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INTRODUCTION

1. INTRODUCTION

1.1. General

Energy efficiency in the building sector is crucial for addressing the challenges of
climate change and fostering a sustainable economy. Buildings are significant energy consumers
and have the potential to make substantial contributions to reducing energy consumption and
global warming emissions. Enhancing the buildings’ energy efficiency requires a multifaceted
approach, with a particular emphasis on optimizing the thermal behavior of building
components. The efficient management of heat transfer within buildings is fundamental to
achieving energy sustainability and cost-effectiveness. Building envelopes, including walls,
roofs, and floors, exhibit different thermal performances depending on their position within the
building. To optimize energy efficiency, it is essential to accurately calculate heat transfer within
these building components.

The heat transfer in building components can be calculated by using the heat transfer
equation, which depends on various parameters, most importantly, material properties and
boundary conditions. Utilizing materials with excellent thermal properties such as thermal
conductivity, density, and specific heat capacity determines how effectively heat is transferred
through a material can significantly enhance heat transfer performance, thereby improving the
overall energy efficiency. Boundary conditions, determined by the internal and external
environments of the building, play a crucial role in heat transfer calculations. These conditions,
including temperature, humidity and airflow, serve as input parameters for accurately modeling
the thermal behavior of building components.

To conduct a precise thermal analysis of building walls, accurate numerical methods are
essential. Several studies in the literature have focused on heat transfer through walls to analyze
the thermal behavior of a multilayer medium in a transient regime. These studies have developed
mathematical models that calculate temperature and thermal contact resistance distributions.
Some research proposes MATLAB-based numerical solution models for simulations, while
others utilize computational fluid dynamics (CFD) methods.

1.2. Literature Review
1.2.1. Literature Review of Numerical Methods

The diffusion equation, incorporating a diffusion term, has been extensively studied,
resulting in numerous analytical solutions [1-6]. However, these solutions generally assume
constant parameters such as the diffusion coefficient or heat conductivity, which do not vary
with space, time, or the dependent variable u. A notable exception is the work of Zoppou and
Knight, who derived analytical solutions for the two- and three-dimensional advection-diffusion
equation with specific forms of spatially variable coefficients [7]. Nevertheless, for general cases
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INTRODUCTION

with space-dependent coefficients, numerical methods are essential. This is particularly true for
systems where physical properties vary significantly even within proximity [8]. Such variations
often result in eigenvalues spanning several orders of magnitude, leading to severely stiff
problems.

When partial differential equations (PDES) are spatially discretized, they are transformed
into systems of ordinary differential equations (ODEs). Solving these systems numerically
becomes particularly challenging when dealing with many variables, especially in three-
dimensional spaces. Traditional explicit methods, such as the Runge-Kutta method, are
conditionally stable, meaning they require very small time steps to maintain stability, which can
be computationally expensive for large-scale problems. In contrast, implicit methods are
typically unconditionally stable, allowing for larger time steps, but they require solving systems
of algebraic equations at each time step. These algebraic systems can be computationally
intensive, especially when the matrices involved are non-tridiagonal or have complex structures.
To address these challenges, significant efforts have been directed toward developing advanced
modifications to improve the efficiency of implicit methods [9]. Currently, implicit methods with
these extensions are commonly used to solve stiff problems, such as those involving rapid
temperature changes, high thermal diffusivity materials, or systems with multiple heat transfer
mechanisms (e.g., conduction, convection, and radiation). These methods are particularly
effective for problems where stability and accuracy are critical, such as heat transfer in
multilayer walls, phase change materials (PCMs), and other complex building components.[10-
12]. Despite these advancements, parallelizing implicit methods remains challenging, though
some progress has been made [13,14]. The shift towards increased parallelism in high-
performance computing [15,16], driven by the stagnation in CPU clock frequency
improvements, further emphasizes this issue.

Given these challenges, a part of my work focuses on developing novel, explicit, easily
parallelizable, and unconditionally stable methods. A key example is the original odd-even
hopscotch (OEH) algorithm, introduced by Gordon [17] and later reformulated and analyzed by
Gourlay [18-20] (see also [21]). This method has been modified to enhance its reliability and
accuracy, typically by increasing its implicitness. This has led to a hierarchy of algorithms, from
the fully explicit OEH to the alternating direction implicit (ADI) hopscotch, each offering greater
accuracy at the cost of increased programming complexity and runtime [19]. Morris and Nicoll
applied these methods to thermal print head calculations and found that, while the OEH method
was faster than its more implicit versions for isotropic media, it produced inaccurate results for
anisotropic cases, necessitating the use of the ADI hopscotch for meaningful solutions [22].

The OEH method has since been applied to various problems, including the
incompressible Navier-Stokes equations [23], the Frank-Kamenetskii [24] and Gray-Scott
reaction-diffusion equations [25], and even the nonlinear Dirac equation [26]. Goede and
Boonkkamp implemented a vectorized OEH scheme for the two-dimensional Burgers’ equations,
significantly increasing speed and solver performance [27]. Recently, Maritim et al. developed
hybrid algorithms incorporating the hopscotch, Crank-Nicolson, Du Fort-Frankel, and other
schemes for the two-dimensional Burgers’ equations, finding their implicit algorithms stable and
accurate [28,29].

In a series of papers [30-32], new hopscotch combinations were developed using
alternative formulas to the original explicit and implicit Euler schemes. Tests showed [30] that
6
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for stiff systems, the original OEH method could produce significant inaccuracies for large time
steps, with relative errors reaching up to 10%, which could be more problematic than instability if
unnoticed by inexperienced users. Two of the three new combinations, however, demonstrated
much better performance.

1.2.2. Literature Review of The Energy Efficiency in Buildings

The efficient management of heat transfer in buildings is paramount for achieving energy
sustainability and cost-effectiveness in the built environment. The comfortable interior
environment of the building is a crucial issue for most people living or working inside, and it
largely depends on the wall structure. So, to understand how the wall structure is affected in the
interior zone, | will focus on the thermal analysis of the wall structure by using very efficient
algorithms. The integration of advanced materials and technologies into building envelopes has
gotten significant attention from researchers and practitioners alike. Among these innovations,
the combination of phase change materials (PCMs) and thermal insulation holds great promise
for enhancing energy efficiency and occupant comfort. PCMs are known for their high heat
capacity and outstanding energy storage potential, as well as low heat transfer coefficient. The
integration of PCM within building envelopes offers the ability to store and release latent heat
during phase transitions, thereby mitigating temperature fluctuations and reducing the reliance
on mechanical heating and cooling systems. Concurrently, thermal insulation serves to minimize
heat transfer, further enhancing the overall energy performance of the building. Historically,
numerical simulations have played an important role in understanding the nature of heat transfer
within building structures.

X. Geng et al. [33] explored the optimization of the location combination for thermal
insulation material (TIM) and PCM in multi-layer walls during both continuous and intermittent
air-conditioning operations. These walls typically incorporate TIM or PCM layers to enhance
thermal performance. Four wall models were constructed for evaluation, considering temperature
and heat flow on inner surfaces. Placing the PCM layer inside the wall proves better for outdoor
thermal environments during continuous air-conditioning, while situating the TIM layer inside is
preferable for higher energy-saving contributions during intermittent operation. Despite
intermittent operation yielding energy savings of 46.69-64.73%, it raises the peak load on the
urban electricity system compared to continuous operation. Notably, for multi-layer walls with
the TIM layer inside, this negative effect is negligible in comparison to their superior energy-
saving benefits.

Z. Liu et al. [34] showed that the PCM can enhance lightweight building walls' (LBW)
thermal performance, but optimal parameters vary by wall orientation due to outdoor thermal
variations. A study tested a small-scale LBW in different orientations and analyzed PCM's
impact using a heat transfer model. The results suggest that east and south-facing walls benefit
from PCM in the middle temperature range (20-30°C), while west and north-facing walls
perform best with inner (18-28°C) and outer (24-34°C) PCM placement. East and west-facing
walls see the most significant thermal improvement, reducing peak and average heat flux by
62.8-66.4% and 28.2-29.5%, respectively, and increasing delay time by 5-5.34 hours compared
to reference walls.

E. Tungbilek et al. [35] explored combining PCMs and conventional thermal insulation
for enhanced energy savings in building walls. PCM on the interior side with layer thicknesses
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Lrcm < 16 mm outperformed insulation saving up to 38.2% more energy than insulation with
layer thickness Lins =6 mm. A parameter y defining the ratio of Lpcm t0 Lpcm + Lins Was
introduced. Combining PCM and insulation (a configuration labeled by C5 in their paper, y =
0.05) saved up to 7.3% more energy compared to insulation alone. Overall, combined designs
with 0 <y < 0.6 showed improved energy savings compared to insulation only, with latent heat
activation being crucial for better thermal performance.

Y. Cascone et al. [36] conducted a study on optimizing PCMs in retrofitting office
buildings for energy efficiency in Mediterranean climates, crucial for achieving EU's 2020
sustainability goals. PCMs, with careful consideration of properties, quantity, and placement, are
recommended for effective and economically feasible use. The paper presents multi-objective
optimization analyses for retrofitting with PCM-enhanced opaque building envelope
components. Objectives included minimizing primary energy consumption, global costs,
building energy needs for heating and cooling, and investment costs. The research variables
encompassed PCM properties, window type, insulation materials, and wall configuration. Post-
optimization analyses provided insights for designers, revealing that optimal PCM properties are
notably influenced by the HVAC system's operation.

R. F. Jam et al. [37] conducted a study for optimization of the PCMs location and
thickness in building walls with an energy-economic analysis. The research emphasizes the
significance of thermal insulation for reducing energy consumption in buildings. CMS are
investigated as a form of insulation in an educational building at Hakim Sabzevari University,
Iran. Through numerical simulations, the study explores the effects of PCM integration during
the hot months of the year. Optimal PCM placement within the wall and various thicknesses (2,
3, 4, and 5 cm) are analyzed. Results indicate heat exchange reductions of 9.8%, 13.4%, 17.5%,
and 20.4%, respectively, for different PCM thicknesses. Additionally, a thermo-economic
analysis calculates energy savings and payback periods. The study identifies a 3 cm PCM
thickness as optimal, resulting in a 50-month payback period through Pareto solutions and the
TOPSIS method.

M. J. Abden et al. [38] conducted research on the combined use of PCM and thermal
insulation to improve energy efficiency of residential buildings, applying thermal insulation to
external walls and ceilings in standard practice. The study evaluates the approach by combining
expanded polystyrene with PCM gypsum board in a typical Australian standalone house.
Numerical simulations are conducted considering the house's location in three distinct Australian
cities—Darwin, Alice Springs, and Sydney—representing tropical savanna, hot semi-arid, and
humid subtropical climates, respectively. Results indicate significant cost savings over a 10-year
lifecycle: AU$167.0, $162.3, and $39.7/m? in Darwin, Alice Springs, and Sydney, respectively.
Additionally, energy ratings improve by 3.5, 3.8, and 4.3 stars in the three cities. Payback
periods for the renovation vary from 2.2 to 7.5 years, contingent on climate conditions.

E. Iffa et al. [39] conducted thermal energy storage systems in buildings serve to store
cooling/heating energy during non-peak load hours or when renewable energy sources are
available, aiding in peak load shaving, reducing electric grid burdens, and enhancing occupant
thermal comfort. While thermal lag in systems like thermally activated building systems often
leads to passive energy release, integrating active insulation systems can enhance flexibility in
charging and discharging energy. That study designed a wall system equipped with both active
insulation and thermally activated storage systems to evaluate its performance in contributing to
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active cooling energy. The results showed that the thermal properties of the storage core material
and the spacing of embedded pipes in both the storage and active insulation systems significantly
influenced wall performance. During discharging, heat flux into the wall reached up to
81.92W/m?, with the dynamic R-value of the active insulation system varying from less than
1ft2-°F-h/BTU (0.18 m?-K/W) to 98% of equally thick foam insulation's R-value.

P. Arumugam et al. [40] aimed to optimize PCM and insulation placement in building
envelopes for improved thermal performance and reduced cooling load demand in Indian office
buildings across different climates. Models integrated with PCM or insulation on outer walls
showed more comfortable indoor temperatures than those on inner walls. The selection of PCM
and insulation depended on location temperatures. The recommended techniques resulted in
cooling load reductions of 64%, 61%, 57%, 63%, and 58/59% for Bangalore, Delhi, Jodhpur,
Pune, and Guwabhati, respectively, compared to basic buildings.

1.3. The Aim of The Dissertation

The dissertation aims to design and implement new, efficient explicit numerical methods
to solve the linear and nonlinear heat equations, encompassing heat conduction, convection,
radiation, and heat generation across Cartesian, cylindrical, and spherical coordinate systems.
The work builds on the modification of well-known numerical methods, such as the Explicit
Euler based FTCS (forward time central space), the Implicit Euler method, the Crank Nicolson
method, the Rational Runge-Kutta method, the Dufort-Frankel (DF) method, the UPFD
(Unconditionally Positive Finite Difference) method, Heun’s method, and the original hopscotch
method, to enhance their efficiency and stability. Building on these modifications, improved
numerical schemes were developed, including the constant neighbor method, the two and three-
linear neighbor method, and the CpC method. The core novelty of this work lies in the invention
of entirely new numerical methods, such as the Shifted-Hopscotch method, Leapfrog-Hopscotch
method, Asymmetric-Hopscotch method, Reversed-Hopscotch method, and Pseudo-Implicit
method, which represent significant advancements over existing explicit numerical schemes,
offering superior stability, accuracy, and computational efficiency for solving complex heat
transfer problems. These methods were implemented and tested using MATLAB 2020b,
rigorously verified and validated against analytical solutions and experimental measurements,
and applied to real-life heat transfer problems in various engineering applications. They serve as
powerful tools for thermal analysis, enabling the calculation of temperature and heat energy
distributions in complex geometries and systems. In this dissertation, the methods were applied
to analyze heat transfer in different building walls and heated cylinders, ranging from simple
geometries (low stiffness systems), such as insulated walls, to highly complex geometries (high
stiffness systems), such as multilayer walls composed of different materials (e.g., insulators,
phase change materials (PCMs), and base materials like brick or concrete). The goal was to
control the amount of heat transfer between indoor and outdoor environments, contributing to the
development of sustainable and energy-efficient buildings. By achieving these objectives, this
research advances ongoing efforts to improve energy efficiency and sustainability in building
design.



THE HEAT TRANSFER EQUATION

2. THE HEAT TRANSFER EQUATION

In the current study, | aim to calculate the heat transfer in different geometries. First, |
derive the heat transfer equation (encompassing conduction, convection, and radiation) based on
energy balance in Cartesian coordinates, and then in cylindrical and spherical coordinates.

2.1. The Heat Transfer Equation in Cartesian Coordinates

For the Cartesian coordinate, consider a small rectangular element Ax,Ay,Az, as shown in

Fig.2.1. The energy balance for the differential control volume during a small-time interval At
can be expressed as [41] :

atx,y,and z X+AX,y+Ay, and z+Az inside the element X,y,Z X,y,Z

_( The change of energy
~| content rate of the element

[The heat conduction rate j (The heat conduction rate atj+[ The heat generation rate j+[ The covection rate at ]+ [The radiation rate at ]

Or
AEelement 2.1
Qx + Qy + Qz _Qx+Ax _Qy+Ay _Qz+Az + Qgen + QConvection + QRadiation = T ( ' )
(): +AZ
Volume element Q\- +Ay
/\
, \ T P4
Oy
\ I
5 o0 AXAYAZ —7
€ en » | \l\‘ )
. Q X+ AX
Z Q, g
Ax Y
) \|A|/
X Q:

Figure 2.1. 3D rectangular element [41].
I use the following three well-known laws:
Fourier’s law of heat conduction:

Au Au Au
Qu=kSy Q= —k.Sy.A—y,QZ =S, (2.2)

where u=u(r,t) Iis the temperature, k=k(r) is the thermal conductivity of material and the
surface area of the element in x,y and zare s, =ayAz, S, =AxAz and S, =AxAy respectively .

Newton’s law of heat convection:

Qconvection = thAu = hcs(ua -u), (23)
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THE HEAT TRANSFER EQUATION

where hc represents convection heat transfer coefficient, S is the surface area, and the ambient
temperature u, does not depend directly on u, and the term hsu, therefore it is included into the

heat generation term.

The law of Stefan—Boltzmann for the incoming and outgoing radiation heat:
Qradiation = U*S(Ui[l -ut) (2.4)

where s* =sB-¢, i.e., the Stefan-Boltzmann universal constant SB=5.67x10"°wW/m? -K*) is

multiplied by the proper constant of emissivity & where the surface has a non-unity emissivity,
ui is the temperature of the incoming heat radiation, and u is the temperature of the outgoing
radiation by the surface elements. Incoming heat radiation, such as direct sunlight, is

incorporated into the heat source term q as the o*su term.
AEgiement = Etrat — Bt = MC(Upar —Ug) = PCAV (Ugipe —Ug) » (2.5)

where p = p(¥), c=c(f) and AV =AxAyAz are the density, the specific heat and the elementary
volume, respectively. Substituting Egs (2.2-2.5). into Eq. (2.1), dividing by AxAy.Az and limited
as Ax,Ay,Az,At —0Yyields:

— *s(ud —ut
g(ka—uj+i k@_u +g(k8_uj+ Qgen +h°S(uf’l u)+a S(ui —u )=pca—u (2.6)
OX\  ox/) oy\ oy) 0z\ 0z) AXAyAz  AxAy.Az AX.Ay.Az ot

Eq. (2.6) is divided by (pc), and if k is constant, | obtain

kou kot kofu 1 Qun | 1hSWU-u), 1o'Sui-uh)
pCox®  pCoy?  pe oz’ pCAXAYAZ  pC AXAYAZ  pC AXAy Az ot

2.7)

Where the property « =LC is the thermal diffusivity of the material. In this work do not consider
Yo

volumetric heat generation, so the heat generation is represented by all incoming heat that
crosses the surface element. | introduce q°, which is the incoming heat by radiation and
convection for a unit area. In all of our cases, the direction of the heat transfer is constrained to
the horizontal direction, thus S = AyAz and Qg,, =(q” +hu, +o"uf )s . With these, I obtain

2 2 2 * * 4 « 4
h. AyA AYAZ U; h.AyA
a6u+aau+aau+1quAz+1 cyZUa+10 yAzui 1 hAyAzu 1 o AyAzu :au 2.9)
X2 oy? 012 pPCAXAYAZ  pC AXAYAz - pc AXAYAzZ  pC AXAYAz  pc AXAyAz ot

After simplification, | have

2, A2, A2 * x .

h

9 AU U B Uy +——uf - — -2 y* u (2.9)
x> oy’ ar® ) pcAX  pcAx T cpAX PCAX  CpAX ot

The equation for the temperature, which includes the source of heat generation, conduction,
convection, and radiation can be expressed as follows:

%u:ozvzu+q—Ku—au4 (2.10)

11



THE HEAT TRANSFER EQUATION

Where is the heat generation or heat source coming from the outside of the wall structure,

e is the heat transfer convection term, and o:a(r):ﬁ is the radiation heat
0

K =K(r)=
) CpAX

transfer term, where K and o are exist at the interface surfaces (interface between the solid and

liquid or gas); otherwise, it is set as zero at the interior elements within the solid body. The terms

4

g, Ku, and ou” in Eq. (2.10) are nonnegative and still in [k /s]. If there is a multilayer wall, then

the material properties depend on space, so an equation with a more general form can be used as
follows:

a—u:iV(kVu)+q—Ku—<7u4 (2.11)
ot pc

2.2. The Spatial Discretization in Cartesian Coordinates

The standard central difference formula in two space dimensions is applied for the
second-order derivative (v2u ). The space steps are Ax and Az as shown in Figure 2.2. Now, for
the nodes of a homogeneous material, one obtains

Uxiyq) —u(x) |, U(xiq) ~u(x)

o AX AX Ujig —2Uj +Ujyq

ox? () AX AX2 ( )
U(ziznx) —U(z) | u(zi-ng) —u(z)

iu(z.) ~ AZ i Az _ Ui-Nx _2ui + Ui Nx (2 13)

o2 T Az B AZ? '

| obtain the spatially discretized form Eq. (2.11) in two dimensions:

duj  Ujg —2Uj +Ujg | Uiony — 2Uj + Ui ny
—L=a 5 +a 5
dt AX Az

+q-Ku; —ou* (2.14)

Now, to be more realistic, let the k, ¢, and p quantities be functions of space. Then Egs. (2.12)
and (2.13) can be written using a two-dimensional, equidistant grid in the following form:

Pupg) 1 'k(xﬁ%jwwtxi_%jw} (2.15)

2 c(x;) p(%)AX| AX AX
82u(zzi): 1 _k(zi+£ju(zi+AZ)_U(Zi)+k(zi—£ju(zi_AZ)_U(Zi)} (2.16)
oz c(z;)p(z)Az| 2 Az 2 Az

I now change from node to cell variables, which means that u;, p, and ¢ will be the

temperature, density, and specific heat of cell i, respectively. Furthermore, since the material

boundaries will always coincide with the cell borders, | write the average % instead of

k(xi+%) . Now the discretized form of Equation (2.11) will take the form

dui _ 1 (kitkia Ui -U kitkiaUig-u) 1 (Kt Ui, o KKy, Uiy, U
dt cipiAx\ 2 AX 2 AX Cj piAzk 2 Az 2 Az

+q—KUi —O'Ui4

(2.17)
12
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The distance between the centres of neighbouring cells is the same as the mesh spacing, and the
interface area between cell i and its right neighbour is always S. Now | have

AyAZ Ki +kii1 Uisg — Ui 4 AyAZ Ki +Ki_g Uig U
dﬂ_ 1 2 AX 2 AX
dt ¢ AXAyAz +AxAy Ki +Kitn, Uien, —Ui Ki +ki—n, Ui-n, —Yi
Az

+q - Kuy; —ou;* (2.18)

+ AXAy

The cell’s heat capacity can be calculated as c, =¢pV . | calculate the thermal resistances in a

horizontal and vertical direction between the neighbouring cells, as Rimzﬂ+ Ax

, and
2ki Az 2ki+lAZ

Riin, ~—2_ A2 respectively, where i and j represented the cells' index in the x-axis and
’ x ZkiAX 2ki+NXAX

z-axis. Semi-discretized form of Equation (2.14) can be expressed as below:

dui _ Uig—Ui QUi =i Uin, —Ui  Uign, —Ui

+ +q- Ky — oy (2.19)
dt  Ri1iC  RiiG RiniGi  Rin,iGi

The time is discretized uniformly with a time-step size At and represents the temperature of cell
I at the time nAt, n=0,1,...T. Now the formulae of the used methods are presented for the
general discretization (2.19) only. For the simpler formula, | need to define the following
quantities:

pred
+At-q and A" =AY L+ At-q;

ij j=i i)

n
1 uj
1 I

j=i ZiNj ji

Where mr;j is the general mesh-ratio, while A; shows the state and the effect of the neighbors of
cell i.We prefer to use the ODE system for a general grid, which gives the derivative of the time
of each temperature independently of any coordinate system

du; Uj i 4

N1 Lag-Ku —oU .

it e +0; — Ku; — o (2.20)

i#]
Which can be written in matrix form
f'j_fzmmq, (2.21)

where Q = g, - Ki; —oti;*, and the diagonal element of matrix M can be written as follows

mi= > 1 Off-diagonal elements m; =1/R; ;C; of the global matrix M are nonzero only
jeneighbour i, j~i

if the cells i and j are neighbours. From this point, all summations are performed over the
neighbors of the current cell, denoted jen(i). Unless specified, closed (zero Neumann) boundary
conditions are applied, thermally insulating the domain's edges from conductive heat transfer. To
help the reader imagine, we present the arrangement of the variables in Figure 2.2 for a 2D
system. The framework is designed for generality, supporting both structured and unstructured
meshes.

13
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PX
Z
U\ SR G Chx /0

q Cra+1 q

K
> CN

Figure 2.2. Arrangement of the generalized variables [Original].

For example this 4x4 system, the system of ODESs in matrix form can be written as

-1 N -1 1 1 0
C1F1{12 CiRi3 . C1R1]2- . Cy R113 .

U b — — W) (Q
diuy |_ Czﬁm CaRos 1C2 Ras  CaRos . Cz R123 . CoRog || Uz |_| Q2 |
dt| Us - - - - Us 3

+ +
s C3Rag Csﬁsz CRy1 Gy R132 CoRay . Cis34 Us) Qe
0 =
C4Ry2 C4Ry3 CaRap  C4Ry3

2.3. The Heat Transfer Equation in Cylindrical and Spherical Coordinates

In a similar way, the heat transfer equation in cylindrical coordinates can be obtained from an
energy balance on a volume element in cylindrical coordinates, considering a small 3D
cylindrical element as shown in Fig. 2.3. The energy balance in this element during a time
interval can be expressed as [42]:

QB'AO,,_ /Qr-m
‘ Qoga0 1\ S
i N
p— i . rsinu,a‘—-\/
! e X
P @0 4 il R _ EZND7 Qe
\\ \TD j ¥ /L Q’/ S £
i i Qr !
b e W Qo
i \ 2\
L _\,\Y,;,f \
e |
. 4
z ://’// /
0 /
e /
o X i SR S - s /
kT L

Figure 2.3. The cylindrical (left) and spherical (right) elements [42].
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The heat conduction rate The heat conduction rate at The heat generation rate inside N The convection rate
atr ¢,z r+Ar, ¢+A¢, 2+Az and on the surface of the element ) | at the r, ¢, z element

N The radiation rate ) _( The change energy
“\atther, ¢,z element ) | content rate of the element

or briefly,

AE
Qr + Q¢ +Q; —Qriar— Q¢+A¢ —Qginz + Qgen * Qconvection + Qradiation = eA—etmem (2-22)

To fill Eq. (2.22) with concrete formulas, the following three well-known laws are used.
Fourier’s law of heat conduction:

Au Au Au
Q _—kSE,Q¢ _—kSA—¢,QZ ——kSE (2.23)

The heat convection, radiation, and the change in energy of an element over a specific time
interval are the same in Cartesian coordinates except the element volume being

AV :A¢(r+A%)ArxAz. In the case of full cylindrical symmetry, it is better to choose a full ring-

shaped element, which yields AV = 27 (r +A0)Arx Az = z((r + Ar)* —r® ) Az .

From these equations, one can derive the heat-transport equation in a 3D cylindrical coordinate
system, which can be written as:

*o ) 4
L), L2 (), 00, Qn 10 g5 oo (.20
ror\ or) 2og\ o4) a2\ ez) AV AV av ot

In the case of spherical coordinates, a small 3D spherical element can be seen in Figure 2.2 The
heat-transport equation for this case can be expressed as follows:

*a 4
ig(k rza—u}r L Ofyu), 1 i(ksinaa—uj+Qge” _hSu_ o Su :pca—u (2.25)
r2 or or r2sin? g 0¢ 00 ) r?sing 06 AV AV AV ot

2.4. The Spatial Discretization in Cylindrical and Spherical Coordinate

In the case of cylindrical geometry, | consider tube-shaped cells with height Az and
thickness ar. For spheres, the cells have spherical-shell shapes with thickness Ar again. The
temperature is considered at the middle of the cell layer, where the radial distance from the
origin (the mean radius of the cells) is denoted by r, while the subsequent radius of the cell

border is denoted by r* =r, + Ar/2.

The cell’s heat capacity in the cylindrical and in spherical cases is approximated as
Ci=capr(rd-5?)az and C =cp %7 (r "), respectively.

Let us denote the area of the cylindrical cell-surface perpendicular to r with s, , which can be
given as s, =2 r Az. Now, for the thermal resistance in the r-direction, the approximate formula

ha  dr eng dr _nr;—Inr,
fi ki’i+1Sr fi ki’i+127Z'rAZ Zﬁki,iJrlAZ

Rijsa ~ [ (2.26)
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is used. For the thermal resistance in the z-direction, the approximate formula
(zien, —2) s used, where the cell i + N is below the cell i.

Riitn, =
ki7f("i«2+1 - "i2)

In the spherical case, s, can be given as s, =4~ r2. Using this, the thermal resistance is
calculated similarly as that in the cylindrical case, but now the integration vyields
R 1 fa=f From Equations (2.24) and (2.25) it is easy to obtain the ODE system

ii+l ~
47K Gifia

Uj —Uj Qgen hSUi O'*SUi4
+ p— —
Ri,jCi Ci Ci Ci

dUi _
b (2.27)

j#i
to determine the time evolution of the cell temperatures. Here, S is the area of the surface on
which the convection and radiation occur, which will be the outer surface of the cylinder in Fig.
2.3. If one neglects the higher powers of ar, one can easily derive that c, /s =c;par in both

cases. Inserting these into (2.27), | can write Equation (2.27) in a simpler form:

du; Uj—U
—t= L g -Ku-ouf,

j#i

which will be solved numerically.
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3. SOLVE THE HEAT EQUATION NUMERICALLY

The numerical solution of the heat equation is frequently approached via discretization
methods such as Finite Difference (FDM) [43-45] and Finite Element Methods (FEM) [44].
However, they can be extremely time-consuming since the examined system must be fully
discretized both in space and time. Due to material inhomogeneities, which produce eigenvalue
spectra spanning several orders of magnitude. This stiffness forces an exceedingly small CFL
(Courant—Friedrichs—Lewy) limited time step for explicit schemes, rendering them inefficient or
unstable. Consequently, implicit methods are traditionally employed for their unconditional
stability, typically used for solving these kinds of equations, for example [47-53]. They solve
equation systems containing the whole system matrix; thus, they can use a lot of CPU time and
computer memory, especially when the number of cells is large, which is always the case in three
dimensions.

It is well known that the former rapid increase in CPU clock frequencies is over, and the
tendency toward increasing parallelization in high-performance computing is powerful [54,55].
Thus, | think time is on the side of explicit methods because they can be much more
straightforwardly parallelized. That is why | started to investigate explicit algorithms with
improved stability properties. These explicit methods can also serve as a basis for implicit
methods.

3.1. Existing Numerical Methods

Many explicit algorithms have been developed for heat conduction, convection, and
radiation equations. While some methods adopt a purely explicit calculation strategy, others
employ a mixed approach, integrating explicit and implicit calculations to balance computational
efficiency and stability. Some of them are unconditionally stable for the linear heat conduction
equation, and have special characteristics to deal with nontrivial cases. More details in the
following:

3.1.1. The Explicit-Euler Method

The FTCS (Forward Time Central Space) scheme, the most common explicit method for
the heat equation, uses the Explicit Euler method for time integration [44]. Now | adapt this to
the heat transfer equation in the most standard way, thus the general formula is the following:

u™ = (1-mn)ul + A - ALK -ul - Ato - ) (3.2)
In case the convection and radiation terms move to the denominator, then the Explicit Euler is
called the Non-Standard Explicit Euler NS-ExpE.
3.1.2. The Crank-Nicolson Method

The Crank-Nicolson method [28] provides an alternative implicit scheme to provide
accuracy. Difference approximations are developed at the midpoint of the time increment, and it
is unconditionally stable, second-order accurate in both space and time, suitable for stiff systems.
Thus the general formula is the following:
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. (1—m%jui” + A +1-At-K; -ul' —At-o; - (uM)?
W 1+mr (1-1) ' (32)

3.1.3. The Uniformly Positively Fractionalized Difference (UPFD) Method

The UPFD method is constructed by Chen-Charpentier and Kojouharov [56] for the
linear advection - diffusion -reaction equation. Recently, | adapted it to the heat transfer
equation as follows:

.n "
url = Siiasta B (3.3)
1+mr +At-K; +At-o; - (i)

3.1.4. The Dufort—Frankel Method

The Dufort-Frankel (DF) algorithm is a known but non-traditional explicit scheme [57]
that is unconditionally stable for the linear heat equation. Now the formula for the case of Eqg.
(2.20) and (2.28) is as follows:

i (l—mr“)ui”‘1 +2A —2-At-K-ul'=2-At-o-(u")* (3.4)

1+mr;

One can see that the formulas contain u?, thus it is a two-step but one-stage method. As the
method is not self-starting, an additional technique is required to initialize it by computing uf .
The UPFD formula (3.3). is employed for this initial calculation

In case of the convection and radiation terms move from the numerator to the denominator, then
the DF is called Non-Standard Dufort—Frankel NS-DF.

3.1.5. The Rational Runge—Kutta Methods

From the family of the Rational Runge-Kutta methods, | chose a two-stage version [58]
with the following definition. A full step is taken at the first stage, by the Explicit-Euler scheme,
to obtain the predictor value. The increment for Eq. (2.20) is calculated as

g = mr(uin_l—Zui” +ui”+1)+At.q—At~ K-ul' —At-o-@ul)*
and
gh =—mrul + A —At-K-u —At-o- (u)*.
Using these ¢' values, the predictor values can be obtained for all grid types as
uPred =y 4 gt

After this, using the predictor values obtained above, the second Euler step increment is
calculated:

97 = mr(ui'o_rfd —ufred 4 yPred )+At-q —At-K-uP®d At o Py

and g? = —mriuipred + A ALK -uiprEd ~At-o- (uipred)4.

Now one needs to calculate the following scalar products
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p=(g%0")=Y gidl, Py =(@1,§2)=i9395, P2 =(§2,@2)=i9595,
i i=1 i=1

and with them one obtains the final expression for the new values of the variable:

2P0 - 2P 0i + g7 (3.5)

uin+1
4p —4p,+p,

=ul +

3.1.6. The Heun’s Method

Heun’s method, also referred to as the explicit trapezoidal rule, is a prevalent second-
order Runge-Kutta (RK) algorithm for integrating ordinary differential equations ODEs and
systems of ODEs [59], so it is straightforward to use it as a component of method of lines. It
starts with a predictor step, which is an explicit Euler stage. In the cases of Eq. (2.20) and (2.28),
it has the form:

uPed — (1-mp )u + A —At-K-ul —At-o- ().

A corrector step subsequently refines the solution by averaging the newly predicted and
previous values of u :

n pred
u' +ul 4
uMt =ul —mr 'T'+%£A +A™ —K (u,” +ypred )—a(u{‘ +uipr6d) j (3.6)

3.1.7. The Original Odd-Even Hopscotch Method

To use an odd-even hopscotch method, a special, so-called bipartite spatial grid is
necessary, where the cells are labelled as odd and even, and similarly to a checkerboard, all the
nearest neighbors of the odd cells are even and vice versa. The odd-even labels are interchanged
in each time step, as is shown in Fig. 3.1A. Originally, the standard Explicit Euler formula was
applied in the first stage, and the Implicit-Euler formula was applied in the second stage [61].
The general formulas are the following:

Explicit Euler: u™ =(1-mr)ul + A —At-K; -ul' - At-o; - (u]")* (3.7)

n new
Implicit Euler: uM™! = Ui A , 3.8
P Y Lemr + ALK, + AL - () (38)

This implicit formula becomes effectively explicit because the required u?*l values are already

available from Stage 1. This defines the Original Odd-Even Hopscotch (OOEH) method, which
is unconditionally stable for the linear heat equation. However, for nonlinear cases with
large r values, the update can yield negative temperatures. This instability arises when large
negative values appear in the denominator term (u')®. To mitigate this, a simple stabilization is

applied; negative values are prohibited using a conditional statement:
if u™ <0 then u™=0. (3.9)

This trick will be applied in all cases in this method and the remaining methods when there is a
possibility of negative temperatures.

In the case of using the Non-Standard Explicit Euler, then the OOEH is called Non-Standard
odd-even hopscotch NS-OEH.
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3.1.8. The Reversed Odd-Even Hopscotch Method

The reversed odd-even hopscotch method (ROEH) is different from the OOEH method
because it applies the formulas in the opposite order: first the implicit Euler (3.8), then the
nonstandard explicit Euler formulas (3.7), with condition (3.9). However, when first-stage
calculations begin with the implicit formula, the new values of the neighbors are not known. In
the ROEH method, they are taken into account in the old time level, which is the same trick as
the UPFD method uses.

odd even odd even
I —-t=0
1
At 1 2
|
2 1 |
| |
| |
| |
\
2 1 |
—~ e e t=tg
A B ¢ D "

Figure 3.1. Space-time structure of (A) The original hopscotch and the reversed hopscotch methods. (B) The
leapfrog-hopscotch method. (C)The shifted-hopscotch method. (D) The asymmetric hopscotch method [60].
3.2. The Developed Numerical Methods

In this section, | present some methods which were originally constructed for the heat
conduction equation without my participation, but I took part to adapt them to the case with
conduction and radiation.

3.2.1. The Constant Neighbor Method
The constant neighbor (CNe) method [28] for Equation (2.20) and (2.28) is:

Loyh e +i(l—e_mri )+At~q—At- K-u' —At-o-uh)*. (3.10)

o
me

3.2.2. The Theta Method

To proceed, the following general time discretization formula defines the theta method is
used:

TR
# = E[Q(uin_l —2u + ui'lrl) +(1- 0)(ui"_4_fll —2uM 4 u,”fllﬂ +q-K-u'-o-@uM?*, (3.11)

where 6e[0,1]. After rearrangement we have

uMtt =ul + mr[e(u{‘_l 200 +ully )+ (1-0)(ul - 20 +uiT11)J+At-q —At-K-ul —At-o- (ul)* (3.12)
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For 6=0,%, and1 Yyield the implicit Euler, Crank-Nicolson, and explicit Euler (FTCS) schemes,

respectively [62]. If o<1, the theta method is implicit. It can be modified to be explicit by taking
the neighbors into account at the old-time level, where their values are already calculated. Thus,
one can insert u, into the theta-scheme (3.12) instead of u}! to obtain

u* =ul —2mroul - 2mr (1-0)ulM + mr(ui"_1 +ui”+1>+At q-At-K-u' —At-o- ()t (3.13)
With this modification, the final formula is completely explicit:

L (=2mro)ul + mr(ui'”_i1 +u{1:’11)+ At-q-At-K-ul' —At-o-(u")*
utt = (3.14)
1+2mr(1-6)

3.2.3. The Two-Stage and Three-Stage Linear-Neighbor Method

The subsequent algorithm is the two-stage linear-neighbor (LNe or LNe2) method [63].
This method uses the CNe scheme as a predictor to obtain new uP™® values at the end of the time

step.For the special case of an equidistant grid, these predicted values are used to calculate
slopes:

Mr ( pred ,  pred  .n n
ST (ui—l Uiy ‘“i—l‘“i+1)

and then the corrector values for the two-stage LNe method:

n n 2 -2mr

_ Ui q +U; _ At 1-e

uMt =ule 2mrJrgﬁ—e zmr>+si 1- +At-q—At-K-u' —At-o-(ul)*
2 2mr 2mr

For the general case, the corrector step is implemented as follows:

new —ml; new _ p
u{”l:ui”e‘”‘ri{pﬁ—’* ‘/*Jl‘e A TA K - Ao @) (3.15)

mr; mr; mr;

The results from (3.13) can then be used to recalculate A™"

(3.15) with these updated slopes yields a new solution. This three-stage altogethe is designated
the LNe3 method [63]. While remaining second-order accurate, the LNe3 algorithm provides
improved accuracy over the two-stage LNe2 method.

3.2.4. The Two-Stage Constant-Neighbour

again, lterating the corrector step

The two-stage constant neighbour CpC method [64] generally starts with a fractional
time step of length pAt, the constant-neighbour method with a full time step is briefly termed

CpC. Here, | take p= % because this version usually offers better accuracy than versions with

other values of p. Consequently, in the first stage, | calculate new predictor values for the
variables using the CNe formula, but with a At =At/2 time step:

n n
ul'y +uj
upred — e +%(l—e‘mr)+At-q—At~K-ui” ~At-o-(uM)?

And uP"® = e mi2 +%(1—e’m“/2)—At~ K-ul'—At-o-uh)?. (3.16)
i
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) upred ) ) )
Then, in the second stage, | can use A™ =at> L with Ayand take a full-time step size

j=i i)

corrector step by applying the CNe formula again. The final values at the end of the time step are

u_pred +u_pred
uM*t =yl em2mr +%(1—e’2mr>+m~q—At-K ' —At-o- ()

n+1 n_,-m Ainew -mh; n ny4
ut = e + (1—e ')—At~K-ui —At-o-(u") (3.17)
m;

3.3. The Invented Numerical Methods
3.3.1. The Shifted-Hopscotch Method

The shifted-hopscotch (SH) method [65] is a new method | invented. It has a repeating
block consisting of five stages: two half-time steps and three full-time steps, which altogether
span two integer time steps for both the odd and even cells, as shown in Figure 3.1C. The first
half-time step is taken for the odd cells using the general formula:

n ' .
uin+}/2 _ up +A +At-q ' (3.18)
1+2mr+At-K+At-a~(ui”)

coloured by a yellow box with the number 1 in the figure. Full-time steps, taken strictly
alternately, follow the formula:

(1—-mr /2)uf + -"+%+At-q

uiu+l _

- (3.19)
1+mr+At~K+At~a~(ui”)

The upper index [ is n for the even nodes and n+1 for the odd nodes. These steps for the even,
the odd, and the even cells are colorued by green boxes with the numbers 2, 3, and 4. The
calculation is finally closed by a half-length time step (pink box with number 5 inside) for the
odd cells with the formula:

—mr ) N _”+% .
ui”+2:(l me)ui "+ A 2+AL (3.20)

1+At-K+At~a-(uin+1)3

with condition (3.9) again.
3.3.2. The Leapfrog-Hopscotch Method

The architectural framework of the novel leapfrog-hopscotch (LH) algorithm [66],
invented by our team with my participation, incorporates two half-time steps and several full-
time steps, as one can see in Fig. 3.1B. Computation is initiated by applying the general formulae
from (3.18) in the first stage (yellow box in the Figure). A strictly alternating sequence of full-
time steps (green boxes) for even and odd nodes follows, governed by expressions (3.19) and
subject to condition (3.9). A key principle of the method is that the most recent available data

from neighboring points used (for example in A‘”%) must always be used to update the values
of u, no matter the size of the time step being calculated. This alternation continues until the
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algorithm processes the last time step (purple box in Figure), which again uses (3.19) with a
halved step size to ensure the odd nodes conclude at the same time as the even nodes.

3.3.3. The Asymmetric Hopscotch Method

The Asymmetric Hopscotch (ASH) Method is another novel algorithm, bearing similarity
to the SH method but contains a reduced number of integer stages; it utilizes three stages instead
of five, as shown in Fig. 3.1D. The computational process is initiated by a half-time step for the
odd cell, governed by equation (3.18). This is followed by a full-time step applied to the even
cell using formula (3.19) under condition (3.9). The calculation cycle is concluded by a final
half-time step equation (3.20), with condition (3.9) again for the last odd cell.

3.3.4. The Pseudo-Implicit Method

| helped in the invention of the pseudo-implicit (P1) method, which is a new explicit
method called Algorithm 5 in [67] with parameter A=1. For Eq. (2.20) and (2.28) the following
two-stage algorithm is applied:

Stage 1: uP™® = u' + % (3.21)
I 1+mri+At~K+At'0"(uin)3

(1-mr)u + AT

1+mr + At-K + At-o- (P2 .yl

Stage 2: u™! = (3.22)

One can see that this algorithm is fully explicit, and the convection and the radiation term is

treated in a quite sophisticated way at the second stage, since both the u" and the uP™®® values
are used.

3.4. The Optimization of Shifted-Hopscotch Method Combinations

| constructed and tested innovative numerical algorithms to solve the transient diffusion equation
(or heat conduction) equation [62], These methods represent a novel approach to addressing this
class of problems

ou 2
E:av u (3.23)
The new algorithms are fully explicit time-integrators obtained by a half-time step and applied
different formulas in different stages. All of the algorithms consist of five stages, but they are
one-step methods in the sense that when the new values of the unknown function u are
calculated, only the most recently calculated u values are used, thus the methods can be
implemented such that only one array of storage is required for the u variable, which means that
the memory requirement is very low. | applied the conventional theta-method with 9 different
values of ¢ and the non-conventional CNe method to construct 10° combinations in the case of
small systems with random parameters, and examined the competitiveness of the best algorithms
by testing them in the case of large systems against popular solvers.

The computational procedure is initiated by taking a half-length time step for the odd
nodes (subset A) using the already calculated u' values. This is followed by a sequence of
operations: a full-step for the even nodes (subset B), a subsequent full-step for the odd cells, and
another for the even nodes. A concluding half-interval step finalizes the value computation, as
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one can see in Figure 3.1.C. In each stage, | use the latest available u values of the neighbors,
which means that the constructed methods are fully explicit and the previous values needn’t to be
stored at all. Thus, | have a structure consisting of 5 stages, which correspond to 5 partial time
steps, that together span two complete time steps for all cells.

The application of the standard central difference formula (2.12) to Eq. (3.23) in one dimension
produces a system of ordinary differential equations (ODES) governing the nodes i=1,...,N-2:

dui —u U1 —Zui +Uj+q '

dt AX? (3.24)

The form of this equation for the first and last node depends on the concrete boundary conditions
which will be discussed later. | define a matrix M with the following elements:

2 . . .
m; :—A—)‘("z L<i<N), mml:& 1<i<N), mi,i—1:§ L<i<N), (3.25)

which is tridiagonal in the currently discussed 1D case. Now equation-system (3.24) can be
expressed in a compact matrix form:
du "
i Mu (3.26)

I now introduce the following general time-discretization scheme

uin+1

— u.n o
e L= E[G(uin_l —2u + ui”+1) +(1- 9)(ui”_J_TL1 —2uM 4 ui'l:'ll)] :

leads to the named theta-method:
uM*t =ul 4 mr [e(ui”_l —2u + Uin+1) +(1- 9)(ui”_+l —2uMiy u,”fllﬂ , (3.27)

where r:Z—Aztz—m%A%O, 0<i<N-1 is the usual mesh ratio and 6<[0,1]. For 6=0,%, and1 one
X

obtains the Implicit-Euler, the Crank-Nicolson and the Explicit-Euler (or, more concretely, the

forward-time central-space, FTCS) schemes, respectively [62]. If o>0, the theta-method is

implicit. Now, in our shifted-hopscotch scheme, the neighbors are always taken into account at

the same, latest time level, thus | insert u, into (3.27) instead of ul, and ufl, where
m=n,n+%, orn+1 at the first, middle, and last stages, respectively. Now, instead of (3.27), | can
write

ot = ul —2mroul —2mr (1-0)ul™ -+ mr (Ul +ully ), (3.28)

i.e. my final formula reads as follows:

(1-2mré)u’ +mr (u{ﬂl + uﬂl)
n+l _ 2
n 1+2mr(1-0) ' (3:29)

In the case of 6 =0, this formula gives back the UPFD method [37], [38] with m=n, which takes
the form for a half and a full time step, respectively:
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nomr/(,m m n m m
un+1 _ Ul + A(ul—l +UH_1) u'n+1 _ Ul + mr(ul_l +UH_1) . (330)
' 1+mr ' 1+2mr

The other formula | use is the constant neighbor (CNe) method, which is introduced in section
3.2.1 and now briefly restated here. The starting point is Eq. (3.24), where an approximation is
made: when the new value of a variable u™* is calculated, I neglect the fact that the neighbors

u'y and ufl; are also changing during the time step. It means that the values of u;j (j-i) are

considered as constants (that is why I call it constant-neighbor method). Taken into account the
spatial discretization of heat equation in section 2.2 the general form of Equation (3.28) will be:

m
u.
u* =ul' —mrou —mr, (1-9)u™t +hY] c jR

i i

ij
thus, the generalized theta-method for integer time steps reads as follows:

ne1_ (L-mro)ul + A
W 1+mr (1-0) (3.31)

Similarly, the generalized CNe formula is

WG +i(1_e—mn ) (3.32)

mr
and of course, for halved time steps ri and Ai must be divided by 2.

For the sake of brevity, | will use a compact notation of the individual combinations, where 5
data is given in a bracket, the numbers are the values of the parameter 6, while the letter ‘C’ is
for the CNe constant neighbor method. For example (Y4, %, C, %, %) means the following 5-
stage algorithm, which will be selected from the top 5 algorithms in section 3.4, and named as
A2.

Example 1. Algorithm A2 (Y4, %2, C, Y2, %), general from.
Stage 1. Take a half time step with the (3.31) formula with 6= for odd cells:
mr;
i (1_ %juin + A pair At U
U = mr v A haif :?Z_C-R-- :
1+ %(1_%) j=i i)
Stage 2. Take a full-time step with the (3.31) formula with 6= for even cells:

X (1—m%jui“ +A m

u.
ul't = , A=At ]|
: 1+mr (1- %) ;ciRij

Stage 3. Take a full-time step with the (3.32) formula for odd cells:
uy
CiRjj

THACHTLIP S +i(1—e_mri ) , A =AY,
mr;

1 J#

Stage 4. The same as Stage 2.
Stage 5. Take a half time step with the (3.31) formula with 6= % for odd cells:
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n+l (1_ % mr; )Uin + A pait At ujm
Ui = s v A hat = AR
1+ %(1_%) j=i i

All other combinations can be constructed in this manner straightforwardly.
3.4.1. General Definitions and Circumstances of The Examination

| examine 2-dimensional rectangular lattices with N =N, xN, cells similar to what can be

seen in Figure 3.2. | solve Eq. (2.20) subjected to randomly generated initial conditions
u;(0)=rand , with rand being a MATLAB-generated, uniformly distributed (pseudo) random

number in (0, 1) for each cell. Model parameters, including heat capacities and thermal
resistances, were also randomized using a log-uniform distribution as follow:

C. zlo(ac—ﬁcxrand)’ R zlo(aRx—ﬁRfoa”d)’ R zlo(aRZ—ﬁszrand)
where the coefficients a. ,...,Br, in the exponents will be concretized later.

| use zero Neumann boundary conditions, i.e., the system is thermally isolated. This condition is
implemented naturally within the framework of Eq. (2.19). Implementation simply requires the
omission of any summation terms containing infinite resistivity in their denominator, a
consequence of the isolated boundary. This implies that the system matrix M has one zero
eigenvalue, belongs to the uniform distribution of temperatures, all other eigenvalues must be
negative.

Figure 3.2. Arrangement of the generalized variables. The double-line red arrows symbolize conductive (heat)
transport through the resistances R;;. The blue line symbolizes thermal isolation at the boundaries of the system [65].

num

| calculate the numerical error by comparing our numerical solutions u;™ with the reference

ref

solution u;~ at final time tg, . In Subsection 3.4.5 the reference solution will be an analytical

solution, otherwise it is a very accurate numerical solution which has been calculated by the
odel5s built-in solver of MATLAB with very strict error tolerance. | use the following three
types of (global) error. The first one is the maximum of the absolute differences:

Error(L,) = Jnax Us*” (tn) U™ (t)| - (3.33)
The second one is the average absolute error:
1 re num
Error(Ly) = N Z Ul (tn) =i (tin)| - (3.34)

0<j<N

26



NUMERICAL METHODS TO SOLVE THE HEAT EQUATION

The third one gives the error in terms of energy in case of the heat equation. It takes into account
that an error of the solution in a cell with a large volume or heat capacity has more significance
in practice than in a very small cell

1
Error(Energy) = Wo; Cj
<j<N

U (tn) U™ (tin ) (3.35)

It is well known that the true solution always follows the maximum and minimum principles
[62]. We say a method is positivity preserving if it never violates this principle, i.e., in our case
no value of u is outside of the [0,1] interval. | am interested in how these errors depend on the

time step size in different concrete situations. As one can see in Figure 3.1C, there are 5-time
steps (5 stages) altogether instead of 4 in the shifted hopscotch structure, so for the sake of
honesty | must calculate the effective time step size as At = 4% At and the errors will be plotted

as a function of this quantity.
3.4.2. Preliminary Tests

| apply the following 9 different values for parameter theta: 6<{0,%.%.%.%.%.%.%.1}

in Eg. (3.31). It means that together with the CNe formula, | have 10 different formulas and I
insert all of these into the shifted-hopscotch structure in all possible combinations. As there are 5
stages in the structure, 1 have 10°=100000 different algorithm combinations. The code
systematically constructs and tests all these combinations. After some tests, a few best
combinations choose and continue the work only with them. For this an automatic assessment of
the performance of the combinations is needed. The difficulty lies in the fact that methods which
are very inaccurate or even unstable for large-time step sizes can be the most accurate for small
time step sizes. Therefore, | choose two different final times t;, =0.1,10, the solution is first

computed using a large time step (typically t;,/4). This calculation is then iteratively repeated
for successively halved time step sizes until a minimal value is attained (typically approximately
2x107°). For the quantitative assessment of each previously defined error type, | introduce the so-
called aggregated relative error (ARE), which can be calculated for the L, error as follows:

R

ARE(L,) = %Z:(Iog(Error(Loo))OEH - Iog(Error(Lm))shiﬁed) , (3.36)

i=1

which means that ARE(L,) is the average of the difference between the error of the original OEH

method and the actual shifted combination in terms of orders of magnitude. Then the code
calculates the simple average of these errors:

ARE :%(ARE(LOC)+ARE(L1)+ARE(Energy)), (3.37)

and finally sorts the 100000 combinations in decresing order according to this quantity. In the
obtained list usually positive ARE values have been assigned the first few thousands of
combinations, the largest ones have been typically around 2, which means that some
combinations are roughly two orders of magnitude more accurate than the original OEH method.
| performed this procedure in case of 4 different small systems with
N, xN, =2x2,2x6,4x4,and 3x5 . The parameters o, Bc, 0ry s Bry » Ors » Br, OF the mesh-cell data

distribution were selected to construct test problems exhibiting a range of stiffness ratios, defined
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aS Amax/Avin - HEre Ly, and iyax represent the smallest and largest non-zero absolute eigenvalues

of the matrix M, respectively. The maximum possible time step size for the FTCS (Explicit Euler)
scheme (from the point of view of stability) can be exactly calculated as nh7[SS, for example

ac =1,2,0r 3, Bc =2,4,0r6. | give the best 12 combinations in their short form:

0, %, Y5, %, 1), (%, %, %, Y%, %), (0,C,%,C,1), (0,C,C,C,1),
(%a 2/3) 1/2, 1/3a %)a (%a 1/29 C: 1/2: %): (1/3: 2/33 Ca 1/33 2/3)9 (Ca 1/2’ Ca 1/29 C)’ (338)
(1/53 1/2a 1/2, 1/2a %)a (%a 1/29 1/2: 1/29 %)7 (1/39 1/2: 1/29 1/2: 2/3): (0, 1/2: 1/2: C’ 1)

Later preserves the positivity of the solution prove for formulas 6=1 and CNe and therefore if
only these two formulas are used in a combination, the whole algorithm will preserve positivity.
Since this property is considered valuable [56], | repeated the above experiments for these 25=32
combinations (instead of the 100000 above). | concluded that the (C, C, C, C, C) combination is
the most accurate among these, therefore | further investigate 13 combinations altogether. |
emphasize that these are the results of only preliminary (one might say tentative) tests, with the
sole purpose of reducing the huge number of combinations into a manageable number, and |
haven’t stated anything exactly until this point.

3.4.3. Case study | and Comparison with Other Solvers
| test a mesh similar to Figure 3.2 with an isolated boundary. The mesh sizes were set to
N, =100and N, =100 (10,000 total cells) and a final time of t;, =0.1.
ac =2, fc =4, apy =ap, =1 Pry =Pr =2, (339)

The exponents defined previously were assigned specific values, resulting in log-uniformly
distributed capacities within the range of 0.01 to 100. The generated system was characterized by
its stiffness ratio and hiSovalues, calculated as 3.1x10° and 7.3x107*, respectively. A

performance analysis was conducted, comparing the novel algorithms against established
MATLAB solvers:

e 0delbs: A variable-step, variable-order (VSVO) solver utilizing first- to fifth-order
numerical differentiation formulas (NDFs), designed for stiff systems.

e 0de23s: An implicit solver based on a modified second-order Rosenbrock formula.
e 0de23t: An implementation of the implicit trapezoidal rule with a free interpolant.
e 0de23th: A solver combining the trapezoidal rule with backward differentiation formulas.

e 0de45: An explicit Runge-Kutta solver based on the fourth/fifth-order Dormand-Prince
method.

0de23: An explicit second/third-order Runge-Kutta-Bogacki-Shampine method.

0del13: A VSVO predictor-corrector solver implementing Adams-Bashforth-Moulton
schemes of orders 1 to 13.

For each MATLAB solver, tolerance parameters were varied over several orders of magnitude,
from a  maximum of 'AbsTol' = RelTol' = Tol'=10°t0  the minimum  value
'AbsTol' = 'RelTol' = Tol'=10°. The resulting L, and energy errors were plotted against the
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effective time step size At..-. Based on this analysis, the top five combinations from the set
defined in (3.38) were selected and after that:

S1(C,C,C,C,C),
S2 (Y4, ¥, C, ¥, %),
S3 (Y4, Y2, 2, Y2, %),
S4 (0, %, %, %, 1),
S5 (0, %, %, C, 1)

In Figures 3.3 and 3.4, | present the error and energy error functions only for these top five
combinations, while Figure 3.5 plots the energy errors versus the total running times. Table 3.1
lists some results obtained by our numerical schemes and the “ode” routines of MATLAB.
Notably, the results demonstrate that the best combination of the shifted-hopscotch method
achieved a maximum error of 10—8, an energy error of 10—6, and a running time reaching 102,
which is approximately four orders of magnitude better performance compared to the ordinary
MATLAB routines.
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Figure 3.3. L, errors as a function of the effective time step size for the first (moderately stiff) system, in the case
of the original OEH method (OEH REF), the original one stage CNe method, the new algorithms A1-A5 [65].
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Table 3.1. Comparison of different shifted hopscotch algorithms and MATLAB routines for the moderately stiff
system of ten thousand cells.

Numerical Method Running Time (sec) Error(L,) Error(L) Energy Error

ode15s, Tol=10° 3.97x10° 1.3x1072 1.1x107° 5.62x 10"
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ode23s, Tol=10° 4.346x10° 4.2x107 3.0x107° 1.5x107"
ode23t, Tol=10"° 8.49x10? 2.9x107 2.0x10°® 1.0x10°*
ode23th, Tol =10 4.28x102 4.1x107 2.9x10°° 1.4x10™
ode45, Tol=10" 2.1x10" 3.3x10°3 6.5x10°° 2.7x10°3
ode23, Tol=10"° 2.7x10 3.7x107" 9.6x107° 4.8x107°
ode113, Tol=10"° 1.91x10" 6.7x1077 42x107%° 1.9x10°°
Al, At=1.25x10" 1.97x107% 9.06x10°° 2.63x1077 2.56x1072
A2, At=1.25x10"° 2.02x107 3.39x107* 6.93x107° 5.08x1072
A3, At=25x10"" 1.01x107? 1.88x107° 3.64x1077 3.44x10°°
A4, At=5x10"* 5.03x1072 1.06x107* 1.07x10°° 1.42x107°
A5, At=25x10" 9.75x107! 2.62x107" 4.44x107° 3.15x107°

3.4.4. Case Study Il and Comparison with Other Solvers

| tested our new algorithms and the conventional solvers for a harder problem as well.
Consequently, new values were assigned to the o and B exponents, as defined by :

ac =3, fc =6, apy =3, ar, =1, fry =fr, =4.

This adjustment served to broaden the distribution of both the thermal capacitances and
resistances, thereby introducing anisotropy into the system. On average, the resistances in the x
direction became two orders of magnitude larger than those in the z direction. This modification
resulted in a system characterized by a significantly higher stiffness ratio 2.5x10', while the
maximum allowed time step size for the standard FTCS was hgi, =1.6x10°. All remaining
parameters and conditions were consistent with those detailed in Subsection 3.4.3. Figures 3.6
and 3.7 present the L, and energy errors plotted against the total running time. The results
indicate a performance improvement of approximately three to four orders of magnitude

compared to conventional methods and the evaluated MATLAB routines.

(3.40)
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Figure 3.6. L, errors as a function of the running time for the second (very stiff) system, for the original OEH
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Figure 3.7. Energy errors as a function of the running time for the second system, in the case of the original OEH
method (OEH REF), one-stage CNe method, the new algorithms A1-A5, and different MATLAB routines [65].

Table 3.2. Comparison of different shifted hopscotch algorithms and MATLAB routines for the very stiff system of

ten thousand cells.

Numerical Method  Running Time (sec) Error(L,) Error(L) Energy Error
ode15s, Tol=10° 6.8x10? 4.1x1077 1.5x1078 7.5x107°
ode23s, Tol=10° 5.694x10° 4.7x107 2.4x107 1.2x107t
ode23t, Tol=10° 3.1x103 8.1x1072 2.1x10°° 1.06x10"
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ode23th, Tol =10° 2.037x10° 2.3x1077 1.2x1078 5.8x107°
ode45, Tol =10° 9.480x10° 8.1x1072 15x10°° 7.0x1072
ode23, Tol =10° 5.317x10° 1.2x107° 2.3x107%0 1.1x10°®
ode113, Tol=10° 6.046x10° 89x10*  17x107 7.7x107*
Al, At=1.25x10"" 1.98x107" 8.46x10%  455x107 6.72x10°
A2, At=50x10"° 4.17x10° 481x10*  3.69x10°° 6.65x1072
A3, At=25x10"° 9.85x10° 1.99x107 7.65%x1077 1.31x1072
A4, At=125x10"" 1.95x107" 3.28x10°  8.88x10° 2.68x107°
A5, At=5x10"' 4.95x10" 1.55x10°  8.71x107° 1.69x107*

3.4.5. Verification by Comparison to Analytical Results

| consider very recent nontrivial analytical solutions of Eg. (3.23) found by Barna and
Matyés [4] by a similarity transformation technique. Both of them are given on the whole real
number line for positive values of t as follows

XZ

foaCt(X,t):F%e_my (341)
and

exact X x? _4XT; 2

U2 :tsT 1-& e . (34 )

| reproduce these solutions only in finite space and time intervals xe[x,x,] and te[ty, t;,],
where x, =-5,x, =5,t, =0.5,t;, =1. The space interval is discretized by creating nodes as follows:
X; =X + jAx, j=0,..,1000, Ax=0.01. | prescribe the appropriate Dirichlet boundary conditions at the

two ends of the interval:

2
Xy

Up (X =Xy, t) = t;(%e_H , (3.43)
and

U, (X = x t):x—b 1—i e_“LE’t (3.44)

2 b 152 6at ! :

where x, {x, x,}. | obtained that the new methods are convergent and the order of convergence
is two. In Figure 3.8 the L, errors as a function of the effective time step size herr are presented

for the case of the uz solution for the top 5 algorithms and a first-order “reference-curve” for the
original CNe method. I note that very similar curves have been obtained for the uy solution, as
well as for other space and time intervals.
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Figure 3.8. The L, errors as a function of Atg for the uz solutions [65].

3.5. The Optimization of Leapfrog -Hopscotch Method Combinations

In a manner similar to the Shifted-Hopscotch method [65], the hopscotch spatial structure
was integrated with leapfrog time integration [66]. This framework incorporated the theta
method, evaluated at nine distinct 0 values, and the recently developed CNe method, leading to
the construction of 105 unique combinations. Through subsequent numerical experimentation,
this large set decreased by eliminating underperforming variants; finally, only the top five
algorithms of these remained. The evaluation was conducted on two-dimensional stiff systems
comprising 10,000 cells with fully discontinuous random parameters and initial conditions;
consequently, so the results are presented just for the best five algorithms.

The best algorithms were compared with other methods for a large, moderately stiff
system with the same procedure of 3.4.3, and for a large, very stiff system with the same
procedure of 3.4.4. for the same system size and final time. The following top 5 combinations
are chosen based on the best performance of the maximum and energy error.

L1(C,C,C,C,C),
L2 (0, ¥, ¥, ¥, %),
L3 (%, Y, Y, Y, 14),
L4 (Y4, %, C, Y5, 1),
L5 (%, Y, C, Y, ¥5).
3.5.1.Verification by Comparison to Analytical Results Using a Non-Uniform Mesh

The nontrivial analytical solution [4] in section 3.4.5 of Eq. (3.23) is used here, given on
the whole real number line for positive values of t as in Eq. (3.42), where the value o =1 is used,
this solution was reproduced by prescribing the Dirichlet boundary conditions calculated using
the analytical solution at the two ends of the interval. Now this kind of information is not used,
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but construct a large-scale non-equidistant spatial grid according to the following procedure.
First the coordinates of the cell borders are define by the formula

Xj = Xj +AXj g, X =0, A% =001, Ax; =Axeexp(yj*), j=1...1000.

where y=10"". Thus I have a quite dense system of nodes close to the origin which becomes less

and less dense as one is getting further from the origin, towards +5922.3, which is the right
boundary of the mesh. Then the cell-centers are calculated straightforwardly:

ij .
X :Xj_1+7, Xo=0,)=1..1000 .

Now it is straightforward to reflect this structure to the origin to create the mirror image of the
mesh at the negative side of the x-axis obtaining 2000 cells altogether. Now at the vicinity of the
origin the diameter of a cells are 0.01, which are increasing as it is getting further from the
origin, first very slowly, then more and more rapidly until it reaches Ax,,y, =211.6. The

resistances and the cell capacities then can be calculated as:
C,=Ax, i=1..,2000 and R =X;,;—X%;, i=1..,1999

zero Neumann boundary conditions are taken into account which is a good approximation
because the values of the initial function are very close to zero far from the origin. The stiffness
ratio is 5.7x10" for this mesh, while At[[S? =5x10°. As in shifted hopscotch, the analytical
solution is reproduce in finite time interval te(ty, t;,], where t, =0.5,t;, =1. In Figure 3.9 the L,

errors as a function of the time step size are presented for the case of the u solution for the top 5
leapfrog-hopscotch algorithms, a first-order “reference-curve” for the original CNe method and
the Heun method. These results verify not only the second order convergence of the numerical
methods, but the procedure of generalizing the calculations to non-uniform grids. One can also
see that the L2 and L3 algorithms reach the minimum error (determined by the space
discretization) for larger At than the CFL limit for the Heun method.
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Figure 3.9. The L, errors as a function of time step size for the space-dependent mesh to reproduce the exact
solution given in (3.42) [66].

3.6. The Optimization of Pseudo-Implicit Method Combinations

By the iteration of the theta-formula and treating the neighbors explicitly, A novel two-
stage explicit algorithm was developed for the solution of partial differential equations
incorporating a diffusion term and two reaction terms [67]. One reaction term is linear,
potentially modeling heat convection, while the second is proportional to the fourth power of the
variable, representative of radiative effects. For the linear case, the method is analytically
demonstrated to achieve second-order accuracy and unconditional stability. The diffusion-
reaction equation (2.20) is going to be studied.

Algorithm 1, UPDF for the diffusion-convection-radiation equation

u +mr(uly +uily )+ giAt
ui”+1= i ( i-1 |+1) i . (345)
1+2mr+KiAt+aAt(ui”)

Similar to the original UPFD formula, this expression conserves the positivity property for
arbitrary nonnegative values of r,q,,K; and o, thus for the strongly nonlinear case as well. Its

accuracy is not very good, thus a two-stage method proceeds to construct as well.
A combination of the UPFD idea and the #-method is proposed for application to the diffusion
term in the following manner :

uMt = u +mr |:49(Uin_l —2u]" + ui"+1) +(1- 9)(ui”_+11 —2uMy ui”:llﬂ : (3.46)

Where 6<[01]. The FTCS scheme, equivalent to explicit Euler integration, is obtained for 6=1.
The scheme with 6=0,% corresponding to the Implicit-Euler and Crank-Nicolson methods,

respectively [64]. Utilizing the previous trick and including the reaction and source terms leads
to :

uMt = ul +mr [—29ui" —2(1-0)uMt +uly + ui"+1} — AtKuM + Atg; + oul™t (ui” )3 . (3.47)

The original UPFD formulation is recovers if ¢=0. The key advantage is that this generalized
formula can be easily rearranged to produce an explicit expression. For the 1D equidistant case,
the new u value takes the form:

Algorithm 2, theta-generalization of Algorithm 2

o (1-2mré)uf’ +mr (uin_l + ui”+1) + At

v : 3.48
i 1+2mr (1-6) + ALK + oAt (u] )3 (3.48)

Since started from an implicit formula (3.46) formally but made it fully explicit, these methods
started to be called pseudo-implicit. The main novelty of this study is that formula (3.48) is
organized into a two-stage method as follows. The calculation starts with taking a fractional-
sized time step using the already known u{' values, and then a full-time step is made.

Algorithm 3, 2-stage pseudo-implicit method for the diffusion-convection-radiation equation
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Stage 1. Take a partial time step At, = paAt, p>0 using formula (3.48) with parameter 6::

Jpred (1-2pmréd, )ul + pmr (ui”_l + ui”+1) + At — v, K At ul
i =

1+2pmr (1-6;)+V,K;At + ot (uf )3
Stage 2. uP™ is redefine by calculating the linear combination with 0 < <1:
uPred = auP™d 1 (1-2)ul. (3.49)
Take a full time step with the (3.48) formula with parameter 6-:

n pred pred n pred
e (1-2mré, )u + mr(ui_1 +ulfly )+ qiAt— KiAt(wlu, +Ww,u] )
el

> : (3.50)
L+ 2mr (16, )+ (1w —wp ) KiAt+ ot (uP™ ) uf
Where v, ,v,,w ,w, are real numbers that are considered as free parameters. The mathematically
correct form of (3.49) would be u/i" = 2uP™e +(1-2)ul', however, it is directly transcribed into a

form suitable for computer code to conserve memory. Furthermore, this handling of the
nonlinear term yields a second-order method characterized by very favorable stability.

Algorithm 4: for the diffusion-convection-radiation equation

Stage 1. Take a partial time step Ay, =AY, A1>0:

21

uipred _ (1+ mr (1_ %))u,n ' m%i(Uin_l ' u;rh) " . (3.51)
1+mr + KAt + oAl (ui”)

Stage 2. Calculate the linear combination uf™®® = Auf™ + (1 2)u!

Take a full-time step:

n+l i+l :

(1-mr)u +mr (uip_rfd +uPred )+ giAt + KiAt(uipred - u-“)
Ui =

i (3.52)
1+ mr + K; At + oAt (uip'ed) u’

3.6.1. Analytical-Solution Based Verification

The following analytical solution of Eq. (2.20) is constructed for a=1, K=2 and
g(xt)=ot'e™ " +e*

uexact (X, t) —te x—t . (353)

Here this analytical solution numerically reproduces for (t,x)€[0.5,1]x[-1,1] and o =3. The initial
condition

u(x,t =0.5) = 0.5e* 05
and the Dirichlet boundary conditions at the ends of the interval

u(x=-1,t)=te ", and u(x=11t)=te’"
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are obtained using the analytical solution. The numerical error is defined as the absolute
difference, at the final time t;, , between the numerical solution ui“™ generated by the method

under examination and the reference solution uf** (which is the analytical solution here). These

individual nodes’ or cells' errors are subsequently utilized to compute the maximum error
according to Equation (3.33).
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Figure 3.10. The L, for the numerical solutions of the diffusion-convection-radiation equation in the case of
Algorithm 1 and the new pseudo-implicit Algorithm 3 for three different values of the parameter A [67].
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4. USING EFFICIENT METHODS TO SOLVE REAL-LIFE HEAT TRANSFER
PROBLEMS

The algorithms were tested in previous sections under general circumstances with
discontinuous random parameters and initial conditions. |1 demonstrate that these methods can
yield quite accurate results and are substantially faster than the professionally optimized
MATLAB 'ode’ routines. In this section, | perform a systematic examination of building walls by
changing some system and mesh parameters. The aim is to assess how the performance of each
method changes and to identify the most suitable algorithm under varying conditions.

4.1. Calculate The Heat Conduction in an Insulated Wall

Determining heat transfer through building elements is still a complex and critical
challenge. To address this, in the present study we evaluates 13 numerical techniques (CN,
UPFD, OOEH, ROEH, LNe2, LNe3, CpC, Heun, Pl, DF, RRK, SH, and LH) for solving the
heat conduction equation (2.20) in wall assemblies. Notably, eight of these methods are newly
invented explicit algorithms with unconditional stability [68].

4.1.1. The Geometry and Mesh Generation:

Figure 4.1 illustrates a single-layer brick wall alongside two-layer configurations
combining brick and glass wool insulation.

Upper Boundary

Left Boundary
Right Boundary

B o

Lower Boundary
Figure 4.1. (A) single-layer (Brick) wall, (B) and (C) multilayer (Brick+Glass wool) wall [Original].

The study considers a piece of wall with volume (1 m x 1 m x 1 m). However, because all
physical quantities remain constant in the y-direction (normal to the surfaces in Figures 4.1 and
4.2), this dimension can be disregarded. It means | deal only with a cross-section, which is a two-
dimensional problem from the mathematical point of view and thus Ay; =1 can be used. So,
several meshes of size 1m? are constructed, which means (x,z)<[0,1]x[0,1]. In the equidistant
mesh, cells are square, while in non-equidistant meshes, they become rectangular. The heat
capacity of the cells can be given as C; =c;p,AxAz , while the thermal resistance in the x-direction
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AXi

has the approximate formula Rx ~ where Ax is the surface element perpendicular to x.

Since now it can be given as Ax =Ay;Az; = Az, the horizontal and vertical resistances can be
given in case of a homogeneous material and uniform mesh as

AX Az;
~—1 and Rz = L,
kiAZi kiAXi

RXi

respectively. If the material properties or the sizes of the two neighboring cells are different, one
can write

A Miy

X % —— :
2kiAz  2Ki.4A7iy

for the resistance between cells i and i + 1. If the cell j is below the cell i, | have

7~ AZi . Azj
P 2kiAXi 2|(JAXJ

for the vertical resistance.

X
Figure 4.2. (A) Abrupt change in x direction, and (B) Gradual change in the x direction [Original].

Both equidistant and non-equidistant grids were employed to discretize spatial variables in
single-layer and multilayer configurations. The axis x and z axes were divided into Nx = 100 and
N; = 100 respectively, except in Section 4.1.3.2, where N, =N, =80. This resulted in a total cell

count of N =N,N, =10000 (with a modified N =6400 in Section 4.1.3.2). It should be noted that
the temperature in the middle of each cell was considered as the temperature of the cell.

For non-equidistant grids, cell sizes varied asymmetrically,

e Abrupt change: A coarse equidistant mesh ax=0.0105 covered the left 50% of the wall,
while a fine equidistant mesh Ax =0.0097 spanned the right 50%.

e Gradual change: Cell widths followed a geometric series, shrinking from Ax =0.0234 on
the left to Axy =098%.Ax =000317 on the right. For y=1 (common ratio)
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and n=N, -1 (cell index) were selected to ensure smooth transitions. The series was
defined by:

n l_7n+1
at+ay+ay’+ayd+...+ay" :Zayk =a

where »=0.98, and a = 0.0234.

In multilayer cases:

o Equidistant grids: Brick and insulator layers each occupied 50% of the volume (as
in Figure 4.1B).

« Non-equidistant grids: Insulator thickness reduced when using abrupt/gradual x-direction
changes (Figure 4.1C).

A uniform time step was applied throughout. The temperature in cell i at time natis denoted u/'.

4.1.2. The Materials and Boundary Conditions:
In the present work, real material properties are listed in Table 4.1.

This study employs real material properties (see Table 4.1) under distinct initial and
boundary conditions for both single-layer and multilayer configurations:

Table 4.1. The properties of the used construction materials [68].

p(kg-m*) k (W-m’l~K’1) c (J-kg’l-K’l)
Brick 1600 0.73 800
Glass wool 200 0.03 800

Different initial and boundary conditions are applied for both the single-layer and the multilayer
cases as follows [68]:

I.  Sinusoidal initial condition with zero Dirichlet boundary conditions.
Initial condition: Defined by the product of sine functions:
u(x, z,t =0) =sin(zx)sin(zz) . (4.2)
Boundary conditions: Zero Dirichlet (fixed temperature) on all edges:
u(x=0,z,t)=u(x=12zt)=u(x,z=0,t) =u(x,z=1t) =0 (4.2)
Analytical solution: Valid only for homogeneous (single-layer) walls:
u(x, 2,t) = sin(zx)sin(zy) e 27, (4.3)
I1.  Linearly changing initial condition with combined boundary conditions.
Initial condition: Linear variation along z :

u(x,z,t=0)=30-15z.

Boundary conditions:
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- Top/bottom: Thermally insulated (Neumann condition):
u,(x,z=0,t)=u,(x,z=1Lt)=0
- Left edge: Space-dependent temperature:
u(x=0,zt)=30-15z
- Right edge: Time-dependent temperature:
.u(x=121t)=u(x=12=0,t=0)-e™

where 2 = 0.00004. The final time was 10,000, ensuring the right boundary increased from 30°c
to 44.75°C.

In case Il, complex boundaries were intentionally designed to rigorously test method
performance under non-idealized scenarios.

4.1.3. The Simulation Results

Heun's method was employed as the reference solution for computing maximum and
energy errors, utilizing an exceptionally small time step at=0.002. This method was selected due
to its extensive validation in existing literature compared to the other algorithms under
investigation.

4.1.3.1. Analytical-Solution Based Verification

A single-layer brick wall configuration (Figure 4.1.A) was simulated under six distinct mesh
conditions [68]:

(@ Uniform equidistant mesh

(b) Abrupt change in the x-direction with equidistant spacing in the z-direction

(c) Abrupt changes in both x- and z-directions

(d) Gradual change in the x-direction with equidistant spacing in the z-direction

(e) Gradual changes in both directions

(f) Abrupt change in x-direction with gradual change in z-direction

The simulations employed the sinusoidal initial condition Eq. (4.1) and zero Dirichlet boundary
conditions Eq. (4.2), with validation against the analytical solution Eq. (4.3) with tg, =10000(s).

All cases demonstrated consistent results with spatial discretization errors below 1074,
confirming the successful implementation of algorithms for both equidistant and non-equidistant
mesh. Figure 4.3 presents time-step-dependent errors in log-log plots for case (f) as a sample.
The results demonstrate that UPFD and CNe methods exhibit first-order accuracy in time step
size, while all other methods achieve second-order convergence, as theoretically expected.
Notably, the hopscotch algorithms (particularly the original OOEH) deliver superior accuracy
compared to alternative approaches. Heun’s method performs accurately below the CFL limit but
fails to produce valid results beyond this limit. Figure 4.4 illustrates the relationship between
error and computational runtime for the same case as a sample, with averaged runtimes (over
five runs) mitigating measurement fluctuations. As expected, runtime variations at fixed time
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steps primarily come from differences in method stages, e.g. the three-stage LNe3 method shows
a slight rightward shift in its runtime curve relative to other methods.
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Figure 4.3. The maximum errors plotted with time step size in case of abrupt change in the x-direction and gradual
change in the z-direction mesh [68].
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Figure 4.4. The maximum errors plotted with running time in case of abrupt change in x-direction and gradual
change in the z-direction mesh [68].

4.1.3.2. Realistic Case with Nontrivial Boundary Conditions

In this subsection, the initial condition is a linear function of space, while the boundary
conditions are complicated as it is written in point Il. The Neumann boundary conditions for
upper and lower boundaries are implemented by setting the appropriate resistances to infinity,
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implying that the matrix elements describing heat transfer through the boundary vanish. First, |
perform the simulation for the one-layer wall for two different grids (equidistant and gradual
change in both directions), and only then for the insulated wall.

In Figures 4.5 and 4.6, | present the maximum errors and energy error for a single-layer wall.
The maximum and the energy error curves behave very similarly for both equidistance and non-
equidistant mesh; the most significant change is that now the SH method performs better in
terms of energy than the DF and the OOEH methods.
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Figure 4.5. The maximum errors as a function of the time step size for a single-layer wall [68].
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Figure 4.6. The energy errors as a function of the time step size for a single-layer wall [68].

In Figure 4.7, | present the maximum errors for a multi-layer wall with an equidistant mesh. For
the non-equidistant mesh, the maximum errors and the energy errors are presented in Figures 4.8
and 4.9, respectively. From the figures, it is evident that the LH method can easily cope with this
complicated heat-conduction problem as well.
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Figure 4.10 presents the final temperature contours in the case of simple wall and insulated wall,
while the right-side temperature profile at medium height can be seen in Figure 4.11. One can
also observe that the heat from the outer side of the insulator penetrates more slowly into the
wall in the case of the insulated wall.
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10° 10’ 10? 10°
Time Step Size

Figure 4.7. The maximum errors as a function of the time step size for the equidistant mesh for a wall with
insulation [68].

T T T T T . L 0 L T T T T T T T T T

102

10°

Errors

-

[ETTTITE ST

1 i | R S A A |
10° 10" 10? 10°
Time Step Size

Figure 4.8. The maximum errors as a function of the time step size for the non-equidistant mesh for a wall with
insulation [68].
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Figure 4.9. The energy errors as a function of the time step size for the non-equidistant mesh for a wall with
insulation [68].
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Figure 4.10. The contour of temperature distribution for the equidistant mesh at the final time in case of: a wall
(left), and a wall with insulation (Right) [68].
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Figure 4.11. The temperature u °C as a function of the cell index in the x direction at the middle row (z ~ 0.5) for

At =400, in the case of the brick and Brick+Insulator wall using an equidistant grid [68].

4.1.4. The Summary of The Present Section

The numerical investigation of transient heat conduction in 2D walls (both insulated and
non-insulated configurations) employed eight novel and four traditional explicit stable
algorithms, plus Heun's method for reference. Verification using analytical solutions across six
grid types (one equidistant, five non-equidistant) confirmed all methods' convergence, though
performance varied significantly:

1.

CNe and UPFD showed first-order accuracy (less precise), while others achieved
second-order (except RRK at medium/large time steps).

OOEH excelled in uniform cases but struggled with stiffness, whereas LH
maintained high accuracy.

Heun's method proved conditionally stable (diverging beyond CFL limits, as
expected), while others remained unconditionally stable.

CNe, UPFD, LNe2, LNe3, and CpC preserved positivity but have less accuracy at
smaller time steps.

Hopscotch methods (OOEH, ROEH, SH, LH) required the partition of the mesh to
two sub-meshes, but minimized memory by avoiding additional storage arrays.

Computational efficiency varied from one calculation per step (fastest: CNe, UPFD,
OOEH, ROEH, DF, SH, LH) to three (slowest: LNe3).
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For homogeneous materials with equidistant grids, OOEH or LH are recommended, but
for general cases, LH,SH, and DF provide optimal accuracy with large time steps, while LNe3
remains essential for positivity-critical simulations.

4.2. Calculate The Heat Transfer in an Insulated Wall with Thermal Bridging

In the current work, I examined 14 numerical methods (ExpE, NS-ExpE, Heun, UPFD,
DF, NS-DF, RRK, PI, OOEH, NS-OEH, ROEH, LH, SH, and ASH ) to solve the heat equation
(2.20) inside building walls. | considered heat conduction, convection, and radiation, in addition
to heat generation. Five of the used methods are recently invented algorithms that are
unconditionally stable for conducting problems [60].

4.2.1. The Geometry and Mesh Generation:
As one can see in Figure 4.12, | consider the following cases:
A) The surface of the wall is made of brick only.
B) Two-layer cross-section of a wall consisting of brick and insulator.
C) The same two-layer cross-section with a steel structure thermal bridge.

— Upper Boundary

Left Boundary
Right Boundary
Left Boundary
Right Boundary
Left Boundary
Right Boundary

Thermal Bridge

Lower Boundary
Figure 4.12. (A) One-layer wall, (B) wall with insulator, and (C) wall with insulator and thermal bridge [60].

In a similar way to generate the mesh in section 4.1.1, | generate the mesh of the current
geometries. | apply an equidistant grid in the case of the surface of the wall, while equidistant
and non-equidistant grids to the cross-section of the wall with an insulator. In the cross-section
case, the left 50% of the cells are always brick, and the right 50% are insulator for programming
simplicity. It implies that the volume of the brick and the insulator is the same in the equidistant
case. However, if | have a gradual change in the x-direction, the thickness of the insulator is
smaller (0.269m). The thermal bridge has the same thickness as the insulator in the x direction,
thus the horizontal position of the bridge is from x=0.5m to x=1m for equidistant and from
x=0.731m to x=1m for the non-equidistant mesh. The height of the bridge is one cell (1cm) in the
z direction, i.e., 0.01m, while it is positioned in row number 50 from z=0.49m to z=0.50m.
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4.2.2. The Materials and Boundary Conditions:

In the present study, real material properties are taken into account. For the conduction
term, they are listed in Table 4.2.

Table 4.2. The properties of the materials used [69].

p(kg-m’a) k (W-m’1~K*1) c (J-kg’1~K’l)
Brick 1600 0.73 800
Glass wool 200 0.03 800
Steel structure 7800 16.2 840

for all boundaries in all cases, | use zero Neumann boundary conditions, which forbid conductive
heat transfer at the boundaries:

ou ou ou ou
&(x,z —O,t)—&(x,z =11) _E(X'Z =0,1) _E(X’Z =1t)=0.
This is implemented by setting zero for the matrix elements describing heat conduction through

the boundary via the setting of the appropriate resistances to infinity.

I.  Surface area. In this case, the radiation and convection transfer heat to the y
direction, i.e., perpendicular to the plane of Fig. 4.12.

The initial condition is a linear function of the z variable:
u(x,z,t=0)=303-293z.
I know that this vertical change of initial temperatures may be rare in the reality, but with this, |

can avoid the case when nothing is changing along the z direction which would be a 1D problem
mathematically.

For the heat convection, | have used values from the literature [69] for the convection heat
transfer coefficient he, as shown in Table 4.3. The universal Stefan-Boltzmann constant

5.67-107° is multiplied by the appropriate emissivity constant since the surface is not a

m?.K*

black body. With this, | obtain realistic values for &*. The heat generation contains a fraction of
the solar radiation, with which | obtain the value of q* as shown below. The ambient temperature
of the air is taken to be 30°C ~ 303K .

Table 4.3. The heat source, convection, and radiation applied on the wall in case of surface area [69].

W * W -8 * W % W
S B o B e e )

All elements 4 4 800 300

The term g contains also the convective heat gain due to the nonzero temperature u, of the air (in
Kelvin), with which | obtain the value of g as follows. The convective and radiative energy
transfer is perpendicular to the surface, it is happening in the y direction. Therefore, these are
proportional to the free surface area of the element, which is AxAz here. Using this the values of
the coefficients in equations (2.20) and (2.28) | obtain:
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he o" q* h.
= , 0= , q = + .
CpAYy CpAYy CpAy CpAy

a’

where, as it was mentioned, Ay =1m.

| supposed that the right half of the surface is in the shadow, thus the incoming heat is much less
there. More precisely, | have

- For the first half of N (sunny part): q :ixsooﬂz+h—cx3o3K ;
cpo ms cp

- For the second half of N (shadow part): q= Cixsooﬂﬂixso% :
1% m

cp
Il.  Cross-sectional Area: In this case, the interior elements cannot gain or lose heat
by the heat source, heat convection, or radiation. Elements on the right and left
sides, the heat can transfer by radiation and convection to the x direction with the
values shown in Table 4.4.

Table 4.4. The heat source, convection, and radiation applied on both sides of wall elements in case of a cross-
sectional area [60].

W W
he [NV o _xlo—sj " (w
¢ (mz-KJ (m2~K4 q ( )
Right Elements 2 5 500
Left Elements 4 4 500

| suppose that the right elements and left elements have the following heat source convection and
radiation as follows [60]:

o h
- For the left elements (interior side): q=ix500ﬂ2+ ¢ x293K
cp m< Cp-AX

- For the right elements (external side): q:ix5ooﬂ2+ M 308K
cp m< Cp-AX

The initial condition is again a linear function of the z variable:

u(x,z,t=0)=303—-288z

4.2.3. The Simulation Results
4.2.3.1. Inthe Case of Surface Area of The Wall

| simulated a single-layer brick wall (see Figure 4.12.A). As | mentioned in point I.
above, | applied linear initial and zero Neumann boundary conditions. | have performed the
simulations with the equidistant mesh. In Fig. 4.13, the maximum errors as a function of the time
step sizes are presented for all methods. Note that the hopscotch-type algorithms, especially the
original OOEH and the NS-OEH, are more accurate than the other algorithms. Heun’s method is
very accurate only below the CFL limit, but above this limit, it cannot give any meaningful
results. In Fig. 4.14, | presented the initial and the final temperature distribution, where both the
effect of the initial condition and the shadow on the right side of the wall can be observed.
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Figure 4.13. The maximum errors as a function of the time step size in the case of a surface area [60].
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Figure 4.14. The contour of temperature distribution in Kelvin for the equidistant mesh at initial (left) and final time
(right), in the case of a multilayer cross-sectional area. The numbers on the vertical and horizontal axes of the
contours are the indices of the cells, which are the same as the coordinates in cm units [60].

4.2.3.2. The Results of the Cross-Section of a Brick Insulated Wall

I applied the linear initial and Neumann boundary condition of point Il for the multilayer
wall. The maximum errors are plotted for equidistant and non-equidistant meshes in Fig. 4.15
and 4.16, while the energy errors for the non-equidistant mesh can be seen in Fig. 4.17. The
temperature distribution contours for the initial and final time moments are shown in Figure
4.18. One can see that the temperature of the right-hand side of the wall is increasing due to the
larger temperature outside, but the insulator lets this heat penetrate the wall only very slowly.
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Figure 4.15. The maximum errors as a function of the time step size for the equidistant mesh [60].
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Figure 4.16. The maximum errors as a function of the time step size for the non-equidistant mesh [60].
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Figure 4.17. The energy errors as a function of the time step size for the non-equidistant mesh[60].
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Figure 4.18. The contour of temperature distribution in Kelvin for the equidistant mesh at initial (left) and final time
(right), in the case of the multilayer cross-sectional area. The numbers on the horizontal and vertical axes of the
contours are the indices of the cells [60].

4.2.3.3. The Results of the Cross-Section of a Brick Insulated Wall and Thermal
Bridging

I apply again the conditions listed in point Il for the multilayer wall with thermal
bridging. The maximum errors for equidistant and non-equidistant meshes are plotted in Fig.
4.19 and 4.20, respectively, while the energy errors for the non-equidistant mesh can be seen in
Fig. 4.21. The maximum and the energy error curves are very similar; the most noticeable
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difference is that the SH and the ASH methods have larger maximum errors but smaller energy
errors than the DF and the NS-DF methods.

In Fig. 4.22, the temperature contour is presented for the initial and the final time moments, for
the equidistant mesh. To highlight the thermal bridge's impact, | constructed Figure 4.23, which
shows the final temperature at z=0.495 as a function of x, comparing results with and without the
thermal bridge. This allows readers to clearly see its effect on temperature distribution.
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Figure 4.19. The maximum errors as a function of the time step size for the equidistant mesh and thermal bridging
[60].
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Figure 4.20. The maximum errors as a function of the time step size for the non-equidistant mesh and thermal
bridging [60].
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Figure 4.21. The The energy errors as a function of the time step size for the non-equidistant meshand thermal
bridging [60].
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Figure 4.22. The contour of temperature distribution for the equidistant mesh at initial (left) and final time (right) in
case of multilayer cross-sectional area with thermal bridging [60].
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Figure 4.23. The temperature as a function of the space variable x at the middle row (z & 0.5) in the case of the
multilayer insulated wall with and without thermal bridging using an equidistant grid [60].

4.2.4. The Summary of The Present Section

| adopted 14 fully explicit numerical algorithms to solve transient heat transfer problems
including heat conduction, convection, and radiation. | applied the algorithms to two-
dimensional systems of a surface area and a cross-sectional area of a wall. This latter one
consisted of a brick wall with a glass wool insulator layer, and it contained a thermal bridging
steel structure. | used equidistant and non-equidistant grids for the cross-section area. Zero
Neumann boundary conditions were applied and the odel5s MATLAB routine was used as a
reference solution. | showed that all of the methods can be used for these simulations, but those
that were proven to be unconditionally stable for the heat conduction equation have much better
stability properties in this more general case as well. These methods can be used by quite large
time step sizes without stability problems, thus the traditional explicit time integrators are
severely outperformed by them. For less stiff systems, the non-standard version of the odd-even
hopscotch and the leapfrog-hopscotch methods are the most accurate. However, as stiffness
increases due to material inhomogeneities or the non-equidistant grid, the odd-even hopscotch
method becomes less accurate and the leapfrog-hopscotch takes the lead, while the Dufort-
Frankel scheme and the shifted- and asymmetric hopscotch methods also perform well. The
UPFD method is the least accurate, but it has the advantage that it preserves positivity of the
temperatures for arbitrary time step size even for this highly nonlinear case. | note that for very
small-time step sizes, Heun’s method can be extremely accurate, but this level of accuracy is

redundant in most fields of engineering, including building energetics.
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4.3. Calculate The Heat Transfer in Cylindrical and Spherical Shaped Bodies

In this part, | reproduced new analytical solutions with high accuracy using recent
explicit and unconditionally stable finite difference methods. After this, real experimental data
from the literature regarding a heated cylinder are reproduced using the explicit numerical
methods as well as using Finite Element Methods (FEM) ANSYS workbench. Convection and
nonlinear radiation are also considered on the boundary of the cylinder [42].

The heat-transport equation in a 3D cylindrical coordinate system, which can be written as:

o4
li(kra_uj+ii kr +£(ka_uj+qgen_hs_u_ffsu _ M (4.4)
ror\ or) 2og\ op) a2\ ez) AV AV av ot

In the case of spherical coordinates, a small 3D spherical element can be seen in Figure 2.3 The
heat transport equation for this case can be expressed as follows:

* 4
ii(k rza—uj+ 1 O0f )1 i(ksiné’a—l"j+—Qge” _hSu_o Su’ :pca—u- (4.5)
r2 or or r2sin2o o¢ op r2sing 06 o6 AV AV AV ot

If one does not consider the convection, radiation, and source terms in Equation (4.4) and
assumes that the material properties are homogeneous, one obtains the form of the heat
conduction equation in cylindrical and spherical coordinate systems. Symmetrical systems only
are investigated, which means no relevant physical quantities depend on coordinate ¢4 in the

cylindrical and on coordinates ¢ and ¢ in the spherical case, which can be considered as a

limitation of this study. If I temporarily also assume that nothing depends on the z coordinate in
the cylindrical case, only the radius r remains as a spatial variable, which yields [42]:

U Lo[p)
ot f"or or (4.6)

where n = 0, 1 and 2, which means Cartesian, cylindrical, and spherical coordinates,

respectively, while og:cL is the (thermal) diffusivity. Equation (4.6) is also used for particle
0

diffusion, where the diffusivity is usually denoted by D.
4.3.1. The Geometry, Materials, Mesh Generation, and Boundary Conditions

| am going to reproduce the experimental results of Cabezas et al. [70], where heat
transfer was studied in a steel C45 cylinder of 168 mm total height with properties shown in
Table 4.5 below.

Table 4.5. The properties of the steel used [70].

Material ,o(kg-m*) k (W.mfl . Kfl) c (J_kg—l.K—l)

Steel C45 7800 40 480

The bottom of the cylinder was heated for 30 s at the beginning of the experiment with P =
1500W power. However, in the original work [70], the position of the lowest thermocouple was
50mm higher than the heated surface. The top 118 mm and not the bottom 50 mm of the cylinder
was examined either experimentally or numerically, and | followed this in my work. This means
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that the simulated volume of the cylinder segment is Vv =1.0087x10"*m?, while
(r,z) [0, 0.0165m]x[0, 0.118m] . In My approximation, physical quantities did not change in the ¢-
direction, thus, that 3D was irrelevant and computationally, | dealt with a two-dimensional

problem. The number of cells along the r axis and z axis were set to Ny = 15 and N, = 100; thus,
the total number of cells in the system was N = N, N, =1500.

| used a constant initial condition in all cases.
u(r,z,t=0)=30.7 °C

| used different boundary conditions on different sides. On the left side, the center of the
cylinder, | applied Neumann boundary conditions in all cases, which do not allow conductive
heat transfer at the boundary

u (r=0,zt)y=u(r=L,,z,t)=u,(r,z=1L,,t)=0.

On the right (external) and upper boundaries, | used two types of boundary conditions. The first
one was zero-Neumann, when there was no heat exchange with the environment. The second
one, when there was a heat exchange with the environment via convection and radiation,

considered the heat convection coefficient h, =45 (W-m‘z-K‘l) [38] and the emissivity constant

as 0.85 to obtain realistic values for &*. The convective and radiative energy transfer was
perpendicular to the surface. The interior elements cannot gain or lose heat by the heat source,
heat convection, or radiation. On the lower boundary, | applied changing Dirichlet boundary
conditions based on the temperature measurement results taken from a report | asked the authors
of [70]. That report contained data from every two minutes, and | used linear interpolation
between these data points in all cases to follow the experimental setup of the paper [70].

The heat generation contained incoming heat via convection and radiation, depending on the
ambient temperature. Since the steel cylinder was placed in a closed box, the ambient
temperature changed during the measurement. Instead of the ambient temperature functions, I
used their averages taken from the report mentioned above. The ambient temperature of the air
was taken as (30.7, 31.1, and 31.7 °C) in the cases of measurements at 20 min, 24 min, and 30
min duration, respectively.

4.3.2. Analytical-Solution Based Verification

In this section, | take the height of the cylinder as well as Az unity. It means that,
computationally, there is one space dimension only in both the cylindrical and the spherical
cases. The solution parameters are:

N; =500, N, =1, N = N, xN, =500, ry =0.0003, ;o =0.999, Ar =0.002, & =1,
ae{112,2},t°=01,t" =t°+0.1.

Here, N represents the total number of cells, a self-similar exponent, while r, and r,,, are the
radial coordinates of the center of the first and last cells. The CFL limit (maximum allowed time-

step size for the standard first-order forward Euler method) was around 2-107° in all cases. The
initial condition was obtained by substituting the initial t and boundary r values into the
analytical solution, respectively. The Dirichlet boundary conditions on the right side (the
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circumference of the cylinder and sphere) were obtained simply by substituting the radius r,,,

into the analytical solution and calculating the function value at each time step. On the left side
(the cylinder and sphere center, r =r,), a zero-Neumann boundary was applied, since no heat can

disappear from the center of the cylinder or the sphere. This boundary was applied only
computationally and not physically. I remind the reader that the analytical solutions are
constructed for Equation (4.6).

The obtained maximum errors are displayed as a function of the time-step size in Figures 4.24
and 4.25 for two values of parameter a in cylindrical coordinates, it is clear with a=1, the results
are more accurate than a=2. Figure 4.26 presents the temperature value as a function of r. For
the case of spherical coordinates, Figure 4.27 shows the maximum error as a function of the time
step, and Figure 4.28 presents the temperature as a function of r. The fact that we obtained very
small errors in all cases verifies not only the numerical algorithms, but also the equivalence of
the two mathematical treatments of the physical problem.
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Figure 4.24. The maximum errors as a function of the time step size for the 9 numerical methods in case of
cylindrical coordinates for a = 1 [42].
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Figure 4.25. The maximum errors as a function of the time step size for the 9 numerical methods in case of
cylindrical coordinates for a = 2 [42].
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Figure 4.26. The values of temperature as a function of variable r in case of the initial function u®, the analytical
solution Uexact, the DF method, and the LH method in case of cylindrical coordinates for a = 1 [42].
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Figure 4.27. The maximum errors as a function of the time step size for the 9 numerical methods in the case of
spherical coordinates for a = 1.2 [42].
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Figure 4.28. The values of temperature as a function of r variable in case of the initial function u®, the analytical
solution Uexact, the DF method, and the LH method in case of spherical coordinates for a = 1.2 [42].
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4.3.3. The Simulation Results

In this section, | present the results at the end of the examined time interval, which is
defined ast,,, =1200, 1440 and 1800s in both the numerical methods and Ansys simulation and

then compare between them with the experimental results.
4.3.3.1. The Results of Numerical Methods

For the simulation, | chose the top five algorithms, namely DF, OOEH, LH, SH, and
ASH. The simulation of a steel C45 cylinder was conducted using these selected algorithms
considering different boundary conditions, as previously mentioned. Among these algorithms,
the shifted-hopscotch method was chosen to visualize the temperature contour due to its high
accuracy at small time-step size. Figures 4.29 and 4.30 display the final temperature distribution
obtained from this method.

100

Figure 4.29. The final temperature distribution contour for different time values (t = 20, 24, and 30 min,
respectively, from left to right) presented by the SH method when there is no heat exchange with the environment
[42].
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Figure 4.30. The contour of temperature distribution for different time values (t = 20, 24, and 30 min) presented by
the SH method when there is heat exchange with the environment via convection and radiation [42].

4.3.3.2. The Results of Ansys Simulation

Ansys workbench 19.2 transient thermal analysis with Mechanical APDL solver was

used to simulate the steel C45 cylinder. The mesh size was 1x10=3 , and the total number of
elements was 197,183 since it was a computationally 3D problem. In Figures 4.31 | present the
sample of temperature contour at the final time.
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Figure 4.31. The temperature contour at time (t = 20 min) presented by Ansys when there is no heat exchange with
the environment (left) and when there is a heat exchange (right) [42].

4.3.3.3. Comparison of The Results

The results of the experimental measurements, the finite element method (FEM) using
Ansys Workbench, and the explicit numerical methods (exemplified by the shifted hopscotch
method) were compared. Both FEM and SH were subjected to two types of tests, one
considering convection and radiation effects, and the other excluding them. First, | employed
steady-state thermal analysis using FEM Ansys Workbench to follow the original paper [70] to
reach the same results. The maximum deviation was 0.07, which was a kind of verification for
the setup. Then, I used transient thermal analysis to follow the real physical processes of the
experiment. All results below are for this transient simulation. In Tables 4.6-4.7, the comparison
was conducted at two specific spatial points (z = 75 and 95 mm, which are the distances from the
bottom measurement point), and the results were measured at three different time moments. The
temperatures are compared at two space points via plots in Figures 4.32-4.34.

Table 4.6. The temperature at z = 125 mm at three different time moments [42].

Temperature in °C,atz =75 mm
Time

Experiment  SH with CR SH FEM with CR FEM
20 min 33.9 33.941 34.298 33.796 34.316
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24 min 34.6 34.668 35.087 34.534 35.128
30 min 35.7 35.514 36.07 35.283 36.036
Table 4.7. The temperature at z = 145 mm at three different time moments [42].
Temperature in °C, at z =95 mm
Time
Experiment  SH with CR SH FEM with CR FEM
20 min 33.7 33.71 34.099 33.563 34.095
24 min 34.5 34.427 34.88 34.285 34.88
30 min 35.5 35.30 35.92 35.093 35.856
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Figure 4.32. The temperature at the 4 selected measurement points in z at time t = 20 min [42].
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Figure 4.33. The temperature at the 4 selected measurement points in z at time t = 24 min [42].
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Figure 4.34. The temperature at the 4 selected measurement points in z at time t = 30 min [42].

The figures and tables presented above illustrate a comparison of results obtained from the
current numerical methods and the FEM ANSYS, utilizing experimental data from the literature
study [37]. The findings indicate that the numerical methods employed in this study demonstrate
superior accuracy compared with the FEM ANSY'S used in both the current investigation and the
same literature study [72] [37].

4.3.4. The Summary of The Present Section

This work was devoted to solving heat transfer problems in cylindrical and spherical
geometries. Using the self-similar Ansatz, novel analytical solutions of the heat-conduction PDE
were constructed, which contained the Kummer’s functions. Nine numerical algorithms were
presented, most of which are recently introduced unconditionally stable explicit methods. To
perform the verification, the novel analytical solutions of the heat-conduction PDE containing
the Kummer’s functions were reproduced by these methods with high accuracy.

After these, experimental work was considered from the literature where a cylinder is heated
from below, and the results were attempted to be reproduced using Ansys commercial software,
but without considering convection and radiation on the surface of the cylinder. In contrast to
that, I reproduced the experimental results by considering convection and radiation as well, not
only using Ansys, but also the explicit methods. Since, in reality, convection and radiation are
present, taking them into account makes the results closer to the experimental ones, especially
for the first two measurement times. Moreover, the explicit and stable schemes were more
accurate and effective than the finite element software in all cases. The LH algorithm was
usually the most accurate among the studied methods. However, similarly to all hopscotch
methods, it needs a special mesh, which can be hard or maybe impossible to implement for
problems with irregular shapes. This limitation of these methods is probably more restrictive in
complicated 3D problems.

65



USING EFFICIENT METHODS TO SOLVE REAL-LIFE HEAT TRANSFER PROBLEMS

4.4. Calculate The Heat Transfer in Multilayer Walls with Photovoltaic Cell and
Air.

This section explores the simulation of the non-linear transient heat transfer equation
(2.20) in multilayer walls subjected to various heat loads using efficient numerical algorithms
(UPFD, NS-DF, PI, NS-OEH, LH, SH, and ASH ). The study considers conduction, free and
forced convection, and nonlinear radiation involving a two-phase material composed of solid
(wall construction) and fluid (air). Different wall geometries and heat load scenarios are
examined, encompassing both cooling and heating cases. The objective is to evaluate algorithm
performance for outdoor surface convection and an air gap between insulation and PVC [73].

44.1. Geometry Model and Mesh Generation

Figure 4.35 helps to visualize the geometry and the environment for inside and outside of
the wall section, with zooming on the selection cross-sectional area in the middle of the wall (the
upper half is sunny and the lower half is in shadow) that will be simulated.

Figure 4.35. Visualization of the studied case, the selected wall cross-section [73].

The geometry is a multilayer wall with an air gap. The order of the media is the following:
gypsum board, brick, glass wool, air gap, Photovoltaic Cell (PVC), and then air. | also
investigated free and forced convection with cooling as well as heating processes. In this
scenario, there are different kinds of convection depending on the air status on both sides of the
PVC, when the air is moving (forced convection) and when the air is stationary (free
convection). From this point of view, there are three subcases:

A. free-free convection means the air is stationary on both sides of the PVC,
B. free-forced convection: the air is stationary in the air gap zone, and the air is moving
on the other side of the PVC.
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C. forced-forced convection: the air is moving on both sides of the PVC, so in this case,
there is forced convection on both sides of the PVC. This case is useful in cooling of
photovoltaic cells when it warm up due to the hot weather, especially in summer or in
a hot climate area, when the solar cell’s temperature exceeds the optimum operation
temperature.

| consider a wall segment with a cross-sectional area s=L, xL, with value 0.5 m =0.5
m. (x,z)€[0,0.5]x[0,0.5], thus the mesh's total area is 0.25m?. | have constructed an equidistant

grid with square cells shaped for all cases. The number of cells along the x and z axes are set to
Nx = 100 and N; = 100; thus, | have a mesh with a total cell number N = N, N, =10,000. The cells

are indexed as a linear sequence, starting from the top left corner horizontally and ending at the
bottom right corner. Due to this, the cell indexed by i+ N, is just below the cell labelled by i, etc.

4.4.2. Materials and Boundary Conditions

In the current study, | use real material properties for wall construction, as shown in Table 4.8.
Table 4.8. The materials used properties [71]-[74] .

Material p(kg-m=) kK (w-m™.K™) c (J-kg™ K™
Gypsum Board 805 0.292 977
Brick 1600 0.730 800
Glass wool 200 0.030 800
PVC, Silicon 2330 148 710.08
PVC, Glass 2500 1.7 780.33
Air, at 283K 1.2474 0.024840 1005.8
Air, at 288K 1.2257 0.025219 1005.9
Air, at 303K 1.1649 0.026341 1006.5

The initial conditions are constant for all cases as follows:

- Cooling case: solid temperature = 303 K, air gap temperature = 288K, air

temperature= 283 K.

- Heating case: solid temperature = 283 K, air gap temperature = 288K, air

temperature= 303 K.

| apply zero Neumann boundary conditions in all cases for the right, the top and the bottom
boundary, which do not allow any heat transfer at those boundaries.

There are two types of incoming radiation: one of them is coming from outside of the studied
system and it is independent of the temperatures in the system, thus | denote it by dgomou- The
second type is coming from another part of the system and thus it is a temperature time-
dependent variable, which can be denoted by ¢;.min- At the left-hand side of the system, the

conduction is neglected, but the wall loses heat by radiation and convection to the interior of the
building, and also gain the appropriate heat, which are included into the heat generation term.

The intensity of the incoming radiation will be considered as a constant g, o, = 400W/m?. The
ambient temperature of the room is always u, =293K which is considered as a comfortable

temperature for a living space. The interior elements of the solid material cannot lose or gain
heat by the heat convection, radiation, and heat source, only by conduction.
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In case of free convection boundary the elements on the left and right sides in the interface
between solid and fluid can transfer heat by convection and radiation with the values shown in
Tables (4.9) [75]. | use realistic values for o as it was explained above. The heat source

generation contains a part of the solar radiation, with which | obtain the value of oyq0. @S
shown in table below. For the heat generation for the interface elements 1 and 2, I put (-) in the
table because it receives oy, type radiation. The air ambient temperature (on the right side) is

taken to be 30°C ~303K in case of heating and 10°C ~ 283K in case of cooling. Here interface 1 is
the interface between the insulator and the air gap, and interface 2 is the interface between the
PVC and airgap, while interface 3 is the interface between the PVC and the surrounding air.

Table 4.9. The heat convection, radiation, and source parameters on right and left sides of the wall elements [73].

W * W *
h v -8 2
c ( Z.KJ (e} ( z 4><:|.O J Ufrom out (W/m )

Left Elements 2 5 400
Interface 1 (insulator) 4 4 -
Air gap elements 4 0 0
Interface 2 (silicon) 4 4 -
Interface 3 (glass) sunny part 4 4 600
Interface 3 (glass) shaded part 4 4 100
Surrounding air elements 4 0 0

There is an air gap between the insulator and PVC, those two surfaces radiate each other with a
Uromin type radiation. The quantity of the radiative heat transfer changes with the temperature of
each surface. In this case the heat generation (incoming heat) of the surface elements can be
calculated as follows :

- . _ O-* 4 hc
For Interface elements 1: q _m-usilicon er-ua"_gap .

. _ h
- Forairgap: q :—CpcAX “Ugir _gap-

- For Interface 2: q=-2— U or +

—C U
CpAX cpAx -9

While in the case of forced convection, all the boundaries have the same expressions for heat
transfer. However, the heat transfer coefficient in forced convection is not a constant but depends
on air velocity, which | take in the z direction. The convection coefficient h for the air elements
depends on the nondimensional parameters Nu and Re, which are derived based on the energy
balance at the thermal boundary layer of air (for more details, see [76]). The procedure is as
follows:

The heat transfer coefficient: h, = Nu[LLj , Where L, is the length of the surface in the z direction.

yA

Nusselt number: Nu = 0.664 Re}/2 Pr%

_ P
U

Reynolds number: Re , Where v is the air velocity, which is 0.5m/s, and x is the

dynamic viscosity.
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Prandtl number: Pr=" :chp, I can get it from an air properties table.
[24

For the forced convection, the values of Reynolds Number Re are as follows:

- free-forced; the surrounding air moving at velocity v=0.5m/s, and Re= 17596.95 for
cooling, Re= 15589.9 heating.

- forced-forced the air moving on both sides of the PVC at velocity v=0.5m/s, Re=
17056.69 for the air gap zone, Re= 17596.95 cooling, and Re= 15589.9 heating for
the surrounding air.

4.4.3. The Simulation Results

| applied the initial condition and boundary conditions of section 4.4.2 with tin = 20,000s,
the cases of study in both cooling and heating in free and forced convection. The maximum
errors are plotted in Figures 4.36— 4.38, where it can be seen that the DF and the hopscotch
methods lose their advantage with respect to the Pl method if there is forced convection in the air
gap. The main reason for this is that there is a rapid heat exchange between the air and the inner
surface of the PVC, which consists of silicon that has a large heat conductivity, and this makes
the required time step size smaller. Figures 4.39-4.42 show the contours of temperature
distribution for the initial and final time step for both forced and free convection. It is shown
clearly that the effect of the used insulator prevents the heat from penetrating inside, and the air
gap is a key rule in circulating the air and enhancing the heat transfer performance. Figure 4.43
shows the effect of the air gap and that of forced convection in cooling down the PVC (silicon)
layer.

......

1 14 Llll
10° 10' 102 10° 10*
Time Step Size At

Figure 4.36. The maximum errors as a time step size function for the 7 tested methods in the case of free-free
convection cooling [73].
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LUV st i e e e ) B G i e i B e e WA
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Figure 4.37. The maximum errors as a time step size function for the 7 tested methods in the case of free-forced
convection cooling [73].
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Figure 4.38. The maximum errors as a time step size function for the 7 tested methods in the case of forced-forced
convection cooling [73].
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Figure 4.39. The contour of initial temperature distribution in Kelvin for free and forced convection in Case 3, in
case of Cooling (left), and Heating (right) [73].
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Figure 4.40. The contour of final temperature distribution in Kelvin for free-free convection in Case 3, in case of
Cooling (left), and Heating (right) [73].
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Figure 4.41. The contour of final temperature distribution in Kelvin for free-forced convection in Case 3, in case of
Cooling (left), and Heating (right) [73].
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Figure 4.42. The contour of final temperature distribution in Kelvin for forced-forced convection in Case 3, in case
of Cooling (left), and Heating (right) [73].
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Figure 4.43. The temperature at the PVC (silicon) border in Kelvin for Case 3 in case of Cooling [73].

4.4.4. The Summary of The Present Section

I numerically studied transient heat transfer in the form of conduction, convection, and
radiation in two-dimensional systems of gypsum board, brick, glass wool, air gap, PVC, and air.
I used seven stable numerical algorithms for this purpose. The odel5s MATLAB routine served
with the reference solution in all examined cases.

The tested methods’ advantages and disadvantages are listed in the following:
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1. The UPFD is first order of magnitude, and generally not accurate enough, but it can treat
convection and radiation terms very well. For an arbitrary time-step size, it is positivity
preserving; all other methods are not. However, it is by far the least accurate for medium and
small time step sizes.

2. The Hopscotch family (NS-OOEH, SH, LH, and ASH), the NS-DF, and the pseudo-
implicit methods are second order, but the latter one is usually much less accurate due to the
extra terms in its truncation error.

3. The LH is typically the most efficient algorithm to handle these kinds of problems.
However, when there is forced convection in the air gap, the LH, as well as other accurate
methods, lose most of their advantage, and the PI method can also be effectively used.

4. The current algorithms successfully deal with very stiff systems; thus, they are expected
to be able to cope with any kind of materials or boundary conditions.

To conclude, the LH, ASH, and NS-DF algorithms can be proposed to solve these problems. All
methods produce very accurate solutions and can utilize larger time steps. This capability results
in superior computational speed over conventional explicit techniques that are constrained by
stability limitations.

The conclusions from the engineering point of view are the following:

5. The used insulator on the outside of the brick prevents the heat from penetrating inside
and, in this way, | keep the inside environment within a comfort limit.

6. The heat transfer in convection and radiation can be controlled at the boundary by
applying forced convection.

7. The forced convection heat transfer has a significant effect on improving the heat
transfer, especially in the case of cooling to cool down the PVC, which has a performance
temperature limit to work in.

8. The temperature of the PVC exposed to sunshine is reduced significantly even by a light
wind.

9. The air gap between the PVC and the insulator reduces the temperature at the insulator
border and the PVVC borders.

Related to the wall construction, | could recommend using both the insulator and the air gap to
reduce the heat going inside the building due to hot weather and strong sunshine.

4.5. Calculate The Heat Transfer in Building Walls with PCMs Using Effective
Heat Capacity Model

| employ efficient explicit numerical methods and validate my approach against
established mathematical expressions and models in the literature. My research investigates
various building wall geometries and boundary conditions, primarily focusing on employing the
Effective Heat Capacity model to manage heat loads. The objective is to maintain interior
temperatures within comfort zones. | compare two types of paraffin wax PCMs. The first one is
characterized by a lower melting temperature and higher latent heat capacity; thus, it can
efficiently store external heat when combined with brick or concrete [77].
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4.5.1.Theory and Considerations of the Present Study

| perform the thermal analysis of PCM integrated with building components by using the
effective heat capacity (EHC) model with two phases (solid: So and liquid: Li). It implies that
the specific heat c, the heat conductivity k, and the density p depend not only on the space (due
to material inhomogeneities) but on the temperature itself. In one dimension, the following PDE,
the heat conduction equation, can be used to predict the behaviour of the temperature:

ou 1

E:WV(k(x,u)Vqu. (4.10)

To determine the heat capacity of the cell, I consider two types of heat capacity: sensible heat
capacity (SHC) and latent heat capacity (LHC). Standard materials, such as brick and concrete,
which cannot change their phase in normal conditions, have only sensible heat capacity. For
PCMs, the EHC is computed as the sum of SHC and LHC at each phase, while taking phase
transitions into account, as follows [77]:

C® =c®p>V.,and CH =c"ptV;. (4.1
Those represent the SHC for the liquid and solid states of the material.

For the EHC, | define g as the Gaussian function[78] centered at the melting temperature ucr of
the material with the standard deviation ¢ [77]:

2
g(i)=0_\}ﬁexp[ (uizali”) ] (4.12)

At the phase transition region u, -o<u<u, +o, | used the following functions to represent the
thermal properties [77]:

((kiLi —k* )(“i —Ugr )+ cr(ki“ +k ))

k= = , (4.13)
o (=22 _;cr J+o(pti+p®)) | (4.14)
- (6 ~c)(w ‘;0 )Jrofe ) | (4.15)

where c is the specific heat capacity of the material and it depends on the material’s state (solid,
mixed solid and fluid, and liquid) and | used to calculate the sensible heat capacity as shown in
the following equations. These functions are linear in the temperature variable and continuous in
all of the parameters.

At the phase transition | used EHC as follow [77]:

EHC, = SHC, + LHC; , (4.16)
SHC, =¢,pV,; , (4.17)
LHC, = H,g;pV, . (4.18)
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All quantities calculated by equations (4.11-4.18) are updated at each time step and at each stage,
contributing to the overall time consumption of the calculations. In Figure 4.44, there are some
plotted examples of the Gaussian function at different o values and uc=320 K.
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Figure 4.44. Gaussian function representative of the heat capacity with temperature [77].

Keeping in mind the above-mentioned considerations, the time-development of the temperatures
can be calculated by solving the system of ordinary differential equations (ODES):

A u: —U;
G B ol B P (4.19)
dt 57 Ri ;G
which is the spatially discretized form of the nonlinear heat equation. After the temperatures are

calculated, the total heat Qr, sensible heat Qse, and total latent heat QLa of thermal systems can be
given as follows [77]:

Q= &EHC(ui‘ —u ), (4.20)
i=1

Qs = Q" +iSHC(ui‘ ), (4.21)
i=1

Q=0+ LHC (uf —u™) (4.22)

i=1

Here, t is the index of the time level after the discretization of the time variable, which will be
explained later. Those data measure the ability of PCM to store the energy during the phase
transition, which has the advantage of reducing the energy consumption in the building and
keeping the comfort indoor temperature. From this point of view, | also calculate the cooling
load in terms of total heat transfer from outside to inside (x direction) as follows:

At (U —uy)

Qéooling = Q&)%)Iing +R— ) (423)
1
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where u; and u. are the first and second cells of internal surface layers respectively, thus they
approximate well the heat transfer from the room to the wall and outside.

45.2. The 1D Analytical Solution

In the current section, | explain the heat transfer in a PCM by using Stefan-tape problems
which have an explicit analytical solution [79]. The Paraffin wax PCM with properties shown in
Table 4.10 is inside the container. Within this setup, a Paraffin wax slab, is presumed to possess
a semi-infinite length along the x-axis. The boundary condition (BC) is zero-Neumann
(insulated) on all boundaries except the left side (x=0), where it is Dirichlet BC with constant
temperature (U-face). This allows the heat to flow into or out of the system, which therefore
undergoes the melting or solidification process from the left side toward the right, as shown in
Figure 4.45. The thermal conductivity is the same for the solid and liquid states of the PCM. The
interaction between the solid and fluid components depends upon the applied temperature and
exposure duration. Consequently, temperature calculations are determined by the specific region
within the body.

Table 4.10. The Paraffin wax PCM1 properties [79] .

Material ~ (kg-m?®) Kk (W-m™.K?) ¢ (kg™ -K™) Latent Heat (J-kg™)
PCMsolid 856 0.15 2210

247000
PCMLiquid 778 0.15 2010

Neumann B.C

BE<X(L) x>X(t)

Figure 4.45. The paraffin wax inside the container [77].

The PCM initially has a temperature uo, and has a melting or solidification temperature ur,
where:

Ugace > Uer > Ug

in case of melting with initially solid PCM, and

Ugace <Ugr <Up

in case of solidification with initially liquid PCM.

The location of phase interaction between liquid and solid at time t is x = X (t)
X(t) =24 t . (4.24)

The temperature u(x,t) of the liquid zone, where 0<x< X(t), IS
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Uer —Uface
u(x,t):uface+Twerf (% lay 1), (4.25)

while the temperature of solid zone x> X (t)

—Un)=(1— erf (%
sty g+ )= era%,/au» | (4.26)
1-erf (1 5)

S

Here 4 is the root of the transcendental equation

et Ksyfar (Up—uq) gt /e, AH - r (4.27)

erf (/’L) - kL1'aS (ucr _uface) (1_ erf (/IJ(ZL /as )) T (U face _ucr) .

The total heat transfer into the system by the time t can be calculated by:

ki (U face — Uer )\/E

¢ 2
Qr(®)=[ a®dt= NCTIE (4.28)
The total heat latent through the melting process:
Qua(t) = pLaHX (1) (4.29)
Then the sensible heat is the difference between the total heat input and the latent heat
Qse (1) =Qr (- QLa (). (4.30)
4.5.3. Geometry and Mesh Generation

In the current work, | have conducted multiple geometry studies focused on thermal
analysis. The primary structural elements of the buildings under investigation predominantly
consist of brick walls and concrete roofs, or both concrete walls and roofs in the case of precast
construction. Additionally, I have integrated a PCM layer on the exterior surfaces of both the
walls and roofs to enhance their thermal properties, as shown in Figure 4.46.

Upper Boundary

Lower Boundary

Brick Concrete PCM

Figure 4.46. The selected section geometries of studies [77].

The value of mesh spacing will be Ax=3.334x10"* in all cases. It has been selected based on the
mesh dependency study, whose details will be provided in Section 4.5.5.1.2. For brick and
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concrete, | consider a wall segment with a cross-sectional area Area=Ly xL, with value 0.2 m
x0.1m. | set (x,z)[0,0.2]x[0,0.1], thus the mesh's total area is 0.02m?. The number of cells along

the x and z axes are set to Nx = 600 and N; = 1, thus, | have a mesh with a total cell
number N = N,N, =600 . For the other cases, I consider a wall segment with a cross-sectional area

Area=Ly xL, with value 0.25m x0.1 m, where 0.2 is the wall thickness and 0.05 is the PCM
layer thickness. (x,z) €[0,0.25]x[0,0.1]. Thus, the mesh's total area is 0.025m?. | have constructed

an equidistant grid for all cases. The number of cells along the x and z axes are set to Nx = 750
and Nz = 1, thus, | have a mesh with a total cell number N = N,N, =750.

45.4. Materials and Boundary Conditions

Table 4.11 displays the material properties utilized in my current study, which primarily
consist of structural materials like brick and concrete, with properties shown in Table 4.12.
Meanwhile, | used two types of PCM, and both of them are a kind of Paraffin wax. The first one
is PCML1 [79] with properties shown in Table 4.10 and a melting temperature of 309.7 K, and
the second one is PCM2 [4] with properties shown in Table 4.12 and a melting temperature of
313 K, and with standard deviation o=1 for both kinds of PCMs. I chose these two kinds of PCM
due to the high environmental temperature outside, which requires the PCMs to have a high
melting temperature (the time of temperature exposure range is high) and high latent heat
properties.

Table 4.11. The Structural Materials Properties[77] .

Material p(kg-m™*) k (wom™.K?) ¢ (1kgt K
Brick 1600 0.73 800
Concrete 2300 1.70 840

Table 4.12 The Paraffin wax PCM2 with following Properties [77].

Material p(kg-m*) k (W-m’l-K’l) c (J~kg’1~K’1) Latent Heat (J~kg’1)
PCMsolid 830 0.48 2210

190000
PCMLiquid 878 0.22 2300

| used a linear relation to calculate the initial temperature by applying the recorded temperature
at each one-hour taken by a weather-forecast website [80], for Basra-Irag city on the 25 of
August and on the 25 of September shown in Table 4.13 and Table 4.14 on different days (dayl
is Case 1, and day2 is Case 2). | used linear relation of temperature changing with time to get
the temperature distribution matrix:

u(x,z,t=0) = Matrix values .

| applied different BCs on different sides. On the upper and lower sides, | applied Neumann
boundary conditions in all cases:

u,(x,z=0,t)=u,(x,z=1L,,t)=0

78



USING EFFICIENT METHODS TO SOLVE REAL-LIFE HEAT TRANSFER PROBLEMS

On the left side I applied Dirichlet BC with constant temperature which represented the interior
comfort temperature with value equal to 298 K:

u,(x=0,z,t) =298
On the right side | applied Dirichlet BC, by applying the same recorded temperature that | used
to calculate the initial temperature to get the right boundary temperature distribution array:

u, (x=Ly,z,t) = Array values
Table 4.13 The Right Boundary Temperatures in Casel.

Time/h 1 2 3 4 5 6 7 8 9 10 11 12

Urighvk 309 308 307 306 305 304 303 305 307 310 311 313

Time/h 13 14 15 16 17 18 19 20 12 22 23 24

Urighvk 314 316 317 316 316 314 313 311 310 309 308 308

Table 4.14 The Right Boundary Temperatures in Case 2.

Time/h 1 2 3 4 5 6 7 8 9 10 11 12

Urign/ K 302 300 298 297 296 297 299 304 308 313 315 316

Time/h 13 14 15 16 17 18 19 20 12 22 23 24

Urig/ K 317 318 318 317 316 313 311 309 308 307 306 305

So, with these two cases and different scenario | simulated the wall section with 12 subcases, as
shown in Table 4.15.

Table 4.15. Subcases for each Main Case (day)

Left Dirichlet Boundary
Brick

Concrete
Brick+PCM1
Concrete+PCM1
Brick+PCM2
Concrete+PCM?2

45.5. The Results of the Current Study
455.1. The Numerical Methods Verification with Two Steps for PCM
455.1.1. First Step of Verification

In the initial verification step, | validated the numerical methods by employing the analytical
solution given in Egs. (4.24), (4.25), and (4.26). To use the analytical solution, one needs to
solve the complicated transcendental equation (4.27). To enable myself to change the
parameters, | first analytically reproduced that solution, but it could be done by some small error.
This error, i.e. the difference between the literature and my analytical values, is much smaller
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than the difference between the exact analytical and approximate solution used in the literature
[79], as one can see in Table 4.16.

The system considered was one-dimensional, with the height of the geometry as well as the
corresponding space step set to unity. The key parameters for the solution were as follows:

L, =1,L,=1,N, =3000, N, =1, N = 3000, Ax = 0.00033, Az =1, Uy = 294, U, =309.7, Uy, =368
o, =9.59x1078 oy =7.92x1078 t, =0, t, = 3600, At = 0.0365

The results | got by solving equations (4.24), (4.27), (4.28), (4.29), and (4.30) are shown in Table
4.16, while the results for the verification of the numerical methods are shown in Table 4.17.

Table 4.16. The results of verification .

Present Analytical Present Numerical Literature Analytical Literature Approximate

Parameters values values Values [11] Values [8]
A 0.4037 - 0.4033 0.42
X({t) m 1.5x107? 1.5x107 1.5x10% 1.56 x1072
Qr (KJ /m?) 4426.6 4459.7 4446 4252
QLa (KJ /m?) 2882.6 2977 2883 2998
Qse (KJ /m?) 1544 1482.6 1563 1254

Table 4.17. The results of the verification of the numerical methods.

Parameters Explicit ASH SH LH
X(t) m 1.5x10%2 1.5x102 1.5 x10? 1.5 x107?
Qr (KJ /m?) 4459.701 4459.704  4459.706 4459.708
QL. (KJ /m?) 2977.010 2977.012  2977.013 2977.014
Qs (KJ /m?) 1482.690 1482.692  1482.693 1482.694

MaxError 1.0580 1.0576  1.0579 1.0582

| calculated the maximum error (maximum absolute temperature differences along the x-axis
between the analytical reference solution and the numerical solution) depending on the time step
size. As shown in the table above, the current values are close enough to the literature values,
which means | successfully verified the numerical methods based on the literature. The results of
the four numerical algorithms are very close to one another, thus the deviation from the
analytical values are mostly the consequence of the discretization and the EHC model.

The errors are presented in Figure 4.47. It is evident that all numerical methods exhibit an
acceptable accuracy in handling PCM scenarios. This outcome instills confidence in my ability
to address similar heat-related challenges in future endeavors [81].

In Figure 4.48, temperature values along the x-axis are depicted with a focused view on the
transient phase zone for both the analytical result and the numerical methods (Explicit, ASH, SH,
and LH). Remarkably, the values align closely, with differences seldom exceeding 1 degree.
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Additionally, Figure 4.49 illustrates the EHC values in conjunction with temperature (on the left
side) and along the x-axis (on the right side) for the numerical solution, where ¢ is set to 1 and
the melting temperature is 309.7 K.

10° 102
Time Step Size At
Figure 4.47. The maximum error as a time step function for numerical methods Explicit, ASH, SH and LH [77] .
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Figure 4.48. The values of temperature u along x-axis in case of the analytical solution and the numerical methods
(Explicit, ASH, SH, and LH) [77].
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Figure 4.49. The EHC for PCM slab plotted with the final temperature u (left) and with Cell Number (right) [77].
455.1.2. Second Step of Verification

In the second phase of verification, the explicit method was employed as a reference
solution, serving as a benchmark to evaluate other numerical methods. This comprehensive
assessment aimed to measure mesh dependency, time dependency, and validate the applicability
of a new PCM. Mesh dependency was scrutinized to understand the impact of mesh size on
result accuracy. Following extensive analysis, an optimal mesh size of 3000 elements was
identified, as demonstrated in Figure 4.50, and was subsequently applied across all study cases.
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N
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I Vi b i
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Figure 4.50. The mesh dependency examination, number of mesh elements with max error (Left), and with total
penetrated heat (Right) [77].

Regarding time discretization dependency, meticulous analysis was conducted to select an
appropriate time step size to meet stringent engineering precision standards, which corresponds
to errors less than 1072, As illustrated in Figure 4.51 (Left), a time step size of At=0.86s is enough
and it is implemented across all ongoing study cases.
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In addition, a secondary verification step was undertaken for the new PCM material within the
same computational framework, conditions and system scales. Remarkably, Figure 4.51 (Right)
illustrates the maximum error over time step size, displaying striking similarities to curves
associated with the other PCM material depicted in Figure 4.51 (Left). This observation
underscores the versatility of the numerical methods within my updated framework, making
them highly effective for various types of PCM materials, irrespective of their specific properties
or the boundary conditions.

—
10°

10° 10 10? 10° . 10° 102

Time Step Size At Time Step Size At
Figure 4.51. The maximum error as a function of time step size of three numerical methods for PCM1 (Left), and
for PCM2 (Right) [77].

455.2. The Simulation Results

1072 10

In this section, | present the results of my study in terms of total heat, heat storage, and
heat transfer from the outside to the inside. These factors signify the cooling load or the amount
of heat that needs to be removed using electric devices or other methods to maintain the interior
environment at a comfortable zone temperature, set at 298 K. Figures 4.52-4.60 displays the
results of Case 1 and Case 2 using two types of PCMs. In Figure 4.52 and 4.53 | provide samples
of Effective Heat Capacity (EHC), Latent Heat Capacity (LHC), and Sensible Heat Capacity
(SHC) plotted along the x-axis for the comparison of walls made of brick and PCMs. These
graphs illustrate the behavior of melting and the storage heat hump. Similar results were obtained
for concrete and PCMs. Due to the consistency in behavior across various cases, additional
figures are unnecessary. Instead, | have compiled the data, including total, latent, and sensible
heat values, in Tables 4.18-4.21 for reference and further analysis.
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Figure 4.52. The heat capacity in Casel for Brick+tPCM1 (Left), Concrete +PCML1 (Right) [77].
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Figure 4.53. The heat capacity in Case of Brick+tPCM2 (Left), Concrete +PCM2 (Right) [77].

Figure 4.54 illustrates samples of the effective heat capacity history plotted at selected points
through the PCM (x=0.246, 0.233, and 0.2166 m) to allow the reader understanding the
mechanism of heat saving during the phase transition which considering as a latent heat.
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Figure 4.54. The Effective Heat Capacity history through PCM for Brick+ PCM1 in Casel (Left), and Case2
(Right) [77].

Figures 4.55 and 4.56 illustrate the temperature history profiles at the middle of brick part of the
wall. | can notice that the construction wall without PCM the temperature profile follows the
outdoor temperature profile (applied boundary) with a small-time delay which represent the time
of heat transfer against place. The utilization of PCM1 demonstrates a remarkable effect in
maintaining the interior temperature close to comfort zone temperature and the initial values
(308 K and 302 K) [82]. This indicates that a significant portion of the heat originating from the
outside is efficiently stored inside PCML1 in the form of latent heat. Conversely, in the case of
PCM2, the storage of heat is not as efficient due to its higher melting temperature (313 K)
compared to the maximum applied temperature (317 K). Additionally, the latent heat capacity of
PCM2 is considerably lower than that of PCM1. Consequently, a portion of the heat from the
outside transfers indoors, leading to a noticeable impact on the indoor temperature.
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Figure 4.55. The temperature history in the middle of brick or concrete part in Casel with PCM1 (Left), PCM2
(Right) [77].
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Figure 4.56. The temperature history in the middle of brick or concrete part in Case2 with PCM1 (Left), PCM2
(Right) [77].

Figures 4.57 and 4.58 depict the instantaneous total heat transfer observed throughout the
duration of the study for both cases involving PCMs. These figures highlight a significant
disparity in heat transfer between concrete and brick. Notably, the majority of this energy is
directed inward, contributing to the interior environment. The influence of PCM usage on energy
storage during the melting process is evident. However, it is essential to note that this increase in
heat transfer does not imply that all of this energy directly infiltrates the interior space. A
substantial portion of this heat is retained within the PCM during the transition phase, primarily

in the form of latent heat.
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Figure 4.57. The total heat content in Case 1 with PCM1 (Left), PCM2 (Right) [77].
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Figure 4.58. The total heat content in Case 2 with PCML1 (Left), PCM2 (Right) [77].

Figures 4.59 and 4.60 provide a comprehensive overview of the cooling load, representing the
heat transfer from the outdoor environment to the indoor space across the wall structure. In
Figure 4.59 (left), the significant impact of using PCM1 in conjunction with brick or concrete is
evident. PCM1 efficiently stores the heat from the outside, preventing it from infiltrating the
interior space. In contrast, Figure 4.59 (right) illustrates that PCM2 does not store as much heat
due to its higher melting temperature, leading to a comparatively lower heat retention. Upon
examining the values in the tables, it becomes apparent that the use of PCMs reduces the heat
transfer to the interior, with the extent of reduction varying from total to partial. This reduction is
contingent upon factors such as environmental temperature, melting temperature, and the latent
heat properties of the PCM materials. For instance, Tables (4.18-4.21) list the concrete values of
the results’ parameters for all cases. | observed that integrating PCMs (PCMs) into construction
walls significantly reduces the heat flow from outside to inside. PCML1, in particular, greatly
decreases the interior heat flow due to its high latent heat capacity and appropriate melting
temperature range, allowing it to melt and efficiently store energy. Additionally, it is noted that
the cooling heat transfer values for both brick and concrete integrated with PCM are
approximately halved. This demonstrates the effectiveness of PCM in storing most of the heat
energy as latent heat, thereby minimizing heat transfer into the indoor environment.
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Figure 4.59. Cooling load in Case 1 with PCM1 (Left), PCM2 (Right) [77].
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Figure 4.60. Cooling load in Case 2 with PCM1 (Left), PCM2 (Right) [77]
Table 4.18. The results in Case 1 with PCM1
Parameters Brick Concrete Brick+PCM1 Concrete+PCM1
max(Qror) kI /m?  89.509x10° 150.07x10° 204.41x10° 159.42x10°
mean(Qro ) kI /m?  39.245x10° 64.070x10° 84.962x10° 87.624x10°
max(Qsensiple) kJ /M?  89.509x10° 251.80x10° 24.668x10° 9.7919x10°
mean(Qsensipie) kJ /M?  39.245x10° 131.98x10° 14.752x10° 6.8909x10°
max(Q aent) kJ /m? 0 0 182.59x10° 149.63x10°
mean(Q| sent) kJ /m? 0 0 80.930x10° 80.734x10°
max(Qeooting) J/M°  377.78x10° 879.75x10° 188.70x10° 239.28x10°
mean(Qgooling) J /M>  168.26x10° 391.83x10° 98.121x10° 123.19x10°
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Table 4.19. The results in Case 1 with PCM2

Parameters Brick Concrete Brick+PCM2 Concrete+tPCM2
max(Qrqpe ) kI /M2 89.509%10° 150.07 x10° 285.77x10° 270.17 x10°
mean(Qro ) kI /m?  39.245x10° 64.070x10° 97.638x10° 89.696x10°
max(Qsensiple) k /M?  89.509x10° 251.80x10° 80.829x10° 77.298x10°
mean(Qsensipe) kJ /M?  39.245x10° 131.98x10° 38.437x10° 42.473x10°
Max(Q aent) kI /m? 0 0 239.81x10° 204.90x10°
mean(Q| yent) kJ /m? 0 0 60.884x10° 48.082x10°
max(Qeooling) 3 /M°  377.78x10° 879.75x10° 274.02x10° 467.4x10°
mean(Qgooling) J /M>  168.26x10° 391.83x10° 129.64x10° 213.78x10°
Table 4.20. The results in Case 2 with PCM1
Parameters Brick Concrete Brick+PCM1 Concrete+PCM1
max(Qropy ) kI /M?  140.83x10° 251.80x10° 226.89x10° 254.19%10°
mean(Qry ) kI /Mm?  77.542x10° 131.98x10° 125.23x10° 123.75x10°
max(Qsensipie) kJ /M?  140.83x10° 251.80x10° 95.532x10° 113.35x10°
mean(Qsensiple) kJ /M?  77.542x10° 131.98x10° 32.880x10° 42.238x10°
Max(Qaen) kJ /M2 0 0 229.94x10° 255.16x10°
mean(Q geent) kI /m? 0 0 105.85x10° 100.61x10°
max(Qgooling) J/M°  304.19x10° 708.39x10° 136.57x10° 263.04x10°
mean(Qgoofing) J/M*  110.86x10° 252.76x10° 69.906x10° 128.71x10°
Table 4.21. The results in Case 2 with PCM2
Parameters Brick Concrete Brick+PCM2 Concrete+PCM2
max(Qrype ) kI /M2 89.509x10° 251.80x10° 381.24x10° 365.72x10°
mean(Qro ) kI /Mm% 39.245x10° 131.98x10° 155.68x10° 148.85x10°
max(Qsensibie) kI /m?  89.509x10° 251.80x10° 76.041x10° 156.69x10°
mean(Qsensipe) kJ /M?  39.245x10° 131.98x10° 76.041x10° 83.155x10°
Max(Q yent) kI /m? 0 0 301.16x10° 258.61x10°
mean(Q| yent) kJ /m? 0 0 83.240x10° 68.074x10°
max(Qcooling) J/M°  377.78x10° 708.39x10° 220.39x10° 376.23x10°

455.3.

Computational Time of The Numerical Methods

Table 4.22 presents the computational time for recent numerical methods applied to two
distinct geometries: brick and brick integrated with PCM. The inclusion of only these two types
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of geometries stems from the fact that computational times for brick and concrete are identical, a
consistency maintained even when integrated with PCMs due to their equivalent system sizes.
The tabulated values indicate that LH methods demonstrate quicker computational times.
Nevertheless, it becomes evident that LH methods emerge as the optimal choice, striking a
balance between speed and stability across all time step sizes.

Table 4.22. The computational time of numerical methods

Computational time (s)

Geometry
ASH SH LH
Brick or Concrete 29.1569 24.2810 19.7127
Brick or Concrete+PCM 549.5274 451.4683 373.3887

4.5.6. The Summary of The Present Section
The present work summarizes the following:

1. The novelty of recent numerical methods in effectively addressing the complexities
associated with phase change,establishes the Effective Heat Capacity model, serving as a
computational tool for simulating PCMs.

2. Emphasizing the substantial impact of PCMs on cooling loads and heat transfer dynamics
between outdoor and indoor environments, particularly in diverse wall structures, the
findings underscore the crucial role of PCMs in energy management.

3. Performance Disparities between PCM1 and PCM2: PCML1, distinguished by its lower
melting temperature and higher latent heat, excels in proficiently storing external heat,
thereby preventing its ingress into indoor spaces. In contrast, PCM2, characterized by
higher melting temperature and lower latent heat, exhibits diminished efficiency in heat
retention. PCM1, notably, achieves a significant reduction in heat transfer into interior
spaces, approaching near-elimination due to its high latent heat and appropriate melting
temperature range.

4. Impact on Interior Temperature Regulation: PCM1, especially when coupled with brick
or concrete, sustains indoor temperatures near initial values, exemplifying its adeptness in
efficient heat storage. Conversely, PCM2, while providing insulation, exerts a
comparatively lesser influence on indoor thermal conditions.

In conclusion, this study accentuates the pivotal role of PCMs in mitigating cooling loads,
preserving indoor temperatures, and impeding external heat intrusion. The judicious selection of
PCMs, influenced by latent heat properties and melting temperature considerations, emerges as a
critical factor in optimizing energy efficiency and elevating thermal comfort within architectural
frameworks. For climates characterized by cold conditions, PCM2 is recommended, particularly
when augmented by solar panels to harness and store daytime solar energy as latent heat for
nocturnal cold periods. These discernments bear substantive implications for the formulation of
energy-efficient structures, underscoring the strategic importance of PCM selection in building
materials and construction methodologies.
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5. THESIS POINTS — NEW SCIENTIFIC RESULTS

T1.

T2.

T3.

T4.

I constructed and tested the Shifted-Hopscotch algorithms, which were fully explicit time-
integrators obtained by applying half-time steps and full-time steps in the odd-even
hopscotch structure. | applied the conventional theta method with 9 different values, and
the non-conventional CNe method to construct 10° combinations and I chose the top five of
them via numerical experiments. These experiments suggest that the proposed methods are,
indeed, competitive, as they can give fairly accurate results orders of magnitude faster than
the well-optimized MATLAB routines or the Crank—Nicolson method, and they are also
significantly more accurate for stiff systems than the UPFD, the Dufort—Frankel, or the
original odd-even hopscotch method. If high accuracy is required, the S4 (0, %, %, %, 1)
combination can be proposed; however, when preserving positivity is crucial, the S1 (C, C,
C, C, C) algorithm should be used [65].

To demonstrate the practical utility of these advanced numerical techniques, I investigated
13 algorithms to solve the problem of linear heat conduction in building walls. These
included eight explicit, unconditionally stable algorithms invented by our research group,
such as the Shifted-Hopscotch (SH) scheme. The validation process, where numerical
results were compared against analytical solutions using both uniform and non-uniform
spatial discretizations, was carried out as a teamwork. Then, | applied carefully designed
nontrivial boundary conditions: spatially varying temperatures on the brick side and time-
dependent temperatures on the outer surface of the insulation. I found that the classic Odd-
Even Hopscotch (OEH) method delivers superior accuracy for homogeneous scenarios,
while the Leapfrog-Hopscotch (LH) algorithm performs best in non-uniform
configurations. Nevertheless, the Shifted-Hopscotch (SH) method also exhibited strong
competitiveness across all test cases [68].

| also examined 11 of the new methods to solve heat conduction, convection, radiation, and
heat generation inside building walls' elements. These methods were tested on real-life
applications involving surface area (one-layer brick) and cross-sectional area (two-layer
brick and insulator) walls, with and without thermal bridging, to determine accuracy
dependence on material properties, mesh type, and time step size. Neumann boundary
conditions were applied to all boundaries, for surface area cases, the heat source,
convection, and radiation inside all elements were considered, while for cross-sectional
area cases only the right and left boundary elements containing heat source, convection,
and radiation. The results indicate that the Original Odd-Even Hopscotch method is usually
the best for uniform cases, while the Leapfrog-Hopscotch algorithm performs best for non-
uniform cases [60].

In addition to Cartesian coordinates, | developed 9 of the new methods to solve heat
transfer problems in cylindrical and spherical geometries. | reproduced novel and nontrivial
analytical solutions for the heat-conduction PDE with high accuracy. Furthermore, |
verified the numerical methods in cylindrical and spherical coordinates, incorporating
convection and radiation terms, by reproducing real experimental data of a heated cylinder
and comparing it with Finite Element Methods (FEM) ANSY'S workbench. Convection and
nonlinear radiation were considered on the boundary of the cylinder. Verification results
demonstrated the high accuracy of the numerical methods in dealing with cylindrical and
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spherical bodies. Additionally, temperature comparisons across all approaches revealed that
explicit methods are more accurate than finite element software in all cases, with the
Leapfrog-Hopscotch algorithm typically being the most accurate among the studied
methods [42].

T5.1 investigated the heat transfer through building walls, considering different wall
geometries and heat load scenarios, encompassing both cooling and heating. My objective
was to analyze how heat transfer depends on the wall materials and evaluate algorithm
performance in cases involving heat transfer between solid surfaces and fluid (convection)
on the outdoor surface, particularly across an air gap between the insulation and
Photovoltaic Cells (PVC). The results of the study reveal that insulation prevents heat from
entering the building, maintaining a comfortable indoor environment. Forced convection
significantly enhances heat dissipation, especially during cooling operations to protect PVC
with limited working temperature. Furthermore, the simulations highlight the air gap’s
efficiency in cooling PVC and reducing maximum temperatures on the insulation’s outer
surface, especially under forced convection conditions. The test results show that the
Leapfrog Hopscotch algorithm offers the best solution for this highly stiff system, followed
by the Asymmetric and Shifted-Hopscotch algorithms [73].

T6.1 also simulated a multilayer wall integrated with PCMs using an effective heat capacity
model and | employed the Leapfrog-Hopscotch methods for that. | validated my approach
against established mathematical expressions and models in the literature, investigating
various building wall geometries, two types of PCMs used in this investigation, and
boundary conditions. The objective was to maintain interior temperatures within comfort
zones. Regardless of the wall material, whether brick or concrete, my simulations
consistently demonstrated the PCM’s effectiveness in minimizing heat transfer into indoor
environment [77].
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