehension (e.g., CodeMMLU) further illustrate the value of multiple-choice
style, code-focused benchmarks for measuring reasoning depth rather than surface fluency [149].
Finally, recent surveys and benchmark papers synthesize evaluation metrics and point out that
general code-generation benchmarks do not fully capture question quality [150], while others like
[151] highlight that code-generation benchmarks often suffer from prompt quality issues which

compromise their pedagogical alignment and semantic relevance to real-world developer tasks.

In summary, the evaluation has provided valuable insights into the capabilities of various LLMs
in generating questions from program codes. The top-performing models can be valuable assets
in applications such as educational platforms, code analysis, and automated documentation

generation, where high-quality QG is essential.

5.5 Conclusion

Al and LLMs are growing rapidly. E-learning platforms demand effective QG methods, and LLMs
have made this process much easier. While recent studies have focused on generating questions
from text, no prior research has evaluated LLMs’ ability to generate questions from program
codes. This study introduces a framework for assessing LLMs’ performance in generating

questions from program codes. LLMs have been extensively investigated for their capability to
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formulate questions from source code. Python, C++, and Java program codes were considered as
inputs in this regard. The study considered a diverse range of LLMs for evaluating QG from source
codes. A dataset of questions was compiled and systematically analyzed using these models. The
method adopted a combination of relevance, clarity and coherence, conciseness, and coverage as
evaluation metrics to assess comprehensively their potential for QG. Human evaluation was also
considered as an additional measure. Results from the present research were clear and compelling.
Across the board, the models were ranked topmost among the evaluated LLMs: GPT-4-0314,
GPT-4-0613, and llama-2-70b-chat. They proved proficiency in contextually relevant QG in terms
of clarity, conciseness, and comprehensive coverage of source code content. Their performance
underlines their potential as utilities within educational platforms, automated documentation
generation, and code analysis applications. These metrics offered some quantitative insights into
the syntactic and semantic correctness of the generated questions. The ratings were carried out
using automatic Al evaluations (GPT-4-0314) to ensure the generated questions were
grammatically correct, semantically sound, and contextually appropriate. The real implications of
the findings stretch far beyond question generation. They have practical ramifications for learning
outcome assessment efforts in any domain requiring natural language understanding and
generation. As Al systems increasingly mediate human-computer interactions, it is crucial to
comprehend the strengths and weaknesses of LLMs. Though GPT-4-0314 was at the very top of
the ranks, other evaluated LLMs proved to have some value in specific use cases and may come
in handy for tasks with particular emphasis on QG attributes. Performance evaluation has created
a valuable resource for decision-makers employing LLMs in various applications. Results indicate
that further along, advancing with Al technologies, systems such as GPT-4-0314, GPT-4-0613,
and llama-2-70b-chat set new standards in the natural language generation area, thus propelling

innovation and possibilities across numerous fields.

Thesis 3: | developed a systematic evaluation framework to assess the QG capabilities of LLMs,
using automatic evaluation metrics and complemented by human-centered evaluation metrics for
the top-performer LLM. The findings provide insights into their strengths and limitations in
generating programming-related assessment questions for potential educational use in the

programming domain. [P4]
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Chapter 6 Template-Based Question Generation from Code Using Static Code Analysis

6.1 Introduction

The manual creation of programming exercises remains time-consuming for educators, often
taking hours to ensure questions align with specific learning objectives and code complexity levels
[P2]. This challenge intensifies in multi-language educational settings where instructors must
simultaneously maintain question banks for multiple programming languages. Recent advances in
static analysis frameworks and attribute grammar systems have laid the technical foundation for
AQG tools that parse code structures, extract semantic elements, and populate pedagogical
templates [152], [153]. Traditional AQG systems relied heavily on template-based approaches that
limited question diversity and contextual relevance [P3]. Integrating AST analysis with reference
attribute grammars has enabled more sophisticated code element extraction, particularly for
object-oriented languages like Java and C++ [154], [155], [156]. These technological
advancements coincide with growing pedagogical demands for personalized learning pathways
and competency-based assessment frameworks in CS education [5]. Cross-language QG
introduces unique parsing challenges due to varying syntax rules and programming paradigms.
There is no agreed-upon or standard evaluation metric for AQG from source code for educational
purposes. The current few systems deal with one programming language (single-language)
without fully automated evaluation [P2], [P3]. As a result, the main added value of this chapter is
dealing with multi-language AQG from source code and automating the evaluation process.

The methodology presented in Chapter 6 represents a significant departure from the approaches
detailed in Chapters 3, 4, and 5. Chapter 3 was limited to QG using engineered ontologies specific
to providing support for only Python via a reasoning engine and conceptual hierarchies. Chapter
4 blended the hybrid model of ontology and NLP (QuestGen) approaches, translating the Python
code into text, prior to the generation of the question. Then, in Chapter 5, custom evaluation
metrics were framed for benchmarking evaluation of LLM-based systems, among them GPT-4,
LLaMA, and Falcon. LLMs, introduced in Chapter 5, are highly effective for QG from source
code; however, they demand substantial financial and computational resources. This chapter
presents a multi-language code question generator capable of automatically producing assessment
questions for Python, C++, Java, and C codes. It focuses on QG from source code using static
code analysis. Static code analysis is adopted to generate questions from program code. It offers
pattern-based algorithm detection, structural analysis, and question templates. Pattern-based
algorithm detection is performed through regex patterns. Structural analysis examines functions,
loops, conditionals, and variables to generate relevant questions. Question templates involve
predefined templates for different code elements to create varied questions. This template-based
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approach serves as a lightweight baseline for the future version alternative to the LLMSs discussed
in Chapter 5, offering lower computational requirements, greater interpretability, and faster
processing for large-scale deployment. The research objectives of this study are:

1. Developing a multi-language code question generator capable of automatically producing

assessment questions for Python, C++, Java, and C codes (AQG from source code).

2. Establishing an approach for automatically evaluating the proposed system based on a set
of evaluation criteria through experiments on a real-world dataset to demonstrate its

effectiveness in generating questions from source codes.

This chapter is structured as follows: Section 6.2 outlines the methodology and the system
architecture. Section 6.3 presents the results of the multi-language QG and evaluation. Section 6.4
discusses the findings, contributions, and limitations. Section 6.5 concludes the chapter with key

insights.

6.2 Methodology

This chapter proposes a multi-language code question generator capable of automatically
producing assessment questions for Python, C++, Java, and C codes. The four programming
languages were chosen based on the up-to-date The Importance Of Being Earnest (TIOBE) Index,
which indicates the popularity of programming languages. Python, C++, Java, and C are the most
popular programming languages worldwide according to the TIOBE Index as of May 2025 [157].
While the paper [71] primarily focuses on general educational applications, it is important to note
that modern adaptations of Bloom's Taxonomy can be tailored to specific domains, like
programming. This adaptation allows for evaluating cognitive tasks unique to programming
education, ensuring that the generated questions are relevant and effective for learners in that field.
As a result, the methodology in the current research adopts Bloom’s Taxonomy evaluation levels:
remembering, understanding, applying, analyzing, evaluating, and creating. Figure 6.1 shows the
proposed methodology for a multi-language question generator from source code. The research
methodology behind the multi-language question generator involves several interconnected
components that work together to analyze code snippets and generate relevant questions. A

detailed explanation of the methodology follows.
6.2.1 Language-Specific Parsing

Parsing is the process of checking the structure of the code and identifying elements like keywords
and variables. The foundation of the system is a modular parser that handles multiple programming

languages:
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1. Language detection: The system first identifies the programming language of the input code
using heuristic pattern matching. This detection is based on language-specific keywords,

syntax patterns, and structures.

2. Language-specific parsers: Each supported language (Python, Java, C++, and C) has a
dedicated parser that implements the common code parser interface. This enables
polymorphic handling of different languages while accounting for their unique

characteristics.

3. Python parser implementation: For Python, the system leverages the AST module to
perform deep structural analysis of the code. This provides detailed information about

functions, loops, conditionals, and variables.

4. Other language parsers: For Java, C++, and C, the system implements regex-based parsers
that identify key structural elements despite the lack of native AST support in Python for
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Figure 6.1 Methodology for multi-language question generation from source code

6.2.2 Code Element Extraction
After parsing, the system extracts various structural elements from the code:

1. Function analysis: The system extracts information about functions, including their names,

parameters, return statements, and recursion patterns.
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2. Loop detection: The system identifies different types of loops (for/while) and extracts

information about their variables and conditions.

3. Conditional statement analysis: For conditional statements (if/else), the system extracts

conditions, identifies branch patterns, and determines nesting levels.

4. Variable tracking: The system extracts variables, their data types (when possible),

initialization values, and their modifications throughout the code.

5. Algorithm identification: Using a dictionary of algorithm-specific regex patterns, the
system identifies common algorithms implemented in the code (e.g., binary search, sorting

algorithms, and graph traversals).
6.2.3 Template-Based Question Generation

The QG process uses templates customized for different code elements and difficulty levels, as

shown in Figure 6.2:

1. Difficulty stratification: Questions are categorized into three difficulty levels - beginner,

intermediate, and advanced - aligned with increasing cognitive complexity.

2. Element-specific templates: Each code element type (functions, loops, conditionals,
variables, algorithms) has specific question templates designed to test understanding at

different levels.

3. Dynamic template parameters: The system dynamically fills template parameters with
specific code elements. For example, function parameter examples are generated based on
parameter names using heuristic rules.

'loop": { DifficultyLevel. BEGINNER: [
"What is the purpose of the {type} loop on line {line_num}?", "How many times will the {type} loop on line
{line_num} execute with typical input?", "What happens in each iteration of the {type} loop on line {line_num}?" ],

Figure 6.2 Sample of templates used for question generation from source code

6.2.4 Cognitive Science-Based Question Design

The templates are designed based on principles from cognitive science and educational theory, as

shown in Figure 6.2:
1. Bloom's Taxonomy alignment:

a) Beginner questions focus on remembering and understanding (e.g., "What is the purpose

of function X?").
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b) Intermediate questions target applying and analyzing (e.g., "Trace the execution of

function X with inputs Y").

c) Advanced questions emphasize evaluating and creating (e.g., "How could you optimize

function X?").

2. Contextual relevance: Questions directly reference specific code elements, line numbers,

and variable names from the input code to create contextually relevant assessments.

3. Balanced coverage: The system distributes questions across different code elements to

ensure a comprehensive assessment of the code snippet.
6.2.5 Question Post-Processing
After generating candidate questions, the system applies several post-processing steps:
1. De-duplication: Eliminates duplicate or highly similar questions to ensure variety.
2. Shuffling: Randomizes the order of questions to prevent predictable patterns.

3. Limiting: Controls the number of questions to prevent overwhelming the user, while

maintaining a balance of difficulty levels.

4. Fallback strategies: If specific elements cannot be extracted (e.g., due to parsing errors), the

system falls back to more general questions about the code.

Each language-specific parser yields a common intermediate representation (lists of dictionaries
for functions, loops, conditionals, variables) so that downstream template selection is language-
agnostic. Python leverages AST traversal for recursion and loop-depth heuristics, while
Java/C/C++ currently rely on regex signatures adequate for introductory educational patterns
(single method declarations, simple loops, flat conditionals). Advanced constructs (e.g., pointer
arithmetic nuance, method overloading resolution, templates/generics) are intentionally out-of-
scope for this baseline but can be incorporated by swapping parsers without altering the generation
layer. The system presently employs 177 Bloom-tagged templates (function: 37, loop: 35,
condition: 35, variable: 35, algorithm: 35) spanning three difficulty tiers. Parameterization injects
code-derived identifiers (names, line numbers, inferred complexity) to avoid generic phrasing.
Current templates are structure-sensitive at the element presence level but not yet adaptive to
deeper nesting or compound branching. There are three diversity controls: stochastic selection
across applicable templates, element-level breadth (functions, loops, conditionals, variables,
algorithm), and Bloom soft-cap (<40% any level) to reduce repetitive output. This baseline does
not yet adapt template probability to structural complexity (e.g., nesting depth), which is planned

for future work. Multi-language static analysis is the non-executive extraction of language-specific
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structures unified into an intermediate representation via a shared parser interface. Python employs
AST traversal, whereas Java, C, and C++ use deterministic regex extractors. This abstraction
standardizes template-engine behavior across languages while supporting parser substitution,
including tree-sitter, without architectural change. The regex-based parsers were evaluated against
76 implementations of algorithms (19 algorithms across 4 languages) without any observed
extraction failures. Although this level of performance is sufficient for canonical educational
patterns, the absence of a formal gold-standard extraction audit is recognized. Planned
improvements in Chapter 7 include the substitution of the current approach with more advanced
parsers capable of handling complex language constructs such as nested generics and pointer

arithmetic.
6.2.6 Evaluation Approach

The methodology includes an evaluation approach to assess the quality of the generated questions.
The evaluation of the proposed system is designed around a set of defined criteria. It uses
experiments conducted on a real-world dataset to demonstrate its effectiveness in generating
questions from source code. The methodology involves a structured approach to assess the quality

of the generated questions across several key dimensions:

1. Bloom's Taxonomy: The Bloom’s Taxonomy cognitive level distribution is computed using
Bloom's Taxonomy alignment to assess cognitive level distribution (remembering,

understanding, applying, analyzing, evaluating, and creating).

2. Difficulty distribution: The questions are analyzed across three difficulty levels (Beginner,

Intermediate, Advanced) for four programming languages: C, C++, Java, and Python.

3. Linguistic complexity: This dimension combines word count, sentence count, Flesch-Kincaid
Grade Level, and average sentence length. All values are normalized to a 0-1 scale, with
sentence length capped at 25 words and grade level capped at 10. The final score is computed

using the formula:

0.6 - Normalized Grade Level (6.1)

Linguistic Complexity = {+ 0.4 - Normalized Sentence Length

4. Code coverage: Measures how comprehensively the generated questions address different code

components. The score is calculated as:

0.4 - Variables Coverage (6.2)

Code Coverage = {+ 0.6 - Functions Coverage
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5. Precision: Defined as the ratio of relevant or correct questions to the total number of questions

generated by the system.
Precision = True Positives / (True Positives + False Positives) (6.3)

6. Recall: Assesses the system’s ability to generate all relevant or expected questions, using code

coverage as a proxy indicator for recall.
Recall = True Positives / (True Positives + False Negatives) (6.4)
F1_Score = 2 * (Precision * Recall) / (Precision + Recall) (6.5)
7. Novelty: Measures the originality of the generated questions using the formula:

0.4 - Bloom Score + 0.3 - Code Elements (6.6)

NOVGlty = { + 0.3 - Advanced Question TypeS

8. Educational alignment: Evaluates how well the questions align with predefined learning

objectives. The score is computed as:

0.7 - Expected Bloom Match (6.7)

Educational Alignment = {+ 0.3 - Expected Linguistic Complexity Match

9. Cognitive diversity: Captures the diversity of cognitive skills involved in answering the
questions. The formula used is:

Cognitive Diversity = 0.4 - Bloom Score/6 + 0.6 - Entropy (6.8)

Entropy = —} p - log(p)/log(6) (6.9)

and p denotes the proportion of questions at each Bloom’s level. The weighted values are
flexible and open to future refinement. For instance, future researchers might introduce
additional variables, such as the density of technical terms, to further improve linguistic

complexity estimation.

10. Question quality score by language and difficulty: The score is calculated through a multi-step
process. First, computing eight different quality metrics for each question (linguistic
complexity, code coverage, Bloom’s distribution, precision, recall, novelty, educational
alignment, and cognitive diversity). Second, combining these metrics with predetermined

weights. Third, aggregating the scores by programming language and difficulty level.
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11. Quality score by code complexity: The score is calculated through a multi-step process. First,
computing eight different quality metrics for each question (linguistic complexity, code
coverage, Bloom’s distribution, precision, recall, novelty, educational alignment, and
cognitive diversity). Second, combining these metrics with predetermined weights. Third,

aggregating the scores by language and code complexity (simple, moderate, or complex).

Linguistic complexity: 0.15, code coverage: 0.20, bloom’s distribution: 0.15, precision: 0.15,
recall: 0.10, novelty: 0.10, educational alignment: 0.10, and cognitive diversity: 0.05 are the
suggested weights. Algorithm 6.1 shows a multi-language template-based QG and evaluation
algorithm. A template-based pipeline aligned with Bloom’s taxonomy and difficulty levels is
utilized to generate and evaluate high-quality programming questions from code samples across
multiple programming languages. In this pipeline, source code samples undergo parsing using
language-specific parsers to enable accurate syntactic and structural analysis. From the parsed
code, meaningful elements such as functions, loops, and conditional statements are extracted, and
ASTs are constructed to represent the hierarchical structure of the code. Relevant predefined
templates are then selected and instantiated based on the extracted elements, generating candidate
questions contextualized to each specific code sample. The generated questions are post-processed
to enhance linguistic clarity, eliminate redundancy, and align with pedagogical standards. Each
question is labelled with the corresponding Bloom’s level and an estimated difficulty tag to
facilitate adaptive learning scenarios. The generated questions are subsequently evaluated using
automated metrics to assess quality, novelty, and cognitive diversity, and the labelled questions,
along with the evaluation statistics, are aggregated and stored for further analysis and visualization
within the system’s reporting modules. To summarize the overall generation process, the multi-
language question generator algorithm is the main engine that orchestrates the entire QG process.
It first detects the programming language of the code snippet, selects the appropriate parser, and
parses the code. It then extracts various code elements (functions, loops, conditionals, variables)
and identifies the algorithm implemented in the code. Based on the language and extracted
elements, it generates appropriate questions. It falls back to generic questions if no specific
guestions can be generated. It then shuffles the questions and returns the requested number. Next,
language detection algorithm uses pattern matching to identify the programming language of the
code snippet. It looks for language-specific keywords and syntax patterns to differentiate between
Python, Java, C++, and C. Following this, algorithm identification uses regex pattern matching to
identify common programming algorithms in the code. Each language parser maintains a
dictionary of algorithm names mapped to regex patterns. It returns the name of the first matching

algorithm or null if none is detected. Afterward, QG by element type generates questions for a
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specific type of code element (functions, loops, conditionals, etc.). It also uses predefined

templates for each element type and difficulty level.

Algorithm 6.1: Multi-Language Template-Based QG and Evaluation

Input: Set of code samples in various programming languages (SourceCodeSamples),
Predefined question templates mapped to Bloom’s taxonomy and difficulty levels (Templates)
Output: Generated questions with Bloom’s level and difficulty tags (LabelledQuestions),
Evaluation statistics for generated questions (EvaluationMetrics)
1: for each CodeSample in SourceCodeSamples do

2:  ParsedCode « Parse(CodeSample, LanguageSpecificParser)

3:  CodeElements « ExtractCodeElements(ParsedCode)

4:  AbstractRep « GenerateAST(ParsedCode)

5:  CandidateQuestions < @

6:  for each Element in CodeElements do

7: RelevantTemplates < SelectTemplates(Element, Templates)
8: for each Template in RelevantTemplates do

9: Question «— InstantiateTemplate(Template, Element)

10: CandidateQuestions «— CandidateQuestions U {Question}
11: end for

12:  end for

13:  FilteredQuestions «— Postprocess(CandidateQuestions)

14: LabelledQuestions «— LabelQuestions(FilteredQuestions)

15:  EvaluationMetrics «— Evaluate(LabelledQuestions, CodeSample)
16:  Store(LabelledQuestions, EvaluationMetrics)

17: end for

18: GenerateReportsAndVisualizations()

Finally, mixed-difficulty QG generates questions at beginner, intermediate, and advanced
difficulty levels. It combines questions from different difficulty levels and eliminates duplicate
questions to ensure variety. Final clarification regarding handling multi-language parsing, the
system employs a modular parsing architecture to accommodate the syntactic and semantic
diversity of Python, C++, Java, and C. For Python, the built-in AST module is utilized to perform
deep structural analysis. For C, C++, and Java, custom regex-based parsers are implemented to
extract functions, loops, conditionals, and variables. Each language is supported by a dedicated
parser class that adheres to a common interface, enabling polymorphic handling and normalization
of code elements. Templates are mapped to these normalized elements, ensuring that question
generation logic remains consistent across languages despite syntactic differences. While the
current implementation focuses on common structural features, such as functions and loops, the
architecture is extensible and can be adapted to handle language-specific constructs (e.g., pointers,
method overloading) in future work. Templates are manually crafted but are designed to be
generalizable across all supported languages. Each element type (function, loop, condition,
variable, algorithm) has approximately 6 templates at the Beginner level and about 15 templates
each at Intermediate and Advanced levels. The template repository consists of a diversity of
templates for all code elements (functions, loops, conditionals, variables, algorithms) that have

been categorized in terms of levels of difficulty into beginner, intermediate, and advanced. For
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any specific code element and difficulty level, a number of templates have been created, which
add up to several dozen templates in the repositories. These templates are parameterized, and with
the help of code-specific details like variable names and line numbers, the placeholders are filled
with these details dynamically. The system considers the random shuffling and deduplicating the
questions during the post-processing stage. Random-selection of applicable templates even further
increases variability and lowers the chances of generating repetitively or shallowly elaborated
questions. The even spread across different Bloom's taxonomy levels among the various code
elements ensures that the exams are satisfactory without being overly fitted to a small number of
fixed patterns. Finally, the weights used in the evaluation formulas (e.g., 0.6, 0.4) are not fixed
and were determined based on a combination of literature review, domain expertise, and practical
judgment. For example, in the linguistic complexity metric, a lower weight was assigned to
sentence length (0.4) than to grade level (0.6), reflecting the assessment that grade level more
directly impacts comprehension in programming contexts, while sentence length, though relevant,
has less influence due to its design for general natural language. These choices were informed by
the understanding of the field and are open to future refinement. Human evaluations were also
incorporated complement automated metrics. Future work may empirically optimize these weights

or introduce additional variables, such as technical term density, to further enhance metric validity.

6.3 Results

This chapter presents a multi-language question generator from source code capable of
automatically producing assessment questions across the top four programming languages
(Python, C++, Java, and C) chosen according to the TIOBE Index. The system analyzes code
structure using language-specific parsers and generates questions at varying difficulty levels. The
114 questions for each programming language are evaluated based on 19 different algorithms and
across three complexity levels (simple, moderate, and complex). The dataset of code snippets used
is available on GitHub [158]. There are six generated questions for each algorithm in each
programming language: two for beginners, two for intermediates, and two for advanced learners.
The total number of generated questions is 456. Established educational assessment metrics,
outlined in section 6.2.6 of the methodology, were used to evaluate the generated questions. The

algorithms used are listed based on their fundamental categories:

1. Sorting Algorithms (Bubble Sort, Insertion Sort, Selection Sort, Merge Sort, and Quick
Sort).

2. Searching Algorithms (Binary Search, Linear Search, and Knuth-Morris-Pratt).
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3. Graph Traversal Algorithms (Depth-First Search, Breadth-First Search, and Topological
Sort).

4. Shortest Path Algorithms (Dijkstra’s, Floyd-Warshall, and A* Search).
5. Minimum Spanning Tree Algorithms (Kruskal's and Prim's).

6. Optimization & Problem-Solving Approaches (Dynamic Programming, Greedy, and
Huffman Coding).

For the collected and prepared dataset, the following attributes are included:

1. Functions, Loops, Conditionals, and Variables: Each attribute is binary - 0 means the feature
is not present in the code snippet, while 1 indicates it is present. All selected code examples

include at least one instance of each of these four elements.

2. Lines: This attribute captures the length of the code, measured by the number of lines in

each snippet.

3. Complexity: This is a categorical attribute with three levels - simple, moderate, and complex

- reflecting the overall complexity of the code.

4. Generated Questions: The questions are primarily designed to require explanatory answers
rather than simple yes/no or multiple-choice responses (open-ended questions). This field
contains six automatically difficulty-tiered generated questions based on the input code: two

aimed at beginner-level learners, two at intermediate level, and two at advanced level.

A sample transformation from code to question is presented in Table 6.1.

Table 6.1 A sample transformation from code to question

Original Code Template Generated Question
def calculate_area (radius): "What does the {function_name} "What does the calculate_area
return 3.14-radius-radius function calculate using function calculate using radius?"

{parameter}?"
class Student: def __init__(self, name, | "What attributes does the "What attributes does the Student
age): self.name = name self.age = age | {class_name} class initialize?" class initialize?"
try: result = x/y except "What happens in this code when "What happens in this code when
ZeroDivisionError: result =0 {error_type} occurs?" ZeroDivisionError occurs?"

Figure 6.3 presents Bloom's Taxonomy coverage. Bloom’s Taxonomy cognitive level distribution
was computed using a detailed multi-step process. Each question was first analyzed to detect its
cognitive level using keyword matching, with the level determined based on the highest number
of keyword matches from Bloom’s taxonomy. These levels were then mapped to numeric values

(1 to 6) and normalized to a 0-1 scale for further analysis. For example, the system calculated the
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percentage of questions falling under each level, resulting in distributions of 16% for "Remember™
and 8% for "Create". The generated questions demonstrated good coverage across cognitive levels,
with a distribution of Remember: 16%, Understand: 24%, Apply: 16%, Analyze: 22%, Evaluate:
14%, and Create: 8%. This distribution indicates a balanced approach with room for improvement
in higher-order thinking (Create level). Figure 6.4 shows the distribution of question difficulty
levels (Advanced, Intermediate, and Beginner) across four programming languages: C, C++, Java,
and Python. The proportions of difficulty levels are identical across all four languages. There is
no noticeable skew toward a particular difficulty level for any specific language. In short, the
difficulty level distribution is very evenly balanced across these languages. By default, the
distribution of generated questions is set to a 2:2:2 ratio - two beginner, two intermediate, and two
advanced. This deliberate balance ensures that one-third of the questions target each difficulty

level, providing a well-rounded assessment experience.
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Figure 6.5 reveals the question quality score by language and difficulty level. The scores shown
in this visualization were calculated through a multi-step process. The overall quality scores
cluster around the 0.55-0.60 range, indicating fairly consistent quality across difficulty levels and
languages. It looks like beginner questions are generally better crafted or better received, perhaps
because they are simpler and easier to generate and validate. Figure 6.6 focuses on the question
quality score by language and code complexity. The scores shown in this visualization were
calculated through a multi-step process. Across the board, none of the complexity levels dominate
quality scores universally, which suggests that the quality of a question is not strictly tied to how

simple or complex the code is.
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Figure 6.6 Question quality score by language and code complexity

Figure 6.7 visualizes the linguistic complexity of different programming languages (C, C++, Java,
and Python) across three difficulty levels: Beginner, Intermediate, and Advanced. In general,

linguistic complexity often tends to increase with difficulty level. The linguistic complexity scores
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were calculated using a structured, multi-step process. First, basic text metrics, including word
and sentence counts, were computed for each question to analyze sentence structure and length.
Next, readability metrics - including Flesch-Kincaid Grade Level - were generated using the
Textstat library to assess how readable and educationally appropriate the questions were. To
further evaluate syntactic complexity, the average sentence length was calculated. All these
metrics were then normalized to a 0-1 scale for comparability, with sentence length capped at 25
words and the grade level normalized to a maximum of 10. Using these normalized values, a final
linguistic complexity score was derived using a weighted formula: 0.6 times the normalized
Flesch-Kincaid Grade plus 0.4 times the normalized sentence length. Finally, the scores were
aggregated based on difficulty level - Beginner, Intermediate, and Advanced - to analyze patterns

in linguistic complexity across question tiers.
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Figure 6.7 Linguistic complexity by difficulty level

Figure 6.8 shows that the average question diversity scores varied by language, ranging from 0.63
for C to 0.55 for C++. The diversity scores were calculated through a structured, multi-step process
using Shannon entropy to measure how evenly questions were distributed across different question
templates and types. This differs from cognitive diversity, which specifically measures the
distribution of Bloom's taxonomy levels. The question diversity metric aggregates scores by
programming language by collecting template usage patterns across different algorithms and
averaging them across each language's question set. All diversity scores were normalized to a 0—
1 scale for cross-language comparison. The results suggest that C code naturally elicits the most
diverse range of question types (0.63), followed by Java (0.59) and Python (0.57), while C++
generates the least diverse questions (0.55). This variation may reflect the inherent structural

differences between programming languages, with C's lower-level constructs potentially offering
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more varied questioning opportunities compared to C++'s more standardized object-oriented

patterns.
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Figure 6.8 Average question diversity by programming language

Table 6.2 shows automatic evaluation metrics for AQG from source code across four
programming languages. C achieved a slightly higher overall quality score of 0.59, while the other
languages scored 0.57. C code tends to be less syntactically ambiguous, allowing the system’s
static analysis and template-matching components to extract structural elements slightly better. N

denotes number of samples.

Table 6.2 Automatic evaluation results by programming language (N=456)

Performance Metric C C++ | Java | Python Statistical Significance
Overall Quality Score 0.59 | 0.57 0.57 | 0.57 F(3,452) =5.01, p<0.01
Linguistic Complexity 0.35 | 0.37 0.39 | 0.44 F(3,452) =8.73, p < 0.001
Code Coverage 1.00 | 1.00 1.00 | 1.00 No significant difference
Precision 0.36 | 0.35 0.35 | 0.39 F(3,452) = 6.40, p < 0.001
Recall 1.00 | 1.00 1.00 | 1.00 Perfect recall across all languages
F1-Score 0.53 | 0.52 0.52 | 0.56 F(3,452) =5.71, p < 0.001
Novelty Score 0.17 | 0.14 0.15 | 0.15 F(3,452) = 3.35, p < 0.05
Educational Alignment 048 | 042 |0.42 |0.42 F(3,452) = 7.91, p < 0.001
Cogpnitive Diversity 0.53 | 0.50 0.52 | 0.50 F(3,452) =4.61,p <0.01

There is no agreed-upon or standard evaluation metric for QG from source code for educational
purposes. While the study employs well-defined metrics, the absence of human evaluation limits

the contextual accuracy of generated questions. As a result, two human evaluators were used to
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complement the automatic evaluation. The manual metrics used are relevance and educational
value of the questions. The human evaluators were allowed to rate based on their teaching
experience. Relevance can cover code topic match, code context understanding, difficulty
appropriateness, and clarity. Educational value can cover concept coverage, cognitive challenge,
feedback potential, and engagement. The two evaluators were given the same 40 questions divided
evenly and stratified between the four programming languages. Table 6.3 shows human evaluation
metrics for QG from source code across four programming languages. Table 6.3 shows C leads
slightly. Python, Java, and C++ are tied at 3.45, showing a fairly even performance. Two tests
were conducted to understand whether this slight difference has statistical significance. First, a
paired t-test compares C versus each of the average scores of Python, Java, and C++, as shown in
Table 6.4. Two, one-way ANOVA comparing average scores across all four languages (F-statistic:
48.44, p-value: 1.01e-12 (very low)). The difference between C and other languages is very slight.
Based on the table of paired t-tests and ANOVA results, the differences between C and the other
languages are statistically significant, even if they were very slight.

Table 6.3 Human evaluation results by programming language (N=40)

Metric Python | Java | C++ C
Relevance 3.8 3.7 37 |38
Educational Value 31 3.2 32 |32
Average Score 3.45 3.45 3.45 | 3.50

Table 6.4 Paired t-test results for human evaluation differences

Comparison t-statistic p-value Significant? (¢=0.05)
C vs Python 7.22 0.00005 (very low) Yes
C vs Java 9.64 0.000005 (very low) Yes
CvsC++ 16.10 0.00000006 (very low) | Yes

Table 6.2 shows slight differences in quality scores across languages. Of those differences that are
observed in means of quality scores across languages, although they are small numerically (0.59
vs. 0.57), statistical significance indicates the fact that such differences are less likely due to the
randomness in the sample itself. Of course, it should be mentioned explicitly that what is
statistically significant is not always practically or educationally significant. The effect sizes are
small and that those minimal deltas probably would not register as significant difference in student

learning outcomes in actual classroom environments. Thus, the greater value of reporting these
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results is to show that the system performs equally across languages and highlight areas in need
of further improvement, rather than to make a claim of large practical impacts on the basis of such
small score differences.

The human evaluation complements the automated evaluation by validating key findings while
providing educators’ perspective on question quality. Both approaches consistently identified C
as a better performer, though human evaluation revealed more balanced performance across
languages than suggested by automated metrics alone. The convergence between automated
educational alignment scores and human-assessed educational value demonstrates the validity of
computational metrics for educational applications. However, the human evaluation's emphasis
on practical teaching utility provides essential context that purely computational measures cannot
capture, highlighting the importance of multi-faceted evaluation approaches in educational

technology research.

6.4 Discussion

Regarding positioning the proposed system within the literature, most prior work on AQG that
uses templates follows a single-paradigm, deterministic design: template libraries map extracted
elements to question patterns and are widely used as an alternative to Al-driven question
generation methods, which may require large datasets and can produce lower-quality results.
Template-driven generators (e.g., general template generators for single-choice questions)
demonstrate reliable scalability and easy LMS integration but are limited in diversity and semantic
sensitivity [70]. Complementary work, such as [159], has explored mass problem synthesis from
public code and general template AQG across domains. These approaches emphasize throughput
and template parametrization rather than semantic grounding or pedagogically adaptive distractor
generation. It mines open-source code to generate large banks of valid expression-evaluation and
program-tracing problems for introductory programming. Its approach leverages tree structures
(like ASTs) from code analysis to parametrize problem templates, emphasizing high throughput
and scalability. It is worth noting that external baseline comparisons with prior template-based
AQG systems were not conducted due to their single-language scope, differing semantic pipelines,
and the lack of publicly available, standardized multi-language static-analysis benchmark corpora.
Additionally, experimenting with all 19 algorithms presented in this chapter using LLMs would
have incurred prohibitively high computational costs. The present work therefore establishes an
internal, fully reproducible baseline to enable future controlled cross-system studies as richer

benchmark datasets become available.
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6.4.1 Research Contributions

This methodology introduces several key contributions to automated programming QG. Unlike
many existing systems focusing on a single programming language, this approach handles four
languages with a unified framework. It combines AST-based parsing (for Python) with regex-
based parsing (for other languages) to achieve broad language coverage without sacrificing depth
of analysis. It implements a pattern-based approach to identify common algorithms in code,
enabling algorithm-specific questions. It systematically categorizes questions into different
difficulty levels based on cognitive complexity rather than arbitrary designations. It generates
example parameters for function calls based on parameter names, creating more realistic and
contextually appropriate questions. Finally, it ensures questions cover multiple aspects of
programming knowledge. The evaluation framework developed for this system is fully automated.
The evaluation pipeline uses a detailed taxonomy including linguistic complexity (word and
sentence counts, Flesch-Kincaid grade level), code coverage (how much of the code elements are
referenced by the questions), distribution according to Bloom's taxonomy (detection of cognitive
levels through keywords), precision and recall (heuristic estimates based on code element
coverage), novelty (originality of questions generated), educational alignment (Bloom/difficulty
level expected vs. actual standards), and cognitive diversity (entropy of levels in Bloom). These
metrics collectively assess both the structural and educational quality of the generated questions.
While the evaluation process is primarily automatic, it is complemented by human validation: two
expert evaluators rated a subset of questions for relevance and educational value, as detailed in
Tables 6.3 and 6.4. The evaluation pipeline was newly developed for this research, though certain
metrics (e.g., F1-score, precision, recall, relevance, educational value) are adapted from those used
in Chapters 3-5 to suit the template-based context.

6.4.2 Limitations

While this chapter's results are promising, it is important to acknowledge certain limitations. The
current methodology has several limitations that suggest directions for future research. The regex-
based parsing for Java, C++, and C is less precise than AST-based parsing, which may affect
question quality. The current approach relies on static code analysis and does not include dynamic
runtime behavior analysis. The system recognizes structural patterns but has limited understanding
of the semantic purpose of the code. The fixed templates may become predictable with extended
use. Finally, the extraction phase of a system collects some attributes that can then be accessed for
template use, for generating questions on these code structures. Notably, the regex-based parsers

have limitations in their ability to capture deeply nested or highly unconventional constructs. In
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practical use, however, the system might cover typical nesting and recursion patterns found in

most educational codes but would not inherently support very complex codes.
6.4.3 Future Directions

Future improvements could include using language-specific parsers for each supported language,
incorporating ML for more adaptive QG, adding dynamic code execution analysis, implementing
more sophisticated algorithm detection, developing context-aware template generation, and
investigating the educational effectiveness of automatically generated questions through student

performance analysis.

6.5 Conclusion

This chapter developed and evaluated a template-based approach using static code analysis for
AQG from source code. By leveraging ASTs and predefined templates, the system effectively
generated contextually relevant questions across multiple programming languages, addressing a
core challenge in programming education. A dataset of 456 questions from 19 algorithms and
three code complexity levels was used. Although nearly all existing systems support a single
programming language, this approach integrates four languages into a unified framework. The
system was evaluated using several metrics, including the overall quality score. Experimental
results showed consistent quality across C (0.59), Java (0.57), Python (0.57), and C++ (0.57).
Expert evaluations rated the system's utility between 3.45 and 3.50 across languages, with
significant statistical support (F = 48.44, p = 1.01e-12), confirming its practical applicability. The
generated questions spanned all six Bloom’s taxonomy levels. The levels are 16% Remember,
24% Understand, 16% Apply, 22% Analyze, 14% Evaluate, and 8% Create, maintaining an
identical distribution across all languages. This somewhat balanced cognitive coverage
underscores the system’s ability to support comprehensive learning assessments. This work offers
a multi-language question generator from source code capable of automatically producing
assessment questions for Python, C++, Java, and C codes and an approach for automatically
evaluating the proposed system based on a set of evaluation criteria complemented by human
evaluation metrics. While performance was consistent, the approach may not capture advanced or
creative problem-solving nuances. Current diversity and quality scores highlight room for
improvement. Future work should expand template libraries, improve QG filtering process to
increase precision, incorporate ML to enhance quality, and conduct longitudinal studies to assess
learning outcomes over time. The proposed system provides a validated foundation for scalable,
automated assessment in programming education. With strong quantitative support (quality: 0.59—
0.57; cognitive diversity: 0.50-0.53; expert rating: 3.45-3.50), it offers a practical, adaptable tool

for educators. The automatic evaluation shows that C achieved a slightly higher overall quality
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score of 0.59, while the other languages scored 0.57. Human evaluation complements the
automated evaluation, providing educators’ perspective on question quality. In summary, this
work marks a promising early-stage (baseline) system toward intelligent, scalable assessment
systems, bridging static analysis and educational theory to meet the evolving demands of CS
education. This template-based approach serves as a lightweight baseline for the future version
alternative to the LLMs discussed in Chapter 5, offering lower computational requirements,
greater interpretability, and faster processing for large-scale deployment.

Thesis 4: | developed a modular system for AQG and evaluation using template-based static code
analysis, enabling modular QG designed to be extensible with minimal integration overhead. The
framework supports multiple programming languages through customizable parsing templates
within a unified architecture. [P5]
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Chapter 7 Multi-Language Static-Analysis System for Automatic Question Generation from

Source Code

7.1 Introduction

AQG has become an important approach as the assessment in programming education has grown
into a significant challenge. Computer programming education is considered increasingly
important in the age of technology, and coding education is now regarded as a fundamental skill
in many fields other than CS [160]. The growth of programming education is accompanied by the
increasing difficulty of educators in defining a diverse and high-quality set of assessment
applications that can reasonably assess student knowledge of various programming languages,
algorithms, and problem-solving abilities in different cognitive levels [P2]. AQG from program
code has also become a major research topic, with the demand growing for resourceful education
tools and automatic assessment models in CS [161]. AQG has become popular, especially in
education, when individualized assessment is required [P2], [P3]. Manual development of
questions is time-consuming. Thus, the automatic formulation has been investigated [162]. The
creation of questions manually is time-consuming and labor-intensive. It may lead to weak
coverage of programming concepts and cognitive skills, which causes large gaps in student

assessment and learning outcomes.

CFG and PDG are important intermediate representations and are structured views of the
complicated control and data dependences in a program [163]. The graphs are useful in building
a strong basis that extracts semantically useful information that can be used to develop interesting
and challenging questions. More recent developments in deep learning have resulted in the
development of code-generation models that can generate source code based on natural language
and code-based hints with high accuracy [164]. Automatic programming, as a field, seeks to
reduce human interaction in the production of executable code and has singled out code search,
code generation, and program repair as the major topics [165]. The main purpose of this chapter
is to discuss a synergistic combination of CFG-based and PDG-based analyzers regarding the
scenario of generating questions about program codes, including the approaches, results, and

possible future aspects.

It has been suggested to use graphs to encode both the syntactic and semantic structure of code
and then use graph-based deep learning algorithms to either learn or reason about program
structures [59]. Such methods fail to capture dependencies over long distances that are created
when the same variable or function is used in widely separated places. Static analysis tools are
used to analyze code and provide suggestions for auto-completion, which are usually organized

alphabetically [166]. Modern integrated development environments have the code completion
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feature, contributing greatly to programming efficiency and eliminating code errors [166]. Graph-
based program representations, such as CFGs and PDGs, increase the avenues of understanding
behavior offered by encoding control flow and data dependency graph representations. This more
elaborate representation permits the generation of questions to focus on particular elements of
functionality, logic, and possible code weaknesses, thus facilitating a more thorough evaluation of

the programmer's knowledge [59].

There is a specific challenge related to the multi-language nature of programming education.
During their studies, students study a variety of programming languages, beginning at lower
levels, such as Python, and moving on to systems programming languages, such as C and C++,
and to object-oriented languages, such as Java. All languages have distinct paradigms, syntaxes,
and idiomatic constructs and need specialized parsing and analysis algorithms. These challenges
are further added by the difficulty of programming education today. Learners are required to learn
through numerous programming languages, learn the different paradigms of thinking
algorithmically, and acquire skills at several cognitive levels, including concrete syntax recall,
abstract problem-solving, and code-writing. Conventional evaluation methods have a problem
covering these dimensions comprehensively and sustaining consistency and quality. This
shortcoming is especially acute in large-scale education contexts where hundreds or thousands of
students need tailored assessment materials. A general question generator must cover this multi-
language aspect across languages with uniform quality and coverage. The chapter deals with the
background of multi-language nature in the context of education in programming by proposing a
consistent model for code analysis and QG in four commonly accepted programming languages.
It presents a force-balanced generation procedure, which works to ensure even coverage in
multiple dimensions, a serious shortcoming of other current technologies. This shows that at all
levels of cognitive difficulty, advanced graph-based code analysis techniques can effectively
generate higher-quality questions, and the whole scope of assessment can be increased. It offers a
strategic scheme to assign different difficulty levels to programming languages per the general CS
learning route. It comes up with a list of general evaluation criteria to determine the future of
research and development on AQG. Such contributions open up major implications in
programming education, especially by easing a potential burden on educators, providing higher
quality and broader assessment coverage, and an enhanced learning experience for students in

various programming languages and levels of proficiency.

The graph-based pipelines in this chapter are meant to complement not compete with the approach
of early LLM methods discussed in Chapter 5 and of the template-based static baseline discussed

in Chapter 6. Chapter 6 has given a lightweight and reproducible baseline across languages but
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also revealed some pitfalls of regex parsing, including low precision, limited novelty, and a cap
on structural depth. In this chapter, that layer is replaced by language-specific parsers (Python
AST, javalang, and Clang/LLVM) that are integrated through a normalization interface to ensure
consistent treatment of functions, methods, loops, conditionals, and variables across Python, Java,
C++, and C. Building on such normalized elements, CFG and PDG construction adds structural
insights, such as control paths, branching, and complexity, alongside semantic insights such as
data dependencies and variable lifecycles. The force-balanced generation mechanism then adjusts
in real time from course to emphasizing under-represented Bloom levels, question types, and
algorithm families to achieve more well-rounded coverage rather than chance distribution across
all levels of variety in the methodology. This generates improved precision, a richer language,
greater novelty, and broader cognitive diversity, while remaining interpretable, deterministic, and
free per item. LLMs sometimes fail to deliver due to budgetary, privacy, or accreditation
constraints. The result is an explainable and adaptable layer that can also support future hybrid
pipelines, such as using curated CFG/PDG summaries to guide LLMs in producing more creative,
higher-order variations. In practice, this clarifies when each method is best suited: LLMs excel in
breadth and stylistic variety, while graph fusion offers transparent, coverage-controlled, and

semantically grounded assessment. The research objectives of this chapter are:

1. To design and implement three automated pipelines (CFG-based, PDG-based, and CFG-
PDG Synergetic) for QG from source code, each leveraging different code analysis
strategies to explore their effectiveness in producing high-quality, pedagogically aligned

questions.

2. To develop an organizational multi-dimensional evaluation system to measure the system
performance in terms of coverage balance, quality of questions, linguistic complexity, and
diversity in all dimensions. This framework encompasses automated measures along with

human assessment measures.

The remainder of this chapter is organized as follows: Section 7.2 presents the multi-language
question generator system methodology, including the system architecture, language-specific
parsing techniques, and advanced code analysis methods. Section 7.3 presents the system
evaluation results, including coverage balance, question quality, linguistic complexity, diversity
metrics, and human evaluation metrics. Section 7.4 discusses the implications of the results, the
contributions and limitations of the study, and directions for future research. Section 7.5 concludes
the chapter.
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7.2 Methodology

This chapter introduces a multi-language generator and evaluator system that takes source code as
input and is capable of generating coding questions in various programming languages, including
Python, C++, Java, and C. These four language choices were the result of being some of the most
popular languages at the moment, as classified by the May 2025 listing of the TIOBE Index and
ranking software development languages and their current popularity list [157]. It uses an
advanced pipeline structure to transform source code written in several programming languages
into good-quality assessment questions distributed across different dimensions in a reasonably
balanced manner. This section presents a comprehensive description of every element within the
pipeline and interconnected characteristics and functions of the general system. Figure 7.1 shows

the comprehensive pipeline for multi-language question generator and evaluator system.

Code Input Language Detection LanguageTSpeclﬁc
C, C++, Java, Python Parsing
[ Element Extraction ]

Advanced Code Analysis

[ CFG Analysis ] [ PDG Analysis ] [ Pattern Matching ] [ Structural Analysis ]

[ Functions ] [ Loops ] [ Variables ] [ Conditionals ]

!

4 ™
Force-Balanced Generation

Bloom's Taxonomy: [ R ] [ U J [ Apply J [ Analyze J [ Evaluate ] [Creale]

Question Types: ( Multiple Choice ) ( Code Tracing )] ( Fill-in-the-Blank )

( Error identification ) ( Open-Ended ) ( Creative Coding )

Quality Evaluation y
Al Ev: Human E; i Output Generation

Figure 7.1 Comprehensive pipeline for multi-language question generator and evaluator system

The methodology is a complex of several important elements that interact with each other to
interpret code fragments and generate useful, applicative questions. The following sections have
a step-by-step analysis of how everything works. This section delivers the complete multi-
language question generator and evaluator system methodology, in which the architecture,

implementation, and evaluation framework are outlined. The system was developed to tackle
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severe shortcomings of available automated assessment frameworks on programming education

with novel parsing, analysis, generation, and evaluation strategies.

7.2.1 System Architecture and Design Philosophy

The objective of building a multi-language question generator and evaluator system is to support

the growing demands to meet the assessment issues in programming education, which traditional

manual methods cannot prospectively accommodate the demands of scaling with an expanding

enrollment base and range of curriculum needs. Four basic design principles that informed each

detail of architecture and implementation governed the system:

1.

Language Inclusivity Principle: The system supports Python, Java, C++, and C programming
languages, as these are the four most taught programming languages in CS education, as per
the TIOBE Index. This multi-language strategy curbs the limitations of current systems by
being multi-language to the level that students could get constant assessment throughout their

whole programming program.

Algorithmic Diversity Principle: The system includes a collection of 19 fundamental
algorithms offered in 6 categories: sorting algorithms (Bubble Sort, Insertion Sort, Selection
Sort, Merge Sort, Quick Sort), searching algorithms (Binary Search, Linear Search, Knuth-
Morris-Pratt), graph traversal algorithms (Depth-First Search, Breadth-First Search,
Topological Sort), shortest path algorithms (Dijkstra algorithm, Floyd Warshall algorithm, A*
Search), minimum spanning tree algorithms (Kruskal, Prim), and optimization techniques
(Dynamic Programming, Greedy Algorithms, Huffman Coding). This extensive coverage will
allow the students to be assessed on the entire range of algorithmic concepts required in CS
learning. Employing additional algorithms and more diverse source codes is recommended for

future enhancements.

Cognitive Alignment Principle: The system creates questions that cover each of the six levels
of Bloom’s Taxonomy: remembering, understanding, applying, analyzing, evaluating, and
creating, so that the cognitive information is thoroughly assessed at both ends of the spectrum
in recollection and way high up in terms of solving problems and also devising codes. Such
consistency with pre-existing structures in education generates questions predisposed toward

gradual skill-building hierarchies and critical thinking.

Comprehensive Evaluation Principle: The system consists of an automated measure in addition
to human assessment by subject matter experts, to ensure that the questions generated are of

high quality and pedagogically sound for use in education.
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The pipeline shown in Figure 7.1 starts by feeding in source code, possibly choosing four
supported programming languages: Python, Java, C++, or C. This is used as a preliminary before
further analysis and to clear up any problems with encoding, remove comments, normalize
whitespace, and do other simple preprocessing chores. The system accepts codes with diverse
levels of complexity, which may range from simple to intricate codes of implementation
algorithms. The architecture has seven interconnected parts that run code snippets via a chain of

specialized transformations and analyses:

1. Language Detection: The system detects the programming language of the code by passing a

language identifier.

2. Language-Specific Parsing: It uses language-specific optimized parsers: Python AST module
with ast2json and astunparse extensions to provide full syntax tree capabilities, javalang library
to provide structured Java code coverage, Clang to provide support of C code, and a custom

Clang and LLVM-based parser to provide C++ coverage.

3. Element Extraction: It automatically recognizes and stores programming elements such as
functions, classes, variables, loops, conditionals, data structures, and language-specific
constructs into an index. This component applies language-specific extraction rules and

consistently covers as many pertinent programming elements as possible across languages.

4. Advanced Code Analysis: It incorporates CFG and PDG construction employing NetworkX-
based implementations. CFG identifies loops, execution paths, and branching conditionals.
PDG captures variable relationships and data dependencies. These graphical representations

allow a more complex analysis of the program behavior and the algorithmic patterns.

5. Force-Balanced Generation: It takes dynamic measures to ensure the selection probabilities

are readjusted during the final stages of generating solutions.

6. Quality Evaluation: It integrates automated and human-based evaluation to assess question

quality on technical accuracy, semantic relevance, educational value, and linguistic clarity.

7. Output Generation: It generates structured questions with detailed metadata that contains the
type of question, the difficulty, the level of Bloom's taxonomy, and the question. Due to the

output format, the content can be easily scaffolded into LMSs and educational platforms.

The Python parsing component can use the built-in AST module in Python and additional libraries
to analyze and manipulate code in detail. This style gives good insight into the syntactic structure
of Python code and is compatible with the complete Python language specification. Java parsing
component supports Java analysis, using the javalang library to examine Java sources and

incorporating the latest Java features like generics, annotations, lambda expressions, and modular
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programming constructs. The C parser was first implemented using the pycparser library, which
deals with the C programming language. But it was skipping much of the code. As a result, Clang
was adopted for C parsing. The C++ parsing unit uses the Clang/LLVM system to execute the

analysis of all modern C++ code.

The system uses a common parser interface, which offers uniform access to language-specific
language-niche parsing features without sacrificing individual parser features and capabilities.
This is facilitated by the unified parser interface, which allows the seamless addition of language-
specific parsing capabilities with the flexibility of using the individual advantages of different
parsers. This architecture helps in an eventual expansion to other programming languages and

parsing methods while still being compatible with the current parts.
7.2.2 Advanced Code Analysis Techniques

CFG analysis helps one understand the program flow and control structures needed to formulate
complex instructions for a program. It enables the full generation and analysis of CFGs with
NetworkX-based representations of programs that provide the complete control flow behavior of

programs over all supported languages.

PDGs analyze the program dependency and relationships between variables and the information
about the control flow given by a CFG analysis. The ability in PDG generation and analysis of the
programs in the form of NetworkX-based graph representations facilitates the generation of
questions regarding data flow, variable scope, and program semantics. The component of PDG
analysis creates detailed representations of all dependencies within programs that reveal the

critical data flow and control relationships.

The resulting PDGs supplement CFG analysis to give a fully rounded view of both program form
and behavior, allowing complex QG aimed at both semantics and data flow knowledge of

programs.

Algorithm 7.1 shows the CFG pipeline algorithm for code QG and evaluation. Its main objective
IS to generate questions by extracting control flow information from code. It parses code to extract
CFG nodes (basic blocks) and edges (control transitions). Then, it analyzes control paths, loops,
and branching structures. Finally, it generates questions like tracing, MCQ, and basic error-

identification questions based on flow paths.

Algorithm 7.2 shows the PDG pipeline algorithm for code QG and evaluation. Its main objective
is to generate questions using data and control dependencies in the program. It parses code and

extracts PDG, capturing data dependencies, variable usage, and control dependencies. Then, it
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analyzes data flows, variable lifetimes, and semantic relationships. Finally, it generates questions

like dependency, comprehension, and advanced error-identification questions.

Algorithm 7.3 shows the CFG-PDG pipeline algorithm for code QG and evaluation. Its main
objective is to generate advanced, diverse questions using a synergistic integration of CFG and
PDG. It parses and simultaneously extracts CFG and PDG representations. Next, it integrates
structural (CFG) and semantic (PDG) information. Then, it identifies algorithm types. Finally, it
generates a reasonably balanced set of questions, including creative coding and higher-order

Bloom questions.

Algorithm 7.1: CFG Pipeline for Code QG and Evaluation

Input: Source Code (SC)

Output: Question Set (QS)

1: Parse SC using language-specific parser.

: Construct CFG from SC.

. Identify algorithm type using CFG patterns.

: Compute cyclomatic complexity for difficulty estimation.
: Select Bloom-level-aligned templates for CFG-based QG.
: Fill placeholders using CFG nodes and control paths.

: Generate QS (e.g., tracing, MCQ, and error-identification questions).

L N oo o b~ Ow DN

: Evaluate QS using quality and diversity metrics.

Algorithm 7.2: PDG Pipeline for Code QG and Evaluation

Input: Source Code (SC)
Output: Question Set (QS)

[EN

: Parse SC using language-specific parser.
: Construct PDG from SC.
: Identify algorithm type using PDG and textual features.

: Analyze data dependencies for semantic complexity estimation.

: Fill placeholders using PDG nodes and dependency structures.

2

3

4

5: Select Bloom-level-aligned templates for PDG-based QG.

6

7: Generate QS (e.g., dependency, error identification, and comprehension questions).
8

: Evaluate QS using quality and diversity metrics.
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Algorithm 7.3: CFG&PDG Synergetic Pipeline for Code QG and Evaluation
Input: Source Code (SC)

Output: Question Set (QS)

: Parse SC using language-specific parser.

: Construct CFG and PDG from SC.

. Integrate CFG and PDG for a unified structural-semantic representation.

: Identify algorithm type using integrated features.

: Compute complexity and dependency scores for difficulty estimation.

: Select templates aligned with Bloom’s taxonomy and algorithm type.

: Fill placeholders using CFG paths and PDG dependencies.

: Generate QS (e.g., tracing, dependency, error identification, creative coding, and MCQs).

©O© 00 ~N & 0o B W N PP

: Evaluate QS using comprehensive quality, novelty, and diversity metrics.

The following is a simple scenario that demonstrates how QG works. The system analyzes the
CFGs and PDGs and then performs motif detection to find patterns in structures and semantics,
such as loops with conditionals, branching nodes, dependency chains, or variables with multiple
reaching definitions. From each motif, triggering generation events, the generation events are
balanced under the balancing mechanism to ensure proportional coverage across Bloom's

taxonomy levels that define question types and programming languages.

The templates are rule-driven and indexed to specific motifs; thus, for instance, a branch motif
will lead to a tracing or a branch-outcome question while a dependency chain would lead to a data-
flow explanation. Bloom levels are seeded by the motif type and are then fine-tuned using
heuristics based on cyclomatic complexity, path length, and fan-out, which also determine relative
difficulty. Before finalization, placeholder symbols and spans are validated against the symbol
table, dependency paths are checked for consistency, and duplicates are filtered out to preserve
semantic correctness. For example, the function sum_positive(nums) initializes an accumulator,
iterates through a list, updates the total conditionally, and returns the total. From the CFG analysis,
these nodes are: initialization, looping, branching, updating, and returning, which is further
clarified by the PDG, which illustrates its dependencies between the loop variable, condition,
update, and final return. Motifs would include that of a loop that has an internal conditional
(mapped to Apply/Analyze - level tracing questions) and of a data dependency chain from inputs
to the output (mapped to Analyze - level explanation tasks). Instantiating the relevant templates
would produce questions such as: "After executing sum_positive on [—2, 3, 5], what value is
returned?” (Apply, Beginner) and "Describe the data flow from each positive element in nums to
the final result” (Analyze, Intermediate). In effect, the entire framework turns graphical motifs
into well-scoped questions that are semantically valid to cover simple constructs but also nested
ones, with distributions engineered rather than left to emergence.
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To illustrate the process more concretely, after CFG and PDG analysis identifies the loop-with-
conditional and data-dependency motifs, the system triggers QG events. These events map to
predefined templates indexed by motif type. The initial Bloom levels are seeded according to motif
characteristics and further adjusted using heuristics such as cyclomatic complexity, path length,
and fan-out, which also inform relative difficulty. Placeholders are validated against the symbol
table, dependency paths are checked for consistency, and duplicates are removed. Once candidate
questions are generated, the force-balanced stage works to ensure proportional coverage across
Bloom levels. The system groups questions by level, finds the smallest group size, and uniformly
samples questions to enforce parity. Importantly, this step does not modify question content, it
simply balances the distribution and shuffles the order to remove potential ordering bias. As a
result, the final question set is semantically valid, reproducible, and engineered to provide a fairer
cognitive profile, avoiding overrepresentation of “remember” or “understand” questions derived

from simpler motifs.

At this stage, the system treats all algorithms uniformly. Template selection relies on detected
structures (loops, branches, updates) and pre-assigned Bloom levels. Although current category
labels (from 19 algorithms spanning six conceptual families) are used for reporting, the
architecture supports future extensions: routing algorithms toward specialized template families
and empirically calibrating difficulty, while maintaining transparency and reproducibility. The
framework does not explicitly map algorithm categories to Bloom levels or template pools. All
templates are triggered from structural motifs alone. Category-specific tendencies can still be
observed even though the system treats all algorithms uniformly. Sorting algorithms (Bubble,
Insertion, Selection, Merge, Quick) are loop-intensive, with nested iterations and repeated
comparisons, which often produce Apply-level questions that focus on execution tracing and state
prediction (e.g., “After the first outer iteration of Bubble Sort, what is the value of index j?”). This
ensures generalizability and language-independence, but it also limits the ability to design

questions tailored to the pedagogical nuances of each algorithm family.

Finally, CFGs and PDGs play complementary roles in the question generation process: CFGs
capture execution flow and branching, leading to questions such as “Which statement executes
after the conditional at line X?”, while PDGs trace variable dependencies and data flow, prompting
tasks like “How does variable X influence the final result?”” For example, in binary search, CFG
analysis highlights branching structures that generate path-tracing questions, whereas PDG
analysis reveals links such as def left — use left — def mid, supporting dependency-based
questions about how values shape later comparisons. When combined, CFG and PDG perspectives

allow for higher-order prompts like “The variable mid is computed at line 27 (PDG) and used in
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the conditional at line 30 (CFG). Would moving this computation inside the conditional affect
correctness?” This integration expands Bloom-level coverage by blending structural and semantic
analysis, while lightweight pattern-matching heuristics (e.g., nested loops for sorting, index
updates for searching, recursion for divide-and-conquer) enable contextualization without
sacrificing generality. The following is a concrete example using a Python code fragment to
demonstrate the direct mapping from code structure — graph motifs — pedagogically-aligned
questions with semantic correctness guaranteed:
def count_positives(numbers):
count=0
for num in numbers:
if num > 0:

count +=1
return count

1. Graph Construction: CFG captures control flow (function — initialization — loop —
conditional — update — return); PDG tracks data dependencies (count definition — conditional

update — return use).
2. Motif Detection:
e Loop-with-conditional motif (for-loop containing if-statement).
e Accumulator pattern (initialize — conditionally update — return).
e Def-use chain for count variable.
3. Automatically Generated Questions:
e Apply (Tracing): "Trace the value of count after each iteration for input [-1, 3, 0, 5]".

e Analyze (Dataflow Open-Ended): "Explain how the variable count flows from line 2 to
line 6".
e Evaluate (Error Detection): "If line 4's condition were num >= 0, what would happen with
input [0, -2, 3]?"
4. Validation: All variable references (count, num) verified in symbol table and line numbers

confirmed in CFG paths.

5. Force Balancing: If multiple Apply-level questions were generated, the system would trim
excess to match representation of higher Bloom levels. The system uses this technique to make
the generated questions reasonably balanced across various cognitive or question types. However,

further work is needed to achieve a more evenly balanced distribution in future enhancements.
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To clarify the distinct roles and advantages of CFG, PDG, and their synergistic combination for
QG, three simple concrete examples are presented. CFGs capture execution ordering and control
flow, enabling questions about path selection and iteration. PDGs encode data dependencies and
variable lifetimes, supporting questions about value propagation and semantic correctness.

Combined CFG+PDG enables higher-order questions requiring both control and data analysis.
Three Concrete Examples:
1. CFG-Based Question (Control Flow):

if x> 0:

result =x* 2
else:

result =x * -1

Generated question (Apply): "For input x = -3, which branch executes and what is the final value

of result?" CFG enables tracing execution paths through conditional branches.

2. PDG-Based Question (Data Dependencies):

total = 0
for i in range(5):
total +=1i* 2

return total
Generated question (Analyze): "Trace how the variable 'total’ is defined, updated, and used. Which
line's definition ultimately determines the returned value?" PDG reveals def-use chains and

variable lifetime dependencies.
3. CFG+PDG Synergistic Question (Control + Data):

def safe_divide(a, b):
ifb!=0:
returna/b
return 0

Generated question (Evaluate): "Explain how the control guard (b != 0) protects the data
dependency between parameters and the division operation. What happens if this guard is
removed?" Combined analysis enables questions about correctness and robustness requiring both

control flow understanding and data dependency tracking.

This demonstrates how CFG targets execution tracing, PDG targets dependency analysis, and

CFG+PDG enables higher-order correctness evaluation.
7.2.3 Evaluation Metrics

The same automatic evaluation metrics as the baseline model (6.2.6 Evaluation Approach) are

utilized in the system, such as overall quality score, linguistic complexity, precision, recall, F1-
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score, novelty score, educational alignment, and cognitive diversity [P5]. Overall quality score
aggregates linguistic quality, technical correctness, and clarity. Linguistic complexity measures
readability and sophistication. Precision and recall evaluate generation accuracy and coverage. F1-
Score balances precision and recall. Novelty score measures uniqueness across questions.
Educational alignment measures alignment with programming learning objectives. Cognitive
diversity measures distribution across Bloom’s taxonomy levels. Relevance and educational value
measures were adopted from the baseline system [P5] for human evaluation metrics. Five human-
evaluated dimensions are conceptualized to measure the pedagogical soundness, clarity, and
cognitive relevance of generated programming questions to measure their quality beyond

automatic metrics:

1. Relevance: This metric addresses how well a question aligns with the programming education
goal and profession. It encompasses curriculum fit (e.g., ACM/IEEE standards), relevance to
real-world scenarios, alignment with learning objectives, significance, and suitability with the

target programming language.

2. Difficulty appropriateness: It quantifies the extent to which an author designed a question to
unequivocally appear at the cognitive level (Beginner versus Intermediate versus Advanced)
to which it is targeted. It considers the prerequisite knowledge needed, the cognitive load, the
complexity of the problem, the duration required to solve the problem, and whether the
question is scaffolded appropriately for the learners.

3. Clarity: The aspects of how clearly a question is and whether or not it is ambiguous. It
encompasses the quality of the grammar, instructional accuracy, suitability of terminology,

visual presentation (e.g., readability of the code), and the removal of possible ambiguities.

4. Educational value: This value reflects the question's ability to foster learning and skill
acquisition. Evaluation is based on the depth of understanding of the underlying concept,
capability to develop programming skills, portability to other situations, interest and value of

engagement, and contribution to learning.

5. Cognitive level match: Analysis of the question focuses on the level of Bloom's taxonomy. It
evaluates to what extent relevant those cognitive operations included (e.g., remembering,
applying, analyzing), the promotion of higher-order thinking, and whether the question was a

valid instrument of cognitive assessment.

7.3 Results

The experimental evaluation demonstrated the effectiveness of the proposed approach in

generating relevant and challenging questions from program codes. The system successfully
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generated comprehensive programming questions datasets spread across Bloom levels. Table 7.1
demonstrates how CFG-based, PDG-based, and CFG-PDG approaches distribute across Bloom’s
Taxonomy, illustrating their alignment with cognitive engagement in algorithm learning. The
PDG-based method supports lower to mid-level cognitive processes, particularly remembering,
understanding, and analyzing, through its visual and structural program representations. In
contrast, CFG-based and CFG-PDG approaches maintain consistent engagement at higher-order
levels, specifically in evaluating and creating tasks related to algorithm design and optimization.
This distribution highlights how each approach differentially contributes to fostering cognitive
development, providing a nuanced basis for aligning teaching strategies with targeted learning
outcomes in programming education. The dataset of code snippets used is available on GitHub
[158], the same dataset used for the baseline system [P5]. Established educational assessment
metrics, outlined in section “7.2.3 Evaluation Metrics” of the methodology, were used to evaluate

the generated questions.

Table 7.1 Bloom's taxonomy distribution

Cognitive Level | CFG-Based | PDG-Based | CFG-PDG Primary Focus Areas
Remembering 76 370 57 Algorithm facts, terminology, syntax
Understanding 76 357 38 Code behavior, step-by-step execution
Applying 76 95 57 Algorithm adaptation, implementation
Analyzing 76 370 57 Efficiency analysis, code structure
Evaluating 76 40 17 Algorithm selection, trade-off analysis
Creating 76 - 38 Algorithm design, optimization

Table 7.2 outlines how various question types are distributed across CFG-based, PDG-based, and
CFG-PDG, illustrating their alignment with cognitive skill development in algorithm learning.
Multiple-choice, code tracing, and fill-in-the-blank formats are prevalent across all approaches.
PDG-based shows higher frequencies, underscoring their effectiveness in reinforcing fundamental
concepts and procedural fluency. Error identification tasks appear exclusively within CFG-based
activities, aligning with its strengths in syntax analysis and debugging practices. Open-ended
questions, promoting reflective reasoning and synthesis, are most prominent in CFG-based tasks
but are also utilized within PDG-based and CFG-PDG contexts, supporting deeper cognitive
engagement. Creative coding tasks in PDG-based and CFG-PDG approaches highlight these

methods’ emphasis on practical application and design-oriented learning. This distribution
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demonstrates a strategic alignment of question types with each pedagogical strength of the

approach, ensuring targeted cognitive development within programming education.

Table 7.2 Dataset question type distribution

Cognitive Level CFG-Based PDG-Based CFG-PDG
Multiple Choice 76 357 57
Code Tracing 76 370 57
Fill-in-the-Blank 76 370 57
Error Identification 76 - 17
Open-Ended 152 40 38
Creative Coding - 95 38

Table 7.3 presents the comparative evaluation of the CFG-based, PDG-based, and CFG-PDG
synergistic pipelines, demonstrating clear advancements in AQG for programming education. The
CFG-PDG synergistic pipeline consistently achieved the highest overall quality and linguistic
complexity scores (0.83), outperforming both the CFG-based (0.78, 0.77) and PDG-based (0.72,
0.62) pipelines. This indicates that the integration of structural (CFG) and semantic (PDG)
analyses contributes to the generation of questions that are not only technically sound but also
pedagogically rich and linguistically diverse. Precision was similarly highest in the CFG-PDG
pipeline (0.83), underscoring its effectiveness in producing relevant, accurate questions. Recall
showed the lowest scores across all systems, indicating a shared opportunity for future expansion
in question variety. The CFG-PDG pipeline maintained a balanced F1-score (0.15), competitive
with CFG-based (0.19) and superior to PDG-based (0.11), demonstrating its capacity to balance
quality with breadth despite the inherent challenges in automatic assessment generation. The
novelty scores were notably high for both the CFG-PDG (0.96) and PDG-based (0.95) pipelines,
illustrating the semantic depth added by PDG analysis, which enhances the diversity of questions
beyond surface-level syntax. All systems achieved maximum educational alignment (1.00),
reflecting their capacity to generate questions aligned with Bloom’s taxonomy and curriculum
goals. The metric reflects the proportion of questions that have both a valid Bloom’s taxonomy
level and an appropriate curriculum tag. Since the tagging process is built into the pipeline and
applied to every question by default, the score consistently comes out as 1.00, indicating a shared
need for future review. Importantly, the CFG-PDG pipeline achieved the highest cognitive
diversity (0.31), supporting a broader range of question types that facilitate deeper learning and

higher-order cognitive engagement. Collectively, these results affirm the CFG-PDG synergistic
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pipeline as the most robust and effective approach for scalable, high-quality, and cognitively
diverse QG from source code. It successfully bridges the structural strengths of CFG analysis and
the semantic insights of PDG analysis, meeting the evolving needs of programming education.
Future research should focus on enhancing recall and extending template libraries for rare
constructs. Based on Table 7.1 and Table 7.2, the three pipelines have not fully resolved the

balance issue, highlighting the need for a future solution.

Table 7.3 Automatic evaluation results by approach

Performance Metric CFG-Based PDG-Based CFG-PDG
Overall Quality Score 0.78 0.72 0.83
Linguistic Complexity 0.77 0.62 0.83
Precision 0.77 0.62 0.83
Recall 0.11 0.06 0.08
F1-Score 0.19 0.11 0.15
Novelty Score 0.86 0.95 0.96
Educational Alignment 1.00 1.00 1.00
Cognitive Diversity 0.20 0.29 0.31

Table 7.4 underscores the superiority of the CFG-PDG synergistic pipeline in generating high-
quality programming assessment questions across C, C++, Java, and Python. This integrated
approach consistently achieved the highest quality scores (0.81-0.85), demonstrating its
adaptability across procedural, object-oriented, and scripting languages. The CFG-based pipeline
also performed reliably (0.77-0.78), highlighting the value of structural (control-flow) analysis

for generating clear and pedagogically sound questions.

In contrast, the PDG-based pipeline scored lower (0.71-0.72), reflecting its strength in semantic
insight while revealing limitations when used without structural context. These results confirm
that combining CFG and PDG analysis is essential for producing scalable, high-quality, language-
agnostic QG, addressing a critical challenge in automated programming education assessment.
The CFG-PDG synergistic pipeline thus emerges as a robust solution for educators seeking
consistent, meaningful, and pedagogically aligned assessments across diverse programming

curricula.
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Table 7.4 Quality score by approach per programming language

Programming Language CFG-Based PDG-Based CFG-PDG
C 0.77 0.72 0.84
C++ 0.78 0.71 0.85
Java 0.77 0.71 0.82
Python 0.78 0.72 0.81

While the study employs well-defined metrics, the absence of human evaluation limits the
contextual accuracy of generated questions. As a result, human evaluators were used to
complement the automatic evaluation. Human evaluation was conducted exclusively on the top-
performing approach through automated assessment (CFG-PDG pipeline). Five educators
independently evaluated a stratified sample of 48 automatically generated questions (12 per
programming language, 2 per Bloom level). Each question was assessed using a 5-point Likert
scale, where 1 represented poor performance and 5 represented excellent performance. The
evaluation covered five dimensions: relevance, difficulty, appropriateness, clarity, educational
value, and cognitive level alignment. Table 7.5 shows human evaluation metrics for QG from
source code using CFG-PDG across four programming languages. Table 7.5 shows C++ leads
slightly. Two tests were conducted to understand whether this slight difference has statistical
significance. First is a paired t-test comparing the average of the C++ versus each of the Python,
Java, and C scores, as shown in Table 7.6. Two is a one-way ANOVA comparing average scores
across all four languages (F-statistic: 1.20, p-value: 0.3098). The difference between C++ and
other languages is very slight. Based on the table of paired t-tests and ANOVA results, the
differences between C++ and the other languages are statistically significant, even if they were
slight. Table 7.6 shows that all three comparisons show that C++ received significantly higher
evaluation scores than C, Java, and Python, confirming that C++ questions were rated most

favorably by human evaluators across all metrics.

C++'s advantage appears to stem from LLVM's libclang parser, which generates more detailed
ASTs and denser CFG/PDG graphs than the Python or Java parsers. Its expressive syntax provides
richer structural input for QG. The human evaluation is a valuable counterpart to automated
assessment, reinforcing core findings while offering critical insights from an educational
perspective regarding question quality. Both methods consistently identified C++ as the stronger
performer; however, human reviewers observed a noticeable performance difference across
different languages than automated metrics initially indicated. The fact that there should be no
difference between automated educational scoring and the evaluations of a human being highlights
129



the validity of using computers in educational settings. However, human involvement in
consideration of practical classroom application brings in a critical context that purely algorithmic
approaches do not have, reinforcing the need for a multidimensional measurement framework in

educational technology research.

Table 7.5 Human evaluation of CFG-PDG results by programming language (N=48)

Metric C C++ Java Python
Relevance 4.31 4.39 4.15 4.07
Difficulty Appropriateness | 4.31 4.40 417 4.09
Clarity 4.29 4.42 4.17 4.02
Educational Value 4.33 441 4.21 4.05
Cognitive Level Alignment | 4.27 4.42 4.16 4.01
Average Score 4.30 441 417 4.05

Table 7.6 Paired t-test results for human evaluation differences

Comparison t-statistic p-value Significant? (0=0.05)
C++vs.C 2.847 0.031 Yes
C++ vs. Java 6.172 0.001 Yes
C++ vs. Python 8.924 <0.001 Yes

7.4 Discussion

Current representative work in the field explores neuro-symbolic integration, wherein static
analysis is used as a form of weak supervision to guide neural generative models. Empirical results
demonstrate that this approach yields a marked improvement in the semantic fidelity of
synthetically generated code, reducing errors such as type violations and uninitialized variable
access [167]. Recent research has empirically validated the cross-language feasibility of systems
that integrate static analysis with LLMs for automated test and code generation. While these
pipelines demonstrate practical utility across languages such as Java, Python, and Kotlin, their
application remains predominantly focused on these technical tasks rather than on pedagogically-
oriented objectives, such as generating instructional questions for programming education [168],
[169]. The empirical analysis of the study [170] concludes that the static analysis capabilities of
code LLMs are fundamentally limited and do not generalize to improved performance on code

intelligence tasks. This limitation motivates a hybrid approach, where LLMs are augmented with
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deterministic analyzers to provide the fault sensitivity and correctness guarantees that LLMs alone
cannot achieve. The article [12] presents a fully automated pipeline for generating a massive bank
of programming exercises by mining code from public repositories. Its core innovation is a
language-independent 'meaning tree' representation that allows code snippets to be translated and
used across C++, Java, and Python. The method leverages static analysis to parse code, extract
expressions, and auto-generate problems annotated with pedagogical metadata like required skills
and common errors, enabling scalable content creation for intelligent tutoring systems without
human intervention. This section critically analyzes and breaks down the findings of the
experiments and presents their overall implications on programming education, automated
assessment, and educational technology. The discussion delves into the implications of the
findings, limitations and challenges, and the broader impact of multi-language QG from source

code on CS education.
7.4.1 The Proposed Systems and the Baseline Comparison

Figure 7.2 shows a clear performance metric improvement across the four programming languages
in the new systems compared to the baseline template-based AQG system introduced in Chapter
6. The comparison between the new systems and the baseline shown in Figure 7.3 reveals
substantial improvements across nearly all performance metrics, indicating that the new systems

are significantly more effective in generating high-quality programming questions.

Performance Comparison Across Programming Languages
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Figure 7.3 compares the CFG-based, PDG-based, CFG-PDG synergistic, and the baseline
template-based AQG system across the evaluation metrics. CFG-PDG synergistic pipeline
consistently demonstrates better performance, achieving the highest overall quality score (0.83)
and linguistic complexity (0.83). This suggests that integrating control-flow and semantic
dependency analyses enables the generation of questions that are technically accurate and
articulated in linguistically rich and varied forms, essential for maintaining learner engagement
and supporting nuanced comprehension. The CFG-based pipeline follows closely (0.78, 0.77),
indicating that control-flow analysis provides a reliable structure for generating clear and

pedagogically aligned questions.
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Figure 7.3 Comparison between the proposed approaches and the baseline

However, it lacks the semantic depth required for advanced comprehension and higher-order
question types. The PDG-based pipeline, while lower in quality (0.72) and linguistic complexity
(0.62), contributes semantic insights that enhance novelty and cognitive diversity, albeit with
challenges in clarity and consistency when used independently. In contrast, the baseline template-
based AQG system underperforms (0.58 quality, 0.39 linguistic complexity), revealing the
limitations of shallow syntax-based approaches that cannot capture deeper structures or semantics
of code, often resulting in repetitive and low-cognitive-load questions. The CFG-PDG pipeline
demonstrates high precision (0.83), improving upon the CFG-based (0.77) and outperforming the
PDG-based (0.62) and baseline (0.36) systems. This indicates the system’s capacity to generate
relevant, targeted questions with minimal irrelevant outputs, ensuring assessment quality.
However, recall remains a shared challenge across all graph-based systems, with scores of 0.08
(CFG-PDG), 0.11 (CFG-based), and 0.06 (PDG-based), compared to the baseline system’s
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inflated recall (1.00). The baseline’s maximum recall is misleading; it achieves high coverage by
generating a large volume of low-quality, repetitive questions, reflected in its low quality and
linguistic complexity scores. The CFG-PDG pipeline, while generating fewer questions,
prioritizes relevance and cognitive alignment, as demonstrated by its higher precision, ensuring
that the generated assessments are meaningful rather than voluminous. In contrast, the CFG-PDG
pipeline favors precision and cognitive alignment, generating fewer but more meaningful
questions. Its F1-score (0.15), though lower than the baseline’s (0.53), reflects a deliberate trade-
off prioritizing quality over quantity. This underscores that high F1-scores driven by excessive
recall may not translate into pedagogically effective assessments. Notably, the CFG-PDG pipeline
achieves the highest novelty score (0.96), marginally surpassing the PDG-Based (0.95) and
outperforming the CFG-Based (0.86) and Baseline (0.15). This indicates that incorporating
semantic dependency analysis allows the system to generate diverse, non-trivial questions that
push learners beyond rote memorization, enhancing engagement and learning outcomes.
Educational alignment remains maximum (1.00) across all graph-based systems, underscoring
their consistent alignment with learning objectives and Bloom’s Taxonomy levels. Since the
tagging process is built into the pipeline and applied to every question by default, the score
consistently comes out as 1.00, indicating a shared need for future review. In contrast, the baseline
system’s lower alignment score (0.44) highlights its inadequacy in maintaining pedagogical
coherence. Cognitive diversity is highest in the CFG-PDG pipeline (0.31), followed by the PDG-
Based (0.29) and CFG-Based (0.20), indicating the CFG-PDG pipeline’s ability to generate
questions spanning various cognitive levels, including analysis, evaluation, and creative coding.
Despite a numeric cognitive diversity score of 0.51, the baseline system often produces
superficially diverse but low-order questions, lacking depth and true cognitive challenge. Finally,
the low recall of CFG-PDG reflects its reliance on a few templates that cover basic patterns,
suggesting the need to expand templates and leverage CFG-PDG complexity or ML approaches
to capture a broader range of valid questions while keeping precision high.

7.4.2 Research Contributions and Educational Implications

The generator is a key event in automatic assessment. Its capability to produce reasonably
balanced content in terms of languages, Bloom's taxonomy, and the form and types of questions
helps address the bias inherent to manual QG. The proposed study contributes to educational
technology by showing that rich computational modeling strategies can reliably operationalize
abstract educational concepts like cognitive complexity, difficulty progression, and content
balance. Automating cognitive assessment in programming instruction confirms that Bloom's

taxonomy was applied systematically, proving its feasibility in programming education. The four
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programming languages are empirically supported with consistent performance based on theories
that focus on conceptual rather than memorization of languages. The fact that it included all 19
fundamental algorithms and divided them into six categories covers areas of common curriculum
deficiencies, with some algorithms being emphasized more than others. The pedagogical system

ensures that the students will get an in-depth exposure to algorithmic concepts needed to learn CS.
7.4.3 Research Limitations

The focus on 19 algorithms excludes advanced topics (e.g., ML, cryptography). Limited language
support (Python, Java, C++, C) misses functional and web languages. The system emphasizes
algorithmic tasks over higher-order software engineering skills. Standardized formats may not
fully capture real-world complexity or creativity. Static analysis limits insight into run-time
behavior. At present, the framework does not explicitly map algorithm categories to Bloom levels
or template pools. All templates are triggered from structural motifs alone. This ensures
generalizability and language-independence, but it also limits the ability to design questions
tailored to the pedagogical nuances of each algorithm family. Finally, the three pipelines have not
fully resolved the balance issue, highlighting the need for a future solution.

7.4.4 Future Research Directions

Future development should prioritize expansion to additional programming languages,
particularly those representing different paradigms such as functional programming, concurrent
programming, and domain-specific languages. The modular architecture provides a foundation for
such expansion, though each new language will require careful consideration of paradigm-specific
concepts and assessment approaches. Integration with adaptive learning platforms could provide
personalized educational experiences based on individual student progress and learning patterns.
Longitudinal studies of student learning outcomes would provide crucial evidence for the
educational effectiveness of automated QG. Such studies should examine immediate learning
gains, retention, transfer to new contexts, and development of expert-like problem-solving skills.
Future extensions may incorporate lightweight category detection to enable algorithm-aware
generation. For instance, sorting motifs could unlock invariant and complexity analysis templates,
graph traversal motifs could emphasize reachability and connectivity, and dynamic programming
motifs could surface recurrence-based reasoning tasks. Such refinements would enrich question

diversity while retaining the current framework’s transparency and reproducibility.

Finally, a promising extension of this work lies in integrating LLMs with the CFG-PDG
framework. The modular design of the current system already provides clear entry points for such
hybridization, where LLMs can be guided by structural program representations rather than

generating questions in isolation. By using CFG and PDG graphs as guardrails, LLMs could enrich
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QG with greater semantic variety and higher-order reasoning while maintaining alignment with
Bloom’s taxonomy and algorithmic correctness. This hybrid approach has the potential to address
the current limitation of low recall, enable more adaptive question complexity, and balance

structural rigor with semantic richness.

7.5 Conclusion

The increasing demand for high-quality and cognitively aligned assessments in programming
education presents a significant challenge for educators, particularly within multi-language, large-
scale instructional settings. This study presents a robust, scalable, and pedagogically aligned
system for AQG from source code, leveraging CFG, PDG, and a synergistic CFG-PDG pipeline
to address this challenge across Python, Java, C++, and C. The system systematically covers 19
fundamental algorithms, six levels of Bloom’s taxonomy, and a diverse range of question types,
with reasonably balanced distributions. Empirical results demonstrated that the CFG-PDG
synergistic pipeline consistently outperformed standalone CFG-based and PDG-based pipelines,
achieving an overall quality score of 0.83, linguistic complexity of 0.83, precision of 0.83, and
novelty of 0.96. Compared to CFG-based and PDG-based pipelines, it also achieved enhanced
cognitive diversity (0.31), supporting the generation of semantically rich, cognitively engaging
questions spanning higher-order cognitive levels and promoting deeper learning engagement.
Human evaluations further confirmed its pedagogical value, with C++ questions receiving slightly
high ratings while maintaining consistent quality across all languages. Despite these
advancements, limitations remain, particularly in expanding coverage to functional and web
languages and in capturing dynamic program behaviors. The system maintained maximum
educational alignment (1.00) across all pipelines, confirming its compatibility with curriculum
goals and facilitating integration into adaptive learning platforms and scalable online courses.
Since the tagging process is built into the pipeline and applied to every question by default, the
score consistently comes out as 1.00, indicating a shared need for future work. The low recall of
CFG-PDG reflects its reliance on a few templates that cover basic patterns, suggesting the need to
expand templates and leverage CFG-PDG complexity or ML approaches to capture a broader
range of valid questions while keeping precision high. Future work will prioritize template library
expansion, dynamic analysis integration, and longitudinal studies to assess the system’s impact on
learning outcomes, engagement, and skill retention in diverse learning contexts. In conclusion,
this work establishes a foundational advancement in automated programming assessment, offering
a practical, effective tool for educators to deliver high-quality, equitable, and cognitively diverse

evaluations in CS education.

135



Thesis 5: | developed a modular static analysis framework for AQG across multiple programming
languages. The system integrates language-specific analyzers within a unified architecture

designed to support consistency in QG across the four programming languages (C, C++, Java, and
Python). [P6]
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Chapter 8 Conclusion

8.1 Contributions

This dissertation has established a comprehensive, systematic approach to advancing
programming education through automated, high-quality, and pedagogically aligned QG and
learning material creation. Across ontology-based models, hybrid Al frameworks, template-driven
static analysis, LLM evaluation, CFG pipeline, PDG pipeline, and CFG-PDG pipeline, the
research consistently demonstrates scalable, effective methodologies that address critical gaps in
assessment practices within multi-language programming education. The findings provide
educators and technology developers with validated, actionable frameworks to enhance learning
engagement, assessment quality, and instructional efficiency, paving the way for further
innovations in automated programming education tools. The main scientific results achieved

during the completion of this research are summarized in five thesis points.
8.1.1 Thesis 1

| developed an ontology-based system that automatically generates programming-related
assessment questions directly from source code. By leveraging structured domain knowledge, the
system semantically interprets programming constructs to support concept-aware question

generation, without relying on adaptive learning mechanisms. [P1, P2]
8.1.2 Thesis 2

| developed a hybrid system that combines static code analysis, ontology, and natural language
processing using word embeddings to generate programming-related questions from source code.
[P3]

8.1.3 Thesis 3

| developed a systematic evaluation framework to assess the QG capabilities of LLMs, using
automatic evaluation metrics and complemented by human-centered evaluation metrics for the
top-performer LLM. The findings provide insights into their strengths and limitations in
generating programming-related assessment questions for potential educational use in the

programming domain. [P4]
8.1.4 Thesis 4

| developed a modular system for AQG and evaluation using template-based static code analysis,
enabling modular QG designed to be extensible with minimal integration overhead. The
framework supports multiple programming languages through customizable parsing templates
within a unified architecture. [P5]
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8.1.5 Thesis 5

| developed a modular static analysis framework for AQG across multiple programming
languages. The system integrates language-specific analyzers within a unified architecture
designed to support consistency in QG across the four programming languages (C, C++, Java, and
Python). [P6]

8.2 Future work

Each of the five thesis points opens up unique and practical directions for continued research. The
following recommendations aim to build on their individual contributions, offering ways to refine
current methods, broaden their reach, and address some of the open challenges highlighted

throughout the dissertation.

1. Ontology-Based Automatic Generation of Learning Materials for Python Programming:
Future research could extend the ontology-based approach beyond Python to include a broader
range of programming languages. This would involve designing cross-language ontological
frameworks or language-specific extensions that preserve semantic coherence across diverse
syntactic constructs. Additionally, conducting controlled experimental studies comparing
ontology-generated questions with manually crafted ones could yield valuable insights into
their educational effectiveness, particularly in terms of learner comprehension, retention, and

perceived usefulness.

2. A Hybrid Approach for Automatic Question Generation from Python Program Codes: One
promising direction is to enhance the System’s ability to process more complex programming
structures, especially those involving third-party libraries, nested functions, and
interdependent statements. Improving the semantic interpretation pipeline, possibly by
incorporating deeper NLP techniques or lightweight learning models, could help generate
more sophisticated and context-aware questions. Future research may also explore how to

adapt the system automatically to different code domains or programming paradigms.

3. Evaluating Large Language Models for Generating Programming Questions from Code:
Future work in this area could involve refining the evaluation framework to capture more
nuanced aspects of question quality, such as semantic subtlety, creativity, and alignment with
pedagogical goals. Incorporating qualitative feedback from educators alongside quantitative
metrics could further ground the evaluation process in real instructional needs. Additionally,
exploring emerging models, including domain-specific LLMs or those designed to support
multiple programming languages, may offer deeper insights into their effectiveness across

diverse educational contexts.
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4. Template-Based Question Generation from Code Using Static Code Analysis: Subsequent
research may focus on developing dedicated language-specific parsers for Java, C++, and C
to improve upon the current reliance on pattern-based extraction methods. Adding runtime
analysis or symbolic execution could improve the system’s contextual accuracy and support
questions based on actual program behavior. The integration of adaptive or ML-driven
components might also enable context-sensitive template selection. Longitudinal classroom
studies would help assess how such systems impact student learning and engagement over

time.

5. Multi-Language Static-Analysis System for Automatic Question Generation from Source
Code: Further development could extend the system to include functional, concurrent, and
domain-specific languages, making it more adaptable to a wide range of curricular needs. By
combining dynamic and static program analysis, the system could generate richer, behavior-
aware questions, especially in tasks involving edge-case reasoning or algorithmic logic.
Another important direction involves linking the framework with adaptive learning platforms
that personalize questions based on individual learner progress. Conducting long-term
educational studies would provide essential data on how the system influences knowledge
retention, problem-solving skills, and transfer of learning across different instructional
settings. Finally, a promising extension of this work lies in integrating LLMs with the CFG-
PDG framework. The modular design of the current system already provides clear entry points
for such hybridization, where LLMs can be guided by structural program representations rather
than generating questions in isolation. By using CFG and PDG graphs as guardrails, LLMs
could enrich QG with greater semantic variety and higher-order reasoning while maintaining
alignment with Bloom’s taxonomy and algorithmic correctness. This hybrid approach has the
potential to address the current limitation of low recall, enable more adaptive question

complexity, and balance structural rigor with semantic richness.
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