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SYMBOLS GREEK LETTERS
C Heat capacity [J/K] p Mass density [kg/m®]
c Specific heat [J/(kgK)] V| Difference
DF Dufort and Frankel o Thermal diffusivity [m?/s]
Convection heat transfer
h At Time step size [s]
coefficient [W/(m*K)]
K Convection coefficient [1/s] o Realistic values of the non-black body
[W/(m* K]
k Thermal conductivity [W/(m K)] o Coefficient of the radiation term [s'K]
L Thickness [m] & Emissivity
LH Leapfrog-Hopscotch 5 Factor to indicate daily mean
temperature
PI pseudo-implicit M The matrix index
0 Heat transfer rate [W] r Mesh ratio
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q Heat source rate [K/s] Subscripts
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odell3 | A first- to 13th-order VSVO Adams—Bashforth—Moulton solver
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1. INTRODUCTION

1.1. Energy of Buildings

The advent of smart technologies and intelligent buildings has ushered in a new era of energy
optimization. With buildings accounting for 40% of primary energy consumption and contributing
to 24% of greenhouse gas emissions, the potential for energy efficiency in this sector is immense
[1]. This thesis explores the intersection of smart home technologies, energy efficiency, and
thermal comfort, with a particular focus on heat transfer in building envelope and design. I delve
into the crucial role of predicting energy requirements during the design stage of a building before
its construction. This process is instrumental in ensuring that buildings can effectively utilize
energy, achieve optimal economic results, and provide ease of use. According to the International
Energy Agency, (IEA) the construction industry is responsible for more than a third of the
worldwide final energy consumption and is responsible for more than 40% of the world's direct
and indirect CO2 emissions [1]. The installation of solar photovoltaic (PV) systems in Hungary
has skyrocketed in recent years. To achieve its ambitious goal of producing 90% clean energy by
2030, Hungary will need to significantly expand its use of low-carbon sources of generation,
including an early phase-out of the use of coal in power generation by the year 2025 [2]. In 2020,
fossil fuels accounted for 68% of Hungary's total energy supply (TES). Natural gas accounted for
33%, oil for 27%, and coal for the remaining 7%. The largest non-fossil energy source is nuclear
(16 % of TES), followed by bioenergy and waste (10 %), electricity imports (4 %), and other
renewables (2%), including hydro, wind, geothermal, and solar see Figure 1.1 [2].
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Figure 1.1. Hungary's energy supply demand and fuel sector, 2020 [2].

As it can be seen, the building sector consumes a large part of the total final consumption
(TFC). Conduction heat transfer affects many issues related to buildings, such as exterior and
interior wall conduction, conversion of heat gain/loss to cooling and heating load, heat loss or gain
through roofs and ground heat loss from the slab-on-grade floor and basement walls. The rate of
heat transfer through walls can be modified by changing the wall thickness or increasing the
insulation layer thickness, and using different scenarios and types of smart materials [3]. Transient
wall conduction heat transfer responds to weather conditions such as temperature variations, solar
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radiation, air movement, etc. One of the most effective ways to increase the energy efficiency and
reduce the energy consumption of a building is to increase the thermal insulation of the building
envelope and decrease the heat loss through walls. Walls are responsible for about 35% of the heat
loss in a house, and most of the heat enters and exits through them [4]. Heat is often lost by
conduction or physical contact because the walls of a house are exposed to the colder air outside
[5]. Thermal bridges are important to consider because they increase heat loss and lower the energy
efficiency, durability, and air quality of buildings, which requires a combined thermal and
structural design [6]. Thermal bridge models are especially relevant for architects, civil engineers,
and insulation materials industry professionals. The study of thermal bridge effects aims to show
the possibility of applying energy renovation techniques to existing buildings.

1.2. Building Envelope

The energy efficiency of buildings is a critical aspect of creating a more sustainable economy.
Therefore, enhancing their energy efficiency is a key strategy. The construction sector, in
particular, holds significant potential for reducing energy usage and greenhouse gas emissions
relative to other industries. Heat transfer calculations are integral to multiple facets of building
design and performance. These calculations are used for estimating energy loss or gain through
the building envelope (heat conduction), analyzing the indoor environment, and addressing issues

with specific materials or structural elements.

Conduction heat transfer impacts numerous building-related matters. These include exterior
wall conduction, interior mass conduction, conversion of heat gain/loss to cooling and heating
load, and ground heat loss from slab-on-grade floors and basement walls. The rate of heat transfer
through walls can be altered by modifying the wall thickness or augmenting the insulation layer
thickness.

Transient wall conduction heat transfer responds to weather conditions, including temperature
fluctuations, solar radiation, and air movement. Walls constitute a significant portion of a
building’s envelope and are designed to deliver both thermal and acoustic comfort within the
premises, while simultaneously maintaining the structure’s aesthetic integrity. The wall’s thermal
resistance, or R-value, is a critical determinant of a building’s energy consumption, particularly in
skyscrapers where the wall-to-envelope area ratio is substantial. Current market evaluations of
center-of-cavity R-values and clear wall R-values account for the impact of thermal insulation.
Nevertheless, the effects of the framing factor and interface connections are frequently overlooked

[7].

In scenarios where thermal insulation is present, walls are more susceptible to surface
condensation if the ambient air’s relative humidity exceeds 80%, assuming that the convective and
radiative heat transfer coefficients of the external wall are minimal. This issue intensifies during
the winter season and in colder climates with elevated humidity levels [8]. Such moisture
accumulation on the exteriors of buildings can foster the growth of microbes, potentially
diminishing the lifespan of the wall and causing other adverse conditions within the structure.

6
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Traditionally, walls are categorized based on the construction materials used, such as wood, metal,
or masonry. However, innovative wall designs have been developed to enhance the energy
efficiency and comfort of buildings. Subsequent sections will elaborate on these advanced wall
technologies. Thus, Passive solar walls are designed to collect, store, and distribute solar energy
in the form of heat in the winter and reject solar heat in the summer. They are an integral part of
passive solar design, a method that uses the sun’s energy for the heating and cooling of living
spaces. Lightweight concrete (LWC) walls, on the other hand, are constructed using concrete with
lower densities than traditional concrete, resulting in a structure that is both strong and lighter,
which can improve thermal insulation and ease of installation. Ventilated or double skin walls
feature a cavity between two wall layers that allows for air circulation, enhancing thermal comfort
and energy efficiency. Lastly, walls with latent heat storage incorporate materials that absorb and
release heat, which helps in stabilizing indoor temperatures throughout the day, making them
highly effective for energy conservation [9].

Roofs play a pivotal role in the structural integrity of buildings, serving as a primary shield
against solar radiation and environmental elements. They significantly affect the indoor comfort
of occupants, with large structures like sports complexes and auditoriums being particularly
vulnerable to heat gain or loss [10]. This progression underscores the importance of roof thermal
performance in enhancing a building’s overall energy efficiency.

In tropical climates, passive cooling strategies are essential for modifying roof architecture to
improve comfort levels. Techniques range from compact cellular layouts that minimize solar
exposure to domed and vaulted structures, along with ventilated roofs, both natural and
mechanical, and even double-layered roofs. Innovations are also emerging, such as white-washed
exteriors to decrease solar absorptivity, vegetative coverings for humidity control and shading, and
the use of materials like concrete to reduce peak thermal loads. Roof shading, achieved through
economical materials like terracotta tiles or inverted earthen pots, can lower indoor temperatures
by up to 6°C [11]. Additionally, roof coatings with high solar reflectance and emissivity are
selected to combat solar heat, avoiding those like aluminum-pigmented options due to their low
infrared emittance. These coatings can cool a white concrete roof surface by 4°C on hot summer
days and 2°C at night. The choice of roofing systems often depends on the local climate, with a

diverse array of options available to meet specific environmental demands [11].

The roof is a pivotal element in a building’s energy efficiency and overall energy consumption.
The design of the roof, which can vary based on location and type such as plain, vault [12], or
dome, significantly influences these factors [13]. By augmenting the thermal insulation of the roof,
a critical component of the building envelope, I can markedly diminish heat loss [14]. This is
attributed to the fact that a well-insulated roof serves as a barrier to heat flow, curtailing the amount
of heat that escapes from the building during colder periods and inhibiting excessive heat from
entering during warmer periods. As a result, this reduces the energy required for heating and
cooling the building, thereby supporting the building’s energy efficiency and curtailing its energy
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consumption. Consequently, investment in superior roof insulation emerges as one of the most

effective strategies for fostering energy-efficient buildings and advancing sustainability [15].

Fenestration, encompassing windows and doors, is crucial for thermal comfort and lighting
within buildings, while also enhancing architectural aesthetics. Recent advancements in glazing
technologies, such as solar control glasses and low-emissivity coatings, have significantly
improved their performance. A study involving various glazing types across diverse climates
revealed that a window’s energy savings depend on factors like thermal conductivity (U-value),
solar heat gain coefficient (SHGC), orientation, and building characteristics. A diverse array of
technologies is available to cater to this need, including aerogel glazing, vacuum glazing,
switchable reflective glazing, suspended particle devices (SPD) film, and holographic optical
elements. Each of these solutions offers unique benefits and applications, reflecting the innovation
and progress in the field of advanced glazing technologies [16].

1.3. The Differential Equation for Heat Transfer via Conduction, Convection, and
Radiation

Within the Cartesian coordinate system, and the differential control volume is delineated as a
diminutive rectangular prism with dimensions dx, dy, and dz., as depicted in Figure 1.2 Assuming
that the body’s density is symbolized by p and its specific heat by ¢, the equations governing
conduction, convection, and radiation are derived from the conservation of energy principle.
Energy balance for the elemental volume over a short time interval Az, mathematically expressed

as follows:
Z‘ ?N o & y
N _V‘I
g &
R N O :
Volume ~| S E
Element .’ ' ;
D T ! :
de e : : E de+dx
------- e
6z /5), E r
60”/ Ao
o -
ox x

dQ.

Figure 1.2. Which is used for deriving heat conduction in Cartesian coordinates, the volume is defined by
dx, oy, and dz.
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Rate of heat

Rate of heat transfer Rate of heat generation
transfer by .
. —| by conduction at +| on the element
conduction o
x+ox,y+dy,andz+0oz surface and inside it

atx, y,and z

Rate of change
+

+

Rate of heat .
=| 1in the element

Rate of heat
convection

radiation
energy content

0, +0,+0- = Orv = Qyuy = Oers: *+ Oen * Ouomction * ratiaion =222 (L1)
Determination of the mass and volume of the differential control volume, as follows:
om= poxoyodz, and OV =06x0yoz, (1.2)
where p is the mass density [kg /'] of the control volume.
The Newton heat convection law:
Oconvection = hSAu=hS(u, —u) , (1.3)

where S is the surface area, 4 is denotes the convection heat transfer coefficient, u, is the ambient
temperature and u the surface temperature of element.
Given that the ambient temperature, denoted as u,, is not directly dependent on (u), the term ASu,

is incorporated into the heat generation expression. This aligns with the Stefan—Boltzmann law
governing outgoing radiation heat:

O,radiation =0 Su” | (1.4)
where 6" =¢-o , 1.e., taking into account that the surface is not a black body, the Stefan-
Boltzmann universal constant, denoted as o =5.67x10"°W/(m?K?), is scaled using the
appropriate emissivityconstant & .
The rate of change of internal energy within the control volume can be expressed as
pcoxo6yoz(u, a, —u;), where E,,,..; represents the energy content of the element.

Mathematically, this can be written as:

AE gjoment = Epone — £ =meug g, —tt) = peox0yoz(up py —4;) (1.5)

substituting into Eq. (1.1), I get
Qx + Qy + Qz - Qx+§x - Qy+5y - QZ+§Z + Qgen —hSu— O-*Su4 = pC§X§yé‘Z M 5
At
dividing by 0x0y0z gives
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_ 1 Qx+5x _Qx _ 1 Qy+5y _Qy _ 1 Qz+5z _Qz + Qgen
0yoz ox 0x0z oy 0xX0y oz 0x0yoz

hSu o Su’ o (uga )

T oxdyoz oxdyoz LT At

Considering the heat transfer of the element for conduction in the x, y, and z directions are

(1.6)

Sy =0y6z,5,=06x0z, andS,=0x0y respectively, and taking the limit as
ox, 0y, ozand At —0.

The Fourier's law of conduction and the derivative definition:

im 1 Qx+§x_Qx — 1 an — 1 2[_]{5)}528_”):_2[]{8_”)
x>0 0y0z ox 0ydz Ox O0yoz Ox ox ox\ Ox

- 0
fim Q= 1 O 1 O g0 0u)  Of
S5y—00x0z oy 0xo0z 0y  0x0z Oy oy oy\ Oy

fim — Geeo: Qe 1 00 | i(—kéxﬁya—uj=—ﬁ(ka—uj
520 Oxdy oz 0xo0y 0z Ox0y Oz oz oz\ 0z

Inserting into Eq. (1.6), the general heat equation in rectangular coordinates
*q, 4
Q(ka—”}ﬁ P +§(ka—”]+ oo ___hSu__ o™Su” _ % (5
ox\ ox) oy\ oy) 0z\ 0z) 0x0ydz 0x0ydz Ox0yoz At
When £ is constant, Eq. (1.7) is divided by £, resulting in a simplified form

82u+82u+82u+ Ogen _ hSu_ o*Sut _lou
x> o 0z koxdydz kéxdydz kéxSysz a At

(1.8)

One can express the material's thermal diffusivity in terms of o« =—, and ¢ is the incoming
pc

radiative heat for a unit area. The conductive and radiative heat transfer directions will always be

horizontal, thus S =0y0z and O

gen

z(q*+hua)S.

Based on these considerations, the heat conduction Eq. (1.9) can be extended to include heat

convection, radiation, and source terms as Eq. (1.11).

o’u *u o%u : hu h o ou
al —+—S+—5 |+ 4, "Ma _ u— ut==". (1.9)
ox~ oy° oz pPCOX  PCcoOX  pcox PCOX At
The temperature equation incorporates radiation, conduction, convection, and heat generation
sources, utilizing vector notation [17], [18] to express the former equation:

Z—Z::avzu+q—Ku—O'u4 , (1.10)

10
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~( 0 ~( 0 ~( 0 * h
where V is the differential vector operator, V =1 (—j+ Jl = k(—j, q= 4 M
ox oy 0z cpox cpox
relate to the external heat source or heat generation, K = K(7) = 5 is the term of convection
cpox

*

heat transfer, and & = o(¥) = is the term of radiation heat transfer. The terms Ku, ¢ and ou®

cpox
in Eq. (1.10) are nonnegative and their unit is [K /s].
The heat equation states that heat transfer occurs when a temperature gradient exists between two
points, which leads toward temperature uniformity. If the material properties are non-

homogeneous Eq. (1.10) can be expressed in a more general form:

1
8_u = —V(kVu)+q—Ku—O'u4
ot pc

(1.11)

In various disciplines, like biology, chemistry, and physics, mass transport can be modelled
using generalized forms of the diffusion equation. For instance, the atoms in carbon nanotubes,
the charge carriers in semiconductors, and the proteins within developing embryos. Additionally,
a system of equations or closely related equations has been employed to model fluid flow through
porous media, encompassing phenomena like ground water, moisture, and crude oil within

underground reservoirs [19].

1.4. Numerical Methods for Solving Heat Conduction Equation

Analytical solutions, including recent advancements [20], are prevalent for spatially
homogeneous systems. These systems often serve as the testing ground to aid mathematicians in
developing and validating numerical techniques. Additionally, a selection of analytical solutions
exists for one-dimensional multilayer models, applicable to under steady-state and time-dependent
scenarios. Such solutions are routinely employed in the computation of building envelopes heat
gain and loss, as well as heat storage [21]. Nevertheless, most heat conduction issues within
buildings are multi-dimensional and transient in nature. Furthermore, the properties of materials,
such as density and heat conductivity, can exhibit significant variation within the system [22] (p.
15). Consequently, the use of numerical computer simulations is indispensable.

A thermal analysis can uncover the heat distribution patterns within a system or its components.
Research on thermal quantities typically centres on temperature distributions, thermal fluxes, and
heat capacities. Given that many engineering heat transfer applications involve complex thermal
models, analyzing transient heat transfer is a critical challenge, often addressed through numerical
methods rather than analytical ones. Analytical techniques yield precise results but are limited to
isotropic, homogeneous scenarios with simple geometries and boundary conditions [20]. In
homogeneous space, the diffusion equation has analytical solutions, old and new, as well,
according to Barna et al. [23], but when the material properties are functions of space, numerical

integration is necessary.

11
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According to Newton’s law of cooling, a term K (u, —u«) can describe (free) convective heat
transfer [24], where u, is the ambient temperature (measured in Kelvin), which can be considered
as independent from u. On the other hand, according to Stefan—Boltzmann ‘s law [25] the heat loss

of a unit surface via electromagnetic radiation can be given by a term —ou*. The incoming

radiation, the Ku, heat gain due to the nonzero temperature of the ambient air, as well as other

factors such as heat generated by electric currents, can be collected into a so-called heat source
term denoted by ¢. Several numerical methods are usually classified as either explicit or implicit,
but occasionally these two approaches are combined, which have been proposed to solve Eq. (1.7)
and Eq. (1.9), belong to the wide group of finite difference schemes (FDM) [26], [27], [28].
Implicit methods have excellent stability properties; therefore, they are commonly used for these
equations [29], [30]. The price for stability is that a system of algebraic equations must be solved
at each time step. This can imply very slow calculations, particularly in cases when the number of
space dimensions is more than one, thus one has very large-sized and non-tridiagonal matrices. In
these cases, even the most trivial explicit (Euler) time integration can be considerably faster than
the implicit one [29]. Moreover, explicit algorithms can be parallelized much more
straightforwardly than in implicit methods. The main obstacle against the rise of the explicit
algorithms is that they are typically only conditionally stable, i.e., the solutions can blow up if the
time step size is below the so-called Courant-Friedrichs—Lewy (CFL) limit. For example, explicit
Runge—Kutta methods can never be unconditionally stable [31] (p. 60). The coefficients c, k, or
the diffusion constant can be highly non-uniform in space [32], e.g., when the physical properties
have sharp discontinuities at the material boundaries. In these cases, the range of the eigenvalues
of the system matrix has several orders of magnitude, the problem is very stift, the CFL limit can
be extremely small, thus the simulation can be unacceptably time consuming.

Analytical diffusion equation solutions are known and found in basic textbooks [33], [34].
These solutions are crucial to understanding diffusion. Second, these solutions test old and new
numerical methods. I want to develop new algorithms for a modified version of PDE (1) with a
reaction coefficient that depends on time and space. Semi-explicit or semi-implicit methods, which
combine explicit and implicit approaches, can also work well. I must agree with scholars who
create and study explicit and unconditionally stable algorithms. Chen-Charpentier and Kojouharov
[35] proposed the UPFD (unconditionally positive finite difference) scheme for the linear
diffusion—advection—reaction equation. Later Appadu [36] and Savovic et al. [37] study this
algorithm. Pourghanbar et al. [38] solved a nonlinear PDE faster than implicit methods using the
Alternating Direction Explicit (ADE) Saulyev Method. The ADE, ADI, and odd-even hopscotch
methods were compared to solve diffusion-reaction equations by Al-Bayati et al. [39] They found
that implicit methods are more accurate but slower than explicit methods. Our paper [40],
compared 12 explicit and robust numerical methods for heat conduction in walls with and without
insulation using equal and unequal meshes. I used 14 heat conduction, convection, and radiation
methods from [41] for heat conduction, convection, and radiation. I found that the best method
was the leapfrog—hopscotch (LH). The LH is more accurate when the system is less stiff, but for
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high stiffness, it still behaves well. The Dufort—Frankel (DF), shifted-hopscotch (SH), and
asymmetric hopscotch (ASH) methods also performed well. The unconditionally stable methods
for the basic conduction problem could use very large time steps without stability issues, and they
were better than usual explicit time integrators. I focused on the best way to include convection
and radiation terms in our study, using the LH method as the best one [40] and using this method
for long simulations of a building wall in summer and winter simulations.

In my research, I collaborated with my supervisor to explore and enhance families of novel and
traditional explicit methods for solving linear and nonlinear heat conduction equations. These
methods were developed based on innovative approaches. Specifically, 1 adapted successful
techniques, such as the pseudo-implicit and Leapfrog hopscotch methods, to scenarios involving
heat transfer through convection and nonlinear radiation (like Stefan-Boltzmann-type radiation).
These adaptations addressed real-world heat transfer challenges in building environments.
Additionally, I conducted a comparative analysis of my findings with those obtained from neural
networks

1.5. Outline of the Thesis

This thesis begins with an introduction outlining the background, motivation, objectives, and
structure. Chapter 2 discusses the numerical discretization of the heat conduction equation,
transforming PDEs to ODEs, and reviews explicit methods. Chapter 3 systematically tests nine
numerical algorithms, analyzing their stability and accuracy. Chapter 4 develops the so called
pseudo-implicit algorithm, highlighting its advantages. Chapter 5 explores free convection and
radiation terms using the leapfrog-hopscotch method. Chapter 6 analyzes diffusion-reaction PDEs,
comparing numerical algorithms. Chapter 7 applies neural networks to predict building energy,
evaluating models, and simulating the thermal behavior of the walls of the building by using the
recommended method, the leapfrog-hopscotch method. Chapter 8 optimizes roof inclination
angles for energy efficiency in different climates. The thesis concludes with a summary of
findings, contributions, and future work recommendations.
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2. HEAT EQUATION DISCRETIZATION AND NUMERICAL METHODS

The focus of this chapter is to explain and illustrate the numerical discretization process that
applies to the spatial variables present in the heat conduction equation. This process effectively
transforms the equation from a partial differential equation (PDE) into a system of ordinary
differential equations (ODEs). I will subsequently develop further procedural applications for the
resulting system of ODEs. Furthermore, this chapter will include a brief review of a variety of
explicit methods, both established and novel approaches. These explicit methods will serve as the
foundational elements for all subsequent plans and applications delineated in the following
sections. I will also review some of the software packages and methods built into them that I used
in my work to simulate and validate methods in the end of this chapter.

2.1. The Equations and Its Discretization

Diffusion of particles and Fourier-type heat conduction are omnipresent mass or energy
transport processes. In the simplest linear case, they are described by the following partial
differential equation (PDE):

au(x,t) o%u (x,t)
= , 2.1
o 9T T (2.1)

where x, 7eR are the independent variables, u =u(x,t) is the unknown concentration of particles
or the temperature in the case of heat transfer, and a is the coefficient of (thermal) diffusivity. The
thermal diffusivity of a material can be given as a=k/(cp), where c= c(?,t) , k=k(7,), and
p = p(7,1) are the specific heat, the heat conductivity, and the density of the material, respectively.

If these coefficients depend on space, one has to use the more general equation

a—MzLV(kVu), (2.2)
ot cp
where it is assumed that the ¢ and p functions are positive. This equation is now valid for more

than one space dimension.

The heat conduction Eq. (2.1) can be extended to include heat convection, radiation, and source
terms are added to the heat conduction Eq. (1.10). Note that all terms in Eq. (1.10) are local, except
the conduction term. In the case of Eq. (2.1) in one space dimension, applying the most common
central difference equation

5 u(xi+1)_“(xi)+”(xi—l)_u(xi) )
u; 1 —2u; +u;
ax_zu(xi) ~ A.x Ax Ax — 1 1 Axlz i+1 , (23)

Which is second order in Ax, where i =1,..., N and N is the overall number of nodes. By

applying this, in one space dimension, I am able to derive the spatially discretized form of the
heat transfer Eq. (1.10) in one space dimension as follows:
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du; oM —2u; +u;,
dt Ax?
Now, let us demonstrate the discretization of the heat transfer equation assuming that the

Ly g—Ku; —ou* . (2.4)

variables a, k, ¢, and p, which describe the properties of materials, are functions of space rather

than fixed values. In one space dimension, I now have to deal with the following instead of the

2 .
term oV u for homogeneous materials:

mﬂk(x)g—zj . (3)

I discretize the function £, and at the same time the space derivatives in Eq. (2.5) by the standard

central difference formula to obtain:

_ 1 {k(xﬁgju(x"+Ax)_u(xi)+k£xi—%)u(x"_Ax)_”(xi)

Ax 2 Ax Ax

() } 2.6)

X

Equations (2.5) and (2.6) are based on the node-picture, typically used by mathematicians.
Instead of node-variables, let us introduce cell variables to arrive at a resistance-capacitance-type
model of heat conduction. It means that ., ¢, and p, are the approximation of the average

temperature, specific heat, and density of cell i, by their value at the cell centre. Furthermore, &, |
is the heat conductivity between cell 7 and its (right) neighbour, estimated by its value at the border
of the cells. Now the previous formula will have the form:
du; 1 (k. R 2= I B/

dt ClplA)C\ b

i—L,i
Let us now consider heat conduction of an element with cross-section S, divided into cells only

j +q—Ku; —ou;* | Q2.7)

along its length. The volume and the heat capacity of the cell in [J/K] can be given as V' =SAx, and

C, =c¢;pV , respectively, the heat source term ¢q ,

1 K|
q; :—quVz g in [—}unlts,
Viy s
On the other hand, the thermal resistance between two neighboring cells is estimated as

R = Ax/(S ki +l) in (K / W) units. The distances between the cells centre in case of non-equidistant

grid are d;;,; =(Ax; +Ax;,;)/2 and the resistances can be determined by this approximation as
R iy = dyj/ (ki,HlSij)

If the material properties or the sizes of the two neighboring cells are different, I can write for
the resistance between cells i and i+1 that Ry, z[Axl- / (kiSi)]"'[Axi a1/ (kS +1)], and if the cell j is

below the cell i, I have Rz; ~[ Ax; / (kiSi)J{Ax ! (k S ])J for the vertical resistance.
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Now the equation for the time derivative of the temperature of each cell in the element is as

follows:
% Ui 7Wi | Uin 4
dt C; .C;

As a generalization of Eq. (2.8) one may construct the ODE system for the time derivative of

+q Ku; —ou; (2.8)

lll l+1l

the cell variables for a generic grid by using the above approximations as follows:

+ Ku—O'u4 2.9
ZR Foae (2.9)

J#l

t

The set of ordinary differential equations (ODEs) shown here can be used with a lot of different
grids, even ones that are not structured and have cells that are different sizes, shapes, and
properties. It is important to note that uneven discretization may potentially compromise spatial
accuracy. However, for the purposes of this work, I have chosen to exclusively utilize cells of a

rectangular configuration.

After spatial discretization as discussed above, Eq. (2.9) for K =0 and o =0 can be written

into a brief matrix-form:

WM i+ O, 2.10)
dt

The system matrix M is tridiagonal (in the one-dimensional case), and it is the sum of two

terms related to the diffusion and the linear reaction terms, respectively:

M=M"+M" (2.11)
In the one-dimensional case of Eq. (2.4), the matrix M is tridiagonal with the following elements:
Ml? :_% ° Ml%—*—l :é > Ml{)i—l = AX ‘]\4111e - Kl (212)

In the general case of Eq. (2.9), the nonzero elements of the matrix M” introduced in Eq. (2.11)

can be given as:

D _ 1 D _ D
M=o M == M; (2.13)
/] J#i

Figure 2.1 can help the reader to visualize these quantities the red double arrows are for conduction

between cells with capacities ¢; and C; through the resistances R;; . [42].
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' \ . As4s
Riz‘ R23 d34 Chy
—C. iy '
l ___________ .
; R2, Nx+2
; Chxsz ) ; '
T ;' iCw

Figure 2.1 The Arrangement of the generalized variables for the case when the mesh is not regular.

I introduce the following notations:

n

-1 At D u;
T, =—7>, 1,=—"and 4, =AtZM,--u'-1 =Atz L (2.14)
1 M2 21; i o 7= Cilyj

where 7; 20 is the characteristic time or time constant of cell i, , is the generalization of

At At . o .
r= % = —% (the usual mesh ratio in the case of the diffusion equation), and 4, reflects the state

of the neighbors of cell i.

The off-diagonal element, denoted as m; ; = 1/(R; ;C; ), of the M matrix may be nonzero exclusively
when cells 1 and j are adjacent. Subsequent summations are performed over the neighbors of the

actual cell, represented by j e n(i) . Unless specified otherwise, closed (zero Neumann) boundary

conditions are considered, implying that the domain’s boundary under investigation is thermally
1solated concerning conductive heat transfer [42]. It is important to note that the cells’ arrangement
and shape do not necessarily have to be regular.

I define the eigenvalues of the system matrix, M, with the smallest and largest absolute values
(excluding zero) as i, and a,,.x respectively. The stiffness ratio of the system is then given by

the ratio A,y / Ay - The Forward Time Central Space (FTCS), also known as the explicit Euler

scheme, has a maximum possible time step size, denoted as 7558 =|2/ Ay 2« |> Peyond which the

solutions are anticipated to diverge due to instability. This critical threshold is commonly referred
to as the Courant—Friedrichs—Lewy (CFL) limit. It is noteworthy that this limit is also applicable
to the second-order explicit Runge—Kutta (RK) method, as referenced in [43].

2.2. Some Explicit Methods

This part provides essential insights into several algorithms, encompassing both established
methods and novel innovations. Initially, I introduce their equations within the context of a
fundamental scenario a one-dimensional, equidistant mesh, Eq. (2.2), After that, I extend these
equations to incorporate a comprehensive, arbitrary mesh. The primary rationale for presenting

simplified numerical schemes in most textbooks is to facilitate comparative analysis. However,
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this work primarily focuses on the more comprehensive forms, which exclusively feature in our
study.

The conventional mesh ratio is 7 =a—A2t for the 1D equidistant mesh, e.g. for Eq. (2.2). The .
Ax

corresponds to an extension of 7, while the other quantity considers not only the state of cell i but
also that of its neighbouring cells. However, the subsequent notations are introduced for the
general mesh:

n

J (2.15)

i Cilt

n=Ary. ciz.. and 4, =Ary -
177

J#i

It is widely known that for the general first order ODE 1D, the theta-method has the formula of
general time discretization

ul_yn

: A; : :AC;Z [H(M;l_l—2uln+uﬁrl)+(l—0)(u?jl—2ufﬂ+u?:11)}

where O ¢ [O,l] . In the case of Eq. (2.2), it yields:

ult =yt r[@(u?_l —2uj +ujyy ) +(1- 6’)(@1}1:;1 —2uM ! )} , (2.16)
where .7, —u7 +u,.For 0=0, y , and 1, this is clearly an implicit Euler method, the Crank—
Nicolson, and the explicit Euler (FTCS) schemes, respectively [44]. If 6<1, the theta method is
implicit. By the so-called pseudo-implicit trick, we make it explicit: the neighbors 7, in the

second term at the right-hand side of Eq.(2.16) is taken into account at the old (n-th) time level.
Using this, we obtain:

ul™ =yl = 2r6u” —2r(1—t9)u-n+1 +”(”in—1 +”in+1)’ (2.17)

1
which may easily be rearranged as:

(1-2r0)uj +r (ui"fll +u] )

1+2r(1-6)

n+l _
=

(2.18)

2.2.1. The UPFD method

The UPFD method is the theta-method Eq. (2.2) for §=0. In the case of Eq. (2.2), it reads as
follows:

n n n
un+1 _ Mi + r(”i—l +Ml~+1) (219)
! 1+2r ’

and the general form for Eq. (2.8) or (2.9) is:

n
u(z+l _ U; +Ai
! 1+2r,

(2.20)
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2.2.2. The Dufort—Frankel (DF) algorithm

This method can be obtained from the so called leapfrog explicit scheme by a modification [45]
(p. 313). It is a known explicit unconditionally stable scheme that has the formula in the special
and general case:

-1
e ik AR ) BN (e W pe Y

u; = and u; = 2.21
! 1+2r ! 1+7 @21)

1

As one can see, it is a one-stage but two-step method (the formula contains ul”_l ), which is not

a self-starter, so another method must be applied to start the method by the calculation ul1 . For this

purpose, we apply the UPFD formula twice (with halved time step size).

2.2.3. The Leapfrog—Hopscotch method

The leapfrog-hopscotch (LH) method [46]. We have a structure consisting of two half and
several full time steps. The calculation starts again by taking a half-sized time step for the odd
nodes using the initial values Stage 0 (not repeated, green box), which uses #=0. Then, for the
even and odd nodes, full-time steps are taken strictly alternately until the end of the last timestep,
The intermediate stages as well as the last stage (light and dark orange boxes) use 6=1/2 (Figure
2.2). In this chapter, I used only the best already proven combination of formulas (L2 in [46]),
which means that # =0 and 6=1/2 are applied in formulas (LH) at the first and at all other time

steps, respectively.

Odd Even Odd Even Odd Even _—
i 1 2 | h/2 ; 2 Iln 0 1
| — Y [ 2 S|
{211 g e
2 | 1 ? -
JTTTTTTTTITTTTY .-...-......-...-..: ..................... ? ___________ L t—tﬁnaf
OOEH ASH LH

Figure 2.2. Hopscotch-type space-time structures. The time elapses from the top (z = to) to the bottom

(tztﬁ“).

2.2.4. The original odd-even hopscotch (OOEH)

The initial odd-even hopscotch (OOEH) technique was discovered nearly half a century ago
[47]. Details regarding its geographical and temporal arrangement can be found in reference [48].

The primary objective behind designing this algorithm was to create a versatile solution that
19



CHAPTER 2

minimizes input requirements from both humans and machines for any given task. The two-stage
process, which remains fully transparent, has undergone continuous improvements and expansions
to enhance precision, with a consistent trend toward greater implicitness. After the initial step, the
FTCS formula, utilizing implicit Euler time discretization BTCS, is applied to even cells, while
the FTCS formula, relying on explicit Euler time discretization, is used for odd cells. Following
each time step, the designations ‘odd’ and ‘even’ are swapped. Figure 2.3 illustrates that the odd-
even hopscotch method relies on a bipartite grid, where odd cells have even neighbors and vice
versa. In this context, I have adapted the algorithm to incorporate convection, consistently
considering it at the updated time level to improve stability. Before addressing implicit handling,

we explicitly handle the radiation term [49]. The following equations are employed:

4
‘ il (l—ri)uf+Al-—At0'(uln)
Firststage: wu; = . (2.22)
1+ AtK

n ne

Second stage: 4"t = - (2.23)
1+7 +AtK+Ata(u;’)

where A"V

is calculated in the same way as A;j in Eq. (2.15), but using the new values of the
temperatures, which make the implicit formula effectively explicit.

Odd  Even Odd Even Odd Even 0dd

UQ‘_ - Q- - _'.Q_\_ - -Q - _'Q.\_ - -IQ - -l_’o - - n-th time level

A ’ * » : l’ ‘\ : ’ ‘ @
JL 3 @ ¥ @ Ky ¥ ,
@D -=(>@ - - n+I-th time level
AY hY

0y
Q=.O - - n+2-th time level

Figure 2.3. The stencil of the original odd-even hopscotch algorithm. Thin blue arrows and thick green
arrows indicate operations at the first stage and second stage, respectively.

2.2.5. The asymmetric hopscotch method (ASH)
Asymmetric-hopscotch (ASH) scheme repeating unit consists of two half and one full-size
stages. First a half-sized time step (light green rectangle with the number ‘1) is taken for the odd

nodes with 6=0, and then a full-length step for the even nodes (light orange rectangle) using 6=1/2
, and finally a halved third stage (dark orange box) closes the calculation with 6=1.[50] .

2.2.6. The constant neighbor (CNe) method

The constant neighbor (CNe) method [51], [52] for Eq. (2.2) is:

n n
- U +u; -
"H:u;’-e 2r | Y 12 i+l (l—e 2r)’

While for general grids it is: ,,7+1 — ;7. 7" +ﬁ(1_e—ri ) )
r:

(2.24)

12
1
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2.2.7. The Linear-Neighbour Method LNe

The two and three stage linear-neighbor (LNe and LNe3) methods, they are based on the CNe

method, which is used as a predictor to calculate new ,pre¢ values valid at the end of the actual

time step. [53]. Using them, we can calculate slopes

r d d
5 :ATz(ulef Pl —ufyy)
and then the corrector values for the two-stage LNe method:
n n 2 -2r
_ U +u; _ At I-e
Wt =yl tir i (1—e 2”)+sl. 1- . (2.25)
2 2r 2r
upred
For the general case, 4" = AtZJ— (2.26)
e O R..
j# It
with which I can make the corrector step as follows:
o AN -4 =T A4V -4,
uin+1:uine 7’1+ Ai_ 1 1 + 4 L (2.27)
4 i i

The values given in Eq. (2.27) can be used to recalculate Al-new again, which makes sense to

repeat (2.27) to obtain new results. In this case, we have three stages altogether, thus the method
is called the LNe3 method [53]. This algorithm is still second order, but more accurate than LNe2.

2.2.8. The CpC algorithm

The two-stage Constant-neighbor (briefly: CpC) algorithm [54] This generally starts with a
fractional time step with length pA¢, but here we take p = y, because it is the simplest and
usually the most accurate choice. So, at the first stage, we can calculate new predictor values of

the variables, but with a Af, =Af /2 time step:

n n

red n o —r Wity -r )

ulp =u; -e +%(l_e ) and uipred zu;’lefri/z _'_ﬁ(l_efri&)'
7

In the second stage, we can use (2.26) with A#; and take a full-time step size corrector step

using the CNe formula again. Thus, the final values at the end of the time step are

pred pred _ Ainew _
_ u; +u; _ n+l _ _n v 7
u{lJrl:uln.e 2r+%(l_e 2}") al’ld ul —ul 'e 1+T(l_e l).

1
2.2.9. Heun’s method

This method also called explicit trapezoidal rule, may be the most common second-order RK
scheme [55]. It starts with an explicit Euler stage as a predictor:

21



CHAPTER 2

uPd = (1=2r)uf +r (g +ufly ) and uf™ = (1= )uf' + 4,

then using the average of the obtained and the old values a corrector-step follows:

n pred n pred
wul | +uPT v ul |+l
Z,t[n+1 =ul _r(u[n _'_uipred)_'_r i—1 i—1 i+1 i+1
2
n pred new
nl _ n u; +u; A+ 4
and u;  =u; —r + .

2 2

2.3. MATLAB Built in Solvers

MATLAB solvers have been used for comparison purposes, namely odel5s, ode23t, ode23s,
ode23tb, ode23, oded5, and odel13. While implicit solutions are used for the other odes, it is
known that odes 45, 23, and 113 employ explicit methods. Also, we use preconditioned conjugate
gradient (PCG) method [56] which has been implemented by the built-in routine of MATLAB
called pcg. The conjugate gradient method is a non-classical iterative method which can be used
for solving linear equation systems with symmetric, positive definite coefficient matrix. In general,
the conjugate gradient method yields high accuracy numerical solutions in the so-called A-norm.
However, the convergence rate strongly depends on the spectral features of the coefficient matrix,
thus it can be very slow for stiff problems. Hence, one can apply preconditioning, i.e., transforming
the linear equation system into another linear equation system which is equivalent in the sense that
it has the same solution, but it has more favorable spectral features. As a consequence, one loses
some accuracy but can reach more favorable convergence rates. Finally, the GMRES (generalized
minimal residual) method [57], [58]. It is a non-classical iteration method for solving linear
systems of equations which are not necessarily symmetric. The essence of the method is to find an
approximate solution of linear equation system, which is the most accurate approximation in the
Euclidean norm if we consider a Krylov sub-space with a given rank. The GMRES method has
been implemented in the gmres built-in routine of MATLAB. Since the time step sizes cannot be
calculated explicitly for the MATLAB solvers, we instead define the tolerances, beginning with a
large value, such as Tol=10? until an extremely small minimum value, which is Tol=107[42],
[59].

2.4. ANSYS Workbench

ANSYS software package is a powerful computational fluid dynamics (CFD) widely used
for simulating fluid flow, heat transfer, and other related phenomena. Specifically, it excels in
modeling heat transfer through various building components, such as walls and roofs. I use this
package to compare and simulate my cases. ANSYS allows one to perform transient thermal
analyses, which are essential for studying heat transfer over time. Transient simulations capture
dynamic behavior, accounting for changes in temperature distribution as conditions develop.
Setting up precise boundary conditions is crucial. The initial temperatures, heat sources (such as
solar radiation), and convective heat transfer coefficients at surfaces should be defined. ANSYS
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provides tools to specify these conditions accurately, ensuring realistic simulations. Heat transfer
is governed by the energy equation. It accounts for conduction, convection, and radiation effects.
To predict temperature distributions within building components, ANSYS solves this equation
numerically [60].

2.5. Hourly Analysis Program (HAP)

Carrier HAP is a versatile software package designed for evaluating the efficiency and cost-
effectiveness of HVAC system designs in commercial buildings. By integrating energy analysis
tools into a single, user-friendly bundle, significant time savings can be achieved. Notably, input
data and results from system design simulations can often be seamlessly used for energy
assessments without additional adjustments. With features such as weather data customization,
space selection, building type specification, and component/material input, Carrier HAP
streamlines the process. Users simply input relevant data to achieve desired design conditions and
ensure occupant comfort [60].

23



CHAPTER 3

3. SYSTEMATIC TESTING OF EXPLICIT POSITIVITY PRESERVING
ALGORITHMS FOR THE HEAT-EQUATION

In this chapter, I performed systematic tests of recently invented stable and explicit algorithms
which preserve the positivity of the solution for the linear heat equation. It is well known that the
widely used explicit finite difference schemes are typically unstable if the time step size is below
the so called CFL limit, and even if they are stable, they can produce negative temperatures.
However, the numerical solutions should satisfy the same properties as the exact solution, such as
positivity. Thus, I collected the available explicit positivity preserving methods, most of them
created by us recently to examine their performance and relative competitiveness. I tested them in
the case of several 2D systems to find how the errors depend on the stiffness ratio and the CFL
limit of the system for each algorithm. Then I created an anisotropic but equidistant grid by
shrinking the vertical dimension of the 2D system and investigated how this kind of anisotropy
effects the errors [61].

3.1. General definitions and investigation circumstances

I consider the 2D system thermally isolated (zero Neumann boundary conditions), for matrix
system see section 2.1.

In the first type of experiments, randomly generated cell capacities and thermal resistances
following a log-uniform distribution

C zlo(ac_ﬂcxmnd) R, :lo(aRX—ﬂRxxrand) R =10(aRz—ﬁszrand)
1 ? 51 > iz

have been given to the cells. The parameters O, B, Og,, Pge, Og,» B, of the distribution of

the mesh-cells data have been chosen to construct test problems with various stiffness ratios. More
concretely, I used the parameters shown in Table 3.1.

Table 3.1. The parameters used in algorithms.

Type NO- Cmin Cmax Rxmin Rxmax lzzmin Rzm ax
Non-Stiff ! 0 0 0 0 0 0
2 -1 1 0 0 0 0
Moderately 3 -1 1 -1 1 0 0
Stiff 4 1 1 1 1 -1 1
5 -2 2 -1 1 -1 1
Medium 5 5 1

Stiff © e 2 L

7 -2 2 -2 2 -2 2
8 -3 3 -2 2 -2 2
9 -3 3 -3 3 -2 2
10 -3 3 -3 3 -3 3
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The size of the grid is fixed to ~, =50 and N, =50, thus the total cell number is 2500, while the

final time is f, =0.28.

num

The numerical error is calculated by comparing my numerical solutions u; " produced by the

examined method with the reference solution u}ef at final time Zf, . The reference solution is given

by the “odel5s” routine of MATLAB with large prescribed accuracy. I use the three types of
(global) error [62] the £, maximum error defined in Eq. (3.1), I also use the average error in Eq.

(3.2)

Error(L,) = max u}ef () — 1" (t5) (3.1)
0<j<N
1 I¢ num
Brvor(Ly) =~ D iy (1) =" () (3.2)
1</<N
and the so-called energy error:
Error(Energy) = Y Cjluf (tg,) —u)"™ (t5) (3.3)

1<j<N
which, in case of heat transfer, gives the error in terms of energy.

For different algorithms these errors depend on the time step size (and the system parameters) in
different ways. Thus, I first calculated the solution with a large time step size (which was 7;_./4),

then repeated the calculation for subsequently halved time step sizes S=135 times until / reached a
small value. Now the aggregated relative error (ARE) quantities for each type of errors defined
above are calculated as an average of these errors. For example, in the case of the L error, it has

the following form:

ARE(L,) = éZS: log (Error(L,)) (3.4)

i=1

Finally, the simple average of the three kinds of errors also can be calculated:
ARE = %(ARE(LOO) +ARE(L)) + ARE(Energy)) (3.5)
3.2. Comparison between positivity preserving methods for a mildly stiff system
First, I examined the following concrete parameter-combination,
a. ==LB, =+, ag, ==1,Bz, =+, az, =0,z =0,

which configuration has number 3 in Table 3.1 and categorized as mildly stiff.

I have plotted the L errors as a function of the effective time step size Az and as a function of
the running times for all methods. In Figure 3.1 [ present the L, error as a function of the effective
time step size Az for the nine positivity preserving methods defined in Section 3, while in

Figure 3.2 one can see the £, errors vs. the total running times.
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One can see the LNe3 scheme is the most accurate, but the accuracy of the LH-CNe as well as the
SH-CNe and ASH-CNe methods [61] approach it. However, since LNe3 is a three-stage method,
it is slightly slower for the same accuracy than the LH-CNe, SH-CNe and ASH-CNe.
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Figure 3.1. The L errors as a function of the effective time step size (AtEFF ) for the (Mildly Stiff)

system, in the case of the UPFD, CNe, CpC, LNe2, LNe3, the OEH-CNe, the SH-CNe, the LH-CNe and
the ASH-CNe methods.
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Figure 3.2. The L, errors as a function of the running times for the (mildly stiff) system, in the case of

the UPFD, CNe, CpC, LNe2, LNe3, the OEH-CNe, the SH-CNe, the LH-CNe and the ASH-CNe
methods.
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3.3. Comparison between positivity preserving methods for a large, very stiff
System

I put new values for the o and  parameters for the very stiff system in the second case study:
(XC = _3’BC = +3, (XRX = _Z’BR)C = +2, G,RZ = _Z’BRZ = +2’

In Figure 3.3 and Figure 3.4, the L, error is presented as a function of the effective time step size

Atgr and the total running time, respectively.

I can see that in this case, the LH-CNe method outperforms all other examined positivity
preserving methods provided that not only the accuracy, but also the speed, is taken into account.
In Table 3.2, the data related to this numerical experiment is reported.

Irr'l' T T rT1rTI1 T T TIrT11|’ T T 1[T1rl'|'

10 107 10 107 10
Effective Time Step Size
Figure 3.3. The L errors as a function of the effective time step size ( At ) for the (very Stiff) system,

in the case of the UPFD, CNe, CpC, LNe2, LNe3, the OEH-CNe, the SH-CNe, the LH-CNe and the
ASH-CNe methods.
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Figure 3.4. The L, errors as a function of the running times for the (very Stiff) system, in the case of the
UPFD, CNe, CpC, LNe2, LNe3, the OEH-CNe, the SH-CNe, the LH-CNe and the ASH-CNe methods.

Table 3.2. Comparison the UPFD, CNe, CpC, LNe2, LNe3, the OEH-CNe, the SH-CNe, the LH-CNe
and the ASH-CNe methods for the very stiff system of 2500 cells.

Numerical Method Error(L,) Error(L,)) Energy Error Running Time (sec)
UPFD, Ar=5x10" 4.012x1073 1.44x107 0.753 0.2128

CNe, Ar=5x10" 2.046x107° 6.46x107 0.4042 0.3947
CpC, Ar=5x10" 3.034x107* 7.093%x107° 0.0333 0.357
LNe2, Ar=5x10" 2.622x107* 7.8522x107° 0.0448 0.5898
LNe3, Ar=5x10"" 9.6x107° 3.22x107° 0.02698 0.935
OEH-CNe, Ar=5x107" 7x107* 1.845x107° 0.995%x107" 0.4788
SH-CNe, Ar=5x107 2.16x107* 5.49x107° 0.315x107" 0.317
LH-CNe, Ar=5x10"° 2.16x107* 5.49x107° 0.315x107"! 0.477
ASH-CNe, Ar=5x107 9.4x107° 2.44x1077 1.5%1073 0.7048

3.4. Comparison the ARE errors between positivity preserving methods as a
function of Atyaxand stiffness ratio

Figure 3.5 and Figure 3.6 show ARE errors as a function of As,,, and stiffness ratio,

respectively. I note the stiffness ratio affected the accuracy of methods when they increased, so
the accuracy becomes worse compared to the cases of small stiff ratios.
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Figure 3.5. The ARE errors as a function of Atuax in the case of the UPFD, CNe, CpC, LNe2, LNe3, the

OEH-CNe, the SH-CNe, the LH-CNe and the ASH-CNe methods.
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Figure 3.6. The ARE errors as a function of Stiff Ratio in the case of the UPFD, CNe, CpC, LNe2,
LNe3, the OEH-CNe, the SH-CNe, the LH-CNe and the ASH-CNe methods.

I summarize the ARE error quantities, defined in Eq. (3.5), for both case studies in the following
Table 3.3:

Table 3.3. ARE (average relative error) quantities of different explicit stable algorithms.
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Numerical Method ARE (Mildly Stiff) ARE (Very Stiff)
UPFD -37.4544 -23.1613
CNe —42.0347 -25.9
CpC -80.778 —40.07
LNe2 —79.6922 -39.228
LNe3 -84.346 —43.75
OEH-CNe —72.9442 -35.09
SH-CNe —81.467 —41.4367
LH-CNe -81.4812 —41.428
ASH-CNe -81.376 —41.39%4

3.5. Comparison the ARE errors between positivity preserving methods as a

function of anisotropy coefficient (AC)

First, I solve PDE Eq. (2.2) with o =1, on the unit square (x,z)e[O,l]x[O,l]. The initial
condition is the product of two sine functions:

u(x,z,t =0)=sin(zx)sin(kzz) (3.6)
where the wave number £ is currently fixed to k& =1. The simplest zero Dirichlet boundary

conditions are used

u(x=0,z,t) =u(x=1z,t) =u(x,z=0,t) =u(x,z =1,¢) =0,

The analytical solution of this problem is obviously

u(x,t) =sin(zx)sin(kzz) o () 3.7)
I apply an equidistant grid to discretize the space variables first I take Ax =0.02, Az =0.02.

The number of cells along the axis x and z are set again to 5 =50 and &_ = 50. Thus, I have a
grid with total cell number = ¥ _x N, =50%x50=2500.

Then I performed systematic experiments by decreasing the dimension of the system as well as
the cells in the z direction to introduce anisotropy into the grid. It means Az is subsequently
decreased by a factor of 2, first to Az = 0.5, then to Az = 0.25, etc. It is convenient to introduce
the following anisotropy coefficient:

ac=2

Az
Then I examined the aggregated errors as a function of this anisotropy coefficient AC. Of course,
the initial condition function in Eq. (3.6) and the exact solution must be also adjusted with
recalculating the wave number 4 =24<~'. In Figure 3.7, ARE errors are presented as a function
of the anisotropy coefficient AC. I note the relative advantage of LNe3 method increased whereas

the relative disadvantage of other methods is also increased. In Table 3.4, I give Ay, and the

stiffness ratio for some AC values.
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Figure 3.7. The ARE errors as a function of anisotropy coefficient AC in the case of the UPFD, CNe,
CpC, LNe2, LNe3, the OEH-CNe, the SH-CNe, the LH-CNe and the ASH-CNe methods.

Table 3.4. Az,,,, and stiffness ratio quantities of different AC values.

Anisotropy coefficient Atyx Stiffness Ratio
1 1.0423x107* 2.025%10"3
10 2.0639%x107° 1.0227x10™°
100 2.084%x107% 1.0127x10™
1000 2.084x1071° 1.0123x10%°

3.6. Summary of this chapter

In this chapter, I conducted systematic tests of nine explicit numerical algorithms which
were introduced in previous papers to solve the heat equation. All of the methods preserve the
positivity of the solutions, thus stable regardless of the time step size and the stiffness of the
system. First, I examined two-dimensional stiff systems. I observed that the 3-stage LNe3 method
produced the most accurate results for a given time step size, but the LH-CNe method (and
sometimes the SH-CNe method) requires the least CPU time to reach any prescribed accuracy.
The increasing stiffness ratio and the decreasing CFL limit decreased the accuracy of methods,
and the advantage of the best methods compared to the worst are decreased.

I also examined the performance of the method for different levels of spatial anisotropy. I obtained
that if the difference between the horizontal and vertical dimensions of the cells are increasing, the
advantages of the LNe3 method and the disadvantage of the first order methods are increasing.

I can conclude that if there is a possibility to construct the OEH structure (because the mesh is
rectangular) than the hopscotch-CNe methods, especially the LH-CNe is the most effective among
the positivity preserving methods, except when the anisotropy is strong. However, if an
unstructured mesh is given, the LNe3 method is the most effective. For a very anisotropic system,
for example a thin and wide layer, I propose the LNe3 method. Therefore, the time step size, the
shape of the geometry, and the type of materials all affect the stiffness ratio of the system, thus

affecting the stability of the methods.
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4. EXPLICIT STABLE FINITE DIFFERENCE METHODS FOR DIFFUSION-REACTION
TYPE EQUATIONS

In this chapter, I construct a new 2-stage explicit algorithm to solve partial differential equations
containing a diffusion term and two reaction terms. One of the reaction terms is linear, which may
describe heat convection; the other one is proportional to the fourth power of the variable, which
can represent radiation. A member of our research group analytically proved, for the linear case,
that the order of accuracy of the method is two, and that it is unconditionally stable. Then large
systems with random parameters and discontinuous initial conditions are used to demonstrate that
the new method is competitive against several other solvers, even if the nonlinear term is extremely
large. Finally, I show that the new method can be adapted to the advection—diffusion-reaction term

as well.
4.1. Construction of the New Method

In one space dimension, I take x, =iAx, i=0,..,N-1, which is a common space discretization. Let

us fix the time discretization t0 ¢, =z +nAs, n=0,..T, T =(t5, —t,)/ A¢. 1 introduce the mesh-

parameter r:Zx—Azt and y:%. The original UPFD method applies the most common spatial

discretization of the diffusion term based on the central difference formula, while it applies the
backward difference formula for the advection term. However, the time levels are treated in a
tricky way [63], such that the neighbors are taken into account fully at the old time level, where

their values are known, and only the actual cell is treated implicitly. It means that for example Uiy
is used instead of ,+!, with which they obtained:

i—1 ?

n+l n n n+l1 n n+1 n
Wi W Micl —2u;  tupy _gti THin _Kulpﬂ 4.1)

h Ax? Ax

This can be arranged in a fully explicit form to obtain the following:

u +r(ufy +ufyy )+ gt
Algorithm 1, the original UPFD 4" =— ( 1 +l) - 4.2)
14+2r+pu+Kh

Now I adapt this method to Eq. (2.4) where a=0 but o> 0. In principle the nonlinear term can
be incorporated into this scheme in many different ways. I choose the following treatment: I insert

the radiation term at the level of Eq. (4.1) as ' (1) ~ u/"*! (u{’ )3 , which again can be expressed in an
explicit form, and with this I obtain the following adaptation of the original UPFD algorithm to
Eq. (2.4):

Algorithm 2, UPDF for the diffusion-reaction-radiation Eq. (2.4)

n n n
o W +r(ul~_1 +ul~+1)+qih
ui =

) 1+2r+Kih+<7h(u,~”)3
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If r,¢q;, K, and » have arbitrary nonnegative values and the values of u at the beginning of the
time stapes are nonnegative, then both the numerator and the denominator are nonnegative in this
formula. It means that this formula preserves positivity similarly to the original UPFD formula for
the strongly nonlinear case as well. As [ will see later, its accuracy is not very good, thus I proceed
to construct a two-stage method as well.

I am going to combine the UPFD idea with the so called #-method, which can be applied for
the diffusion term in the following way:

u™ =yl +r[9(u?_1 —2u]' +u{'+1)+(1—t9)(u,-n_ql — 2! +“1}$1):| (4.3)
where o<[o,1]. If 6=1, this scheme is the forward-time central-space (FTCS) scheme, which is

basically the explicit Euler time integration. For smaller values of 0 this formula is implicit, and
for =0, )5 one has the implicit (Euler) and the Crank—Nicolson method, respectively. Using the

trick above and incorporating the reaction and the source terms I can write:

w™ =y 4 r|:—2¢9u;1 —2(1-0)u™" +ul, + u;’+1:|—AtKiu{H1 + Atg, + oult! (u-” )3 (4.4)

If one takes €=0, the original UPFD treatment is obtained back. The point is that this more

general formula can also be easily rearranged to obtain an explicit formula, according to which the
new value of the u variable has the following form in the 1D equidistant case:

Algorithm 3, theta-generalization of Algorithm 2

il _(1—2r49)ul~"+r(ul~"_1+ul~”+1)+Atql- 45
Uj - 3 ( . )
1427 (1-0) + ALK, + ot (u]!)

Since I formally started from an implicit Eq. (4.3) but made it fully explicit, I started to call
these methods pseudo-implicit. The main novelty of this chapter is that I organize Eq. (4.5) into a
two-stage method as follows inspired by the well-known predictor-corrector methods [64]. The

calculation starts with taking a fractional-sized time step using the already known ' values, and
then a full-time step is made.

Algorithm 4, 2-stage pseudo-implicit method for the diffusion-reaction-radiation Eq. (2.4)

Stage 1. Take a partial time step Az, = pAz, p >0 using Eq. (4.5) with parameter 0;:

(1 —2pré, )ul" +pr(uf_1 +ul»”+1)+int1 - K At

uPed = 5 (4.6)
142pr(1-6) + v, K At + o (uf)
Stage 2. I redefine uf red by calculating the linear combination with 0<A<1:
pred _ 4 pred n
wp = Au; +(1—/1)u,~ 4.7)

Take a full time step with the Eq. (4.5) with parameter 02:

_ n pred pred _ n pred
il (1 2r92)ul- +r(1,ti_1 +up )+q,At Kl-At(wlul- +Wyu;
=

1+2r(1-6,)+(1-w —wz)KiAt+6At(ulpred)2 ul
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where v, v,, w;, w, are real numbers which are considered as free parameters. I must mention that

the mathematically correct form of Eq. (4.7) would be u,1

in /Iulpred +(1-2)u;", but I immediately put
down it in the form which is to be used in a computer code to spare memory. I also note that with
this treatment of the nonlinear term I obtain a second-order method with very good stability

properties, as I will see later.

In the case when one has a general mesh and the material properties are functions of the space
variables, the spatially discretized form of Eq. (2.4) can be generalized as in section 2.1.

Now I can write the modified UPFD and our pseudo-implicit algorithms in the general case as
follows:

Algorithm 2G, UPDF for the diffusion-reaction-radiation equation, general mesh-form:

ul + A +qAt
o i 4T - (4.8)
1+2r; +K,.At+aAt(u,-”)

Algorithm 4G, 2-stage pseudo-implicit method for the diffusion-reaction Eq. (2.4), general-mesh
form.

Stage 1. Take a partial time step Af =47 5, 4 >0, with the Eq. (4.8):

ored (1+(1—%)rj)ul~n + 4 +q,A
u; =

1

L7, + KA + o (] )3

Stage 2. I redefine u,Pred by calculating the linear combination u} red uP red +(1—/1)u,~n .

Take a full time step with the Eq. (4.8):

il (l—rl-)u;1 +4; +Kl-At(ulPred —ul-")+ql-At
uj

2
1+7 + K;At + oAt (ulpred) ul

I emphasize that in Algorithm 4G, », = ZA—t in both stages. I stress again that Algorithm 4 is proven

i

to be unconditionally stable only for 1= %

4.2. Numerical Results
4.2.1. Comparison with Other Methods for a Large, Extremely Stiff System

In this subsection, I solve Eq. (2.4) in a two space dimensional, topologically rectangle-structured
mesh with ~ = N, x N, cells (see Figure 2.1 for visualization). The size of the system is fixed to

N, =100 and N, =120, thus the total cell number is 12,000. Randomly generated cell capacities
and thermal resistances
G, =100 Foxrand) p - _yg(npuxrand) g _jofer—frxrand) (4.9)
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have been used by a log distribution, where the (pseudo)random number rand is generated by
MATLAB for each quantity with a uniform distribution in the unit interval (0, 1). In this
subsection, K =0 and o =0, thus I deal with the linear heat equation and M = M” . The exponents
have been set to the following values:

Qe =0p, =g, =3, fc = Pre = Pr- =3,
which means that log-uniformly distributed values between 0.001 and 1000 have been given to the
capacities and the resistances. Different random values have been generated for the initial

conditions (0) = rand and the source term ¢, = 0.2xrand —0.1 as well. The final time of the simulation

has been set to #;, =0.2.

I consider zero Neumann boundary conditions (isolated system). To implement this, I omit those
terms of the sum in Eq. (2.4) which have infinite resistivity in the denominator because of thermal
isolation at the boundary. If the (nonzero) smallest and the largest absolute value eigenvalues of
the system matrix M, defined in Eq. (2.10) — (2.13), [65], are denoted at the end of section 2.1 In
the present case, the stiffness ratio is 2.3x10"" and A/fTSS =1.03x10°¢, respectively. I will see that this
implies serious under-performance of the conventional explicit methods, which are only

conditionally stable.

In Section 4.2, the reference solution is obtained using the odel5s built-in solver of MATLAB
with sufficiently strict error tolerance "Tol'=10""*> (where Tol ='AbsTol' = RelTol') and therefore high
precision. The equations of error defined in Eq. (3.1) - (3.3).

The performance of the new algorithms was compared with the methods in section 2.2 and 2.3
coded by me.

For the calculations where running times are measured, a desktop computer with an Intel Core i7-
9700 CPU, 16.0 GB RAM is used, while the software is the MATLAB R2020b [66]. The total
running time of the algorithms is measured by the built-in tic-toc function of that software.

I have examined the £, 7, and energy errors as a function of the time step size Ar and the running

time. In Figure 4.1 [ present the £, error as a function of h, while in Figure 4.2 one can see the 7,

errors vs. the total running times. Table 4.1 collects some results which have been obtained by the
numerical schemes coded by us and the “ode” solvers of MATLAB. I set A=1 as it is explained in
Remark 1.
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Figure 4.1. L1 (average) errors as a function of the time step size of the new pseudo-implicit (PI)

algorithm and some other methods for the first, extremely stiff system with K =0, c=0.
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Figure 4.2. L1 (average) errors as a function of the running time for the first (extremely stiff) system, in
the case of the algorithms coded by us as well as of the MATLAB routines.

Table 4.1. Comparison of different algorithms for the extremely stiff system of twelve thousand cells.
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Numerical Method Error(L,) Error(Z,) Energy Error Running Time (sec)
ode23, Tol = 1071 7.15x 1073 6.68 x 1077 1.80 x 1075 3.04 x 10°
odel5s, Tol = 1072 1.30 x 1073 7.33 x 1075 8.79 x 10° 8.69 x 10?
ode23s, Tol = 1072 433 x107* 2.37 x 1075 2.80 x 10° 3.02 x 10°
ode23t, Tol = 1072 571 x 107* 3.14 x 1075 3.75 x 10° 1.00 x 103
ode23tb, Tol = 1072 428 x 107* 2.33x107° 2.77 x 10° 9.82 x 10?
UPFD, At =1 x 107 2.20 x 1073 1.24 x 1075 486 x 1071 5.65 x 101
Heun, At =1x107° 1.23 x 10711 3.79 x 10713 4.01x 1078 1.05 x 102
CNe, At =5x 107 5.85x 1073 3.36 x 1075 1.28 x 10° 8.28 x 10°
LNe, At =1 x 1075 2.70 x 1073 1.28 x 1075 3.58 x 1071 8.07 x 10°
CpCp=1/2, 4t =2.5x107° 1.21x 1072 461 x107° 1.08 x 10° 3.17 x 10°
PIA=1,4At=25x%x10"° 8.44 x 1073 3.66 x 107° 8.62 x 107! 3.26 x 10°
PIA=1,4t=1x10"° 2.54x 1073 1.00 x 1075 2.41x 1071 8.19 x 10°
PIA=1,At=5x10"° 9.25 x 10~* 3.41x 107 8.50 x 1072 1.63 x 10!

One can see that the new scheme is slightly more accurate than the LNe and the CpC, and
significantly more accurate than the first order UPFD and CNe methods. I note that the Heun
method is not present in the figures, because it is convergent only below the CFL limit, which is
lower than the time step sizes presented in the case of my methods. The explicit MATLAB solvers
ode45 and odel13 were not able to provide any meaningful results and in the case of the ode23, it
was hard work to find those tolerances for which the method works, albeit very slowly. The
implicit MATLAB routines performed usually much better, but even they are severely
outperformed by the explicit and stable algorithms if running times are considered.

4.2.2. Comparison with Other Methods for a Large System with Strong
Nonlinearity

In the second case study, I set x, =3xrand , ¢, =2xrand and o =1000. The latter coefficient has

been chosen so large because I would like to demonstrate the performance of the new method for
a strongly nonlinear case, but the values of the variable u are typically between zero and one, thus
their fourth power is usually a rather small number. I give new values to the a and  exponents:

ac =3, fo =6, ag, =ag. =3, Pp, =Pr. =0

I calculate the stiffness ratio and the CFL limit in two different ways, both of them without taking
into account the nonlinear term. If I use the full M matrix, I obtain that the stiffness ratio is 7.7x10°
, much smaller than in the previous case, while the CFL limit for the standard FTCS was
AtEE. —9.76x10~*, Which, I stress again, holds for the Heun method as well. If I use only the Az”

matrix instead of M, the stiffness ratio is 6.8x10°, while the CFL limit is asZ%_ —9.75x10*. The

reason behind these numbers is that the eigenvalues close to zero have been significantly increased
(in absolute value) by the new reaction term while those with large absolute values remained
almost the same. All other parameters and circumstances, such as the size of the system and the
range of the initial values are the same as in the previous subsection. I note that I were not able to
adapt our previous methods CNe, LNe and CpC for the K =0, o =0 case, nor when the advection

term is present, without losing their order of convergence (that is why I started to develop the

current methods), thus they are not presented in this and the next subsection. In Figure 4.3 and
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Figure 4.4 the energy and the average errors are presented as a function of the time step size and
the total running time, respectively. In Table 4.2. I report the data that belong to this numerical

experiment.
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Figure 4.3. Energy errors as a function of the time step size for the second (very stiff) system, in the case
of the UPFD Algorithm 2, the Heun method and the new PI algorithms.
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Figure 4.4. Energy (average) errors as a function of the running time for the second (very stiff) system, in
the case of the new algorithms and some other methods.
Table 4.2. Comparison of different algorithms for the very stiff system of twelve thousand cells.
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Numerical Method Error(L,) Error(L,) Energy Error Running Time (sec)
ode45, Tol = 107! 449 x 1073 1.57 x 1076 8.54 x 1071 4.05 x 10!
ode23, Tol = 107! 7.97 X 1072 2.25x 107 1.17 x 10t 1.67 x 10!
odel13, Tol = 1071 9.23 x 1072 1.07 x 1075 1.57 x 10° 1.63 x 10!
odel5s, Tol = 1073 3.14x 107* 494 x 107° 4.20 x 10? 1.65 x 103
ode23s, Tol = 10™* 9.94 x 1075 2.31x 1075 1.93 x 10! 3.84 x 10*
ode23t, Tol = 10™* 6.78 X 1075 1.78 x 1075 1.50 x 10! 1.68 x 103
ode23tb, Tol = 10~* 141 x 107 5.25x 1075 4.48 x 10? 1.67 x 103
UPFD, At =5 x 107° 1.79 x 10™* 1.22 x 1075 1.19 x 10! 8.67 x 1071
Heun, At =5x 107 1.12x 107 7.85 x 107 6.50 x 10° 3.33x 1071
PIA=1/3,4t=125%x1073 3.92 x 107 1.53 x 1075 1.19 x 10! 1.04 x 1071
PIA=1/2,4t=125%x1073 3.85x 107 1.29 x 1075 8.97 x 10° 1.06 x 1071
PIA=1/2,At=5x%x10"* 7.76 X 1075 2.58 x 107 1.76 x 10° 2.65 x 1071
PIA=1,4t=125x1073 417 x 107* 470 x 107° 3.71 x 10t 1.00 x 1071

As it is expected, due to the larger CFL limit and weaker stiffness, the conventional explicit
methods performed much better than the implicit ones, and especially the ode45 can compete with
my methods if high accuracy is required. However, for low and medium accuracy requirements,

the new pseudo-implicit method has the best performance.

4.3. Summary of this chapter

In this chapter I reached my goal to construct a fully explicit and stable numerical algorithm to
solve the time-dependent diffusion (or heat) equation with linear and nonlinear reaction terms,
where the latter represented heat loss due to radiation. Using the UPFD idea, I organized the theta-
formula into a two-stage algorithm, where, in each stage, the latest available u values of the
neighbors are used to make the originally implicit theta-formula completely explicit. I analytically
proved for the linear case that the obtained method is second order in time step size and
unconditionally stable.

Then two 2-dimensional stiff systems containing 12,000 cells with discontinuous random
parameters and initial conditions were constructed. The performance of the new algorithm as well
as several other methods was examined for these systems. According to the numerical results, the
new method is quite competitive. It is second order and stable for the non-linear case as well, and
it gives quite accurate results orders of magnitude faster than the professionally optimized
MATLAB routines and it is more accurate than all other examined explicit and unconditionally
stable methods. Although it is not positivity preserving as the original UPFD algorithm, it is stable
for relatively large time step sizes as well, even if the nonlinearity is strong. Moreover, it is easy
to implement and can be applied for un-structured grids as well. The conclusion is that this new
pseudo-implicit algorithm has the most important advantages of the conventional explicit and the
implicit methods at the same time.
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5. TESTING SOME DIFFERENT IMPLEMENTATIONS OF HEAT CONVECTION AND
RADIATION IN THE LEAPFROG-HOPSCOTCH ALGORITHM

Based on many previous experiments the most efficient explicit and stable numerical method
to solve heat conduction problems is the leapfrog-hopscotch scheme. In previous chapter I made
a successful attempt to solve the nonlinear heat conduction-convection-radiation equation by PI
method. Now I implement the convection and radiation terms in several ways to find the optimal
implementation. The algorithm-versions are tested by comparing their results to 1D numerical and
analytical solutions. Then I perform numerical tests to compare their performance when simulating
heat transfer of the two-dimensional surface and cross section of a realistic wall. The latter case
contains an insulator layer and a thermal bridge. The stability and convergence properties of the
optimal version are analytically proved as well.

5.1. The Examined Numerical Methods
5.1.1. The Leapfrog-Hopscotch Method for the Heat Conduction Equation

To use the leapfrog-hopscotch method, or any other odd—even hopscotch method, the space
domain must be discretized using a special, so-called bipartite mesh. This means that the mesh is
divided into two disjoint subsets. The nodes or cells belong to the first and second subsets that are
labeled as odd and even, respectively. The main requirement is that all the immediate neighbors
of the odd cells must be even and vice versa, just like on a checkerboard. I describe it in the case
ofa 1D interval xe[x,, xy ], L =xy —x, on which an equidistant grid is constructed with coordinates

Xo, X;, .., Xy of nodes, so x; =x,;+Ax, j=L..,N, Ax=L/N . The time domain is te[to,tﬁn] and it

is discretized as usual: +/ =/*+ jAr, j=1,.,T, AT =t™ —1° where Aris the time step size. In all

stages, the following version of the theta formula (obtained from the central difference formula for
the space derivative) is used as a starting point:

uf =l [l el - 200! =2(1-0)u | (5.1)
where 06¢€[0,1]. The space-time structure of the algorithm is presented in Figure 2.3, where one

can see that the neighbors ujy; are almost always taken into account at the time level half way

between the actual old and new time levels. The first stage has the length of a halved time step,
and it calculates new values for the odd nodes using =0, thus I have the formula

%:”?+%(”?—1+“?+1)+A%'% (5.2)

u/
1+r

4

symbolized by thick red arrows in the figure. Then a full-time step is made with 6= % for the

even nodes using
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1-7 u?+r ull/j +ul.% + Atg;
()l () 53

! 1+~

After this, full time steps are taken alternately for the odd and even nodes with Eq. (5.3),
symbolized by blue and green arrows in the figure. Finally, a half-length time step (green arrows)

must close the calculations with 8 = % for the odd nodes

ur_(l‘/) B R v (5.4)

b 1+A

The key point here is that the latest values of the u function are always used, which means that the

time indices of the node variables have to be set according to this logic, in which the figure can

. 1
help. For example, when the odd node value u;J% is calculated, u,-l_l , ul1 1, and ulé are used, etc.

5.1.2. Implementations of the Convection Term

Until this point, the LH algorithm has been given only for the conduction and the heat source term.
Now, the —Ku term is also included, which is done in several ways.

1. Explicit treatment means that one calculates the increment due to the term and simply adds it to

the final value of the new u, just as it would happen with the explicit Euler method. For example,

. . . . . A
in the case of the first stage with a halved time step, the increment is _Et Ku?, thus I have

A “?JF%(”?—H”?H)JFA%'% At
ul - = -—

i

Ku 5.5
1+7 2 (5-5)
I note that I exemplify the versions with a first-stage formula, since it is the least nontrivial due to

the half-sized time step.

2. Quasi-exact treatment means that I analytically solve the ODE

du
dt

and then take the effect of the convection terms into account in a separate calculation at the end of

—=—K-u (5-6)

each stage. For example, in the case of the first stage with a halved time step, [ have

/temp uj +/( 1+”z+1) A'% (5.7)

1+r

and u% _ e—KAt/Zu%,temp (5 8)
1 ] .
I expect that this version has outstanding stability, since the absolute value of the solution is always

/ temp

smaller than the temporary value , where only the conduction and the source terms are taken

into account.

3. Pseudo-implicit treatment means that the u variable in the convection term is taken into account

at the new time level, so Eq. (5.1) is extended as follows:
ul! =u,”+r[ul~"_1+u —26u]' —2(1-0)u "+1J KAn (5.9)
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With this, the K term turns up only in the denominator, thus the first stage formula is the following:

1 u; +/( U;_ 1+”z+1) A'ql’ (5.10)

1+r+AtK /2

Note that in our group research paper [67], only this implementation was proposed.

4. Now, the u variable in the convection term is taken into account at the old time level, so in Eq.
(5.9), the last term is changed to —KAwj' . This means that the K term turns up only inside the
numerator, so the first stage formula is the following:

0, r/(,0 0 At/ g — 0
u%:ul +A(uz—l+uz+l)+ A q; —KAtu; /2 (511)

! 1+r

Due to the lack of a better name, I call this version temporarily ‘inside’.

5. Mixed treatment means that I make a linear combination of the last two versions (pseudo-
implicit and inside) at the level of Eq. (5.9), where the last term is changed to

—pKAu!! —(1- p)KAw! . The real parameter p has a similar role as that which 6 has for the
conduction case. Now, the formulas are the following:

A ulO +%(ulo_1 +u?+1)+A%~ql- —(l—p)KAtulQ /2
uj = =

1+7r+ pKAt/2

First stage:

' (1 r)u +r( +/+un+/)+Atq (l—p)KAtul-n

Intermediate stages: u]" = (5.12)

1+r+ pKAt
T (1—%)uf_%+%(u£1+u,~7_;1)+A%~qi—(l—p)KAtuiT_%/Z
Last stage: u; =
1+%+pKAt/2

I performed tests with several values of p, but here I present them only for three values, namely,
-1/ 1/ 2
P=)s )y 5
5.1.3. Implementations of the Radiation Term

In these sections and next section, it will turn out that the mixed treatment with p =% 1s the most

effective; thus, when defining different treatments of the radiation term, the convection term will
be taken into account that way. The radiation term will be implemented in similar ways as the

convection term, but now one has more possibilities.

1. Explicit treatment:

u; +/( 1+ul+1) A.qi—KAtu?/Z_O_At(ulQr

i 1+r+KAt/4

/2 (5.13)

2. Quasi-exact treatment: The analytical solution of the ODE

du_
a0
is u(t)=((ug) " +30¢) 3 (5.14)
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This means that I have the following two sub-stages:

0
Sub-stage 1 / temp _ u; +/( u;_ 1+ul+1) AA.q—KAtui /2 (5.15)
1+r+KAt/4 '
3
Sub-stage 2: u/” = {( f2 “““"] +3aAtJ (5.16)

3. Pseudo-implicit treatment: Eq. (2.1) is now modified as

u”+1=uf+r[ 2u +“z+l 29ul~"— (1 9) "H} KAtu"+1/2 KAtu /2— O'Atu”H( ) (5 17)

1
1 u; +/( 1+u,+1) Aw]—KAtu?/Z (5.18)
1+r+KAt/4+0'At( )/2

This yields

4. ‘Inside’ treatment: The last term of Eq. (5.17) is now written as —aAt(u;“ )4 , which yields

ui%zu?vL%(M?_ﬁ”gl) Aq KAtu /12— O'At( )/2 (5.19)
1+r+KAt/4

5. Mixed treatment with equal share of the pseudo-implicit and inside treatments. The last term of

Eq. (5.17) is the average of the previous two cases, i.e., it is —on(u/ )4 12— ot (uf )3 /2, which

1 u; +/( 1+ul+1) A~q[—KAtuQ/2—O'At(ulo)4/4 (5.20)

yields
l+r+KAt/4+GAt( ) /4

i

Now, I turn my attention to the nonstandard or nonlocal treatments of the radiation term. Aiming
to avoid symmetrical breakings and an extensive increase in the running times, I try three different
possibilities. Since the pseudo-implicit version Eq. (5.20) is the most successful among the
treatments presented so far, [ modify this version, mostly by changing one or two of the u; -s in the

(u; )3 product in the denominator of, e.g., Eq. (5.20) in the following three ways.

6. Product treatment (denoted by LH PI NL prod): Instead of (u,o )3 and (ui” )3 , Twrite u udud,

and o u/'ul',; , respectively.

3 0 ,,0
7. Average treatment (denoted by LH PI NL av): Instead of (u,o) and (u{’ )3 , [ write Lzum(ulo )2

n n
u;_1+u; 2 .
and %(u,”) , respectively.

8. In the case of the time-average treatment (denoted by LH PI NL time), there are two sub-stages.
First, I calculate the effect of the diffusion and the source terms by (5) — (7) to obtain a temporary

value u/°™. Then the time average u/™ = (u,-” +u}emp)/2 is inserted into Eq. (5.20), as follows:

04 /(w0 +40 VAL .o — KAgtimeay /o
u%:ul +A(”1—1+u1+1)+ A'qz l:l (521)
1+r+KAt/4+aAtu}‘meaV(uQ) /2

1
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Due to the 1-~ factor in the numerators of, e.g., the second equation of equations (5.12), the
formulas can give negative temperatures for large r. In these cases, large negative values of the

term (»')* can arise in the denominator, which may cause instability. To avoid this, in some cases,

I apply a simple trick with the following conditional statement:
if ! <0 then u =0 (5.22)

5.1.4. Methods Used for Comparison Purposes

I present three explicit methods, which are known to be unconditionally stable for the heat
conduction case. However, as far as I know, they have not been applied to the case where

convection and radiation are also present.

1. The Dufort-Frankel (DF) method [64] (p. 313) is the textbook example of explicit and
unconditionally stable methods. It is a two-step but one-stage algorithm with the following
formula, where the convection and the radiation terms are treated in a mixed way:

. (1- Zr)uin_l + Zr(ul-’i] +uil )+ 2Atq; — AtKu)' — Ata(ul” )4

o : (5.23)
1+ 27+ MK +Ator(uf)

Since this algorithm is not a self-starter, ./ must be calculated from ) by another method. I

employ the UPFD formula [67] for this purpose:

n n n
il u; +r(uH +ul-+1)+Atql-
u _

b 1+2r+AtK+At0(ul-n )3

2. The alternating direction explicit (ADE) scheme is a known, but non-conventional method [68],
[69]. In a one-dimensional equidistant mesh, one splits the calculation into two directions, first
sweeping the mesh from the left to right (using auxiliary variable a) and then vice versa (with variable
b). In the case of Dirichlet boundary conditions at nodes 0 and N, one sets

al” :ul-n ,i=1..N, a6’+1 :u8+1 and bl-" :ul-” Ji=N,N-1,...1, b]'\’,+1 :u}?\fl
Then, in case of pure conduction, the following equations are solved from left to right and from
right to left, respectively:

At Ax?
prtl _pn
and A zé( b b b

Since, on the right hand side of these formulas, both 4, and b5, are taken into account 50-50% in the

old and new time level, it is plausible to use the mixed treatment of the convection and radiation
term here, too. With this, the explicit expressions are the following:

oy (==K 2)al (o + afyy )+ Mg, - At (o] )4 /2
aj

1+r+AtK+Ata(al-”)3/2
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(1=r =K/ 2)Bf +r (B + B3 )+ At ‘A“’(binr /2

prl =

(5.24)

3
L7+ MK 2+ Ao (b)) /2

The final values are the simple averages of the two half-sided terms: /"' = (ai"“ +b,-”+1)/ 2. I note

that for non-uniform meshes, the ADE method loses its fully explicit character, and matrix

calculations would be necessary, so in Section 5.2 it is not used.

3. The original odd—even hopscotch (OOEH) algorithm has been known for half a century [70].
Its time—space structure is presented, e.g., in [71]. It uses the usual FTCS formula (based on explicit
Euler time discretization) at the first stage and the backward time central space (BTCS) formula
(implicit Euler time discretization) in the second stage. I now adapt it to my case in a way where
the convection term is always taken into account at the new time level, while the radiation term is
treated first explicitly and then in the pseudo-implicit way. The used formulas are the following:

(1-2r)u + r(u}h Ui ) +Alg; — Am(”in )4

First stage: ™t =
1+ AtK
+1 +1 +1 +1
. il ul' +r(u;1_1 +u;1+1 )+Atqi il ul' +r(u;1_1 +u;1+1 )+Atqi
Second stage: u™ = U= 3
1+ 27+ K +Ator(uf ) 1+ 27+ K +Ator(uf )

5.2, Simulation of a Realistic Wall
5.2.1. The Structure and the Materials of the Wall
In this section, a wall segment is simulated with dimensions 1m in the x and z direction and
0.2m 1n the y direction. As one can see in Figure 5.1, the following two geometries are considered:
A. A wall’s surface is examined, which is entirely built of brick.

B. Cross section of a wall with two layers composed of brick and rigid polyurethane foam

insulator with a steel beam thermal bridge.

Insulator

Brick

Left Boundary
Right Boundary

A Lower Boundary B  Thermal Bridg;i|

Figure 5.1. (A) surface of the wall, (B) wall with insulator and thermal bridge.
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Real material attributes are taken into consideration, which are presented in Table 5.1. One should
keep in mind that although these coefficients are constant (that is, they don't change with time,
space, or temperature) within a material, they have a sharp discontinuity at the boundaries of
different materials.

Table 5.1. Properties of the applied materials [25].

p[kg'm%] k [W'mfl-KflJ c [Jokg’l-K’lJ
Brick 1900 0.73 840
Rigid Polyurethane Foam 320 0.023 1400
Steel Beam 7800 16.2 840

5.2.2. Mesh Construction

In the used approximation, no physical quantities are changing in the y-direction, which is
perpendicular to the surface of Figure 5.1. I use Ay; =0.2 min order to get a realistic problem. The
other two coordinates are in the unit interval, (x,z) <[0,1]x[0,1], thus the total area of the meshes is
1 m?. An equidistant mesh with square-shaped cells and a non-equidistant mesh with rectangular
cells are the two types of meshes that were constructed. The number of cells along the x and the z
axes are Nx = 100 and N, = 100, therefore the total number of cells is ¥ =N N, =10,000. The non-
equidistant mesh contains high cells on the upper side and low ones on the lower side of the wall,
as well as wide cells on the left side and narrow ones on the right side of the wall. The width and
height are decreasing gradually both in the x and z directions consecutively, following a geometric

series. The sum of the first n + 1 terms of a geometric series, up to the term ", (r#1), is

_ .+l
avar+ar’ +ar’ +....+ar" :Zark :a[llr J (5.25)

Here n=N,-1=nN_ 1. The values » = 0.98 and a = 0.0234 are used, which give Ay, =0.0234 and
Az =0.0234 on the left and the upper sides, respectively, while Azy, =Axy = 0.98” - Ax; =0.00317
on the right and lower sides. The obtained meshes are shown in (Figure A1-1 in Appendix).

In the case of the wall’s surface, I apply only the equidistant grid. However, in the case of the cross
section of the wall with an insulator, I apply both kinds of mesh: the equidistant and the non-
equidistant. For programming simplicity, in a cross section, bricks always make up the left half of
the cells, whereas the insulator (containing the thermal bridge) makes up the right half. This means
that, in the equidistant case, the thermal bridge has the same thickness and volume as the insulator,
but the thickness of the insulator is smaller (0.269 m) in the non-equidistant case, as shown in
Figure 5.1. B. The horizontal position of the thermal bridge is between x=0.5 m and x=1 m for an
equidistant mesh and between x=0.735 m and x=1m for a non-equidistant mesh. The height of the
bridge is two cells (2 cm) in the z direction, i.e., 0.02 m, while it is vertically positioned in rows
number 20 and 21 from z=0.37 m to z=0.39 m. Resistance and capacitance of heat conduction are
defined in section 2.1.
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5.2.3. The Initial and the Boundary Conditions

In this section, the final time (the end of the analyzed time span) is 7, =10,000 s. The time

step size will be measured in seconds as well. I used zero Neumann boundary conditions in all

cases for all boundaries, which prohibits the flow of conductive heat at the boundaries:

Ou Ou Ou Ou
—(x, =0,t =—(x, :Lt =—(x, =0,t =—(x, =1,t =0.
ox (x,2 ) ox (x,2 ) oz (x,2 ) oz (%2 )

This is accomplished by setting the necessary resistances to infinity and setting the value zero for
the matrix elements describing heat conduction through the boundary.

A) In the case of the surface area simulation, the heat transfer by radiation and convection is

happening to the y direction, i.e., orthogonal to the plane of Figure 5.1.

A linear function of the x variable is applied as initial condition:
u(x, z,t= 0) =300—-280x
I have used values from the literature [25] for the convection heat transfer coefficient 4, as one can

see in Table 5.2. Since the surface is not an ideal black body, I multiplied it by the appropriate

emissivity constant to obtain realistic values for o*. I estimate the value of 4* for the heat

generation that contains a factor of the solar radiation as shown below. The ambient air temperature
is taken to be 27°C~300K..

Table 5.2. The convection and radiation parameters, heat source in case of wall surface area [39].

W * W —8 * W " W
h|:m2 K:l S |:m2 K4 x10 :| 9 shadow I:F:| Gsunny |:m2

All elements 4 4 300 800

Due to the nonzero temperature u, of the air (in Kelvin), the expression g contains also the
convective heat gain. I can obtain the value of ¢ as follows
9=
The convective and radiative energy transfer occurs in the y direction, perpendicular to the surface.
Consequently, they are proportional to the element's free surface area, which is AxAzhere. Using
this information, I find the following values for the coefficients in Eq. (2.4):
A o

= , O= .
cpAy cpAy

I assumed that the lower half side of the surface is in the shade, resulting in much less incoming
heat there. Specifically, I have

the first portion of N (sunny side): ¢ = 8004 x 300K ;
cpAy m>  cpAy
the second portion of N (shaded side): ¢ = <3007+ % 300K .
cpAy m>  cpAy

B) In the case of the simulation of the cross-sectional area with the thermal bridge, the interior
components cannot absorb or lose heat via convection, radiation and the heat source. According
47



CHAPTER 5

to Table 5.3, elements on the right and left sides may transfer heat in the x direction through
radiation and convection.

Table 5.3. The convection, radiation, and heat source characteristics on both sides of the wall
components in the case of the cross-sectional area.

W * w _ .
B ]
Right Elements 2 5 500
Left Elements 4 4 500

I obtain the coefficient values in my equations as follows:
th,oza*,qzq*+h-
cpAx cpAx cpAx  cp-Ax
The ambient air temperature is taken to be 20°C~293K and 40°C~313K on the brick and the

insulation side (in- and outside of the building), respectively. It gives the following convection and

U, -

radiation heat sources for left and right elements:

x 293K

In terms of the left-hand side: ¢ = L><500z2+
cp m- cp-Ax

In terms of the right-hand side: ¢ = L><500K2+
cp m- cp-Ax

x313K

In this case, the initial condition is a linear function of the z variable:

u(x,z,6=0)=313-293z
Until this point all temperatures were close to room temperature. However, for significantly larger
temperatures, the nonlinear radiation term has much stronger effect. Thus, in the following point
I try to simulate a case, e.g. a furnace, where the temperature on the left side of the wall is much
higher than on the right side.

C) In the case of the cross-section of the wall with high temperatures, the geometry is similar to
the previous case. The concrete values of the constants change according to Table 5.4.

Table 5.4. The heat source, convection, and radiation characteristics are on both sides of the wall

components in the case of cross-sectional area.

w " A% _ .
h[mz'K} c [—mZ.K“ x10 8} g [W]
Right Elements 2 5 500
Left Elements 25 4 3500

The “ambient” air temperature inside the furnace is taken to be 227°C~500K. This yields the
following convection and radiation heat sources for right and left elements, respectively:
q :$x500%+ cp}-leX3O3K and ¢ = $x3500%+ o7 Ar
In this case, the initial condition is again a linear function of the x variable:
u(x,z,t=0)=500—-303x

x 500K

48



CHAPTER 5

In this section, the odelSs solver has been employed to obtain the reference solution. I have
calculated the maximum time step size (CFL limit, above which the explicit Euler time integration
becomes unstable) and the stiffness ratio in the usual way [42], [28] considering only the
conduction term. Table 5.5 shows the value of these quantities for different cases.

Table 5.5. The CFL limit and the stiffness ratio quantities for the different cases.

CFL limit Stiff. ratio
surface equidistant 55.78 8.1x10°
cross-section with- equidistant 5.01 5.167x10°
thermal bridge non-equidistant 2.28 4.29x10°

5.2.4. Results for the surface of the wall

Part I: There is only convection, and no radiation, which means o* and 4*are set to zero. A one-

layer brick wall is examined here (see Figure 5.1 A). The initial and boundary conditions as stated
in point A) above have been considered and only the equidistant mesh has been used. The
maximum errors as a function of time step size are shown in Figure 5.2 for all methods of
Subsection 5.1.2 [72]. For smaller time step sizes, the mixed treatment of the convection terms
with 50% weight for the PI and the ‘inside’ treatment is the most accurate. It clearly has a second
order convergence, in accordance with the results of the previous sections. Thus, from this point,
the convection term will always be treated in this optimal way. For some large time, step sizes,
however, the original hopscotch method is slightly more accurate, which can be due to the low
stiffness ratio of the problem.

i = » {ZF ' LH Pseudolmp
105 ~# = LH inside

: 4 o LH mixed Pl:1/2
)= LH mixed PI:2/3

- DF
—¥— QQEH
== +LH FullExp
—8— LH QuasiEx
n

i LH mixad PI:1/3
Y P T | L+ i

10° 10! 102 10°
Time step size

Figure 5.2. The maximum errors as a function of the time step size for the 9 examined methods in the case
of a surface area (Section 5.2.4 Part I). for the convection term.
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Part II: The surface of the brick wall is simulated with radiation, where conditions in point (A) and

the values from Table 5.3 are used. The errors are shown in Figure 5.3, and the temperature

distributions are shown in Figure 5.4. The influence of the initial condition, as well as the shadow,

on the lower part of the wall is clearly visible. The coordinates in cm units are represented by the

numbers on the vertical and horizontal axes of the contours, which are the cell indices as well.
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Figure 5.3. The maximum errors as a function of the time step size for the nine examined methods in the

case of a surface area (Section 5.2.4 Part II). For the radiation term.
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Figure 5.4. The temperature distribution contour in Kelvin in the case of (Section 5.2.4 Part II) at initial

(left part) and final time (right part), in the case of a surface area.

5.2.5. Results for the cross-section of the insulated wall with thermal bridging

Part I: The equidistant mesh. Here the initial and boundary conditions of point (B) are applied to

the multilayer wall. The maximum errors are plotted in Figure 5.5. The temperature distribution
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contour for final time moments is shown in Figure 5.7. The temperature on the right side of the
wall is rising due to the higher outside temperature, but the insulator allows this heat to enter the
wall at a very slow rate.
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Figure 5.5. The maximum errors as a function of time step size for the equidistant mesh (Section 5.2.5 Part

I) in the case of convection and radiation boundary conditions.

Part II: non-equidistant mesh, is the same as in (Section 5.2.5 Part I), but the mesh is replaced with
the non-equidistant one presented in [72], (b). The errors are presented in Figure 5.6.
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Figure 5.6. The maximum errors vs. the time step size for the non-equidistant mesh (Section 5.2.5 Part II)
in the case of convection and radiation boundary conditions.
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while the temperature contours are presented in Figure 5.7, the non- equidistant mesh, in case of
the multilayer cross-sectional area. The numbers on the vertical and horizontal axes of the contours are the

coordinates in cm units.

325

1315

1310

1305

Figure 5.7. The temperature distribution contour in Kelvin for the final time (left) in the case of (Section
5.2.5 Part I) (equidistant mesh). And final time (right) (Section 5.2.5 Part II).
Part III: High-temperature boundary conditions, non-equidistant mesh. Here the linear initial and
Neumann boundary conditions of point C) are applied to the multilayer wall. The maximum errors
are plotted for non-equidistant meshes in Figure 5.8. One can see that the mixed and inside versions
produce rather large errors, and they are clearly outperformed by the PI treatment. The temperature
distribution contour for the initial and final time moments are shown in Figure 5.9. The numbers on

the axes are the coordinates in meter units.
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Figure 5.8. The maximum errors as a function of the time step size for (Section 5.2.5 Part III) in the case

of convection and radiation with high-temperature boundary conu.tions.
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Figure 5.9. The distribution contour of the temperature in Kelvin units for the equidistant mesh at initial and final time

(left and right figure, respectively), in the case of (Section 5.2.5 Part III).
5.3. Summary of this chapter

In this chapter, I have studied several implementations of the free convection and radiation terms
using the leapfrog-hopscotch method, which had originally been optimized to solve the heat
conduction equation. I observed that, usually, the best performance is achieved when the
convection term is treated in a mixed way, i.e., taking into account 50% at the old and 50% at the
new time level. The order of temporal convergence reaches two only for this optimal version,
which was also proven by the calculation of the truncation errors. The unconditional stability of
this version was also proven by von Neumann analysis in the linear case (conduction + convection)

by a member of our research group.

On the other hand, according to the numerical experiments, the radiation term should be taken into
account fully in the pseudo-implicit way. In this case, one of the four powers is taken into account
at the new time level, so the term turns up only in the denominator, which ensures very good
stability properties. I performed five numerical experiments to simulate heat transfer on a realistic
wall. The proposed algorithm performs quite well, even when the CFL limit for the mainstream
explicit methods is rather low.
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6. NUMERICAL RESULTS FOR THE DIFFUSION-REACTION EQUATION WHEN THE
REACTION COEFFICIENT DEPENDS ON SIMULTANEOUSLY THE SPACE AND
TIME COORDINATES

It is well known that linear transient diffusion and heat conduction are analogous phenomena:
mathematically, both of them are described by the simplest parabolic PDE (partial differential
equation). Diffusion means the distribution of the particles is changing [73], while in heat

conduction, energy is transported via interacting particles of the material [74].

According to Newton’s law of cooling, heat loss by convection is proportional to the
temperature if it is measured compared to the actual ambient temperature. So, for x,zeR , the

simplest PDE in one space dimension which can describe heat conduction and convection is

ou(x,r) _b o*u (x,7)
- 2

ot ox ~Kulxi) ©.1)

where w:RxRBR; (x,t)l—)u(x,t) is the unknown function (temperature in case of heat

conduction and concentration in case of particle diffusion), and DeR is the constant diffusion
coefficient. In the case of heat conduction, D=k/(cp) is the thermal diffusivity, while ¢, p and k

are the specific heat, the density, and the heat conductivity of the material, respectively. The term
-Ku is a reaction term, so Eq. (6.1) is a regular diffusion-reaction PDE. Typically, ».° is the given
initial function, while the boundary conditions will be discussed in the concrete analytical and
numerical examples.

In this chapter, we convey new results for a modified version of PDE Eq. (6.1), which will
have a reaction coefficient that is not a constant, but depends both on time and space, which is the
most important novelty of this work. The analytical solution was experimented with the Lorentzian
form and was fortunated by a member of our research group to discover solutions that were highly
non-trivial. We explored the impact of periodic driving in another intriguing system.

6.1. Analytical Solution
Let us study the one-dimensional diffusion-reaction equation given by

ou(x,t) b o%u (x.2)

+ F(x, u(x, ) (6.2)
ot

where F is the known coefficient of the reaction term, which is usually non-positive. To derive
physically relevant solutions, we apply the travelling wave Ansatz [50] . It is always interesting to
study the influence of a well-localized impulse-like source, therefore we tried the Lorentzian form
and luckily found highly non-trivial solutions.
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6.1.1. Lorentzian Coefficient of the Reaction Term

First, we consider the following form for the F function:

a

F(X,f)z 1+(x—ct)2

(6.3)

where a € R is the strength parameter (amplitude) of the applied pulse. By utilizing the Ansatz
Eq. (6.3) the reduced ODE is immediately obtained

a

—cf'(n)=Df"(n)+

1+772 f(77)

The solution of this ODE is given by the MAPLE 12 software:
—cn 2

ey 1 C 2 1 C2 2
f(n) = ¢22 (1+7n?)| ¢HeunC| 0,—=,1,—— ,W¥,—5* | + ¢,n-HeunC| 0,—,1, ——, ¥, — , (6.4)
(n) (1+7°) @ 3 B 217 sl B

4aD +8D?% —¢?

where HeunC is the Heun function [75] and we introduced the abbreviation w — -
16D

It is almost impossible to give a complete parameter study of Eq. (6.4) for the entire range of (cl1,
c2, ¢, a, D). We just restrict us for the c1 =0,c2=1,a> 0, ¢c > 0, D > 0 subspace. Considering
negative propagation velocity (¢ < 0) just means reflecting the solution to the y-axis. For negative

source strength (a < 0) we get non-decaying solutions at large 7, which means either asymptotic

saturation or divergence, which we consider unphysical. Diffusion processes where the
concentration or the number of particles explode violate energy and matter conservation laws and
it is rather counterintuitive that we obtain it typically for negative and not for positive values of a.
So albeit the solutions are mathematically valid for arbitrary values of the x and t variables, the
solution on the whole real axis cannot always describe a real physical process. Nevertheless, the
obtained functions—in principle—can describe real processes in any finite interval if the system
boundaries are not closed, and energy or particles can enter from the surrounding space, which is
reflected mathematically by the boundary conditions.

Numerous shape functions are presented in Figure 6.1 for different parameter sets. Smaller
wave velocity shifts the singularity to the left and causes more oscillations (see the difference
between the black and red curves in Figure 6.1). Increasing the diffusion coefficient D against the
source strengths parameter a, but still being (a > D) smears out the decay range of the diffusion
(compare the blue curve to the black one). Finally, considering that the diffusion parameter is
larger than the source strength (D > a), the oscillations disappear, maintaining a very flat local
maximum and a very slow decay (compare the blue curve to the green one).
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=20 20

Figure 6.1. The shape function of Eq. (6.4) for the different parameter sets (cl, c2, C, a, D) the
black, red, blue and green lines are for (0, 1, 0.5, 7.4, 0.3), (0, 1, 2, 7.4 ,0.3), (0, 1, 0.5, 7.4 1.8) and
(0,1,0.5,2.4, 4.1), respectively.

The x and t dependent solution of the reaction-diffusion PDE has the form of:

2
—c(x—ct) C]HCUHC{O,—%,I,lgj?,w,—(x—ct)zJ
u(x,t) =e 2P (1+(x—ct)2)

(6.5)
1 c 2
+ ¢y (x—ct)HeunC{O,E,l,W,‘I’,—(x—ct) ]

We note that since our analytical solution is valid on the whole real axis, boundary conditions
need to be specified only when the analytical solution is going to be reproduced by numerical
methods. The time development of a solution function 4 (x,s) of Eq. (6.5) is presented in Figure

6.2 for the same parameter set as the shape function is shown. We checked and found that all the
solutions of 4 (x,s) for all the other three parameter sets given in Figure 6.1 have qualitatively the

same shape.

u(x,t)’40

-80

Figure 6.2. The solution function of Eq. (6.5) for the parameters of D=0.3;a=7.4;c=1;.
(¥ = 5.572222); ¢l =0; c2 = 1, respectively.
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6.2. Numerical Simulation of Surface Subjected to Wind

In this section, all the running times are measured on a desktop computer with an Intel Core
17-324 11700F (16 CPUs) and 64 GB RAM is used, while the program we used is MATLAB
R2020b.

6.2.1. The Structure and the Materials of the Surface

In this section, I model a wall surface with dimensions of 1 m on the x and y axes and 0.1 m

on the z axis. In Figure 6.3, a wall’s surface is examined. Half of the surface (0<x<0.5m) is

made of brick and the other half (0.5m <x <1m) is made of insulation.

X

=

9 w/m.°C

Constant convection
h

Natural convection
Changing with time

D Brick l:l Insulator

Figure 6.3. The surface of the modelled wall with two layers.

In Table 5.1, I used the same the applied materials [25], of brick and RPF insulation, the

material attributes are considered. These coefficients exhibit sharp discontinuity when one material
passes into the other. On the other hand, these coefficients are constant inside a material.
6.2.2. Mesh Construction

I assume that in the z direction there is no heat transfer, and the physical properties do not
change, thus I fix Az=0.1m. From the computational point of view, a two-dimensional issue is
studied. The x and y coordinates fall within the unit interval, and uniform square cells are used. |
created meshes with four different resolutions with Nx = (50, 70, 90, and 100) and Ny = (50, 70,
90, and 100) for the number of cells in the x-axes and in the y-axes; therefore,
N =N,N, =(2500,4900,8100, and 10000) is the global number of cells. The discretization of the

problem is explained as in section 2.1.

6.2.3. The Numerical Algorithms Used

The two explicit methods I use here to solve Eq. (6.1) are generalized via the following formulas.
1. The leapfrog-hopscotch (LH) uses the generalized Theta-formula [76], which reads as follows
for a full time step size:
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W (l_e(ri_hKf))uhAi ,0¢[0,1] (6.6)
1+(1—9)(ri —hK;’“)

The length of the stages and the values of the parameter # are the same as in the special case, see

Section 2.2.3.

2. Dufort and Frankel (DF):The initial stage applies the UPFD scheme, which can be obtained
by the =0 substitution from Eq.(6.6). In all subsequent time steps I employ the formula

-1
n+l _ (1_72)”;1 +2Ain (6 7)
: 1+7 +2hK '

The two implicit methods are also tested for the simulation of the wall by the PCG and GMRES

solvers see section 2.3.

6.2.4. The Initial and the Boundary Conditions

In this section, 7, =22500s serves as the final time (the end of the examined time period).

The duration of each time step is also expressed in seconds, first with A#=900s and it is decreased

gradually to a small number Ar=0.01s. A spatially constant initial temperature U(X, A :0) =270K
is set. Neumann boundary conditions with zero temperature-flux are applied to boundaries,

preventing any conductive heat transfer:

ou ou ou ou
Z(x,y=0,)=—(xy=1,0)=—(x,y=0,) =—(x,y=1,6)=0
ax(xy ) ax(xy ) Gy(xy ) ay(xy )

The desired insulating outcome is attained by setting the necessary resistances to infinity and
the value of the matrix components indicating heat conduction over the boundary to zero.

Convective heat transfer occurs in the z-direction, which is perpendicular to the plane depicted
in Figure 6.3. For the upper part (0<y <0.5m), the ambient temperature is taken to be constant,
and for the lower part (0.5m<y<1m), the convection circumstances are changing with time

according to changing weather conditions.

Table 6.1 shows that the z-direction convection coefficients (/) and the temperature in the
upper part of the plane in Figure 6.3 has constant values, whereas the lower part of the elements
has changing values depending on the environmental conditions. The ambient air temperature and
velocity is taken to be 17°C~290 Kand v=0nvs for the upper part, and changing according to real

weather conditions in Miskolc city from 5 a.m. to 11 p.m. on the second day of January [77] for
the lower part, as shown in Table 6.1.

Table 6.1. The temperature, and heat source in case of wall surface area [77].

Upper Elements Lower Elements
W
h _
[ °K } 9 0.6-5.55
T [K] 290 275-280
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I obtain the values of the coefficients in my Eq. (6.1) as follows: [78],

K= h , 9= h ‘u, (6-8)
cpAz cp-Az

I also suppose that the upper elements and lower elements have heat sources as follows:

h
for the upper elements: g, = “”AZ X,
cp-

for the lower elements: ¢,,,,(t)= }ZZLZZ)X Ui () 5
cp-

how t how 4
where K(t):ép—A(Z), q[(t):;TZ-ulow(t)

The convection heat transfer coefficient for outside elements as a function of air velocity is
estimated as follows [79]

Py (1) =0.6+6.64v(1) (6.9)
6.3. Results for the Surface of the Wall

Figure 6.4 shows the temperature distribution contour in Kelvin units for the surface area. The
figure shows that in the case of the insulator (right-hand side of the figure), heat can hardly flow
from the top of the figure to the bottom, so there are large temperature gradients. Moreover,
because the heat capacity of the insulation layer is smaller than that of the brick layer, its
temperature increases faster from the original 270 K.
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Figure 6.4. The temperature distribution contour in Kelvin units for the surface area (upper half) constant
convection and (lower half) the convection changes with time depending on weather data.

The maximum errors of the cell-temperatures at the final time as a function of time step size
are shown in Figure 6.5 for the systems 100 by 100. One can see the LH is the most accurate
scheme, followed by the DF, compared with the implicit methods with two different tolerances.
Figure 6.6 for the system 100 by 100, show the running time with the maximum errors. I use many
time steps for the explicit methods (LH and DF) and less for the implicit methods because they are
much slower, and I see that LH and DF are faster and more accurate.
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Figure 6.5. The maximum errors as a function of the time step size h for the examined methods for the
100 by 100 system.
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Figure 6.6. The maximum errors as a function of the running time for the tested methods for the 100 by
100 system.
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Figure 6.7 shows the running time for time step size Af =1s with the total number of cells on
the horizontal axis. On the left-side axis, it is shown for the LH and DF methods and on the right-
side axis for implicit methods. One can see that the running time is a linear function in the case of
the explicit methods, but not for the implicit methods. This is expected, since the explicit methods
apply loops over the cells, so the running time is directly proportional to N, while the implicit
solvers work with the system matrix with size Nx N , thus the running time is proportional to N2,
It means that for even larger system sizes, e.g., in 3D, they become even less competitive with the
explicit and stable methods.
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Figure 6.7. The running time with total number of cells for Af =1s. The left-hand side vertical axis

refers to the LH and DF methods, while it is on the right-hand side axis for the implicit methods.

For the coarse mesh (50 by 50), I present the spatial distribution of errors in Figure 6.8 as 2D
contour plots and in Figure 6.9 as curves for a specific z coordinate for the four methods. The time
step sizes are chosen to reach very similar error levels. One can see that with the exception of the
DF method, the errors are the largest, where the temperature gradients are largest, i.e., at the
boundary of different materials and circumstances. The pattern of odd-even structure is also
observable for the LH method, but even with this artificial oscillation, this algorithm is the most
accurate. Table 6.2 shows the time step sizes, the errors and the running times for the four methods
in the case exemplified in Figure 6.8 and Figure 6.9.
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Figure 6.8. The error of temperature distribution contour in Kelvin units (A) LH, (B) DF, (C) GMRES
and (D) PCG methods.

Table 6.2. The performance for the numerical methods.

Time Step Size Af  Maximum

Numerical Method Running Time [s]
(Tolerance) Error
leapfrog-hopscotch (LH) 10 0.0042 1.32
Dufort—Frankel (DF) 10 0.0051 0.97
generalized minimal
) 10-7 0.0058 246.965
residual (GMRES)
preconditioned conjugate
i 10-7 0.0062 1187.404
gradient (PCG)

Figure 6.9 highlights that the LH method achieves the best method of accuracy during all the time
of simulation in a 2D wall with a material discontinuity, and the fluctuation is because of the odd-
even method, with errors peaking at the brick-insulation interface. The DF method offers a faster
but slightly less accurate alternative, while the implicit GMRES and PCG methods lag in both
accuracy and speed, underscoring the advantages of explicit, stable schemes in this context.
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Figure 6.9. The error of temperature distribution at z = 80 [cm] in Kelvin units for LH, DF, GMRES and
PCG methods along x-axis.

6.4. Summary of this chapter

The diffusion-reaction PDE was studied where the reaction term is linear in the unknown
variable, but its coefficient depends on both space and time in two different nonlinear ways. New
analytical solutions were conveyed using the travelling-wave trial function. The solution for
Lorentzian, and Heun function, so they are very nontrivial. This solution was then reproduced with
high accuracy by nine numerical algorithms. Six of them are explicit schemes with excellent
stability properties. The rest are the standard explicit and implicit methods, which were severely
outperformed by especially the Dufort-Frankel and the recently invented leapfrog-hopscotch
methods. These two methods are also tested against the implicit ones in a realistic 2D case, when
the temperature development of the surface of a wall was simulated. The time- and space-
dependent reaction term was implemented as forced convection due to wind, while the material
properties of the surface changed abruptly in space. Again, the explicit and stable methods proved
to be more efficient than the implicit ones, and this advantage is expected to increase with the

system size.

63



CHAPTER 7

7. PREDICTION AND OPTIMIZATION OF THERMAL LOADS IN BUILDINGS WITH
DIFFERENT SHAPES BY NEURAL NETWORKS AND RECENT FINITE DIFFERENCE
METHODS

This chapter uses two neural networks: an MLP and an RB, as well as three algorithms to
optimize their parameters: Levenberg—Marquardt (LM), Scaled Conjugate Gradient (SCG), and
Radial Basis Function (RB). The building all with standard floor area is 200 m? for residential
homes to select the best design. By building a network model for these homes, I can estimate the
heat load from the external observation design of the house. Also, I used the LH method used in
the previous chapter for long-term simulation. The rest of this chapter is organized as follows: it
describes the methodology, factors, and algorithms used in this research. and provides examples
of the data used to train the neural network, and also evaluates and discusses the results.
Furthermore, it presents the second part of this work, where I chose my best model to perform a
simulation of the peak load of the months in winter and summer, December and July, and present
the optimal model details. For this simulation, I use the recently invented leapfrog—hopscotch
algorithm, which is faster and can cope with stiff and non-stiff systems. This algorithm is used for
the first time in summer simulations to calculate the heat gained through the wall. Finally, it
summarizes the main findings and conclusions of this study.

7.1. Artificial Neural Network (ANN)

Energy optimization of buildings can be computationally intensive, and the artificial neural
network technique balances accuracy and computation time. This study uses feature selection to
simplify models. Variables such as building orientation, interior and exterior wall and roof,
glazing, window shading, and infiltration rate are taken into account. The energy performance of
buildings (EPB) takes into account its two primary parameters, cooling and heating, and the ANN
(MLP and RB) is trained while taking these values into consideration by Figure 7.1. The
parameters of ANN are optimized through the utilization of three distinct optimization techniques.
A comparative analysis is conducted between the derived outcomes and empirical data,
demonstrating the validity and practicality of the theoretical frameworks.

In the process of creating my database, a selection of six distinct building shapes was made through
arandomization procedure. Users may easily generate a 3D model of a structure using the software
AutoCAD MEP 24.2 (mechanical, electrical, and plumbing). The thermal loads of the building are
determined using the transfer functions method and the ASHRAE Heat Balance procedure [80].
The present study involves the implementation of a database simulation approach utilizing an
hourly analysis program (HAP) for the purpose of ascertaining the cooling and heating
requirements.
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During the process of ANN training, preprocessed data is partitioned randomly into three subsets:
a training dataset, which usually constitutes 70% of the data; a test dataset, which constitutes 15%
of the data; and a validation dataset, which constitutes 15% of the data [81].
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Figure 7.1. A schematic diagram of the ANN and its relation to the input and output parameters.

The evaluation of the optimized ANN predictive performance and precision is conducted through
statistical analysis. Energy performance of buildings initially takes into account two primary
parameters: cooling and heating. This form of ANN is fed with experimental data and trained using
cooling and heating settings.

7.1.1. Multi-Layer Perceptron (MLP)

MLPs are feedforward neural instruments and universal approximates learned via
backpropagation [82]. MLPs use neurons to approximate every input—output mapping. Figure 7.1
shows the ANN’s input, output, and hidden layers. Neurons in adjacent layers are also connected
[24].

7.1.2. Radial Basis Function (RB)

Radial Basis Function is a type of neural network that can learn from data and make decisions
for different applications. The output layer uses linear combinations of the hidden units to predict
or classify the data. The RB model has two steps of training: first, it clusters the data using some
methods, and then it estimates the weights between the hidden and output units. The RB model
has a faster learning speed than the Multi-Layer Perceptron (MLP) model because it only needs to
train the weights in the second step [83].
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7.1.3. The Used Algorithms

This study compares two types of neural networks: Multi-Layer Perceptron and Radial Basis
Function (both using MATLAB R2020b and Statistical Package for the Social Sciences (IBM
SPSS 20)). The goal is to find the best algorithm that balances accuracy, authenticity, and
performance. After testing, I chose three algorithms: Levenberg—Marquardt algorithm (LMA or
LM), Scaled Conjugate Gradient algorithm (SCG) and Radial Basis Function (RB).

7.2. Statistical Analysis and the Used Data

The aim of this study is to find the best ANN for higher accuracy, as stated before. The
research question is answered by following the systematic approach shown as a flowchart in in
Figure A1-2 in Appendix.

7.2.1. The Used Data

Before estimating the cooling load of any building, some basic information is necessary to
design an appropriate HVAC system, like building location, orientation, weather conditions,
building spacing, building materials, etc. The more exact the information is, the more accurate the
load estimated will be. The shape of a building significantly impacts its energy performance and
thermal comfort. Its shape depends on factors like the orientation, window-to-wall ratio, climate,
and occupancy patterns. Common shapes include rectangle, L-shape, T-shape, U-shape, H-shape,
and rectangle with interior-shape see Figure 7.2. In fact, one of the goals of this study is to reduce
the time required for thermal load calculations when there are multiple probabilities for the
outcome of complex buildings. Several building applications, such as swimming pools, theatres,
commercial buildings, stadiums, and residential buildings, impose restrictions. However, with the
help of a specialized program called HAP that contains all these applications, it is easy to access
accurate information. It can predict thermal loads for both simple and complex buildings. A
rectangular building has less heat loss or gain through the walls, which reduces the heating and
cooling loads. It also has less natural ventilation and daylight, requiring more mechanical systems.
An L-shaped building offers more solar exposure and natural ventilation, increasing thermal
comfort but increasing the heating and cooling loads. T-shaped and H-shaped buildings offer more
solar exposure but may have disadvantages like increased heat loss, uneven loads, and increased
cooling and structural loads. A U-shaped building creates a courtyard, improving thermal comfort
but also increasing heating and cooling loads. The six building shapes used in this study were
generated using the hourly analysis program (HAP) by Carrier. This is a specialized program for
calculating cooling and heating loads and simulating buildings, which uses the transfer functions
method and the heat balance method, Figure 7.3 shows the dimensions of buildings. The buildings
considered in this study are supposed to be located at 20.4 E longitude and 48.6 N latitude in
Miskolc, Hungary at an elevation of about 130 m above mean sea level. In Miskolc, the summers
are warm, the winters are cold and sometimes snowy, and it is partly cloudy year round. Over the
course of the year, the temperature typically varies from —4 °C to 27 °C and is rarely below —11
°C or above 33 °C. The peak heating load for the winter occurred on December 14, when the
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outside temperature was —9 °C. The peak cooling load for the summer occurred on July 17, when
the outside temperature was 34 °C. The inside temperature was always considered to be 22 °C.
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Figure 7.3. Dimensions of the buildings.

All the buildings have the same floor area (200 m?) and height (6 m), thus the same volume
(1200 m?). However, they have different shapes and therefore different wall surface areas and thus
total surface areas. The materials used for each component of a building are the same for all
building forms. The newest and most prevalent materials in the building construction sector, as
well as those with the lowest U-value in walls (0.637 W/m?K), roofs (0.513 W/m?K), windows
(3.123 W/m?K), floors (0.568 W/m?K), were used to make the sample buildings. These buildings
were each simulated as residential dwellings in Miskolc. External heat gains arrive from the
transfer of thermal energy from the outside hot medium to the inside space, mostly in summer.
Heat transfer takes place via conduction through external walls, the top roof, and the bottom
ground. Solar radiation heat travels as electromagnetic waves from the sun and enters the houses
through windows and doors. The amount of solar radiation depends on the orientation of the
windows and doors, the time of day and year, and the presence of shading devices. The overall
shading coefficient is 0.870 [84], an indicator of how well the glass is thermally insulating
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(shading) the interior when there is direct sunlight on the window. Solar radiation can be beneficial
for heating the house in the winter, but it frequently causes overheating in the summer. Ventilation
is the transfer of heat through the movement of air between indoor and outdoor spaces. Ventilation
can provide fresh air and improve indoor air quality, but it can also increase heat loss or gain
depending on the temperature difference between indoor and outdoor air. The ventilation
requirement is 0.3 L/s/m? [85] for residential dwelling unit applications. Infiltration is the
movement of air through cracks and gaps in the building envelope. Heat can leak out of the
building through poorly sealed windows and doors or enter through openings around pipes and
wires. Infiltration can cause unwanted heat loss or gain, as well as moisture problems and air
quality issues. The enter infiltration is taken for air change per hour (0.5 ACH) [86]. Other sources
are internal heat generation, like in residential buildings with a maximum of ten occupants (40
W/m?), sedentary activities (67.4 W/m? sensible heat and 35.2 W/m? latent heat), miscellaneous
loads (60 W/m? sensible heat and 55 W/m? latent heat), electric equipment (2.69 W/m?), and light
(10.76 W/m?). Thermal characteristics were determined using mixed modes with 95% efficiency,
a thermostat range of 24-18.3 °C, and 15-20 h of operation on weekdays and 10-20 h on
weekends. Each input parameter corresponds to a different attribute of the structure. For example,
the relative compactness (RC), which is the ratio of surface area to volume [87], is determined as
follows [88]:

RC=6V*347" (7.1)

where 4 and V' are the building surface area and volume, respectively. For a cuboid-shaped
building, its value is unity, thus for any other rectangular building, it is smaller than 1.

The study compares the structure with and without windows. For the unglazed system, it
analyzes six different building types with four orientations, which yields 24 cases. For the glazed
system, Table 7.1 summarizes the possibilities used. There are six building shapes, depicted in
Figure 7.3. There are four orientations of the building, N, E, S, or W. I examined five glazing
areas, namely 5%, 10%, 15%, 20%, or 30% glazing area of the floor area. Five distribution
scenarios were used in the study. Finally, I generated five window-distribution scenarios for each
building shape, orientation, and glazing area. In each scenario, the windows were distributed into
two of the five surfaces (N, E, S, W, and the horizontal roof), with half of the windows.

Table 7.1. The assumptions and conditions used to generate the database.

Features Values and States

Number of buildings 6

orientations 4

Glazing areas 5 (5%, 10%, 15%, 20%, and 30%) of the floor area.
Distribution scenarios 5

Building volume 1200 m?

This results in 6 x 5 x 5 x 4 =600 samples for the glazed system, thus the total number of the
examined possibilities is 600 + 24 = 624. The study focuses on the residential buildings’ heating
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load and cooling load parameters, respectively. These parameters depend on seven factors: RC,
exposed area, wall area, roof area, glazing area (which is the total area of the glazing including the
frame and sash [89]), orientation, and glazing area distribution.

7.2.2. The Main Equations

To estimate the thermal comfort of residents, this study applies intelligent models. The
models’ accuracy is measured by three criteria: R?, MAE, and RMSE. Previous research has
extensively validated and confirmed these criteria. Equations below show the formulae for these
criteria, which contrast the observed and predicted values of the thermal comfort [90].

N N -
2 2 2
R =1~ |:§(Qipredicted N Qiobserved ) Zl (QiObsel‘VE‘d B Qi()bserved ) :| (72)
N
MAE = (1 / N)Z Qiobserved N Qipredicted (73)
i=1
N 2
RMSE = (1 / N)Z[Qiobsewed N Qipredicted i| (74)
i=1

The normalized root-mean-square deviation (NRMSD) depends on RMSE. The equations

above show how to compare the actual and predicted values of HL or CL for an efficient building,

which are denoted by Qiobserve , and fpredicted * respectively. The term N represents the total number

of samples, and O 1s the average of the actual values of HL (or CL).

lobserved

7.3. Results and Discussion

This study applied MLP and RB neural networks with three algorithms (LM, SCG, and RB)
to simulate the HL and CL of the residential building. The algorithms were implemented using
MATLAB R2020b and IBM SPSS 20 statistics software. The data set used to train the proposed
network consisted of 624 samples, with seven independent factors affecting the HL and CL values,
as explained earlier. A 70, 15, and 15 split was used to divide the data into training, testing, and
validating sets, respectively. The performance of the models was evaluated using R>, MAE, and
RMSE, which are widely used in the literature [91]. To obtain the optimal structure of the models,
an extensive trial and error process was conducted. The prediction results of each model for the
HL and CL values were presented and discussed in detail.

To validate my results, I compared the predicted data with the experimental data collected by HAP,
based on the CL and HL parameters. I used R? as a criterion for the predicted data. Figure 7.4
shows the comparison of the predicted data with the experimental data. The results indicate that
the LM model has the best prediction performance among all models. The analytical results are
also in good agreement with the experimental data, which confirms the reliability of the ANN
training process using different algorithms. The RB model, however, has the lowest prediction
accuracy and fails to optimize the ANN parameters effectively. The SCG model can be a suitable
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alternative to the LM model and provides accurate results and predictions, but it is still less
accurate than the LM model. Figure 7.5 presents a graphical comparison between the predicted
and actual values of HL and CL for each model. Furthermore, you can see in Figure A1-3 in
Appendix the histograms of the errors for each model and parameter. These figures illustrate the
prediction capability of each model and the error distribution. The error analysis shows that the
LM model has less error in prediction. Figure 7.5 also shows how close the experimental data and
the prediction data are for each sample number using the LM, SCG, and RB models for HL and
CL parameters. As mentioned before, I used the prediction data to verify the accuracy and validity
of my analysis. Therefore, I compared the data of LM, SCG, and RB models for HL and CL
parameters in detail and measured their deviation from the target data.
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Figure 7.4. The result of R? values for the data predicted by three neural networks: MLP_LM, MLP_SCG,
and RB (a) for the heating load and (b) for the cooling load.
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Figure 7.5. The predicted data values per model number for the (a) heating load on the left side and (b)
cooling load on the right side, through MLP_ LM, MLP_ SCG, and RB with target.

Table 7.2 and Table 7.3 show the values of these criteria for each model and parameter. A
lower RMSD value indicates a higher accuracy of the model. The LM model has the lowest RMSD
values for both HL and CL parameters (0.348 and 0.947, respectively), which means it has the
highest accuracy among all models. The RB model has the highest RMSD values and the lowest
accuracy. The NRMSD value is another measure of accuracy, with a lower value indicating a better
performance. The LM model has the lowest NRMSD values for both parameters, which confirms
its superior performance. The R? value is a measure of how well the model fits the data, with a
higher value indicating a better fit. Table 7.2 and Table 7.3 show that the LM model has the highest
R? values for both parameters, which means it has the best fit to the data. The MAE value is a
measure of the average error of the model, with a lower value indicating a smaller error. In the
tables, the LM model has the lowest MAE values for both parameters (0.273 and 0.682,
respectively), which means it has the smallest error among all models. Based on these results, I
can conclude that the LM model is the best model for optimizing the ANN parameters and
predicting the target data.

Table 7.2. Performance measures of the models for the HL parameter: RMSE, R?, and MAE.

Models RMSD NRMSD R? MAE
LM 0.348 0.0157 0.973 0.273
SCG 0.371 0.0168 0.961 0.287
RB 0.746 0.0338 0.902 0.609
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Table 7.3. Performance measures of the models for the CL parameter: RMSE, R? and MAE.

Models RMSD NRMSD R? MAE
LM 0.947 0.0388 0.93 0.682
SCG 1.226 0.0502 0.787 0.811
RB 2.185 0.0895 0.457 1.615

The thermal energy demand necessary to maintain an indoor comfort zone within a building
is commonly referred to as the heating and cooling load. This load is subject to modification based
on the architectural characteristics and design of the building. The heating and cooling demand is
influenced by various factors, including but not limited to the building envelope, orientation,

window-to-wall ratio, climate, and occupancy patterns.

The results of the analysis show that the heating and cooling loads vary significantly
depending on the building shape (exposed area for wall, roof, and RC), orientation, glazing area,
and glazing distribution. The results also show that there is a trade-off between minimizing the
heating load in winter and minimizing the cooling load in summer. The results indicate that some
building shapes are more efficient than others in terms of energy consumption and thermal
comfort.

My work concludes that the optimal building shape that balances the heating and cooling load
close to the mean value is the L-shape shown in Figure 7.6. This is beneficial because it allows for
the use of smaller and more efficient HVAC systems compared to all other shapes except the
rectangular one. This can lead to lower energy costs and reduced carbon dioxide emissions.
Additionally, having balanced heating and cooling load can help maintain a comfortable indoor
environment by reducing temperature fluctuations [92]. Also, the best orientation for this shape is
the south, which allows maximum solar gain in winter. The design area has a moderately cold
climate that requires heating for about half of the year. Furthermore, the best glazing area for this
shape is 20%, which provides sufficient daylight and ventilation without causing excessive heat
loss or gain. From this point of view, the L-shape is better than the rectangular shape. Finally, the
best glazing distribution for this shape is on the east and south sides, which optimizes the solar
exposure and shading effects throughout the day. In this case, the building has a heating load of
22.5 kWh and a cooling load of 24.5 kWh for the temperatures given in Section 7.2.1, which are
both close to the mean values in Table A2-1 in Appendix, of 22 kWh and 24.4 kWh, respectively.
This model’s heating and cooling values are the closest to the mean value compared to the other
624 models.
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Figure 7.6. The L-shaped building.

7.4. Numerical Simulation

The final part of this research numerically simulates the walls of this building for the winter
and summer seasons based on the peak load of each season. This transient simulation does not
include other components that affect the heating and cooling load, such as the roof, ventilation,
leakage, glass load, and internal loads from people, lighting, etc. These factors are only considered
in the steady-state case. The transient simulation uses December and July as representative months.
For the Equation and its discretization and the Leapfrog—Hopscotch Structure see section 2.1.

7.4.1. Geometry and Material Properties

A cross-section of a wall is considered with dimensions 42 cm in the x and 100 cm in the y
and z direction, as can be seen in Figure 7.7. The four layers consist of gypsum plaster, heavy
weight concrete, insulation, and face brick. This wall structure is the same and has the same U

value as used in Section 7.2.1.
X

[

Inside

D Gypsum HostorD Insulation

[:] HW concrete - Face brick

Figure 7.7. Cross section of a four-layer wall and the numbers mean border layer 1,2, and 3.
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In the current work, the real material properties listed in Table 7.4 are taken into account. Note
that these coefficients are constants inside a material, that is, they do not change with time, space,
or temperature, but they have a discontinuity at the border of the materials.

Table 7.4. The properties of the materials used were taken from HAP based on ASHRAE Standard [84].
Layers Thickness [cm] 2 [kgm_s] c []kg_lK_l] k [Wm‘lK‘l]

Gypsum plaster 2 1601.8 840 0.726
HW concrete 25 2242.6 840 1.73

Insulation 5 91.3 840 0.043
Face brick 10 2082.4 920 1.3

7.4.2. Mesh Construction, Initial and Boundary Conditions

In my one-dimensional simulation, I assumed that the wall thickness is 42 cm. To test the
independence of the results on mesh density, nine meshes with an increasing number of cells along
the x-axis were used for the four layers of wall starting from Ax; =1.0cm (Nx = 42) until

Ax; =0.1 cm (N =420). The heat loss was calculated according to the number of cells. See Figure

A1-4 in Appendix due to that when I increase the number of cells to more than 336, the heat loss

remains approximately the same. Therefore, I chose that mesh with Ax; =0.125 cm, where the
number of cells in each layer was N, =16, N, = 200, N; = 40, and ~, = 80. The simulation time is
one month for the winter season and for the summer, and both contain 31 days, thus ¢, =2.,678,400s

serves as the final time (the end of the examined time period). The duration of each time step is
also expressed in seconds, first with Az =100s.

Convective and radiation heat transfer occur in the x-direction, which is the direction of heat
transfer depicted in Figure 7.7. Table 7.5 summarizes the boundary inside and outside condition
of heat transfer for winter season convection coefficients ( %), temperature and emissivity (€) of

the surfaces for the inside constant conditions and for the outside changing with time depending
on the ambient conditions. The inside boundary condition is taken to be the constant comfort zone,
which is taken from [84]. The outside condition changes with time depending on the changing
weather conditions. The ambient air temperature, velocity, and the total solar radiation are taken
according to real weather conditions in Miskolc city from Ist December 00.0 a.m. to 31st
December 00.0 p.m. [93]. Table 7.6 shows the boundary condition for the summer season and the
data are taken according to real weather conditions in Miskolc city from 1st July 00.0 a.m. to 31st
July 00.0 p.m. [93].

Table 7.5. Convection, radiation, and heat source parameters are present on both sides of the wall during
the winter season [93].

W * A% _
h [ 7K } Temperature [K] 5 o [W x107° }
Inside condition 8.3 295 09 5.1
Outside condition 0.6-19.6 264-284 09 5.1
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Table 7.6. Convection, radiation, and heat source parameters are present on both sides of the wall during
the summer season [93].

W * A% _
h, [mzK:l Temperature [K] £ Y [W x10 8}
Inside condition 8.3 295 09 5.1
Outside condition 2.7-16.9 284.2-307 09 5.1
I obtain the values of the coefficients in my equations as follows: [25],
Kol o ot 56784100 s, g=—L " ‘u,
cpAx cpAx cpAx cp-Ax

I also supposed that the inside and outside elements have heat sources as follows:

.. 1 . h;
For the inside elements: ¢, = —xg;, + —2—xu;
cp

For the outside elements: ¢, (1) = LI G () + fioue (1) Xty ()
cp cp-Ax

how (7) Cout Gout ()
K(t)= out ) _ out ) £) = out
And () cpAx “ cpAx q() cpAx  cp-Ax

* 4 * 4
where Gin = €l-n01-n (uin) and Gout (t ) = Osun Gcout (t) T AL owEoutOout |:uout (t ):| [94]
The convection heat transfer coefficient for outside elements as a function of air velocity is

like in section 6.2.4

The environment’s air temperature is taken to be 22 °C~295 K inside, and changes depending

on weather conditions outside.

I calculated the initial temperature inside the wall using the assumption that before the
simulation time, a stationary heat flow with constant flux evolved between the given boundary
values of the inside and outside air temperatures. For example, in the case of one layer, it yields a

linear function of the x variable for the initial condition:
u (x9 t= 0) = (uout,initial —U;, )x/ Lx +uy,

where 4 264 K for the winter season, and for the summer season =307 K .

out,initial — out,initial

For the multi-layer wall case, the assumption of stationary heat conduction with the initial
values at the boundaries implies that [ have to use piecewise linear functions of the x variable for
the initial condition:

i=4 L.
diux = (uout,initial _uin) / Z_l Where uinitial,Layer,i+l =U; 7(qﬂuxLi /kz)

i=1 ">

7.5. Result for the Simulation of the Wall
7.5.1. Winter Simulation

This paragraph presents the results of a simulation of heat transfer and temperature distribution
in a four-layered wall during the winter season (December). The simulation shows how the
temperature varies across the layers and how much heat is lost from the inside to the outside of the
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wall per meter square. Figure 7.8 shows the temperature distribution at the boundary surfaces of
the layers when the wall faces North, Figure A1-5- A1-7 in Appendix, provide information for the
East, South, and West directions, respectively. The following observations can be made from the
results. The inside surface temperature (gypsum plaster) and the first cell of the HW concrete layer
are close to the inside air temperature, indicating that these layers are insulated from the outside
and the insulation layer’s ability to minimize heat transfer from the building’s interior to the

exterior.

The first cell of the insulation layer and the outside surface temperature (brick) are close to
the outside air temperature, indicating that the insulation layer has a low thermal conductivity and
reduces heat transfer from the building’s interior to the exterior.

The North-facing wall has the largest temperature gradient and the highest heat loss because
it does not receive any solar radiation. For the South-facing wall, the opposite is true. The East-
facing and West-facing walls have approximately similar temperature gradients and heat losses
because they receive approximately similar amounts of solar radiation. They are intermediate
between the North-facing and South-facing walls, but the east wall is slightly colder than the west

wall.
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Figure 7.8. The temperature distribution in °C as a function of time in days for the four-layer wall facing
North. Border layer means the boundary between two different materials (Border 1 between gypsum
plaster and heavy-weight concrete, Border 2 between HWC and insulation, and Border 3 between
insulation and face brick.).

Figure 7.9 shows that the heat loss per meter squared is the highest for the wall facing North
and lowest for the wall facing South.
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Figure 7.9. Total heat loss distribution in W/m? as a function of time in days for the wall simulation
facing North, East, South, and West.
7.5.2. Summer Simulation

This section shows the results of a simulation of heat transfer and temperature distribution in
the four-layered wall during the summer season (July), depicted in Figure 7.7. The simulation
shows how the temperature varies across the layers and how much heat is gained from the outside
to the inside of the wall per meter squared. Figure 7.10 shows the temperature distribution at the
boundary surfaces of the layers when the wall faces North, Figure A1-8- A1-10 in Appendix,
provide information for the East, South, and West directions, respectively. The following
observations can be made from the results.

The inside surface temperature (gypsum plaster) and the first cell of the HW concrete layer
are close to the inside air temperature, indicating that these layers have a high thermal conductivity,
and these layers have a high ability to transfer heat from the building's exterior to the interior.

The first cell of the insulation layer and the outside surface temperature (brick) are higher than
the outside air temperature during nights, indicating that the insulation layer has a low thermal
conductivity and decreases the heat gain from outside to inside during the daytime. But in the case
of the East, West, and especially the South wall, the surface temperature can be higher even during
the daytime due to solar radiation and the rather high emissivity.

The North-facing wall has the smallest temperature gradient and the lowest heat gain because
it does not receive a significant amount of solar radiation. The opposite is true for the South-facing
wall. The East-facing and West-facing walls are between the North-facing and South-facing walls,
but surprisingly, the East-facing wall has noticeably higher temperatures and heat gain than the
West wall.
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Figure 7.10. The temperature distribution in °C as a function of time in days for the four-layer wall
facing North.
Figure 7.11 illustrates that the heat gain per meter squared is lowest for the wall facing North
and highest for the wall facing South.
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Figure 7.11. Total heat gain distribution in W/m? as a function of time in days for the wall simulation
facing North, East, South, and West.

The wall simulation presents how the temperature varies in °C on the South-facing side of the
building. Figure 7.12 displays the contour of the temperature distribution for two different seasons:
winter (left) and summer (right). The simulation results are based on the last midnight of December
and July, respectively. One can notice the heat stored by the wall during the summer night.
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Figure 7.12. Contour of the temperature distribution in °C on the South-facing side of the building for
two different seasons: winter (left) and summer (right).

Table 7.7 summarizes the heat loss and gain for the wall based on the simulation and HAP
peak load, i.e., for the coldest and hottest days, respectively. The heat loss is the highest in winter
on December 14, and the heat gain is the highest in summer on July 17.

Table 7.7. The heat loss and heat gain in transient method by LH and steady-state method by HAP.

Methods Winter Summer

Heat Loss [KW/m?] Heat Gain [KW/m?]
Direction N E S w N E S W
LH 1734  17.16 16.92 17.08 —3.45-9.745 —12.09-5.99
HAP 1935 1944 19.35 1943 47 —7.65 —7.8 -7.43

percentage difference 2.7%  3.1% 33% 32% 7.6% 6.0% 10.7% 5.3%

The transient simulation by LH is more realistic and accurate because it uses real data from
the weather website [93] for 2022 and 2023. The steady-state method by HAP is based on the
location, design temperature for winter and summer, and estimated factors that increase the load
to avoid under design. The steady-state values are always higher in winter than the transient
simulation values.

7.6. Summary of this chapter

This study applied and compared MLP and RB neural networks with three algorithms (LM,
SCG, and RB) to estimate the HL and CL of a residential building. The buildings were located in
Miskolc, Hungary. The walls of the buildings consisted of gypsum plaster, HW concrete,
insulation, and brick layers. The models were developed and assessed using 624 samples with
seven independent factors. The accuracy and error of the models were evaluated by R?, MAE,
RMSE, RMSD, and NRMSD. The results revealed that the LM model outperformed the other
models in terms of prediction accuracy and error minimization. The LM model also had the best
fit to the experimental data; furthermore, the error is approaching zero compared to the other
algorithms, which verified the validity of the MLP training process. This study demonstrated that
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the MLP neural network with the LM algorithm can be an effective method for simulating the HL
and CL of residential buildings.

In the simulation part, I investigated the thermal behavior of the same four-layered wall with
different orientations in winter and summer by using the finite difference leapfrog—hopscotch
algorithm coded in MATLAB. The simulation results showed the variation of temperature and
heat transfer across the layers and the effect of solar radiation on the wall performance. The results
revealed that the insulation layer played a key role in reducing the heat loss in winter and
decreasing the heat gain in summer. The results also indicated that wall orientation had a
significant influence on the thermal performance, with the North-facing wall being the most
efficient in summer and the South-facing wall being the most efficient in winter. The West- and
East-oriented walls are intermediate between the North and the South, but surprisingly, the East
wall has noticeably higher temperatures and heat gain in summer than the West wall. The
simulation process confirmed that the steady-state calculations for the most extreme day of the
winter overestimate the heat loss. On the other hand, on the hottest day of summer, the steady-

state method can under- or overestimate the heat gain depending on the orientation of the wall.
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8. THE IMPACT OF ROOF ANGLE AND LOCATION ON THERMAL PERFORMANCE
OF BUILDINGS

This chapter explores the impact of roof inclination on heat loss and gain within interior
spaces. The investigation involves varying the roof angle in multiple ways, with a particular focus
on the southern direction during winter to maximize daytime heat gain, and the northern direction
in summer to minimize heat gain. After determining the optimal angle for both moderate (Miskolc,
Hungary) and hot (Baghdad, Iraq) geo-graphical locations, I simulated the most effective models.
[ will perform steady-state simulations for several cases using the HAP program to find the optimal
roof. Then I will conduct a transient simulation using the ANSYS program, incorporating
additional scenarios to enhance the optimal roof. My simulations revealed that the optimal roof
angle gives the minimum heat gain and loss. Then, to improve their performance, I implemented
Trombe roofs. Additionally, I apply glass wool insulation to the north side during the winter and

the south side during the summer.

8.1. The Materials and Studied Cases

8.1.1. Materials and location

In this study, the effects of the angle of the roof facing to the North as well as to the South
with a constant horizontal length of the roof with four roof configurations are examined. Data
collection was performed under the winter weather conditions of Miskolc, Hungary (48° 06' 9.00"
N and 20° 47' 17.99" E), and during a summer day in Baghdad, Iraq (33°19" 15.60" N and
44°24'00.00" E). The urban climate in Baghdad is characterized by continuous solar radiation that
is strong in sunlight throughout the year. In the Iraqi summer, for the design day, the relative
humidity is around 21% and the air temperature under the shade ranges between 36 — 49 °C [93].
In addition, during the Hungarian winter, the outside air temperature ranges between -5 °C and 1
°C on the design day. Figure 8.1 demonstrates this, and Table 8.1 and Table 8.2 present the
properties of the attic, roof and ceiling, respectively.

Asphalt shingle roofing

Building paper

Plywood deck /
Gypsum //

Roof air space

Insulation

2lling air space
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Figure 8.1. The materials used in the roof and ceiling.

For other required values, sample values given in studies in the literature were used [95] [96]. The
aim of examining different designs and applying thermal insulation materials is to hinder the
thermal energy transfer to or from the structure.

Table 8.1. The properties and thickness of the roof layers.

Asphalt shingle Building paper Plywood deck Gypsum

k [W/(m K)] 0.79 0.04 0.0554 0.16

p [kg/m’ 1700 930 288 800

G, [J/(kg K)] 1000 1300 1298 837
Thickness [mm] 40 5 13 13

Table 8.2. The properties and thickness of the ceiling layers [60].

Acoustic tile Ceiling air space  HW concrete insulation

k [W/(m K)] 0.2877 0.4116 1.3 0.1017

plkg/m’] 480.6 1.1 977.1 8.0

Cp [J/(kg K)] 840 1.007 840 840
Thickness [mm] 30 20 150 100

8.1.2. Mathematical Model, Geometric Configurations, and ANSYS Setup

The methodology section of this research paper explores the impact of roof design on thermal
performance across diverse climatic zones. I analyzed a roof model of a 3 m by 3 m section of a
building. The inclined surface can be oriented in the north or south direction, and the horizontal
surface will be level. The inclined surface can have four proportions for the larger section (1/2,
2/3, 5/6, and 1) of the roof length, and the remainder is the smaller section. In the winter case in
Miskolc, the larger section faces south, and the smaller section faces north to maximize heat gain
and minimize heat loss. In the Iraqi summer, the opposite occurs: the larger section faces north,
and the smaller section faces south to reduce heat gain. Figure 8.2 illustrates the winter cases
studied for Miskolc, Hungary, and Figure 8.3 shows the summer cases for Baghdad, Iraq. The
larger section of the roof has © angle, and the smaller section has ® angle. The angle selection
depends on the latitude of the city, where the maximum radiation occurs close to the latitude angle
[97]. T add and subtract the latitude angle by a certain number of degrees to emphasize the best
angle by testing more possibilities. Figure 8.2 and Figure 8.3 show this process in detail. For @ it
depends on completing the triangle angles.
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Figure 8.2. Roof dimensions and angles for the winter case (A) case (1/2) of roof length, (B) case (2/3)

of roof length, (C) case (5/6) of roof length, and (D) case (1) of roof length.
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Figure 8.3. Roof dimensions and angles for the summer case (E) case (1/2) of roof length, (F) case (2/3)

of roof length, (G) case (5/6) of roof length, and (H) case (1) of roof length.

Heat transfer through attics: The thermal calculation of the attic depends on whether it is ventilated

or not. In the summer, the temperatures inside can approach the outside temperature (having a

well-vented attic), but it is still necessary to account for the heat radiation transferred to the ceiling
from the roof [98]. For unventilated attics, heat transfer occurs through the closed system
composed of the ceiling, the attic space and the roof.
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In order to calculate the R-value of the roof ceiling system, it is necessary to combine the effects
of the R-value of the ceiling, the R-value of the roof, and the thermal resistance of the space. A
practical approach for this is calculating first the R-value of the ceiling and roof separately, using
resistance networks, and considering the still-air case for the attic surfaces. After that, the
following relation expresses the overall R-value of the ceiling-roof combination per unit area of
the ceiling.

Aceiling (8 1)
Aroof

Data were collected using the HAP program to calculate heat transfer for each steady-state model
specifically focusing on selected working hours (00:00, 06:00, 09:00, 12:00, and 15:00) [99].
These models were created by varying angles and lengths, as illustrated in Figure 8.2 and Figure

R= Rceiling + Rroof (

8.3. Additionally, I analyzed heat loss and gain based on weather conditions in Miskolc during

winter and Baghdad during summer.

Upon analyzing the cases presented in Figure 8.2 and Figure 8.3, I will identify the roof that
minimizes heat losses and the roof that minimizes heat gain. Subsequently, I will numerically
simulate these models using the Fluent program and explore additional solutions to enhance and
compare them. This study bases its mathematical explanation of the heat transmission mechanism
on the following assumptions:

Because of its low flow velocity, the air is an incompressible fluid, Newton's laws apply to air.
The flow field is described as two-dimensional steady-state flow.

The two-dimensional governing equations for air can be written as follows [100].

Continuity equation : —X+—=0 (8.2)
ox Oy
Moment ; L O ou) _op o%u, N 0%u, s
omentum equations: O, | U, x| oy o M, o2 6y2 (8.3)
éuy 8uy op 82uy azuy
Pyl U, —+— |=—+4, 5+t — (8.4)
ox Oy oy Ox oy
oT, 0T, O°T,
Energy equation: p,C —aJp =k et 8.5
gy €q ( a~pa” o a — "a axz ayz (8.5)

where p,, Cpa, ka, U, 7 are density, specific heat, thermal conductivity, velocity and

temperature of air, respectively.

The transient 2D model of the roof has been established using the Fluent program to study the
effect of the range of angles of the roof, the roof with Trombe and with insulation on the effective
side in reducing heat gains for residential buildings. I positioned the Trombe along the southern
roof surface in winter and along both northern and southern roof surfaces in summer. Trombe roofs

have a channel width of 0.05 m and a vertical extension of 0.25 m at 90 degrees parallel to the
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effective roof surface. The material is glass with a thickness of 1 cm for the winter case and from
the same material as the last layer in summer. The 2D roof model with 300 cm height consists of
four layers, and the dimensions of this roof are listed in Figure 8.1. This model was used to study
the effect of incorporating Trombe in a building’s external roof for heat gain reduction. The
produced finite volume mesh resulted in 24500 cells. The time step used in this study was equal
to 150 s, and the number of time steps is 576, so the total time is 24 hours. After cautious
verification of the independence of the effects on these variables, the time step and the grid size
were chosen.
8.1.3. Boundary Conditions and Mesh Independence

The internal boundary conditions are determined based on the comfort zones during the
coldest weather in Hungary, and the hottest weather in Iraq. The external conditions, on the other
hand, the HAP and ANSYS simulations rely on the meteorological data outlined in Table 8.3 and
Table 8.4. I approximated the initial temperature using the assumption that, prior to the simulation
period, at midnight on the previous day of the simulation day, a stationary heat flow with constant
flux had developed between the specified boundary values of the external and internal air
temperatures. The values utilized for these boundary conditions are detailed in Table 8.5 and Table
8.6 [101].

Table 8.3. Weather data on winter [11].

Date: 11/01/2024 location: Miskolc Hungary
Temperature [°C] Velocity [m/s] he [W/(m? K)]
0:00 -4 1.8 22.11
6:00 -5 1.67 19.12
9:00 -3 1.8 22.11
12:00 1 1.67 19.12
15:00 0 1.38 13.25

Table 8.4. Weather data on summer [93].

Date: 16/08/2023 location: Baghdad Iraq
Temperature [°C] Velocity [m/s] he [W/(m? K)]
0:00 39 1.67 19.12
6:00 36 0.83 5.174
9:00 44 33 29.88
12:00 47 33 29.88
15:00 49 1.8 22.11
Table 8.5. The boundary of convection, radiation, and temperature on both sides of the roof.
he [W/(m? K)] (€] [T °C]
Outer surface 13.25-22.11 0.9 0--5
Inner surface 8.3 0.9 22

Table 8.6. The boundary of convection, radiation, and temperature on both sides of the roof.

h WP K)] el T °C]
Outer surface 5.174 -29.88 0.65 39-49
Inner surface 8.3 0.65 24
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It is unequivocal that enhancing the count of computational cells can lead to more precise
outcomes, albeit at a greater computational cost. The results exhibit negligible variation when the
cell count surpasses a specific threshold, signifying the achievement of mesh independence. To
corroborate the independence of the results from the mesh density, I examined twelve meshes with
an escalating total count of elements for roofs. The heat loss was computed based on the element
count. I present the best model, the heat loss remains constant when the element count exceeds
24500. Consequently, I established an element size of 0.015 m, resulting in cells shaped as
rectangular cuboids with a total element count of 24500.

8.2. Results
8.2.1. HAP simulation

Now I present the results of the Heat transfer (HAP) model, which illustrates the heat loss
of roof (in W/m?) for all scenarios shown in Figure 8.2 and Figure 8.3 over time. I tested the heat
loss and gained as a function of time for different angles in winter cases for the north-facing roof
cases and the south-facing roof for the same cases. Therefore, the angle © of the roof facing north
changes from 40 to 55 degrees for selected angles. However, for the roof facing south, @ changes
from 40 to 55 degrees for selected angles. Similarly, I investigated the heat loss and gained for
these sides based on roof inclination angles during various time periods. As observed in Figure
8.4, I can achieve maximum heat gain and minimum heat loss; thus, I will emulate this scenario

as the optimal model for winter.

In the summer cases I tested, the angle of the south-facing roof varied from 33 to 45 degrees
for specific angles. However, for the roof facing north, @ is changing from 30 to 45 degrees for
selected angles, where the north-facing roof and the south-facing roof are on the left side of the
previous cases. As one can see in Figure 8.4, I can attain a minimum heat gain. Hence, I will
simulate this scenario as the ideal model for summer. I present the optimal roof case in Hungary
faced to south and the summer optimal roof case in Iraq faced to north in Figure 8.4. the first case
is on the left and the second case is on the right, respectively.

48 | —8—06=40" —l—-6=45" ©=48° ——06=50° o= 55"| 70

| —8—09=30° ——-06=33° ©=35° ——06=40° ©=45°
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Figure 8.4. Roof heat gain as a function of the time for the winter optimal case in Hungary faced to south
right side and the summer optimal case in Iraq faced to north left side.
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In Figure 8.5, I conduct a comparative analysis between the optimal models and the horizontal
model. Specifically, I take into account the orientations facing east and west, integrating them into
the load calculations for the north and south directions. The resulting combined load is
subsequently compared to the load associated with the horizontal configuration. Although an
inclined roof has a larger surface area than a horizontal roof, it has reduced heat loss and gain. This
is attributed to a shorter duration of exposure to beam solar radiation, resulting in lower heat gain,
and to the consistent thermal convection on the sides of the inclined roof, additionally, when
exposed to solar radiation, it stores energy and re-radiates it, which minimizes heat loss compared
to a horizontal roof. Consequently, the inclined design offers improved thermal performance
despite its increased surface area.

25 —i—Inclined_Roof —+—Horizontal_Roof =i—Inclined_Roof —+—Horizontal_Roof
70
15
S 5 5 15 \ e
3 o
d-15 30
-25 20 1
-35 10
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time [hr] time [hr]
winter summer

Figure 8.5. Roof heat loss and gain with time on left side winter season and right-side summer season.

8.2.2. ANSYS simulation

In my ANSYS simulation, I investigated three scenarios. Initially, I analyzed the optimal
model, revealing that heat transfer from the roof to the ceiling amounted to 29.939 W/m? of the
ceiling area during summer, with a corresponding 24.43 W/m? heat loss during winter.
Subsequently, I explored enhancements to the roof. My second case involved the addition of a
Trombe roof, which effectively cooled the roof’s outer surface in summer, mitigating direct sun
exposure. As a result, summer heat gain decreased to 16.234 W/m?, while in winter, the strategy
was different by making holes with diameter 5 cm in the bottom and top of the effective roof facing
to the south in order to heat the circulated air coming from roof space in exposed Trombe roof to
sunshine in the daytime, then heat loss decreased to 21.77 W/m?. In my final improvement, I
installed insulators of glass wool [94] on the south side for summer and on the north side for winter.
This adjustment led to a reduction in summer heat gain to 23.997 W/m? and a reduction in winter
heat loss to 20.91 W/m?. So Figure 8.6 shows the layout of the three cases in winter and summer
and Figure 8.7 shows the contour of temperature of all cases.
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Figure 8.6. Illustration of the cases I simulated, including optimal roof, roof with Trombe, and glass

wool insulation on one side of roof. The roofs on left side winter season and right side summer season.
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Figure 8.7. Contour of temperature for the optimal roof cases, Trombe and with insulation on effective
side on left side winter season Hungary, Miskolc and right-side summer season Baghdad, Iraq.

Figure 8.8 presents a comparative analysis between the HAP program and the ANSYS program
concerning the optimal model. The simulations of steady-state behavior in HAP and transitional-
state behavior in ANSY'S Fluent exhibit convergence, yielding highly similar results.
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Figure 8.8. Comparison for the optimal roof, based on HAP and ANSYS (N-north side roof, and S-
south side roof ) result. Left side: winter in Hungary, Miskolc. Right-side: summer in Baghdad, Iraq.
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Table 8.7 shows the heat flow across the ceiling to the inside of the building for all cases of simulation in
winter and summer
Table 8.7. The properties of the materials used.

Winter cases 0 [W/ m? ] Summer cases 0 [W/ m? ]
Normal roof 24.43 Normal roof 29.939
Trombe roof 21.77 Trombe roof 16.234
Insulator on effective side roof 20.91 Insulator on effective side roof 23.997

8.3. Summary of this chapter

In my study, I investigated the impact of roof inclination angles on energy consumption in
buildings. Specifically, I focused on optimizing these angles for different climatic conditions. My
research was conducted in two distinct cities: Baghdad, characterized by hot summers, and
Miskolc, known for relatively cold winters.

For buildings in Baghdad’s scorching summers, I determined that a roof inclination @ angle of 90
degrees toward the south was most effective in minimizing heat gain. Conversely, a 45-degree
inclination © angle toward the north provided optimal results. In Miskolc’s cold winters, I found
that a roof inclination @ angle of 82 degrees toward the south minimized heat loss, while a 55-
degree © angle toward the north was ideal.

To further enhance energy efficiency, I explored additional modifications. Notably, the Trombe
wall system significantly reduced heat gain to the inside of the building, lowering it from 29.939
to 16.234 W/m>. Additionally, insulating the active side of the roof reduced heat gain to 23.997
W/m? for summer cases 4, 5 and 6 respectively in Figure 8.6 and, for heat loss from inside of
building to the environment of roof was 24.43, 21.77, 20.91 W/m? for winter cases 1, 2 and 3
respectively in Figure 8.6, which are normal roof Trombe and insulating the active side of the roof,
respectively. These findings underscore the importance of thoughtful design and strategic
adjustments in achieving sustainable energy use.
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I analyzed nine numerical algorithms for solving the heat equation, focusing on positivity-
preserving methods stable across time step sizes and system stiffness. The study tested 2500-
cell, two-dimensional stiff systems with random, discontinuous parameters. I compared
accuracy and CPU efficiency, finding the 3-stage LNe3 and LH-CNe methods most accurate.
I examined how increasing stiffness ratios, decreasing CFL limits, and varying spatial
anisotropy affected accuracy. The study assessed performance with growing horizontal-
vertical cell dimension differences. I recommended optimal methods for scenarios like OEH
structure, unstructured meshes, and highly anisotropic systems, aiming to guide effective
positivity-preserving method selection. [61].

I developed a novel, fully explicit, stable numerical algorithm for time-dependent diffusion
equations with linear and nonlinear reaction terms. Based on the UPFD idea and theta-formula,
it’s second order in time step size and unconditionally stable for linear cases. It outperforms
other methods and MATLAB routines in accuracy and stability for nonlinear cases, though not
positivity-preserving. Stable for large time steps even with strong nonlinearity, it’s easy to
implement and suitable for unstructured grids. This pseudo-implicit algorithm combines key
advantages of explicit and implicit methods.[42].

I optimized the leapfrog-hopscotch method for the heat conduction equation, focusing on free
convection and radiation terms. Best results treat convection 50% at old- and new-time levels,
ensuring stability and second-order temporal convergence. The radiation term is best handled
pseudo-implicitly for excellent stability. The algorithm performs well under low CFL limits.
[72].

I studied a diffusion-reaction PDE with a linear reaction term and space-time-dependent
nonlinear coefficients. Nine numerical algorithms reproduced these, with Dufort-Frankel and
leapfrog-hopscotch explicit schemes outperforming standard explicit and implicit methods. In
a 2D case simulating wall surface temperature with wind-driven forced convection and rapidly
varying material properties, explicit stable methods proved more efficient than implicit ones,
with efficiency expected to grow with system size. [102].

I compared MLP and RB neural networks using LM, SCG, and RB algorithms to predict
heating and cooling loads in Miskolc, Hungary residences. The MLP with LM algorithm
excelled in accuracy and error reduction. I also studied a four-layered wall’s thermal behavior
across orientations in winter and summer using the leapfrog-hopscotch finite difference
algorithm. Insulation and orientation significantly affect thermal performance, with North-
facing walls optimal in summer and South-facing in winter. Steady-state calculations
overestimate winter heat loss and variably estimate summer heat gain. [99].

I studied heat loss and gain in inclined roofs in Miskolc (cold winters) and Baghdad (hot
summers). In Miskolc, optimal roof angles of 82° south and 55° north minimized heat loss. In
Baghdad, 90° south and 45° north reduced heat gain. Trombe wall systems cut heat gain from
29.939 to 16.234 W/m?, and insulating the active roof side lowered it to 23.997 W/m? in
summer. Winter heat loss in Miskolc was 24.43, 21.77, and 20.91 W/m?2. [103] [104].
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Figure A1-1. (a) Equidistant mesh. (b) Gradual change in the x and z directions.
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Figure A1-2. The flowchart presents the process used to determine the prediction.
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Figure A1-3. Histogram error for (a) heating load and (b) cooling load prediction through
MLP_LM, MLP_SCG, and RB.
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Figure A1-4. Illustrates the accumulated heat loss for December as a function of the total number
of cells along the x-axis, in the case of four layers at the south wall.
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Figure A1-6. The temperature distribution in °C as a function of time in days for the four-layer
wall facing South.
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Figure A1-8. The temperature distribution in °C as a function of time in days for the four-layer
wall facing East.
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A2

Table A2-1. The statistical analysis of energy-efficient design on eight features of efficient building.

Standard

Characteristics Mean Median Min. Max. Std. Deviation Error Variance Skewness
Direction 2.5 2.5 1 4 1.119 0.045 1.252 0.0
Dist. of AW 7.02 7 0.0 14 3.981 0.159 15.852 0.065
Exposed Area 633.73 648 500 716 53.818 2.154 2896.377 —1.021

Roof Area 193.08 200 140 200 11.260 0.451 126.793 -1.926
RC 0.678  0.658 0.5961 0.8537 0.0639 0.00256 0.004 1.316

Wall Area 440.65 453 300 516 53.645 2.148 2877.819 —1.044
Window Area 30.77 30 0 60 17.972 0.719 323.003 0.324
Cooling Load 24.4 23.5 14.5 42.7 5.7738 0.231 33.33 0.717
Heating Load 22 22 16.6 26.5 1.9871 0.0795 3.949 —0.058
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