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INTRODUCTION

1. INTRODUCTION

The rise of smart technologies has transformed energy optimization in buildings, which
consume 40% of primary energy and contribute 24% to greenhouse gas emissions. This thesis
examines smart home technologies, energy efficiency, and thermal comfort, focusing on heat
transfer in building envelopes. Predicting energy needs during design is key to optimizing energy
use and economic outcomes [1]. The International Energy Agency notes the construction sector
accounts for over a third of global energy consumption and 40% of CO; emissions. In Hungary,
fossil fuels dominate the energy supply, but solar PV installations are growing to meet clean energy
goals by 2030 [2].Building envelopes, especially walls, are critical for reducing heat loss, which
accounts for 35% of a home’s energy loss. Enhancing insulation and using smart materials can
improve efficiency. Thermal bridges, which increase heat loss, require integrated thermal and
structural design [3]. This study explores energy renovation techniques for existing buildings to

boost efficiency and sustainability.

Energy efficiency in buildings is vital for a sustainable economy, with the construction sector
offering significant potential to reduce energy use and emissions. Heat transfer calculations guide
building design, estimating energy loss through conduction in walls, roofs, and floors. Wall
conduction, influenced by thickness and insulation, responds to weather conditions, impacting
thermal comfort and energy consumption [4]. Innovative wall designs, like passive solar and
lightweight concrete, enhance efficiency, while high R-values reduce heat loss [5]. However, high
humidity can cause condensation, risking microbial growth. Roofs, critical for shielding against
solar radiation, benefit from insulation and reflective coatings to minimize heat gain. In tropical
climates, passive cooling techniques, like ventilated roofs, improve comfort. Fenestration,
including advanced glazing technologies, optimizes thermal performance and lighting. These
strategies—improved insulation, innovative walls, and efficient roofing—collectively lower

energy demands, fostering sustainability in buildings [6].

Analytical solutions for homogeneous systems are used to validate numerical methods,
particularly for one-dimensional multilayer problems in building envelope heat gain, loss, and
storage [7]. However, most building heat conduction issues are multi-dimensional and transient,
with varying material properties, requiring numerical simulations. Thermal analysis examines
temperature distributions, fluxes, and heat capacities, often using numerical methods for complex,
non-homogeneous scenarios [8]. Analytical solutions are precise for simple geometries, but
numerical integration is needed when material properties vary spatially. Newton’s law of cooling
and Stefan—Boltzmann’s law describe convective and radiative heat transfer, incorporated into
numerical models like finite difference schemes (FDM). Implicit FDM methods offer stability but
are computationally slow for multi-dimensional problems, while explicit methods, though faster
and parallelizable, are conditionally stable under the CFL limit [9]. Semi-explicit or semi-implicit

3



INTRODUCTION

methods balance stability and speed, with algorithms like the leapfrog—hopscotch (LH) method
excelling in heat conduction simulations. Studies show LH, Dufort—Frankel, and hopscotch
methods perform well, especially for stiff systems, allowing large time steps without stability
issues [10]. These methods effectively model convection and radiation in building walls across
seasons. Developing new algorithms for diffusion-reaction equations with time- and space-
dependent coefficients remains a key focus.

In my research, I collaborated with my supervisors and colleagues to explore and enhance
families of novel and traditional explicit methods for solving linear and nonlinear heat conduction
equations. These methods were developed based on innovative approaches. Specifically, I adapted
successful techniques, such as the pseudo-implicit and Leapfrog hopscotch methods, to scenarios
involving heat transfer through convection and nonlinear radiation (like Stefan-Boltzmann-type
radiation). These adaptations addressed real-world heat transfer challenges in building
environments. Additionally, I conducted a comparative analysis of my findings with those
obtained from neural networks

Diffusion of particles and Fourier-type heat conduction are omnipresent mass or energy

transport processes.
ou 2

—=aVu+ 1.1
p q (1.1)

In the simplest linear case, they are described by the following partial differential equation
(PDE):

au(x,t) 3 o0%u (x t)

=a 2 +q, 1.2
y PR (1.2)

where x, 7eR are the independent variables, u=u(x,7) is the unknown concentration of particles
or the temperature in the case of heat transfer, and a is the coefficient of (thermal) diffusivity. The
thermal diffusivity of a material can be given as a=k/(cp), where c= c(?,t) , k=k(7.), and
p = p(#,t) are the specific heat, the heat conductivity, and the density of the material, respectively.

If these coefficients depend on space, one has to use the more general equation

ou 1
—=—V(kVu), 1.3
ot cp ( u) (13)

where it 1s assumed that the ¢ and p functions are positive. This equation is now valid for more

than one space dimension.

The heat conduction Eq. (1.2) can be extended to include heat convection, radiation, and source
terms are added to the heat conduction Eq.(1.1). In the case of Eq. (1.2) in one space dimension,
applying the most common central difference equation

5 ”(xi+1)—“(xi)+u(xi—1)—”(xi) 5
U;_ 1 —2U; +u;
8x_zu(xi)z Ax e Ax _ Zi-l Axlz i+l , (1.4)
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which is second order in Ax, where i =1,..., N and N is the overall number of nodes. By

applying this, in one space dimension, I am able to derive the spatially discretized form of the
heat transfer Eq. (1.1) in one space dimension as follows:

du, S 2u; +u;
dt Ax?

Now, let us demonstrate the discretization of the heat transfer equation assuming that the

+q—Kui—O'ul~4. (1.5)

variables a, k, ¢, and p, which describe the properties of materials, are functions of space rather
than fixed values. In one space dimension, I now have to deal with the following instead of the

2 .
term oV u for homogeneous materials:

mg(k(x)g—zj | (1.6

I discretize the function £, and at the same time the space derivatives in Eq. (1.6) by the standard
central difference formula to obtain:

_ L{k(xi +§j u(x; + Ax) —u(x;) +k(xi —%j u(; _Ax)_”(x")}. (1.7)

ou
C(xi)p(xi)a Ar > A Ar

X;

Equations (1.6) and (1.7) are based on the node-picture, typically used by mathematicians.
Instead of node-variables, let us introduce cell variables to arrive at a resistance-capacitance-type
model of heat conduction. It means that w4, ¢, and p, are the approximation of the average

temperature, specific heat, and density of cell i, by their value at the cell centre. Furthermore, &, |

is the heat conductivity between cell i and its (right) neighbour, estimated by its value at the border
of the cells. Now the previous formula will have the form:

LU S
dt CipiAxk i,i+l

As a generalization of Eq. (1.8) one may construct the ODE system for the time derivative of

u-_l—u- 4
le ’)+q—Kui—aui : (1.8)

i+l i
+hiy

the cell variables for a generic grid by using the above approximations as follows:

. u:—u;
i Y L+ g—Ku; —ou;t (1.9)

J#L

The set of ordinary differential equations (ODEs) shown here can be used with a lot of different
grids, even ones that are not structured and have cells that are different sizes, shapes, and
properties. It is important to note that uneven discretization may potentially compromise spatial
accuracy. However, for the purposes of this work, I have chosen to exclusively utilize cells of a
rectangular configuration.



METHODOLOGY OF STUDY

2. METHODOLOGY OF THE STUDY

My objective is to refine and optimize numerical methods to effectively analyze heat transfer
in building components, enabling optimization of building envelopes from both thermodynamic
and economic perspectives. The research is structured into three key areas. First, I systematically
evaluate nine numerical algorithms, assessing their stability and accuracy, develop a pseudo-
implicit algorithm, investigate free convection and radiation terms using the leapfrog-hopscotch
method, and compare numerical approaches for diffusion-reaction partial differential equations
(PDESs). Second, I apply neural networks to predict building energy performance, validate models,
and simulate the thermal behavior of building walls using the leapfrog-hopscotch method as the
recommended approach. Third, I optimize roof inclination angles for energy efficiency across
various climates and enhance roof designs by incorporating additional insulation and Trombe roof
systems. These efforts aim to advance energy-efficient building design through rigorous

computational analysis and innovative optimization strategies.

2.1 Some Explicit Methods
2.1.1 The Leapfrog—Hopscotch method

The leapfrog-hopscotch (LH) method [11]. We have a structure consisting of two half and
several full time steps. The calculation starts again by taking a half-sized time step for the odd
nodes using the initial values Stage 0 (not repeated, green box), which uses #=0. Then, for the
even and odd nodes, full-time steps are taken strictly alternately until the end of the last timestep,
The intermediate stages as well as the last stage (light and dark orange boxes) use ¢=1/2 Figure

2.1. T used only the best already proven combination of formulas (L2 in [11]), which means that
f=0and 6=1/2.
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Figure 2.1. Hopscotch-type space-time structures. The time elapses from the top (t = to) to the bottom

(t:tﬁ“).
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2.1.2  The Dufort—Frankel (DF) algorithm

This method can be obtained from the so called leapfrog explicit scheme by a modification [12]
(p. 313). It is a known explicit unconditionally stable scheme that has the formula in the special

and general case:
—2r)u! nog g 4
”i"H _ (1-2r)u] +2r(u,_1 +u,+1) and u™ (1=r)u™ +24,
1+2r 1+,

As one can see, it is a one-stage but two-step method (the formula contains ui”_l ), which is not
a self-starter, so another method must be applied to start the method by the calculation ”zl . For this
purpose, we apply the UPFD formula twice (with halved time step size).

2.2 Comparison the ARE errors between positivity preserving methods as a function of AtMAX
and stiffness ratio

Figure 2.2. and Figure 2.3 show ARE errors as a function of Aty and stiffness ratio,
respectively. I note the stiffness ratio affected the accuracy of methods when they increased, so

the accuracy becomes worse compared to the cases of small stiff ratios.
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Figure 2.2. The ARE errors as a function of Atuax in the case of the UPFD, CNe, CpC, LNe2, LNe3, the
OEH-CNe, the SH-CNe, the LH-CNe and the ASH-CNe methods.
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Aggregated relative error (ARE)
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Figure 2.3. The ARE errors as a function of Stiff Ratio in the case of the UPFD, CNe, CpC, LNe2,

LNe3, the OEH-CNe, the SH-CNe, the LH-CNe and the ASH-CNe methods.

I summarize the ARE error quantities, for both case studies in Table 2.1.

Table 2.1. ARE (average relative error) quantities of different explicit stable algorithms.

Numerical Method ARE (Mildly Stiff) ARE (Very Stiff)

UPFD —37.4544 ~23.1613

CNe —42.0347 —259

CpC ~80.778 —40.07

LNe2 ~79.6922 -39.228

LNe3 -84.346 —43.75
OEH-CNe ~72.9442 -35.09
SH-CNe -81.467 —41.4367
LH-CNe —81.4812 —41.428
ASH-CNe -81.376 —41.39%4

2.3 PI Algorithms Comparison with Other Methods for a Large System with Strong

Nonlinearity

In this case study, I set K, =3xrand, g, =2xrand and o =1000. The latter coefficient has been

chosen so large because I would like to demonstrate the performance of the new method for a

strongly nonlinear case, but the values of the variable u are typically between zero and one, thus

their fourth power is usually a rather small number. I solve Eq. (1.1) in a 2-D, rectangle-structured
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mesh the size of the system is fixed to ~_ =100 and N, =120, thus the total cell number is 12,000.

Randomly generated cell capacities and thermal resistances,

C :10(0lc—ﬂc><mnd)’ R. :10(aRt—ﬂRx><mnd)’ R, :10(akz—ﬂkz><rand)

I give new values to the a and £ exponents:
Gc =3, fc =6, ap =ag. =3, fp. = fr. =0.

I calculate the stiffness ratio and the CFL limit in two different ways, both of them without taking
into account the nonlinear term. If I use the full A matrix, I obtain that the stiffness ratio is 7.7x10°
much smaller than in the previous case, while the CFL limit for the standard FTCS was

AtEE . —9.76x107*, Which, I stress again, holds for the Heun method as well. If I use only the Az”
matrix instead of M, the stiffness ratio is 6.8x10°, while the CFL limit is asZZ, —9.75x10%. The

reason behind these numbers is that the eigenvalues close to zero have been significantly increased
(in absolute value) by the new reaction term while those with large absolute values remained
almost the same. All other parameters and circumstances, such as the size of the system and the
range of the initial values are the same as in the previous subsection. I note that I were not able to
adapt our previous methods CNe, LNe and CpC for the K #0, =0 case, nor when the advection

term is present, without losing their order of convergence (that is why I started to develop the
current methods), thus they are not presented in this and the next subsection. In Figure 2.4 the
energy and the average errors are presented as a function of the time step size and Figure 2.5 the
total running time, respectively.
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Figure 2.4. Energy errors as a function of the time step size for the second (very stiff) system, in the case
of the UPFD Algorithm 2, the Heun method and the new PI algorithms.
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Figure 2.5. Energy (average) errors as a function of the running time for the second (very stiff) system, in

the case of the new algorithms and some other methods.

2.5

Results for the Cross-section of the Insulated Wall with Thermal Bridging

Part I: The equidistant mesh. Here the initial and boundary conditions of point (B) are applied to

the multilayer wall. The maximum errors are plotted in Figure 2.6. The temperature distribution

contour for final time moments is shown in Figure 2.8. The temperature on the right side of the

wall is rising due to the higher outside temperature, but the insulator allows this heat to enter the

wall at a very slow rate.

1{'1:| T 1 ..||'| T L L T T r|.11.I T T
1w
wE :
10 -
w ]
g 107 o
w 3
107 y:
- -DF
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LM P1 ML aver [
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10 ul L1 el L1 v vaaal I T W W T '
10? 10" 10 w?

Time step size

Figure 2.6. The maximum errors as a function of h for the equidistant mesh (Part I) in the case of

convection and radiation boundary conditions.
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Part II: non-equidistant mesh, is the same as in (Part I). The errors are presented in Figure 2.7.

ET T TTTTT T T TTTIT] N R R e T =, “TTTTH
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10°
g
£ 10"
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107 —#— OOEH
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FEERsFe - —8-- LM Inside
10 E“,-_:.‘.’- - LH mixed
] LH PI NL aver
| LH P ML tima ||

10° 10" 10° 10?
Time step size
Figure 2.7. The maximum errors vs. the time step size h for the non-equidistant mesh (Part II) in the

case of convection and radiation boundary conditions.

while the temperature contours are presented in Figure 2.8, the non- equidistant mesh, in case of the
multilayer cross-sectional area. The numbers on the vertical and horizontal axes of the contours are the

coordinates in cm units.
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Figure 2.8. The temperature distribution contour in Kelvin for the final time (left) in the case of (Part I)
(equidistant mesh) and final time (right) (Part II).

2.6 Results for the Surface of the Wall

Figure 2.9 shows the temperature distribution contour in Kelvin units for the surface area. The
figure shows that in the case of the insulator (right-hand side of the figure), heat can hardly flow
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from the top of the figure to the bottom, so there are large temperature gradients. Moreover,
because the heat capacity of the insulation layer is smaller than that of the brick layer, its
temperature increases faster from the original 270 K.

100
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10 20 30 40 50 60 0 80 90 100
Figure 2.9. The temperature distribution contour in Kelvin units for the surface area (upper half) constant
convection and (lower half) the convection changes with time depending on weather data.

The maximum errors of the cell-temperatures at the final time as a function of time step size
are shown in Figure 2.10 for the systems 100 by 100. Figure 2.11 shows the running time for the
system 100 by 100. I use many time steps for the explicit methods (LH and DF) and less for the
implicit methods because they are much slower, and I see that LH and DF are faster and more

accurate.
: LR T T T -ra. T '1Il'“'| ™7 Ir"l"r T 1:
10'E 3
10 ¢ 3
107k
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o L —
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== DF |
EEEEITT i b § EEak i 'RETT }RRE I i
10 10" 10 10" 10% 10°

Time step size

Figure 2.10. The maximum errors as a function of the time step size h for the examined methods for the
100 by 100 system.
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Figure 2.11. The maximum errors as a function of the running time for the tested methods for the 100 by

100 system.

2.6.1 Applying MLP and RB neural networks

To validate my results, I compared the predicted data with the experimental data collected by HAP,
based on the CL and HL parameters. I used R? as a criterion for the predicted data. Figure 2.12
shows the comparison of the predicted data with the experimental data. The results indicate that
the LM model has the best prediction performance among all models. The analytical results are
also in good agreement with the experimental data, which confirms the reliability of the ANN
training process using different algorithms. The RB model, however, has the lowest prediction
accuracy and fails to optimize the ANN parameters effectively. The SCG model can be a suitable
alternative to the LM model and provides accurate results and predictions, but it is still less

accurate than the LM model.

Target

26 O MLP_LM op
A MLP_SCG e
¢t RB A

Fit

N N N
(=} N B

Predicted Heating Load [kWh]

=y
=]

-
=]

45

40

35
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25

Predicted Cooling Load [kWh]

20

15

16 18 20 22 24 26
Heating Load [kWh]
(a)

Target
MLP_LM
MLP_SCG

20 25 30 35
Cooling Load [kWh]
(b)

40 45

Figure 2.12. The result of R? values for the data predicted by three neural networks: MLP_LM,
MLP_SCG, and RB (a) for the heating load and (b) for the cooling load.
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2.6.2 Result for the Simulation of the Wall
2.6.2.1 Winter Simulation

This section presents the results of a simulation of heat transfer and temperature distribution
in a four-layered wall (gypsum plaster, heavy weight concrete, insulation, and face brick) during
the winter season (December). The simulation shows how the temperature varies across the layers
and how much heat is lost from the inside to the outside of the wall per meter square. Figure 2.13
shows the temperature distribution at the boundary surfaces of the layers when the wall faces
North.

15 .

10 n

Temperature (C)

iy A == Inside surface Temp.
= = == Border Layer, surface Temp. | |

]

i

|I‘ ! Border Layer, surface Temp.
I

Border Layer, surface Temp.

V’ = = Outside surface Temp.
10 ‘ | ] | —= == outside air temp.

5 10 15 20 25 30
Time (days)

Figure 2.13. The temperature distribution in °C as a function of time in days for the four-layer wall
facing North.
Figure 2.14 shows that the heat loss per meter squared is the highest for the wall facing North
and lowest for the wall facing South.
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Figure 2.14. Total heat loss distribution in W/m? as a function of time in days for the wall simulation
facing North, East, South, and West.
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2.6.2.2 Summer Simulation

This section shows the results of a simulation of heat transfer and temperature distribution in
the four-layered wall during the summer season (July). The simulation shows how the temperature
varies across the layers and how much heat is gained from the outside to the inside of the wall per
meter squared. Figure 2.15 shows the temperature distribution at the boundary surfaces of the
layers when the wall faces North.
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Figure 2.15. The temperature distribution in °C as a function of time in days for the four-layer wall
facing North.
Figure 2.16 illustrates that the heat gain per meter squared is lowest for the wall facing North and
highest for the wall facing South, due to there being no radiation on the north side in the daytime.
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Figure 2.16. Total heat gain distribution in W/m? as a function of time in days for the wall simulation

facing North, East, South, and West.
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2.7 Comparative Analysis Between The Optimal Models And The Horizontal Roof

I conduct a comparative analysis between the optimal models and the horizontal model in
Figure 2.17. Specifically, I take into account the orientations facing east and west, integrating them
into the load calculations for the north and south directions. The resulting combined load is
subsequently compared to the load associated with the horizontal configuration. Although an
inclined roof has a larger surface area than a horizontal roof, it has reduced heat loss and gain. This
is attributed to a shorter duration of exposure to solar radiation, resulting in lower heat gain, and
to the consistent thermal convection on the sides of the inclined roof. Additionally, when exposed
to solar radiation, it stores energy and re-radiates it, which minimizes heat loss compared to a
horizontal roof. Consequently, the inclined design offers improved thermal performance despite
its increased surface area.

25 —i—Inclined_Roof —+—Horizontal_Roof —i—Inclined_Roof ——Horizontal_Roof

15

Q [w/m?]
Q [W/m?]

-15 30
-25 20 4
-35 10
15 0 2 4 6 8 10 12 14 16 18 20 22 24
time [hr] time [hr]
winter summer

Figure 2.17. Roof heat loss and gain with time on left side winter season and right-side summer season.

Figure 2.18 illustrates the optimal roof contour for temperature regulation during both winter and
summer seasons. The subsequent two figures demonstrate the enhancements achieved by
incorporating a Trombe wall and insulation on the effective side of the roof for both seasons.
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Figure 2.18. Contour of temperature for the optimal roof cases, Trombe and with insulation on
effective side on left side winter season Hungary, Miskolc and right-side summer season Baghdad,
Iraq.
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3.

T1.

NEW SCIENTIFIC RESULTS — THESES

I analyzed nine numerical algorithms for solving the heat equation, focusing on positivity-
preserving methods stable across time step sizes and system stiffness. The study tested 2500-
cell, two-dimensional stiff systems with random, discontinuous parameters. I compared
accuracy and CPU efficiency, finding the 3-stage LNe3 and LH-CNe methods most accurate.
I examined how increasing stiffness ratios, decreasing CFL limits, and varying spatial
anisotropy affected accuracy. The study assessed performance with growing horizontal-
vertical cell dimension differences. I recommended optimal methods for scenarios like OEH
structure, unstructured meshes, and highly anisotropic systems, aiming to guide effective
positivity-preserving method selection. [13].

T2.1 developed a novel, fully explicit, stable numerical algorithm for time-dependent diffusion

T3.

equations with linear and nonlinear reaction terms. Based on the UPFD idea and theta-formula,
it’s second order in time step size and unconditionally stable for linear cases. It outperforms
other methods and MATLAB routines in accuracy and stability for nonlinear cases, though not
positivity-preserving. Stable for large time steps even with strong nonlinearity, it’s easy to
implement and suitable for unstructured grids. This pseudo-implicit algorithm combines key
advantages of explicit and implicit methods.[14].

I optimized the leapfrog-hopscotch method for the heat conduction equation, focusing on free
convection and radiation terms. Best results treat convection 50% at old- and new-time levels,
ensuring stability and second-order temporal convergence. The radiation term is best handled
pseudo-implicitly for excellent stability. The algorithm performs well under low CFL limits.
[15].

T4.1 studied a diffusion-reaction PDE with a linear reaction term and space-time-dependent

TS.

nonlinear coefficients. Nine numerical algorithms reproduced these, with Dufort-Frankel and
leapfrog-hopscotch explicit schemes outperforming standard explicit and implicit methods. In
a 2D case simulating wall surface temperature with wind-driven forced convection and rapidly
varying material properties, explicit stable methods proved more efficient than implicit ones,
with efficiency expected to grow with system size. [16].

I compared MLP and RB neural networks using LM, SCG, and RB algorithms to predict
heating and cooling loads in Miskolc, Hungary residences. The MLP with LM algorithm
excelled in accuracy and error reduction. I also studied a four-layered wall’s thermal behavior
across orientations in winter and summer using the leapfrog-hopscotch finite difference
algorithm. Insulation and orientation significantly affect thermal performance, with North-
facing walls optimal in summer and South-facing in winter. Steady-state calculations
overestimate winter heat loss and variably estimate summer heat gain. [17].

T6.1 studied heat loss and gain in inclined roofs in Miskolc (cold winters) and Baghdad (hot

summers). In Miskolc, optimal roof angles of 82° south and 55° north minimized heat loss. In
Baghdad, 90° south and 45° north reduced heat gain. Trombe wall systems cut heat gain from
29.939 to 16.234 W/m?, and insulating the active roof side lowered it to 23.997 W/m? in
summer. Winter heat loss in Miskolc was 24.43, 21.77, and 20.91 W/m?2. [18] [19].
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