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1. INTRODUCTION 

1.1. General  

 Energy efficiency in the building sector is crucial for addressing the challenges of 

climate change and fostering a sustainable economy. Buildings are significant energy consumers 

and have the potential to make substantial contributions to reducing energy consumption and 
global warming emissions. Enhancing the buildings’ energy efficiency requires a multifaceted 

approach, with a particular emphasis on optimizing the thermal behavior of building 

components. The efficient management of heat transfer within buildings is fundamental to 

achieving energy sustainability and cost-effectiveness. Building envelopes, including walls, 

roofs, and floors, exhibit different thermal performances depending on their position within the 

building. To optimize energy efficiency, it is essential to accurately calculate heat transfer within 

these building components. 

The heat transfer in building components can be calculated by using the heat transfer 

equation, which depends on various parameters, most importantly, material properties and 

boundary conditions. Utilizing materials with excellent thermal properties such as thermal 

conductivity, density, and specific heat capacity determines how effectively heat is transferred 

through a material can significantly enhance heat transfer performance, thereby improving the 

overall energy efficiency. Boundary conditions, determined by the internal and external 

environments of the building, play a crucial role in heat transfer calculations. These conditions, 

including temperature, humidity and airflow, serve as input parameters for accurately modeling 

the thermal behavior of building components. 

To conduct a precise thermal analysis of building walls, accurate numerical methods are 

essential. Several studies in the literature have focused on heat transfer through walls to analyze 

the thermal behavior of a multilayer medium in a transient regime. These studies have developed 

mathematical models that calculate temperature and thermal contact resistance distributions. 

Some research proposes MATLAB-based numerical solution models for simulations, while 

others utilize computational fluid dynamics (CFD) methods. 

1.2. Literature Review 

1.2.1. Literature Review of Numerical Methods 

The diffusion equation, incorporating a diffusion term, has been extensively studied, 

resulting in numerous analytical solutions [1-6]. However, these solutions generally assume 

constant parameters such as the diffusion coefficient or heat conductivity, which do not vary 

with space, time, or the dependent variable u. A notable exception is the work of Zoppou and 

Knight, who derived analytical solutions for the two- and three-dimensional advection-diffusion 

equation with specific forms of spatially variable coefficients [7]. Nevertheless, for general cases 
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with space-dependent coefficients, numerical methods are essential. This is particularly true for 

systems where physical properties vary significantly even within proximity [8]. Such variations 

often result in eigenvalues spanning several orders of magnitude, leading to severely stiff 

problems. 

When partial differential equations (PDEs) are spatially discretized, they are transformed 

into systems of ordinary differential equations (ODEs). Solving these systems numerically 

becomes particularly challenging when dealing with many variables, especially in three-

dimensional spaces. Traditional explicit methods, such as the Runge-Kutta method, are 

conditionally stable, meaning they require very small time steps to maintain stability, which can 

be computationally expensive for large-scale problems. In contrast, implicit methods are 

typically unconditionally stable, allowing for larger time steps, but they require solving systems 

of algebraic equations at each time step. These algebraic systems can be computationally 

intensive, especially when the matrices involved are non-tridiagonal or have complex structures. 

To address these challenges, significant efforts have been directed toward developing advanced 

modifications to improve the efficiency of implicit methods [9]. Currently, implicit methods with 

these extensions are commonly used to solve stiff problems, such as those involving rapid 

temperature changes, high thermal diffusivity materials, or systems with multiple heat transfer 

mechanisms (e.g., conduction, convection, and radiation). These methods are particularly 

effective for problems where stability and accuracy are critical, such as heat transfer in 

multilayer walls, phase change materials (PCMs), and other complex building components.[10-

12]. Despite these advancements, parallelizing implicit methods remains challenging, though 

some progress has been made [13,14]. The shift towards increased parallelism in high-

performance computing [15,16], driven by the stagnation in CPU clock frequency 

improvements, further emphasizes this issue.  

Given these challenges, a part of my work focuses on developing novel, explicit, easily 

parallelizable, and unconditionally stable methods. A key example is the original odd-even 

hopscotch (OEH) algorithm, introduced by Gordon [17] and later reformulated and analyzed by 

Gourlay [18-20] (see also [21]). This method has been modified to enhance its reliability and 

accuracy, typically by increasing its implicitness. This has led to a hierarchy of algorithms, from 

the fully explicit OEH to the alternating direction implicit (ADI) hopscotch, each offering greater 

accuracy at the cost of increased programming complexity and runtime [19]. Morris and Nicoll 

applied these methods to thermal print head calculations and found that, while the OEH method 

was faster than its more implicit versions for isotropic media, it produced inaccurate results for 

anisotropic cases, necessitating the use of the ADI hopscotch for meaningful solutions [22]. 

The OEH method has since been applied to various problems, including the 

incompressible Navier-Stokes equations [23], the Frank-Kamenetskii [24] and Gray-Scott 

reaction-diffusion equations [25], and even the nonlinear Dirac equation [26]. Goede and 

Boonkkamp implemented a vectorized OEH scheme for the two-dimensional Burgers’ equations, 

significantly increasing speed and solver performance [27]. Recently, Maritim et al. developed 

hybrid algorithms incorporating the hopscotch, Crank-Nicolson, Du Fort-Frankel, and other 

schemes for the two-dimensional Burgers’ equations, finding their implicit algorithms stable and 

accurate [28,29]. 

In a series of papers [30-32], new hopscotch combinations were developed using 

alternative formulas to the original explicit and implicit Euler schemes. Tests showed [30] that 
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for stiff systems, the original OEH method could produce significant inaccuracies for large time 

steps, with relative errors reaching up to 104, which could be more problematic than instability if 

unnoticed by inexperienced users. Two of the three new combinations, however, demonstrated 

much better performance. 

1.2.2. Literature Review of The Energy Efficiency in Buildings 

The efficient management of heat transfer in buildings is paramount for achieving energy 

sustainability and cost-effectiveness in the built environment. The comfortable interior 

environment of the building is a crucial issue for most people living or working inside, and it 

largely depends on the wall structure. So, to understand how the wall structure is affected in the 

interior zone, I will focus on the thermal analysis of the wall structure by using very efficient 

algorithms. The integration of advanced materials and technologies into building envelopes has 

gotten significant attention from researchers and practitioners alike. Among these innovations, 

the combination of phase change materials (PCMs) and thermal insulation holds great promise 

for enhancing energy efficiency and occupant comfort. PCMs are known for their high heat 

capacity and outstanding energy storage potential, as well as low heat transfer coefficient. The 

integration of PCM within building envelopes offers the ability to store and release latent heat 

during phase transitions, thereby mitigating temperature fluctuations and reducing the reliance 

on mechanical heating and cooling systems. Concurrently, thermal insulation serves to minimize 

heat transfer, further enhancing the overall energy performance of the building. Historically, 

numerical simulations have played an important role in understanding the nature of heat transfer 

within building structures.  

X. Geng et al. [33] explored the optimization of the location combination for thermal 

insulation material (TIM) and PCM in multi-layer walls during both continuous and intermittent 

air-conditioning operations. These walls typically incorporate TIM or PCM layers to enhance 

thermal performance. Four wall models were constructed for evaluation, considering temperature 

and heat flow on inner surfaces. Placing the PCM layer inside the wall proves better for outdoor 

thermal environments during continuous air-conditioning, while situating the TIM layer inside is 

preferable for higher energy-saving contributions during intermittent operation. Despite 

intermittent operation yielding energy savings of 46.69–64.73%, it raises the peak load on the 

urban electricity system compared to continuous operation. Notably, for multi-layer walls with 

the TIM layer inside, this negative effect is negligible in comparison to their superior energy-

saving benefits.  

Z. Liu et al. [34] showed that the PCM can enhance lightweight building walls' (LBW) 

thermal performance, but optimal parameters vary by wall orientation due to outdoor thermal 

variations. A study tested a small-scale LBW in different orientations and analyzed PCM's 

impact using a heat transfer model. The results suggest that east and south-facing walls benefit 

from PCM in the middle temperature range (20–30°C), while west and north-facing walls 

perform best with inner (18–28°C) and outer (24–34°C) PCM placement. East and west-facing 

walls see the most significant thermal improvement, reducing peak and average heat flux by 

62.8–66.4% and 28.2–29.5%, respectively, and increasing delay time by 5–5.34 hours compared 

to reference walls.  

E. Tunçbilek et al. [35] explored combining PCMs and conventional thermal insulation 

for enhanced energy savings in building walls. PCM on the interior side with layer thicknesses 
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LPCM ≤ 16 mm outperformed insulation saving up to 38.2% more energy than insulation with 

layer thickness LINS =6 mm.  A parameter ψ defining the ratio of LPCM to LPCM + LINS was 

introduced. Combining PCM and insulation (a configuration labeled by C5 in their paper, ψ = 

0.05) saved up to 7.3% more energy compared to insulation alone. Overall, combined designs 

with 0 < ψ ≤ 0.6 showed improved energy savings compared to insulation only, with latent heat 

activation being crucial for better thermal performance.  

Y. Cascone et al. [36] conducted a study on optimizing PCMs in retrofitting office 

buildings for energy efficiency in Mediterranean climates, crucial for achieving EU's 2020 

sustainability goals. PCMs, with careful consideration of properties, quantity, and placement, are 

recommended for effective and economically feasible use. The paper presents multi-objective 

optimization analyses for retrofitting with PCM-enhanced opaque building envelope 

components. Objectives included minimizing primary energy consumption, global costs, 

building energy needs for heating and cooling, and investment costs. The research variables 

encompassed PCM properties, window type, insulation materials, and wall configuration. Post-

optimization analyses provided insights for designers, revealing that optimal PCM properties are 

notably influenced by the HVAC system's operation.  

R. F. Jam et al. [37] conducted a study for optimization of the PCMs location and 

thickness in building walls with an energy-economic analysis. The research emphasizes the 

significance of thermal insulation for reducing energy consumption in buildings. CMS are 

investigated as a form of insulation in an educational building at Hakim Sabzevari University, 

Iran. Through numerical simulations, the study explores the effects of PCM integration during 

the hot months of the year. Optimal PCM placement within the wall and various thicknesses (2, 

3, 4, and 5 cm) are analyzed. Results indicate heat exchange reductions of 9.8%, 13.4%, 17.5%, 

and 20.4%, respectively, for different PCM thicknesses. Additionally, a thermo-economic 

analysis calculates energy savings and payback periods. The study identifies a 3 cm PCM 

thickness as optimal, resulting in a 50-month payback period through Pareto solutions and the 

TOPSIS method.  

M. J. Abden et al. [38] conducted research on the combined use of PCM and thermal 

insulation to improve energy efficiency of residential buildings, applying thermal insulation to 

external walls and ceilings in standard practice. The study evaluates the approach by combining 

expanded polystyrene with PCM gypsum board in a typical Australian standalone house. 

Numerical simulations are conducted considering the house's location in three distinct Australian 

cities—Darwin, Alice Springs, and Sydney—representing tropical savanna, hot semi-arid, and 

humid subtropical climates, respectively. Results indicate significant cost savings over a 10-year 

lifecycle: AU$167.0, $162.3, and $39.7/m2 in Darwin, Alice Springs, and Sydney, respectively. 

Additionally, energy ratings improve by 3.5, 3.8, and 4.3 stars in the three cities. Payback 

periods for the renovation vary from 2.2 to 7.5 years, contingent on climate conditions. 

E. Iffa et al. [39] conducted thermal energy storage systems in buildings serve to store 

cooling/heating energy during non-peak load hours or when renewable energy sources are 

available, aiding in peak load shaving, reducing electric grid burdens, and enhancing occupant 

thermal comfort. While thermal lag in systems like thermally activated building systems often 

leads to passive energy release, integrating active insulation systems can enhance flexibility in 

charging and discharging energy. That study designed a wall system equipped with both active 

insulation and thermally activated storage systems to evaluate its performance in contributing to 
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active cooling energy. The results showed that the thermal properties of the storage core material 

and the spacing of embedded pipes in both the storage and active insulation systems significantly 

influenced wall performance. During discharging, heat flux into the wall reached up to 

81.92W/m2, with the dynamic R-value of the active insulation system varying from less than 

1ft2·◦F·h/BTU (0.18 m2·K/W) to 98% of equally thick foam insulation's R-value.  

P. Arumugam et al. [40] aimed to optimize PCM and insulation placement in building 

envelopes for improved thermal performance and reduced cooling load demand in Indian office 

buildings across different climates. Models integrated with PCM or insulation on outer walls 

showed more comfortable indoor temperatures than those on inner walls. The selection of PCM 

and insulation depended on location temperatures. The recommended techniques resulted in 

cooling load reductions of 64%, 61%, 57%, 63%, and 58/59% for Bangalore, Delhi, Jodhpur, 

Pune, and Guwahati, respectively, compared to basic buildings. 

1.3. The Aim of The Dissertation  

The dissertation aims to design and implement new, efficient explicit numerical methods 

to solve the linear and nonlinear heat equations, encompassing heat conduction, convection, 

radiation, and heat generation across Cartesian, cylindrical, and spherical coordinate systems. 

The work builds on the modification of well-known numerical methods, such as the Explicit 

Euler based FTCS (forward time central space), the Implicit Euler method, the Crank Nicolson 

method, the Rational Runge–Kutta method, the Dufort–Frankel (DF) method, the UPFD 

(Unconditionally Positive Finite Difference) method, Heun’s method, and the original hopscotch 

method, to enhance their efficiency and stability. Building on these modifications, improved 

numerical schemes were developed, including the constant neighbor method, the two and three-

linear neighbor method, and the CpC method. The core novelty of this work lies in the invention 

of entirely new numerical methods, such as the Shifted-Hopscotch method, Leapfrog-Hopscotch 

method, Asymmetric-Hopscotch method, Reversed-Hopscotch method, and Pseudo-Implicit 

method, which represent significant advancements over existing explicit numerical schemes, 

offering superior stability, accuracy, and computational efficiency for solving complex heat 

transfer problems. These methods were implemented and tested using MATLAB 2020b, 

rigorously verified and validated against analytical solutions and experimental measurements, 

and applied to real-life heat transfer problems in various engineering applications. They serve as 

powerful tools for thermal analysis, enabling the calculation of temperature and heat energy 

distributions in complex geometries and systems. In this dissertation, the methods were applied 

to analyze heat transfer in different building walls and heated cylinders, ranging from simple 

geometries (low stiffness systems), such as insulated walls, to highly complex geometries (high 

stiffness systems), such as multilayer walls composed of different materials (e.g., insulators, 

phase change materials (PCMs), and base materials like brick or concrete). The goal was to 

control the amount of heat transfer between indoor and outdoor environments, contributing to the 

development of sustainable and energy-efficient buildings. By achieving these objectives, this 

research advances ongoing efforts to improve energy efficiency and sustainability in building 

design. 
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2. THE  HEAT TRANSFER EQUATION 

In the current study, I aim to calculate the heat transfer in different geometries. First, I 

derive the heat transfer equation (encompassing conduction, convection, and radiation) based on 

energy balance in Cartesian coordinates, and then in cylindrical and spherical coordinates.  

2.1. The  Heat Transfer Equation in Cartesian Coordinates  

For the Cartesian coordinate, consider a small rectangular element , ,x y z   , as shown in 

Fig.2.1. The energy balance for the differential control volume during a small-time interval t  

can be expressed as [41] :  

The heat conduction rate   The heat conduction rate at  The heat generation rate   The covection rate at The radiat

at x, y, and z  x+ x,y+ y, and z+ z inside the element x,y,z 

       
− + + +       

         

ion rate at 

x,y,z 

The change of energy

 content rate of the element 

 
 
 

 
=  
 

 

Or 

element
x y z x x y y z z gen Convection Radiation

E
Q Q Q Q Q Q Q Q Q

t
+ + +


+ + − − − + + + =


             (2.1)   

 

 

 

 

 

 

 

 

 

 

Figure 2.1. 3D rectangular element [41]. 

I use the following three well-known laws:  

Fourier’s law of heat conduction: 

                        . . , . . , . .x x y y z z

u u u
Q k S Q k S Q k S

x y z

  
= − = − = −

  
                                   (2.2)  

where u u( r ,t )=   is the temperature,  k k( r )=  is the thermal conductivity of material and the 

surface area of the element in x,y and z are  xS y. z=   ,  yS x. z=    and zS x. y=    respectively . 

Newton’s law of heat convection: 

                                         ( )convection c c aQ h S u h S u u=  = − ,                                                (2.3)  
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where hc represents convection heat transfer coefficient, S is the surface area, and the ambient 

temperature au  does not depend directly on u, and the term ahSu  therefore it is included into the 

heat generation term. 

The law of Stefan–Boltzmann for the incoming and  outgoing radiation heat: 

                                     4 4( )radiation iQ S u u = −   ,                                                        (2.4)  

where SB  =  , i.e., the Stefan-Boltzmann universal constant 8 2 45.67 10 W/(m K )SB −=    is 

multiplied by the proper constant of emissivity   where the surface has a non-unity emissivity, 

ui is the temperature of the incoming heat radiation, and u is the temperature of the outgoing 

radiation by the surface elements. Incoming heat radiation, such as direct sunlight, is 

incorporated into the heat source term q as the 4
iSu   term. 

                      ( ) ( )element t t t t t t t t tE E E mc u u c V u u+ + + = − = − =  − ,                            (2.5)  

where ( r ) = , c c( r )=  and V x zy =     are the density, the specific heat and the elementary 

volume, respectively. Substituting Eqs (2.2-2.5). into Eq. (2.1), dividing by . .x y z    and limited 

as , , , 0x y z t    → yields: 

    
4 4( ) ( )

. . . . . .

gen c a i
Q h S u u S u uu u u u

k k k c
x x y y z z x y z x y z x y z t




− −          
+ + + + + =    

                   
              (2.6)  

Eq. (2.6) is divided by (ρc), and if k is constant, I obtain 

    
4 42 2 2

2 2 2

( ) ( )1 1 1gen c a i
Q h S u u S u uk u k u k u u

c c c c x y z c x y z c x y z tx y z



     

− −   
+ + + + + =

           
                (2.7)  

Where the property 
k

c



=   is the thermal diffusivity of the material. In this work do not consider 

volumetric heat generation, so the heat generation is represented by all incoming heat that 

crosses the surface element. I introduce *q , which is the incoming heat by radiation and 

convection for a unit area. In all of our cases, the direction of the heat transfer is constrained to 

the horizontal direction, thus S y z=   and ( )4*
gen a iQ q hu u S = + + . With these, I obtain 

* 42 2 2 * * 4

2 2 2

1 1 1 1 1c a i ch y zu y z u h y z uu u u q y z y z u u

c x y z c x y z c x y z c x y z c x y z tx y z

 
  

    

            
+ + + + + − − =

                 
  (2.8)       

After simplification, I have 

2 2 2 * * *
4 4

2 2 2

c c
a i

h hu u u q u
u u u u

c x c x c x c x c x tx y z

 


    

    
+ + + + + − − =           

                              (2.9)  

The equation for the temperature, which includes the source of heat generation, conduction, 

convection, and radiation can be expressed as follows: 

                2 4u
u q Ku u

t
 


=  + − −


                                                          (2.10)  
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Where is the heat generation or heat source coming from the outside of the wall structure, 

( ) ch
K K r

c x
= =


 is the heat transfer convection term, and 

*

( )r
c x


 


= =


 is the radiation heat 

transfer term, where K and σ are exist at the interface surfaces (interface between the solid and 

liquid or gas); otherwise, it is set as zero at the interior elements within the solid body. The terms 

q, Ku, and 4u  in Eq. (2.10) are nonnegative and still in  K s/ . If there is a multilayer wall, then 

the material properties depend on space, so an equation with a more general form can be used as 

follows:  

                41
( )

u
k u q Ku u

t c





=   + − −


                                                   (2.11)  

2.2. The Spatial Discretization in Cartesian Coordinates 

The standard central difference formula in two space dimensions is applied for the 

second-order derivative ( 2u ). The space steps are x  and z  as shown in Figure 2.2. Now, for 

the nodes of a homogeneous material, one obtains 

                      
2

2 2

1 -1

-1 1

( ) ( ) ( ) ( )

2
( )

i ii i

ii i
i

u x u x u x u x

u u ux xu x
xx x

+

+

− −
+

− +   =
 

                                      (2.12) 

                      
2

2 2

-

-

( ) ( ) ( ) ( )

2
( )

i ii Nx i Nx

ii Nx i Nx
i

u z u z u z u z

u u uz zu z
zz z

+

+

− −
+

− +   =
 

                               (2.13) 

I obtain the spatially discretized form Eq. (2.11) in two dimensions:  

                      4

2 2

-1 12 2i i ii i i Nx i Nx
i i

u u u u u udu
q Ku u

dt x z
  + − +− + − +

= + + − −
 

                                     (2.14) 

Now, to be more realistic, let the k, c, and ρ quantities be functions of space. Then Eqs. (2.12) 

and (2.13) can be written using a two-dimensional, equidistant grid in the following form: 

        
2

2

( ) ( ) ( ) ( ) ( )1

( ) ( ) 2 2

i i i i
i i

i i

iu x u x x u x u x x u xx x
k x k x

c x x x x xx 

  +  − − −    
= + + −    

       
                   (2.15) 

        
2

2

( ) ( ) ( ) ( ) ( )1

( ) ( ) 2 2

i i i i
i i

i i

iu z u z z u z u z z u zz z
k z k z

c z z z z zz 

  +  − − −    
= + + −    

       
                     (2.16) 

I now change from node to cell variables, which means that iu , i , and ic  will be the 

temperature, density, and specific heat of cell i, respectively. Furthermore, since the material 

boundaries will always coincide with the cell borders, I write the average 1

2

++i ik k
 instead of 

2
i

x
k x

 
+ 

 
. Now the discretized form of Equation (2.11) will take the form 

4

-1 1 1 -11 1

2 2 2 2

x x x xi i N i N i i i N i N ii i i ii i i i i

i i i i

i i

k k u u k k u uk k u u k k u udu

dt c x x x c z z z

q Ku u

 



+ + −+ + −
+ − + − + − + − 

= + + +            

+ − −

 

(2.17) 
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The distance between the centres of neighbouring cells is the same as the mesh spacing, and the 

interface area between cell i and its right neighbour is always S. Now I have 

4

1 1 1 1

1 2 2

2 2

x x x x

i i i ii i i i

i
i i

i i N i N i i i N i N ii i

k k u u k k u u
y z y z

du x x
q Ku u

k k u u k k u udt c x y z
x y x y

z z




+ + − −

+ + − −

+ − + − 
  +   

  = + − −
+ − + −    

+  +   
   

           (2.18) 

The cell’s heat capacity can be calculated as i i iC c V= . I calculate the thermal resistances  in a 

horizontal and vertical direction between the neighbouring cells, as , 1
12 2

i i
i i

x x
R

k z k z
+

+

 
 +

 
, and  

,
2 2x

x

i i N
i i N

z z
R

k x k x
+

+

 
 +

 
 respectively, where i and j represented the cells' index in the x-axis and 

z-axis. Semi-discretized form of Equation (2.14) can be expressed as below: 

     4

1, 1, , ,

1 1 x x

x xN N

i N i i N ii ii i i
i i

i i i i i i i i i i i i

u u u uu u u udu
q Ku u

dt R C R C R C R C


− + − +

− +− +
− −− −

= + + + + − −                      (2.19) 

The time is discretized uniformly with a time-step size t   and represents the temperature of cell 

i at the time n t , 0 1n , ,...,T= .  Now the formulae of the used methods are presented for the 

general discretization (2.19) only. For the simpler formula, I need to define the following 

quantities: 

new

pred
1

 ,  andi i i i i

j i j i j i

n
j j

i ij i ij i ij

uu
mr t A t t q A t t q

C R C R C R  

=  =  +   =  +      

Where mri is the general mesh-ratio, while Ai  shows the state and the effect of the neighbors of 

cell i.We prefer to use the ODE system for a general grid, which gives the derivative of the time 

of each temperature independently of any coordinate system 

                                   4

,

j

i

i j

ii
i i

i j i

u udu
q Ku u

dt R C




−
= + − −                                               (2.20) 

Which can be written in matrix form 

                                              
du

Mu Q
dt

= + ,                                                                  (2.21) 

where 4
i i iQ q Ku u= − − , and the diagonal element of matrix M can be written as follows 

,

1
ii

j neighbour i j i

m
R C

−
=  . Off-diagonal elements ,1ii i j im R C=  of the global matrix M are nonzero only 

if the cells i and j are neighbours. From this point, all summations are performed over the 

neighbors of the current cell, denoted ( )j n i . Unless specified, closed (zero Neumann) boundary 

conditions are applied, thermally insulating the domain's edges from conductive heat transfer. To 

help the reader imagine, we present the arrangement of the variables in Figure 2.2 for a 2D 

system. The framework is designed for generality, supporting both structured and unstructured 

meshes.  



THE HEAT TRANSFER EQUATION 

14 
 

 

 

 

 

 

 

 

 

 

 

Figure 2.2. Arrangement of the generalized variables [Original]. 

For example this 4×4 system, the system of ODEs in matrix form can be written as 

1 1

2 2

3 3

4 4

1 12 1 13 1 12 1 13

2 21 2 21 2 23 2 24 2 23 2 24

3 31 3 32 3 31 2 32 2 34 3 34

4 42 4 43 4 42 4 43

1 1 1 1
0

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1
0

C R C R C R C R

u u
d C R C R C R C R C R C Ru u

u udt
u uC R C R C R C R C R C R

C R C R C R C R

− − 
+ 

 
− − − −    + +

    
=    − − − −

+ +   
    

− − + 
 

1

2

3

4

.

Q
Q
Q
Q

 
 

=  
  

 

 

2.3. The  Heat Transfer Equation in Cylindrical and Spherical Coordinates  

In a similar way, the  heat transfer equation in cylindrical coordinates can be obtained from an 

energy balance on a volume element in cylindrical coordinates, considering a small 3D 

cylindrical element as shown in Fig. 2.3. The energy balance in this element during a time 

interval can be expressed as [42]: 

 

 

 

 

 

 

 

 

 

Figure 2.3. The cylindrical (left) and spherical (right) elements [42]. 
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The heat conduction rate The heat conduction rate at The heat generation rate inside  The convection rate 

at  , ,   ,   ,  and on the surface of the element at the , ,

     
− +      

+  +  +      r z r r z z r z     element

The radiation rate The change energy

at the , ,  element  content rate of the element 

 
 
 

   
 =   
   r z

 

or briefly, 

   element
r z r r z z gen convection radiation

E
Q Q Q Q Q Q Q Q Q

t
  + + +


+ + − − − +   =


           (2.22) 

To fill Eq. (2.22) with concrete formulas, the following three well-known laws are used.  

Fourier’s law of heat conduction:  

                                 , ,r z

u u u
Q kS Q kS Q kS

r z




  
= − = − = −

  
                                        (2.23) 

The heat convection, radiation, and the change in energy of an element over a specific time 

interval are the same in Cartesian coordinates except the element volume being 

( )
2

rV r r z  =  +   . In the case of full cylindrical symmetry, it is better to choose a full ring-

shaped element, which yields ( )2 22 ( ) ( )
2

rV r r z r r r z  = +   = +  −  . 

From these equations, one can derive the heat-transport equation in a 3D cylindrical coordinate 

system, which can be written as: 

             
* 4

2

1 1 genQu u u hSu Su u
k r k r k c

r r r z z V V V tr




 

          
+ + + − − =    

             
                      (2.24) 

In the case of spherical coordinates, a small 3D spherical element can be seen in Figure 2.2 The 

heat-transport equation for this case can be expressed as follows: 

  
* 4

2

2 2 2 2

1 1 1
sin

sin sin

genQu u u hSu Su u
k r k r k c

r r V V V tr r r


 

    

          
+ + + − − =    

             
       (2.25) 

2.4. The Spatial Discretization in Cylindrical and Spherical Coordinate 

In the case of cylindrical geometry, I consider tube-shaped cells with height z  and 

thickness r . For spheres, the cells have spherical-shell shapes with thickness r  again. The 

temperature is considered at the middle of the cell layer, where the radial distance from the 

origin (the mean radius of the cells) is denoted by ir , while the subsequent radius of the cell 

border is denoted by / 2i ir r r = +  . 

The cell’s heat capacity in the cylindrical and in spherical cases is approximated as 

( )2 2
1i i i i iC c r r z   
+= −   and ( )3 3

1
4

3i i i i iC c r r   
+= − , respectively.  

Let us denote the area of the cylindrical cell-surface perpendicular to r with rS , which can be 

given as 2rS r z=  . Now, for the thermal resistance in the r-direction, the approximate formula 

1 1 1

, 1
, 1

, 1 , 1

ln ln

2 2

i i

i i

r r i i

r r
i i r

i i
i i i i

r rdr dr
R

k S k r z k z 

+ + +

+
+

+ +

−
 = =

    (2.26) 
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is used. For the thermal resistance in the z-direction, the approximate formula 

( )
2 2

1

,
( )

r

x

i

i i

i N
i i N

i

z z
R

k r r +

+
+

−


−

 is used, where the cell i + Nr is below the cell i.  

In the spherical case, rS  can be given as 24rS r= . Using this, the thermal resistance is 

calculated similarly as that in the cylindrical case, but now the integration yields 

1

1
, 1

, 1

1

4

i i

i i
i i

i i

r r
R

k r r
+

+
+

+

−
 . From Equations (2.24) and (2.25) it is easy to obtain the ODE system  

* 4

,

gen i i

j

j ii

i i i i ij i

u u Qdu hSu Su

dt R C C C C





−
= + − −  (2.27) 

to determine the time evolution of the cell temperatures. Here, S is the area of the surface on 

which the convection and radiation occur, which will be the outer surface of the cylinder in Fig. 

2.3. If one neglects the higher powers of r , one can easily derive that i i iC / S c r=   in both 

cases. Inserting these into (2.27), I can write Equation (2.27) in a simpler form: 

 4

,
i i i

j

j ii

i ij i

u udu
q Ku u

dt R C




−
= + − − ,       

(2.28) 

which will be solved numerically. 
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3. SOLVE THE HEAT EQUATION NUMERICALLY 

The numerical solution of the heat equation is frequently approached via discretization 

methods such as Finite Difference (FDM) [43-45] and Finite Element Methods (FEM) [44]. 

However, they can be extremely time-consuming since the examined system must be fully 

discretized both in space and time. Due to material inhomogeneities, which produce eigenvalue 

spectra spanning several orders of magnitude. This stiffness forces an exceedingly small CFL 

(Courant–Friedrichs–Lewy) limited time step for explicit schemes, rendering them inefficient or 

unstable. Consequently, implicit methods are traditionally employed for their unconditional 

stability, typically used for solving these kinds of equations, for example [47-53]. They solve 

equation systems containing the whole system matrix; thus, they can use a lot of CPU time and 

computer memory, especially when the number of cells is large, which is always the case in three 

dimensions.  

It is well known that the former rapid increase in CPU clock frequencies is over, and the 

tendency toward increasing parallelization in high-performance computing is powerful [54,55]. 

Thus, I think time is on the side of explicit methods because they can be much more 

straightforwardly parallelized. That is why I started to investigate explicit algorithms with 

improved stability properties. These explicit methods can also serve as a basis for implicit 

methods. 

3.1. Existing Numerical Methods  

 Many explicit algorithms have been developed for heat conduction, convection, and 

radiation equations. While some methods adopt a purely explicit calculation strategy, others 

employ a mixed approach, integrating explicit and implicit calculations to balance computational 

efficiency and stability. Some of them are unconditionally stable for the linear heat conduction 

equation, and have special characteristics to deal with nontrivial cases. More details in the 

following:  

3.1.1. The Explicit-Euler Method 

The FTCS (Forward Time Central Space) scheme, the most common explicit method for 

the heat equation, uses the Explicit Euler method for time integration [44]. Now I adapt this to 

the  heat transfer equation in the most standard way, thus the general formula is the following:  

( ) 41 1 ( )+ = − + −   −   i i i i
n n n n
i i i iu mr u A t K u t u    .                                                     (3.1) 

In case the convection and radiation terms move to the denominator, then the Explicit Euler is 

called the Non-Standard Explicit Euler NS-ExpE.  

3.1.2. The Crank-Nicolson Method 

The Crank-Nicolson method [28] provides an alternative implicit scheme to provide 

accuracy. Difference approximations are developed at the midpoint of the time increment, and it 

is unconditionally stable, second-order accurate in both space and time, suitable for stiff systems. 

Thus the general formula is the following:  
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( )

4

1
2

n

n 1
1 1 ( )

2

1 1

i
i i i

i

n n
i i i

i

mr
u A t K u t u

u
mr


+

 
− + + −   −    

 
=

+ −
   .                                    (3.2) 

3.1.3. The Uniformly Positively Fractionalized Difference (UPFD) Method 

The UPFD method is constructed by Chen-Charpentier and Kojouharov [56] for the 

linear advection - diffusion -reaction equation. Recently, I adapted it to the  heat transfer 

equation as follows:  

                                   
3

1
n1 ( )

i

i i i

n
n i
i

i

u A
u

mr t K t u

+ +
=

+ +   +   
.                                           (3.3) 

3.1.4. The Dufort–Frankel Method 

The Dufort–Frankel (DF) algorithm is a known but non-traditional explicit scheme [57] 

that is unconditionally stable for the linear heat equation. Now the formula for the case of Eq. 

(2.20) and (2.28) is as follows:  

( ) 41 n n
n 1 1 2 2 2 ( )

1

ii i

ii

n
i i i

i

mr u A t K u t u
u

mr

−
+ − + −    −   
=

+
 (3.4) 

One can see that the formulas contain 1n
iu − , thus it is a two-step but one-stage method. As the 

method is not self-starting, an additional technique is required to initialize it by computing 1
iu . 

The UPFD formula (3.3). is employed for this initial calculation  

In case of the convection and radiation terms move from the numerator to the denominator, then 

the DF is called Non-Standard Dufort–Frankel  NS-DF.  

3.1.5. The Rational Runge–Kutta Methods 

From the family of the Rational Runge-Kutta methods, I chose a two-stage version [58] 

with the following definition. A full step is taken at the first stage, by the Explicit-Euler scheme, 

to obtain the predictor value. The increment for Eq. (2.20) is calculated as  

( )1 4n n n n n
1 12 + ( )  i i i ii ig mr u u u t q t K u t u− += − +   −   −    , 

and  

1 4n n  ( )i i
n
i i ig mru A t K u t u= − + −   −    . 

Using these 1
ig  values, the predictor values can be obtained for all grid types as  

1pred
 i

n
iiu u g= + .  

After this, using the predictor values obtained above, the second Euler step increment is 

calculated: 

( )2 4pred pred pred pred pred
1 12 + ( )i i i ii ig mr u u u t q t K u t u− += − +   −    −    ,  

and 2 4pred pred prednew ( )i i ii i ig mru A t K u t u= − + −   −   . 

 

Now one needs to calculate the following scalar products 
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( ) ( ) ( )1 1 1 1 1 2 1 2 2 2 2 2
1 12 2

1 1 1

, , , , , ,
N N N

i i i i i i

i i i

p g g g g p g g g g p g g g g
= = =

= = = = = =     

and with them one obtains the final expression for the new values of the variable: 

                         
1 1 2

1 12 1

1 12 2

1 2 2

4 4

i i in n
i i

p g p g p g
u u

p p p

+ − +
= +

− +
                                                   (3.5) 

3.1.6. The Heun’s Method 

Heun’s method, also referred to as the explicit trapezoidal rule, is a prevalent second-

order Runge-Kutta (RK) algorithm for integrating ordinary differential equations ODEs and 

systems of ODEs [59], so it is straightforward to use it as a component of method of lines. It 

starts with a predictor step, which is an explicit Euler stage. In the cases of Eq. (2.20) and (2.28), 

it has the form: 

 ( ) 4pred n n1 ( )i i
n
i i iiu mr u A t K u t u= − + −   −   .  

A corrector step subsequently refines the solution by averaging the newly predicted and 

previous values of u : 

( ) ( )
4

new
pred

pred pred1

2 2
i i i

n
in n n ni

i i i ii i

u u t
u u mr A A K u u u u+ +   

= − + + −  + −  + 
 

              (3.6) 

3.1.7.  The Original Odd-Even Hopscotch Method 

To use an odd-even hopscotch method, a special, so-called bipartite spatial grid is 

necessary, where the cells are labelled as odd and even, and similarly to a checkerboard, all the 

nearest neighbors of the odd cells are even and vice versa. The odd-even labels are interchanged 

in each time step, as is shown in Fig. 3.1A. Originally, the standard Explicit Euler formula was 

applied in the first stage, and the Implicit-Euler formula was applied in the second stage [61]. 

The general formulas are the following:  

Explicit Euler:   ( ) 41 n n1 ( )i i i i
n n
i i i iu mr u A t K u t u+ = − + −   −             (3.7) 

         Implicit Euler:   
new

3

1
n1 ( )

i

i i i

n
n i
i

i

u A
u

mr t K t u

+ +
=

+ +   +   
,   (3.8) 

This implicit formula becomes effectively explicit because the required 1n
ju +  values are already 

available from Stage 1. This defines the Original Odd-Even Hopscotch (OOEH) method, which 

is unconditionally stable for the linear heat equation. However, for nonlinear cases with 

large r values, the update can yield negative temperatures. This instability arises when large 

negative values appear in the denominator term 3n( )iu . To mitigate this, a simple stabilization is 

applied; negative values are prohibited using a conditional statement:  

if 1 0n
iu +   then 1 0n

iu + = .     (3.9) 

This trick will be applied in all cases in this method and the remaining methods when there is a 

possibility of negative temperatures.  

In the case of using the Non-Standard Explicit Euler, then the OOEH is called Non-Standard 

odd-even hopscotch NS-OEH.  
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3.1.8.  The Reversed Odd-Even Hopscotch Method  

The reversed odd-even hopscotch method (ROEH) is different from the OOEH method 

because it applies the formulas in the opposite order: first the implicit Euler (3.8), then the 

nonstandard explicit Euler formulas (3.7), with condition (3.9). However, when first-stage 

calculations begin with the implicit formula, the new values of the neighbors are not known. In 

the ROEH method, they are taken into account in the old time level, which is the same trick as 

the UPFD method uses.  

 

Figure 3.1. Space-time structure of (A) The original hopscotch and the reversed hopscotch methods. (B) The 

leapfrog-hopscotch method. (C)The shifted-hopscotch method. (D) The asymmetric hopscotch method [60]. 

3.2.  The Developed Numerical Methods  

In this section, I present some methods which were originally constructed for the heat 

conduction equation without my participation, but I took part to adapt them to the case with 

conduction and radiation. 

3.2.1.  The Constant Neighbor Method 

 The constant neighbor (CNe) method [28] for Equation (2.20) and (2.28) is:  

( ) 4i i1 n n

i

1 ( )
m min n

i i i i
r rA

u u e e t q t K u t u
mr


− −+ =  + − +   −   −   .  (3.10) 

3.2.2.  The Theta Method 

To proceed, the following general time discretization formula defines the theta method is 

used: 

( ) ( )( ) 4

2

n 1 n
n n n n+1 n+1 n+1 n n

1 1 1 12 1 2 ( )i i
i i i ii i i i

u u
u u u u u u q K u u

t x


  

+

− + − +

−  = − + + − − + + −  − 
  

,     (3.11)  

where  0 1, . After rearrangement we have

( ) ( )( ) 4n 1 n n n n n+1 n+1 n+1 n n
1 1 1 12 1 2 ( )i i i i i ii i i iu u mr u u u u u u t q t K u t u  +
− + − +

 = + − + + − − + +   −    −   
 

,   (3.12) 
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For 1
20  and 1, , =  yield the implicit Euler, Crank-Nicolson, and explicit Euler (FTCS) schemes, 

respectively [62]. If 1  , the theta method is implicit. It can be modified to be explicit by taking 

the neighbors into account at the old-time level, where their values are already calculated. Thus, 

one can insert 1
n
iu   into the theta-scheme (3.12) instead of 1

1
n
iu +
  to obtain 

                    ( ) ( ) 41 1 n n
1 12 2 1 ( )n n n n n n

i i i i i ii iu u mr u mr u mr u u t q t K u t u  + +
− += − − − + + +   −   −        (3.13) 

With this modification, the final formula is completely explicit: 

                    
( ) ( )

( )

41 1 n n
1 1n 1

1 2 ( )

1 2 1

n n n
i i ii i

i

mr u mr u u t q t K u t u
u

mr

 



+ +
− ++

− + + +   −    −   
=

+ −
                       (3.14) 

3.2.3.  The Two-Stage and Three-Stage Linear-Neighbor Method 

The subsequent algorithm is the two-stage linear-neighbor (LNe or LNe2) method [63]. 

This method uses the CNe scheme as a predictor to obtain new pred
iu  values at the end of the time 

step.For the special case of an equidistant grid, these predicted values are used to calculate 

slopes: 

( )2

pred pred n n
1 11 1i i ii i

mr
s u u u u

t
− +− += + − −


  

and then the corrector values for the two-stage LNe method: 

( )
2 2

2 2 41 n n1 1 1
1 1 ( )

2 2 2

m
m m

i

n n
n n i i
i i i i

r
r ru u t e

u e e s t q t K u t u
mr mr

u 
−

− −+ − +
 +  −

+ − + − +   −   −     
 

=   

For the general case, the corrector step is implemented as follows:  

i
4i

new new
n+1 n n ni i i i
i i i

i i i

1
( )

m
m

i i

r
r A A A Ae

u e A t K u t u
mr mr mr

u 

−
−  − −−

+ − + −   −    
 
 

= . (3.15) 

The results from (3.13) can then be used to recalculate new
iA  again, Iterating the corrector step 

(3.15) with these updated slopes yields a new solution. This three-stage altogethe is designated 

the LNe3 method [63]. While remaining second-order accurate, the LNe3 algorithm provides 

improved accuracy over the two-stage LNe2 method.  

3.2.4.  The Two-Stage Constant-Neighbour  

The two-stage constant neighbour CpC method [64] generally starts with a fractional 

time step of length p t , the constant-neighbour method with a full time step is briefly termed 

CpC. Here, I take 1
2

=p  because this version usually offers better accuracy than versions with 

other values of p. Consequently, in the first stage, I calculate new predictor values for the 

variables using the CNe formula, but with  a 
1 2t t / =   time step:  

( ) 4pred n n1 1 1 ( )
2

m m
n n

n i i
i i ii

r ru u
u u e e t q t K u t u− −− ++

=  + − +   −    −      

And ( )/2 /2 4pred n n
i

1 ( )i imr mrn i
i i i

i

A
u u e e t K u t u

mr
− −

= + − −   −    .           

 

         (3.16)         
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Then, in the second stage, I can use new

pred

i

j i

j

i ij

u
A t

C R

=    with 1t and take a full-time step size 

corrector step by applying the CNe formula again. The final values at the end of the time step are 

( )2 2 4

pred pred
1 n n1 1 1 ( )

2

m mn n i i
i i i i

r ru u
u u e e t q t K u t u− −+ − ++

=  + − +   −    −     

                   ( )
new

4i i1 n n

i

1 ( )
m min n

i i i i
r rA

u u e e t K u t u
mr


− −+ =  + − −   −                                    (3.17) 

3.3.  The Invented Numerical Methods  

3.3.1.  The Shifted-Hopscotch Method 

The shifted-hopscotch (SH) method [65] is a new method I invented. It has a repeating 

block consisting of five stages: two half-time steps and three full-time steps, which altogether 

span two integer time steps for both the odd and even cells, as shown in Figure 3.1C. The first 

half-time step is taken for the odd cells using the general formula: 

                          

( )

1
2

3
1 2

i
n

n i
i

n
i

u A t q
u

mr t K t u

+ + +  
=

+ +   +   

                                                      (3.18)     

coloured by a yellow box with the number 1 in the figure. Full-time steps, taken strictly 

alternately, follow the formula: 

                 
( )

( )

1
2

3

1 1 / 2 +

1   

i ii
i

i

mr u A t q
u

mr t K t u






+

+ − +  
=

+ +   +   

                                                         (3.19) 

The upper index µ is n for the even nodes and n+1 for the odd nodes. These steps for the even, 

the odd, and the even cells are colorued by green boxes with the numbers 2, 3, and 4. The 

calculation is finally closed by a half-length time step (pink box with number 5 inside) for the 

odd cells with the formula: 

                        
( )

( )

3
2

3

1
2

1

1 +

1

n

i i
n
in

i
n
i

mr u A t q
u

t K t u

++
+

+

− +  
=

+   +   

                                                    (3.20) 

with condition (3.9) again. 

3.3.2.  The Leapfrog-Hopscotch Method 

The architectural framework of the novel leapfrog-hopscotch (LH) algorithm [66], 

invented by our team with my participation, incorporates two half-time steps and several full-

time steps, as one can see in Fig. 3.1B. Computation is initiated by applying the general formulae 

from (3.18) in the first stage (yellow box in the Figure). A strictly alternating sequence of full-

time steps (green boxes) for even and odd nodes follows, governed by expressions (3.19) and 

subject to condition (3.9). A key principle of the method is that the most recent available data 

from neighboring points used (for example in 
1

2
+

iA


) must always be used to update the values 

of u, no matter the size of the time step being calculated. This alternation continues until the 
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algorithm processes the last time step (purple box in Figure), which again uses (3.19) with a 

halved step size to ensure the odd nodes conclude at the same time as the even nodes. 

3.3.3.  The Asymmetric Hopscotch Method 

The Asymmetric Hopscotch (ASH) Method is another novel algorithm, bearing similarity 

to the SH method but contains a reduced number of integer stages; it utilizes three stages instead 

of five, as shown in Fig. 3.1D. The computational process is initiated by a half-time step for the 

odd cell, governed by equation (3.18). This is followed by a full-time step applied to the even 

cell using formula (3.19) under condition (3.9). The calculation cycle is concluded by a final 

half-time step equation (3.20), with condition (3.9) again for the last odd cell. 

3.3.4.  The Pseudo-Implicit Method 

I helped in the invention of the pseudo-implicit (PI) method, which is a new explicit 

method called Algorithm 5 in [67] with parameter 1 = . For Eq. (2.20) and (2.28) the following 

two-stage algorithm is applied:  

Stage 1: 
3

pred

n
2

1 ( )

i

i

n
i

i
i

A
u

u
mr t K t u

+
=

+ +   +   
                                              (3.21)  

Stage 2: 
( )

2

new
1

pred n

1

1 ( )

i

i

n
i in

i

ii

mr u A
u

mr t K t u u

+ − +
=

+ +   +    
                                     (3.22)  

One can see that this algorithm is fully explicit, and the convection and the radiation term is 

treated in a quite sophisticated way at the second stage, since both the n
iu  and the pred

iu  values 

are used.  

3.4.  The Optimization of  Shifted-Hopscotch Method Combinations 

I constructed and tested innovative numerical algorithms to solve the transient diffusion equation   

(or heat conduction) equation [62], These methods represent a novel approach to addressing this 

class of problems 

                                              2u
u

t



= 


                                                                     (3.23) 

The new algorithms are fully explicit time-integrators obtained by a half-time step and applied 

different formulas in different stages. All of the algorithms consist of five stages, but they are 

one-step methods in the sense that when the new values of the unknown function u are 

calculated, only the most recently calculated u values are used, thus the methods can be 

implemented such that only one array of storage is required for the u variable, which means that 

the memory requirement is very low. I applied the conventional theta-method with 9 different 

values of θ  and the non-conventional CNe method to construct 105 combinations in the case of 

small systems with random parameters, and examined the competitiveness of the best algorithms 

by testing them in the case of large systems against popular solvers. 

The computational procedure is initiated by taking a half-length time step for the odd 

nodes (subset A) using the already calculated n
iu  values. This is followed by a sequence of 

operations: a full-step for the even nodes (subset B), a subsequent full-step for the odd cells, and 

another for the even nodes. A concluding half-interval step finalizes the value computation, as 
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one can see in Figure 3.1.C. In each stage, I use the latest available u values of the neighbors, 

which means that the constructed methods are fully explicit and the previous values needn’t to be 

stored at all. Thus, I have a structure consisting of 5 stages, which correspond to 5 partial time 

steps, that together span two complete time steps for all cells. 

The application of the standard central difference formula (2.12) to Eq. (3.23) in one dimension 

produces a system of ordinary differential equations (ODEs) governing the nodes 1 2i ,...,N= − :  

2

i i-1 i i+12du u u u

dt x


− +
=


. (3.24) 

The form of this equation for the first and last node depends on the concrete boundary conditions 

which will be discussed later. I define a matrix M with the following elements: 

ii i,i+1 i,i 12 2 2

2
(1 ), (1 ), (1 )m i N m i N m i N

x x x

  
−= −   =   =  

  
, (3.25) 

which is tridiagonal in the currently discussed 1D case. Now equation-system (3.24) can be 

expressed in a compact matrix form:  

du
Mu

dt
=  (3.26) 

I  now introduce the following general time-discretization scheme 

( ) ( )( )2

n 1 n
n n n n+1 n+1 n+1

1 1 1 12 1 2i i
i ii i i i

u u
u u u u u u

t x


 

+

− + − +

−  = − + + − − +
  

,  

leads to the named theta-method:  

( ) ( )( )n 1 n n n n n+1 n+1 n+1
1 1 1 12 1 2i i i ii i i iu u mr u u u u u u +
− + − +

 = + − + + − − +
 

, (3.27) 

where 
2

0, 0 1
2

iim tt
r i N

x

 
= = −    −


 is the usual mesh ratio and  0 1, . For 1
20  and 1, , =  one 

obtains the Implicit-Euler, the Crank-Nicolson and the Explicit-Euler (or, more concretely, the 

forward-time central-space, FTCS) schemes, respectively [62]. If 0  , the theta-method is 

implicit. Now, in our shifted-hopscotch scheme, the neighbors are always taken into account at 

the same, latest time level, thus I insert m
1iu   into (3.27) instead of 1

n
iu   and 1

1
n
iu +
 , where 

1
, or 1

2
m n, n n= + +  at the first, middle, and last stages, respectively. Now, instead of (3.27), I can 

write  

( ) ( )n 1 n n n+1
1 12 2 1 m m

i i i i i iu u mr u mr u mr u u +
− += − − − + + , (3.28) 

i.e. my final formula reads as follows:  

( ) ( )
( )

n
1 1n 1

1 2

1 2 1

m m
i i i

i

mr u mr u u
u

mr





− ++
− + +

=
+ −

. (3.29) 

In the case of 0 = , this formula gives back the UPFD method [37], [38] with m=n, which takes 

the form for a half and a full time step, respectively:  
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( ) ( )n n
1 1 1 1n 1 n 12

 ,  
1 1 2

m m m m
i ii i i i

i i

mru u u u mr u u
u u

mr mr

− + − ++ +
+ + + +

= =
+ +

. (3.30) 

The other formula I use is the constant neighbor (CNe) method, which is introduced in section 

3.2.1 and now briefly restated here. The starting point is Eq. (3.24), where an approximation is 

made: when the new value of a variable n+1
iu  is calculated, I neglect the fact that the neighbors 

n
1iu −  and n

1iu +  are also changing during the time step. It means that the values of uj ( )j i  are 

considered as constants (that is why I call it constant-neighbor method). Taken into account the 

spatial discretization of heat equation in section 2.2 the general form of Equation (3.28) will be: 

( )
j i

jn 1 n n n+1

ij

1i i

m

i i i i
i

u
u u mr u mr u h

C R
 



+ = − − − +  ;  

thus, the generalized theta-method for integer time steps reads as follows:  

( )

( )

n
n 1 1

1 1

i i

i

i
i

mr u A
u

mr





+ − +
=

+ −
  (3.31) 

Similarly, the generalized CNe formula is 

( )i in 1 n

i

1
m mi

i i
r rA

u u e e
mr

− −+ =  + −  (3.32) 

and of course, for halved time steps ri and Ai must be divided by 2.  

For the sake of brevity, I will use a compact notation of the individual combinations, where 5 

data is given in a bracket, the numbers are the values of the parameter θ, while the letter ‘C’ is 

for the CNe constant neighbor method. For example (¼, ½, C, ½, ¾) means the following 5-

stage algorithm, which will be selected from the top 5 algorithms in section 3.4, and named as 

A2.  

Example 1. Algorithm A2 (¼, ½, C, ½, ¾), general from. 

Stage 1. Take a half time step with the (3.31) formula with θ=¼ for odd cells:  

( )

,half

1
4

n

n 1
1

8

1 1
2

i
i

i

i

i

mr
u A

u
mr

+

 
− + 

 
=

+ −

, ,half

j i

j

ij2
i

m

i

ut
A

C R


=  .  

Stage 2. Take a full-time step with the (3.31) formula with θ=½ for even cells:  

( )1
2

n

n 1
1

2

1 1

i
i

i

i

i

mr
u A

u
mr

+

 
− + 

 
=

+ −
, 

j i

j

ij
i

m

i

u
A t

C R

=   .  

Stage 3. Take a full-time step with the (3.32) formula for odd cells:  

( )i in 1 n

i

1
m mi

i i
r rA

u u e e
mr

− −+ =  + − , 
j i

j

ij
i

m

i

u
A t

C R

=   .  

 Stage 4. The same as Stage 2. 

Stage 5. Take a half time step with the (3.31) formula with θ= ¾ for odd cells:  
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( )

( )

3
,half8

3
4

n
n 1 1

1 1
2

i i

i

i
i

mr u A
u

mr
+ − +

=

+ −

, ,half

j i

j

ij2
i

m

i

ut
A

C R


=  .  

All other combinations can be constructed in this manner straightforwardly. 

3.4.1. General Definitions and Circumstances of The Examination 

I examine 2-dimensional rectangular lattices with x zN N N=   cells similar to what can be 

seen in Figure 3.2. I solve Eq. (2.20) subjected to randomly generated initial conditions 

i (0)u rand= , with rand being a MATLAB-generated, uniformly distributed (pseudo) random 

number in (0, 1) for each cell. Model parameters, including heat capacities and thermal 

resistances, were also randomized using a log-uniform distribution as follow:  

i x,i z,i

( ) ( ) ( )
10 1, ,0 10C C Rx Rx Rz Rzrand rand rand

C R R
     −  −  − 

= = =  

where the coefficients C Rz,...,   in the exponents will be concretized later. 

I use zero Neumann boundary conditions, i.e., the system is thermally isolated. This condition is 

implemented naturally within the framework of Eq. (2.19). Implementation simply requires the 

omission of any summation terms containing infinite resistivity in their denominator, a 

consequence of the isolated boundary. This implies that the system matrix M has one zero 

eigenvalue, belongs to the uniform distribution of temperatures, all other eigenvalues must be 

negative. 

 

Figure 3.2. Arrangement of the generalized variables. The double-line red arrows symbolize conductive (heat) 

transport through the resistances Rij. The blue line symbolizes thermal isolation at the boundaries of the system [65]. 

I calculate the numerical error by comparing our numerical solutions 
num
ju  with the reference 

solution 
ref
ju  at final time fint . In Subsection 3.4.5 the reference solution will be an analytical 

solution, otherwise it is a very accurate numerical solution which has been calculated by the 

ode15s built-in solver of MATLAB with very strict error tolerance. I use the following three 

types of (global) error. The first one is the maximum of the absolute differences:  

ref num
j fin j fin

0 j
Error( ) max ( ) ( )

N
L u t u t

 
= − . (3.33) 

The second one is the average absolute error:  

ref num
1 j fin j fin

0 j

1
Error( ) ( ) ( )

N

L u t u t
N

 

= − . (3.34) 
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The third one gives the error in terms of energy in case of the heat equation. It takes into account 

that an error of the solution in a cell with a large volume or heat capacity has more significance 

in practice than in a very small cell 

ref num
j fin j fin

0 j

j

1
Error( ) ( ) ( )

N

Energy C u t u t
N

 

= − . (3.35) 

It is well known that the true solution always follows the maximum and minimum principles          

[62]. We say a method is positivity preserving if it never violates this principle, i.e., in our case 

no value of u is outside of the  0 1,  interval. I am interested in how these errors depend on the 

time step size in different concrete situations. As one can see in Figure 3.1C, there are 5-time 

steps (5 stages) altogether instead of 4 in the shifted hopscotch structure, so for the sake of 

honesty I must calculate the effective time step size as 4
EFF 5t t =   and the errors will be plotted 

as a function of this quantity.   

3.4.2. Preliminary Tests 

I apply the following 9 different values for parameter theta:  31 1 1 1 2 4
5 4 3 2 3 4 50, , , , , , , ,1   

in Eq. (3.31). It means that together with the CNe formula, I have 10 different formulas and I 

insert all of these into the shifted-hopscotch structure in all possible combinations. As there are 5 

stages in the structure, I have 105=100000 different algorithm combinations. The code 

systematically constructs and tests all these combinations. After some tests, a few best 

combinations choose and continue the work only with them. For this an automatic assessment of 

the performance of the combinations is needed. The difficulty lies in the fact that methods which 

are very inaccurate or even unstable for large-time step sizes can be the most accurate for small 

time step sizes. Therefore, I choose two different final times fin 0.1,10t = , the solution is first 

computed using a large time step (typically fin / 4t ). This calculation is then iteratively repeated 

for successively halved time step sizes until a minimal value is attained (typically approximately 
62 10− ). For the quantitative assessment of each previously defined error type, I introduce the so-

called aggregated relative error (ARE), which can be calculated for the L  error as follows:  

( ) ( )( )OEH shifted
1

1
ARE( ) log Error( ) log Error( )

R

i

L L L
R

  

=

= − , (3.36) 

which means that ARE( )L  is the average of the difference between the error of the original OEH 

method and the actual shifted combination in terms of orders of magnitude. Then the code 

calculates the simple average of these errors:  

( )1

1
ARE ARE( ) ARE( ) ARE( )

3
L L Energy= + + , (3.37) 

and finally sorts the 100000 combinations in decresing order according to this quantity. In the 

obtained list usually positive ARE values have been assigned the first few thousands of 

combinations, the largest ones have been typically around 2, which means that some 

combinations are roughly two orders of magnitude more accurate than the original OEH method. 

I performed this procedure in case of 4 different small systems with 

x z 2 2, 2 6, 4 4, and 3 5N N =     . The parameters C C Rx Rx Rz Rz, , , , ,      of the mesh-cell data 

distribution were selected to construct test problems exhibiting a range of stiffness ratios, defined 
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as MAX MIN  . Here MIN , and MAX  represent the smallest and largest non-zero absolute eigenvalues 

of the matrix M, respectively. The maximum possible time step size for the FTCS (Explicit Euler) 

scheme (from the point of view of stability) can be exactly calculated as FTCS
MAXh , for example 

1 2 or 3 2 4 or 6C C, , , , , =  = . I give the best 12 combinations in their short form:  

(0, ½, ½, ½, 1),    (½, ½, ½, ½, ½),     (0, C, ½, C, 1),     (0, C, C, C, 1), 

            (¾, ⅔, ½, ⅓, ¼),   (¼, ½, C, ½, ¾),     (⅓, ⅔, C, ⅓, ⅔),   (C, ½, C, ½, C),    (3.38) 

 (⅕, ½, ½, ½, ⅘),   (¼, ½, ½, ½, ¾),     (⅓, ½, ½, ½, ⅔),   (0, ½, ½, C, 1). 

Later preserves the positivity of the solution prove for  formulas θ=1 and CNe and therefore if 

only these two formulas are used in a combination, the whole algorithm will preserve positivity. 

Since this property is considered valuable [56], I repeated the above experiments for these 25=32 

combinations (instead of the 100000 above). I concluded that the (C, C, C, C, C) combination is 

the most accurate among these, therefore I further investigate 13 combinations altogether. I 

emphasize that these are the results of only preliminary (one might say tentative) tests, with the 

sole purpose of reducing the huge number of combinations into a manageable number, and I 

haven’t stated anything exactly until this point. 

3.4.3. Case study I and Comparison with Other Solvers 

I test a mesh similar to Figure 3.2 with an isolated boundary. The mesh sizes were set to 

100xN = and 100zN =  (10,000 total cells) and a final time of  0.1fint = . 

C2,  4,  1,  2,C Rx Rz Rx Rz     = = = = = =                                                               (3.39) 

The exponents defined previously were assigned specific values, resulting in log-uniformly 

distributed capacities within the range of 0.01 to 100. The generated system was characterized by 

its stiffness ratio and FTCS
MAXh values, calculated as 73.1 10  and 47.3 10− , respectively. A 

performance analysis was conducted, comparing the novel algorithms against established 

MATLAB solvers: 

• ode15s: A variable-step, variable-order (VSVO) solver utilizing first- to fifth-order 

numerical differentiation formulas (NDFs), designed for stiff systems. 

• ode23s: An implicit solver based on a modified second-order Rosenbrock formula. 

•  ode23t: An implementation of the implicit trapezoidal rule with a free interpolant. 

• ode23tb: A solver combining the trapezoidal rule with backward differentiation formulas. 

• ode45: An explicit Runge-Kutta solver based on the fourth/fifth-order Dormand-Prince 

method. 

•  ode23: An explicit second/third-order Runge-Kutta-Bogacki-Shampine method. 

•  ode113: A VSVO predictor-corrector solver implementing Adams-Bashforth-Moulton 

schemes of orders 1 to 13. 

For each MATLAB solver, tolerance parameters were varied over several orders of magnitude, 

from a maximum of 3'AbsTol' = 'RelTol'  'Tol' = 10 to the minimum value 
5'AbsTol' = 'RelTol'  'Tol' = 10− . The resulting L  and energy errors were plotted against the 
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effective time step size EFFt . Based on this analysis, the top five combinations from the set 

defined in (3.38) were selected and after that:   

S1 (C, C, C, C, C), 

S2 (¼, ½, C, ½, ¾), 

S3 (¼, ½, ½, ½, ¾), 

S4 (0, ½, ½, ½, 1), 

S5 (0, ½, ½, C, 1) 

In Figures 3.3 and 3.4, I present the error and energy error functions only for these top five 

combinations, while Figure 3.5 plots the energy errors versus the total running times. Table 3.1 

lists some results obtained by our numerical schemes and the “ode” routines of MATLAB. 

Notably, the results demonstrate that the best combination of the shifted-hopscotch method 

achieved a maximum error of 10−8, an energy error of 10−6, and a running time reaching 10−2, 

which is approximately four orders of magnitude better performance compared to the ordinary 

MATLAB routines. 

 

Figure 3.3. L  errors as a function of the effective time step size for the first (moderately stiff) system, in the case 

of the original OEH method (OEH REF), the original one stage CNe method, the new algorithms A1-A5 [65]. 
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Figure 3.4. Energy errors as a function of the effective time step size for the first (moderately stiff) system, in the 

case of the original OEH method (OEH REF), one stage CNe method, the new algorithms A1-A5 [65]. 

 

Figure 3.5. Energy errors as a function of the running time for the first (moderately stiff) system, in the case of the 

original OEH method (OEH REF), one stage CNe method, the new algorithms A1-A5, and different MATLAB 

routines [65]. 

Table 3.1. Comparison of different shifted hopscotch algorithms and MATLAB routines for the moderately stiff 

system of ten thousand cells.  

Numerical Method Running Time (sec) ( )LError   1( )LError  
Energy Error  

ode15s, 
3Tol 10=    

23.97 10  
21.3 10−  

31.1 10−  
15.62 10  
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ode23s, 
3Tol 10=    

34.346 10  
44.2 10−  

53.0 10−  
11.5 10−  

ode23t, 
8Tol 10−=    

28.49 10  
72.9 10−  

82.0 10−  
41.0 10−  

ode23tb, 
2Tol 10=    

24.28 10  
44.1 10−  

52.9 10−  
41.4 10−  

ode45, 
1Tol 10−=  

12.1 10  
33.3 10−  

56.5 10−  
32.7 10−  

ode23, 
6Tol 10−=    

12.7 10  
73.7 10−  

99.6 10−  
54.8 10−  

ode113, 
6Tol 10−=  

11.91 10  
76.7 10−   

104.2 10−  
61.9 10−  

A1, 41.25 10t − =   11.97 10−  
69.06 10−  

72.63 10−  
32.56 10−  

A2, 31.25 10t − =   22.02 10−  
43.39 10−  

66.93 10−  
25.08 10−  

A3, 42.5 10t − =   11.01 10−  
51.88 10−  

73.64 10−  
33.44 10−  

A4, 45 10t − =   25.03 10−  
41.06 10−  

61.07 10−  
31.42 10−  

A5, 52.5 10t − =   19.75 10−  
72.62 10−  

94.44 10−  
53.15 10−  

 

3.4.4. Case Study II and Comparison with Other Solvers 

I tested our new algorithms and the conventional solvers for a harder problem as well. 

Consequently, new values were assigned to the α and β exponents, as defined by :    

C3,  6,  3,  1,  4C Rx Rz Rx Rz     = = = = = = . (3.40) 

This adjustment served to broaden the distribution of both the thermal capacitances and 

resistances, thereby introducing anisotropy into the system. On average, the resistances in the x 

direction became two orders of magnitude larger than those in the z direction. This modification 

resulted in a system characterized by a significantly higher stiffness ratio 112.5 10 , while the 

maximum allowed time step size for the standard FTCS was 61.6 10EE
MAXh −=  . All remaining 

parameters and conditions were consistent with those detailed in Subsection 3.4.3. Figures 3.6 

and 3.7 present the L  and energy errors plotted against the total running time. The results 

indicate a performance improvement of approximately three to four orders of magnitude 

compared to conventional methods and the evaluated MATLAB routines.  
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Figure 3.6. L  errors as a function of the running time for the second (very stiff) system, for the original OEH 

method (OEH REF), the one stage CNe method, the new algorithms A1-A5, and different MATLAB routines [65]. 

Figure 3.7. Energy errors as a function of the running time for the second system, in the case of the original OEH 

method (OEH REF), one-stage CNe method, the new algorithms A1-A5, and different MATLAB routines [65]. 

Table 3.2. Comparison of different shifted hopscotch algorithms and MATLAB routines for the very stiff system of 

ten thousand cells.  

Numerical Method Running Time (sec) ( )LError   1( )LError  
Energy Error  

ode15s, 
3Tol 10=  

26.8 10  
74.1 10−  

81.5 10−  
57.5 10−  

ode23s, 
3Tol 10=  

35.694 10  
44.7 10−  

42.4 10−  
11.2 10−  

ode23t, 
3Tol 10=  

33.1 10  
28.1 10−  

32.1 10−  
11.06 10  
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ode23tb, 
3Tol 10=  

32.037 10  
72.3 10−  

81.2 10−  
55.8 10−  

ode45, 
3Tol 10=  

39.480 10  
28.1 10−  

51.5 10−  
27.0 10−  

ode23, 
3Tol 10=  

35.317 10  
61.2 10−  

102.3 10−  
61.1 10−  

ode113, 
3Tol 10=  

36.046 10  
48.9 10−  

71.7 10−  
47.7 10−  

A1, 41.25 10t − =   11.98 10−  
28.46 10−  

44.55 10−  
06.72 10  

A2, 65.0 10t − =   04.17 10  
44.81 10−  

63.69 10−  
26.65 10−  

A3, 62.5 10t − =   09.85 10  
41.99 10−  

77.65 10−  
21.31 10−  

A4, 41.25 10t − =   11.95 10−  
33.28 10−  

68.88 10−  
32.68 10−  

A5, 75 10t − =   14.95 10  
61.55 10−  

98.71 10−  
41.69 10−  

 

3.4.5. Verification by Comparison to Analytical Results 

I consider very recent nontrivial analytical solutions of Eq. (3.23) found by Barna and 

Mátyás [4] by a similarity transformation technique. Both of them are given on the whole real 

number line for positive values of t as follows  

2

4
1 3/2

( , )

x

exact t
x

u x t e
t


−

= , (3.41) 

and 

2
2

4
2 5/2

1
6

x

exact t
x x

u e
tt





− 
= −  

 

. (3.42) 

I reproduce these solutions only in finite space and time intervals  1 2x x ,x  and  0 fint t , t , 

where 1 2 0 fin5 5 0 5 1x , x , t . , t= − = = = . The space interval is discretized by creating nodes as follows: 

1 0 1000 0 01jx x j x , j ,..., , x .= +  =  = . I prescribe the appropriate Dirichlet boundary conditions at the 

two ends of the interval:  

2

4
1 3/2
( , )

bx

b t
b

x
u x x t e

t


−

= = , (3.43) 

and 

2
2

4
2 5/2
( , ) 1

6

bx

b b t
b

x x
u x x t e

tt





− 
= = − 

 
 

, (3.44) 

where  1 2bx x , x . I obtained that the new methods are convergent and the order of convergence 

is two. In Figure 3.8 the L  errors as a function of the effective time step size hEFF are presented 

for the case of the u2 solution for the top 5 algorithms and a first-order “reference-curve” for the 

original CNe method. I note that very similar curves have been obtained for the u1 solution, as 

well as for other space and time intervals.  
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Figure 3.8. The L  errors as a function of EFFt  for the u2 solutions [65]. 

3.5.  The Optimization of  Leapfrog -Hopscotch Method Combinations 

In a manner similar to the Shifted-Hopscotch method [65], the hopscotch spatial structure 

was integrated with leapfrog time integration [66]. This framework incorporated the theta 

method, evaluated at nine distinct θ values, and the recently developed CNe method, leading to 

the construction of 105 unique combinations. Through subsequent numerical experimentation, 

this large set decreased by eliminating underperforming variants; finally, only the top five 

algorithms of these remained. The evaluation was conducted on two-dimensional stiff systems 

comprising 10,000 cells with fully discontinuous random parameters and initial conditions; 

consequently, so the results are presented just for the best five algorithms. 

The best algorithms were compared with other methods for a large, moderately stiff 

system with the same procedure of 3.4.3, and for a large, very stiff system with the same 

procedure of 3.4.4.  for the same system size and final time. The following top 5 combinations 

are chosen based on the best performance of the maximum and energy error.  

L1 (C, C, C, C, C), 

L2 (0, ½, ½, ½, ½), 

L3 (⅕, ½, ½, ½, ½), 

L4 (¼, ½, C, ½, ½), 

L5 (⅕, ½, C, ½, ½). 

3.5.1.Verification by Comparison to Analytical Results Using a Non-Uniform Mesh 

 The nontrivial analytical solution [4] in section 3.4.5 of Eq. (3.23) is used here, given on 

the whole real number line for positive values of t as in Eq. (3.42), where the value 1 =  is used, 

this solution was reproduced by prescribing the Dirichlet boundary conditions calculated using 

the analytical solution at the two ends of the interval. Now this kind of information is not used, 
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but construct a large-scale non-equidistant spatial grid according to the following procedure. 

First the coordinates of the cell borders are define by the formula 

( )4
1 1 0 0 00 0 01 exp 1 1000j j j jx x x , x , x . , x x j , j ,...,− −= +  =  =  =   = .  

where 1110− = . Thus I have a quite dense system of nodes close to the origin which becomes less 

and less dense as one is getting further from the origin, towards 5922 3.+ , which is the right 

boundary of the mesh. Then the cell-centers are calculated straightforwardly:  

1 0 0 1 1000
2

j

j j

x
X X , X , j ,...,−


= + = = .  

Now it is straightforward to reflect this structure to the origin to create the mirror image of the 

mesh at the negative side of the x-axis obtaining 2000 cells altogether. Now at the vicinity of the 

origin the diameter of a cells are 0.01, which are increasing as it is getting further from the 

origin, first very slowly, then more and more rapidly until it reaches 1000 211 6x . = . The 

resistances and the cell capacities then can be calculated as: 

, 1,..., 2000i iC x i=  =  and 1 , 1,...,1999i i iR X X i+= − =  

zero Neumann boundary conditions are taken into account which is a good approximation 

because the values of the initial function are very close to zero far from the origin. The stiffness 

ratio is 115 7 10.   for this mesh, while FTCS 5
MAX  5 10t − =  . As in shifted hopscotch, the analytical 

solution is reproduce in finite time interval  0 fint t , t , where 0 fin0 5 1t . , t= = . In Figure 3.9 the L  

errors as a function of the time step size are presented for the case of the u solution for the top 5 

leapfrog-hopscotch algorithms, a first-order “reference-curve” for the original CNe method and 

the Heun method. These results verify not only the second order convergence of the numerical 

methods, but the procedure of generalizing the calculations to non-uniform grids. One can also 

see that the L2 and L3 algorithms reach the minimum error (determined by the space 

discretization) for larger ∆t than the CFL limit for the Heun method. 
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Figure 3.9. The L  errors as a function of time step size for the space-dependent mesh to reproduce the exact 

solution given in (3.42) [66]. 

3.6.  The Optimization of Pseudo-Implicit  Method Combinations 

 By the iteration of the theta-formula and treating the neighbors explicitly, A novel two-

stage explicit algorithm was developed for the solution of partial differential equations 

incorporating a diffusion term and two reaction terms [67]. One reaction term is linear, 

potentially modeling heat convection, while the second is proportional to the fourth power of the 

variable, representative of radiative effects. For the linear case, the method is analytically 

demonstrated to achieve second-order accuracy and unconditional stability. The diffusion-

reaction equation (2.20) is going to be studied. 

Algorithm 1, UPDF for the diffusion-convection-radiation  equation  

                          
( )

( )
3

1 11

1 2

i

i

n n n
i i in

i
n
i

u mr u u q t
u

mr K t t u

− ++
+ + + 

=

+ +  + 

.                                                     (3.45) 

 Similar to the original UPFD formula, this expression conserves the positivity property for 

arbitrary nonnegative values of i ir, q , K  and  , thus for the strongly nonlinear case as well. Its 

accuracy is not very good, thus a two-stage method proceeds to construct as well. 

A combination of the UPFD idea and the θ-method is proposed for application to the diffusion 

term in the following manner : 

( ) ( )( )n 1 n n n n n+1 n+1 n+1
1 1 1 12 1 2i i i ii i i iu u mr u u u u u u +
− + − +

 = + − + + − − +
 

,           (3.46) 

Where  0 1, . The FTCS scheme, equivalent to explicit Euler integration, is obtained for 1 = . 

The scheme with 1
20, =  corresponding to the Implicit-Euler and Crank-Nicolson methods, 

respectively [64]. Utilizing the previous trick and including the reaction and source terms leads 

to : 

( ) ( )
3n 1 n n n+1 n n 1 1

1 12 2 1 i i
n n n

i i i i i i ii iu u mr u u u u tK u tq u u  + + +
− +

 = + − − − + + − + +
 

.      (3.47) 

The original UPFD formulation is recovers if 0 = . The key advantage is that this generalized 

formula can be easily rearranged to produce an explicit expression. For the 1D equidistant case, 

the new u value takes the form: 

Algorithm 2, theta-generalization of Algorithm 2 

( ) ( )

( ) ( )
3

1 11
1 2

1 2 1

i

i

n n n
i i in

i
n
i

mr u mr u u tq
u

mr tK t u



 

− ++
− + + + 

=

+ − +  + 

. (3.48) 

Since started from an implicit formula (3.46) formally but made it fully explicit, these methods 

started to be called pseudo-implicit. The main novelty of this study is that formula (3.48) is 

organized into a two-stage method as follows. The calculation starts with taking a fractional-

sized time step using the already known n
iu  values, and then a full-time step is made.  

Algorithm 3, 2-stage pseudo-implicit method for the diffusion-convection-radiation equation  
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Stage 1. Take a partial time step 1 0t p t , p =    using formula (3.48) with parameter θ1:  

( ) ( )

( ) ( )

1 1 1 1

3

1 2 1 1

1 1pred
1 2

1 2 1

i i
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n n n n
i ii i
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.  

Stage 2.  pred
iu  is redefine by calculating the linear combination with 0 1  :  

( )pred pred
1 n

ii iu u u = + − .         (3.49) 

 Take a full time step with the (3.48) formula with parameter θ2 :  

( ) ( ) ( )
( ) ( ) ( )
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,                  (3.50)         

Where 1 2 1 2v , v , w , w  are real numbers that are considered as free parameters. The mathematically 

correct form of (3.49) would be ( )predlin 1 n
i iiu u u = + − , however, it is directly transcribed into a 

form suitable for computer code to conserve memory. Furthermore, this handling of the 

nonlinear term yields a second-order method characterized by very favorable stability. 

Algorithm 4: for the diffusion-convection-radiation  equation  

Stage 1. Take a partial time step 1 0
2

tt ,


 =  :  

( )( ) ( )

( )

1

3

1 1

1 1
pred

11 1
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1

i

i

n n n
i i i

i
n
i

mrmr u u u q t
u

mr K t t u

 



− ++ − + + + 
=

+ +  + 

.                             (3.51)  

Stage 2. Calculate the linear combination ( )pred pred
1 n

ii iu u u = + −  

Take a full-time step:  

( ) ( ) ( )

( )
2

pred pred pred
1 11

pred

1

1

i i

i

n n
i iii in

i
n
ii

mr u mr u u q t K t u u
u

mr K t t u u

− ++
− + + +  +  −

=

+ +  + 

.                (3.52)  

3.6.1. Analytical-Solution Based Verification  

The following analytical solution  of Eq. (2.20) is constructed for 1 2, K = =  and 

( ) 4 4 4x t x tq x,t t e e − −= + :  

exact ( , ) x tu x t te −= . (3.53) 

Here this analytical solution numerically reproduces for ( )    0 5 1 1 1t ,x . , ,  −  and 3 = . The initial 

condition  

0.5( , 0.5) 0.5 xu x t e −= = ,  

and the Dirichlet boundary conditions at the ends of the interval 

1 1( 1, ) ,   and ( 1, )t tu x t te u x t te− − −= − = = =   
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are obtained using the analytical solution. The numerical error is defined as the absolute 

difference, at the final time fint , between the numerical solution num
ju generated by the method 

under examination and the reference solution ref
ju   (which is the analytical solution here). These 

individual nodes’ or cells' errors are subsequently utilized to compute the maximum error 

according to Equation (3.33). 

 

Figure 3.10. The L for the numerical solutions of the diffusion-convection-radiation  equation in the case of 

Algorithm 1 and the new pseudo-implicit Algorithm 3 for three different values of the parameter  [67]. 
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4. USING EFFICIENT METHODS TO SOLVE REAL-LIFE HEAT TRANSFER 

PROBLEMS   

The algorithms were tested in previous sections under general circumstances with 

discontinuous random parameters and initial conditions. I demonstrate that these methods can 

yield quite accurate results and are substantially faster than the professionally optimized 

MATLAB 'ode' routines. In this section, I perform a systematic examination of building walls by 

changing some system and mesh parameters. The aim is to assess how the performance of each 

method changes and to identify the most suitable algorithm under varying conditions. 

4.1. Calculate The Heat Conduction in an Insulated Wall  
Determining heat transfer through building elements is still a complex and critical 

challenge. To address this, in the present study we evaluates 13 numerical techniques (CN, 

UPFD, OOEH, ROEH,  LNe2, LNe3, CpC, Heun, PI, DF, RRK, SH, and LH) for solving the 

heat conduction equation (2.20) in wall assemblies. Notably, eight of these methods are newly 

invented explicit algorithms with unconditional stability [68]. 

 

4.1.1. The Geometry and Mesh Generation:  

Figure 4.1 illustrates a single-layer brick wall alongside two-layer configurations 

combining brick and glass wool insulation. 

Figure 4.1. (A) single-layer (Brick) wall, (B) and (C) multilayer (Brick+Glass wool) wall [Original]. 

The study considers a piece of wall with volume (1 m × 1 m × 1 m). However, because all 

physical quantities remain constant in the y-direction (normal to the surfaces in Figures 4.1 and 

4.2), this dimension can be disregarded. It means I deal only with a cross-section, which is a two-

dimensional problem from the mathematical point of view and thus 1iy =  can be used. So, 

several meshes of size 1m2 are constructed, which means ( )    0 1 0 1x,z , ,  . In the equidistant 

mesh, cells are square, while in non-equidistant meshes, they become rectangular. The heat 

capacity of the cells can be given as i i i i iC c x z=   , while the thermal resistance in the x-direction 
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has the approximate formula i
i

i i

x
Rx

k Ax


 , where iAx  is the surface element perpendicular to x. 

Since now it can be given as i i i iAx y z z=   =  , the horizontal and vertical resistances can be 

given in case of a homogeneous material and uniform mesh as 

i
i

i i

x
Rx

k z





 and i

i
i i

z
Rz

k x





,  

respectively. If the material properties or the sizes of the two neighboring cells are different, one 

can write  

1

1 12 2

i i
i

i i i i

xx
Rx

k z k z

+

+ +


 +

 
,  

for the resistance between cells i and i + 1. If the cell j is below the cell i, I have 

2 2

ji
i

i i j j

zz
Rz

k x k x


 +

 
 

 

for the vertical resistance. 

 

Figure 4.2. (A) Abrupt change in x direction, and (B) Gradual change in the x direction [Original]. 

Both equidistant and non-equidistant grids were employed to discretize spatial variables in 

single-layer and multilayer configurations. The axis x and z axes were divided into Nx = 100 and  

Nz = 100 respectively, except in Section 4.1.3.2, where 80x zN N= = . This resulted in a total cell 

count of 10000x zN N N= =  (with a modified 6400N =  in Section 4.1.3.2). It should be noted that 

the temperature in the middle of each cell was considered as the temperature of the cell.  

For non-equidistant grids, cell sizes varied asymmetrically,  

• Abrupt change: A coarse equidistant mesh 0 0105x . =  covered the left 50% of the wall, 

while a fine equidistant mesh 0 0097x . = spanned the right 50%. 

• Gradual change: Cell widths followed a geometric series, shrinking from 1 0.0234x =  on 

the left to 99
10.98 0.00317 =  =

xNx x  on the right. For 1   (common ratio) 
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and 1= −xn N  (cell index) were selected to ensure smooth transitions. The series was 

defined by: 

1
2 3

0

1
......

1

n n
n k

k

a a a a a a a


    


+

=

 −
+ + + + + = =   − 

  

where  0.98 = , and a = 0.0234.  

In multilayer cases: 

• Equidistant grids: Brick and insulator layers each occupied 50% of the volume (as 

in Figure 4.1B). 

• Non-equidistant grids: Insulator thickness reduced when using abrupt/gradual x-direction 

changes (Figure 4.1C). 

A uniform time step was applied throughout. The temperature in cell i at time n t is denoted n
iu . 

4.1.2. The Materials and Boundary Conditions:  

In the present work, real material properties are listed in Table 4.1.  

This study employs real material properties (see Table 4.1) under distinct initial and 

boundary conditions for both single-layer and multilayer configurations:  

Table 4.1. The properties of the used construction materials [68]. 

 ( )3kg m −  ( )1 1  W m Kk − −   ( )1 1  J kg Kc − −   

Brick 1600 0.73 800 

Glass wool 200 0.03 800 

 

Different initial and boundary conditions are applied for both the single-layer and the multilayer 

cases as follows [68]: 

I. Sinusoidal initial condition with zero Dirichlet boundary conditions. 

Initial condition: Defined by the product of sine functions: 

( , , 0) sin( )sin( )u x z t x z = = . (4.1) 

Boundary conditions: Zero Dirichlet (fixed temperature) on all edges: 

( 0, , ) ( 1, , ) ( , 0, ) ( , 1, ) 0u x z t u x z t u x z t u x z t= = = = = = = = . (4.2) 

Analytical solution: Valid only for homogeneous (single-layer) walls: 

22( , , ) sin( )sin( )e tu x z t x y   −= , (4.3) 

II. Linearly changing initial condition with combined boundary conditions. 

Initial condition: Linear variation along z : 

( ), , 0 30 15u x z t z= = − .  

Boundary conditions: 
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- Top/bottom: Thermally insulated (Neumann condition):  

( , 0, ) ( , 1, ) 0z zu x z t u x z t= = = =  

- Left edge: Space-dependent temperature: 

( )0, , 30 15u x z t z= = −  

- Right edge: Time-dependent temperature: 

. ( ) ( ) t1, , u 1, 0, 0 eu x z t x z t = = = = =    

where   = 0.00004. The final time was 10,000, ensuring the right boundary increased from 30 C  

to 44 75 C.  .  

In case II, complex boundaries were intentionally designed to rigorously test method 

performance under non-idealized scenarios.  

4.1.3. The Simulation Results  

Heun's method was employed as the reference solution for computing maximum and 

energy errors, utilizing an exceptionally small time step 0 002t . = . This method was selected due 

to its extensive validation in existing literature compared to the other algorithms under 

investigation. 

4.1.3.1. Analytical-Solution Based Verification  

A single-layer brick wall configuration (Figure 4.1.A) was simulated under six distinct mesh 

conditions [68]:  

(a) Uniform equidistant mesh  

(b) Abrupt change in the x-direction with equidistant spacing in the z-direction  

(c) Abrupt changes in both x- and z-directions 

(d) Gradual change in the x-direction with equidistant spacing in the z-direction  

(e) Gradual changes in both directions 

(f) Abrupt change in x-direction with gradual change in z-direction  

The simulations employed the sinusoidal initial condition Eq. (4.1) and zero Dirichlet boundary 

conditions Eq. (4.2), with validation against the analytical solution Eq. (4.3) with ( )fin 10000 st = . 

All cases demonstrated consistent results with spatial discretization errors below 10⁻⁴, 

confirming the successful implementation of algorithms for both equidistant and non-equidistant 

mesh.  Figure 4.3 presents time-step-dependent errors in log-log plots for case (f) as a sample. 

The results demonstrate that UPFD and CNe methods exhibit first-order accuracy in time step 

size, while all other methods achieve second-order convergence, as theoretically expected. 

Notably, the hopscotch algorithms (particularly the original OOEH) deliver superior accuracy 

compared to alternative approaches. Heun’s method performs accurately below the CFL limit but 

fails to produce valid results beyond this limit. Figure 4.4 illustrates the relationship between 

error and computational runtime for the same case as a sample, with averaged runtimes (over 

five runs) mitigating measurement fluctuations. As expected, runtime variations at fixed time 
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steps primarily come from differences in method stages, e.g. the three-stage LNe3 method shows 

a slight rightward shift in its runtime curve relative to other methods. 

 

Figure 4.3. The maximum errors plotted with time step size in case of abrupt change in the x-direction and gradual 

change in the z-direction mesh [68]. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4. The maximum errors plotted with running time in case of abrupt change in  x-direction and gradual 

change in the z-direction mesh [68]. 

4.1.3.2. Realistic Case with Nontrivial Boundary Conditions 

In this subsection, the initial condition is a linear function of space, while the boundary 

conditions are complicated as it is written in point II. The Neumann boundary conditions for 

upper and lower boundaries are implemented by setting the appropriate resistances to infinity, 
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implying that the matrix elements describing heat transfer through the boundary vanish. First, I 

perform the simulation for the one-layer wall for two different grids (equidistant and gradual 

change in both directions), and only then for the insulated wall.  

In Figures 4.5 and 4.6, I present the maximum errors and energy error for a single-layer wall. 

The maximum and the energy error curves behave very similarly for both equidistance and non-

equidistant mesh; the most significant change is that now the SH method performs better in 

terms of energy than the DF and the OOEH methods. 

 

Figure 4.5. The maximum errors as a function of the time step size for a single-layer wall [68]. 

 

Figure 4.6. The energy errors as a function of the time step size  for a single-layer wall [68]. 

In Figure 4.7, I present the maximum errors for a multi-layer wall with an equidistant mesh. For 

the non-equidistant mesh, the maximum errors and the energy errors are presented in Figures 4.8 

and 4.9, respectively. From the figures, it is evident that the LH method can easily cope with this 

complicated heat-conduction problem as well. 
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Figure 4.10 presents the final temperature contours in the case of simple wall and insulated wall, 

while the right-side temperature profile at medium height can be seen in Figure 4.11. One can 

also observe that the heat from the outer side of the insulator penetrates more slowly into the 

wall in the case of the insulated wall.  

 

Figure 4.7. The maximum errors as a function of the time step size for the equidistant mesh for a wall with 

insulation [68]. 

 

Figure 4.8. The maximum errors as a function of the time step size for the non-equidistant mesh for a wall with 

insulation [68]. 
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Figure 4.9. The energy errors as a function of the time step size  for the non-equidistant mesh for a wall with 

insulation [68]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10. The contour of temperature distribution for the equidistant mesh at the final time in case of: a wall 

(left), and a wall with insulation (Right) [68]. 
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Figure 4.11. The temperature u °C as a function of the cell index in the x direction at the middle row ( )0 5z .  for 

400t = , in the case of the brick and Brick+Insulator wall using an equidistant grid [68]. 

4.1.4. The Summary of The Present Section 

The numerical investigation of transient heat conduction in 2D walls (both insulated and 

non-insulated configurations) employed eight novel and four traditional explicit stable 

algorithms, plus Heun's method for reference. Verification using analytical solutions across six 

grid types (one equidistant, five non-equidistant) confirmed all methods' convergence, though 

performance varied significantly: 

1. CNe and UPFD showed first-order accuracy (less precise), while others achieved 

second-order (except RRK at medium/large time steps). 

2. OOEH excelled in uniform cases but struggled with stiffness, whereas LH 

maintained high accuracy. 

3. Heun's method proved conditionally stable (diverging beyond CFL limits, as 

expected), while others remained unconditionally stable. 

4. CNe, UPFD, LNe2, LNe3, and CpC preserved positivity but have less accuracy at 

smaller time steps. 

5. Hopscotch methods (OOEH, ROEH, SH, LH) required the partition of the mesh to 

two sub-meshes, but minimized memory by avoiding additional storage arrays. 

6. Computational efficiency varied from one calculation per step (fastest: CNe, UPFD, 

OOEH, ROEH, DF, SH, LH) to three (slowest: LNe3). 
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For homogeneous materials with equidistant grids, OOEH or LH are recommended, but 

for general cases, LH,SH, and DF provide optimal accuracy with large time steps, while LNe3 

remains essential for positivity-critical simulations. 

4.2. Calculate The Heat Transfer in an Insulated Wall with Thermal Bridging 

In the current work, I examined 14 numerical methods (ExpE, NS-ExpE, Heun, UPFD, 

DF, NS-DF, RRK, PI, OOEH, NS-OEH, ROEH, LH, SH, and ASH ) to solve the heat equation 

(2.20) inside building walls. I considered heat conduction, convection, and radiation, in addition 

to heat generation. Five of the used methods are recently invented algorithms that are 

unconditionally stable for conducting problems [60]. 

4.2.1. The Geometry and Mesh Generation:  

As one can see in Figure 4.12, I consider the following cases:  

A) The surface of the wall is made of brick only. 

B) Two-layer cross-section of a wall consisting of brick and insulator. 

C) The same two-layer cross-section with a steel structure thermal bridge. 

 

 

 

 

 

 

 

 

 

 

Figure 4.12. (A) One-layer wall, (B) wall with insulator, and (C) wall with insulator and thermal bridge [60]. 

In a similar way to generate the mesh in section 4.1.1, I generate the mesh of the current 

geometries. I apply an equidistant grid in the case of the surface of the wall, while equidistant 

and non-equidistant grids to the cross-section of the wall with an insulator. In the cross-section 

case, the left 50% of the cells are always brick, and the right 50% are insulator for programming 

simplicity. It implies that the volume of the brick and the insulator is the same in the equidistant 

case. However, if I have a gradual change in the x-direction, the thickness of the insulator is 

smaller (0.269m). The thermal bridge has the same thickness as the insulator in the x direction, 

thus the horizontal position of the bridge is from x=0.5m to x=1m for equidistant and from 

x=0.731m to x=1m for the non-equidistant mesh. The height of the bridge is one cell (1cm) in the 

z direction, i.e., 0.01m, while it is positioned in row number 50 from z=0.49m to z=0.50m.  
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4.2.2. The Materials and Boundary Conditions:  

In the present study, real material properties are taken into account. For the conduction 

term, they are listed in Table 4.2.  

Table 4.2. The properties of the materials used [69]. 

 ( )3kg m −  ( )1 1  W m Kk − −   ( )1 1  J kg Kc − −   

Brick 1600 0.73 800 

Glass wool 200 0.03 800 

Steel structure 7800 16.2 840 

for all boundaries in all cases, I use zero Neumann boundary conditions, which forbid conductive 

heat transfer at the boundaries: 

( , 0, ) ( , 1, ) ( , 0, ) ( , 1, ) 0
u u u u

x z t x z t x z t x z t
x x z z

   
= = = = = = = =

   
. 

This is implemented by setting zero for the matrix elements describing heat conduction through 

the boundary via the setting of the appropriate resistances to infinity.  

I. Surface area. In this case, the radiation and convection transfer heat to the y 

direction, i.e., perpendicular to the plane of Fig. 4.12. 

The initial condition is a linear function of the z variable:  

( ), , 0 303 293u x z t z= = − .  

I know that this vertical change of initial temperatures may be rare in the reality, but with this, I 

can avoid the case when nothing is changing along the z direction which would be a 1D problem 

mathematically.  

For the heat convection, I have used values from the literature [69] for the convection heat 

transfer coefficient hc, as shown in Table 4.3. The universal Stefan-Boltzmann constant 

2 4

85
K

67 10
W

m
. −


  is multiplied by the appropriate emissivity constant since the surface is not a 

black body. With this, I obtain realistic values for   . The heat generation contains a fraction of 

the solar radiation, with which I obtain the value of q  as shown below. The ambient temperature 

of the air is taken to be 30 C 303K  .  

Table 4.3. The heat source, convection, and radiation applied on the wall in case of surface area [69]. 

   hc
2

W
 

m K

 
 

 
  

 8

2 4

W
 10

m K

− 
 

 
 


sunnyq  

2

W

m

 
 
 

 

shadowq

2

W

m

 
 
 

 

All elements 4 4 800 300 

The term q contains also the convective heat gain due to the nonzero temperature au  of the air (in 

Kelvin), with which I obtain the value of q as follows. The convective and radiative energy 

transfer is perpendicular to the surface, it is happening in the y direction. Therefore, these are 

proportional to the free surface area of the element, which is x z   here. Using this the values of 

the coefficients in equations (2.20) and (2.28) I obtain: 
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a
c ch hq

K , , q u
c y c y c y c y




   

 

= = = + 
   

, 

where, as it was mentioned, 1my = .  

I supposed that the right half of the surface is in the shadow, thus the incoming heat is much less 

there. More precisely, I have 

- For the first half of N (sunny part):   
2

1
800 303Kch

q
c c

W

m 
=  +  ; 

- For the second half of N (shadow part):  
2

1
300 303Kch

q
c c

W

m 
=  +  . 

II. Cross-sectional Area: In this case, the interior elements cannot gain or lose heat 

by the heat source, heat convection, or radiation. Elements on the right and left 

sides, the heat can transfer by radiation and convection to the x direction with the 

values shown in Table 4.4. 

Table 4.4. The heat source, convection, and radiation applied on both sides of wall elements in case of a cross-

sectional area [60]. 

    hc 
2

W

m K
    8

2 4

W
 10

m K

− 
 

 
 q  ( )W  

Right Elements  2 5 500 

 Left Elements 4 4 500   

I suppose that the right elements and left elements have the following heat source convection and 

radiation as follows [60]: 

- For the left elements (interior side):  
2

1
500 293Kch

q
W

mc c x 
=  + 


 

- For the right elements (external side):   
2

1
500 303Kch

q
W

mc c x 
=  + 


 

The initial condition is again a linear function of the z variable: 

( ), , 0 303 288u x z t z= = −
.  

 

4.2.3. The Simulation Results 

4.2.3.1. In the Case of Surface Area of The Wall 

I simulated a single-layer brick wall (see Figure 4.12.A). As I mentioned in point I. 

above, I applied linear initial and zero Neumann boundary conditions. I have performed the 

simulations with the equidistant mesh. In Fig. 4.13, the maximum errors as a function of the time 

step sizes are presented for all methods. Note that the hopscotch-type algorithms, especially the 

original OOEH and the NS-OEH, are more accurate than the other algorithms. Heun’s method is 

very accurate only below the CFL limit, but above this limit, it cannot give any meaningful 

results. In Fig. 4.14, I presented the initial and the final temperature distribution, where both the 

effect of the initial condition and the shadow on the right side of the wall can be observed. 
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Figure 4.13. The maximum errors as a function of the time step size in the case of a surface area [60]. 

Figure 4.14. The contour of temperature distribution in Kelvin for the equidistant mesh at initial (left) and final time 

(right), in the case of a multilayer cross-sectional area. The numbers on the vertical and horizontal axes of the 

contours are the indices of the cells, which are the same as the coordinates in cm units [60]. 

4.2.3.2. The Results of the Cross-Section of a Brick Insulated Wall 

I applied the linear initial and Neumann boundary condition of point II for the multilayer 

wall. The maximum errors are plotted for equidistant and non-equidistant meshes in Fig. 4.15 

and 4.16, while the energy errors for the non-equidistant mesh can be seen in Fig. 4.17. The 

temperature distribution contours for the initial and final time moments are shown in Figure 

4.18. One can see that the temperature of the right-hand side of the wall is increasing due to the 

larger temperature outside, but the insulator lets this heat penetrate the wall only very slowly.   
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Figure 4.15. The maximum errors as a function of the time step size for the equidistant mesh [60]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.16. The maximum errors as a function of the time step size for the non-equidistant mesh [60]. 
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Figure 4.17. The energy errors as a function of the time step size for the non-equidistant mesh[60]. 

 

Figure 4.18. The contour of temperature distribution in Kelvin for the equidistant mesh at initial (left) and final time 

(right), in the case of the multilayer cross-sectional area. The numbers on the horizontal and vertical axes of the 

contours are the indices of the cells [60]. 

4.2.3.3. The Results of the Cross-Section of a Brick Insulated Wall and Thermal 

Bridging 

I apply again the conditions listed in point II for the multilayer wall with thermal 

bridging. The maximum errors for equidistant and non-equidistant meshes are plotted in Fig. 

4.19 and 4.20, respectively, while the energy errors for the non-equidistant mesh can be seen in 

Fig. 4.21. The maximum and the energy error curves are very similar; the most noticeable 
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difference is that the SH and the ASH methods have larger maximum errors but smaller energy 

errors than the DF and the NS-DF methods.  

In Fig. 4.22, the temperature contour is presented for the initial and the final time moments, for 

the equidistant mesh. To highlight the thermal bridge's impact, I constructed Figure 4.23, which 

shows the final temperature at z=0.495 as a function of x, comparing results with and without the 

thermal bridge. This allows readers to clearly see its effect on temperature distribution.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.19. The maximum errors as a function of the time step size for the equidistant mesh and thermal bridging 

[60]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.20. The maximum errors as a function of the time step size for the non-equidistant mesh and thermal 

bridging [60]. 
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Figure 4.21. The The energy errors as a function of the time step size for the non-equidistant meshand thermal 

bridging [60]. 

 

 

Figure 4.22. The contour of temperature distribution for the equidistant mesh at initial (left) and final time (right) in 

case of multilayer cross-sectional area with thermal bridging [60]. 
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Figure 4.23. The temperature as a function of the space variable x at the middle row ( )0 5z .  in the case of the 

multilayer insulated wall with and without thermal bridging using an equidistant grid [60]. 

4.2.4. The Summary of The Present Section 

I adopted 14 fully explicit numerical algorithms to solve transient heat transfer problems 

including heat conduction, convection, and radiation. I applied the algorithms to two-

dimensional systems of a surface area and a cross-sectional area of a wall. This latter one 

consisted of a brick wall with a glass wool insulator layer, and it contained a thermal bridging 

steel structure. I used equidistant and non-equidistant grids for the cross-section area. Zero 

Neumann boundary conditions were applied and the ode15s MATLAB routine was used as a 

reference solution. I showed that all of the methods can be used for these simulations, but those 

that were proven to be unconditionally stable for the heat conduction equation have much better 

stability properties in this more general case as well. These methods can be used by quite large 

time step sizes without stability problems, thus the traditional explicit time integrators are 

severely outperformed by them. For less stiff systems, the non-standard version of the odd-even 

hopscotch and the leapfrog-hopscotch methods are the most accurate. However, as stiffness 

increases due to material inhomogeneities or the non-equidistant grid, the odd-even hopscotch 

method becomes less accurate and the leapfrog-hopscotch takes the lead, while the Dufort-

Frankel scheme and the shifted- and asymmetric hopscotch methods also perform well. The 

UPFD method is the least accurate, but it has the advantage that it preserves positivity of the 

temperatures for arbitrary time step size even for this highly nonlinear case. I note that for very 

small-time step sizes, Heun’s method can be extremely accurate, but this level of accuracy is 

redundant in most fields of engineering, including building energetics. 
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4.3. Calculate The Heat Transfer in Cylindrical and Spherical Shaped Bodies 

In this part, I reproduced new analytical solutions with high accuracy using recent 

explicit and unconditionally stable finite difference methods. After this, real experimental data 

from the literature regarding a heated cylinder are reproduced using the explicit numerical 

methods as well as using Finite Element Methods (FEM) ANSYS workbench. Convection and 

nonlinear radiation are also considered on the boundary of the cylinder [42]. 

The heat-transport equation in a 3D cylindrical coordinate system, which can be written as: 

 

 

 

In the case of spherical coordinates, a small 3D spherical element can be seen in Figure 2.3 The 

heat transport equation for this case can be expressed as follows: 

* 4
2

2 2 2 2

1 1 1
sin

sin sin

genQu u u hSu Su u
k r k r k c

r r V V V tr r r


 

    

          
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             

.  (4.5)  

If one does not consider the convection, radiation, and source terms in Equation (4.4) and 

assumes that the material properties are homogeneous, one obtains the form of the heat 

conduction equation in cylindrical and spherical coordinate systems. Symmetrical systems only 

are investigated, which means no relevant physical quantities depend on coordinate   in the 

cylindrical and on coordinates   and   in the spherical case, which can be considered as a 

limitation of this study. If I temporarily also assume that nothing depends on the z coordinate in 

the cylindrical case, only the radius r remains as a spatial variable, which yields [42]:  

1 n

n

u u
r

t r rr


   
=  

    , 
(4.6) 

where n = 0, 1 and 2, which means Cartesian, cylindrical, and spherical coordinates, 

respectively, while 
k

c



=  is the (thermal) diffusivity. Equation (4.6) is also used for particle 

diffusion, where the diffusivity is usually denoted by D. 

4.3.1. The Geometry, Materials, Mesh Generation, and Boundary Conditions 

I am going to reproduce the experimental results of Cabezas et al. [70], where heat 

transfer was studied in a steel C45 cylinder of 168 mm total height with properties shown in 

Table 4.5 below. 

Table 4.5. The properties of the steel used [70]. 

Material ( )3kg m −  ( )1 1  W m Kk − −   ( )1 1  J kg Kc − −   

Steel C45 7800 40 480 

The bottom of the cylinder was heated for 30 s at the beginning of the experiment with P = 

1500W power. However, in the original work [70], the position of the lowest thermocouple was 

50mm higher than the heated surface. The top 118 mm and not the bottom 50 mm of the cylinder 

was examined either experimentally or numerically, and I followed this in my work. This means 

* 4

2

1 1 genQu u u hSu Su u
k r k r k c

r r r z z V V V tr




 

          
+ + + − − =    

               
(4.4) 
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that the simulated volume of the cylinder segment is 341.0087 10 mV −= , while 

( )    , 0, 0.0165m 0, 0.118mr z   . In my approximation, physical quantities did not change in the ϕ-

direction, thus, that 3D was irrelevant and computationally, I dealt with a two-dimensional 

problem. The number of cells along the r axis and z axis were set to Nr = 15 and Nz = 100; thus, 

the total number of cells in the system was 1500r zN N N= = .  

I used a constant initial condition in all cases. 

( ), , 0 30.7 Cu r z t = =   

I used different boundary conditions on different sides. On the left side, the center of the 

cylinder, I applied Neumann boundary conditions in all cases, which do not allow conductive 

heat transfer at the boundary 

( 0, , ) ( , , ) ( , , ) 0r r r z zu r z t u r L z t u r z L t= = = = = = .  

On the right (external) and upper boundaries, I used two types of boundary conditions. The first 

one was zero-Neumann, when there was no heat exchange with the environment. The second 

one, when there was a heat exchange with the environment via convection and radiation, 

considered the heat convection coefficient ( )2 14 5  W m Kch . − −=   [38] and the emissivity constant 

as 0.85 to obtain realistic values for   . The convective and radiative energy transfer was 

perpendicular to the surface. The interior elements cannot gain or lose heat by the heat source, 

heat convection, or radiation. On the lower boundary, I applied changing Dirichlet boundary 

conditions based on the temperature measurement results taken from a report I asked the authors 

of [70]. That report contained data from every two minutes, and I used linear interpolation 

between these data points in all cases to follow the experimental setup of the paper [70]. 

The heat generation contained incoming heat via convection and radiation, depending on the 

ambient temperature. Since the steel cylinder was placed in a closed box, the ambient 

temperature changed during the measurement. Instead of the ambient temperature functions, I 

used their averages taken from the report mentioned above. The ambient temperature of the air 

was taken as (30.7, 31.1, and 31.7 °C) in the cases of measurements at 20 min, 24 min, and 30 

min duration, respectively.  

4.3.2. Analytical-Solution Based Verification   

In this section, I take the height of the cylinder as well as z  unity. It means that, 

computationally, there is one space dimension only in both the cylindrical and the spherical 

cases. The solution parameters are:  

 

0

0 fin 0

500 1 500 0 0003 0 999 0 002 1

1 1 2 2 0 1 0 1

r z r z maxN , N , N N N , r . , r . , r . , ,

a , . , , t . , t t . .

= = =  = = =  = =

 = = +
  

Here, N represents the total number of cells, a self-similar exponent, while 0r  and maxr  are the 

radial coordinates of the center of the first and last cells. The CFL limit (maximum allowed time-

step size for the standard first-order forward Euler method) was around 62 10−  in all cases. The 

initial condition was obtained by substituting the initial t and boundary r values into the 

analytical solution, respectively. The Dirichlet boundary conditions on the right side (the 
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circumference of the cylinder and sphere) were obtained simply by substituting the radius maxr  

into the analytical solution and calculating the function value at each time step. On the left side 

(the cylinder and sphere center, 0r r= ), a zero-Neumann boundary was applied, since no heat can 

disappear from the center of the cylinder or the sphere. This boundary was applied only 

computationally and not physically. I remind the reader that the analytical solutions are 

constructed for Equation (4.6).  

The obtained maximum errors are displayed as a function of the time-step size in Figures 4.24 

and 4.25 for two values of parameter a in cylindrical coordinates, it is clear with a=1, the results 

are more accurate than a=2. Figure 4.26 presents the temperature value as a function of r. For 

the case of spherical coordinates, Figure 4.27 shows the maximum error as a function of the time 

step, and Figure 4.28 presents the temperature as a function of r. The fact that we obtained very 

small errors in all cases verifies not only the numerical algorithms, but also the equivalence of 

the two mathematical treatments of the physical problem. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.24. The maximum errors as a function of the time step size for the 9 numerical methods in case of 

cylindrical coordinates for a = 1 [42].  
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Figure 4.25. The maximum errors as a function of the time step size for the 9 numerical methods in case of 

cylindrical coordinates for a = 2 [42]. 

 

Figure 4.26. The values of temperature as a function of variable r in case of the initial function u0, the analytical 

solution Uexact, the DF method, and the LH method in case of cylindrical coordinates for a = 1 [42]. 
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Figure 4.27. The maximum errors as a function of the time step size for the 9 numerical methods in the case of 

spherical coordinates for a = 1.2 [42]. 

 

Figure 4.28. The values of temperature as a function of r variable in case of the initial function u0, the analytical 

solution Uexact, the DF method, and the LH method in case of spherical coordinates for a = 1.2 [42]. 
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4.3.3. The Simulation Results  

In this section, I present the results at the end of the examined time interval, which is 

defined as
fin 1200, 1440 and1800st = in both the numerical methods and Ansys simulation and 

then compare between them with the experimental results.  

4.3.3.1. The Results of Numerical Methods 

For the simulation, I chose the top five algorithms, namely DF, OOEH, LH, SH, and 

ASH. The simulation of a steel C45 cylinder was conducted using these selected algorithms 

considering different boundary conditions, as previously mentioned. Among these algorithms, 

the shifted-hopscotch method was chosen to visualize the temperature contour due to its high 

accuracy at small time-step size. Figures 4.29 and 4.30 display the final temperature distribution 

obtained from this method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.29. The final temperature distribution contour for different time values (t = 20, 24, and 30 min, 

respectively, from left to right) presented by the SH method when there is no heat exchange with the environment 

[42]. 

. 

 

 

 

 

 

 

 

 

 

 



USING EFFICIENT METHODS TO SOLVE REAL-LIFE HEAT TRANSFER PROBLEMS 

63 
 

 

Figure 4.30. The contour of temperature distribution for different time values (t = 20, 24, and 30 min) presented by 

the SH method when there is heat exchange with the environment via convection and radiation [42]. 

4.3.3.2. The Results of Ansys Simulation 

Ansys workbench 19.2 transient thermal analysis with Mechanical APDL solver was 

used to simulate the steel C45 cylinder. The mesh size was 3
1 10

−
  , and the total number of 

elements was 197,183 since it was a computationally 3D problem. In Figures 4.31 I present the 

sample of temperature contour at the final time. 

 

Figure 4.31. The temperature contour at time (t = 20 min) presented by Ansys when there is no heat exchange with 

the environment (left) and when there is a heat exchange (right) [42]. 

4.3.3.3. Comparison of The Results 

The results of the experimental measurements, the finite element method (FEM) using 

Ansys Workbench, and the explicit numerical methods (exemplified by the shifted hopscotch 

method) were compared. Both FEM and SH were subjected to two types of tests, one 

considering convection and radiation effects, and the other excluding them. First, I employed 

steady-state thermal analysis using FEM Ansys Workbench to follow the original paper [70] to 

reach the same results. The maximum deviation was 0.07, which was a kind of verification for 

the setup. Then, I used transient thermal analysis to follow the real physical processes of the 

experiment. All results below are for this transient simulation. In Tables 4.6–4.7, the comparison 

was conducted at two specific spatial points (z = 75 and 95 mm, which are the distances from the 

bottom measurement point), and the results were measured at three different time moments. The 

temperatures are compared at two space points via plots in Figures 4.32–4.34. 

Table 4.6. The temperature at z = 125 mm at three different time moments [42]. 

Time 
Temperature in °C, at z = 75 mm 

Experiment SH with CR SH FEM with CR FEM 

20 min 33.9 33.941 34.298 33.796 34.316 
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24 min 34.6 34.668 35.087 34.534 35.128 

30 min 35.7 35.514 36.07 35.283 36.036 

Table 4.7. The temperature at z = 145 mm at three different time moments [42]. 

Time 
Temperature in °C, at z = 95 mm 

Experiment SH with CR SH FEM with CR FEM 

20 min 33.7 33.71 34.099 33.563 34.095 

24 min 34.5 34.427 34.88 34.285 34.88 

30 min 35.5 35.30 35.92 35.093 35.856 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.32. The temperature at the 4 selected measurement points in z at time t = 20 min [42]. 
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Figure 4.33. The temperature at the 4 selected measurement points in z at time t = 24 min [42]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.34. The temperature at the 4 selected measurement points in z at time t = 30 min [42]. 

The figures and tables presented above illustrate a comparison of results obtained from the 

current numerical methods and the FEM ANSYS, utilizing experimental data from the literature 

study [37]. The findings indicate that the numerical methods employed in this study demonstrate 

superior accuracy compared with the FEM ANSYS used in both the current investigation and the 

same literature study [72] [37]. 

4.3.4. The Summary of The Present Section 

This work was devoted to solving heat transfer problems in cylindrical and spherical 

geometries. Using the self-similar Ansatz, novel analytical solutions of the heat-conduction PDE 

were constructed, which contained the Kummer’s functions. Nine numerical algorithms were 

presented, most of which are recently introduced unconditionally stable explicit methods. To 

perform the verification, the novel analytical solutions of the heat-conduction PDE containing 

the Kummer’s functions were reproduced by these methods with high accuracy.  

After these, experimental work was considered from the literature where a cylinder is heated 

from below, and the results were attempted to be reproduced using Ansys commercial software, 

but without considering convection and radiation on the surface of the cylinder. In contrast to 

that, I reproduced the experimental results by considering convection and radiation as well, not 

only using Ansys, but also the explicit methods. Since, in reality, convection and radiation are 

present, taking them into account makes the results closer to the experimental ones, especially 

for the first two measurement times. Moreover, the explicit and stable schemes were more 

accurate and effective than the finite element software in all cases. The LH algorithm was 

usually the most accurate among the studied methods. However, similarly to all hopscotch 

methods, it needs a special mesh, which can be hard or maybe impossible to implement for 

problems with irregular shapes. This limitation of these methods is probably more restrictive in 

complicated 3D problems.  



USING EFFICIENT METHODS TO SOLVE REAL-LIFE HEAT TRANSFER PROBLEMS 

66 
 

4.4. Calculate The Heat Transfer in Multilayer Walls with Photovoltaic Cell and 

Air. 

This section explores the simulation of the non-linear transient heat transfer equation 

(2.20)  in multilayer walls subjected to various heat loads using efficient numerical algorithms 

(UPFD, NS-DF, PI, NS-OEH, LH, SH, and ASH ). The study considers conduction, free and 

forced convection, and nonlinear radiation involving a two-phase material composed of solid 

(wall construction) and fluid (air). Different wall geometries and heat load scenarios are 

examined, encompassing both cooling and heating cases. The objective is to evaluate algorithm 

performance for outdoor surface convection and an air gap between insulation and PVC [73]. 

4.4.1. Geometry Model and Mesh Generation  

Figure 4.35 helps to visualize the geometry and the environment for inside and outside of 

the wall section, with zooming on the selection cross-sectional area in the middle of the wall (the 

upper half is sunny and the lower half is in shadow) that will be simulated. 

  

Figure 4.35. Visualization of the studied case, the selected wall cross-section [73]. 

The geometry is a multilayer wall with an air gap. The order of the media is the following: 

gypsum board, brick, glass wool, air gap, Photovoltaic Cell (PVC), and then air. I also 

investigated free and forced convection with cooling as well as heating processes. In this 

scenario, there are different kinds of convection depending on the air status on both sides of the 

PVC, when the air is moving (forced convection) and when the air is stationary (free 

convection). From this point of view, there are three subcases: 

A.  free-free convection means the air is stationary on both sides of the PVC,  

B.  free-forced convection: the air is stationary in the air gap zone, and the air is moving 

on the other side of the PVC.  
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C. forced-forced convection: the air is moving on both sides of the PVC, so in this case, 

there is forced convection on both sides of the PVC. This case is useful in cooling of 

photovoltaic cells when it warm up due to the hot weather, especially in summer or in 

a hot climate area, when the solar cell’s temperature exceeds the optimum operation 

temperature.  

I consider a wall segment with a cross-sectional area X ZS L L=   with value 0.5 m 0.5 

m. ( )    0 0 5 0 0 5x,z , . , .  , thus the mesh's total area is 0.25m2. I have constructed an equidistant 

grid with square cells shaped for all cases. The number of cells along the x and z axes are set to 

Nx = 100 and Nz = 100; thus, I have a mesh with a total cell number 10 000x zN N N ,= = . The cells 

are indexed as a linear sequence, starting from the top left corner horizontally and ending at the 

bottom right corner. Due to this, the cell indexed by xi N+  is just below the cell labelled by i, etc. 

4.4.2.    Materials and Boundary Conditions  

In the current study, I use real material properties for wall construction, as shown in Table 4.8. 

Table 4.8. The materials used properties [71]-[74] . 

Material   ( )3kg m −  ( )1 1  W m Kk − −   ( )1 1  J kg Kc − −   

Gypsum Board 805 0.292 977 

Brick 1600 0.730 800 

Glass wool 200 0.030 800 

 PVC, Silicon 2330 148 710.08 

    PVC, Glass 2500 1.7 780.33 

Air, at 283K 1.2474 0.024840 1005.8 

Air, at 288K 1.2257 0.025219 1005.9 

Air, at 303K 1.1649 0.026341 1006.5 

The initial conditions are constant for all cases as follows: 

- Cooling case: solid temperature = 303 K, air gap temperature = 288K, air 

temperature= 283 K.  

- Heating case: solid temperature = 283 K, air gap temperature = 288K, air 

temperature= 303 K.  

I apply zero Neumann boundary conditions in all cases for the right, the top and the bottom 

boundary, which do not allow any heat transfer at those boundaries. 

 There are two types of incoming radiation: one of them is coming from outside of the studied 

system and it is independent of the temperatures in the system, thus I denote it by from outq . The 

second type is coming from another part of the system and thus it is a temperature time-

dependent variable, which can be denoted by from inq . At the left-hand side of the system, the 

conduction is neglected, but the wall loses heat by radiation and convection to the interior of the 

building, and also gain the appropriate heat, which are included into the heat generation term. 

The intensity of the incoming radiation will be considered as a constant 2
from out 400W/mq = . The 

ambient temperature of the room is always 293Kau = which is considered as a comfortable 

temperature for a living space. The interior elements of the solid material cannot lose or gain 

heat by the heat convection, radiation, and heat source, only by conduction.  
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In case of free convection boundary the elements on the left and right sides in the interface 

between solid and fluid can transfer heat by convection and radiation with the values shown in 

Tables (4.9) [75]. I use realistic values for    as it was explained above. The heat source 

generation contains a part of the solar radiation, with which I obtain the value of from outq  as 

shown in table below. For the heat generation for the interface elements 1 and 2, I put (-) in the 

table because it receives from inq  type radiation. The air ambient temperature (on the right side) is 

taken to be 30 C 303K   in case of heating and 10 C 283K  in case of cooling. Here interface 1 is 

the interface between the insulator and the air gap, and interface 2 is the interface between the 

PVC and airgap, while interface 3 is the interface between the PVC and the surrounding air. 

Table 4.9. The heat convection, radiation, and source parameters on right and left sides of the wall elements [73]. 

    hc 
2

W

m K
    8

2 4

W
 10

m K

− 
 

 
 from outq ( )2W / m  

 Left Elements  2 5 400 

 Interface 1 (insulator) 4 4 -   

 Air gap elements 4 0 0 

 Interface 2 (silicon) 4 4 -   

 Interface 3 (glass) sunny part 4 4 600   

 Interface 3 (glass) shaded part 4 4 100   

 Surrounding air elements 4 0 0 

There is an air gap between the insulator and PVC, those two surfaces radiate each other with a 

from inq  type radiation. The quantity of the radiative heat transfer changes with the temperature of 

each surface. In this case the heat generation (incoming heat) of the surface elements can be 

calculated as follows :  

- For Interface elements 1: 4 c
Silicon air _ gap

h
q u u

c x c x



 



=  + 
 

 .  

- For air gap: c
air _ gap

h
q u

c x
= 


.  

- For Interface 2: 4 c
Insutator air _ gap

h
q u u

c x c x



 



=  + 
 

 . 

While in the case of forced convection, all the boundaries have the same expressions for heat 

transfer. However, the heat transfer coefficient in forced convection is not a constant but depends 

on air velocity, which I take in the z direction. The convection coefficient h for the air elements 

depends on the nondimensional parameters Nu and Re, which are derived based on the energy 

balance at the thermal boundary layer of air (for more details, see [76]). The procedure is as 

follows:  

The heat transfer coefficient: c
z

k
h Nu

L

 
=  

 
, where zL is the length of the surface in the z direction.  

Nusselt number:                
11
320 664Nu . Re Pr=  

Reynolds number:            zvL
Re




= , where v is the air velocity, which is 0.5m/s, and μ is the 

dynamic viscosity. 
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Prandtl number:                 pc
Pr

k




= = , I can get it from an air properties table. 

For the forced convection, the values of Reynolds Number Re are as follows: 

- free-forced; the surrounding air moving at velocity v=0.5m/s, and Re= 17596.95 for 

cooling, Re= 15589.9 heating.  

- forced-forced the air moving on both sides of the PVC at velocity v=0.5m/s, Re= 

17056.69 for the air gap zone, Re= 17596.95 cooling, and Re= 15589.9 heating for 

the surrounding air. 

4.4.3. The Simulation Results   

I applied the initial condition and boundary conditions of section 4.4.2 with tfin = 20,000s, 

the cases of study in both cooling and heating in free and forced convection. The maximum 

errors are plotted in Figures 4.36– 4.38, where it can be seen that the DF and the hopscotch 

methods lose their advantage with respect to the PI method if there is forced convection in the air 

gap. The main reason for this is that there is a rapid heat exchange between the air and the inner 

surface of the PVC, which consists of silicon that has a large heat conductivity, and this makes 

the required time step size smaller. Figures 4.39-4.42 show the contours of temperature 

distribution for the initial and final time step for both forced and free convection. It is shown 

clearly that the effect of the used insulator prevents the heat from penetrating inside, and the air 

gap is a key rule in circulating the air and enhancing the heat transfer performance. Figure 4.43 

shows the effect of the air gap and that of forced convection in cooling down the PVC (silicon) 

layer.  

 

Figure 4.36. The maximum errors as a time step size function for the 7 tested methods in the case of free-free 

convection cooling [73]. 
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Figure 4.37. The maximum errors as a time step size function for the 7 tested methods in the case of free-forced 

convection cooling [73]. 

 

Figure 4.38. The maximum errors as a time step size function for the 7 tested methods in the case of forced-forced 

convection cooling [73]. 
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Figure 4.39. The contour of initial temperature distribution in Kelvin for free and forced convection in Case 3, in 

case of Cooling (left), and Heating (right) [73]. 

Figure 4.40. The contour of final temperature distribution in Kelvin for free-free convection in Case 3, in case of 

Cooling (left), and Heating (right) [73]. 
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Figure 4.41. The contour of final temperature distribution in Kelvin for free-forced convection in Case 3, in case of 

Cooling (left), and Heating (right) [73]. 

 

Figure 4.42. The contour of final temperature distribution in Kelvin for forced-forced convection in Case 3, in case 

of Cooling (left), and Heating (right) [73]. 

Figure 4.43. The temperature at the PVC (silicon) border in Kelvin for Case 3 in case of Cooling [73]. 

4.4.4. The Summary of The Present Section  

I numerically studied transient heat transfer in the form of conduction, convection, and 

radiation in two-dimensional systems of gypsum board, brick, glass wool, air gap, PVC, and air. 

I used seven stable numerical algorithms for this purpose. The ode15s MATLAB routine served 

with the reference solution in all examined cases.  

The tested methods’ advantages and disadvantages are listed in the following: 
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1. The UPFD is first order of magnitude, and generally not accurate enough, but it can treat 

convection and radiation terms very well. For an arbitrary time-step size, it is positivity 

preserving; all other methods are not. However, it is by far the least accurate for medium and 

small time step sizes. 

2. The Hopscotch family  (NS-OOEH, SH, LH, and ASH), the NS-DF, and the pseudo-

implicit methods are second order, but the latter one is usually much less accurate due to the 

extra terms in its truncation error. 

3. The LH is typically the most efficient algorithm to handle these kinds of problems. 

However, when there is forced convection in the air gap, the LH, as well as other accurate 

methods, lose most of their advantage, and the PI method can also be effectively used.  

4. The current algorithms successfully deal with very stiff systems; thus, they are expected 

to be able to cope with any kind of materials or boundary conditions. 

To conclude, the LH, ASH, and NS-DF algorithms can be proposed to solve these problems. All 

methods produce very accurate solutions and can utilize larger time steps. This capability results 

in superior computational speed over conventional explicit techniques that are constrained by 

stability limitations. 

The conclusions from the engineering point of view are the following:  

5. The used insulator on the outside of the brick prevents the heat from penetrating inside 

and, in this way, I keep the inside environment within a comfort limit. 

6. The heat transfer in convection and radiation can be controlled at the boundary by 

applying forced convection. 

7. The forced convection heat transfer has a significant effect on improving the heat 

transfer, especially in the case of cooling to cool down the PVC, which has a performance 

temperature limit to work in.  

8. The temperature of the PVC exposed to sunshine is reduced significantly even by a light 

wind. 

9.  The air gap between the PVC and the insulator reduces the temperature at the insulator 

border and the PVC borders. 

Related to the wall construction, I could recommend using both the insulator and the air gap to 

reduce the heat going inside the building due to hot weather and strong sunshine.  

4.5. Calculate The Heat Transfer in Building Walls with PCMs Using Effective 

Heat Capacity Model 

I employ efficient explicit numerical methods and validate my approach against 

established mathematical expressions and models in the literature. My research investigates 

various building wall geometries and boundary conditions, primarily focusing on employing the 

Effective Heat Capacity model to manage heat loads. The objective is to maintain interior 

temperatures within comfort zones. I compare two types of paraffin wax PCMs. The first one is 

characterized by a lower melting temperature and higher latent heat capacity; thus, it can 

efficiently store external heat when combined with brick or concrete [77]. 
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4.5.1. Theory and Considerations of the Present Study 

I perform the thermal analysis of PCM integrated with building components by using the 

effective heat capacity (EHC) model with two phases (solid: So and liquid: Li). It implies that 

the specific heat c, the heat conductivity k, and the density ρ depend not only on the space (due 

to material inhomogeneities) but on the temperature itself. In one dimension, the following PDE, 

the heat conduction equation, can be used to predict the behaviour of the temperature:  

( ) ( )
( )

1
( , )

, ,

u
k x u u q

t x u c x u


=   +


.                                                (4.10) 

To determine the heat capacity of the cell, I consider two types of heat capacity: sensible heat 

capacity (SHC) and latent heat capacity (LHC). Standard materials, such as brick and concrete, 

which cannot change their phase in normal conditions, have only sensible heat capacity. For 

PCMs, the EHC is computed as the sum of SHC and LHC at each phase, while taking phase 

transitions into account, as follows [77]: 

So So So
i i i iC c V= , and  Li Li Li

i i i iC c V= .                                                (4.11)  

Those represent the SHC for the liquid and solid states of the material.  

For the EHC, I define g as the Gaussian function[78] centered at the melting temperature ucr of 

the material with the standard deviation σ [77]: 

( )
2

2

1
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2 2

i cru u
g i

  

 − −
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 

.                                                  (4.12)  

At the phase transition region cr cru u u −   + , I used the following functions to represent the 

thermal properties [77]: 

( )( ) ( )( )
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c c u u c c
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− − + +
= ,                                               (4.15)  

 where c is the specific heat capacity of the material and it depends on the material’s state (solid, 

mixed solid and fluid, and liquid) and I used to calculate the sensible heat capacity as shown in 

the following equations. These functions are linear in the temperature variable and continuous in 

all of the parameters.   

At the phase transition I used EHC as follow [77]: 

i i iEHC SHC LHC= +  ,                                                         (4.16)  

i i i iSHC c V=  ,                                                                    (4.17)  

i i i i iLHC H g V=  .                                                                (4.18)  
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All quantities calculated by equations (4.11-4.18) are updated at each time step and at each stage, 

contributing to the overall time consumption of the calculations. In Figure 4.44, there are some 

plotted examples of the Gaussian function at different σ values and ucr=320 K.  

Figure 4.44. Gaussian function representative of the heat capacity with temperature [77]. 

Keeping in mind the above-mentioned considerations, the time-development of the temperatures 

can be calculated by solving the system of ordinary differential equations (ODEs):    

, j

j ii
i

i ij i

u udu
q

dt R C

−
= +  ,                                                    (4.19) 

which is the spatially discretized form of the nonlinear heat equation. After the temperatures are 

calculated, the total heat QT, sensible heat QSe, and total latent heat QLa of thermal systems can be 

given as follows [77]: 
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N
t t t t
T T i i

i
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=

= + −  ,                                             (4.20)  

( )1 1
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N
t t t t
Se Se i i
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Q Q SHC u u− −

=

= + −  ,                                              (4.21)  

( )1 1

1

N
t t t t
La La i i

i

Q Q LHC u u− −

=

= + −  .                                              (4.22)  

Here, t is the index of the time level after the discretization of the time variable, which will be 

explained later. Those data measure the ability of PCM to store the energy during the phase 

transition, which has the advantage of reducing the energy consumption in the building and 

keeping the comfort indoor temperature. From this point of view, I also calculate the cooling 

load in terms of total heat transfer from outside to inside (x direction) as follows: 

( )2 11

1

t t
Cooling Cooling

t u u
Q Q

R

−  −
= +  ,                                        (4.23)  
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where u1 and u2 are the first and second cells of internal surface layers respectively, thus they 

approximate well the heat transfer from the room to the wall and outside. 

4.5.2. The 1D Analytical Solution 

In the current section, I explain the heat transfer in a PCM by using Stefan-tape problems 

which have an explicit analytical solution [79]. The Paraffin wax PCM with properties shown in 

Table 4.10 is inside the container. Within this setup, a Paraffin wax slab, is presumed to possess 

a semi-infinite length along the x-axis. The boundary condition (BC) is zero-Neumann 

(insulated) on all boundaries except the left side (x=0), where it is Dirichlet BC with constant 

temperature (u-face). This allows the heat to flow into or out of the system, which therefore 

undergoes the melting or solidification process from the left side toward the right, as shown in 

Figure 4.45. The thermal conductivity is the same for the solid and liquid states of the PCM. The 

interaction between the solid and fluid components depends upon the applied temperature and 

exposure duration. Consequently, temperature calculations are determined by the specific region 

within the body. 

Table 4.10. The Paraffin wax PCM1 properties [79] . 

Material ( )3kg m −  ( )1 1 W m Kk − −   ( )1 1  J kg Kc − −   ( )1 J kgLatent Heat −  

PCMSolid 856 0.15 2210 
247000 

PCMLiquid 778 0.15 2010 

 

Figure 4.45. The paraffin wax inside the container [77]. 

The PCM initially has a temperature u0, and has a melting or solidification temperature ucr, 

where: 

0face cru u u 
 

 in case of melting with initially solid PCM, and   

0face cru u u 
 

in case of solidification with initially liquid PCM. 

The location of phase interaction between liquid and solid at time t is ( )x X t=  

( ) 2 LX t t = .                                                                   (4.24)  

The temperature ( , )u x t  of the liquid zone, where 0 ( )x X t  , is  
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while the temperature of solid zone ( )x X t  
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Here λ is the root of the transcendental equation 
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The total heat transfer into the system by the time t can be calculated by: 

( )
0

2
( ) ( )

( )

t L face cr

T

L

k u u t
Q t q t dt

erf  

−
= = .                                                (4.28)  

The total heat latent through the melting process:   

( ) ( )La LaQ t HX t= .                                                                          (4.29)  

Then the sensible heat is the difference between the total heat input and the latent heat 

( ) ( ) ( )Se T LaQ t Q t Q t= − .                                                                       (4.30)  

 

4.5.3. Geometry and Mesh Generation 

In the current work, I have conducted multiple geometry studies focused on thermal 

analysis. The primary structural elements of the buildings under investigation predominantly 

consist of brick walls and concrete roofs, or both concrete walls and roofs in the case of precast 

construction. Additionally, I have integrated a PCM layer on the exterior surfaces of both the 

walls and roofs to enhance their thermal properties, as shown in Figure 4.46. 

Figure 4.46. The selected section geometries of studies [77]. 

The value of mesh spacing will be 43 334 10.x − =   in all cases. It has been selected based on the 

mesh dependency study, whose details will be provided in Section 4.5.5.1.2. For brick and 
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concrete, I consider a wall segment with a cross-sectional area X ZArea L L=   with value 0.2 m 

0.1m. I set ( )    0 0 2 0 0 1x,z , . , .  , thus the mesh's total area is 0.02m2. The number of cells along 

the x and z axes are set to Nx = 600 and Nz = 1, thus, I have a mesh with a total cell 

number 600x zN N N= = . For the other cases, I consider a wall segment with a cross-sectional area 

X ZArea L L=   with value 0.25m 0.1 m, where 0.2 is the wall thickness and 0.05 is the PCM 

layer thickness. ( )    0 0 25 0 0 1x,z , . , .  . Thus, the mesh's total area is 0.025m2. I have constructed 

an equidistant grid for all cases. The number of cells along the x and z axes are set to Nx = 750 

and Nz = 1, thus, I have a mesh with a total cell number 750x zN N N= = .  

4.5.4. Materials and Boundary Conditions 

Table 4.11 displays the material properties utilized in my current study, which primarily 

consist of structural materials like brick and concrete, with properties shown in Table 4.12. 

Meanwhile, I used two types of PCM, and both of them are a kind of Paraffin wax. The first one 

is  PCM1 [79] with properties shown in Table 4.10 and a melting temperature of 309.7 K, and 

the second one is  PCM2 [4] with properties shown in Table 4.12 and a melting temperature of 

313 K, and with standard deviation σ=1 for both kinds of PCMs. I chose these two kinds of PCM 

due to the high environmental temperature outside, which requires the PCMs to have a high 

melting temperature (the time of temperature exposure range is high) and high latent heat 

properties.  

 Table 4.11. The Structural Materials Properties[77] . 

 

 

 

 

 

 

Table 4.12 The Paraffin wax PCM2 with following Properties [77]. 

Material   ( )3kg m −  ( )1 1 W m Kk − −   ( )1 1  J kg Kc − −   ( )1 J kgLatent Heat −  

PCMSolid 830 0.48 2210 
190000 

PCMLiquid 878 0.22 2300 

 

I used a linear relation to calculate the initial temperature by applying the recorded temperature 

at each one-hour taken by a weather-forecast website [80], for Basra-Iraq city on the 25 of 

August and on the 25 of September shown in Table 4.13 and Table 4.14 on different days (day1 

is Case 1, and day2 is  Case 2). I used linear relation of temperature changing with time to get 

the temperature distribution matrix: 

( ), , 0u x z t Matrix values= = . 

I applied different BCs on different sides. On the upper and lower sides, I applied Neumann 

boundary conditions in all cases:  

( , 0, ) ( , , ) 0z z zu x z t u x z L t= = = =  

Material   ( )3kg m −  ( )1 1  W m Kk − −   ( )1 1  J kg Kc − −   

Brick 1600 0.73 800 

Concrete 2300 1.70 840 
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On the left side I applied Dirichlet BC with constant temperature which represented the interior 

comfort temperature with value equal to 298 K:   

( 0, , ) 298xu x z t= =  

On the right side I applied Dirichlet BC, by applying the same recorded temperature that I used 

to calculate the initial temperature to get the right boundary temperature distribution array: 

( , , )x xu x L z t Array values= =  
Table 4.13 The Right Boundary Temperatures in Case1. 

Time/h 1 2 3 4 5 6 7 8 9 10 11 12 

uRight/K 309 308 307 306 305 304 303 305 307 310 311 313 

Time/h 13 14 15 16 17 18 19 20 12 22 23 24 

uRight/K 314 316 317 316 316 314 313 311 310 309 308 308 

Table 4.14 The Right Boundary Temperatures in Case 2. 

Time/h 1 2 3 4 5 6 7 8 9 10 11 12 

uRight/K 302 300 298 297 296 297 299 304 308 313 315 316 

Time/h 13 14 15 16 17 18 19 20 12 22 23 24 

uRight/K 317 318 318 317 316 313 311 309 308 307 306 305 

So, with these two cases and different scenario I simulated the wall section with 12 subcases, as 

shown in Table 4.15. 

Table 4.15. Subcases for each Main Case (day) 

Left Dirichlet Boundary 

Brick 

Concrete 

Brick+PCM1 

Concrete+PCM1 

Brick+PCM2 

Concrete+PCM2 

 

4.5.5. The Results of the Current Study 

4.5.5.1. The Numerical Methods Verification with Two Steps for PCM   

4.5.5.1.1. First Step of Verification 

In the initial verification step, I validated the numerical methods by employing the analytical 

solution given in Eqs. (4.24), (4.25), and (4.26). To use the analytical solution, one needs to 

solve the complicated transcendental equation (4.27). To enable myself to change the 

parameters, I first analytically reproduced that solution, but it could be done by some small error. 

This error, i.e. the difference between the literature and my analytical values, is much smaller 
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than the difference between the exact analytical and approximate solution used in the literature 

[79], as one can see in Table 4.16.     

The system considered was one-dimensional, with the height of the geometry as well as the 

corresponding space step set to unity. The key parameters for the solution were as follows: 

0

8 8
0

1 , 1 , 3000, 1, 3000, 0.00033, 1, 294, 309.7, 368

9.59 10 , 7.92 10 , 0, 3600, 0.036s

x z x z cr face

L s fin

L L N N N x z u u u

t t t − −

= = = = =  =  = = = =

=  =  = =  =
 

The results I got by solving equations (4.24), (4.27), (4.28), (4.29), and (4.30) are shown in Table 

4.16, while the results for the verification of the numerical methods are shown in Table 4.17.  

Table 4.16. The results of verification . 

Parameters 
Present Analytical 

values 

Present Numerical 

values 

Literature Analytical 

Values [11] 

Literature Approximate 

Values [8] 

λ 0.4037 - 0.4033 0.42 

( )X t  m 1.5×10-2 1.5×10-2 1.5×10-2 1.56 ×10-2 

2( / )TQ KJ m  4426.6 4459.7 4446 4252 

2( / )LaQ KJ m  2882.6 2977 2883 2998 

2( / )SeQ KJ m  1544 1482.6 1563 1254 

 

Table 4.17. The results of the verification of the numerical methods. 

Parameters Explicit ASH SH LH 

( )X t  m 1.5×10-2 1.5×10-2 1.5 ×10-2 1.5 ×10-2 

2( / )TQ KJ m  4459.701 4459.704 4459.706 4459.708 

2( / )LaQ KJ m  2977.010 2977.012 2977.013 2977.014 

2( / )SeQ KJ m  1482.690 1482.692 1482.693 1482.694 

MaxError  1.0580 1.0576 1.0579 1.0582 

 

I calculated the maximum error (maximum absolute temperature differences along the x-axis 

between the analytical reference solution and the numerical solution) depending on the time step 

size. As shown in the table above, the current values are close enough to the literature values, 

which means I successfully verified the numerical methods based on the literature. The results of 

the four numerical algorithms are very close to one another, thus the deviation from the 

analytical values are mostly the consequence of the discretization and the EHC model.     

The errors are presented in Figure 4.47. It is evident that all numerical methods exhibit an 

acceptable accuracy in handling PCM scenarios. This outcome instills confidence in my ability 

to address similar heat-related challenges in future endeavors [81].  

In Figure 4.48, temperature values along the x-axis are depicted with a focused view on the 

transient phase zone for both the analytical result and the numerical methods (Explicit, ASH, SH, 

and LH). Remarkably, the values align closely, with differences seldom exceeding 1 degree. 
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Additionally, Figure 4.49 illustrates the EHC values in conjunction with temperature (on the left 

side) and along the x-axis (on the right side) for the numerical solution, where σ is set to 1 and 

the melting temperature is 309.7 K.   

Figure 4.47. The maximum error as a time step function for numerical methods Explicit, ASH, SH and LH [77] . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.48. The values of temperature u along x-axis in case of the analytical solution and the numerical methods 

(Explicit, ASH, SH, and LH) [77]. 
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Figure 4.49. The EHC for PCM slab plotted with the final temperature u (left) and with Cell Number (right) [77]. 

4.5.5.1.2. Second Step of Verification 

In the second phase of verification, the explicit method was employed as a reference 

solution, serving as a benchmark to evaluate other numerical methods. This comprehensive 

assessment aimed to measure mesh dependency, time dependency, and validate the applicability 

of a new PCM. Mesh dependency was scrutinized to understand the impact of mesh size on 

result accuracy. Following extensive analysis, an optimal mesh size of 3000 elements was 

identified, as demonstrated in Figure 4.50, and was subsequently applied across all study cases. 

Figure 4.50. The mesh dependency examination, number of mesh elements with max error (Left), and with total 

penetrated heat (Right) [77]. 

Regarding time discretization dependency, meticulous analysis was conducted to select an 

appropriate time step size to meet stringent engineering precision standards, which corresponds 

to errors less than 10-2. As illustrated in Figure 4.51 (Left), a time step size of ∆t=0.86s is enough 

and it is implemented across all ongoing study cases. 
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In addition, a secondary verification step was undertaken for the new PCM material within the 

same computational framework, conditions and system scales. Remarkably, Figure 4.51 (Right) 

illustrates the maximum error over time step size, displaying striking similarities to curves 

associated with the other PCM material depicted in Figure 4.51 (Left). This observation 

underscores the versatility of the numerical methods within my updated framework, making 

them highly effective for various types of PCM materials, irrespective of their specific properties 

or the boundary conditions. 

Figure 4.51. The maximum error as a function of time step size of three numerical methods for PCM1 (Left), and 

for PCM2 (Right) [77]. 

4.5.5.2. The Simulation Results 

In this section, I present the results of my study in terms of total heat, heat storage, and 

heat transfer from the outside to the inside. These factors signify the cooling load or the amount 

of heat that needs to be removed using electric devices or other methods to maintain the interior 

environment at a comfortable zone temperature, set at 298 K. Figures 4.52-4.60 displays the 

results of Case 1 and Case 2 using two types of PCMs. In Figure 4.52 and 4.53 I provide samples 

of Effective Heat Capacity (EHC), Latent Heat Capacity (LHC), and Sensible Heat Capacity 

(SHC) plotted along the x-axis for the comparison of walls made of brick and PCMs. These 

graphs illustrate the behavior of melting and the storage heat hump. Similar results were obtained 

for concrete and PCMs. Due to the consistency in behavior across various cases, additional 

figures are unnecessary. Instead, I have compiled the data, including total, latent, and sensible 

heat values, in Tables 4.18-4.21 for reference and further analysis. 
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Figure 4.52. The heat capacity in Case1 for  Brick+PCM1 (Left), Concrete +PCM1 (Right) [77].  

 

Figure 4.53. The heat capacity in Case of Brick+PCM2 (Left), Concrete +PCM2 (Right) [77]. 

Figure 4.54 illustrates samples of the effective heat capacity history plotted at selected points 

through the PCM (x=0.246, 0.233, and 0.2166 m) to allow the reader understanding the 

mechanism of heat saving during the phase transition which considering as a latent heat.  
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Figure 4.54. The Effective Heat Capacity history through PCM for Brick+ PCM1 in Case1 (Left), and Case2 

(Right) [77]. 

 Figures 4.55 and 4.56 illustrate the temperature history profiles at the middle of brick part of the 

wall. I can notice that the construction wall without PCM the temperature profile follows the 

outdoor temperature profile (applied boundary) with a small-time delay which represent the time 

of heat transfer against place. The utilization of PCM1 demonstrates a remarkable effect in 

maintaining the interior temperature close to comfort zone temperature and the initial values 

(308 K and 302 K) [82]. This indicates that a significant portion of the heat originating from the 

outside is efficiently stored inside PCM1 in the form of latent heat. Conversely, in the case of 

PCM2, the storage of heat is not as efficient due to its higher melting temperature (313 K) 

compared to the maximum applied temperature (317 K). Additionally, the latent heat capacity of 

PCM2 is considerably lower than that of PCM1. Consequently, a portion of the heat from the 

outside transfers indoors, leading to a noticeable impact on the indoor temperature.  

 

Figure 4.55. The temperature history in the middle of brick or concrete part in Case1 with PCM1 (Left), PCM2 

(Right) [77]. 
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Figure 4.56. The temperature history in the middle of brick or concrete part in Case2 with PCM1 (Left), PCM2 

(Right) [77]. 

Figures 4.57 and 4.58 depict the instantaneous total heat transfer observed throughout the 

duration of the study for both cases involving PCMs. These figures highlight a significant 

disparity in heat transfer between concrete and brick. Notably, the majority of this energy is 

directed inward, contributing to the interior environment. The influence of PCM usage on energy 

storage during the melting process is evident. However, it is essential to note that this increase in 

heat transfer does not imply that all of this energy directly infiltrates the interior space. A 

substantial portion of this heat is retained within the PCM during the transition phase, primarily 

in the form of latent heat. 

Figure 4.57. The total heat content in Case 1 with PCM1 (Left), PCM2 (Right) [77]. 
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Figure 4.58. The total heat content in Case 2 with PCM1 (Left), PCM2 (Right) [77]. 

Figures 4.59 and 4.60 provide a comprehensive overview of the cooling load, representing the 

heat transfer from the outdoor environment to the indoor space across the wall structure. In 

Figure 4.59 (left), the significant impact of using PCM1 in conjunction with brick or concrete is 

evident. PCM1 efficiently stores the heat from the outside, preventing it from infiltrating the 

interior space. In contrast, Figure 4.59 (right) illustrates that PCM2 does not store as much heat 

due to its higher melting temperature, leading to a comparatively lower heat retention. Upon 

examining the values in the tables, it becomes apparent that the use of PCMs reduces the heat 

transfer to the interior, with the extent of reduction varying from total to partial. This reduction is 

contingent upon factors such as environmental temperature, melting temperature, and the latent 

heat properties of the PCM materials. For instance, Tables (4.18-4.21) list the concrete values of 

the results’ parameters for all cases. I observed that integrating PCMs (PCMs) into construction 

walls significantly reduces the heat flow from outside to inside. PCM1, in particular, greatly 

decreases the interior heat flow due to its high latent heat capacity and appropriate melting 

temperature range, allowing it to melt and efficiently store energy. Additionally, it is noted that 

the cooling heat transfer values for both brick and concrete integrated with PCM are 

approximately halved. This demonstrates the effectiveness of PCM in storing most of the heat 

energy as latent heat, thereby minimizing heat transfer into the indoor environment.  
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 Figure 4.59. Cooling load in Case 1 with PCM1 (Left), PCM2 (Right) [77]. 

Figure 4.60. Cooling load in Case 2 with PCM1 (Left), PCM2 (Right) [77] 

Table 4.18. The results in Case 1 with PCM1 

Parameters Brick Concrete Brick+PCM1 Concrete+PCM1 

2max( ) /TotalQ kJ m  389.509 10  
3150.07 10  

3204.41 10  
3159.42 10  

2( ) /Totalmean Q kJ m  3  39.245 10  
364.070 10  

384.962 10  
387.624 10  

2max( ) /SensibleQ kJ m  389.509 10  
3251.80 10  

324.668 10  
3 9.7919 10  

2( ) /Sensiblemean Q kJ m  3  39.245 10  
3131.98 10  

314.752 10  
36.8909 10  

2max( ) /LatentQ kJ m  0  0  3182.59 10  
3149.63 10  

2( ) /Latentmean Q kJ m  0  0  380.930 10  
3 80.734 10  

2max( ) /CoolingQ J m
 

3  377.78 10  
3  879.75 10  

3  188.70 10  
3  239.28 10  

2( ) /Coolingmean Q J m
 

3  168.26 10  
3  391.83 10  

3  98.121 10  
3 123.19 10  
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Table 4.19. The results in Case 1 with PCM2 

Parameters Brick Concrete Brick+PCM2 Concrete+PCM2 

2max( ) /TotalQ kJ m  389.509 10  
3150.07 10  

3285.77 10  
3270.17 10  

2( ) /Totalmean Q kJ m  3  39.245 10  
364.070 10  

397.638 10  
389.696 10  

2max( ) /SensibleQ kJ m  389.509 10  
3251.80 10  

380.829 10  
3 77.298 10  

2( ) /Sensiblemean Q kJ m  3  39.245 10  
3131.98 10  

338.437 10  
342.473 10  

2max( ) /LatentQ kJ m  0  0  3239.81 10  
3204.90 10  

2( ) /Latentmean Q kJ m  0  0  360.884 10  
3 48.082 10  

2max( ) /CoolingQ J m
 

3  377.78 10  
3  879.75 10  

3  274.02 10  
3   467.4 10  

2( ) /Coolingmean Q J m
 

3  168.26 10  
3  391.83 10  

3 129.64 10  
3  213.78 10  

 

Table 4.20. The results in Case 2 with PCM1 

Parameters Brick Concrete Brick+PCM1 Concrete+PCM1 

2max( ) /TotalQ kJ m  3140.83 10  
3251.80 10  

3226.89 10  
3254.19 10  

2( ) /Totalmean Q kJ m  3  77.542 10  
3131.98 10  

3125.23 10  
3123.75 10  

2max( ) /SensibleQ kJ m  3140.83 10  
3251.80 10  

395.532 10  
3 113.35 10  

2( ) /Sensiblemean Q kJ m  3  77.542 10  
3131.98 10  

332.880 10  
342.238 10  

2max( ) /LatentQ kJ m  0  0  3229.94 10  
3255.16 10  

2( ) /Latentmean Q kJ m  0  0  3105.85 10  
3 100.61 10  

2max( ) /CoolingQ J m
 

3  304.19 10  
3  708.39 10  

3  136.57 10  
3  263.04 10  

2( ) /Coolingmean Q J m
 

3 110.86 10  
3  252.76 10  

3  69.906 10  
3  128.71 10  

 

Table 4.21. The results in Case 2 with PCM2 

Parameters Brick Concrete Brick+PCM2 Concrete+PCM2 

2max( ) /TotalQ kJ m  389.509 10  
3251.80 10  

3381.24 10  
3 365.72 10  

2( ) /Totalmean Q kJ m  3  39.245 10  
3131.98 10  

3155.68 10  
3 148.85 10  

2max( ) /SensibleQ kJ m  389.509 10  
3251.80 10  

3 76.041 10  
3 156.69 10  

2( ) /Sensiblemean Q kJ m  3  39.245 10  
3131.98 10  

376.041 10  
3 83.155 10  

2max( ) /LatentQ kJ m  0  0  3301.16 10  
3 258.61 10  

2( ) /Latentmean Q kJ m  0  0  383.240 10  
3 68.074 10  

2max( ) /CoolingQ J m
 

3  377.78 10  
3  708.39 10  

3  220.39 10  
3   376.23 10  

 

4.5.5.3. Computational Time of The Numerical Methods 

Table 4.22 presents the computational time for recent numerical methods applied to two 

distinct geometries: brick and brick integrated with PCM. The inclusion of only these two types 
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of geometries stems from the fact that computational times for brick and concrete are identical, a 

consistency maintained even when integrated with PCMs due to their equivalent system sizes. 

The tabulated values indicate that LH methods demonstrate quicker computational times. 

Nevertheless, it becomes evident that LH methods emerge as the optimal choice, striking a 

balance between speed and stability across all time step sizes.  

Table 4.22. The computational time of numerical methods  

Geometry 
Computational time (s) 

ASH SH LH 

Brick or Concrete 

 

  

29.1569  24.2810  19.7127  

Brick or Concrete+PCM  

or  

Or  

549.5274  451.4683  373.3887  

 

4.5.6. The Summary of The Present Section  

The present work summarizes the following:  

1. The novelty of recent numerical methods in effectively addressing the complexities 

associated with phase change,establishes the Effective Heat Capacity model, serving as a  

computational tool for simulating PCMs. 

2. Emphasizing the substantial impact of PCMs on cooling loads and heat transfer dynamics 

between outdoor and indoor environments, particularly in diverse wall structures, the 

findings underscore the crucial role of PCMs in energy management. 

3. Performance Disparities between PCM1 and PCM2: PCM1, distinguished by its lower 

melting temperature and higher latent heat, excels in proficiently storing external heat, 

thereby preventing its ingress into indoor spaces. In contrast, PCM2, characterized by 

higher melting temperature and lower latent heat, exhibits diminished efficiency in heat 

retention. PCM1, notably, achieves a significant reduction in heat transfer into interior 

spaces, approaching near-elimination due to its high latent heat and appropriate melting 

temperature range. 

4. Impact on Interior Temperature Regulation: PCM1, especially when coupled with brick 

or concrete, sustains indoor temperatures near initial values, exemplifying its adeptness in 

efficient heat storage. Conversely, PCM2, while providing insulation, exerts a 

comparatively lesser influence on indoor thermal conditions. 

In conclusion, this study accentuates the pivotal role of PCMs in mitigating cooling loads, 

preserving indoor temperatures, and impeding external heat intrusion. The judicious selection of 

PCMs, influenced by latent heat properties and melting temperature considerations, emerges as a 

critical factor in optimizing energy efficiency and elevating thermal comfort within architectural 

frameworks. For climates characterized by cold conditions, PCM2 is recommended, particularly 

when augmented by solar panels to harness and store daytime solar energy as latent heat for 

nocturnal cold periods. These discernments bear substantive implications for the formulation of 

energy-efficient structures, underscoring the strategic importance of PCM selection in building 

materials and construction methodologies. 

 



THESIS POINTS -NEW SCINTIFIC RESULTS  

91 
 

5.THESIS POINTS – NEW SCIENTIFIC RESULTS 

T1. I constructed and tested the Shifted-Hopscotch algorithms, which were fully explicit time-

integrators obtained by applying half-time steps and full-time steps in the odd-even 

hopscotch structure. I applied the conventional theta method with 9 different values, and 

the non-conventional CNe method to construct 105 combinations and I chose the top five of 

them via numerical experiments. These experiments suggest that the proposed methods are, 

indeed, competitive, as they can give fairly accurate results orders of magnitude faster than 

the well-optimized MATLAB routines or the Crank–Nicolson method, and they are also 

significantly more accurate for stiff systems than the UPFD, the Dufort–Frankel, or the 

original odd-even hopscotch method. If high accuracy is required, the S4 (0, ½, ½, ½, 1) 

combination can be proposed; however, when preserving positivity is crucial, the S1 (C, C, 

C, C, C) algorithm should be used [65]. 

T2. To demonstrate the practical utility of these advanced numerical techniques, I investigated 

13 algorithms to solve the problem of linear heat conduction in building walls. These 

included eight explicit, unconditionally stable algorithms invented by our research group, 

such as the Shifted-Hopscotch (SH) scheme. The validation process, where numerical 

results were compared against analytical solutions using both uniform and non-uniform 

spatial discretizations, was carried out as a teamwork. Then, I applied carefully designed 

nontrivial boundary conditions: spatially varying temperatures on the brick side and time-

dependent temperatures on the outer surface of the insulation. I found that the classic Odd-

Even Hopscotch (OEH) method delivers superior accuracy for homogeneous scenarios, 

while the Leapfrog-Hopscotch (LH) algorithm performs best in non-uniform 

configurations. Nevertheless, the Shifted-Hopscotch (SH) method also exhibited strong 

competitiveness across all test cases [68]. 

T3. I also examined 11 of the new methods to solve heat conduction, convection, radiation, and 

heat generation inside building walls' elements. These methods were tested on real-life 

applications involving surface area (one-layer brick) and cross-sectional area (two-layer 

brick and insulator) walls, with and without thermal bridging, to determine accuracy 

dependence on material properties, mesh type, and time step size. Neumann boundary 

conditions were applied to all boundaries, for surface area cases, the heat source, 

convection, and radiation inside all elements were considered, while for cross-sectional 

area cases only the right and left boundary elements containing heat source, convection, 

and radiation. The results indicate that the Original Odd-Even Hopscotch method is usually 

the best for uniform cases, while the Leapfrog-Hopscotch algorithm performs best for non-

uniform cases [60]. 

T4. In addition to Cartesian coordinates, I developed 9 of the new methods to solve heat 

transfer problems in cylindrical and spherical geometries. I reproduced novel and nontrivial 

analytical solutions for the heat-conduction PDE with high accuracy. Furthermore, I 

verified the numerical methods in cylindrical and spherical coordinates, incorporating 

convection and radiation terms, by reproducing real experimental data of a heated cylinder 

and comparing it with Finite Element Methods (FEM) ANSYS workbench. Convection and 

nonlinear radiation were considered on the boundary of the cylinder. Verification results 

demonstrated the high accuracy of the numerical methods in dealing with cylindrical and 
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spherical bodies. Additionally, temperature comparisons across all approaches revealed that 

explicit methods are more accurate than finite element software in all cases, with the 

Leapfrog-Hopscotch algorithm typically being the most accurate among the studied 

methods [42]. 

T5. I investigated the heat transfer through building walls, considering different wall 

geometries and heat load scenarios, encompassing both cooling and heating. My objective 

was to analyze how heat transfer depends on the wall materials and evaluate algorithm 

performance in cases involving heat transfer between solid surfaces and fluid (convection) 

on the outdoor surface, particularly across an air gap between the insulation and 

Photovoltaic Cells (PVC). The results of the study reveal that insulation prevents heat from 

entering the building, maintaining a comfortable indoor environment. Forced convection 

significantly enhances heat dissipation, especially during cooling operations to protect PVC 

with limited working temperature. Furthermore, the simulations highlight the air gap’s 

efficiency in cooling PVC and reducing maximum temperatures on the insulation’s outer 

surface, especially under forced convection conditions. The test results show that the 

Leapfrog Hopscotch algorithm offers the best solution for this highly stiff system, followed 

by the Asymmetric and Shifted-Hopscotch algorithms [73]. 

T6. I also simulated a multilayer wall integrated with PCMs using an effective heat capacity 

model and I employed the Leapfrog-Hopscotch methods for that. I validated my approach 

against established mathematical expressions and models in the literature, investigating 

various building wall geometries, two types of PCMs used in this investigation, and 

boundary conditions. The objective was to maintain interior temperatures within comfort 

zones. Regardless of the wall material, whether brick or concrete, my simulations 

consistently demonstrated the PCM’s effectiveness in minimizing heat transfer into indoor 

environment [77]. 
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