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1. INTRODUCTION 

Energy efficiency in buildings is essential for addressing climate change and fostering 

sustainability. Buildings are major energy consumers, and optimizing their thermal performance 

can significantly reduce energy consumption and greenhouse gas emissions. Enhancing energy 

efficiency requires managing heat transfer within building components, including walls, roofs, and 

floors. Understanding this process involves heat transfer equations that account for material 

properties (e.g., thermal conductivity, density, and specific heat capacity) and boundary conditions 

(e.g., temperature, humidity, and airflow). Accurate thermal analysis of building walls requires 

numerical methods, and research has focused on transient heat transfer in multilayered media. 

Various mathematical models and computational methods, such as MATLAB simulations and 

computational fluid dynamics (CFD), have been used for this purpose. 

The diffusion equation, a key mathematical model for heat transfer, has been extensively 

studied. Early analytical solutions assumed constant parameters, but space-dependent properties 

necessitate numerical approaches. Zoppou and Knight [1] provided analytical solutions for the 

advection-diffusion equation with spatially variable coefficients, though most cases require 

numerical solutions. Spatially discretized partial differential equations (PDEs) are converted into 

ordinary differential equations (ODEs), which can be challenging to solve, especially in three-

dimensional cases. Explicit methods like Runge-Kutta are conditionally stable and 

computationally expensive, while implicit methods allow for larger time steps but require solving 

complex algebraic systems. Advances in implicit methods have addressed stability issues in stiff 

problems, such as those involving rapid temperature changes and high thermal diffusivity 

materials [2]. A novel approach in this research involves developing explicit, unconditionally 

stable numerical methods that are easily parallelizable. One such method is the two-stage odd-

even hopscotch (OEH) algorithm, introduced by Gordon [3] and refined by Gourlay [4-6]. The 

OEH method has been applied to the Navier-Stokes equations [7], reaction-diffusion equations 

[8,9], and nonlinear Dirac equations [10]. Goede and Boonkkamp [11] improved OEH through 

vectorization for solving two-dimensional Burgers’ equations. Recently, Maritim et al. [12,13] 

developed hybrid algorithms combining OEH, Crank-Nicolson, and Du Fort-Frankel methods, 

finding their implicit algorithms stable and accurate. Further research [14-16] identified limitations 

in OEH for stiff systems, leading to new algorithmic modifications to enhance stability and 

accuracy. 

Heat transfer management is crucial for achieving energy efficiency in buildings. The thermal 

performance of walls plays a significant role in maintaining indoor comfort. Research has explored 
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integrating phase change materials (PCMs) and thermal insulation into building envelopes. PCMs 

store and release latent heat, mitigating temperature fluctuations and reducing reliance on 

mechanical heating and cooling. Concurrently, thermal insulation minimizes heat transfer, further 

improving energy efficiency. Numerical simulations have been key in understanding the thermal 

behavior of PCM-integrated walls. Geng et al. [17] investigated optimal PCM and thermal 

insulation material (TIM) placements in multilayered walls, demonstrating energy savings of 

46.69–64.73%. Liu et al. [18] studied PCM performance in lightweight building walls, finding 

significant heat flux reductions of up to 66.4% for east- and west-facing walls. Other studies 

highlight the effectiveness of combining PCM with conventional insulation. Tunçbilek et al. [19] 

found that integrating PCMs in building walls reduced energy consumption by up to 38.2%. 

Cascone et al. [20] optimized PCM use in office building retrofits for Mediterranean climates, 

aligning with the EU's 2020 sustainability goals. Jam et al. [21] conducted an economic analysis 

of PCM integration in educational buildings, determining an optimal 3 cm PCM thickness with a 

50-month payback period. Abden et al. [22] evaluated PCM and insulation combinations in 

Australian homes, revealing cost savings of AU$167.0/m² and energy efficiency improvements of 

up to 4.3 stars in various climate zones. Iffa et al. [23] designed a hybrid wall system integrating 

thermal energy storage, achieving peak heat flux reductions of 81.92W/m². Arumugam et al. [24] 

optimized PCM-insulation placement in Indian office buildings, achieving cooling load reductions 

of 57–64% across different climates. 

This research focuses on developing efficient numerical methods for solving heat transfer 

equations in Cartesian, cylindrical, and spherical coordinate systems. It builds on existing 

numerical methods, such as Explicit Euler, Crank-Nicolson, Runge-Kutta, and the hopscotch 

method, to enhance their efficiency and stability. Novel methods, including the Shifted-Hopscotch, 

Leapfrog-Hopscotch, and Pseudo-Implicit methods, represent advancements in numerical 

modeling for heat transfer problems. These methods have been implemented in MATLAB, 

validated against analytical and experimental data, and applied to real-life engineering scenarios. 

The study examines heat transfer in different building walls and heated cylinders, focusing on 

materials like insulators, PCMs, and concrete. The goal is to optimize heat transfer management, 

promoting energy-efficient building designs. By improving numerical methods and their 

application in thermal analysis, this research contributes to sustainable building practices and 

energy conservation efforts. 

In this study, I aim to calculate heat transfer in different geometries, beginning with deriving 

the general heat energy equation (conduction, convection, and radiation) based on energy balance 

in Cartesian, cylindrical, and spherical coordinates. 

For Cartesian coordinates, energy balance on a small rectangular element during a small-time 

interval is expressed by the heat transfer equation, incorporating Fourier’s law of heat conduction, 

Newton’s law of heat convection, and Stefan-Boltzmann law for radiation. The governing equation 

includes conductive, convective, and radiative heat terms, with heat generation represented by the 
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incoming heat from external sources like radiation and convection. The equation for temperature, 

including these heat transfer mechanisms, is derived. 

2 2 2 * * *
4 4

2 2 2 a i

u u u q h h u
u u u u

c x c x c x c x c x tx y z

 


    

    
+ + + + + − − =           

                        (1.1) 

After simplification, I have 

41
( )

u
k u q Ku u

t c





=   + − −


                                           (1.2) 

where u  k, c, and ρ are the temperature, heat conductivity, specific heat and the density, 

respectively, 4
a

*

i

q h
q u u

c x c x c x



  



= +  +
  

 is the heat generation or heat source coming from the 

outside of the wall structure, ( )
h

K K r
c x

= =


 is the heat transfer convection term, and 

*

( )r
c x


 


= =


 is the radiation heat transfer term. The terms q, Ku and 4u  are nonnegative and 

still in  K s/ .  

The standard central difference formula in two space dimensions is applied for the second-order 

derivative ( 2u ). The space steps are x  and z  a 

 4

2 2

-1 12 2i i ii i i Nx i Nx
i i

u u u u u udu
q Ku u

dt x z
  + − +− + − +

= + + − −
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 (1.3) 

I now change from node to cell variables, which means that iu , ic , and i  will be the temperature, 

specific heat, and density of cell i, respectively. Furthermore, since the material boundaries will 

always coincide with the cell borders, I write the average 1

2

i ik k ++
 instead of 

2
i

x
k x

 
+ 

 
.  

The heat capacity of the cell can be calculated as i i iC c V= . I calculate the horizontal and vertical 

thermal resistances between the neighbouring cells, as , 1
12 2

i i
i i

x x
R

k z k z
+

+

 
 +

 
, and  

,
2 2x

x

i i N
i i N

z z
R

k x k x
+

+

 
 +

 
 respectively, where i and j represented the cells index in x-axis and z-axis. 

Semi-discretized form of Equation (1.3) can be expressed as below: 

 4

1, 1, , ,

1 1 x x

x xN N

i N i i N ii ii i i
i i

i i i i i i i i i i i i

u u u uu u u udu
q Ku u

dt R C R C R C R C


− + − +

− +− +
− −− −

= + + + + − −  (1.4) 

The time is discretized uniformly with time-step size t   and represents the temperature of cell i at 

the time n t , 0 1n , ,...,T= .  Now the formulae of the used methods are presented for the general 

discretization (1.2) only. For the simpler formula, I need to define the following quantities: 

new

pred
1

 ,  andi i i i i

j i j i j i

n
j j

i ij i ij i ij

uu
mr t A t t q A t t q

C R C R C R  

=  =  +   =  +      
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Where mri is the general mesh-ratio, while Ai  reflects the state and the effect of the neighbors of 

cell i.We prefer to use the ODE system for a general grid, which gives the time derivative of each 

temperature independently of any coordinate system 

                                   4

,

j

i

i j

ii
i i

i j i

u udu
q Ku u

dt R C




−
= + − −                                               (1.5) 

Which can be written in matrix form 

                                              
du

Mu Q
dt

= + ,                                                                  (1.6) 

where 4
i i iQ q Ku u= − − , and the diagonal element of matrix M can be written as follows 

,

1
ii

j neighbour i j i

m
R C

−
=  . The off-diagonal ,1ii i j im R C=  element of the M matrix can be nonzero only if 

the cells i and j are neighbours.  

In a similar way, the heat transfer equation in cylindrical coordinates can be obtained from 

an energy balance on a volume element in cylindrical coordinates, considering a small 3D 

cylindrical element The heat convection, radiation and the change in energy of an element over a 

specific time interval are the same in Cartesian coordinate except the element volume being 

( )
2

rV r r z  =  +   . In the case of full cylindrical symmetry, it is better to choose a full ring-

shaped element, which yields ( )2 22 ( ) ( )
2

rV r r z r r r z  = +   = +  −  . 

From these equations, one can derive the heat-transport equation in a 3D cylindrical coordinate 

system, which can be written as: 

             
* 4

2

1 1 genQu u u hSu Su u
k r k r k c

r r r z z V V V tr




 

          
+ + + − − =    

             
                      (1.7) 

In the case of spherical coordinates, a small 3D spherical element, the heat-transport equation for 

this case can be expressed as follows: 

  
* 4

2

2 2 2 2

1 1 1
sin

sin sin

genQu u u hSu Su u
k r k r k c

r r V V V tr r r


 

    

          
+ + + − − =    

             
       (1.8) 
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The cell’s heat capacity in the cylindrical and in the spherical case is approximated as 

( )2 2
1i i i i iC c r r z   
+= −   and ( )3 3

1
4

3i i i i iC c r r   
+= − , respectively.  

Let us denote the area of the cylindrical cell-surface perpendicular to r with rS , which can be 

given as 2rS r z=  . Now, for the thermal resistance in the r-direction, the approximate formula 

1 1 1

, 1
, 1

, 1 , 1

ln ln

2 2

i i

i i

r r i i

r r
i i r

i i
i i i i

r rdr dr
R

k S k r z k z 

+ + +

+
+

+ +

−
 = =

    (1.9) 

is used. For the thermal resistance in the z-direction, the approximate formula 
( )

2 2
1

,
( )

r

x

i

i i

i N
i i N

i

z z
R

k r r +

+
+

−


−
 

is used, where the cell i + Nr is below the cell i.  

In the spherical case, rS  can be given as 24rS r= . Using this, the thermal resistance is calculated 

similarly as that in the cylindrical case, but now the integration yields 1

1
, 1

, 1

1

4

i i

i i
i i

i i

r r
R

k r r
+

+
+

+

−
 . From 

Equations (1.7) and (1.8) it is easy to obtain the ODE system  

* 4

,

gen i i

j

j ii

i i i i ij i

u u Qdu hSu Su

dt R C C C C





−
= + − −  (1.10) 

to determine the time-evolution of the cell temperatures. Here, S is the area of the surface on which 

the convection and radiation occur, which will be the outer surface of the cylinder. If one neglects 

the higher powers of r , one can easily derive that i i iC / S c r=   in both cases. Inserting these 

into (1.10), It can write in a simpler form: 

 4

,
i i i

j

j ii

i ij i

u udu
q Ku u

dt R C




−
= + − − ,       

(1.11) 

which will be solved numerically. 
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1. METHODOLOGY OF STUDY  

My research focuses on designing and analyzing numerical methods for solving the heat 

equation, divided into three key directions. First, I developed and tested novel odd-even hopscotch-

type numerical schemes. Second, I proposed adaptive time-step controllers of I-type and PI-type. 

Third, I designed additional adaptive controllers for cases where the diffusion coefficient varies 

with time and space. 

2.1. Existing Numerical methods 

 Several well-known methods exist for solving the heat equation: 

2.1.1. Explicit Euler (FTCS) [25]: Simple but conditionally stable. 

                             ( ) 41 1 ( )i i i i
n n n n
i i i iu mr u A t K u t u+ = − + −   −       .                                                     (2.1) 

2.1.2. Crank-Nicolson [11]: A second-order, unconditionally stable implicit method. 

                   
( )

4

1
2

n

n 1
1 1 ( )

2

1 1

i
i i i

i

n n
i i i

i

mr
u A t K u t u

u
mr


+

 
− + + −   −    

 
=

+ −
   .                                    (2.2) 

2.1.3. UPFD [26]: Designed for diffusion-advection-reaction equations, adapted for heat 

transfer. 

                                   
3

1
n1 ( )

i

i i i

n
n i
i

i

u A
u

mr t K t u

+ +
=

+ +   +   
.                                                 (2.3) 

2.1.4. Dufort-Frankel (DF) [27]: A two-step explicit method, unconditionally stable but 

requiring a self-starting scheme. 

( ) 41 n n
n 1 1 2 2 2 ( )

1

ii i

ii

n
i i i

i

mr u A t K u t u
u

mr

−
+ − + −    −   
=

+
 (2.4) 

2.1.5. Rational Runge-Kutta [28]: Uses predictor-corrector steps to improve stability. 

( )1 4n n n n n
1 12 + ( )  i i i ii ig mr u u u t q t K u t u− += − +   −   −    , 

and  

1 4n n  ( )i i
n
i i ig mru A t K u t u= − + −   −    . 

Using these 1
ig  values, the predictor values can be obtained for all grid types as  
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1pred
 i

n
iiu u g= + .  

After this, using the predictor values obtained above, the increment of a second Euler step 

is calculated: 

( )2 4pred pred pred pred pred
1 12 + ( )i i i ii ig mr u u u t q t K u t u− += − +   −    −    ,  

 2 4pred pred prednew ( )i i ii i ig mru A t K u t u= − + −   −   . 

 

Now one needs to calculate the following scalar products 

( ) ( ) ( )1 1 1 1 1 2 1 2 2 2 2 2
1 12 2

1 1 1

, , , , , ,
N N N

i i i i i i

i i i

p g g g g p g g g g p g g g g
= = =

= = = = = =     

and with them one obtains the final expression for the new values of the variable: 

                         
1 1 2

1 12 1

1 12 2

1 2 2

4 4

i i in n
i i

p g p g p g
u u

p p p

+ − +
= +

− +
                                                   (2.5) 

2.1.6. Heun’s Method [29]: A second-order explicit scheme that refines the Euler approach. 

 ( ) 4pred n n1 ( )i i
n
i i iiu mr u A t K u t u= − + −   −   .  

( ) ( )
4

new
pred

pred pred1

2 2
i i i

n
in n n ni

i i i ii i

u u t
u u mr A A K u u u u+ +   

= − + + −  + −  + 
 

              (2.6) 

2.1.7. Original Odd-Even Hopscotch (OOEH) [30]: The classic hopscotch method using 

explicit and implicit Euler schemes, with conditional corrections to prevent instability. 

Explicit Euler:   ( ) 41 n n1 ( )i i i i
n n
i i i iu mr u A t K u t u+ = − + −   −             (2.7) 

         Implicit Euler:   
new

3

1
n1 ( )

i

i i i

n
n i
i

i

u A
u

mr t K t u

+ +
=

+ +   +   
,   (2.8) 

2.1.8. Reversed Odd-Even Hopscotch (ROEH): Swaps the order of explicit and implicit stages 

while ensuring stability using UPFD-like corrections. 

2.2. Newly Developed Methods 

Building on existing schemes, I introduced novel methods to improve efficiency, stability, and 

accuracy. 

2.2.1. Constant Neighbor (CNe) Method [31]: A modified theta-scheme using known 

neighbor values, making it fully explicit. 

               
( ) ( )

( )

41 1 n n
1 1n 1

1 2 ( )

1 2 1

n n n
i i ii i

i

mr u mr u u t q t K u t u
u

mr

 



+ +
− ++

− + + +   −    −   
=

+ −
                       (2.9) 

2.2.2. Two-Stage and Three-Stage Linear-Neighbor (LNe2, LNe3) Methods [32]: 

Refinements of CNe with additional correction steps for increased accuracy. 
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( )2

pred pred n n
1 11 1i i ii i

mr
s u u u u

t
− +− += + − −


  

and then the corrector values for the two-stage LNe method: 

( )
2 2

2 2 41 n n1 1 1
1 1 ( )

2 2 2

m
m m

i

n n
n n i i
i i i i

r
r ru u t e

u e e s t q t K u t u
mr mr

u 
−

− −+ − +
 +  −

+ − + − +   −   −     
 

=   

For the general case, I can make the corrector step as follows:  

i
4i

new new
n+1 n n ni i i i
i i i

i i i

1
( )

m
m

i i

r
r A A A Ae

u e A t K u t u
mr mr mr

u 

−
−  − −−

+ − + −   −    
 
 

= . (2.10) 

2.2.3. CpC Algorithm [33]: A two-stage variant of CNe with fractional time steps for 

improved precision. 

( )/2 /2 4pred n n
i

1 ( )i imr mrn i
i i i

i

A
u u e e t K u t u

mr
− −

= + − −   −                              (2.11) 

In the second stage, I can use new

pred

i

j i

j

i ij

u
A t

C R

=    with 1t and take a full-time step size corrector step 

using the CNe formula again. Thus, the final values at the end of the time step are 

                   ( )
new

4i i1 n n

i

1 ( )
m min n

i i i i
r rA

u u e e t K u t u
mr


− −+ =  + − −   −                                    (2.12) 

2.3. Invented Hopscotch Variants 

2.3.1 Shifted-Hopscotch (SH): it is a new method invented by me, that has the repeating 

block consisting of five stages, two of them are half and three of them are full-time steps. The first 

half-sized time step is taken for the odd cells with the following general formula: 

                          

( )

1
2

3
1 2

i
n

n i
i

n
i

u A t q
u

mr t K t u

+ + +  
=

+ +   +   

                                                      (2.13)     

 Then, full-time steps are taken strictly alternately with the following formula: 

                 
( )

( )

1
2

3

1 1 / 2 +

1   

i ii
i

i

mr u A t q
u

mr t K t u






+

+ − +  
=

+ +   +   

                                                         (2.14) 

The upper index µ is n for the even nodes and n+1 for the odd nodes. for the even, the odd, and 

the even cells follow again. Finally, a half-length time step for the odd cells closes the calculation 

with the formula 

                        
( )

( )

3
2

3

1
2

1

1 +

1

n

i i
n
in

i
n
i

mr u A t q
u

t K t u

++
+

+

− +  
=

+   +   

                                                    (2.15) 

 

2.3.2 Leapfrog-Hopscotch (LH): it is a new method invented by our team that has a 

structure consisting of two half and several full-time steps. In the first stage, the general formulas 
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(2.13) are used, Then, for the even and odd nodes, full-time steps are taken strictly alternately with 

the formulas (2.14). Always the latest available values of the neighbors must be used (for example 

in 
1

2
iA
+

) when the new values of u are calculated, regardless of the size of the time step. This 

alternation goes on until the end of the last timestep, where (2.14) is used again, but with a halved 

time step size, to reach the same final time point as the even nodes. 

2.3.3 Asymmetric Hopscotch (ASH): it is also a new method that is very similar to the 

SH method, but contains less integer stages. The calculation starts with a half-time step size for 

the odd cell with (2.13). Then a full-time step is coming for the even cell with formula (2.14), and 

finally a half-time step size with (2.15). 

2.3.4 Pseudo-Implicit (PI) Method: it is a new explicit method with advanced handling 

of convection and radiation terms. 

Stage 1: 
3

pred

n
2

1 ( )

i

i

n
i

i
i

A
u

u
mr t K t u

+
=

+ +   +   
                                              (2.16)  

Stage 2: 
( )

2

new
1

pred n

1

1 ( )

i

i

n
i in

i

ii

mr u A
u

mr t K t u u

+ − +
=

+ +   +    
                                     (2.17)  

2.4. Optimizing Some of  The Invented Methods 

The new algorithms are fully explicit time-integrators obtained by a half-time step and 

applied different formulas in different stages. All of the algorithms consist of five stages, but they 

are one-step methods in the sense that when the new values of the unknown function u are 

calculated, only the most recently calculated u values are used, thus the methods can be 

implemented such that only one array of storage is required for the u variable, which means that 

the memory requirement is very low. I applied the conventional theta-method with 9 different 

values of theta   and the non-conventional CNe method to construct 105 combinations in the case 

of small systems with random parameters. I examined the competitiveness of the best algorithms 

by testing them in case of large systems against popular solvers. 

I recall that the following general time-discretization  

( ) ( )( )2

n 1 n
n n n n+1 n+1 n+1

1 1 1 12 1 2i i
i ii i i i

u u
u u u u u u

t x


 

+

− + − +

−  = − + + − − +
  

,  

leads to the so-called theta-method:  

( ) ( )( )n 1 n n n n n+1 n+1 n+1
1 1 1 12 1 2i i i ii i i iu u mr u u u u u u +
− + − +

 = + − + + − − +
 

, (2.18) 

where 
2

0, 0 1
2

iim tt
mr i N

x

 
= = −    −


 is the usual mesh ratio and  0 1, .  

I examine 2-dimensional rectangle-structured lattices with x zN N N=   cells similar to what 

can be seen in Fig. 1. I solve Eq. (1.4) subjected to randomly generated initial conditions 

i (0)u rand= , where rand is a (pseudo)random number with a uniform distribution in the interval (0, 
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1), generated by the MATLAB for each cell. I also generate different random values for the heat 

capacities and thermal resistances but with a log-uniform distribution as follow:  

i x,i z,i

( ) ( ) ( )
10 1, ,0 10C C Rx Rx Rz Rzrand rand rand

C R R
     −  −  − 

= = =  

where the coefficients C Rz,...,   in the exponents will be concretized later. 

 

 

 

 

 

Figure 1. Arrangement of the generalized variables 

I calculate the numerical error by comparing our numerical solutions 
num
ju  with the reference 

solution 
ref
ju  at final time fint . the reference solution will be an analytical solution, otherwise it is 

a very accurate numerical solution which has been calculated by the ode15s built-in solver of 

MATLAB with very strict error tolerance. I use the following three types of (global) error. The 

first one is the maximum of the absolute differences:  

ref num
j fin j fin

0 j
Error( ) max ( ) ( )

N
L u t u t

 
= − . (2.19) 

The second one gives the error in terms of energy in case of the heat equation. It takes into account 

that an error of the solution in a cell with a large volume or heat capacity has more significance in 

practice than in a very small cell 

ref num
j fin j fin

0 j

j

1
Error( ) ( ) ( )

N

Energy C u t u t
N

 

= −  (2.20) 

I examine a grid with isolated boundary the sizes were fixed to 100xN = and 100zN = , thus the total 

cell number was 10000, while the final time was 0.1fint = . 

C2,  4,  1,  2,C Rx Rz Rx Rz     = = = = = =                                                 (2.21) 

The exponents introduced above have been set to the following values which means that log-

uniformly distributed values between 0.01 and 100 have been given to the capacities. The 

generated system can be characterized by its stiffness ratio and FTCS
MAXh  values, which are 73.1 10  

and 47.3 10− , respectively. The performance of new algorithms was compared with the following 

widely used MATLAB solvers:  

• ode15s, a first to fifth order (implicit) numerical differentiation formulas with variable-

step and variable order (VSVO), developed for solving stiff problems;  

• ode23s, a second order modified (implicit) Rosenbrock formula; 

• ode23t, applies (implicit) trapezoidal rule with using free interpolant;   
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• ode23tb, combines backward differentiation formula and trapezoidal rule;   

• ode45, a fourth/fifth order explicit Runge-Kutta-Dormand-Prince formula; 

• ode23, second/third order explicit Runge-Kutta-Bogacki-Shampine method;  

• ode113, 1 to 13 order VSVO Adams-Bashforth-Moulton numerical solver.                      

For all used MATLAB solvers, tolerances have been changed over many orders of magnitude, 

from the maximum value 3'AbsTol' = 'RelTol'  'Tol' = 10 to the minimum value 

5'AbsTol' = 'RelTol'  'Tol' = 10− . I have plotted the L errors and energy errors as a function of the 

effective time step size EFFt , and based on this, I selected the following top 5 combinations from 

those listed in (2.18) and after that:   

S1 (C, C, C, C, C), 

S2 (¼, ½, C, ½, ¾), 

S3 (¼, ½, ½, ½, ¾), 

S4 (0, ½, ½, ½, 1), 

S5 (0, ½, ½, C, 1) 

In Fig. 2, I present the error and energy error functions only for these top 5 combinations. 

Furthermore, Table 1 presents some results that were obtained by our numerical schemes and the 

“ode” routines of MATLAB. Notably, the results demonstrate that the best combination of the 

shifted-hopscotch method achieved a maximum error of 10−8, an energy error of 10−6, and a 

running time can reach  10−2 which represents approximately four orders of magnitude better 

performance compared to the ordinary and MATLAB routines. 

Figure 2. L  errors (Left), and Energy errors (Right) as a function of the effective time step size for the first 

(moderately stiff) system. 

Table 1. Comparison of different shifted hopscotch algorithms and MATLAB routines for the moderately stiff 

system of ten thousand cells.  
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Numerical Method Running Time (sec) ( )LError   1( )LError  Energy Error  

ode15s, 
3Tol 10=    

23.97 10  
21.3 10−  

31.1 10−  
15.62 10  

ode23s, 
3Tol 10=    

34.346 10  
44.2 10−  

53.0 10−  
11.5 10−  

ode23t, 
8Tol 10−=    

28.49 10  
72.9 10−  

82.0 10−  
41.0 10−  

ode23tb, 
2Tol 10=    

24.28 10  
44.1 10−  

52.9 10−  
41.4 10−  

ode45, 
1Tol 10−=  

12.1 10  
33.3 10−  

56.5 10−  
32.7 10−  

ode23, 
6Tol 10−=    

12.7 10  
73.7 10−  

99.6 10−  
54.8 10−  

ode113, 
6Tol 10−=  

11.91 10  
76.7 10−   

104.2 10−  
61.9 10−  

A1, 41.25 10t − =   11.97 10−  
69.06 10−  

72.63 10−  
32.56 10−  

A2, 31.25 10t − =   22.02 10−  
43.39 10−  

66.93 10−  
25.08 10−  

A3, 42.5 10t − =   11.01 10−  
51.88 10−  

73.64 10−  
33.44 10−  

A4, 45 10t − =   25.03 10−  
41.06 10−  

61.07 10−  
31.42 10−  

A5, 52.5 10t − =   19.75 10−  
72.62 10−  

94.44 10−  
53.15 10−  

In a manner similar to the Shifted-Hopscotch method, the hopscotch space structure was 

combined with leapfrog time integration. Using the theta method with nine different values of θ, 

along with the recently invented CNe method.  105 combinations were constructed. Via subsequent 

numerical experiments, this huge number was decreased by excluding the combinations that 

underperformed and, finally, only the top five of these were retained. two-dimensional stiff systems 

containing 10,000 cells with completely discontinuous random parameters and initial conditions, 

so the results presented just for these five algorithms. 

The best algorithms were compared with other methods for a large, moderately stiff 

system, and for a large, very stiff system.  for the same system size and final time. The following 

top 5 combinations are chosen based on the best performance of the maximum and energy error.  

L1 (C, C, C, C, C), 

L2 (0, ½, ½, ½, ½), 

L3 (⅕, ½, ½, ½, ½), 

L4 (¼, ½, C, ½, ½), 

L5 (⅕, ½, C, ½, ½). 

In Fig. 3. the L  errors as a function of the effective time step size are presented for the top 5 

algorithms and a first-order “reference curve” for the original CNe method. I note that very similar 

curves have been obtained for the u1 solution, as well as for other space and time intervals 
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Figure 3. The L  errors as a function of time step size for the space-dependent mesh 

2.5. Using Efficient Methods to Solve Real-Life Heat Transfer Problems  

2.5.1.  Calculate The Heat Transfer in an Insulated Wall with Thermal Bridging 

I examined 14 numerical methods (ExpE, NS-ExpE, Heun, UPFD, DF, NS-DF, RRK, PI, 

OOEH, NS-OEH, ROEH, LH, SH, and ASH ) to solve the heat equation (1.4) inside building walls 

As one can see in Fig. 4. I considered heat conduction, convection, and radiation, in addition to 

heat generation. Five of the used methods are recently invented explicit algorithms that are 

unconditionally stable for conducting problems. 

 

 

 

 

 

 

 

 

 

Figure 4. (A) One-layer wall, (B) wall with insulator, and (C) wall with insulator and thermal bridge. 

I generate the mesh of the current geometries.  In the cross-section case, the left 50% of 

the cells are always brick and the right 50% are insulator for programming simplicity. It implies 

that the volume of the brick and the insulator is the same in the equidistant case. However, if I 

have a gradual change in the x-direction, the thickness of the insulator is smaller (0.269m). The 

thermal bridge has the same thickness as the insulator in the x direction, thus the horizontal position 

of the bridge is from x=0.5m to x=1m for equidistant and from x=0.731m to x=1m for the non-
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equidistant mesh. The height of the bridge is one cell (1cm) in the z direction, i.e., 0.01m, while it 

is positioned in row number 50 from z=0.49m to z=0.50m.  

In the present study, real material properties are taken into account. As they are listed in 

Table 2.  

Table 2. The properties of the materials used [34]. 

 ( )3kg m −  ( )1 1  W m Kk − −   ( )1 1  J kg Kc − −   

Brick 1600 0.73 800 

Glass wool 200 0.03 800 

Steel structure 7800 16.2 840 

I use zero Neumann boundary conditions in all cases for all boundaries, which forbids conductive 

heat transfer at the boundaries: 

( , 0, ) ( , 1, ) ( , 0, ) ( , 1, ) 0
u u u u

x z t x z t x z t x z t
x x z z

   
= = = = = = = =

   
. 

This is implemented by setting zero for the matrix elements describing heat conduction through 

the boundary via the setting of the appropriate resistances to infinity.  

The interior elements cannot gain or lose heat by the heat source, heat convection, or radiation. 

Elements on the right and left sides can transfer heat by radiation and convection to the x direction 

with the values shown in Table 3. 

Table 3. The heat source, convection, and radiation parameters on both sides of wall elements in case of cross-

sectional area. 

    hc 
2

W

m K
    8

2 4

W
 10

m K

− 
 

 
 q  ( )W  

Right Elements  2 5 500 

 Left Elements 4 4 500   

I supposed that the right elements and left elements have the following heat source convection and 

radiation as follows: 

- For the left elements (interior side):  
2

1
500 293Kch

q
W

mc c x 
=  + 


 

- For the right elements (external side):   
2

1
500 303Kch

q
W

mc c x 
=  + 


 

The initial condition is again a linear function of the z variable: 

( ), , 0 303 288u x z t z= = −
.  
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The maximum errors are plotted for equidistant and non-equidistant meshes in Fig.5. while in Fig. 

6, the temperature contour is presented for the initial and the final time moments, for the 

equidistant mesh.   

Figure 5. The maximum errors as a function of the time step size for the equidistant (Left), and non-equidistance 

(Right) mesh. 

 

Figure 6. The temperature contour at the initial time (left), the final time for the insulator wall (middle), and the 

final time with insulator and thermal bridging(right) 

2.5.2. Calculate The Heat Transfer in Cylindrical and Spherical Shaped Bodies 

I am going to reproduce the experimental results of Cabezas et al. [35], where heat transfer was 

studied in a steel C45 cylinder of 168 mm total height with properties shown in Table 4. below. 

Table 4. The properties of the steel used [35]. 

Material ( )3kg m −  ( )1 1  W m Kk − −   ( )1 1  J kg Kc − −   

Steel C45 7800 40 480 

The bottom of the cylinder was heated for 30 s at the beginning of the experiment with P = 1500W 

power. However, in the original work [35], the position of the lowest thermocouple was 50mm 
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higher than the heated surface. The top 118 mm and not the bottom 50 mm of the cylinder was 

examined either experimentally or numerically, and I followed this in my work. This means that 

the simulated volume of the cylinder segment is 341.0087 10 mV −= , while 

( )    , 0, 0.0165m 0, 0.118mr z   . In my approximation, physical quantities did not change in the ϕ-

direction, thus, that 3D was irrelevant and, computationally, I dealt with a two-dimensional 

problem. The number of the cells along the r axis and z axis were set to Nr = 15 and Nz = 100; thus, 

the total number of the cells in the system was 1500r zN N N= = .  

I used a constant initial condition in all cases. 

( ), , 0 30.7 Cu r z t = =   

I used different boundary conditions on different sides. On the left side, the center of the cylinder, 

I applied Neumann boundary conditions in all cases, which do not allow conductive heat transfer 

at the boundary 

( 0, , ) ( , , ) ( , , ) 0r r r z zu r z t u r L z t u r z L t= = = = = = .  

On the right (external) and upper boundaries, there was a heat exchange with the environment via 

convection and radiation, considering the heat convection coefficient ( )2 14 5  W m Kh . − −=   [38] and 

the emissivity constant as 0.85 to obtain realistic values for   . The convective and radiative 

energy transfer was perpendicular to the surface. The interior elements cannot gain or lose heat by 

the heat source, heat convection, or radiation. On the lower boundary, I applied changing Dirichlet 

boundary conditions based on the temperature measurement results taken from the experimental 

report. 

The methods verified in compare with the analytical solution, while I take the height of the cylinder 

as well as z  unity. It means that, computationally, there is one space dimension only in both the 

cylindrical and the spherical case. The solution parameters are:  

 

0

0 fin 0

500 1 500 0 0003 0 999 0 002 1

1 1 2 2 0 1 0 1

r z r z maxN , N , N N N , r . , r . , r . , ,

a , . , , t . , t t . .

= = =  = = =  = =

 = = +
 

 

Here, N represents the total number of cells, a self-similar exponent, while 0r  and maxr  are the radial 

coordinates of the center of the first and last cells. The obtained maximum errors are displayed as 

a function of the time-step size in Fig.7. for the cylindrical and spherical coordinates. The fact that 

we obtained very small errors in all cases verifies not only the numerical algorithms but the 

equivalence of the two mathematical treatments of the physical problem. 
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Figure 7. The maximum errors as a function of the time step size for the 9 numerical methods in case of cylindrical 

coordinates with a=1 (Left), and in case of spherical coordinates with a = 1.2.(Right) 

I present the results at the end of the examined time interval, which is defined as

fin 1200, 1440 and1800st = . I chose the top five algorithms, namely DF, OOEH, LH, SH, and ASH. 

The simulation of a steel C45 cylinder was conducted using these selected algorithms considering 

different boundary conditions, as previously mentioned. Among these algorithms, the shifted-

hopscotch method was chosen to visualize the temperature contour due to its high accuracy at 

small time-step size. Fig. 8 displays the final temperature distribution obtained from this method. 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. The temperature distribution contour for different time values (t = 20, 24, and 30 min) is presented by 

the SH method. 
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2. THESES – NEW SCIENTIFIC RESULTS 

T1. I constructed and tested the Shifted-Hopscotch algorithms, which were fully explicit time-

integrators obtained by applying half-time steps and full-time steps in the odd-even 

hopscotch structure. I applied the conventional theta method with 9 different values, and the 

non-conventional CNe method to construct 105 combinations and I chose the top five of them 

via numerical experiments. These experiments suggest that the proposed methods are, 

indeed, competitive, as they can give fairly accurate results orders of magnitude faster than 

the well-optimized MATLAB routines or the Crank–Nicolson method, and they are also 

significantly more accurate for stiff systems than the UPFD, the Dufort–Frankel, or the 

original odd-even hopscotch method. If high accuracy is required, the S4 (0, ½, ½, ½, 1) 

combination can be proposed; however, when preserving positivity is crucial, the S1 (C, C, 

C, C, C) algorithm should be used . 

T2. To demonstrate the practical utility of these advanced numerical techniques, I investigated 

13 algorithms to solve the problem of linear heat conduction in building walls. These 

included eight explicit, unconditionally stable algorithms invented by our research group, 

such as the Shifted-Hopscotch (SH) scheme. The validation process, where numerical results 

were compared against analytical solutions using both uniform and non-uniform spatial 

discretizations, was carried out as a team. Then, I applied carefully designed nontrivial 

boundary conditions: spatially varying temperatures on the brick side and time-dependent 

temperatures on the outer surface of the insulation. I found that the classic Odd-Even 

Hopscotch (OEH) method delivers superior accuracy for homogeneous scenarios, while the 

Leapfrog-Hopscotch (LH) algorithm performs best in non-uniform configurations. 

Nevertheless, the Shifted-Hopscotch (SH) method also exhibited strong competitiveness 

across all test cases. 

T3. I also examined 11 of the new methods to solve heat conduction, convection, radiation, and 

heat generation inside building walls' elements. These methods were tested on real-life 

applications involving surface area (one-layer brick) and cross-sectional area (two-layer 

brick and insulator) walls, with and without thermal bridging, to determine accuracy 

dependence on material properties, mesh type, and time step size. Neumann boundary 

conditions were applied to all boundaries, for surface area cases, the heat source, convection, 

and radiation inside all elements were considered, while for cross-sectional area cases only 

the right and left boundary elements containing heat source, convection, and radiation. The 

results indicate that the Original Odd-Even Hopscotch method is usually the best for uniform 

cases, while the Leapfrog-Hopscotch algorithm performs best for non-uniform cases. 

T4. In addition to Cartesian coordinates, I developed 9 of the new methods to solve heat transfer 

problems in cylindrical and spherical geometries. I reproduced novel and nontrivial 
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analytical solutions for the heat-conduction PDE with high accuracy. Furthermore, I verified 

the numerical methods in cylindrical and spherical coordinates, incorporating convection and 

radiation terms, by reproducing real experimental data of a heated cylinder and comparing it 

with Finite Element Methods (FEM) ANSYS workbench. Convection and nonlinear 

radiation were considered on the boundary of the cylinder. Verification results demonstrated 

the high accuracy of the numerical methods in dealing with cylindrical and spherical bodies. 

Additionally, temperature comparisons across all approaches revealed that explicit methods 

are more accurate than finite element software in all cases, with the Leapfrog-Hopscotch 

algorithm typically being the most accurate among the studied methods. 

T5. I investigated the heat transfer through building walls, considering different wall geometries 

and heat load scenarios, encompassing both cooling and heating. My objective was to 

analyze how heat transfer depends on the wall materials and evaluate algorithm performance 

in cases involving heat transfer between solid surfaces and fluid (convection) on the outdoor 

surface, particularly across an air gap between the insulation and Photovoltaic Cells (PVC). 

The results of the study reveal that insulation prevents heat from entering the building, 

maintaining a comfortable indoor environment. Forced convection significantly enhances 

heat dissipation, especially during cooling operations to protect PVC with limited working 

temperature. Furthermore, the simulations highlight the air gap’s efficiency in cooling PVC 

and reducing maximum temperatures on the insulation’s outer surface, especially under 

forced convection conditions. The test results show that the Leapfrog Hopscotch algorithm 

offers the best solution for this highly stiff system, followed by the Asymmetric and Shifted-

Hopscotch algorithms. 

T6. I also simulated a multilayer wall integrated with PCMs using an effective heat capacity 

model and I employed the Leapfrog-Hopscotch methods for that. I validated my approach 

against established mathematical expressions and models in the literature, investigating 

various building wall geometries, two types of PCMs used in this investigation, and boundary 

conditions. The objective was to maintain interior temperatures within comfort zones. 

Regardless of the wall material, whether brick or concrete, my simulations consistently 

demonstrated the PCM’s effectiveness in minimizing heat transfer into indoor environment. 
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