UNIVERSITY OF MISKOLC
FACULTY OF MECHANICAL ENGINEERING AND INFORMATICS

&

> | - 00 % 7
AVERSITAS MiSKOLCINEXS

DESIGNING AND IMPLEMENTING NUMERICAL METHODS TO SOLVE NONLINEAR HEAT TRANSFER
PROBLEMS TO IMPROVE BUILDINGS' ENERGY EFFICIENCY

BOOKLET OF PHD THESIS

Prepared by

Humam Kareem Jalghaf Al-Janabi
Mechanical Engineering (BSc),
Mechanical Engineering (MSc)

ISTVAN SALYI DOCTORAL SCHOOL OF MECHANICAL ENGINEERING SCIENCES

ToprPiCc FIELD OF BASIC ENGINEERING SCIENCES
ToriCc GROUP OF TRANSPORT PROCESSES AND MACHINES

Head of Doctoral School

Dr. Gabriella Bognar
DSc, Full Professor

Head of Topic Group

Dr. L&szI6 Baranyi
Full Professor

Scientific Supervisor
Dr. Endre Kovacs
Dr. Betti Bollé

Miskolc
2025



JUDGING COMMITTEE

Chair:
Secretary:

Members:

OFFICIAL REVIEWERS



INTRODUCTION

1. INTRODUCTION

Energy efficiency in buildings is essential for addressing climate change and fostering
sustainability. Buildings are major energy consumers, and optimizing their thermal performance
can significantly reduce energy consumption and greenhouse gas emissions. Enhancing energy
efficiency requires managing heat transfer within building components, including walls, roofs, and
floors. Understanding this process involves heat transfer equations that account for material
properties (e.g., thermal conductivity, density, and specific heat capacity) and boundary conditions
(e.g., temperature, humidity, and airflow). Accurate thermal analysis of building walls requires
numerical methods, and research has focused on transient heat transfer in multilayered media.
Various mathematical models and computational methods, such as MATLAB simulations and
computational fluid dynamics (CFD), have been used for this purpose.

The diffusion equation, a key mathematical model for heat transfer, has been extensively
studied. Early analytical solutions assumed constant parameters, but space-dependent properties
necessitate numerical approaches. Zoppou and Knight [1] provided analytical solutions for the
advection-diffusion equation with spatially variable coefficients, though most cases require
numerical solutions. Spatially discretized partial differential equations (PDES) are converted into
ordinary differential equations (ODES), which can be challenging to solve, especially in three-
dimensional cases. Explicit methods like Runge-Kutta are conditionally stable and
computationally expensive, while implicit methods allow for larger time steps but require solving
complex algebraic systems. Advances in implicit methods have addressed stability issues in stiff
problems, such as those involving rapid temperature changes and high thermal diffusivity
materials [2]. A novel approach in this research involves developing explicit, unconditionally
stable numerical methods that are easily parallelizable. One such method is the two-stage odd-
even hopscotch (OEH) algorithm, introduced by Gordon [3] and refined by Gourlay [4-6]. The
OEH method has been applied to the Navier-Stokes equations [7], reaction-diffusion equations
[8,9], and nonlinear Dirac equations [10]. Goede and Boonkkamp [11] improved OEH through
vectorization for solving two-dimensional Burgers’ equations. Recently, Maritim et al. [12,13]
developed hybrid algorithms combining OEH, Crank-Nicolson, and Du Fort-Frankel methods,
finding their implicit algorithms stable and accurate. Further research [14-16] identified limitations
in OEH for stiff systems, leading to new algorithmic modifications to enhance stability and
accuracy.

Heat transfer management is crucial for achieving energy efficiency in buildings. The thermal
performance of walls plays a significant role in maintaining indoor comfort. Research has explored
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INTRODUCTION

integrating phase change materials (PCMs) and thermal insulation into building envelopes. PCMs
store and release latent heat, mitigating temperature fluctuations and reducing reliance on
mechanical heating and cooling. Concurrently, thermal insulation minimizes heat transfer, further
improving energy efficiency. Numerical simulations have been key in understanding the thermal
behavior of PCM-integrated walls. Geng et al. [17] investigated optimal PCM and thermal
insulation material (TIM) placements in multilayered walls, demonstrating energy savings of
46.69-64.73%. Liu et al. [18] studied PCM performance in lightweight building walls, finding
significant heat flux reductions of up to 66.4% for east- and west-facing walls. Other studies
highlight the effectiveness of combining PCM with conventional insulation. Tuncbilek et al. [19]
found that integrating PCMs in building walls reduced energy consumption by up to 38.2%.
Cascone et al. [20] optimized PCM use in office building retrofits for Mediterranean climates,
aligning with the EU's 2020 sustainability goals. Jam et al. [21] conducted an economic analysis
of PCM integration in educational buildings, determining an optimal 3 cm PCM thickness with a
50-month payback period. Abden et al. [22] evaluated PCM and insulation combinations in
Australian homes, revealing cost savings of AU$167.0/m? and energy efficiency improvements of
up to 4.3 stars in various climate zones. Iffa et al. [23] designed a hybrid wall system integrating
thermal energy storage, achieving peak heat flux reductions of 81.92W/mz2. Arumugam et al. [24]
optimized PCM-insulation placement in Indian office buildings, achieving cooling load reductions
of 57—64% across different climates.

This research focuses on developing efficient numerical methods for solving heat transfer
equations in Cartesian, cylindrical, and spherical coordinate systems. It builds on existing
numerical methods, such as Explicit Euler, Crank-Nicolson, Runge-Kutta, and the hopscotch
method, to enhance their efficiency and stability. Novel methods, including the Shifted-Hopscotch,
Leapfrog-Hopscotch, and Pseudo-Implicit methods, represent advancements in numerical
modeling for heat transfer problems. These methods have been implemented in MATLAB,
validated against analytical and experimental data, and applied to real-life engineering scenarios.
The study examines heat transfer in different building walls and heated cylinders, focusing on
materials like insulators, PCMs, and concrete. The goal is to optimize heat transfer management,
promoting energy-efficient building designs. By improving numerical methods and their
application in thermal analysis, this research contributes to sustainable building practices and
energy conservation efforts.

In this study, | aim to calculate heat transfer in different geometries, beginning with deriving
the general heat energy equation (conduction, convection, and radiation) based on energy balance
in Cartesian, cylindrical, and spherical coordinates.

For Cartesian coordinates, energy balance on a small rectangular element during a small-time
interval is expressed by the heat transfer equation, incorporating Fourier’s law of heat conduction,
Newton’s law of heat convection, and Stefan-Boltzmann law for radiation. The governing equation
includes conductive, convective, and radiative heat terms, with heat generation represented by the
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incoming heat from external sources like radiation and convection. The equation for temperature,
including these heat transfer mechanisms, is derived.

2 2 2 * * *
aa—g+a—g+a—g+ a , h U +——uf - h oo o X (1.1)
ox- oy° oz PCAX  pCAX CpAX PCAX  CpAX ot
After simplification, | have
a—u:iv(kVu)+q—Ku—au4 (1.2)
ot pc

whereu k, ¢, and p are the temperature, heat conductivity, specific heat and the density,

respectively, q= 9, h . u is the heat generation or heat source coming from the

CpAX CpAX @ CpAX

outside of the wall structure, K=K(F)=C% is the heat transfer convection term, and
2

*

o =0o(F) =ﬁ is the radiation heat transfer term. The terms ¢, Ku and su* are nonnegative and
0

still in [K /s].

The standard central difference formula in two space dimensions is applied for the second-order
derivative (v2u ). The space steps are Ax and Az a

du; Ui q — 2U; + U; Ui _ny — 2U; + Us
'=a'1 i |+1+a|Nx i i+NXx

- Ku; —ou? 1.3
dt AXZ AZZ +q ] o 1 ( )

I now change from node to cell variables, which means that vu; ,¢, and ; will be the temperature,
specific heat, and density of cell i, respectively. Furthermore, since the material boundaries will

. . . Ki +Ki,q .
always coincide with the cell borders, I write the average % instead of k(x&%j.

The heat capacity of the cell can be calculated as ¢, =c;pVv . | calculate the horizontal and vertical
AX Ax

thermal resistances between the neighbouring cells, as R, ;~—+——, and
’ 2kAz 2k A
Ry ~—2_,__A2 respectively, whereiand j represented the cells index in x-axis and z-axis.
' x o 2kjAX 2ki+NXAX
Semi-discretized form of Equation (1.3) can be expressed as below:
du: U 1 —U; U .1 —U: Ui —U; U; —U;
Wi _Gia 78 Y 78 BN, T TN, L+ q-Ku; —ou;* (1.4)

+
dt  Ri_1iC  RiiCG RiniCi Rin,.iGi

The time is discretized uniformly with time-step size At and represents the temperature of cell i at
the time nAt, n=0,1,...,T. Now the formulae of the used methods are presented for the general

discretization (1.2) only. For the simpler formula, I need to define the following quantities:

yPred
+At-q and A =AY L+ At-q,

ij j=i i)

n
Uj
CiR

1
GiR

j=i =it ji

mE =AY ——, A =AY
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Where mr;j is the general mesh-ratio, while Ai reflects the state and the effect of the neighbors of
cell i.We prefer to use the ODE system for a general grid, which gives the time derivative of each
temperature independently of any coordinate system

N T e 4
@ ERG +0; — Ku;j — o (1.5)
Which can be written in matrix form

‘:'j_f ~Mi+Q, (1.6)

where Q = g, — Ki; —oti*, and the diagonal element of matrix M can be written as follows

mi= > L The off-diagonal m; =1/R; ;C; element of the M matrix can be nonzero only if

jeneighbour ™, j™i

the cells i and j are neighbours.

In a similar way, the heat transfer equation in cylindrical coordinates can be obtained from
an energy balance on a volume element in cylindrical coordinates, considering a small 3D
cylindrical element The heat convection, radiation and the change in energy of an element over a
specific time interval are the same in Cartesian coordinate except the element volume being

AV :A¢(r+A%)Ar><AZ. In the case of full cylindrical symmetry, it is better to choose a full ring-
shaped element, which yields Av =2z (r+A7/)arx Az = ﬂ((r+Ar)2 - rz)Az .

From these equations, one can derive the heat-transport equation in a 3D cylindrical coordinate
system, which can be written as:

*o 4
12 2), L 2 ), 2, ), Qom 10 S )
ror\' or) r2op\ 0¢) 0z\  0z) AV AV AV ot

In the case of spherical coordinates, a small 3D spherical element, the heat-transport equation for
this case can be expressed as follows:

*o .14
Lol L0 M) L 2,0 O M TS s g
re or or) r2sin2go¢ op) r?sing 00 06 AV AV AV ot
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The cell’s heat capacity in the cylindrical and in the spherical case is approximated as
Ci =cpr(Ri—5?)az and C; =cip 47 (3 -1"), respectively.

Let us denote the area of the cylindrical cell-surface perpendicular to r with s., which can be
given as s, =2z r Az. Now, for the thermal resistance in the r-direction, the approximate formula

hae dr opng dr _Inr;—Inr,
fi ki’i+15r hi ki’i+127zl’AZ 27[ki,i+1AZ

Rijis z.[ (1.9

is used. For the thermal resistance in the z-direction, the approximate formula R,y ~ %
77Uz —

is used, where the cell i + Ny is below the cell i.

In the spherical case, s, can be given as s, =4~ r2. Using this, the thermal resistance is calculated
I Ra=h From

similarly as that in the cylindrical case, but now the integration yields r
47Ky Gifia

ii+l

Equations (1.7) and (1.8) it is easy to obtain the ODE system

du; Uj=Ui Qgn hSu, o Su’
iy UL

dt RiC C G G (1.10)

j#i
to determine the time-evolution of the cell temperatures. Here, S is the area of the surface on which
the convection and radiation occur, which will be the outer surface of the cylinder. If one neglects
the higher powers of Ar, one can easily derive that C, /S =c;pAr in both cases. Inserting these
into (1.10), It can write in a simpler form:

dy; Uj—y;

d_tlz )3 RJi jCiI +0; —Ku; —ou,

j#i

(1.11)

which will be solved numerically.



METHODOLOGY OF STUDY

1. METHODOLOGY OF STUDY

My research focuses on designing and analyzing numerical methods for solving the heat
equation, divided into three key directions. First, | developed and tested novel odd-even hopscotch-
type numerical schemes. Second, | proposed adaptive time-step controllers of I-type and Pl-type.
Third, | designed additional adaptive controllers for cases where the diffusion coefficient varies
with time and space.

2.1. Existing Numerical methods

Several well-known methods exist for solving the heat equation:

2.1.1.

2.1.2.

2.1.3.

2.14.

2.15.

Explicit Euler (FTCS) [25]: Simple but conditionally stable.
Uin+1 =(1—mri)uin +A—At-K-u' —At-o - (ul)* . (2.1)

Crank-Nicolson [11]: A second-order, unconditionally stable implicit method.

(1—m%)ui”+A +1-At-K; -ul = At- o, - (uM)*

n+l _

uj T (%) . (2.2)
UPFD [26]: Designed for diffusion-advection-reaction equations, adapted for heat
transfer.

.n .
a ui' + A — (2.3)
1+mr +At-K; +At-o; - (Ui')

Dufort-Frankel (DF) [27]: A two-step explicit method, unconditionally stable but

requiring a self-starting scheme.
. (L-mr ) uM ™ +2A -2-At-K-uf - 2-At- o (u')* (2.4)

1+mr;

Rational Runge-Kutta [28]: Uses predictor-corrector steps to improve stability.

gilzmr(uin_l—Zui” +uir‘+1)+At-q—At-K~ui” —At-o-(uM?*

and

gl =—mru + A —At-K-u' —At-o-(u")*.

Using these g values, the predictor values can be obtained for all grid types as
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pred _ n 1
up = +gi

After this, using the predictor values obtained above, the increment of a second Euler step
is calculated:

9 = mr(uip_rfd —ufred  ypred )+At-q —At-K-uf® At o P04

gi2 z_mriuipred L AW At K 'uipred _At_o_.(uipred)4l

Now one needs to calculate the following scalar products

o= (0 6Y) = Y alal, pio=(d80%)= S abel. by =(6%.07)= Y 072,
i=1 i=1

i=1

and with them one obtains the final expression for the new values of the variable:

urt 2pi0i —2pidi + Pig? (2.5)

=u+
I 4p, —4p, +p,

2.1.6. Heun’s Method [29]: A second-order explicit scheme that refines the Euler approach.
uPed = (1-mn )ul + A —At-K-ul —At-o- (uf')*

n pred
Ui + U 4
u =ul —mr, 'T'+%(A + A _K -(ui” +ypred )—a~(ui” +uipred) j (2.6)

2.1.7. Original Odd-Even Hopscotch (OOEH) [30]: The classic hopscotch method using
explicit and implicit Euler schemes, with conditional corrections to prevent instability.
Explicit Euler: u™ =(1-mr)ul + A —At-K; -ul' —At-o; - (ul")* (2.7)

n new
Implicit Euler; u! = Ui A : 2.8
P ' lemn 4 ALK + At - (U])? (28)

2.1.8. Reversed Odd-Even Hopscotch (ROEH): Swaps the order of explicit and implicit stages
while ensuring stability using UPFD-like corrections.

2.2. Newly Developed Methods

Building on existing schemes, I introduced novel methods to improve efficiency, stability, and
accuracy.

2.2.1. Constant Neighbor (CNe) Method [31]: A modified theta-scheme using known
neighbor values, making it fully explicit.
(1—2mr0)ui”+mr(ui”_ﬁl+u{‘++11)+At~q—At-K~ui”—At~o—~(ui”)4

n+l _
i 1+2mr(1-0) (2.9)

2.2.2. Two-Stage and Three-Stage Linear-Neighbor (LNe2, LNe3) Methods [32]:
Refinements of CNe with additional correction steps for increased accuracy.
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Si_

_mr (u_pred yPred
At?

n n
i-1 tUi _uifl_ui+1)

and then the corrector values for the two-stage LNe method:

n n 2 -2mr

Ui g + U A 1—

Ut = ufle M ST (12 )4 U 18 At g—At-K o - At-o (")
2 2mr 2mr

For the general case, | can make the corrector step as follows:

new -ml new _ A
u_n+1=uine‘"‘riJr[Ai_Ai _AJl_e L A—At-K'Uin—At'G'(Uin)4- (2.10)

' mr; mr; mr;

2.2.3. CpC Algorithm [33]: A two-stage variant of CNe with fractional time steps for
improved precision.

uPred — e~/ +%(1—e‘m“’2)—At K-ul' —At-o-(uM? (2.11)
|
pred
In the second stage, | can use A™ =at> L — with at and take a full-time step size corrector step
j=i ZiMNj

using the CNe formula again. Thus, the final values at the end of the time step are

new
Lot A (l_e_mri )—At~ K-ul—At-o-(uM)?* (2.12)
mr

2.3. Invented Hopscotch Variants

2.3.1 Shifted-Hopscotch (SH): it is a new method invented by me, that has the repeating
block consisting of five stages, two of them are half and three of them are full-time steps. The first
half-sized time step is taken for the odd cells with the following general formula:

.n " .
uin+}/2 _ up +A +At-q ' (2.13)
1+2mr+At~K+At~o-~(uin)

Then, full-time steps are taken strictly alternately with the following formula:

w1 (1=mn/2)uf + ”+%+At-q
Ui =

(2.14)

1+mr+At-K+At-a-(u(‘)3

The upper index p is n for the even nodes and n+1 for the odd nodes. for the even, the odd, and
the even cells follow again. Finally, a half-length time step for the odd cells closes the calculation
with the formula
—mr )N+ "+% .
uin+2 _ (1 mr; )ul + Ai +At3q (215)
1+At-K +At-a-(uin+1)

2.3.2 Leapfrog-Hopscotch (LH): it is a new method invented by our team that has a
structure consisting of two half and several full-time steps. In the first stage, the general formulas
10
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(2.13) are used, Then, for the even and odd nodes, full-time steps are taken strictly alternately with
the formulas (2.14). Always the latest available values of the neighbors must be used (for example
in A{”%) when the new values of u are calculated, regardless of the size of the time step. This
alternation goes on until the end of the last timestep, where (2.14) is used again, but with a halved
time step size, to reach the same final time point as the even nodes.

2.3.3 Asymmetric Hopscotch (ASH): it is also a new method that is very similar to the
SH method, but contains less integer stages. The calculation starts with a half-time step size for
the odd cell with (2.13). Then a full-time step is coming for the even cell with formula (2.14), and
finally a half-time step size with (2.15).

2.3.4 Pseudo-Implicit (PI) Method: it is a new explicit method with advanced handling
of convection and radiation terms.

Stage 1: uP' = i A% (2.16)
1+mr +At-K +At-o-(u")?

Stage 2: /™ (t-mr)ui + AT 2.17)
' lemr+ ALK +Ato- (P20l

2.4. Optimizing Some of The Invented Methods

The new algorithms are fully explicit time-integrators obtained by a half-time step and
applied different formulas in different stages. All of the algorithms consist of five stages, but they
are one-step methods in the sense that when the new values of the unknown function u are
calculated, only the most recently calculated u values are used, thus the methods can be
implemented such that only one array of storage is required for the u variable, which means that
the memory requirement is very low. | applied the conventional theta-method with 9 different
values of theta and the non-conventional CNe method to construct 10° combinations in the case
of small systems with random parameters. | examined the competitiveness of the best algorithms
by testing them in case of large systems against popular solvers.

I recall that the following general time-discretization

uin+1—ui” :L[H(U-n _ou 4yl )+(1_0)(u_n+1_2u_n+1+u_n+1)j|
At AX2 i-1 i i+1 i-1 i i+1 J

leads to the so-called theta-method:

uM*t =ul + mr[@(uin,l -au! +ui”+1)+(1—0)(ui”,ﬁl — oyt +ui'f11ﬂ : (2.18)
where mr :Z—Azt = —m%At >0, 0<i<N-1 is the usual mesh ratio and 6 [0,].
X

I examine 2-dimensional rectangle-structured lattices with N =N, xN, cells similar to what

can be seen in Fig. 1. | solve Eq. (1.4) subjected to randomly generated initial conditions
u;(0) =rand , where rand is a (pseudo)random number with a uniform distribution in the interval (0,

11
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1), generated by the MATLAB for each cell. I also generate different random values for the heat
capacities and thermal resistances but with a log-uniform distribution as follow:

C. =10l@c—fexrand) p _qqlerc—Frerand) p o q (@R ~frexrand)
i v i v Nz

where the coefficients ac ,...,Bg, In the exponents will be concretized later.

Cy
Figure 1. Arrangement of the generalized variables

num

I calculate the numerical error by comparing our numerical solutions u;™ with the reference

solution u}ef at final time tg, . the reference solution will be an analytical solution, otherwise it is

a very accurate numerical solution which has been calculated by the odel5s built-in solver of
MATLAB with very strict error tolerance. | use the following three types of (global) error. The
first one is the maximum of the absolute differences:

Error(L,) = Jnex Us*” (tn) U™ (tin)| - (2.19)

The second one gives the error in terms of energy in case of the heat equation. It takes into account
that an error of the solution in a cell with a large volume or heat capacity has more significance in
practice than in a very small cell

1
Error(Energy):W Z Cj

0<j<N

Ui (tn) — U™ (tin) (2.20)

| examine a grid with isolated boundary the sizes were fixed to N, =100and N, =100, thus the total
cell number was 10000, while the final time was tg, =0.1.

ac =2, fc =4, ape =g, =1 Pry=Fr, =2, (221)

The exponents introduced above have been set to the following values which means that log-

uniformly distributed values between 0.01 and 100 have been given to the capacities. The

generated system can be characterized by its stiffness ratio and hiSe values, which are 3.1x10’

and 7.3x107, respectively. The performance of new algorithms was compared with the following
widely used MATLAB solvers:

e 0del5s, a first to fifth order (implicit) numerical differentiation formulas with variable-
step and variable order (VSVO), developed for solving stiff problems;

e 0de23s, a second order modified (implicit) Rosenbrock formula;

e 0de23t, applies (implicit) trapezoidal rule with using free interpolant;

12
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e 0de23th, combines backward differentiation formula and trapezoidal rule;

e 0de45, a fourth/fifth order explicit Runge-Kutta-Dormand-Prince formula;
e 0de23, second/third order explicit Runge-Kutta-Bogacki-Shampine method,;
e 00del13, 1 to 13 order VSVO Adams-Bashforth-Moulton numerical solver.

For all used MATLAB solvers, tolerances have been changed over many orders of magnitude,
from the maximum value  ‘AbsTol'='RelTol' = Tol'=10°t0 the minimum value

'AbsTol' = 'RelTol' = Tol'=10". | have plotted the L errors and energy errors as a function of the
effective time step size Atg-, and based on this, | selected the following top 5 combinations from

those listed in (2.18) and after that:
S1(C,C,C,C,0),
S2 (Y, Y2, C, ¥, %),
S3 (Va, ¥, Yo, Yo, %),
S4 (0, Y2, ¥, %, 1),
S5 (0, %, %, C, 1)

In Fig. 2, | present the error and energy error functions only for these top 5 combinations.
Furthermore, Table 1 presents some results that were obtained by our numerical schemes and the
“ode” routines of MATLAB. Notably, the results demonstrate that the best combination of the
shifted-hopscotch method achieved a maximum error of 1078, an energy error of 10°°, and a
running time can reach 1072 which represents approximately four orders of magnitude better
performance compared to the ordinary and MATLAB routines.

] ”3 .
1 F
i 102 F

/)

’

wl
S
(=]
©
oy

Energy Error
=
il

= P = OEH REF 10%F.-7 = P = OEH REF
B CNe E F @ CNe
—&—A1(C;C;C;CiC) —&H—A1(CiC;C;CiC)
—-v-— A2 (14112;C;1/2;34) |1 — %= A2 (114112;C;112;3/4)
A3 (114112;112;112;304) | § Fr A3 (14012;112;112;314)
A4(0:1212;021) | ryd A4 (0;1/2;112;1/2;1)
—*—AS (0:12:12,C1) | ] 107 F — %= AS (0;112:1/2,C;1)
caaaal R ] Bl gttty gy U P B AT | PRI 'Y
10°3 102 10 10 10’ 102
Effective Time Step Size hEFF Effective Time Step Size hEFF

Figure 2. L errors (Left), and Energy errors (Right) as a function of the effective time step size for the first
(moderately stiff) system.
Table 1. Comparison of different shifted hopscotch algorithms and MATLAB routines for the moderately stiff
system of ten thousand cells.
13
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Numerical Method Running Time (sec) Error(L,) Error(L) Energy Error
ode15s, Tol=10° 3.97x10° 1.3x1072 1.1x107° 5.62x10
ode23s, Tol=10° 4.346x10° 4.2x107 3.0x10 15x107
ode23t, Tol=10"° 8.49%102 2.9%1077 2.0x1078 1.0x107
ode23tb, Tol =10 4.28x102 4.1x10™ 2.9x10°° 1.4x107
ode45, Tol=10" 2.1x10" 3.3x10° 6.5x10°° 2.7x107
ode23, Tol=10"° 2.7x10 3.7x1077 9.6x107° 4.8x107°
ode113, Tol=10"° 1.91x10* 6.7x1077 4.2x107%° 1.9x10°°
Al, At=1.25x10"* 1.97x1071 9.06x10°° 2.63x1077 2.56x107°
A2, At=1.25x10"° 2.02x1072 3.39x107 6.93x107° 5.08x1072
A3, At=25x10"* 1.01x107? 1.88x107° 3.64x107" 3.44x10°°
A4, At=5x10"" 5.03x1072 1.06x107 1.07x10°° 1.42x107°
A5, At=25x10" 9.75x107! 2.62x1077 4.44x107° 3.15x107°

In a manner similar to the Shifted-Hopscotch method, the hopscotch space structure was
combined with leapfrog time integration. Using the theta method with nine different values of 0,
along with the recently invented CNe method. 10° combinations were constructed. Via subsequent
numerical experiments, this huge number was decreased by excluding the combinations that
underperformed and, finally, only the top five of these were retained. two-dimensional stiff systems
containing 10,000 cells with completely discontinuous random parameters and initial conditions,
so the results presented just for these five algorithms.

The best algorithms were compared with other methods for a large, moderately stiff
system, and for a large, very stiff system. for the same system size and final time. The following
top 5 combinations are chosen based on the best performance of the maximum and energy error.

L1(C,C,C,C,C),
L2 (0, %, Y, %, %),
L3 (%, %, %, Y5, Y5),
L4 (Y4, %, C, ¥, %),
L5 (%, Y, C, ¥4, 14).

In Fig. 3. the L, errors as a function of the effective time step size are presented for the top 5

algorithms and a first-order “reference curve” for the original CNe method. I note that very similar
curves have been obtained for the uy solution, as well as for other space and time intervals
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Figure 3. The L, errors as a function of time step size for the space-dependent mesh
2.5. Using Efficient Methods to Solve Real-Life Heat Transfer Problems
2.5.1. Calculate The Heat Transfer in an Insulated Wall with Thermal Bridging

I examined 14 numerical methods (ExXpE, NS-ExpE, Heun, UPFD, DF, NS-DF, RRK, PI,
OOEH, NS-OEH, ROEH, LH, SH, and ASH ) to solve the heat equation (1.4) inside building walls
As one can see in Fig. 4. | considered heat conduction, convection, and radiation, in addition to
heat generation. Five of the used methods are recently invented explicit algorithms that are
unconditionally stable for conducting problems.

e Upper Boundary

Left Boundary
Right Boundary
Left Boundary
Right Boundary
Left Boundary
Right Boundary

Thermal Bridge

Lower Boundary

Figure 4. (A) One-layer wall, (B) wall with insulator, and (C) wall with insulator and thermal bridge.

I generate the mesh of the current geometries. In the cross-section case, the left 50% of
the cells are always brick and the right 50% are insulator for programming simplicity. It implies
that the volume of the brick and the insulator is the same in the equidistant case. However, if |
have a gradual change in the x-direction, the thickness of the insulator is smaller (0.269m). The
thermal bridge has the same thickness as the insulator in the x direction, thus the horizontal position
of the bridge is from x=0.5m to x=1m for equidistant and from x=0.731m to x=1m for the non-
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equidistant mesh. The height of the bridge is one cell (1cm) in the z direction, i.e., 0.01m, while it
is positioned in row number 50 from z=0.49m to z=0.50m.

In the present study, real material properties are taken into account. As they are listed in
Table 2.

Table 2. The properties of the materials used [34].

p(kg-m‘3) k (W-m‘l-K‘l) c (J-kg‘l-K‘l)
Brick 1600 0.73 800
Glass wool 200 0.03 800
Steel structure 7800 16.2 840

I use zero Neumann boundary conditions in all cases for all boundaries, which forbids conductive
heat transfer at the boundaries:

ou ou ou ou
—(X,z=0,)=—(X,z=1Lt)=—(X,2=0,t) =—(X,z=11) =0.
ax( ) ax( ) 62( ) az( )

This is implemented by setting zero for the matrix elements describing heat conduction through
the boundary via the setting of the appropriate resistances to infinity.

The interior elements cannot gain or lose heat by the heat source, heat convection, or radiation.
Elements on the right and left sides can transfer heat by radiation and convection to the x direction
with the values shown in Table 3.

Table 3. The heat source, convection, and radiation parameters on both sides of wall elements in case of cross-
sectional area.

w W
P (U _xlo—Bj * (W
2 (s (W)
Right Elements 2 5 500
Left Elements 4 4 500

I supposed that the right elements and left elements have the following heat source convection and
radiation as follows:

o h
- For the left elements (interior side): q=ix500ﬂ2+ ¢ x293K
cp m< Cp-AX
. . 1 W h,
- For the right elements (external side): q=-—x500—+ x 303K
cp m< Cp-AX

The initial condition is again a linear function of the z variable:

u(x,z,t=0)=303-288z
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The maximum errors are plotted for equidistant and non-equidistant meshes in Fig.5. while in Fig.
6, the temperature contour is presented for the initial and the final time moments, for the
equidistant mesh.

T

i T TN 1 sl IO T
10° 10" 102 10° 10° 10’ 102 10°
Time Step Size At Time Step Size At

Figure 5. The maximum errors as a function of the time step size for the equidistant (Left), and non-equidistance
(Right) mesh.
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Figure 6. The temperature contour at the initial time (left), the final time for the insulator wall (middle), and the
final time with insulator and thermal bridging(right)

2.5.2. Calculate The Heat Transfer in Cylindrical and Spherical Shaped Bodies

I am going to reproduce the experimental results of Cabezas et al. [35], where heat transfer was
studied in a steel C45 cylinder of 168 mm total height with properties shown in Table 4. below.

Table 4. The properties of the steel used [35].

Material o (kg-m™°) k (w-m™t.K?) ¢ (1-kgtK?)

Steel C45 7800 40 480

The bottom of the cylinder was heated for 30 s at the beginning of the experiment with P = 1500W
power. However, in the original work [35], the position of the lowest thermocouple was 50mm
17
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higher than the heated surface. The top 118 mm and not the bottom 50 mm of the cylinder was
examined either experimentally or numerically, and | followed this in my work. This means that

the simulated volume of the cylinder segment s Vv =1.0087x10"*m®, while
(r.z) [0,0.0165m]x[0,0.118m] . In My approximation, physical quantities did not change in the ¢-

direction, thus, that 3D was irrelevant and, computationally, | dealt with a two-dimensional
problem. The number of the cells along the r axis and z axis were set to Ny = 15 and N = 100; thus,
the total number of the cells in the system was N = N, N, =1500.

| used a constant initial condition in all cases.

u(r,z,t=0)=30.7 °C

| used different boundary conditions on different sides. On the left side, the center of the cylinder,
I applied Neumann boundary conditions in all cases, which do not allow conductive heat transfer
at the boundary

u(r=0,zt)=u(r=L,,z,t)=u,(r,z=1L,,t)=0.

On the right (external) and upper boundaries, there was a heat exchange with the environment via
convection and radiation, considering the heat convection coefficient h=4.5 (W-m‘2 . K‘l) [38] and
the emissivity constant as 0.85 to obtain realistic values for &*. The convective and radiative
energy transfer was perpendicular to the surface. The interior elements cannot gain or lose heat by
the heat source, heat convection, or radiation. On the lower boundary, I applied changing Dirichlet
boundary conditions based on the temperature measurement results taken from the experimental
report.

The methods verified in compare with the analytical solution, while | take the height of the cylinder
as well as Az unity. It means that, computationally, there is one space dimension only in both the
cylindrical and the spherical case. The solution parameters are:

N; =500,N, =1, N = N; xN, =500, r, =0.0003, f;, =0.999, Ar =0.002, & =1,
ae{112,2},1°=0.1,t" =" +0.1.

Here, N represents the total number of cells, a self-similar exponent, while r, and r.,,, are the radial
coordinates of the center of the first and last cells. The obtained maximum errors are displayed as
a function of the time-step size in Fig.7. for the cylindrical and spherical coordinates. The fact that
we obtained very small errors in all cases verifies not only the numerical algorithms but the
equivalence of the two mathematical treatments of the physical problem.
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Figure 7. The maximum errors as a function of the time step size for the 9 numerical methods in case of cylindrical
coordinates with a=1 (Left), and in case of spherical coordinates with a = 1.2.(Right)

| present the results at the end of the examined time interval, which is defined as
t;, =1200, 1440 and 1800s . | chose the top five algorithms, namely DF, OOEH, LH, SH, and ASH.
The simulation of a steel C45 cylinder was conducted using these selected algorithms considering
different boundary conditions, as previously mentioned. Among these algorithms, the shifted-
hopscotch method was chosen to visualize the temperature contour due to its high accuracy at
small time-step size. Fig. 8 displays the final temperature distribution obtained from this method.

100

Figure 8. The temperature distribution contour for different time values (t = 20, 24, and 30 min) is presented by
the SH method.
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2. THESES — NEW SCIENTIFIC RESULTS

T1.

T2.

T3.

T4.

| constructed and tested the Shifted-Hopscotch algorithms, which were fully explicit time-
integrators obtained by applying half-time steps and full-time steps in the odd-even
hopscotch structure. | applied the conventional theta method with 9 different values, and the
non-conventional CNe method to construct 10° combinations and | chose the top five of them
via numerical experiments. These experiments suggest that the proposed methods are,
indeed, competitive, as they can give fairly accurate results orders of magnitude faster than
the well-optimized MATLAB routines or the Crank—Nicolson method, and they are also
significantly more accurate for stiff systems than the UPFD, the Dufort—Frankel, or the
original odd-even hopscotch method. If high accuracy is required, the S4 (0, %, Y, %, 1)
combination can be proposed; however, when preserving positivity is crucial, the S1 (C, C,
C, C, C) algorithm should be used .

To demonstrate the practical utility of these advanced numerical techniques, | investigated
13 algorithms to solve the problem of linear heat conduction in building walls. These
included eight explicit, unconditionally stable algorithms invented by our research group,
such as the Shifted-Hopscotch (SH) scheme. The validation process, where numerical results
were compared against analytical solutions using both uniform and non-uniform spatial
discretizations, was carried out as a team. Then, | applied carefully designed nontrivial
boundary conditions: spatially varying temperatures on the brick side and time-dependent
temperatures on the outer surface of the insulation. I found that the classic Odd-Even
Hopscotch (OEH) method delivers superior accuracy for homogeneous scenarios, while the
Leapfrog-Hopscotch (LH) algorithm performs best in non-uniform configurations.
Nevertheless, the Shifted-Hopscotch (SH) method also exhibited strong competitiveness
across all test cases.

| also examined 11 of the new methods to solve heat conduction, convection, radiation, and
heat generation inside building walls' elements. These methods were tested on real-life
applications involving surface area (one-layer brick) and cross-sectional area (two-layer
brick and insulator) walls, with and without thermal bridging, to determine accuracy
dependence on material properties, mesh type, and time step size. Neumann boundary
conditions were applied to all boundaries, for surface area cases, the heat source, convection,
and radiation inside all elements were considered, while for cross-sectional area cases only
the right and left boundary elements containing heat source, convection, and radiation. The
results indicate that the Original Odd-Even Hopscotch method is usually the best for uniform
cases, while the Leapfrog-Hopscotch algorithm performs best for non-uniform cases.

In addition to Cartesian coordinates, | developed 9 of the new methods to solve heat transfer
problems in cylindrical and spherical geometries. | reproduced novel and nontrivial
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analytical solutions for the heat-conduction PDE with high accuracy. Furthermore, | verified
the numerical methods in cylindrical and spherical coordinates, incorporating convection and
radiation terms, by reproducing real experimental data of a heated cylinder and comparing it
with Finite Element Methods (FEM) ANSYS workbench. Convection and nonlinear
radiation were considered on the boundary of the cylinder. Verification results demonstrated
the high accuracy of the numerical methods in dealing with cylindrical and spherical bodies.
Additionally, temperature comparisons across all approaches revealed that explicit methods
are more accurate than finite element software in all cases, with the Leapfrog-Hopscotch
algorithm typically being the most accurate among the studied methods.

T5. I investigated the heat transfer through building walls, considering different wall geometries
and heat load scenarios, encompassing both cooling and heating. My objective was to
analyze how heat transfer depends on the wall materials and evaluate algorithm performance
in cases involving heat transfer between solid surfaces and fluid (convection) on the outdoor
surface, particularly across an air gap between the insulation and Photovoltaic Cells (PVC).
The results of the study reveal that insulation prevents heat from entering the building,
maintaining a comfortable indoor environment. Forced convection significantly enhances
heat dissipation, especially during cooling operations to protect PVC with limited working
temperature. Furthermore, the simulations highlight the air gap’s efficiency in cooling PVC
and reducing maximum temperatures on the insulation’s outer surface, especially under
forced convection conditions. The test results show that the Leapfrog Hopscotch algorithm
offers the best solution for this highly stiff system, followed by the Asymmetric and Shifted-
Hopscotch algorithms.

T6.1 also simulated a multilayer wall integrated with PCMs using an effective heat capacity
model and | employed the Leapfrog-Hopscotch methods for that. | validated my approach
against established mathematical expressions and models in the literature, investigating
various building wall geometries, two types of PCMs used in this investigation, and boundary
conditions. The objective was to maintain interior temperatures within comfort zones.
Regardless of the wall material, whether brick or concrete, my simulations consistently
demonstrated the PCM’s effectiveness in minimizing heat transfer into indoor environment.
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