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LIST OF SYMBOLS AND ABBREVIATIONS   

NOMENCLATURE 

SYMBOLS  GREEK LETTERS 

  
C Heat capacity [J/K]  ρ Mass density [kg/m3] 

 c Specific heat  [J/(kgK)]  Δ Difference 

DF Dufort and Frankel  α Thermal diffusivity [m2/s] 

h 
Convection heat transfer 

coefficient [W/(m2K)] 
 t  Time step size [s] 

K Convection coefficient [1/s]     Realistic values of the non-black body 

[W/(m2 K4)] 

k Thermal conductivity [W/(m K)]  σ Coefficient of the radiation term [s-1K-3] 

L Thickness [m]  ε Emissivity 

LH Leapfrog–Hopscotch  δ 
Factor to indicate daily mean 

temperature 

PI pseudo-implicit   M The matrix index 

Q Heat transfer rate [W]  r Mesh ratio 

q  heat generation [W/m2]  τi Characteristic time or time constant 

q Heat source rate [K/s]  Subscripts 

R Thermal resistance [K/W]  a Ambient air 

S Area [m2]  c Convection 

t         Time [s]  i,o Inlet, outlet 

u  Temperature [K]  l, r Left side, Right side 

U 
Overall heat transfer coefficient 

[W/(m2K)] 
 

up, 

low 
Upper, lower 

v The air velocity [m/s]  sun solar radiation 

The Methods 

ode15s 
A first- to fifth-order (implicit) numerical differentiation formulas with variable-step and 

variable order (VSVO), developed for solving stiff problems 

ode23 Second (third) order Runge–Kutta–Bogacki–Shampine method 

ode23s A second-order modified (implicit) Rosenbrock formula 

ode23t Applies implicit trapezoidal rule using a free interpolant 

ode23tb A combination of backward differentiation formula and trapezoidal rule 

ode45 A fourth (fifth) order Runge–Kutta–Dormand–Prince solver 

ode113 A first- to 13th-order VSVO Adams–Bashforth–Moulton solver 

 



1. INTRODUCTION  

1.1. Energy of Buildings 

The advent of smart technologies and intelligent buildings has ushered in a new era of energy 

optimization. With buildings accounting for 40% of primary energy consumption and contributing 

to 24% of greenhouse gas emissions, the potential for energy efficiency in this sector is immense 

[1]. This thesis explores the intersection of smart home technologies, energy efficiency, and 

thermal comfort, with a particular focus on heat transfer in building envelope and design. I delve 

into the crucial role of predicting energy requirements during the design stage of a building before 

its construction. This process is instrumental in ensuring that buildings can effectively utilize 

energy, achieve optimal economic results, and provide ease of use. According to the International 

Energy Agency, (IEA) the construction industry is responsible for more than a third of the 

worldwide final energy consumption and is responsible for more than 40% of the world's direct 

and indirect CO2 emissions [1]. The installation of solar photovoltaic (PV) systems in Hungary 

has skyrocketed in recent years. To achieve its ambitious goal of producing 90% clean energy by 

2030, Hungary will need to significantly expand its use of low-carbon sources of generation, 

including an early phase-out of the use of coal in power generation by the year 2025 [2]. In 2020, 

fossil fuels accounted for 68% of Hungary's total energy supply (TES). Natural gas accounted for 

33%, oil for 27%, and coal for the remaining 7%. The largest non-fossil energy source is nuclear 

(16 % of TES), followed by bioenergy and waste (10 %), electricity imports (4 %), and other 

renewables (2%), including hydro, wind, geothermal, and solar see Figure 1.1 [2].  

 
Figure 1.1. Hungary's energy supply demand and fuel sector, 2020 [2]. 

 As it can be seen, the building sector consumes a large part of the total final consumption 

(TFC). Conduction heat transfer affects many issues related to buildings, such as exterior and 

interior wall conduction, conversion of heat gain/loss to cooling and heating load, heat loss or gain 

through roofs and ground heat loss from the slab-on-grade floor and basement walls. The rate of 

heat transfer through walls can be modified by changing the wall thickness or increasing the 

insulation layer thickness, and using different scenarios and types of smart materials [3]. Transient 

wall conduction heat transfer responds to weather conditions such as temperature variations, solar 
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radiation, air movement, etc. One of the most effective ways to increase the energy efficiency and 

reduce the energy consumption of a building is to increase the thermal insulation of the building 

envelope and decrease the heat loss through walls. Walls are responsible for about 35% of the heat 

loss in a house, and most of the heat enters and exits through them [4]. Heat is often lost by 

conduction or physical contact because the walls of a house are exposed to the colder air outside 

[5]. Thermal bridges are important to consider because they increase heat loss and lower the energy 

efficiency, durability, and air quality of buildings, which requires a combined thermal and 

structural design [6]. Thermal bridge models are especially relevant for architects, civil engineers, 

and insulation materials industry professionals. The study of thermal bridge effects aims to show 

the possibility of applying energy renovation techniques to existing buildings. 

1.2. Building Envelope 

The energy efficiency of buildings is a critical aspect of creating a more sustainable economy. 

Therefore, enhancing their energy efficiency is a key strategy. The construction sector, in 

particular, holds significant potential for reducing energy usage and greenhouse gas emissions 

relative to other industries. Heat transfer calculations are integral to multiple facets of building 

design and performance. These calculations are used for estimating energy loss or gain through 

the building envelope (heat conduction), analyzing the indoor environment, and addressing issues 

with specific materials or structural elements. 

Conduction heat transfer impacts numerous building-related matters. These include exterior 

wall conduction, interior mass conduction, conversion of heat gain/loss to cooling and heating 

load, and ground heat loss from slab-on-grade floors and basement walls. The rate of heat transfer 

through walls can be altered by modifying the wall thickness or augmenting the insulation layer 

thickness. 

Transient wall conduction heat transfer responds to weather conditions, including temperature 

fluctuations, solar radiation, and air movement. Walls constitute a significant portion of a 

building’s envelope and are designed to deliver both thermal and acoustic comfort within the 

premises, while simultaneously maintaining the structure’s aesthetic integrity. The wall’s thermal 

resistance, or R-value, is a critical determinant of a building’s energy consumption, particularly in 

skyscrapers where the wall-to-envelope area ratio is substantial. Current market evaluations of 

center-of-cavity R-values and clear wall R-values account for the impact of thermal insulation. 

Nevertheless, the effects of the framing factor and interface connections are frequently overlooked 

[7]. 

In scenarios where thermal insulation is present, walls are more susceptible to surface 

condensation if the ambient air’s relative humidity exceeds 80%, assuming that the convective and 

radiative heat transfer coefficients of the external wall are minimal. This issue intensifies during 

the winter season and in colder climates with elevated humidity levels [8]. Such moisture 

accumulation on the exteriors of buildings can foster the growth of microbes, potentially 

diminishing the lifespan of the wall and causing other adverse conditions within the structure. 
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Traditionally, walls are categorized based on the construction materials used, such as wood, metal, 

or masonry. However, innovative wall designs have been developed to enhance the energy 

efficiency and comfort of buildings. Subsequent sections will elaborate on these advanced wall 

technologies. Thus, Passive solar walls are designed to collect, store, and distribute solar energy 

in the form of heat in the winter and reject solar heat in the summer. They are an integral part of 

passive solar design, a method that uses the sun’s energy for the heating and cooling of living 

spaces. Lightweight concrete (LWC) walls, on the other hand, are constructed using concrete with 

lower densities than traditional concrete, resulting in a structure that is both strong and lighter, 

which can improve thermal insulation and ease of installation. Ventilated or double skin walls 

feature a cavity between two wall layers that allows for air circulation, enhancing thermal comfort 

and energy efficiency. Lastly, walls with latent heat storage incorporate materials that absorb and 

release heat, which helps in stabilizing indoor temperatures throughout the day, making them 

highly effective for energy conservation [9]. 

Roofs play a pivotal role in the structural integrity of buildings, serving as a primary shield 

against solar radiation and environmental elements. They significantly affect the indoor comfort 

of occupants, with large structures like sports complexes and auditoriums being particularly 

vulnerable to heat gain or loss [10]. This progression underscores the importance of roof thermal 

performance in enhancing a building’s overall energy efficiency. 

In tropical climates, passive cooling strategies are essential for modifying roof architecture to 

improve comfort levels. Techniques range from compact cellular layouts that minimize solar 

exposure to domed and vaulted structures, along with ventilated roofs, both natural and 

mechanical, and even double-layered roofs. Innovations are also emerging, such as white-washed 

exteriors to decrease solar absorptivity, vegetative coverings for humidity control and shading, and 

the use of materials like concrete to reduce peak thermal loads. Roof shading, achieved through 

economical materials like terracotta tiles or inverted earthen pots, can lower indoor temperatures 

by up to 6°C [11]. Additionally, roof coatings with high solar reflectance and emissivity are 

selected to combat solar heat, avoiding those like aluminum-pigmented options due to their low 

infrared emittance. These coatings can cool a white concrete roof surface by 4°C on hot summer 

days and 2°C at night. The choice of roofing systems often depends on the local climate, with a 

diverse array of options available to meet specific environmental demands [11].  

The roof is a pivotal element in a building’s energy efficiency and overall energy consumption. 

The design of the roof, which can vary based on location and type such as plain, vault [12], or 

dome, significantly influences these factors [13]. By augmenting the thermal insulation of the roof, 

a critical component of the building envelope, I can markedly diminish heat loss [14]. This is 

attributed to the fact that a well-insulated roof serves as a barrier to heat flow, curtailing the amount 

of heat that escapes from the building during colder periods and inhibiting excessive heat from 

entering during warmer periods. As a result, this reduces the energy required for heating and 

cooling the building, thereby supporting the building’s energy efficiency and curtailing its energy 
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consumption. Consequently, investment in superior roof insulation emerges as one of the most 

effective strategies for fostering energy-efficient buildings and advancing sustainability [15]. 

Fenestration, encompassing windows and doors, is crucial for thermal comfort and lighting 

within buildings, while also enhancing architectural aesthetics. Recent advancements in glazing 

technologies, such as solar control glasses and low-emissivity coatings, have significantly 

improved their performance. A study involving various glazing types across diverse climates 

revealed that a window’s energy savings depend on factors like thermal conductivity (U-value), 

solar heat gain coefficient (SHGC), orientation, and building characteristics. A diverse array of 

technologies is available to cater to this need, including aerogel glazing, vacuum glazing, 

switchable reflective glazing, suspended particle devices (SPD) film, and holographic optical 

elements. Each of these solutions offers unique benefits and applications, reflecting the innovation 

and progress in the field of advanced glazing technologies [16]. 

1.3. The Differential Equation for Heat Transfer via Conduction, Convection, and 

Radiation 

Within the Cartesian coordinate system, and the differential control volume is delineated as a 

diminutive rectangular prism with dimensions δx, δy, and δz., as depicted in Figure 1.2 Assuming 

that the body’s density is symbolized by ρ and its specific heat by c, the equations governing 

conduction, convection, and radiation are derived from the conservation of energy principle. 

Energy balance for the elemental volume over a short time interval Δt, mathematically expressed 

as follows: 

 

Figure 1.2. Which is used for deriving heat conduction in Cartesian coordinates, the volume is defined by 

δx, δy, and δz. 
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Rate of heat 
Rate of heat transfer Rate of heat generation

transfer by 
by conduction at  on the element 

conduction
, , and surface and inside it

at , , and 
x+ x y + y z + z

x y z
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 
    
     − +    
   

     
 

Rate of change
Rate of heat  Rate of heat  

=  in the element .
convection radiation

energy content

 
     

      
     

 

 

element
x y z x x y y z z gen convection radiation

E
Q Q Q Q Q Q Q Q Q

t
  + + +


+ + − − − +   =


  (1.1) 

Determination of the mass and volume of the differential control volume, as follows: 

 , and ,m x y z V x y z       = =   (1.2) 

where   is the mass density 3[ / ]kg m  of the control volume.  

The Newton heat convection law: 

 ( )convection aQ hS u hS u u=  = −  , (1.3) 

where S is the surface area, h is denotes the convection heat transfer coefficient, ua is the ambient 

temperature and  u the surface temperature of element. 

Given that the ambient temperature, denoted as ua, is not directly dependent on (u), the term ahSu  

is incorporated into the heat generation expression. This aligns with the Stefan–Boltzmann law 

governing outgoing radiation heat: 

 
4

radiationQ Su = ,  (1.4) 

where ''   =  , i.e., taking into account that the surface is not a black body, the Stefan-

Boltzmann universal constant, denoted as '' 8 2 45.67 10 W/(m K ) −=  , is scaled using the 

appropriate emissivityconstant .  

The rate of change of internal energy within the control volume can be expressed as

( )t t tc x y z u u   + − , where elementE  represents the energy content of the element. 

Mathematically, this can be written as: 

 ( ) ( )element t t t t t t t t tE E E mc u u c x y z u u  + + + = − = − = − ,  (1.5) 

substituting into Eq. (1.1), I get 

4 ( )t t t
x y z x x y y z z gen

u u
Q Q Q Q Q Q Q hSu Su c x y z

t
       +
+ + +

−
+ + − − − + − − =


 , 

dividing by x y z    gives 
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4

1 1 1

( )

y y y genx x x z z z

t t t

Q Q QQ Q Q Q

y z x x z y x y z x y z

u uhSu Su
c

x y z x y z t

 

    



      

    





++ +


+

−− −
− − − +

−
− − =



 . (1.6) 

Considering the heat transfer of the element for conduction in the x, y, and z directions are 

xS y z = , yS x z = , and zS x y =  respectively, and taking the limit as 

,  ,   and  0x y z t    → . 

The Fourier's law of conduction and the derivative definition: 

0

1 1 1
lim x x x x

x

Q Q Q u u
k y z k

y z x y z x y z x x x x




 

      
+

→

−        
= = − = −   

       
 

0

1 1 1
lim

y y y y

y

Q Q Q u u
k x z k

x z y x z y x z y y y y




 

      

+

→

−        
= = − = −   

       
 

0

1 1 1
lim z z z z

z

Q Q Q u u
k x y k

x y z x y z x y z z z z




 

      
+

→

−        
= = − = −   

       
 

Inserting into Eq. (1.6), the general heat equation in rectangular coordinates 

 
4

genQu u u hSu Su u
k k k c

x x y y z z x y z x y z x y z t       






          
+ + + − − =    

          
.  (1.7) 

When k is constant, Eq. (1.7) is divided by k, resulting in a simplified form 

 
2 2 2 4

2 2 2

1genQu u u hSu Su u

k x y z k x y z k x y z tx y z 



       

   
+ + + − − =

  
 , (1.8) 

One can express the material's thermal diffusivity in terms of 
k

c



= , and 

*q is the incoming 

radiative heat for a unit area. The conductive and radiative heat transfer directions will always be 

horizontal, thus S y z =  and ( )*
gen aQ q hu S= + . 

Based on these considerations, the heat conduction Eq. (1.9) can be extended to include heat 

convection, radiation, and source terms as Eq. (1.11). 

 
2 2 2 *

4

2 2 2
ahuu u u q h u

u u
c x c x c x c x tx y z




     

    
+ + + + − − =      

 . (1.9) 

The temperature equation incorporates radiation, conduction, convection, and heat generation 

sources, utilizing vector notation [17], [18] to express the former equation: 

 2 4u
u q Ku u

t
 


=  + − −


 , (1.10) 
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where   is the differential vector operator, i j k
x y z

      
 = + +    

      
, ahuq

q
c x c x 



= +  

relate to the external heat source or heat generation, ( )
h

K K r
c x

= =  is the term of convection 

heat transfer, and 
*

( )r
c x








= =  is the term of radiation heat transfer. The terms Ku, q and 

4u  

in Eq. (1.10) are nonnegative and their unit is  K s/ .  
The heat equation states that heat transfer occurs when a temperature gradient exists between two 

points, which leads toward temperature uniformity. If the material properties are non-

homogeneous Eq. (1.10) can be expressed in a more general form: 

 41
( )

u
k u q Ku u

t c





=   + − −


 . (1.11) 

In various disciplines, like biology, chemistry, and physics, mass transport can be modelled 

using generalized forms of the diffusion equation. For instance, the atoms in carbon nanotubes, 

the charge carriers in semiconductors, and the proteins within developing embryos. Additionally, 

a system of equations or closely related equations has been employed to model fluid flow through 

porous media, encompassing phenomena like ground water, moisture, and crude oil within 

underground reservoirs [19]. 

1.4. Numerical Methods for Solving Heat Conduction Equation 

Analytical solutions, including recent advancements [20], are prevalent for spatially 

homogeneous systems. These systems often serve as the testing ground to aid mathematicians in 

developing and validating numerical techniques. Additionally, a selection of analytical solutions 

exists for one-dimensional multilayer models, applicable to under steady-state and time-dependent 

scenarios. Such solutions are routinely employed in the computation of building envelopes heat 

gain and loss, as well as heat storage [21]. Nevertheless, most heat conduction issues within 

buildings are multi-dimensional and transient in nature. Furthermore, the properties of materials, 

such as density and heat conductivity, can exhibit significant variation within the system [22] (p. 

15). Consequently, the use of numerical computer simulations is indispensable.  

A thermal analysis can uncover the heat distribution patterns within a system or its components. 

Research on thermal quantities typically centres on temperature distributions, thermal fluxes, and 

heat capacities. Given that many engineering heat transfer applications involve complex thermal 

models, analyzing transient heat transfer is a critical challenge, often addressed through numerical 

methods rather than analytical ones. Analytical techniques yield precise results but are limited to 

isotropic, homogeneous scenarios with simple geometries and boundary conditions [20]. In 

homogeneous space, the diffusion equation has analytical solutions, old and new, as well, 

according to Barna et al. [23], but when the material properties are functions of space, numerical 

integration is necessary.  

https://ahrefs.com/writing-tools/sentence-rewriter
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According to Newton’s law of cooling, a term ( )aK u u−  can describe (free) convective heat 

transfer [24], where au  is the ambient temperature (measured in Kelvin), which can be considered 

as independent from u. On the other hand, according to Stefan–Boltzmann ‘s law [25] the heat loss 

of a unit surface via electromagnetic radiation can be given by a term 4u− . The incoming 

radiation, the aKu  heat gain due to the nonzero temperature of the ambient air, as well as other 

factors such as heat generated by electric currents, can be collected into a so-called heat source 

term denoted by q. Several numerical methods are usually classified as either explicit or implicit, 

but occasionally these two approaches are combined, which have been proposed to solve Eq. (1.7) 

and Eq. (1.9), belong to the wide group of finite difference schemes (FDM) [26], [27], [28]. 

Implicit methods have excellent stability properties; therefore, they are commonly used for these 

equations [29], [30]. The price for stability is that a system of algebraic equations must be solved 

at each time step. This can imply very slow calculations, particularly in cases when the number of 

space dimensions is more than one, thus one has very large-sized and non-tridiagonal matrices. In 

these cases, even the most trivial explicit (Euler) time integration can be considerably faster than 

the implicit one [29]. Moreover, explicit algorithms can be parallelized much more 

straightforwardly than in implicit methods. The main obstacle against the rise of the explicit 

algorithms is that they are typically only conditionally stable, i.e., the solutions can blow up if the 

time step size is below the so-called Courant–Friedrichs–Lewy (CFL) limit. For example, explicit 

Runge–Kutta methods can never be unconditionally stable [31] (p. 60). The coefficients c, k, or 

the diffusion constant can be highly non-uniform in space [32], e.g., when the physical properties 

have sharp discontinuities at the material boundaries. In these cases, the range of the eigenvalues 

of the system matrix has several orders of magnitude, the problem is very stiff, the CFL limit can 

be extremely small, thus the simulation can be unacceptably time consuming. 

Analytical diffusion equation solutions are known and found in basic textbooks [33], [34]. 

These solutions are crucial to understanding diffusion. Second, these solutions test old and new 

numerical methods. I want to develop new algorithms for a modified version of PDE (1) with a 

reaction coefficient that depends on time and space. Semi-explicit or semi-implicit methods, which 

combine explicit and implicit approaches, can also work well. I must agree with scholars who 

create and study explicit and unconditionally stable algorithms. Chen-Charpentier and Kojouharov 

[35] proposed the UPFD (unconditionally positive finite difference) scheme for the linear 

diffusion–advection–reaction equation. Later Appadu [36] and Savovic et al. [37] study this 

algorithm. Pourghanbar et al. [38] solved a nonlinear PDE faster than implicit methods using the 

Alternating Direction Explicit (ADE) Saulyev Method. The ADE, ADI, and odd-even hopscotch 

methods were compared to solve diffusion-reaction equations by Al-Bayati et al. [39] They found 

that implicit methods are more accurate but slower than explicit methods. Our paper [40], 

compared 12 explicit and robust numerical methods for heat conduction in walls with and without 

insulation using equal and unequal meshes. I used 14 heat conduction, convection, and radiation 

methods from [41] for heat conduction, convection, and radiation. I found that the best method 

was the leapfrog–hopscotch (LH). The LH is more accurate when the system is less stiff, but for 
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high stiffness, it still behaves well. The Dufort–Frankel (DF), shifted-hopscotch (SH), and 

asymmetric hopscotch (ASH) methods also performed well. The unconditionally stable methods 

for the basic conduction problem could use very large time steps without stability issues, and they 

were better than usual explicit time integrators. I focused on the best way to include convection 

and radiation terms in our study, using the LH method as the best one [40] and using this method 

for long simulations of a building wall in summer and winter simulations. 

In my research, I collaborated with my supervisor to explore and enhance families of novel and 

traditional explicit methods for solving linear and nonlinear heat conduction equations. These 

methods were developed based on innovative approaches. Specifically, I adapted successful 

techniques, such as the pseudo-implicit and Leapfrog hopscotch methods, to scenarios involving 

heat transfer through convection and nonlinear radiation (like Stefan-Boltzmann-type radiation). 

These adaptations addressed real-world heat transfer challenges in building environments. 

Additionally, I conducted a comparative analysis of my findings with those obtained from neural 

networks 

1.5. Outline of the Thesis

This thesis begins with an introduction outlining the background, motivation, objectives, and 

structure. Chapter 2 discusses the numerical discretization of the heat conduction equation, 

transforming PDEs to ODEs, and reviews explicit methods. Chapter 3 systematically tests nine 

numerical algorithms, analyzing their stability and accuracy. Chapter 4 develops the so called 

pseudo-implicit algorithm, highlighting its advantages. Chapter 5 explores free convection and 

radiation terms using the leapfrog-hopscotch method. Chapter 6 analyzes diffusion-reaction PDEs, 

comparing numerical algorithms. Chapter 7 applies neural networks to predict building energy, 

evaluating models, and simulating the thermal behavior of the walls of the building by using the 

recommended method, the leapfrog-hopscotch method. Chapter 8 optimizes roof inclination 

angles for energy efficiency in different climates. The thesis concludes with a summary of 

findings, contributions, and future work recommendations. 
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2. HEAT EQUATION DISCRETIZATION AND NUMERICAL METHODS 

The focus of this chapter is to explain and illustrate the numerical discretization process that 

applies to the spatial variables present in the heat conduction equation. This process effectively 

transforms the equation from a partial differential equation (PDE) into a system of ordinary 

differential equations (ODEs). I will subsequently develop further procedural applications for the 

resulting system of ODEs. Furthermore, this chapter will include a brief review of a variety of 

explicit methods, both established and novel approaches. These explicit methods will serve as the 

foundational elements for all subsequent plans and applications delineated in the following 

sections. I will also review some of the software packages and methods built into them that I used 

in my work to simulate and validate methods in the end of this chapter. 

2.1. The Equations and Its Discretization 

Diffusion of particles and Fourier-type heat conduction are omnipresent mass or energy 

transport processes. In the simplest linear case, they are described by the following partial 

differential equation (PDE): 

 
                       

( ) ( )2

2

, ,u x t u x t
q

t x


 
= +

 
, (2.1) 

where x, t  are the independent variables, ( )u u x,t=  is the unknown concentration of particles 

or the temperature in the case of heat transfer, and α is the coefficient of (thermal) diffusivity. The 

thermal diffusivity of a material can be given as / ( )k c = , where ( )c c r ,t= , ( )k k r ,t= , and 

( ),r t =  are the specific heat, the heat conductivity, and the density of the material, respectively. 

If these coefficients depend on space, one has to use the more general equation 

 ( )
1u

k u
t c


=  


, (2.2) 

where it is assumed that the c and ρ functions are positive. This equation is now valid for more 

than one space dimension. 

The heat conduction Eq. (2.1)  can be extended to include heat convection, radiation, and source 

terms are added to the heat conduction Eq. (1.10). Note that all terms in Eq. (1.10) are local, except 

the conduction term. In the case of Eq. (2.1) in one space dimension, applying the most common 

central difference equation
 

 
2

2 2

1 1

1 1

( ) ( ) ( ) ( )

2
( )

i ii i

ii i
i

u x u x u x u x

u u ux xu x
xx x

+ −

− +

− −
+

− +   =
 

 , (2.3) 

Which is second order in x , where 1i ,...,N=  and N is the overall number of nodes. By 

applying this, in one space dimension, I am able to derive the spatially discretized form of the 

heat transfer Eq. (1.10) in one space dimension as follows: 



CHAPTER 2 

15 
 

 4

2

1 12i ii i
i i

u u udu
q Ku u

dt x
 − +− +

= + − −


. (2.4) 

Now, let us demonstrate the discretization of the heat transfer equation assuming that the 

variables α, k, c, and ρ, which describe the properties of materials, are functions of space rather 

than fixed values. In one space dimension, I now have to deal with the following instead of the 

term 
2u for homogeneous materials:  

 
( ) ( )

( )
1 u

k x
c x x x x

  
 

  
 . (2.5) 

I discretize the function k, and at the same time the space derivatives in Eq. (2.5) by the standard 

central difference formula to obtain: 

( ) ( ) ( ) ( )1
( ) ( ) .

2 2
i

i i i i
i i i i

x

u x x u x u x x u xu x x
c x x k x k x

t x x x


+  − − −       
= + + −    

       
 (2.6) 

Equations (2.5) and  (2.6) are based on the node-picture, typically used by mathematicians. 

Instead of node-variables, let us introduce cell variables to arrive at a resistance-capacitance-type 

model of heat conduction. It means that iu , ic , and i  are the approximation of the average 

temperature, specific heat, and density of cell i, by their value at the cell centre. Furthermore, 
i,i+1k  

is the heat conductivity between cell i and its (right) neighbour, estimated by its value at the border 

of the cells. Now the previous formula will have the form:  

 
41 1

, 1 1,
1i i i i i

i i i i i i
i i

du u u u u
k k q Ku u

dt c x x x



+ −

+ −
− − 

= + + − − 
   

 . (2.7) 

Let us now consider heat conduction of an element with cross-section S, divided into cells only 

along its length. The volume and the heat capacity of the cell in  J/K can be given as V S x=  , and 

i i iC c V= , respectively, the heat source term q , 

i
i

1
in units,

iV

K
q qdV q

V s

 
=   

 
  

On the other hand, the thermal resistance between two neighboring cells is estimated as 

( ), 1 , 1/i i i iR x S k+ +   in ( )/K W  units. The distances between the cells centre in case of non-equidistant 

grid are ( )1i, 1 i / 2iid x x ++ =  +  and the resistances can be determined by this approximation as 

( ), 1 , 1ij ij/i i i iR d k S+ +  

If the material properties or the sizes of the two neighboring cells are different, I can write for 

the resistance between cells i and i+1 that ( ) ( )1 1 1/ /i i i i i i iRx x k S x k S+ + +     +    
, and if the cell j is 

below the cell i, I have ( ) ( )/ /i i i i j j jRz x k S x k S    +    
 for the vertical resistance.  
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Now the equation for the time derivative of the temperature of each cell in the element is as 

follows: 

 
4

1, 1,

1 1i i i i i
i i

i i i i i i

du u u u u
q Ku u

dt R C R C


− +

− +− −
= + + − −   (2.8) 

As a generalization of Eq. (2.8) one may construct the ODE system for the time derivative of 

the cell variables for a generic grid by using the above approximations as follows: 

 
4

, j

j ii
i i

i ij i

u udu
q Ku u

dt R C




−
= + − −   (2.9) 

The set of ordinary differential equations (ODEs) shown here can be used with a lot of different 

grids, even ones that are not structured and have cells that are different sizes, shapes, and 

properties. It is important to note that uneven discretization may potentially compromise spatial 

accuracy. However, for the purposes of this work, I have chosen to exclusively utilize cells of a 

rectangular configuration. 

After spatial discretization as discussed above, Eq. (2.9) for 0K =  and 0 =  can be written 

into a brief matrix-form: 

 ,
du

Mu Q
dt

= + . (2.10) 

The system matrix M is tridiagonal (in the one-dimensional case), and it is the sum of two 

terms related to the diffusion and the linear reaction terms, respectively: 

 D RM M M= +   (2.11) 

In the one-dimensional case of Eq. (2.4), the matrix M is tridiagonal with the following elements: 

 , 1 , 12 2 2

2
, , ,D D D R

ii i i i i ii iM M M M K
x x x

  
+ −= − = = = −

  
  (2.12) 

In the general case of Eq. (2.9), the nonzero elements of the matrix 
DM  introduced in Eq. (2.11) 

can be given as: 

 
1

,D D D
ij ii ij

ij i j i

M M M
R C 

= = −   (2.13) 

Figure 2.1 can help the reader to visualize these quantities the red double arrows are for conduction 

between cells with capacities iC  and jC  through the resistances ijR . [42]. 
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Figure 2.1 The Arrangement of the generalized variables for the case when the mesh is not regular.  

I introduce the following notations: 

 i
1

,
D
iiM


−

=  
j

j and .
2

D
i i ij

i i j i

n
jn

i ij

ut
r A t M u t

C R  


= =  =    (2.14) 

where i 0   is the characteristic time or time constant of cell i, 
ir  is the generalization of 

2 2

iim tt
r

x

 
= = −


 (the usual mesh ratio in the case of the diffusion equation), and iA  reflects the state 

of the neighbors of cell i. 

The off-diagonal element, denoted as ( )i,j i,j i1/m R C= , of the M matrix may be nonzero exclusively 

when cells i and j are adjacent. Subsequent summations are performed over the neighbors of the 

actual cell, represented by j (i)n . Unless specified otherwise, closed (zero Neumann) boundary 

conditions are considered, implying that the domain’s boundary under investigation is thermally 

isolated concerning conductive heat transfer [42]. It is important to note that the cells’ arrangement 

and shape do not necessarily have to be regular. 

I define the eigenvalues of the system matrix, M, with the smallest and largest absolute values 

(excluding zero) as 
MIN  and 

MAX  respectively. The stiffness ratio of the system is then given by 

the ratio MAX MIN/  . The Forward Time Central Space (FTCS), also known as the explicit Euler 

scheme, has a maximum possible time step size, denoted as FTCS
MAX MAX 2 /h = , beyond which the 

solutions are anticipated to diverge due to instability. This critical threshold is commonly referred 

to as the Courant–Friedrichs–Lewy (CFL) limit. It is noteworthy that this limit is also applicable 

to the second-order explicit Runge–Kutta (RK) method, as referenced in [43]. 

2.2. Some Explicit Methods 

This part provides essential insights into several algorithms, encompassing both established 

methods and novel innovations. Initially, I introduce their equations within the context of a 

fundamental scenario a one-dimensional, equidistant mesh, Eq. (2.2), After that, I extend these 

equations to incorporate a comprehensive, arbitrary mesh. The primary rationale for presenting 

simplified numerical schemes in most textbooks is to facilitate comparative analysis. However, 
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this work primarily focuses on the more comprehensive forms, which exclusively feature in our 

study. 

The conventional mesh ratio is 
2i

t
r

x


=


 for the 1D equidistant mesh, e.g. for Eq. (2.2). The ir  

corresponds to an extension of r, while the other quantity considers not only the state of cell i but 

also that of its neighbouring cells. However, the subsequent notations are introduced for the 

general mesh: 

 
1

 and i i

j i j i

n
j

i ij i ij

u
r t A t

C R C R 

=  =     (2.15)  

It is widely known that for the general first order ODE 1D, the theta-method has the formula of 

general time discretization 

( ) ( )( )2

n 1 n
n n n n+1 n+1 n+1

1 1 1 12 1 2i i
i ii i i i

u u
u u u u u u

t x


 

+

− + − +

−  = − + + − − +
  

, 

where  0 1, . In the case of Eq. (2.2), it yields: 

 ( ) ( )( )n 1 n n n n n+1 n+1 n+1
1 1 1 12 1 2i i i ii i i iu u r u u u u u u +
− + − +

 = + − + + − − +
 

, (2.16) 

where 
1 1 1

n n n
i i iu u u + −= + . For 1

20  and 1, , = , this is clearly an implicit Euler method, the Crank–

Nicolson, and the explicit Euler (FTCS) schemes, respectively [44]. If 1 , the theta method is 

implicit. By the so-called pseudo-implicit trick, we make it explicit: the neighbors 
1

n
iu 

 in the 

second term at the right-hand side of Eq.(2.16) is taken into account at the old (n-th) time level. 

Using this, we obtain: 

 ( ) ( )1 1
1 12 2 1n n n n n n

i i i i i iu u r u r u r u u + +
− += − − − + + ,  (2.17) 

which may easily be rearranged as: 

 
( ) ( )

( )

1 1
1 1n 1

1 2

1 2 1

n n n
i i i

i

r u r u u
u

r





+ +
− ++

− + +
=

+ −
 .  (2.18) 

2.2.1. The UPFD method 

The UPFD method is the theta-method Eq. (2.2) for 0 = . In the case of Eq. (2.2), it reads as 

follows: 

 
( )n

1 1n 1

1 2

n n
i i i

i

u r u u
u

r

− ++
+ +

=
+

, (2.19) 

and the general form for Eq. (2.8) or (2.9) is:  

 
1

1 2

i

i

n
n i
i

u A
u

r

+ +
=

+
 . (2.20) 
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2.2.2. The Dufort–Frankel (DF) algorithm 

This method can be obtained from the so called leapfrog explicit scheme by a modification [45] 

(p. 313). It is a known explicit unconditionally stable scheme that has the formula in the special 

and general case:  

( ) ( )1
1 11

1 2 2

1 2

n n n
i i in

i

r u r u u
u

r

−
− ++

− + +
=

+
 and 

( ) 1
n 1 1 2

1

i i

i

n
i

i

r u A
u

r

−
+ − +
=

+
  (2.21) 

As one can see, it is a one-stage but two-step method (the formula contains 1n
iu − ), which is not 

a self-starter, so another method must be applied to start the method by the calculation 1
iu . For this 

purpose, we apply the UPFD formula twice (with halved time step size).  

2.2.3. The Leapfrog–Hopscotch method 

The leapfrog-hopscotch (LH) method [46]. We have a structure consisting of two half and 

several full time steps. The calculation starts again by taking a half-sized time step for the odd 

nodes using the initial values Stage 0 (not repeated, green box), which uses 0 = . Then, for the 

even and odd nodes, full-time steps are taken strictly alternately until the end of the last timestep, 

The intermediate stages as well as the last stage (light and dark orange boxes) use 1 2/ =  (Figure 

2.2). In this chapter, I used only the best already proven combination of formulas (L2 in [46]), 

which means that 0 =  and 1 2/ =  are applied in formulas (LH)  at the first and at all other time 

steps, respectively. 

 

Figure 2.2. Hopscotch-type space-time structures. The time elapses from the top ( )0t t=  to the bottom 

( )fint t= . 

2.2.4. The original odd-even hopscotch (OOEH) 

The initial odd-even hopscotch (OOEH) technique was discovered nearly half a century ago 

[47]. Details regarding its geographical and temporal arrangement can be found in reference [48]. 

The primary objective behind designing this algorithm was to create a versatile solution that 
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minimizes input requirements from both humans and machines for any given task. The two-stage 

process, which remains fully transparent, has undergone continuous improvements and expansions 

to enhance precision, with a consistent trend toward greater implicitness. After the initial step, the 

FTCS formula, utilizing implicit Euler time discretization BTCS, is applied to even cells, while 

the FTCS formula, relying on explicit Euler time discretization, is used for odd cells. Following 

each time step, the designations ‘odd’ and ‘even’ are swapped. Figure 2.3 illustrates that the odd-

even hopscotch method relies on a bipartite grid, where odd cells have even neighbors and vice 

versa. In this context, I have adapted the algorithm to incorporate convection, consistently 

considering it at the updated time level to improve stability. Before addressing implicit handling, 

we explicitly handle the radiation term [49]. The following equations are employed:     

 First stage :     
( ) ( )

4

1
1

1

i i
n n
i in

i

r u A t u
u

tK


+

− + −
=

+ 
 . (2.22) 

 Second stage:     

( )

new

3

1

1

i

i

n
n i
i

n
i

u A
u

r tK t u

+ +
=

+ +  + 

 , (2.23) 

where Ai
new is calculated in the same way as Ai in Eq. (2.15), but using the new values of the 

temperatures, which make the implicit formula effectively explicit. 

 

Figure 2.3. The stencil of the original odd-even hopscotch algorithm. Thin blue arrows and thick green 

arrows indicate operations at the first stage and second stage, respectively. 

2.2.5. The asymmetric hopscotch method (ASH) 

Asymmetric-hopscotch (ASH) scheme repeating unit consists of two half and one full-size 

stages. First a half-sized time step (light green rectangle with the number ‘1′) is taken for the odd 

nodes with 0 = , and then a full-length step for the even nodes (light orange rectangle) using 1 2/ =

, and finally a halved third stage (dark orange box) closes the calculation with 1 = .[50] . 

2.2.6. The constant neighbor (CNe) method 

The constant neighbor (CNe) method [51], [52] for Eq. (2.2) is: 

 ( )2 21 1 1 1
2

n n
n n i i
i i

r ru u
u u e e− −+ − ++

=  + − ,  (2.24) 

While for general grids it is: ( )i i1

i

1in n
i i

r rA
u u e e

r

− −+ =  + − . 
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2.2.7. The Linear-Neighbour Method LNe 

The two and three stage linear-neighbor (LNe and LNe3) methods, they are based on the CNe 

method, which is used as a predictor to calculate new pred
iu  values valid at the end of the actual 

time step. [53]. Using them, we can calculate slopes 

( )2

pred pred n n
1 11 1i i ii i

r
s u u u u

t
− +− += + − −

  

and then the corrector values for the two-stage LNe method: 

 ( )
2 2

2 21 1 1 1
1 1

2 2 2
i

n n
n n i i
i i

r
r ru u t e

u e e s
r r

u
−

− −+ − +
 +  −

+ − + −  
 

=  . (2.25) 

 For the general case,   
new

j i

pred
j

ij
i

i

u
A t

C R

=     (2.26) 

with which I can make the corrector step as follows:  

 
i

i

new new
n+1 n i i i i
i i i

i i i

1
r

r A A A Ae
u e A

r r r
u

−
−  − −−

+ − +  
 

= .  (2.27) 

The values given in Eq. (2.27) can be used to recalculate 
new
iA  again, which makes sense to 

repeat (2.27) to obtain new results. In this case, we have three stages altogether, thus the method 

is called the LNe3 method [53]. This algorithm is still second order, but more accurate than LNe2. 

2.2.8. The CpC algorithm 

The two-stage Constant-neighbor (briefly: CpC) algorithm [54] This generally starts with a 

fractional time step with length p t , but here we take 1
2

p = , because it is the simplest and 

usually the most accurate choice.  So, at the first stage, we can calculate new predictor values of 

the variables, but with a 1 2t t / =    time step:  

( )pred 1 1 1
2

n n
n i i
ii

r ru u
u u e e− −− ++

=  + −  and ( )/2 /2pred
i 1i ir rn i

i
i

A
u u e e

r

− −
= + − . 

In the second stage, we can use (2.26) with 1t  and take a full-time step size corrector step 

using the CNe formula again. Thus, the final values at the end of the time step are 

( )2 2
pred pred

1 1 1 1
2

n n i i
i i

r ru u
u u e e− −+ − ++

=  + −   and ( )i i

new
1

i

1in n
i i

r rA
u u e e

r

− −+ =  + − . 

2.2.9. Heun’s method 

This method also called explicit trapezoidal rule, may be the most common second-order RK 

scheme [55]. It starts with an explicit Euler stage as a predictor: 
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( ) ( )pred
1 11 2 n n n

i i iiu r u r u u− += − + +  and ( )pred
1 i i

n
iiu r u A= − + , 

then using the average of the obtained and the old values a corrector-step follows: 

( )
pred pred

pred 1 11 1 1

2

n n
i in n n i i

i i i i

u u u u
u u r u u r

− ++ − ++ + +
= − + +  

                                  and  

newpred
1

2 2

i i
i

n
n n i i
i i

u u A A
u u r+ + +

= − + . 

2.3. MATLAB Built in Solvers 

MATLAB solvers have been used for comparison purposes, namely ode15s, ode23t, ode23s, 

ode23tb, ode23, ode45, and ode113. While implicit solutions are used for the other odes, it is 

known that odes 45, 23, and 113 employ explicit methods. Also, we use preconditioned conjugate 

gradient (PCG) method [56] which has been implemented by the built-in routine of MATLAB 

called pcg. The conjugate gradient method is a non-classical iterative method which can be used 

for solving linear equation systems with symmetric, positive definite coefficient matrix. In general, 

the conjugate gradient method yields high accuracy numerical solutions in the so-called A-norm. 

However, the convergence rate strongly depends on the spectral features of the coefficient matrix, 

thus it can be very slow for stiff problems. Hence, one can apply preconditioning, i.e., transforming 

the linear equation system into another linear equation system which is equivalent in the sense that 

it has the same solution, but it has more favorable spectral features. As a consequence, one loses 

some accuracy but can reach more favorable convergence rates. Finally, the GMRES (generalized 

minimal residual) method [57], [58]. It is a non-classical iteration method for solving linear 

systems of equations which are not necessarily symmetric. The essence of the method is to find an 

approximate solution of linear equation system, which is the most accurate approximation in the 

Euclidean norm if we consider a Krylov sub-space with a given rank. The GMRES method has 

been implemented in the gmres built-in routine of MATLAB. Since the time step sizes cannot be 

calculated explicitly for the MATLAB solvers, we instead define the tolerances, beginning with a 

large value, such as 2Tol = 10  until an extremely small minimum value, which is 6Tol = 10− [42], 

[59]. 

2.4. ANSYS Workbench 

ANSYS software package is a powerful computational fluid dynamics (CFD) widely used 

for simulating fluid flow, heat transfer, and other related phenomena. Specifically, it excels in 

modeling heat transfer through various building components, such as walls and roofs. I use this 

package to compare and simulate my cases. ANSYS allows one to perform transient thermal 

analyses, which are essential for studying heat transfer over time. Transient simulations capture 

dynamic behavior, accounting for changes in temperature distribution as conditions develop. 

Setting up precise boundary conditions is crucial. The initial temperatures, heat sources (such as 

solar radiation), and convective heat transfer coefficients at surfaces should be defined. ANSYS 
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provides tools to specify these conditions accurately, ensuring realistic simulations. Heat transfer 

is governed by the energy equation. It accounts for conduction, convection, and radiation effects. 

To predict temperature distributions within building components, ANSYS solves this equation 

numerically [60]. 

2.5. Hourly Analysis Program (HAP)

Carrier HAP is a versatile software package designed for evaluating the efficiency and cost-

effectiveness of HVAC system designs in commercial buildings. By integrating energy analysis 

tools into a single, user-friendly bundle, significant time savings can be achieved. Notably, input 

data and results from system design simulations can often be seamlessly used for energy 

assessments without additional adjustments. With features such as weather data customization, 

space selection, building type specification, and component/material input, Carrier HAP 

streamlines the process. Users simply input relevant data to achieve desired design conditions and 

ensure occupant comfort [60]. 



CHAPTER 3 

24 
 

3. SYSTEMATIC TESTING OF EXPLICIT POSITIVITY PRESERVING 

ALGORITHMS FOR THE HEAT-EQUATION  

In this chapter, I performed systematic tests of recently invented stable and explicit algorithms 

which preserve the positivity of the solution for the linear heat equation. It is well known that the 

widely used explicit finite difference schemes are typically unstable if the time step size is below 

the so called CFL limit, and even if they are stable, they can produce negative temperatures. 

However, the numerical solutions should satisfy the same properties as the exact solution, such as 

positivity. Thus, I collected the available explicit positivity preserving methods, most of them 

created by us recently to examine their performance and relative competitiveness. I tested them in 

the case of several 2D systems to find how the errors depend on the stiffness ratio and the CFL 

limit of the system for each algorithm. Then I created an anisotropic but equidistant grid by 

shrinking the vertical dimension of the 2D system and investigated how this kind of anisotropy 

effects the errors [61]. 

3.1. General definitions and investigation circumstances 

I consider the 2D system thermally isolated (zero Neumann boundary conditions), for matrix 

system see section 2.1.  

In the first type of experiments, randomly generated cell capacities and thermal resistances 

following a log-uniform distribution 

i x,i z,i
( ) ( ) ( )

10 1, ,0 10C C Rx Rx Rz Rzrand rand rand
C R R

     −  −  − 
= = =

 

have been given to the cells. The parameters C C Rx Rx Rz Rz, , , , ,       of the distribution of 

the mesh-cells data have been chosen to construct test problems with various stiffness ratios. More 

concretely, I used the parameters shown in Table 3.1. 

Table 3.1. The parameters used in algorithms.  

Type No. Cmin Cmax Rxmin Rxmax Rzmin Rzmax 

Non-Stiff 
1 0 0 0 0 0 0 

2 -1 1 0 0 0 0 

Moderately 

Stiff 

3 -1 1 -1 1 0 0 

4 -1 1 -1 1 -1 1 

Medium 

Stiff 

5 -2 2 -1 1 -1 1 

6 -2 2 -2 2 -1 1 

7 -2 2 -2 2 -2 2 

Very Stiff 

8 -3 3 -2 2 -2 2 

9 -3 3 -3 3 -2 2 

10 -3 3 -3 3 -3 3 
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The size of the grid is fixed to 50xN =  and 50zN = , thus the total cell number is 2500, while the 

final time is 
fin 0.2t = s. 

The numerical error is calculated by comparing my numerical solutions 
num
ju  produced by the 

examined method with the reference solution 
ref
ju at final time fint .The reference solution is given 

by the “ode15s” routine of MATLAB with large prescribed accuracy. I use the three types of 

(global) error [62] the L  maximum error defined in Eq. (3.1), I also use the average error in Eq. 

(3.2) 

 
ref num
j fin j fin

0 j
Error( ) max ( ) ( )

N
L u t u t

 
= −   (3.1) 

 
ref num

1 fin fin

1

1
Error( ) ( ) ( )j j

j N

L u t u t
N

 

= −   (3.2) 

and the so-called energy error: 

 ref num
fin fin

1

jError( ) ( ) ( )j j

j N

Energy C u t u t

 

= −   (3.3) 

which, in case of heat transfer, gives the error in terms of energy. 

For different algorithms these errors depend on the time step size (and the system parameters) in 

different ways. Thus, I first calculated the solution with a large time step size (which was fin / 4t ), 

then repeated the calculation for subsequently halved time step sizes S=15 times until h reached a 

small value. Now the aggregated relative error (ARE) quantities for each type of errors defined 

above are calculated as an average of these errors. For example, in the case of the L error, it has 

the following form:         

  ( )
1

1
ARE( ) log Error( )

S

i

L L
S

 

=

=   (3.4)       

Finally, the simple average of the three kinds of errors also can be calculated:     

 ( )1

1
ARE ARE( ) ARE( ) ARE( )

3
L L Energy= + +   (3.5) 

3.2. Comparison between positivity preserving methods for a mildly stiff system 

First, I examined the following concrete parameter-combination, 

1 1 1 1 0 0c c Rx Rx Rz Rz, , , , , , = −  = +  = −  = +  =  =  

which configuration has number 3 in Table 3.1 and categorized as mildly stiff.  

I have plotted the L  errors as a function of the effective time step size EFFt  and as a function of 

the running times for all methods. In Figure 3.1 I present the L  error as a function of the effective 

time step size EFFt   for the nine positivity preserving methods defined in Section 3, while in 

Figure 3.2 one can see the L  errors vs. the total running times. 
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One can see the LNe3 scheme is the most accurate, but the accuracy of the LH-CNe as well as the 

SH-CNe and ASH-CNe methods [61] approach it. However, since LNe3 is a three-stage method, 

it is slightly slower for the same accuracy than the LH-CNe, SH-CNe and ASH-CNe.  

 

Figure 3.1. The L  errors as a function of the effective time step size ( EFFt ) for the (Mildly Stiff) 

system, in the case of the UPFD, CNe, CpC, LNe2, LNe3, the OEH-CNe, the SH-CNe, the LH-CNe and 

the ASH-CNe methods. 

   
Figure 3.2. The L  errors as a function of the running times for the (mildly stiff) system, in the case of 

the UPFD, CNe, CpC, LNe2, LNe3, the OEH-CNe, the SH-CNe, the LH-CNe and the ASH-CNe 

methods. 
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3.3. Comparison between positivity preserving methods for a large, very stiff 

system 

I put new values for the α and β parameters for the very stiff system in the second case study: 

3 3 2 2 2 2c c Rx Rx Rz Rz, , , , , , = −  = +  = −  = +  = −  = +  

In Figure 3.3 and Figure 3.4, the L  error is presented as a function of the effective time step size 

EFFt   and the total running time, respectively.  

I can see that in this case, the LH-CNe method outperforms all other examined positivity 

preserving methods provided that not only the accuracy, but also the speed, is taken into account. 

In Table 3.2, the data related to this numerical experiment is reported. 

   
Figure 3.3. The L  errors as a function of the effective time step size ( EFFt ) for the (very Stiff) system, 

in the case of the UPFD, CNe, CpC, LNe2, LNe3, the OEH-CNe, the SH-CNe, the LH-CNe and the 

ASH-CNe methods. 
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Figure 3.4.  The L  errors as a function of the running times for the (very Stiff) system, in the case of the 

UPFD, CNe, CpC, LNe2, LNe3, the OEH-CNe, the SH-CNe, the LH-CNe and the ASH-CNe methods. 

Table 3.2. Comparison the UPFD, CNe, CpC, LNe2, LNe3, the OEH-CNe, the SH-CNe, the LH-CNe 

and the ASH-CNe methods for the very stiff system of 2500 cells. 

Numerical Method ( )LError   1( )LError  Energy Error  Running Time (sec)  

UPFD, 55 10t − =   34.012 10−  41.44 10−  0.753  0.2128  

CNe, 55 10t − =   32.046 10−  56.46 10−  0.4042  0.3947  

CpC, 55 10t − =   43.034 10−  67.093 10−  0.0333  0.357  

LNe2, 55 10t − =   42.622 10−  67.8522 10−  0.0448  0.5898  

LNe3, 55 10t − =   59.6 10−  63.22 10−  0.02698  0.935  

OEH-CNe, 55 10t − =   47 10−  51.845 10−  10.995 10−  0.4788  

SH-CNe, 55 10t − =   42.16 10−  65.49 10−  10.315 10−  0.317  

LH-CNe, 55 10t − =   42.16 10−  65.49 10−  10.315 10−  0.477  

ASH-CNe, 55 10t − =   69.4 10−  72.44 10−  31.5 10−  0.7048  

3.4. Comparison the ARE errors between positivity preserving methods as a 

function of ΔtMAX and stiffness ratio 

Figure 3.5 and Figure 3.6 show ARE errors as a function of MAXt  and stiffness ratio, 

respectively. I note the stiffness ratio affected the accuracy of methods when they increased, so 

the accuracy becomes worse compared to the cases of small stiff ratios. 
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Figure 3.5.  The ARE errors as a function of ΔtMAX in the case of the UPFD, CNe, CpC, LNe2, LNe3, the 

OEH-CNe, the SH-CNe, the LH-CNe and the ASH-CNe methods. 

 
Figure 3.6.  The ARE errors as a function of Stiff Ratio in the case of the UPFD, CNe, CpC, LNe2, 

LNe3, the OEH-CNe, the SH-CNe, the LH-CNe and the ASH-CNe methods. 

I summarize the ARE error quantities, defined in Eq. (3.5), for both case studies in the following 

Table 3.3: 

Table 3.3. ARE (average relative error) quantities of different explicit stable algorithms. 
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Numerical Method ARE (Mildly Stiff) ARE (Very Stiff) 

UPFD  37.4544−  23.1613−  

CNe 42.0347−  25.9−  

CpC 80.778−  40.07−  

LNe2 79.6922−  39.228−  

LNe3 84.346−  43.75−  

OEH-CNe 72.9442−  35.09−  

SH-CNe 81.467−  41.4367−  

LH-CNe 81.4812−  41.428−  

ASH-CNe   81.376−  41.394−  

3.5. Comparison the ARE errors between positivity preserving methods as a 

function of anisotropy coefficient (AC) 

First, I solve PDE Eq. (2.2) with 1 = , on the unit square ( )    0 1 0 1x,z , ,  . The initial 

condition is the product of two sine functions: 

 ( , , 0) sin( )sin( )u x z t x k z = =   (3.6) 

where the wave number k is currently fixed to k =1. The simplest zero Dirichlet boundary 

conditions are used 

( 0, , ) ( 1, , ) ( , 0, ) ( , 1, ) 0u x z t u x z t u x z t u x z t= = = = = = = = , 

The analytical solution of this problem is obviously 

 
( )2 21

( , ) sin( )sin( )e
k t

u x t x k z


 
− +

=   (3.7) 

I apply an equidistant grid to discretize the space variables first I take 0 02x . = , 0 02z . = . 

The number of cells along the axis x and z are set again to 50xN =  and 50zN = . Thus, I have a 

grid with total cell number 50 50 2500x zN N N=  =  = . 

 Then I performed systematic experiments by decreasing the dimension of the system as well as 

the cells in the z direction to introduce anisotropy into the grid. It means z  is subsequently 

decreased by a factor of 2, first to  ∆𝑧 = 0.5, then to ∆𝑧 = 0.25 , etc. It is convenient to introduce 

the following anisotropy coefficient: 

                                                                
x

AC
z


=


 

Then I examined the aggregated errors as a function of this anisotropy coefficient AC. Of course, 

the initial condition function in Eq. (3.6) and the exact solution must be also adjusted with 

recalculating the wave number 12ACk −= . In Figure 3.7, ARE errors are presented as a function 

of the anisotropy coefficient AC. I note the relative advantage of LNe3 method increased whereas 

the relative disadvantage of other methods is also increased. In Table 3.4, I give MAXt  and the 

stiffness ratio for some AC values. 
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Figure 3.7.  The ARE errors as a function of anisotropy coefficient AC in the case of the UPFD, CNe, 

CpC, LNe2, LNe3, the OEH-CNe, the SH-CNe, the LH-CNe and the ASH-CNe methods. 

Table 3.4. MAXt and stiffness ratio quantities of different AC values.

Anisotropy coefficient MAXt  Stiffness Ratio 

1 41.0423 10−  
32.025 10+  

10 62.0639 10−  
51.0227 10+  

100 82.084 10−  
71.0127 10+  

1000 102.084 10−  
91.0123 10+  

3.6. Summary of this chapter 

In this chapter, I conducted systematic tests of nine explicit numerical algorithms which 

were introduced in previous papers to solve the heat equation. All of the methods preserve the 

positivity of the solutions, thus stable regardless of the time step size and the stiffness of the 

system. First, I examined two-dimensional stiff systems. I observed that the 3-stage LNe3 method 

produced the most accurate results for a given time step size, but the LH-CNe method (and 

sometimes the SH-CNe method) requires the least CPU time to reach any prescribed accuracy. 

The increasing stiffness ratio and the decreasing CFL limit decreased the accuracy of methods, 

and the advantage of the best methods compared to the worst are decreased.  

I also examined the performance of the method for different levels of spatial anisotropy. I obtained 

that if the difference between the horizontal and vertical dimensions of the cells are increasing, the 

advantages of the LNe3 method and the disadvantage of the first order methods are increasing. 

I can conclude that if there is a possibility to construct the OEH structure (because the mesh is 

rectangular) than the hopscotch-CNe methods, especially the LH-CNe is the most effective among 

the positivity preserving methods, except when the anisotropy is strong. However, if an 

unstructured mesh is given, the LNe3 method is the most effective. For a very anisotropic system, 

for example a thin and wide layer, I propose the LNe3 method. Therefore, the time step size, the 

shape of the geometry, and the type of materials all affect the stiffness ratio of the system, thus 

affecting the stability of the methods.  
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4. EXPLICIT STABLE FINITE DIFFERENCE METHODS FOR DIFFUSION-REACTION 

TYPE EQUATIONS 

In this chapter, I construct a new 2-stage explicit algorithm to solve partial differential equations 

containing a diffusion term and two reaction terms. One of the reaction terms is linear, which may 

describe heat convection; the other one is proportional to the fourth power of the variable, which 

can represent radiation. A member of our research group analytically proved, for the linear case, 

that the order of accuracy of the method is two, and that it is unconditionally stable. Then large 

systems with random parameters and discontinuous initial conditions are used to demonstrate that 

the new method is competitive against several other solvers, even if the nonlinear term is extremely 

large. Finally, I show that the new method can be adapted to the advection–diffusion-reaction term 

as well. 

4.1. Construction of the New Method 

In one space dimension, I take 0 1ix i x , i ,...,N=  = − , which is a common space discretization. Let 

us fix the time discretization to ( )0 fin 00nt t n t , n ,...,T , T t t / t= +  = = −  . I introduce the mesh-

parameter 
2

t
r

x


=


 and 
a t

x



=


. The original UPFD method applies the most common spatial 

discretization of the diffusion term based on the central difference formula, while it applies the 

backward difference formula for the advection term. However, the time levels are treated in a 

tricky way [63], such that the neighbors are taken into account fully at the old time level, where 

their values are known, and only the actual cell is treated implicitly. It means that for example 1
n
iu −  

is used instead of 1
1

n
iu +
−

, with which they obtained: 

 
2

n n+1 n n+1 nn 1 n
n+11 1 12 i ii i i i i
i

u u u u uu u
a Ku

h xx


+
− + −− + −−

= − −


  (4.1) 

This can be arranged in a fully explicit form to obtain the following: 

Algorithm 1, the original UPFD     
( )n n n

1 1 11

1 2

n
i i i in

i

u r u u u
u

r Kh





− + −+
+ + +

=
+ + +

  (4.2) 

Now I adapt this method to Eq. (2.4) where 0a =  but 0  . In principle the nonlinear term can 

be incorporated into this scheme in many different ways. I choose the following treatment: I insert 

the radiation term at the level of Eq. (4.1) as ( ) ( )
3

4 1n n
i i iu t u u+ , which again can be expressed in an 

explicit form, and with this I obtain the following adaptation of the original UPFD algorithm to 

Eq. (2.4): 

Algorithm 2, UPDF for the diffusion-reaction-radiation Eq. (2.4) 

                                       
( )

( )
3

1 11

1 2

i

i

n n n
i i in

i
n
i

u r u u q h
u

r K h h u

− ++
+ + +

=

+ + +
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If i ir, q , K  and   have arbitrary nonnegative values and the values of u at the beginning of the 

time stapes are nonnegative, then both the numerator and the denominator are nonnegative in this 

formula. It means that this formula preserves positivity similarly to the original UPFD formula for 

the strongly nonlinear case as well. As I will see later, its accuracy is not very good, thus I proceed 

to construct a two-stage method as well. 

I am going to combine the UPFD idea with the so called  -method, which can be applied for 

the diffusion term in the following way: 

 ( ) ( )( )1 +1 +1 +1
1 1 1 12 1 2n n n n n n n n

i i i ii i i iu u r u u u u u u +
− + − +

 = + − + + − − +
 

  (4.3) 

where  0 1, . If 1 = , this scheme is the forward-time central-space (FTCS) scheme, which is 

basically the explicit Euler time integration. For smaller values of  , this formula is implicit, and 

for 1
20, =  one has the implicit (Euler) and the Crank–Nicolson method, respectively. Using the 

trick above and incorporating the reaction and the source terms I can write: 

 ( ) ( )
31 +1 1 1

1 12 2 1 i i
n n n n n n n n n
i i i i i i ii iu u r u u u u tK u tq u u  + + +

− +
 = + − − − + + −  +  +
 

  (4.4) 

If one takes 0 = , the original UPFD treatment is obtained back. The point is that this more 

general formula can also be easily rearranged to obtain an explicit formula, according to which the 

new value of the u variable has the following form in the 1D equidistant case: 

Algorithm 3, theta-generalization of Algorithm 2 

 
( ) ( )

( ) ( )
3

1 11
1 2

1 2 1

i

i

n n n
i i in

i
n
i

r u r u u tq
u

r tK t u



 

− ++
− + + + 

=

+ − +  + 

  (4.5) 

Since I formally started from an implicit Eq. (4.3) but made it fully explicit, I started to call 

these methods pseudo-implicit. The main novelty of this chapter is that I organize Eq. (4.5) into a 

two-stage method as follows inspired by the well-known predictor-corrector methods [64]. The 

calculation starts with taking a fractional-sized time step using the already known 
n
iu  values, and 

then a full-time step is made. 

Algorithm 4, 2-stage pseudo-implicit method for the diffusion-reaction-radiation Eq. (2.4) 

Stage 1. Take a partial time step 1 0t p t , p =    using Eq. (4.5) with parameter θ1: 

 
( ) ( )

( ) ( )

1 1 1 1

3

1 2 1 1

1 1pred
1 2

1 2 1

i i

i

n n n n
i ii i

i
n
i

pr u pr u u q t v K t u
u

pr v K t t u



 

− +− + + +  − 
=

+ − +  + 

  (4.6) 

Stage 2. I redefine 
pred
iu  by calculating the linear combination with 0 1  : 

 ( )pred pred
1 n

ii iu u u = + −   (4.7) 

Take a full time step with the Eq. (4.5) with parameter θ2: 

                                  
( ) ( ) ( )

( ) ( ) ( )

2 1 2

2

2 1 2

pred pred pred
1 11

pred

1 2

1 2 1 1

i i

i

n n
i i ii in

i
n
ii

r u r u u q t K t w u w u
u

r w w K t t u u



 

− ++
− + + +  −  +

=

+ − + − −  + 
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where 1 2 1 2v , v , w , w  are real numbers which are considered as free parameters. I must mention that 

the mathematically correct form of Eq. (4.7) would be ( )predlin 1 n
i iiu u u = + − , but I immediately put 

down it in the form which is to be used in a computer code to spare memory. I also note that with 

this treatment of the nonlinear term I obtain a second-order method with very good stability 

properties, as I will see later. 

In the case when one has a general mesh and the material properties are functions of the space 

variables, the spatially discretized form of Eq. (2.4) can be generalized as in section 2.1. 

Now I can write the modified UPFD and our pseudo-implicit algorithms in the general case as 

follows: 

Algorithm 2G, UPDF for the diffusion-reaction-radiation equation, general mesh-form: 

 

( )
3

1

1 2

i i

i i

n
n i
i

n
i

u A q t
u

r K t t u

+ + + 
=

+ +  + 
  (4.8) 

Algorithm 4G, 2-stage pseudo-implicit method for the diffusion-reaction Eq. (2.4), general-mesh 

form. 

Stage 1. Take a partial time step 1 0
2

tt ,


 =  , with the Eq. (4.8): 

                                               
( )( )

( )

1

3

1 1

pred
11 1

1

i i i

i i

n
i

i
n
i

r u A q t
u

r K t t u





+ − + + 
=

+ +  + 
  

Stage 2. I redefine 
pred
iu by calculating the linear combination ( )pred pred

1 n
ii iu u u = + − . 

Take a full time step with the Eq. (4.8): 

                                             
( ) ( )

( )
2

pred

1

pred

1

1

i i i i

i i

n n
i iin

i
n
ii

r u A K t u u q t
u

r K t t u u

+
− + +  − + 

=

+ +  + 

  

I emphasize that in Algorithm 4G, 
2

i
i

t
r




=  in both stages. I stress again that Algorithm 4 is proven 

to be unconditionally stable only for 1
2

 = . 

4.2. Numerical Results 

4.2.1. Comparison with Other Methods for a Large, Extremely Stiff System 

In this subsection, I solve Eq. (2.4) in a two space dimensional, topologically rectangle-structured 

mesh with x zN N N=   cells (see Figure 2.1 for visualization). The size of the system is fixed to 

100xN =  and 120zN = , thus the total cell number is 12,000. Randomly generated cell capacities 

and thermal resistances 

 i x,i z,i
( ) ( ) ( )

10 1, ,0 10C C Rx Rx Rz Rzrand rand rand
C R R

     −  −  − 
= = =   (4.9) 
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have been used by a log distribution, where the (pseudo)random number rand is generated by 

MATLAB for each quantity with a uniform distribution in the unit interval (0, 1). In this 

subsection, 0K =  and 0 = , thus I deal with the linear heat equation and DM M= . The exponents 

have been set to the following values: 

                           C3,  3,C Rx Rz Rx Rz     = = = − = = =   

which means that log-uniformly distributed values between 0.001 and 1000 have been given to the 

capacities and the resistances. Different random values have been generated for the initial 

conditions i (0)u rand=  and the source term 0 2 0 1iq . rand .=  −  as well. The final time of the simulation 

has been set to fin 0.2t = . 

I consider zero Neumann boundary conditions (isolated system). To implement this, I omit those 

terms of the sum in Eq. (2.4) which have infinite resistivity in the denominator because of thermal 

isolation at the boundary. If the (nonzero) smallest and the largest absolute value eigenvalues of 

the system matrix M, defined in Eq. (2.10) – (2.13), [65], are denoted at the end of section 2.1 In 

the present case, the stiffness ratio is 112.3 10  and FTCS 6
MAX 1.03 10t −=  , respectively. I will see that this 

implies serious under-performance of the conventional explicit methods, which are only 

conditionally stable. 

In Section 4.2, the reference solution is obtained using the ode15s built-in solver of MATLAB 

with sufficiently strict error tolerance 12 'Tol' = 10−  (where Tol 'AbsTol' = 'RelTol' ) and therefore high 

precision. The equations of error defined in Eq. (3.1) - (3.3).  

The performance of the new algorithms was compared with the methods in section 2.2 and 2.3 

coded by me. 

 For the calculations where running times are measured, a desktop computer with an Intel Core i7-

9700 CPU, 16.0 GB RAM is used, while the software is the MATLAB R2020b [66]. The total 

running time of the algorithms is measured by the built-in tic-toc function of that software. 

I have examined the L , 1L  and energy errors as a function of the time step size t and the running 

time. In Figure 4.1 I present the 1L  error as a function of h, while in Figure 4.2 one can see the 1L  

errors vs. the total running times. Table 4.1 collects some results which have been obtained by the 

numerical schemes coded by us and the “ode” solvers of MATLAB. I set 1 =  as it is explained in 

Remark 1. 
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Figure 4.1. L1 (average) errors as a function of the time step size of the new pseudo-implicit (PI) 

algorithm and some other methods for the first, extremely stiff system with 0 0K ,= = . 

 

Figure 4.2. L1 (average) errors as a function of the running time for the first (extremely stiff) system, in 

the case of the algorithms coded by us as well as of the MATLAB routines. 

Table 4.1. Comparison of different algorithms for the extremely stiff system of twelve thousand cells. 
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Numerical Method ( )LError   1( )LError  Energy Error  Running Time (sec)  
ode23, Tol = 10−1   7.15 × 10−3 6.68 × 10−7 1.80 × 10−5 3.04 × 105 

ode15s, Tol = 10−2   1.30 × 10−3 7.33 × 10−5 8.79 × 100 8.69 × 102 

ode23s, Tol = 10−2 4.33 × 10−4 2.37 × 10−5 2.80 × 100 3.02 × 105 

ode23t, Tol = 10−2   5.71 × 10−4 3.14 × 10−5 3.75 × 100 1.00 × 103 

ode23tb, Tol = 10−2 4.28 × 10−4 2.33 × 10−5 2.77 × 100 9.82 × 102 

UPFD, 𝛥𝑡 = 1 × 10−6 2.20 × 10−3 1.24 × 10−5 4.86 × 10−1 5.65 × 101 

Heun, 𝛥𝑡 = 1 × 10−6 1.23 × 10−11 3.79 × 10−13 4.01 × 10−8 1.05 × 102 

CNe, 𝛥𝑡 = 5 × 10−6 5.85 × 10−3 3.36 × 10−5 1.28 × 100 8.28 × 100 

LNe, 𝛥𝑡 = 1 × 10−5 2.70 × 10−3 1.28 × 10−5 3.58 × 10−1 8.07 × 100 

CpC p = 1/2, 𝛥𝑡 = 2.5 × 10−5 1.21 × 10−2 4.61 × 10−5 1.08 × 100 3.17 × 100 

PI 𝜆 = 1, 𝛥𝑡 = 2.5 × 10−5 8.44 × 10−3 3.66 × 10−5 8.62 × 10−1 3.26 × 100 

PI 𝜆 = 1, 𝛥𝑡 = 1 × 10−5 2.54 × 10−3 1.00 × 10−5 2.41 × 10−1 8.19 × 100 

PI 𝜆 = 1, 𝛥𝑡 = 5 × 10−6 9.25 × 10−4 3.41 × 10−6 8.50 × 10−2 1.63 × 101 

One can see that the new scheme is slightly more accurate than the LNe and the CpC, and 

significantly more accurate than the first order UPFD and CNe methods. I note that the Heun 

method is not present in the figures, because it is convergent only below the CFL limit, which is 

lower than the time step sizes presented in the case of my methods. The explicit MATLAB solvers 

ode45 and ode113 were not able to provide any meaningful results and in the case of the ode23, it 

was hard work to find those tolerances for which the method works, albeit very slowly. The 

implicit MATLAB routines performed usually much better, but even they are severely 

outperformed by the explicit and stable algorithms if running times are considered. 

4.2.2. Comparison with Other Methods for a Large System with Strong 

Nonlinearity 

In the second case study, I set 3iK rand=  , 2iq rand=   and 1000 = . The latter coefficient has 

been chosen so large because I would like to demonstrate the performance of the new method for 

a strongly nonlinear case, but the values of the variable u are typically between zero and one, thus 

their fourth power is usually a rather small number. I give new values to the α and β exponents: 

C3,  6,  3,  0C Rx Rz Rx Rz     = = = = = =   

I calculate the stiffness ratio and the CFL limit in two different ways, both of them without taking 

into account the nonlinear term. If I use the full M matrix, I obtain that the stiffness ratio is 57.7 10

, much smaller than in the previous case, while the CFL limit for the standard FTCS was 

49.76 10EE
MAXt − =  , which, I stress again, holds for the Heun method as well. If I use only the DM  

matrix instead of M, the stiffness ratio is 96.8 10 , while the CFL limit is 49.75 10EE
MAXt − =  . The 

reason behind these numbers is that the eigenvalues close to zero have been significantly increased 

(in absolute value) by the new reaction term while those with large absolute values remained 

almost the same. All other parameters and circumstances, such as the size of the system and the 

range of the initial values are the same as in the previous subsection. I note that I were not able to 

adapt our previous methods CNe, LNe and CpC for the 0 0K ,   case, nor when the advection 

term is present, without losing their order of convergence (that is why I started to develop the 

current methods), thus they are not presented in this and the next subsection. In Figure 4.3 and 
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Figure 4.4 the energy and the average errors are presented as a function of the time step size and 

the total running time, respectively. In Table 4.2. I report the data that belong to this numerical 

experiment. 

 

Figure 4.3. Energy errors as a function of the time step size for the second (very stiff) system, in the case 

of the UPFD Algorithm 2, the Heun method and the new PI algorithms. 

 

Figure 4.4. Energy (average) errors as a function of the running time for the second (very stiff) system, in 

the case of the new algorithms and some other methods. 

Table 4.2. Comparison of different algorithms for the very stiff system of twelve thousand cells. 
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Numerical Method ( )LError   1( )LError  Energy Error  Running Time (sec)  

ode45, Tol = 10−1   4.49 × 10−3 1.57 × 10−6 8.54 × 10−1 4.05 × 101 

ode23, Tol = 10−1   7.97 × 10−2 2.25 × 10−6 1.17 × 101 1.67 × 101 

ode113, Tol = 10−1   9.23 × 10−2 1.07 × 10−5 1.57 × 100 1.63 × 101 

ode15s, Tol = 10−3   3.14 × 10−4 4.94 × 10−5 4.20 × 101 1.65 × 103 

ode23s, Tol = 10−4 9.94 × 10−5 2.31 × 10−5 1.93 × 101 3.84 × 104 

ode23t, Tol = 10−4   6.78 × 10−5 1.78 × 10−5 1.50 × 101 1.68 × 103 

ode23tb, Tol = 10−4 1.41 × 10−4 5.25 × 10−5 4.48 × 101 1.67 × 103 

UPFD, 𝛥𝑡 = 5 × 10−5 1.79 × 10−4 1.22 × 10−5 1.19 × 101 8.67 × 10−1 

Heun, 𝛥𝑡 = 5 × 10−4 1.12 × 10−4 7.85 × 10−6 6.50 × 100 3.33 × 10−1 

PI 𝜆 = 1/3, 𝛥𝑡 = 1.25 × 10−3 3.92 × 10−4 1.53 × 10−5 1.19 × 101 1.04 × 10−1 

PI 𝜆 = 1/2, 𝛥𝑡 = 1.25 × 10−3 3.85 × 10−4 1.29 × 10−5 8.97 × 100 1.06 × 10−1 

PI 𝜆 = 1/2, 𝛥𝑡 = 5 × 10−4 7.76 × 10−5 2.58 × 10−6 1.76 × 100 2.65 × 10−1 

PI 𝜆 = 1, 𝛥𝑡 = 1.25 × 10−3 4.17 × 10−4 4.70 × 10−5 3.71 × 101 1.00 × 10−1 

As it is expected, due to the larger CFL limit and weaker stiffness, the conventional explicit 

methods performed much better than the implicit ones, and especially the ode45 can compete with 

my methods if high accuracy is required. However, for low and medium accuracy requirements, 

the new pseudo-implicit method has the best performance. 

4.3. Summary of this chapter

In this chapter I reached my goal to construct a fully explicit and stable numerical algorithm to 

solve the time-dependent diffusion (or heat) equation with linear and nonlinear reaction terms, 

where the latter represented heat loss due to radiation. Using the UPFD idea, I organized the theta-

formula into a two-stage algorithm, where, in each stage, the latest available u values of the 

neighbors are used to make the originally implicit theta-formula completely explicit. I analytically 

proved for the linear case that the obtained method is second order in time step size and 

unconditionally stable. 

Then two 2-dimensional stiff systems containing 12,000 cells with discontinuous random 

parameters and initial conditions were constructed. The performance of the new algorithm as well 

as several other methods was examined for these systems. According to the numerical results, the 

new method is quite competitive. It is second order and stable for the non-linear case as well, and 

it gives quite accurate results orders of magnitude faster than the professionally optimized 

MATLAB routines and it is more accurate than all other examined explicit and unconditionally 

stable methods. Although it is not positivity preserving as the original UPFD algorithm, it is stable 

for relatively large time step sizes as well, even if the nonlinearity is strong. Moreover, it is easy 

to implement and can be applied for un-structured grids as well. The conclusion is that this new 

pseudo-implicit algorithm has the most important advantages of the conventional explicit and the 

implicit methods at the same time. 
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5.  TESTING SOME DIFFERENT IMPLEMENTATIONS OF HEAT CONVECTION AND 

RADIATION IN THE LEAPFROG-HOPSCOTCH ALGORITHM 

Based on many previous experiments the most efficient explicit and stable numerical method 

to solve heat conduction problems is the leapfrog-hopscotch scheme. In previous chapter I made 

a successful attempt to solve the nonlinear heat conduction-convection-radiation equation by PI 

method.  Now I implement the convection and radiation terms in several ways to find the optimal 

implementation. The algorithm-versions are tested by comparing their results to 1D numerical and 

analytical solutions. Then I perform numerical tests to compare their performance when simulating 

heat transfer of the two-dimensional surface and cross section of a realistic wall. The latter case 

contains an insulator layer and a thermal bridge. The stability and convergence properties of the 

optimal version are analytically proved as well. 

5.1. The Examined Numerical Methods 

5.1.1. The Leapfrog-Hopscotch Method for the Heat Conduction Equation 

To use the leapfrog-hopscotch method, or any other odd–even hopscotch method, the space 

domain must be discretized using a special, so-called bipartite mesh. This means that the mesh is 

divided into two disjoint subsets. The nodes or cells belong to the first and second subsets that are 

labeled as odd and even, respectively. The main requirement is that all the immediate neighbors 

of the odd cells must be even and vice versa, just like on a checkerboard. I describe it in the case 

of a 1D interval 0 Nx x , x  , 0NL x x= −  on which an equidistant grid is constructed with coordinates 

0 1 Nx , x , ..., x  of nodes, so 1 1j jx x x, j ,...,N, x L / N−= + =  = . The time domain is 0 fint t , t 
 

 and it 

is discretized as usual: 0 fin 01jt t j t , j ,...,T , tT t t= +  =  = − , where t is the time step size. In all 

stages, the following version of the theta formula (obtained from the central difference formula for 

the space derivative) is used as a starting point: 

 ( )1 1
1 1 2 2 1n n n n n n

i i i ii iu u r u u u u + +
− +

 = + + − − −
 

  (5.1) 

where  0 1, . The space–time structure of the algorithm is presented in Figure 2.3, where one 

can see that the neighbors 1
n
iu   are almost always taken into account at the time level half way 

between the actual old and new time levels. The first stage has the length of a halved time step, 

and it calculates new values for the odd nodes using 0 = , thus I have the formula 

 
( )1

2

0 0 0
1 12 2

1

ii i i

i

tru u u q
u

r

− +
+ + + 

=
+

  (5.2) 

symbolized by thick red arrows in the figure. Then a full-time step is made with 1
2

 =  for the 

even nodes using 
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( ) ( )

1 1
2 20
1 11

1

1   

ii i i

i

r u r u u tq
u

r

− +− + + + 
=

+
  (5.3) 

After this, full time steps are taken alternately for the odd and even nodes with Eq. (5.3), 

symbolized by blue and green arrows in the figure. Finally, a half-length time step (green arrows) 

must close the calculations with 1
2

 =  for the odd nodes 

 
( ) ( )

1
2

1 11
2 2 2

1   
2

i
T T T

i iiT
i

tr ru u u q
u

r

−
− +

− + + + 
=

+
  (5.4) 

The key point here is that the latest values of the u function are always used, which means that the 

time indices of the node variables have to be set according to this logic, in which the figure can 

help. For example, when the odd node value 
1

2
1

iu
+

 is calculated, 1 1
1 1,i iu u− + , and 

1
2

iu  are used, etc. 

5.1.2. Implementations of the Convection Term 

Until this point, the LH algorithm has been given only for the conduction and the heat source term. 

Now, the Ku−  term is also included, which is done in several ways. 

1. Explicit treatment means that one calculates the increment due to the term and simply adds it to 

the final value of the new u, just as it would happen with the explicit Euler method. For example, 

in the case of the first stage with a halved time step, the increment is 0

2
i

t
Ku


− , thus I have 

 
( )1
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0 0 0
1 1 02 2

1 2

ii i i

ii

tru u u q t
u Ku

r

− +
+ + +  

= −
+

  (5.5) 

I note that I exemplify the versions with a first-stage formula, since it is the least nontrivial due to 

the half-sized time step. 

2. Quasi-exact treatment means that I analytically solve the ODE 

 
du

K u
dt

= −    (5.6) 

and then take the effect of the convection terms into account in a separate calculation at the end of 

each stage. For example, in the case of the first stage with a halved time step, I have 

 
( )1

2, temp

0 0 0
1 12 2

1

ii i i

i

tru u u q
u

r

− +
+ + + 

=
+

  (5.7) 

and 
1 1

2 2, temp/2K t
i iu e u− =   (5.8) 

I expect that this version has outstanding stability, since the absolute value of the solution is always 

smaller than the temporary value 
1

2, temp

iu , where only the conduction and the source terms are taken 

into account. 

3. Pseudo-implicit treatment means that the u variable in the convection term is taken into account 

at the new time level, so Eq. (5.1) is extended as follows: 

 ( )1 1 1
1 1 2 2 1n n n n n n n

i i i i ii iu u r u u u u K tu + + +
− +

 = + + − − − − 
 

  (5.9) 
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With this, the K term turns up only in the denominator, thus the first stage formula is the following: 

 
( )1

2

0 0 0
1 12 2

1 / 2

ii i i

i

tru u u q
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r tK

− +
+ + + 

=
+ + 

  (5.10) 

Note that in our group research paper  [67], only this implementation was proposed. 

4. Now, the u variable in the convection term is taken into account at the old time level, so in Eq. 

(5.9), the last term is changed to n
iK tu−  . This means that the K term turns up only inside the 

numerator, so the first stage formula is the following: 
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  (5.11) 

Due to the lack of a better name, I call this version temporarily ‘inside’. 

5. Mixed treatment means that I make a linear combination of the last two versions (pseudo-

implicit and inside) at the level of Eq. (5.9), where the last term is changed to 

( )1 1n n
i ipK tu p K tu+−  − −  . The real parameter p has a similar role as that which θ has for the 

conduction case. Now, the formulas are the following: 

                   First stage: 
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 Intermediate stages: 
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  (5.12) 

              Last stage: 
( ) ( ) ( )
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I performed tests with several values of p, but here I present them only for three values, namely, 

1 1 2
3 2 3

p , ,= . 

5.1.3. Implementations of the Radiation Term 

In these sections and next section, it will turn out that the mixed treatment with 1
2

p =  is the most 

effective; thus, when defining different treatments of the radiation term, the convection term will 

be taken into account that way. The radiation term will be implemented in similar ways as the 

convection term, but now one has more possibilities. 

1. Explicit treatment: 
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  (5.13) 

2. Quasi-exact treatment: The analytical solution of the ODE 

                                               4du
u

dt
= −   

is ( ) ( )( )
1

3 3
0 3u t u t

−
−

= +   (5.14) 
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This means that I have the following two sub-stages: 

 Sub-stage 1: 
( )1 , temp
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  (5.15) 

 Sub-stage 2: 

1

3 31 1 , temp
2 2 3i iu u t

−
−  

 = +     

  (5.16) 

3. Pseudo-implicit treatment: Eq. (2.1) is now modified as 

 ( ) ( )
31 1 1 1

1 12 2 2 1 / 2 / 2n n n n n n n n n n n
i i i i i i i i ii iu u r u u u u u K tu K tu tu u  + + + +

− +
 = + − + − − − −  −  − 
 

 (5.17) 

This yields 
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  (5.18) 

4. ‘Inside’ treatment: The last term of Eq. (5.17) is now written as ( )
4n

it u−  , which yields 
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  (5.19) 

5. Mixed treatment with equal share of the pseudo-implicit and inside treatments. The last term of 

Eq. (5.17) is the average of the previous two cases, i.e., it is ( ) ( )
4 31/ 2 / 2n n n

i i it u tu u  +−  −  , which  

yields 
( ) ( )
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  (5.20) 

Now, I turn my attention to the nonstandard or nonlocal treatments of the radiation term. Aiming 

to avoid symmetrical breakings and an extensive increase in the running times, I try three different 

possibilities. Since the pseudo-implicit version Eq. (5.20) is the most successful among the 

treatments presented so far, I modify this version, mostly by changing one or two of the iu -s in the 

( )
3

iu  product in the denominator of, e.g., Eq. (5.20) in the following three ways. 

6. Product treatment (denoted by LH PI NL prod): Instead of ( )
3

0
iu  and ( )

3n
iu , I write 0 0 0

1 1ii iu u u− +  

and 1 1
n n n

ii iu u u− + , respectively. 

7. Average treatment (denoted by LH PI NL av): Instead of ( )
3

0
iu  and ( )

3n
iu , I write ( )

20 0
01 1

2

i i
i

u u
u− ++

 

and ( )
2

1 1

2

n n
ni i
i

u u
u− ++

, respectively. 

8. In the case of the time-average treatment (denoted by LH PI NL time), there are two sub-stages. 

First, I calculate the effect of the diffusion and the source terms by (5) – (7) to obtain a temporary 

value temp
iu . Then the time average ( )temptimeav / 2n

i i iu u u= +  is inserted into Eq. (5.20), as follows: 

 
( )

( )

timeav
1

2
2

timeav

0 0 0
1 1

0

/ 2
2 2

1 / 4 / 2

ii ii i

i

i i

tru u u q K tu
u

r K t tu u

− +
+ + +  − 

=

+ +  + 

  (5.21) 
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Due to the 1 r−  factor in the numerators of, e.g., the second equation of equations (5.12), the 

formulas can give negative temperatures for large r. In these cases, large negative values of the 

term 3( )n
iu  can arise in the denominator, which may cause instability. To avoid this, in some cases, 

I apply a simple trick with the following conditional statement: 

 if 1 0n
iu +   then 1 0n

iu + =   (5.22) 

5.1.4. Methods Used for Comparison Purposes 

I present three explicit methods, which are known to be unconditionally stable for the heat 

conduction case. However, as far as I know, they have not been applied to the case where 

convection and radiation are also present. 

1. The Dufort–Frankel (DF) method [64] (p. 313) is the textbook example of explicit and 

unconditionally stable methods. It is a two-step but one-stage algorithm with the following 

formula, where the convection and the radiation terms are treated in a mixed way: 

 
( ) ( ) ( )

( )

4

3

1
1 11

1 2 2 2

1 2

i
n n n n n
i i ii in

i
n
i

r u r u u tq tKu t u
u

r tK t u





−
− ++

− + + +  − −
=

+ +  +

  (5.23) 

Since this algorithm is not a self-starter, 1
iu  must be calculated from 0

iu  by another method. I 

employ the UPFD formula [67] for this purpose: 

                                                                 
( )

( )
3

1 11

1 2

i
n n n
i i in

i
n
i

u r u u tq
u

r tK t u

− ++
+ + + 

=

+ +  + 

  

2. The alternating direction explicit (ADE) scheme is a known, but non-conventional method [68], 

[69]. In a one-dimensional equidistant mesh, one splits the calculation into two directions, first 

sweeping the mesh from the left to right (using auxiliary variable a) and then vice versa (with variable 

b). In the case of Dirichlet boundary conditions at nodes 0 and N, one sets 

                                            1 1 1 1
0 0, 1,... ,   and  , , 1,...1,n n n n n n n n

i i i i N Na u i N a u b u i N N b u+ + + += = = = = − =   

Then, in case of pure conduction, the following equations are solved from left to right and from 

right to left, respectively: 

                                                                  ( )2

1
1 1

1 1

n n
n n n ni i

i ii i

a a
a a a a

t x


+

+ +
− +

−
= − − +

 
  

and                                                            ( )2

1
1 1

1 1

n n
n n n ni i

i ii i

b b
b b b b

t x


+

+ +
− +

−
= − − +

 
  

Since, on the right hand side of these formulas, both ia  and ib  are taken into account 50–50% in the 

old and new time level, it is plausible to use the mixed treatment of the convection and radiation 

term here, too. With this, the explicit expressions are the following: 

                                  
( ) ( ) ( )

( )

4

3

1
1 11

1 / 2 / 2

1 / 2

i
n n n n
i ii in

i
n
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r tK a r a a tq t a
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r tK t a


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+
− ++

− −  + + +  − 
=

+ +  + 
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( ) ( ) ( )

( )
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1
1 11

1 / 2 / 2

1 / 2 / 2

i
n n n n
i ii in

i
n
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r tK b r b b tq t b
b

r tK t b
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

+
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− − + + + −
=

+ + +

  (5.24) 

The final values are the simple averages of the two half-sided terms: ( )1 1 1 / 2n n n
i i iu a b+ + += + . I note 

that for non-uniform meshes, the ADE method loses its fully explicit character, and matrix 

calculations would be necessary, so in Section 5.2 it is not used. 

3. The original odd–even hopscotch (OOEH) algorithm has been known for half a century [70]. 

Its time–space structure is presented, e.g., in [71]. It uses the usual FTCS formula (based on explicit 

Euler time discretization) at the first stage and the backward time central space (BTCS) formula 

(implicit Euler time discretization) in the second stage. I now adapt it to my case in a way where 

the convection term is always taken into account at the new time level, while the radiation term is 

treated first explicitly and then in the pseudo-implicit way. The used formulas are the following: 

First stage:                                   
( ) ( ) ( )
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1 11
1 2

1

i
n n n n
i ii in

i

r u r u u tq t u
u

tK
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− + + +  −

=
+ 

  

Second stage:                              
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u r u u tq
u

r tK t u
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u r u u tq
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r tK t u

+ +
− ++

+ + + 
=

+ +  + 

  

5.2. Simulation of a Realistic Wall 

5.2.1. The Structure and the Materials of the Wall 

In this section, a wall segment is simulated with dimensions 1m  in the x and z direction and 

0 2m.  in the y direction. As one can see in Figure 5.1, the following two geometries are considered: 

A. A wall’s surface is examined, which is entirely built of brick. 

B. Cross section of a wall with two layers composed of brick and rigid polyurethane foam 

insulator with a steel beam thermal bridge. 

 

Figure 5.1. (A) surface of the wall, (B) wall with insulator and thermal bridge. 
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Real material attributes are taken into consideration, which are presented in Table 5.1. One should 

keep in mind that although these coefficients are constant (that is, they don't change with time, 

space, or temperature) within a material, they have a sharp discontinuity at the boundaries of 

different materials. 

Table 5.1. Properties of the applied materials [25]. 

 
3kg m − 

 
 1 1  W m Kk − −  

 
 1 1  J kg Kc − −  

 
 

Brick 1900 0.73 840 

Rigid Polyurethane Foam 320 0.023 1400 

Steel Beam 7800 16.2 840 

5.2.2. Mesh Construction 

In the used approximation, no physical quantities are changing in the y-direction, which is 

perpendicular to the surface of Figure 5.1. I use 0.2 miy = in order to get a realistic problem. The 

other two coordinates are in the unit interval, ( )    0 1 0 1x,z , ,  , thus the total area of the meshes is 

1 m2. An equidistant mesh with square-shaped cells and a non-equidistant mesh with rectangular 

cells are the two types of meshes that were constructed. The number of cells along the x and the z 

axes are Nx = 100 and Nz = 100, therefore the total number of cells is 10 000x zN N N ,= = . The non-

equidistant mesh contains high cells on the upper side and low ones on the lower side of the wall, 

as well as wide cells on the left side and narrow ones on the right side of the wall. The width and 

height are decreasing gradually both in the x and z directions consecutively, following a geometric 

series. The sum of the first n + 1 terms of a geometric series, up to the term nr , ( 1r  ), is 

 
1

2 3

0

1
......

1

n n
n k

k

r
a ar ar ar ar ar a

r

+

=

 −
+ + + + + = =   − 

   (5.25) 

Here 1 1x zn N N= − = − . The values r = 0.98 and a = 0.0234 are used, which give 1 0.0234x =  and 

1 0.0234z =  on the left and the upper sides, respectively, while  
99

10.98 0.00317
xNz Nz x x =  =  =  

on the right and lower sides. The obtained meshes are shown in (Figure A1-1 in Appendix). 

In the case of the wall’s surface, I apply only the equidistant grid. However, in the case of the cross 

section of the wall with an insulator, I apply both kinds of mesh: the equidistant and the non-

equidistant. For programming simplicity, in a cross section, bricks always make up the left half of 

the cells, whereas the insulator (containing the thermal bridge) makes up the right half. This means 

that, in the equidistant case, the thermal bridge has the same thickness and volume as the insulator, 

but the thickness of the insulator is smaller (0.269 m) in the non-equidistant case, as shown in 

Figure 5.1. B. The horizontal position of the thermal bridge is between x=0.5 m and x=1 m for an 

equidistant mesh and between x=0.735 m and x=1m for a non-equidistant mesh. The height of the 

bridge is two cells (2 cm) in the z direction, i.e., 0.02 m, while it is vertically positioned in rows 

number 20 and 21 from z=0.37 m to z=0.39 m. Resistance and capacitance of heat conduction are 

defined in section 2.1. 
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5.2.3. The Initial and the Boundary Conditions 

In this section, the final time (the end of the analyzed time span) is 
fin 10,000  st = . The time 

step size will be measured in seconds as well. I used zero Neumann boundary conditions in all 

cases for all boundaries, which prohibits the flow of conductive heat at the boundaries: 

                              ( , 0, ) ( , 1, ) ( , 0, ) ( , 1, ) 0
u u u u

x z t x z t x z t x z t
x x z z

   
= = = = = = = =

   
. 

This is accomplished by setting the necessary resistances to infinity and setting the value zero for 

the matrix elements describing heat conduction through the boundary. 

A) In the case of the surface area simulation, the heat transfer by radiation and convection is 

happening to the y direction, i.e., orthogonal to the plane of Figure 5.1. 

A linear function of the x variable is applied as initial condition:  

                                       ( ), , 0 300 280u x z t x= = −  

I have used values from the literature [25] for the convection heat transfer coefficient h, as one can 

see in Table 5.2. Since the surface is not an ideal black body, I multiplied it by the appropriate 

emissivity constant to obtain realistic values for   . I estimate the value of q  for the heat 

generation that contains a factor of the solar radiation as shown below. The ambient air temperature 

is taken to be 27 C 300K  . 

Table 5.2. The convection and radiation parameters, heat source in case of wall surface area [39]. 

 2

W
 h

m K

 
 

 
 8

2 4

W
10

m K

−  
 

 



 
2shadow

W
q

m

  
 
 

 
2sunny

m
q

W  
 
 

 

All elements 4 4 300 800 

Due to the nonzero temperature au of the air (in Kelvin), the expression q contains also the 

convective heat gain. I can obtain the value of q as follows  

                                                         
a

q h
q u

c y c y 



= + 
 

. 

The convective and radiative energy transfer occurs in the y direction, perpendicular to the surface. 

Consequently, they are proportional to the element's free surface area, which is x z  here. Using 

this information, I find the following values for the coefficients in Eq. (2.4): 

                                                        h
K ,

c y c y




 



= =
 

. 

I assumed that the lower half side of the surface is in the shade, resulting in much less incoming 

heat there. Specifically, I have 

the first portion of N (sunny side): 
2

1
800 300K

W

m

h
q

c y c y 
=  + 

 
; 

the second portion of N (shaded side): 
2

1
300 300K

W

m

h
q

c y c y 
=  + 

 
. 

B) In the case of the simulation of the cross-sectional area with the thermal bridge, the interior 

components cannot absorb or lose heat via convection, radiation and the heat source. According 
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to Table 5.3, elements on the right and left sides may transfer heat in the x direction through 

radiation and convection. 

Table 5.3. The convection, radiation, and heat source characteristics on both sides of the wall 

components in the case of the cross-sectional area. 

 2

W
 h

m K

 
 

 
 8

2 4

W
10

m K

−  
 

 



  Wq   

Right Elements  2 5 500 

 Left Elements 4 4 500 

I obtain the coefficient values in my equations as follows: 

                                                     
a

h q h
K , , q u

c x c x c x c x




   

 

= = = + 
   

. 

The ambient air temperature is taken to be 20 C 293K   and 40 C 313K   on the brick and the 

insulation side (in- and outside of the building), respectively. It gives the following convection and 

radiation heat sources for left and right elements: 

In terms of the left-hand side: 
2

1
500 293K

h
q

W

mc c x 
=  + 


 

In terms of the right-hand side: 
2

1
500 313K

h
q

W

mc c x 
=  + 


 

In this case, the initial condition is a linear function of the z variable: 

                                                     ( ), , 0 313 293u x z t z= = −   

Until this point all temperatures were close to room temperature. However, for significantly larger 

temperatures, the nonlinear radiation term has much stronger effect. Thus, in the following point 

I try to simulate a case, e.g. a furnace, where the temperature on the left side of the wall is much 

higher than on the right side.    

C) In the case of the cross-section of the wall with high temperatures, the geometry is similar to 

the previous case. The concrete values of the constants change according to Table 5.4.  

Table 5.4. The heat source, convection, and radiation characteristics are on both sides of the wall 

components in the case of cross-sectional area. 

 2

W
 h

m K

 
 

 
  8

2 4

W
10

m K

−  
 

 



  Wq  

Right Elements 2 5 500 

Left Elements 25 4 3500 

The “ambient” air temperature inside the furnace is taken to be 227 C 500K  . This yields the 

following convection and radiation heat sources for right and left elements, respectively: 

                            
2

1
500 303K

h
q

W

mc c x 
=  + 


 and 

2

1
500K3500

h
q

c x

W

mc 
=  + 


 

In this case, the initial condition is again a linear function of the x variable: 

                                                             ( ), , 0 500 303u x z t x= = −   
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In this section, the ode15s solver has been employed to obtain the reference solution. I have 

calculated the maximum time step size (CFL limit, above which the explicit Euler time integration 

becomes unstable) and the stiffness ratio in the usual way [42], [28] considering only the 

conduction term. Table 5.5 shows the value of these quantities for different cases. 

Table 5.5. The CFL limit and the stiffness ratio quantities for the different cases. 

5.2.4. Results for the surface of the wall 

Part Ⅰ: There is only convection, and no radiation, which means    and q are set to zero. A one-

layer brick wall is examined here (see Figure 5.1 A). The initial and boundary conditions as stated 

in point A) above have been considered and only the equidistant mesh has been used. The 

maximum errors as a function of time step size are shown in Figure 5.2 for all methods of 

Subsection 5.1.2 [72]. For smaller time step sizes, the mixed treatment of the convection terms 

with 50% weight for the PI and the ‘inside’ treatment is the most accurate. It clearly has a second 

order convergence, in accordance with the results of the previous sections. Thus, from this point, 

the convection term will always be treated in this optimal way. For some large time, step sizes, 

however, the original hopscotch method is slightly more accurate, which can be due to the low 

stiffness ratio of the problem. 

 

Figure 5.2. The maximum errors as a function of the time step size for the 9 examined methods in the case 

of a surface area (Section 5.2.4 Part Ⅰ). for the convection term. 

  CFL limit Stiff. ratio 

surface equidistant 55.78  
38.1 10  

cross-section with-  

thermal bridge 

equidistant 5.01 
55.167 10  

non-equidistant 2.28  
54.29 10  
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Part Ⅱ: The surface of the brick wall is simulated with radiation, where conditions in point (A) and 

the values from Table 5.3 are used. The errors are shown in Figure 5.3, and the temperature 

distributions are shown in Figure 5.4. The influence of the initial condition, as well as the shadow, 

on the lower part of the wall is clearly visible. The coordinates in cm units are represented by the 

numbers on the vertical and horizontal axes of the contours, which are the cell indices as well. 

 
Figure 5.3. The maximum errors as a function of the time step size for the nine examined methods in the 

case of a surface area (Section 5.2.4 Part Ⅱ). For the radiation term. 

  

Figure 5.4. The temperature distribution contour in Kelvin in the case of (Section 5.2.4 Part Ⅱ) at initial 

(left part) and final time (right part), in the case of a surface area.  

5.2.5. Results for the cross-section of the insulated wall with thermal bridging 

Part Ⅰ: The equidistant mesh. Here the initial and boundary conditions of point (B) are applied to 

the multilayer wall. The maximum errors are plotted in Figure 5.5. The temperature distribution 
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contour for final time moments is shown in Figure 5.7. The temperature on the right side of the 

wall is rising due to the higher outside temperature, but the insulator allows this heat to enter the 

wall at a very slow rate. 

 

Figure 5.5. The maximum errors as a function of time step size for the equidistant mesh (Section 5.2.5 Part 

Ⅰ) in the case of convection and radiation boundary conditions. 

Part Ⅱ: non-equidistant mesh, is the same as in (Section 5.2.5 Part Ⅰ), but the mesh is replaced with 

the non-equidistant one presented in [72], (b). The errors are presented in Figure 5.6. 

 

 

Figure 5.6.  The maximum errors vs. the time step size for the non-equidistant mesh (Section 5.2.5 Part Ⅱ) 

in the case of convection and radiation boundary conditions. 
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while the temperature contours are presented in Figure 5.7, the non- equidistant mesh, in case of 

the multilayer cross-sectional area. The numbers on the vertical and horizontal axes of the contours are the 

coordinates in cm units. 

   

Figure 5.7. The temperature distribution contour in Kelvin for the final time (left) in the case of (Section 

5.2.5 Part Ⅰ) (equidistant mesh). And final time (right) (Section 5.2.5 Part Ⅱ). 

Part Ⅲ: High-temperature boundary conditions, non-equidistant mesh. Here the linear initial and 

Neumann boundary conditions of point C) are applied to the multilayer wall. The maximum errors 

are plotted for non-equidistant meshes in Figure 5.8. One can see that the mixed and inside versions 

produce rather large errors, and they are clearly outperformed by the PI treatment. The temperature 

distribution contour for the initial and final time moments are shown in Figure 5.9. The numbers on 

the axes are the coordinates in meter units. 

 

Figure 5.8. The maximum errors as a function of the time step size for (Section 5.2.5 Part Ⅲ) in the case 

of convection and radiation with high-temperature boundary conditions. 



CHAPTER 5 

53 
 

  

Figure 5.9. The distribution contour of the temperature in Kelvin units for the equidistant mesh at initial and final time 

(left and right figure, respectively), in the case of (Section 5.2.5 Part Ⅲ).  

5.3. Summary of this chapter 

In this chapter, I have studied several implementations of the free convection and radiation terms 

using the leapfrog-hopscotch method, which had originally been optimized to solve the heat 

conduction equation. I observed that, usually, the best performance is achieved when the 

convection term is treated in a mixed way, i.e., taking into account 50% at the old and 50% at the 

new time level. The order of temporal convergence reaches two only for this optimal version, 

which was also proven by the calculation of the truncation errors. The unconditional stability of 

this version was also proven by von Neumann analysis in the linear case (conduction + convection) 

by a member of our research group. 

On the other hand, according to the numerical experiments, the radiation term should be taken into 

account fully in the pseudo-implicit way. In this case, one of the four powers is taken into account 

at the new time level, so the term turns up only in the denominator, which ensures very good 

stability properties. I performed five numerical experiments to simulate heat transfer on a realistic 

wall. The proposed algorithm performs quite well, even when the CFL limit for the mainstream 

explicit methods is rather low.
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6.  NUMERICAL RESULTS FOR THE DIFFUSION-REACTION EQUATION WHEN THE 

REACTION COEFFICIENT DEPENDS ON SIMULTANEOUSLY THE SPACE AND 

TIME COORDINATES 

It is well known that linear transient diffusion and heat conduction are analogous phenomena: 

mathematically, both of them are described by the simplest parabolic PDE (partial differential 

equation). Diffusion means the distribution of the particles is changing [73], while in heat 

conduction, energy is transported via interacting particles of the material [74]. 

According to Newton’s law of cooling, heat loss by convection is proportional to the 

temperature if it is measured compared to the actual ambient temperature. So, for x, t  , the 

simplest PDE in one space dimension which can describe heat conduction and convection is 

 ( ) ( )
( )

2

2

, ,
,

u x t u x t
D K u x t

t x

 
= −

 
  (6.1) 

where ( ) ( ): ;u x,t u x,t  is the unknown function (temperature in case of heat 

conduction and concentration in case of particle diffusion), and D  is the constant diffusion 

coefficient. In the case of heat conduction, / ( )D k c=  is the thermal diffusivity, while c, ρ and k 

are the specific heat, the density, and the heat conductivity of the material, respectively. The term 

Ku−  is a reaction term, so Eq. (6.1) is a regular diffusion-reaction PDE. Typically, 0u  is the given 

initial function, while the boundary conditions will be discussed in the concrete analytical and 

numerical examples. 

In this chapter, we convey new results for a modified version of  PDE Eq. (6.1), which will 

have a reaction coefficient that is not a constant, but depends both on time and space, which is the 

most important novelty of this work. The analytical solution was experimented with the Lorentzian 

form and was fortunated by a member of our research group to discover solutions that were highly 

non-trivial. We explored the impact of periodic driving in another intriguing system. 

6.1. Analytical Solution 

Let us study the one-dimensional diffusion-reaction equation given by 

 ( ) ( )2

2

, ,
( , ) ( , )

u x t u x t
D F x t u x t

t x

 
= +

 
  (6.2) 

where F is the known coefficient of the reaction term, which is usually non-positive. To derive 

physically relevant solutions, we apply the travelling wave Ansatz [50] . It is always interesting to 

study the influence of a well-localized impulse-like source, therefore we tried the Lorentzian form 

and luckily found highly non-trivial solutions. 
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6.1.1. Lorentzian Coefficient of the Reaction Term 

First, we consider the following form for the F function: 

 ( )
( )

2
,

1

a
F x t

x ct
=

+ −
  (6.3) 

where a  is the strength parameter (amplitude) of the applied pulse. By utilizing the Ansatz 

Eq. (6.3) the reduced ODE is immediately obtained 
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The solution of this ODE is given by the MAPLE 12 software: 
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 (6.4) 

where HeunC is the Heun function [75] and we introduced the abbreviation 
2 2

2

4 8

16

aD D c

D

+ −
 =  

It is almost impossible to give a complete parameter study of Eq. (6.4) for the entire range of (c1, 

c2, c, a, D). We just restrict us for the c1 = 0, c2 = 1, a > 0, c > 0, D > 0 subspace. Considering 

negative propagation velocity (c < 0) just means reflecting the solution to the y-axis. For negative 

source strength (a < 0) we get non-decaying solutions at large  , which means either asymptotic 

saturation or divergence, which we consider unphysical. Diffusion processes where the 

concentration or the number of particles explode violate energy and matter conservation laws and 

it is rather counterintuitive that we obtain it typically for negative and not for positive values of a. 

So albeit the solutions are mathematically valid for arbitrary values of the x and t variables, the 

solution on the whole real axis cannot always describe a real physical process. Nevertheless, the 

obtained functions—in principle—can describe real processes in any finite interval if the system 

boundaries are not closed, and energy or particles can enter from the surrounding space, which is 

reflected mathematically by the boundary conditions. 

Numerous shape functions are presented in Figure 6.1 for different parameter sets. Smaller 

wave velocity shifts the singularity to the left and causes more oscillations (see the difference 

between the black and red curves in Figure 6.1). Increasing the diffusion coefficient D against the 

source strengths parameter a, but still being (a > D) smears out the decay range of the diffusion 

(compare the blue curve to the black one). Finally, considering that the diffusion parameter is 

larger than the source strength (D > a), the oscillations disappear, maintaining a very flat local 

maximum and a very slow decay (compare the blue curve to the green one). 
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Figure 6.1. The shape function of Eq. (6.4) for the different parameter sets (c1, c2, C, a, D) the 

black, red, blue and green lines are for (0, 1, 0.5, 7.4, 0.3), (0, 1, 2, 7.4 ,0.3), (0, 1, 0.5, 7.4 1.8) and 

(0, 1, 0.5, 2.4, 4.1), respectively. 

The x and t dependent solution of the reaction-diffusion PDE has the form of: 
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  (6.5) 

We note that since our analytical solution is valid on the whole real axis, boundary conditions 

need to be specified only when the analytical solution is going to be reproduced by numerical 

methods. The time development of a solution function ( ),u x t  of  Eq. (6.5) is presented in Figure 

6.2 for the same parameter set as the shape function is shown. We checked and found that all the 

solutions of ( ),u x t  for all the other three parameter sets given in Figure 6.1 have qualitatively the 

same shape. 

 

Figure 6.2.  The solution function of Eq. (6.5) for the parameters of D = 0.3; a = 7.4; c = 1;.

( )  5 572222. = ; c1 = 0; c2 = 1, respectively. 
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6.2. Numerical Simulation of Surface Subjected to Wind 

In this section, all the running times are measured on a desktop computer with an Intel Core 

i7-324 11700F (16 CPUs) and 64 GB RAM is used, while the program we used is MATLAB 

R2020b. 

6.2.1. The Structure and the Materials of the Surface 

In this section, I model a wall surface with dimensions of 1 m on the x and y axes and 0.1 m 

on the z axis. In Figure 6.3, a wall’s surface is examined. Half of the surface ( 0 0 5mx .  ) is 

made of brick and the other half ( 0 5m 1m. x  ) is made of insulation. 

 

Figure 6.3. The surface of the modelled wall with two layers. 

In Table 5.1, I used the same the applied materials [25], of brick and RPF insulation, the 

material attributes are considered. These coefficients exhibit sharp discontinuity when one material 

passes into the other. On the other hand, these coefficients are constant inside a material. 

6.2.2. Mesh Construction 

I assume that in the z direction there is no heat transfer, and the physical properties do not 

change, thus I fix 0.1mz = . From the computational point of view, a two-dimensional issue is 

studied. The x and y coordinates fall within the unit interval, and uniform square cells are used. I 

created meshes with four different resolutions with Nx = (50, 70, 90, and 100) and Ny = (50, 70, 

90, and 100) for the number of cells in the x-axes and in the y-axes; therefore, 

2500 4900 8100x yN N N ( , , ,= =  and 10000 )  is the global number of cells. The discretization of the 

problem is explained as in section 2.1. 

6.2.3. The Numerical Algorithms Used 

The two explicit methods I use here to solve Eq. (6.1) are generalized via the following formulas. 

1. The leapfrog-hopscotch (LH) uses the generalized Theta-formula [76], which reads as follows 

for a full time step size: 
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The length of the stages and the values of the parameter   are the same as in the special case, see 

Section 2.2.3. 

2. Dufort and Frankel (DF):The initial stage applies the UPFD scheme, which can be obtained 

by the 0 =  substitution from Eq.(6.6). In all subsequent time steps I employ the formula 
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  (6.7) 

The two implicit methods are also tested for the simulation of the wall by the PCG and GMRES 

solvers see section 2.3. 

6.2.4. The Initial and the Boundary Conditions 

In this section, 
fin 22500 st =  serves as the final time (the end of the examined time period). 

The duration of each time step is also expressed in seconds, first with 900 st =  and it is decreased 

gradually to a small number 0.01 st = . A spatially constant initial temperature ( )u x, y, t 0 270 K= =  

is set. Neumann boundary conditions with zero temperature-flux are applied to boundaries, 

preventing any conductive heat transfer: 

                            ( , 0, ) ( , 1, ) ( , 0, ) ( , 1, ) 0
u u u u

x y t x y t x y t x y t
x x y y

   
= = = = = = = =

   
  

The desired insulating outcome is attained by setting the necessary resistances to infinity and 

the value of the matrix components indicating heat conduction over the boundary to zero. 

Convective heat transfer occurs in the z-direction, which is perpendicular to the plane depicted 

in Figure 6.3. For the upper part ( 0 0 5my .  ), the ambient temperature is taken to be constant, 

and for the lower part ( 0 5m 1m. y  ), the convection circumstances are changing with time 

according to changing weather conditions. 

Table 6.1 shows that the z-direction convection coefficients ( h ) and the temperature in the 

upper part of the plane in Figure 6.3 has constant values, whereas the lower part of the elements 

has changing values depending on the environmental conditions. The ambient air temperature and 

velocity is taken to be 17 C 290 K  and 0m/sv =  for the upper part, and changing according to real 

weather conditions in Miskolc city from 5 a.m. to 11 p.m. on the second day of January [77] for 

the lower part, as shown in Table 6.1. 

Table 6.1. The temperature, and heat source in case of wall surface area [77]. 

 Upper Elements Lower Elements 

h
2

W

m K
 9 0.6–5.55 

T [K] 290 275–280 
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I obtain the values of the coefficients in my Eq. (6.1) as follows: [78], 

 
a

h h
K , q u

c z c z 
= = 

 
  (6.8) 

I also suppose that the upper elements and lower elements have heat sources as follows: 

for the upper elements: a
up

up

h
q u

c z
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for the lower elements: low
lowl alow

h ( t )
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, 
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The convection heat transfer coefficient for outside elements as a function of air velocity is 

estimated as follows [79] 

 0 6 6 64lowh ( t ) . . v( t )= +   (6.9) 

6.3. Results for the Surface of the Wall 

Figure 6.4 shows the temperature distribution contour in Kelvin units for the surface area. The 

figure shows that in the case of the insulator (right-hand side of the figure), heat can hardly flow 

from the top of the figure to the bottom, so there are large temperature gradients. Moreover, 

because the heat capacity of the insulation layer is smaller than that of the brick layer, its 

temperature increases faster from the original 270 K. 

 

Figure 6.4. The temperature distribution contour in Kelvin units for the surface area (upper half) constant 

convection and (lower half) the convection changes with time depending on weather data. 

The maximum errors of the cell-temperatures at the final time as a function of time step size 

are shown in Figure 6.5 for the systems 100 by 100. One can see the LH is the most accurate 

scheme, followed by the DF, compared with the implicit methods with two different tolerances. 

Figure 6.6 for the system 100 by 100, show the running time with the maximum errors. I use many 

time steps for the explicit methods (LH and DF) and less for the implicit methods because they are 

much slower, and I see that LH and DF are faster and more accurate. 
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Figure 6.5. The maximum errors as a function of the time step size h for the examined methods for the 

100 by 100 system. 

 

Figure 6.6. The maximum errors as a function of the running time for the tested methods for the 100 by 

100 system. 
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Figure 6.7 shows the running time for time step size 1 st =  with the total number of cells on 

the horizontal axis. On the left-side axis, it is shown for the LH and DF methods and on the right-

side axis for implicit methods. One can see that the running time is a linear function in the case of 

the explicit methods, but not for the implicit methods. This is expected, since the explicit methods 

apply loops over the cells, so the running time is directly proportional to N, while the implicit 

solvers work with the system matrix with size N N , thus the running time is proportional to N2. 

It means that for even larger system sizes, e.g., in 3D, they become even less competitive with the 

explicit and stable methods. 

 

Figure 6.7. The running time with total number of cells for 1 st = . The left-hand side vertical axis 

refers to the LH and DF methods, while it is on the right-hand side axis for the implicit methods. 

For the coarse mesh (50 by 50), I present the spatial distribution of errors in Figure 6.8 as 2D 

contour plots and in Figure 6.9 as curves for a specific z coordinate for the four methods. The time 

step sizes are chosen to reach very similar error levels. One can see that with the exception of the 

DF method, the errors are the largest, where the temperature gradients are largest, i.e., at the 

boundary of different materials and circumstances. The pattern of odd-even structure is also 

observable for the LH method, but even with this artificial oscillation, this algorithm is the most 

accurate. Table 6.2 shows the time step sizes, the errors and the running times for the four methods 

in the case exemplified in Figure 6.8 and Figure 6.9. 
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(A) (B) 

  

(C) (D) 

Figure 6.8. The error of temperature distribution contour in Kelvin units (A) LH, (B) DF, (C) GMRES 

and (D) PCG methods. 

Table 6.2. The performance for the numerical methods. 

Numerical Method 
Time Step Size t  

(Tolerance) 

Maximum 

Error 
Running Time [s] 

leapfrog-hopscotch (LH) 10 0.0042 1.32 

Dufort–Frankel (DF) 10 0.0051 0.97 

generalized minimal 

residual (GMRES) 
10−7 0.0058 246.965 

preconditioned conjugate 

gradient (PCG) 
10−7 0.0062 1187.404 

Figure 6.9 highlights that the LH method achieves the best method of accuracy during all the time 

of simulation in a 2D wall with a material discontinuity, and the fluctuation is because of the odd-

even method, with errors peaking at the brick-insulation interface. The DF method offers a faster 

but slightly less accurate alternative, while the implicit GMRES and PCG methods lag in both 

accuracy and speed, underscoring the advantages of explicit, stable schemes in this context. 
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Figure 6.9. The error of temperature distribution at z = 80 [cm] in Kelvin units for LH, DF, GMRES and 

PCG methods along x-axis. 

6.4. Summary of this chapter 

The diffusion-reaction PDE was studied where the reaction term is linear in the unknown 

variable, but its coefficient depends on both space and time in two different nonlinear ways. New 

analytical solutions were conveyed using the travelling-wave trial function. The solution for 

Lorentzian, and Heun function, so they are very nontrivial. This solution was then reproduced with 

high accuracy by nine numerical algorithms. Six of them are explicit schemes with excellent 

stability properties. The rest are the standard explicit and implicit methods, which were severely 

outperformed by especially the Dufort-Frankel and the recently invented leapfrog-hopscotch 

methods. These two methods are also tested against the implicit ones in a realistic 2D case, when 

the temperature development of the surface of a wall was simulated. The time- and space-

dependent reaction term was implemented as forced convection due to wind, while the material 

properties of the surface changed abruptly in space. Again, the explicit and stable methods proved 

to be more efficient than the implicit ones, and this advantage is expected to increase with the 

system size. 
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7. PREDICTION AND OPTIMIZATION OF THERMAL LOADS IN BUILDINGS WITH 

DIFFERENT SHAPES BY NEURAL NETWORKS AND RECENT FINITE DIFFERENCE 

METHODS 

This chapter  uses two neural networks: an MLP and an RB, as well as three algorithms to 

optimize their parameters: Levenberg–Marquardt (LM), Scaled Conjugate Gradient (SCG), and 

Radial Basis Function (RB). The building all with standard floor area is 200 m2 for residential 

homes to select the best design. By building a network model for these homes, I can estimate the 

heat load from the external observation design of the house. Also, I used the LH method used in 

the previous chapter for long-term simulation. The rest of this chapter is organized as follows:  it 

describes the methodology, factors, and algorithms used in this research. and provides examples 

of the data used to train the neural network, and also evaluates and discusses the results. 

Furthermore, it presents the second part of this work, where I chose my best model to perform a 

simulation of the peak load of the months in winter and summer, December and July, and present 

the optimal model details. For this simulation, I use the recently invented leapfrog–hopscotch 

algorithm, which is faster and can cope with stiff and non-stiff systems. This algorithm is used for 

the first time in summer simulations to calculate the heat gained through the wall. Finally, it 

summarizes the main findings and conclusions of this study. 

7.1. Artificial Neural Network (ANN) 

Energy optimization of buildings can be computationally intensive, and the artificial neural 

network technique balances accuracy and computation time. This study uses feature selection to 

simplify models. Variables such as building orientation, interior and exterior wall and roof, 

glazing, window shading, and infiltration rate are taken into account. The energy performance of 

buildings (EPB) takes into account its two primary parameters, cooling and heating, and the ANN 

(MLP and RB) is trained while taking these values into consideration by Figure 7.1. The 

parameters of ANN are optimized through the utilization of three distinct optimization techniques. 

A comparative analysis is conducted between the derived outcomes and empirical data, 

demonstrating the validity and practicality of the theoretical frameworks. 

In the process of creating my database, a selection of six distinct building shapes was made through 

a randomization procedure. Users may easily generate a 3D model of a structure using the software 

AutoCAD MEP 24.2 (mechanical, electrical, and plumbing). The thermal loads of the building are 

determined using the transfer functions method and the ASHRAE Heat Balance procedure [80]. 

The present study involves the implementation of a database simulation approach utilizing an 

hourly analysis program (HAP) for the purpose of ascertaining the cooling and heating 

requirements.  
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During the process of ANN training, preprocessed data is partitioned randomly into three subsets: 

a training dataset, which usually constitutes 70% of the data; a test dataset, which constitutes 15% 

of the data; and a validation dataset, which constitutes 15% of the data [81].  

 

Figure 7.1. A schematic diagram of the ANN and its relation to the input and output parameters. 

The evaluation of the optimized ANN predictive performance and precision is conducted through 

statistical analysis. Energy performance of buildings initially takes into account two primary 

parameters: cooling and heating. This form of ANN is fed with experimental data and trained using 

cooling and heating settings. 

7.1.1. Multi-Layer Perceptron (MLP) 

MLPs are feedforward neural instruments and universal approximates learned via 

backpropagation [82]. MLPs use neurons to approximate every input–output mapping. Figure 7.1 

shows the ANN’s input, output, and hidden layers. Neurons in adjacent layers are also connected 

[24]. 

7.1.2. Radial Basis Function (RB) 

Radial Basis Function is a type of neural network that can learn from data and make decisions 

for different applications. The output layer uses linear combinations of the hidden units to predict 

or classify the data. The RB model has two steps of training: first, it clusters the data using some 

methods, and then it estimates the weights between the hidden and output units. The RB model 

has a faster learning speed than the Multi-Layer Perceptron (MLP) model because it only needs to 

train the weights in the second step [83]. 
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7.1.3. The Used Algorithms 

This study compares two types of neural networks: Multi-Layer Perceptron and Radial Basis 

Function (both using MATLAB R2020b and Statistical Package for the Social Sciences (IBM 

SPSS 20)). The goal is to find the best algorithm that balances accuracy, authenticity, and 

performance. After testing, I chose three algorithms: Levenberg–Marquardt algorithm (LMA or 

LM), Scaled Conjugate Gradient algorithm (SCG) and Radial Basis Function (RB). 

7.2. Statistical Analysis and the Used Data 

The aim of this study is to find the best ANN for higher accuracy, as stated before. The 

research question is answered by following the systematic approach shown as a flowchart in in 

Figure A1-2 in Appendix.  

7.2.1. The Used Data 

Before estimating the cooling load of any building, some basic information is necessary to 

design an appropriate HVAC system, like building location, orientation, weather conditions, 

building spacing, building materials, etc. The more exact the information is, the more accurate the 

load estimated will be. The shape of a building significantly impacts its energy performance and 

thermal comfort. Its shape depends on factors like the orientation, window-to-wall ratio, climate, 

and occupancy patterns. Common shapes include rectangle, L-shape, T-shape, U-shape, H-shape, 

and rectangle with interior-shape see Figure 7.2. In fact, one of the goals of this study is to reduce 

the time required for thermal load calculations when there are multiple probabilities for the 

outcome of complex buildings. Several building applications, such as swimming pools, theatres, 

commercial buildings, stadiums, and residential buildings, impose restrictions. However, with the 

help of a specialized program called HAP that contains all these applications, it is easy to access 

accurate information. It can predict thermal loads for both simple and complex buildings. A 

rectangular building has less heat loss or gain through the walls, which reduces the heating and 

cooling loads. It also has less natural ventilation and daylight, requiring more mechanical systems. 

An L-shaped building offers more solar exposure and natural ventilation, increasing thermal 

comfort but increasing the heating and cooling loads. T-shaped and H-shaped buildings offer more 

solar exposure but may have disadvantages like increased heat loss, uneven loads, and increased 

cooling and structural loads. A U-shaped building creates a courtyard, improving thermal comfort 

but also increasing heating and cooling loads. The six building shapes used in this study were 

generated using the hourly analysis program (HAP) by Carrier. This is a specialized program for 

calculating cooling and heating loads and simulating buildings, which uses the transfer functions 

method and the heat balance method, Figure 7.3 shows the dimensions of buildings. The buildings 

considered in this study are supposed to be located at 20.4 E longitude and 48.6 N latitude in 

Miskolc, Hungary at an elevation of about 130 m above mean sea level. In Miskolc, the summers 

are warm, the winters are cold and sometimes snowy, and it is partly cloudy year round. Over the 

course of the year, the temperature typically varies from −4 °C to 27 °C and is rarely below −11 

°C or above 33 °C. The peak heating load for the winter occurred on December 14, when the 
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outside temperature was −9 °C. The peak cooling load for the summer occurred on July 17, when 

the outside temperature was 34 °C. The inside temperature was always considered to be 22 °C.  

 

Figure 7.2. Different shapes of the buildings. 

 

Figure 7.3. Dimensions of the buildings. 

All the buildings have the same floor area (200 m2) and height (6 m), thus the same volume 

(1200 m3). However, they have different shapes and therefore different wall surface areas and thus 

total surface areas. The materials used for each component of a building are the same for all 

building forms. The newest and most prevalent materials in the building construction sector, as 

well as those with the lowest U-value in walls (0.637 W/m2K), roofs (0.513 W/m2K), windows 

(3.123 W/m2K), floors (0.568 W/m2K), were used to make the sample buildings. These buildings 

were each simulated as residential dwellings in Miskolc. External heat gains arrive from the 

transfer of thermal energy from the outside hot medium to the inside space, mostly in summer. 

Heat transfer takes place via conduction through external walls, the top roof, and the bottom 

ground. Solar radiation heat travels as electromagnetic waves from the sun and enters the houses 

through windows and doors. The amount of solar radiation depends on the orientation of the 

windows and doors, the time of day and year, and the presence of shading devices. The overall 

shading coefficient is 0.870 [84], an indicator of how well the glass is thermally insulating 
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(shading) the interior when there is direct sunlight on the window. Solar radiation can be beneficial 

for heating the house in the winter, but it frequently causes overheating in the summer. Ventilation 

is the transfer of heat through the movement of air between indoor and outdoor spaces. Ventilation 

can provide fresh air and improve indoor air quality, but it can also increase heat loss or gain 

depending on the temperature difference between indoor and outdoor air. The ventilation 

requirement is 0.3 L/s/m2 [85] for residential dwelling unit applications. Infiltration is the 

movement of air through cracks and gaps in the building envelope. Heat can leak out of the 

building through poorly sealed windows and doors or enter through openings around pipes and 

wires. Infiltration can cause unwanted heat loss or gain, as well as moisture problems and air 

quality issues. The enter infiltration is taken for air change per hour (0.5 ACH) [86]. Other sources 

are internal heat generation, like in residential buildings with a maximum of ten occupants (40 

W/m2), sedentary activities (67.4 W/m2 sensible heat and 35.2 W/m2 latent heat), miscellaneous 

loads (60 W/m2 sensible heat and 55 W/m2 latent heat), electric equipment (2.69 W/m2), and light 

(10.76 W/m2). Thermal characteristics were determined using mixed modes with 95% efficiency, 

a thermostat range of 24–18.3 °C, and 15–20 h of operation on weekdays and 10–20 h on 

weekends. Each input parameter corresponds to a different attribute of the structure. For example, 

the relative compactness (RC), which is the ratio of surface area to volume [87], is determined as 

follows [88]: 

 2 3 16 /RC V A−=   (7.1) 

where A and V are the building surface area and volume, respectively. For a cuboid-shaped 

building, its value is unity, thus for any other rectangular building, it is smaller than 1.  

The study compares the structure with and without windows. For the unglazed system, it 

analyzes six different building types with four orientations, which yields 24 cases. For the glazed 

system, Table 7.1 summarizes the possibilities used. There are six building shapes, depicted in 

Figure 7.3. There are four orientations of the building, N, E, S, or W. I examined five glazing 

areas, namely 5%, 10%, 15%, 20%, or 30% glazing area of the floor area. Five distribution 

scenarios were used in the study. Finally, I generated five window-distribution scenarios for each 

building shape, orientation, and glazing area. In each scenario, the windows were distributed into 

two of the five surfaces (N, E, S, W, and the horizontal roof), with half of the windows.  

Table 7.1. The assumptions and conditions used to generate the database. 

Features Values and States 

Number of buildings 6 

orientations 4 

Glazing areas 5 (5%, 10%, 15%, 20%, and 30%) of the floor area. 

Distribution scenarios 5 

Building volume 1200 m3 

This results in 6 × 5 × 5 × 4 = 600 samples for the glazed system, thus the total number of the 

examined possibilities is 600 + 24 = 624. The study focuses on the residential buildings’ heating 
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load and cooling load parameters, respectively. These parameters depend on seven factors: RC, 

exposed area, wall area, roof area, glazing area (which is the total area of the glazing including the 

frame and sash [89]), orientation, and glazing area distribution. 

7.2.2. The Main Equations 

To estimate the thermal comfort of residents, this study applies intelligent models. The 

models’ accuracy is measured by three criteria: R2, MAE, and RMSE. Previous research has 

extensively validated and confirmed these criteria. Equations below show the formulae for these 

criteria, which contrast the observed and predicted values of the thermal comfort [90]. 
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The normalized root-mean-square deviation (NRMSD) depends on RMSE. The equations 

above show how to compare the actual and predicted values of HL or CL for an efficient building, 

which are denoted by 
observediQ  and 

predictediQ , respectively. The term N represents the total number 

of samples, and 
observedi

Q  is the average of the actual values of HL (or CL). 

7.3. Results and Discussion 

This study applied MLP and RB neural networks with three algorithms (LM, SCG, and RB) 

to simulate the HL and CL of the residential building. The algorithms were implemented using 

MATLAB R2020b and IBM SPSS 20 statistics software. The data set used to train the proposed 

network consisted of 624 samples, with seven independent factors affecting the HL and CL values, 

as explained earlier. A 70, 15, and 15 split was used to divide the data into training, testing, and 

validating sets, respectively. The performance of the models was evaluated using R2, MAE, and 

RMSE, which are widely used in the literature [91]. To obtain the optimal structure of the models, 

an extensive trial and error process was conducted. The prediction results of each model for the 

HL and CL values were presented and discussed in detail. 

To validate my results, I compared the predicted data with the experimental data collected by HAP, 

based on the CL and HL parameters. I used R2 as a criterion for the predicted data. Figure 7.4 

shows the comparison of the predicted data with the experimental data. The results indicate that 

the LM model has the best prediction performance among all models. The analytical results are 

also in good agreement with the experimental data, which confirms the reliability of the ANN 

training process using different algorithms. The RB model, however, has the lowest prediction 

accuracy and fails to optimize the ANN parameters effectively. The SCG model can be a suitable 
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alternative to the LM model and provides accurate results and predictions, but it is still less 

accurate than the  LM model. Figure 7.5 presents a graphical comparison between the predicted 

and actual values of HL and CL for each model. Furthermore, you can see in Figure A1-3 in 

Appendix the histograms of the errors for each model and parameter. These figures illustrate the 

prediction capability of each model and the error distribution. The error analysis shows that the 

LM model has less error in prediction. Figure 7.5 also shows how close the experimental data and 

the prediction data are for each sample number using the LM, SCG, and RB models for HL and 

CL parameters. As mentioned before, I used the prediction data to verify the accuracy and validity 

of my analysis. Therefore, I compared the data of LM, SCG, and RB models for HL and CL 

parameters in detail and measured their deviation from the target data. 

 
(a) 

 
(b) 

Figure 7.4. The result of R2 values for the data predicted by three neural networks: MLP_LM, MLP_SCG, 
and RB (a) for the heating load and (b) for the cooling load. 
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(a)  (b) 

Figure 7.5. The predicted data values per model number for the (a) heating load on the left side and (b) 
cooling load on the right side, through MLP_LM, MLP_SCG, and RB with target. 

Table 7.2 and Table 7.3 show the values of these criteria for each model and parameter. A 

lower RMSD value indicates a higher accuracy of the model. The LM model has the lowest RMSD 

values for both HL and CL parameters (0.348 and 0.947, respectively), which means it has the 

highest accuracy among all models. The RB model has the highest RMSD values and the lowest 

accuracy. The NRMSD value is another measure of accuracy, with a lower value indicating a better 

performance. The LM model has the lowest NRMSD values for both parameters, which confirms 

its superior performance. The R2 value is a measure of how well the model fits the data, with a 

higher value indicating a better fit. Table 7.2 and Table 7.3 show that the LM model has the highest 

R2 values for both parameters, which means it has the best fit to the data. The MAE value is a 

measure of the average error of the model, with a lower value indicating a smaller error. In the 

tables, the LM model has the lowest MAE values for both parameters (0.273 and 0.682, 

respectively), which means it has the smallest error among all models. Based on these results, I 

can conclude that the LM model is the best model for optimizing the ANN parameters and 

predicting the target data. 

Table 7.2. Performance measures of the models for the HL parameter: RMSE, R2, and MAE. 

Models RMSD NRMSD R2 MAE 

LM 0.348 0.0157 0.973 0.273 

SCG 0.371 0.0168 0.961 0.287 

RB 0.746 0.0338 0.902 0.609 
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Table 7.3. Performance measures of the models for the CL parameter: RMSE, R2, and MAE. 

Models RMSD NRMSD R2 MAE 

LM 0.947 0.0388 0.93 0.682 

SCG 1.226 0.0502 0.787 0.811 

RB 2.185 0.0895 0.457 1.615 

The thermal energy demand necessary to maintain an indoor comfort zone within a building 

is commonly referred to as the heating and cooling load. This load is subject to modification based 

on the architectural characteristics and design of the building. The heating and cooling demand is 

influenced by various factors, including but not limited to the building envelope, orientation, 

window-to-wall ratio, climate, and occupancy patterns.  

The results of the analysis show that the heating and cooling loads vary significantly 

depending on the building shape (exposed area for wall, roof, and RC), orientation, glazing area, 

and glazing distribution. The results also show that there is a trade-off between minimizing the 

heating load in winter and minimizing the cooling load in summer. The results indicate that some 

building shapes are more efficient than others in terms of energy consumption and thermal 

comfort. 

My work concludes that the optimal building shape that balances the heating and cooling load 

close to the mean value is the L-shape shown in Figure 7.6. This is beneficial because it allows for 

the use of smaller and more efficient HVAC systems compared to all other shapes except the 

rectangular one. This can lead to lower energy costs and reduced carbon dioxide emissions. 

Additionally, having balanced heating and cooling load can help maintain a comfortable indoor 

environment by reducing temperature fluctuations [92]. Also, the best orientation for this shape is 

the south, which allows maximum solar gain in winter. The design area has a moderately cold 

climate that requires heating for about half of the year. Furthermore, the best glazing area for this 

shape is 20%, which provides sufficient daylight and ventilation without causing excessive heat 

loss or gain. From this point of view, the L-shape is better than the rectangular shape. Finally, the 

best glazing distribution for this shape is on the east and south sides, which optimizes the solar 

exposure and shading effects throughout the day. In this case, the building has a heating load of 

22.5 kWh and a cooling load of 24.5 kWh for the temperatures given in Section 7.2.1, which are 

both close to the mean values in Table A2-1 in Appendix, of 22 kWh and 24.4 kWh, respectively. 

This model’s heating and cooling values are the closest to the mean value compared to the other 

624 models. 
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Figure 7.6. The L-shaped building. 

7.4. Numerical Simulation 

The final part of this research numerically simulates the walls of this building for the winter 

and summer seasons based on the peak load of each season. This transient simulation does not 

include other components that affect the heating and cooling load, such as the roof, ventilation, 

leakage, glass load, and internal loads from people, lighting, etc. These factors are only considered 

in the steady-state case. The transient simulation uses December and July as representative months. 

For the Equation and its discretization and the Leapfrog–Hopscotch Structure see section 2.1. 

7.4.1. Geometry and Material Properties 

A cross-section of a wall is considered with dimensions 42 cm in the x and 100 cm in the y 

and z direction, as can be seen in Figure 7.7. The four layers consist of gypsum plaster, heavy 

weight concrete, insulation, and face brick. This wall structure is the same and has the same U 

value as used in Section 7.2.1. 

 

Figure 7.7. Cross section of a four-layer wall and the numbers mean border layer 1,2, and 3. 
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In the current work, the real material properties listed in Table 7.4 are taken into account. Note 

that these coefficients are constants inside a material, that is, they do not change with time, space, 

or temperature, but they have a discontinuity at the border of the materials. 

Table 7.4. The properties of the materials used were taken from HAP based on ASHRAE Standard [84]. 

Layers Thickness [cm]  
 

3kgm −
    

 
c

1 1Jkg K− −
    

 
k

1 1Wm K− −
 

Gypsum plaster 2 1601.8 840 0.726 

HW concrete 25 2242.6 840 1.73 

Insulation 5 91.3 840 0.043 

Face brick 10 2082.4 920 1.3 

 

7.4.2. Mesh Construction, Initial and Boundary Conditions 

In my one-dimensional simulation, I assumed that the wall thickness is 42 cm. To test the 

independence of the results on mesh density, nine meshes with an increasing number of cells along 

the x-axis were used for the four layers of wall starting from 1.0 cmix =  (Nx = 42) until 

0.1 cmix =  (N = 420). The heat loss was calculated according to the number of cells. See Figure 

A1-4 in Appendix due to that when I increase the number of cells to more than 336, the heat loss 

remains approximately the same. Therefore, I chose that mesh with 0.125 cmix = , where the 

number of cells in each layer was 1 2 3 16    200    40N , N , N= = = , and 4   80N = . The simulation time is 

one month for the winter season and for the summer, and both contain 31 days, thus 
fin 2,678,400st =  

serves as the final time (the end of the examined time period). The duration of each time step is 

also expressed in seconds, first with 100st = . 

Convective and radiation heat transfer occur in the x-direction, which is the direction of heat 

transfer depicted in Figure 7.7.  Table 7.5 summarizes the boundary inside and outside condition 

of heat transfer for winter season convection coefficients ( ch ), temperature and emissivity (ε) of 

the surfaces for the inside constant conditions and for the outside changing with time depending 

on the ambient conditions. The inside boundary condition is taken to be the constant comfort zone, 

which is taken from [84]. The outside condition changes with time depending on the changing 

weather conditions. The ambient air temperature, velocity, and the total solar radiation are taken 

according to real weather conditions in Miskolc city from 1st December 00.0 a.m. to 31st 

December 00.0 p.m. [93]. Table 7.6 shows the boundary condition for the summer season and the 

data are taken according to real weather conditions in Miskolc city from 1st July 00.0 a.m. to 31st 

July 00.0 p.m. [93]. 

Table 7.5.  Convection, radiation, and heat source parameters are present on both sides of the wall during 

the winter season [93]. 

 h
2

W

m K
 Temperature [K] ε 

*σ 
 
 
 

8
2 4

W
10

m K

−  

Inside condition 8.3 295 0.9 5.1 

Outside condition 0.6–19.6 264–284 0.9 5.1 
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Table 7.6. Convection, radiation, and heat source parameters are present on both sides of the wall during 

the summer season [93]. 

 ch  
2

W

m K
 Temperature [K] ε 

*σ 
 
 
 

8
2 4

W
10

m K

−  

Inside condition 8.3 295 0.9 5.1 

Outside condition 2.7–16.9 284.2–307 0.9 5.1 

I obtain the values of the coefficients in my equations as follows: [25], 

9
a5 678 10  

h q h
K , , . , q u

c x c x c x c x


  

   

 
 −= = =   = + 

   
 

I also supposed that the inside and outside elements have heat sources as follows: 

For the inside elements: 
1 in

in in in

h
q q u

c c x 

=  + 


  

For the outside elements: ( )
( )

( )out
out out out

1
( )

h t
q t q t u t

c c x 

=  + 


  

And ( )
( )

( )
( ) ( )

( )out out outout
out

h t q t h t
K t , , q t u t

c x c x c x c x




   



= = = + 
   

  

where 
4

in in in inq (u )  =  and ( ) ( ) ( )
4

out sun out Low out out outcq t G t u t    = +     [94]. 

The convection heat transfer coefficient for outside elements as a function of air velocity is 

like in section 6.2.4 

The environment’s air temperature is taken to be 22 C 295 K        inside, and changes depending 

on weather conditions outside. 

I calculated the initial temperature inside the wall using the assumption that before the 

simulation time, a stationary heat flow with constant flux evolved between the given boundary 

values of the inside and outside air temperatures. For example, in the case of one layer, it yields a 

linear function of the x variable for the initial condition: 

( ) out,initial, 0 ( ) /in x inu x t u u x L u= = − +   

where out,initial 26  K4 =u for the winter season, and for the summer season out,initial =30 K7  u .  

For the multi-layer wall case, the assumption of stationary heat conduction with the initial 

values at the boundaries implies that I have to use piecewise linear functions of the x variable for 

the initial condition: 
4

flux out,initial

1

( ) /
i

i
in

ii

L
q u u

K

=

=

= −    where 
initial,Layer, 1 flux( / )i i i iu u q L k+ = −   

7.5. Result for the Simulation of the Wall 

7.5.1. Winter Simulation 

This paragraph presents the results of a simulation of heat transfer and temperature distribution 

in a four-layered wall during the winter season (December). The simulation shows how the 

temperature varies across the layers and how much heat is lost from the inside to the outside of the 



 CHAPTER 7 

76 
 

wall per meter square. Figure 7.8 shows the temperature distribution at the boundary surfaces of 

the layers when the wall faces North, Figure A1-5- A1-7 in Appendix, provide information for the 

East, South, and West directions, respectively. The following observations can be made from the 

results. The inside surface temperature (gypsum plaster) and the first cell of the HW concrete layer 

are close to the inside air temperature, indicating that these layers are insulated from the outside 

and the insulation layer’s ability to minimize heat transfer from the building’s interior to the 

exterior. 

The first cell of the insulation layer and the outside surface temperature (brick) are close to 

the outside air temperature, indicating that the insulation layer has a low thermal conductivity and 

reduces heat transfer from the building’s interior to the exterior. 

The North-facing wall has the largest temperature gradient and the highest heat loss because 

it does not receive any solar radiation. For the South-facing wall, the opposite is true. The East-

facing and West-facing walls have approximately similar temperature gradients and heat losses 

because they receive approximately similar amounts of solar radiation. They are intermediate 

between the North-facing and South-facing walls, but the east wall is slightly colder than the west 

wall. 

 

Figure 7.8. The temperature distribution in °C as a function of time in days for the four-layer wall facing 

North. Border layer means the boundary between two different materials (Border 1 between gypsum 

plaster and heavy-weight concrete, Border 2 between HWC and insulation, and Border 3 between 

insulation and face brick.). 

Figure 7.9 shows that the heat loss per meter squared is the highest for the wall facing North 

and lowest for the wall facing South. 
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Figure 7.9.  Total heat loss distribution in W/m2 as a function of time in days for the wall simulation 

facing North, East, South, and West. 

7.5.2. Summer Simulation 

This section shows the results of a simulation of heat transfer and temperature distribution in 

the four-layered wall during the summer season (July), depicted in Figure 7.7. The simulation 

shows how the temperature varies across the layers and how much heat is gained from the outside 

to the inside of the wall per meter squared. Figure 7.10 shows the temperature distribution at the 

boundary surfaces of the layers when the wall faces North, Figure A1-8- A1-10 in Appendix, 

provide information for the East, South, and West directions, respectively. The following 

observations can be made from the results. 

The inside surface temperature (gypsum plaster) and the first cell of the HW concrete layer 

are close to the inside air temperature, indicating that these layers have a high thermal conductivity, 

and these layers have a high ability to transfer heat from the building's exterior to the interior. 

The first cell of the insulation layer and the outside surface temperature (brick) are higher than 

the outside air temperature during nights, indicating that the insulation layer has a low thermal 

conductivity and decreases the heat gain from outside to inside during the daytime. But in the case 

of the East, West, and especially the South wall, the surface temperature can be higher even during 

the daytime due to solar radiation and the rather high emissivity. 

The North-facing wall has the smallest temperature gradient and the lowest heat gain because 

it does not receive a significant amount of solar radiation. The opposite is true for the South-facing 

wall. The East-facing and West-facing walls are between the North-facing and South-facing walls, 

but surprisingly, the East-facing wall has noticeably higher temperatures and heat gain than the 

West wall. 
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Figure 7.10. The temperature distribution in °C as a function of time in days for the four-layer wall 

facing North. 

Figure 7.11 illustrates that the heat gain per meter squared is lowest for the wall facing North 

and highest for the wall facing South. 

 

Figure 7.11. Total heat gain distribution in W/m2 as a function of time in days for the wall simulation 

facing North, East, South, and West. 

The wall simulation presents how the temperature varies in °C on the South-facing side of the 

building. Figure 7.12 displays the contour of the temperature distribution for two different seasons: 

winter (left) and summer (right). The simulation results are based on the last midnight of December 

and July, respectively. One can notice the heat stored by the wall during the summer night. 
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Figure 7.12. Contour of the temperature distribution in °C on the South-facing side of the building for 

two different seasons: winter (left) and summer (right). 

Table 7.7 summarizes the heat loss and gain for the wall based on the simulation and HAP 

peak load, i.e., for the coldest and hottest days, respectively. The heat loss is the highest in winter 

on December 14, and the heat gain is the highest in summer on July 17. 

Table 7.7. The heat loss and heat gain in transient method by LH and steady-state method by HAP. 

Methods Winter Summer 

 Heat Loss [kW/m2] Heat Gain [kW/m2] 

Direction N E S W N E S W 

LH 17.34 17.16 16.92 17.08 −3.45 −9.745 −12.09 −5.99 

HAP 19.35 19.44 19.35 19.43 −4.7 −7.65 −7.8 −7.43 

percentage difference  2.7% 3.1% 3.3% 3.2% 7.6% 6.0% 10.7% 5.3% 

The transient simulation by LH is more realistic and accurate because it uses real data from 

the weather website [93] for 2022 and 2023. The steady-state method by HAP is based on the 

location, design temperature for winter and summer, and estimated factors that increase the load 

to avoid under design. The steady-state values are always higher in winter than the transient 

simulation values. 

7.6. Summary of this chapter 

This study applied and compared MLP and RB neural networks with three algorithms (LM, 

SCG, and RB) to estimate the HL and CL of a residential building. The buildings were located in 

Miskolc, Hungary. The walls of the buildings consisted of gypsum plaster, HW concrete, 

insulation, and brick layers. The models were developed and assessed using 624 samples with 

seven independent factors. The accuracy and error of the models were evaluated by R2, MAE, 

RMSE, RMSD, and NRMSD. The results revealed that the LM model outperformed the other 

models in terms of prediction accuracy and error minimization. The LM model also had the best 

fit to the experimental data; furthermore, the error is approaching zero compared to the other 

algorithms, which verified the validity of the MLP training process. This study demonstrated that 
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the MLP neural network with the LM algorithm can be an effective method for simulating the HL 

and CL of residential buildings. 

In the simulation part, I investigated the thermal behavior of the same four-layered wall with 

different orientations in winter and summer by using the finite difference leapfrog–hopscotch 

algorithm coded in MATLAB. The simulation results showed the variation of temperature and 

heat transfer across the layers and the effect of solar radiation on the wall performance. The results 

revealed that the insulation layer played a key role in reducing the heat loss in winter and 

decreasing the heat gain in summer. The results also indicated that wall orientation had a 

significant influence on the thermal performance, with the North-facing wall being the most 

efficient in summer and the South-facing wall being the most efficient in winter. The West- and 

East-oriented walls are intermediate between the North and the South, but surprisingly, the East 

wall has noticeably higher temperatures and heat gain in summer than the West wall. The 

simulation process confirmed that the steady-state calculations for the most extreme day of the 

winter overestimate the heat loss. On the other hand, on the hottest day of summer, the steady-

state method can under- or overestimate the heat gain depending on the orientation of the wall.
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8. THE IMPACT OF ROOF ANGLE AND LOCATION ON THERMAL PERFORMANCE 

OF BUILDINGS 

This chapter explores the impact of roof inclination on heat loss and gain within interior 

spaces. The investigation involves varying the roof angle in multiple ways, with a particular focus 

on the southern direction during winter to maximize daytime heat gain, and the northern direction 

in summer to minimize heat gain. After determining the optimal angle for both moderate (Miskolc, 

Hungary) and hot (Baghdad, Iraq) geo-graphical locations, I simulated the most effective models. 

I will perform steady-state simulations for several cases using the HAP program to find the optimal 

roof. Then I will conduct a transient simulation using the ANSYS program, incorporating 

additional scenarios to enhance the optimal roof. My simulations revealed that the optimal roof 

angle gives the minimum heat gain and loss. Then, to improve their performance, I implemented 

Trombe roofs. Additionally, I apply glass wool insulation to the north side during the winter and 

the south side during the summer. 

 

8.1. The Materials and Studied Cases 

8.1.1. Materials and location 

In this study, the effects of the angle of the roof facing to the North as well as to the South 

with a constant horizontal length of the roof with four roof configurations are examined. Data 

collection was performed under the winter weather conditions of Miskolc, Hungary (48° 06' 9.00′′ 

N and 20° 47' 17.99" E), and during a summer day in Baghdad, Iraq (33°19′ 15.60″ N and 

44°24′00.00″ E). The urban climate in Baghdad is characterized by continuous solar radiation that 

is strong in sunlight throughout the year. In the Iraqi summer, for the design day, the relative 

humidity is around 21% and the air temperature under the shade ranges between 36 – 49 °C  [93]. 

In addition, during the Hungarian winter, the outside air temperature ranges between -5 °C and 1 

°C on the design day. Figure 8.1 demonstrates this, and Table 8.1 and Table 8.2 present the 

properties of the attic, roof and ceiling, respectively.  
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Figure 8.1.  The materials used in the roof and ceiling. 

For other required values, sample values given in studies in the literature were used [95] [96]. The 

aim of examining different designs and applying thermal insulation materials is to hinder the 

thermal energy transfer to or from the structure. 

Table 8.1. The properties and thickness of the roof layers. 

 Asphalt shingle Building paper Plywood deck Gypsum 

k [W/(m K)] 0.79 0.04 0.0554 0.16 

ρ [kg/m3] 1700 930 288 800 

Cp [J/(kg K)] 1000 1300 1298 837 

Thickness [mm] 40 5 13 13 

Table 8.2. The properties and thickness of the ceiling layers [60]. 

 Acoustic tile Ceiling air space HW concrete insulation 

k [W/(m K)] 0.2877 0.4116 1.3 0.1017 

ρ[kg/m3] 480.6 1.1 977.1 8.0 

Cp [J/(kg K)] 840 1.007 840 840 

Thickness [mm] 30 20 150 100 

8.1.2. Mathematical Model, Geometric Configurations, and ANSYS Setup 

The methodology section of this research paper explores the impact of roof design on thermal 

performance across diverse climatic zones. I analyzed a roof model of a 3 m by 3 m section of a 

building. The inclined surface can be oriented in the north or south direction, and the horizontal 

surface will be level. The inclined surface can have four proportions for the larger section (1/2, 

2/3, 5/6, and 1) of the roof length, and the remainder is the smaller section. In the winter case in 

Miskolc, the larger section faces south, and the smaller section faces north to maximize heat gain 

and minimize heat loss. In the Iraqi summer, the opposite occurs: the larger section faces north, 

and the smaller section faces south to reduce heat gain. Figure 8.2 illustrates the winter cases 

studied for Miskolc, Hungary, and Figure 8.3 shows the summer cases for Baghdad, Iraq. The 

larger section of the roof has ϴ angle, and the smaller section has Ф angle. The angle selection 

depends on the latitude of the city, where the maximum radiation occurs close to the latitude angle 

[97]. I add and subtract the latitude angle by a certain number of degrees to emphasize the best 

angle by testing more possibilities. Figure 8.2 and Figure 8.3 show this process in detail. For Ф it 

depends on completing the triangle angles.  
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Figure 8.2.  Roof dimensions and angles for the winter case (A) case (1/2) of roof length, (B) case (2/3) 

of roof length, (C) case (5/6) of roof length, and (D) case (1) of roof length. 

  

Figure 8.3.  Roof dimensions and angles for the summer case (E) case (1/2) of roof length, (F) case (2/3) 

of roof length, (G) case (5/6) of roof length, and (H) case (1) of roof length. 

Heat transfer through attics: The thermal calculation of the attic depends on whether it is ventilated 

or not. In the summer, the temperatures inside can approach the outside temperature (having a 

well-vented attic), but it is still necessary to account for the heat radiation transferred to the ceiling 

from the roof [98]. For unventilated attics, heat transfer occurs through the closed system 

composed of the ceiling, the attic space and the roof.  



 CHAPTER 8 

84 
 

In order to calculate the R-value of the roof ceiling system, it is necessary to combine the effects 

of the R-value of the ceiling, the R-value of the roof, and the thermal resistance of the space. A 

practical approach for this is calculating first the R-value of the ceiling and roof separately, using 

resistance networks, and considering the still-air case for the attic surfaces. After that, the 

following relation expresses the overall R-value of the ceiling-roof combination per unit area of 

the ceiling. 

 
ceiling

ceiling roof
roof

A
R R R

A

 
= +  

 
 

  (8.1) 

Data were collected using the HAP program to calculate heat transfer for each steady-state model 

specifically focusing on selected working hours (00:00, 06:00, 09:00, 12:00, and 15:00) [99]. 

These models were created by varying angles and lengths, as illustrated in Figure 8.2 and Figure 

8.3. Additionally, I analyzed heat loss and gain based on weather conditions in Miskolc during 

winter and Baghdad during summer. 

Upon analyzing the cases presented in Figure 8.2 and Figure 8.3, I will identify the roof that 

minimizes heat losses and the roof that minimizes heat gain. Subsequently, I will numerically 

simulate these models using the Fluent program and explore additional solutions to enhance and 

compare them. This study bases its mathematical explanation of the heat transmission mechanism 

on the following assumptions: 

Because of its low flow velocity, the air is an incompressible fluid, Newton's laws apply to air. 

The flow field is described as two-dimensional steady-state flow.  

The two-dimensional governing equations for air can be written as follows [100].  

Continuity equation :                            0
yx

uu

x y


+ =

 
  (8.2) 

Momentum equations:    

2 2
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 
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  (8.3) 
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Energy equation:                  
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 
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  (8.5) 

where a , paC , ak , u , T  are density, specific heat, thermal conductivity, velocity and 

temperature of air, respectively. 

The transient 2D model of the roof has been established using the Fluent program to study the 

effect of the range of angles of the roof, the roof with Trombe and with insulation on the effective 

side in reducing heat gains for residential buildings. I positioned the Trombe along the southern 

roof surface in winter and along both northern and southern roof surfaces in summer. Trombe roofs 

have a channel width of 0.05 m and a vertical extension of 0.25 m at 90 degrees parallel to the 
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effective roof surface. The material is glass with a thickness of 1 cm for the winter case and from 

the same material as the last layer in summer. The 2D roof model with 300 cm height consists of 

four layers, and the dimensions of this roof are listed in Figure 8.1. This model was used to study 

the effect of incorporating Trombe in a building’s external roof for heat gain reduction. The 

produced finite volume mesh resulted in 24500 cells. The time step used in this study was equal 

to 150 s, and the number of time steps is 576, so the total time is 24 hours. After cautious 

verification of the independence of the effects on these variables, the time step and the grid size 

were chosen. 

8.1.3. Boundary Conditions and Mesh Independence 

The internal boundary conditions are determined based on the comfort zones during the 

coldest weather in Hungary, and the hottest weather in Iraq. The external conditions, on the other 

hand, the HAP and ANSYS simulations rely on the meteorological data outlined in Table 8.3 and 

Table 8.4. I approximated the initial temperature using the assumption that, prior to the simulation 

period, at midnight on the previous day of the simulation day, a stationary heat flow with constant 

flux had developed between the specified boundary values of the external and internal air 

temperatures. The values utilized for these boundary conditions are detailed in Table 8.5 and Table 

8.6 [101]. 

Table 8.3. Weather data on winter [11]. 

Date: 11/01/2024 location: Miskolc Hungary 

 Temperature [ºC] Velocity [m/s] hc [W/(m2 K)] 

0:00 -4 1.8 22.11 

6:00 -5 1.67 19.12 

9:00 -3 1.8 22.11 

12:00 1 1.67 19.12 

15:00 0 1.38 13.25 

Table 8.4. Weather data on summer [93]. 

Date: 16/08/2023 location: Baghdad Iraq 

 Temperature [ºC] Velocity [m/s] hc [W/(m2 K)] 

0:00 39 1.67 19.12 

6:00 36 0.83 5.174 

9:00 44 3.3 29.88 

12:00 47 3.3 29.88 

15:00 49 1.8 22.11 

Table 8.5. The boundary of convection, radiation, and temperature on both sides of the roof. 

 hc [W/(m2 K)] [ε] [T C ] 

Outer surface 13.25  ـ   5- ـ 0 0.9 22.11

Inner surface 8.3 0.9 22 

Table 8.6. The boundary of convection, radiation, and temperature on both sides of the roof. 

 hc [W/(m2 K)] [ε] [T C ] 

Outer surface 5.174 49 ـ 39 0.65 29.88ـ  

Inner surface 8.3 0.65 24 
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It is unequivocal that enhancing the count of computational cells can lead to more precise 

outcomes, albeit at a greater computational cost. The results exhibit negligible variation when the 

cell count surpasses a specific threshold, signifying the achievement of mesh independence. To 

corroborate the independence of the results from the mesh density, I examined twelve meshes with 

an escalating total count of elements for roofs. The heat loss was computed based on the element 

count. I present the best model, the heat loss remains constant when the element count exceeds 

24500. Consequently, I established an element size of 0.015 m, resulting in cells shaped as 

rectangular cuboids with a total element count of 24500. 

 

8.2. Results 

8.2.1. HAP simulation 

Now I present the results of the Heat transfer (HAP) model, which illustrates the heat loss 

of roof (in W/m2) for all scenarios shown in Figure 8.2 and Figure 8.3 over time. I tested the heat 

loss and gained as a function of time for different angles in winter cases for the north-facing roof 

cases and the south-facing roof for the same cases. Therefore, the angle ϴ of the roof facing north 

changes from 40 to 55 degrees for selected angles. However, for the roof facing south, Ф changes 

from 40 to 55 degrees for selected angles. Similarly, I investigated the heat loss and gained for 

these sides based on roof inclination angles during various time periods. As observed in Figure 

8.4, I can achieve maximum heat gain and minimum heat loss; thus, I will emulate this scenario 

as the optimal model for winter. 

In the summer cases I tested, the angle of the south-facing roof varied from 33 to 45 degrees 

for specific angles. However, for the roof facing north, Ф is changing from 30 to 45 degrees for 

selected angles, where the north-facing roof and the south-facing roof are on the left side of the 

previous cases. As one can see in Figure 8.4, I can attain a minimum heat gain. Hence, I will 

simulate this scenario as the ideal model for summer. I present the optimal roof case in Hungary 

faced to south and the summer optimal roof case in Iraq faced to north in Figure 8.4. the first case 

is on the left and the second case is on the right, respectively. 

  
Figure 8.4.  Roof heat gain as a function of the time for the winter optimal case in Hungary faced to south 

right side and the summer optimal case in Iraq faced to north left side. 
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In Figure 8.5, I conduct a comparative analysis between the optimal models and the horizontal 

model. Specifically, I take into account the orientations facing east and west, integrating them into 

the load calculations for the north and south directions. The resulting combined load is 

subsequently compared to the load associated with the horizontal configuration. Although an 

inclined roof has a larger surface area than a horizontal roof, it has reduced heat loss and gain. This 

is attributed to a shorter duration of exposure to beam solar radiation, resulting in lower heat gain, 

and to the consistent thermal convection on the sides of the inclined roof, additionally, when 

exposed to solar radiation, it stores energy and re-radiates it, which minimizes heat loss compared 

to a horizontal roof. Consequently, the inclined design offers improved thermal performance 

despite its increased surface area. 

  

winter  summer 

Figure 8.5.  Roof heat loss and gain with time on left side winter season and right-side summer season. 

8.2.2. ANSYS simulation 

In my ANSYS simulation, I investigated three scenarios. Initially, I analyzed the optimal 

model, revealing that heat transfer from the roof to the ceiling amounted to 29.939 W/m2 of the 

ceiling area during summer, with a corresponding 24.43 W/m2 heat loss during winter. 

Subsequently, I explored enhancements to the roof. My second case involved the addition of a 

Trombe roof, which effectively cooled the roof’s outer surface in summer, mitigating direct sun 

exposure. As a result, summer heat gain decreased to 16.234 W/m2, while in winter, the strategy 

was different by making holes with diameter 5 cm in the bottom and top of the effective roof facing 

to the south in order to heat the circulated air coming from roof space in exposed Trombe roof to 

sunshine in the daytime, then heat loss decreased to 21.77 W/m2. In my final improvement, I 

installed insulators of glass wool [94] on the south side for summer and on the north side for winter. 

This adjustment led to a reduction in summer heat gain to 23.997 W/m2 and a reduction in winter 

heat loss to 20.91 W/m2. So Figure 8.6 shows the layout of the three cases in winter and summer 

and Figure 8.7 shows the contour of temperature of all cases.  

 

https://forum.ansys.com/forums/topic/how-to-retrieve-solved-simulation-when-you-made-a-change-and-cancelled-it/
https://forum.ansys.com/forums/topic/how-to-retrieve-solved-simulation-when-you-made-a-change-and-cancelled-it/
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Figure 8.6.  Illustration of the cases I simulated, including optimal roof, roof with Trombe, and glass 

wool insulation on one side of roof. The roofs on left side winter season and right side summer season. 

  
1 4 
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2 5 

  
3 6 

Figure 8.7.  Contour of temperature for the optimal roof cases, Trombe and with insulation on effective 

side on left side winter season Hungary, Miskolc and right-side summer season Baghdad, Iraq. 

Figure 8.8 presents a comparative analysis between the HAP program and the ANSYS program 

concerning the optimal model. The simulations of steady-state behavior in HAP and transitional-

state behavior in ANSYS Fluent exhibit convergence, yielding highly similar results. 

  

Figure 8.8.  Comparison for the optimal roof, based on HAP and ANSYS (N-north side roof, and S-

south side roof ) result. Left side: winter in Hungary, Miskolc. Right-side: summer in Baghdad, Iraq. 
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Table 8.7 shows the heat flow across the ceiling to the inside of the building for all cases of simulation in 

winter and summer 

Table 8.7. The properties of the materials used. 

Winter cases 
2W/mQ  

 
 Summer cases 

2W/mQ  
 

 

Normal roof 24.43 Normal roof 29.939 

Trombe roof 21.77 Trombe roof 16.234 

Insulator on effective side roof 20.91 Insulator on effective side roof  23.997 

 

8.3. Summary of this chapter 

In my study, I investigated the impact of roof inclination angles on energy consumption in 

buildings. Specifically, I focused on optimizing these angles for different climatic conditions. My 

research was conducted in two distinct cities: Baghdad, characterized by hot summers, and 

Miskolc, known for relatively cold winters. 

For buildings in Baghdad’s scorching summers, I determined that a roof inclination Ф angle of 90 

degrees toward the south was most effective in minimizing heat gain. Conversely, a 45-degree 

inclination ϴ angle toward the north provided optimal results. In Miskolc’s cold winters, I found 

that a roof inclination Ф angle of 82 degrees toward the south minimized heat loss, while a 55-

degree ϴ angle toward the north was ideal. 

To further enhance energy efficiency, I explored additional modifications. Notably, the Trombe 

wall system significantly reduced heat gain to the inside of the building, lowering it from 29.939 

to 16.234 W/m2. Additionally, insulating the active side of the roof reduced heat gain to 23.997 

W/m2 for summer cases 4, 5 and 6 respectively in Figure 8.6 and, for heat loss from inside of 

building to the environment of roof was 24.43, 21.77, 20.91 W/m2 for winter cases 1, 2 and 3 

respectively in Figure 8.6, which are normal roof Trombe and insulating the active side of the roof, 

respectively. These findings underscore the importance of thoughtful design and strategic 

adjustments in achieving sustainable energy use.
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9. THESES – NEW SCIENTIFIC RESULTS 

T1. I analyzed nine numerical algorithms for solving the heat equation, focusing on positivity-

preserving methods stable across time step sizes and system stiffness. The study tested 2500-

cell, two-dimensional stiff systems with random, discontinuous parameters. I compared 

accuracy and CPU efficiency, finding the 3-stage LNe3 and LH-CNe methods most accurate. 

I examined how increasing stiffness ratios, decreasing CFL limits, and varying spatial 

anisotropy affected accuracy. The study assessed performance with growing horizontal-

vertical cell dimension differences. I recommended optimal methods for scenarios like OEH 

structure, unstructured meshes, and highly anisotropic systems, aiming to guide effective 

positivity-preserving method selection. [61].  

T2. I developed a novel, fully explicit, stable numerical algorithm for time-dependent diffusion 

equations with linear and nonlinear reaction terms. Based on the UPFD idea and theta-formula, 

it’s second order in time step size and unconditionally stable for linear cases. It outperforms 

other methods and MATLAB routines in accuracy and stability for nonlinear cases, though not 

positivity-preserving. Stable for large time steps even with strong nonlinearity, it’s easy to 

implement and suitable for unstructured grids. This pseudo-implicit algorithm combines key 

advantages of explicit and implicit methods.[42]. 

T3. I optimized the leapfrog-hopscotch method for the heat conduction equation, focusing on free 

convection and radiation terms. Best results treat convection 50% at old- and new-time levels, 

ensuring stability and second-order temporal convergence. The radiation term is best handled 

pseudo-implicitly for excellent stability. The algorithm performs well under low CFL limits. 

[72]. 

T4. I studied a diffusion-reaction PDE with a linear reaction term and space-time-dependent 

nonlinear coefficients. Nine numerical algorithms reproduced these, with Dufort-Frankel and 

leapfrog-hopscotch explicit schemes outperforming standard explicit and implicit methods. In 

a 2D case simulating wall surface temperature with wind-driven forced convection and rapidly 

varying material properties, explicit stable methods proved more efficient than implicit ones, 

with efficiency expected to grow with system size. [102]. 

T5. I compared MLP and RB neural networks using LM, SCG, and RB algorithms to predict 

heating and cooling loads in Miskolc, Hungary residences. The MLP with LM algorithm 

excelled in accuracy and error reduction. I also studied a four-layered wall’s thermal behavior 

across orientations in winter and summer using the leapfrog-hopscotch finite difference 

algorithm. Insulation and orientation significantly affect thermal performance, with North-

facing walls optimal in summer and South-facing in winter. Steady-state calculations 

overestimate winter heat loss and variably estimate summer heat gain. [99]. 

T6. I studied heat loss and gain in inclined roofs in Miskolc (cold winters) and Baghdad (hot 

summers). In Miskolc, optimal roof angles of 82° south and 55° north minimized heat loss. In 

Baghdad, 90° south and 45° north reduced heat gain. Trombe wall systems cut heat gain from 

29.939 to 16.234 W/m², and insulating the active roof side lowered it to 23.997 W/m² in 

summer. Winter heat loss in Miskolc was 24.43, 21.77, and 20.91 W/m². [103] [104].    
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APPENDICES 

A1  

 

Figure A1-1. (a) Equidistant mesh. (b) Gradual change in the x and z directions. 

 

Figure A1-2. The flowchart presents the process used to determine the prediction. 
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(a) (b) 

Figure A1-3. Histogram error for (a) heating load and (b) cooling load prediction through 

MLP_LM, MLP_SCG, and RB. 

 

Figure A1-4. Illustrates the accumulated heat loss for December as a function of the total number 

of cells along the x-axis, in the case of four layers at the south wall. 
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Figure A1-5. The temperature distribution in °C as a function of time in days for the four-layer 

wall facing East. 

 

Figure A1-6. The temperature distribution in °C as a function of time in days for the four-layer 

wall facing South. 
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Figure A1-7. The temperature distribution in °C as a function of time in days for the four-layer 

wall facing West. 

 

Figure A1-8. The temperature distribution in °C as a function of time in days for the four-layer 

wall facing East. 
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Figure A1-9. The temperature distribution in °C as a function of time in days for the four-layer 

wall facing South. 

 

Figure A1-10. The temperature distribution in °C as a function of time in days for the four-layer 

wall facing West. 
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A2  

Table A2-1. The statistical analysis of energy-efficient design on eight features of efficient building. 

Characteristics Mean Median Min. Max. Std. Deviation 
Standard 

Error 
Variance Skewness 

Direction 2.5 2.5 1 4 1.119 0.045 1.252 0.0 

Dist. of AW 7.02 7 0.0 14 3.981 0.159 15.852 0.065 

Exposed Area 633.73 648 500 716 53.818 2.154 2896.377 −1.021 

Roof Area 193.08 200 140 200 11.260 0.451 126.793 −1.926 

RC 0.678 0.658 0.5961 0.8537 0.0639 0.00256 0.004 1.316 

Wall Area 440.65 453 300 516 53.645 2.148 2877.819 −1.044 

Window Area 30.77 30 0 60 17.972 0.719 323.003 0.324 

Cooling Load 24.4 23.5 14.5 42.7 5.7738 0.231 33.33 0.717 

Heating Load 22 22 16.6 26.5 1.9871 0.0795 3.949 −0.058 

 

 


