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1. Bevezetés és célkitűzés 

 

Az Európai Unió Kritikus Nyersanyagok listáján 

2011 óta szerepel kritikus nyersanyagként a természetes 

grafit (Study on the Critical Raw Materials, 2023). A 

magyarországi grafitos képződményekkel eddig kevés 

hazai kutatás foglalkozott (például Raincsákné Kosáry, 

1978; Demény, 1986; Hermesz, 1990), azonban a 

modern műszeres analitika (például Raman-

spektroszkópia) lehetővé teszi a grafit, illetve a 

grafitosodott anyag részletesebb vizsgálatát. 

Doktori kutatásom célja a hazai grafit 

előfordulások részletes ásvány- és kőzettani, illetve 

genetikai vizsgálata volt. Az Upponyi-hegységből 

(Dédestapolcsány), a Szendrői-hegységből (Szendrőlád, 

Szendrő, Meszes, Rakacaszend), a Kőszegi-hegységből 

(Velem) és a Soproni-hegységből (Fertőrákos) 

gyűjtöttem mintákat, valamint kárpát-övezetbeli 

kitekintésként Rimakokováról (Szlovákia) és Parengről 

(Déli-Kárpátok, Románia) vizsgáltam meg mintákat. 

Kutatásom fókuszában a mintákban lévő grafit, 

grafitos anyag kimutatása, kristályszerkezeti 

rendezettségének és genetikájának részletes vizsgálata, 

valamint a grafit mellett előforduló ásványparagenezisek 

jellemzése állt. 

Vizsgálataim során alkalmaztam polarizációs 

mikroszkópiát, pásztázó és transzmissziós 

elektronmikroszkópiát, röntgen-pordiffrakciót, röntgen 

fluoreszcens spektrometriát, nyomelem geokémiát, 

termogravimetriát (szimultán DTA-DT-DTG) és Raman-

spektroszkópiát. Ezeken kívül pedig a grafit dúsítására, 

kinyerésére is végeztem laboratóriumi kísérleteket. 
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2. A vizsgált területek bemutatása, mintagyűjtés 

 

A kutatásom során vizsgált lelőhelyek az 1. ábrán 

láthatók. A terepbejárások során gyűjtöttem mintákat az 

Upponyi-hegységből (Dédestapolcsány), a Szendrői-

hegységből (Szendrőlád, Szendrő, Meszes, 

Rakacaszend), a Kőszegi-hegységből (Velem) és a 

Soproni-hegységből (Fertőrákos). A mintagyűjtés főként 

a nyírózónákból származó, fekete (potenciálisan grafitos 

anyagot tartalmazó) kőzeteket érintette. 

A kárpáti kitekintéshez a rimakokovai grafitos 

példány a miskolci Herman Ottó Múzeum Ásványtárából 

származik (leltári száma 2017.343, átadója Rudolf 

Ďuďa), míg a Pareng-hegységből (Déli-Kárpátok, 

Románia), a Cătălinul grafitbányából származó példány 

Ambrus Zoltán bányageológus (Parajd) közvetítésével 

jutott el a Miskolci Egyetem Alkalmazott Ásványtani 

Intézeti Tanszékére. 

 

 
1. ábra: A doktori kutatásom során vizsgált lelőhelyek 

(Google Earth)
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3. Minta-előkészítés, aprítási és szeparálási kísérletek 

 

A minta-előkészítés során összesen 42 db felületi és 2 db 

vékonycsiszolatot készítettem optikai mikroszkópos (OM), 

elektronmikroszkópos (SEM-EDX) és Raman-spektroszkópos 

vizsgálatokra, másrészt porítottam röntgen-pordiffrakciós 

(XRD), transzmissziós elektronmikroszkópos (TEM), 

termogravimetriai (DTA-TG-DTG), röntgen-fluoreszcens 

spektrometriai (XRF), valamint induktív csatolású plazma 

tömegspektrometriai (ICP-MS) vizsgálatokra. A minta-

előkészítéseken túl aprítási, szeparálási, frakcionálási és dúsítási 

módszerek kísérleti alkalmazását is végrehajtottam. 

 

4. Vizsgálati módszerek 

 

A kutatásomhoz szükséges vizsgálatok jelentős részét a 

Miskolci Egyetem Nyersanyagkutató Földtudományi Intézet 

(korábban Ásványtani-Földtani Intézet) laboratóriumaiban és 

műszereivel végeztem el: 

 Optikai vizsgálatok: 

o Zeiss Imager.A2m AXIO polarizációs mikroszkóp, 

Zeiss AxioCam MRc5 kamera 

o Zeiss SteREO Discovery.V20 sztereomikroszkóp, 

Zeiss AxioCam MRc5 kamera 

 SEM-EDX: 

o JEOL JXA-8600 Superprobe (20 kV, 20 nA, 60 s) 

o ThermoFisher Helios G4 PFIB CXe (20 kV, 3.2 nA, 

50 s) Miskolci Egyetem 3D labor 

o Phenom ProX (15 kV, 2 mm munkatáv, csökkentett 

vákuum) Miskolci Egyetem Nyersanyagelőkészítés és 

Környezettechnológia Intézet Innovatív finomőrlési-

szemcsetervezési technológiák laboratóriuma 
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 TEM: FEI Tecnai G2 (Miskolci Egyetem Fémtani, 

Képlékenyalakítási és Nanotechnológiai Intézet) 

 XRD: 

o Bruker D8 Advance (Cu K-alfa sugárzás, 40 kV, 40 

mA) 

o Bruker D8 Discover (Cu K-alfa sugárzás, 40 kV, 40 

mA) 

 XRF: Rigaku SuperMini200 WDS (LiF200 / PET / XR25 

kristályok, Pd-katód, 200 W, 50 kV, 4 mA) 

 ICP-MS: ALS Global 

 Szimultán DTA-TG-DTG: MOM Derivatograph-C (10 

°C/perc, lineáris hevítés, levegő, korund tégely) Miskolci 

Egyetem Energia és Minőségügyi Intézet laboratóriuma 

 Raman-spektroszkópia: Thermo Scientific DXR (532 nm 

(zöld) lézer, 2 mW, 3×15 s exp. idő, ~4 cm
-1

 spektrális 

felbontás – FWHM, 100X objektív, 50 µm pinhole 

apertúra) Szegedi Tudományegyetem, Ásványtani, 

Geokémiai és Kőzettani Tanszék laboratóriuma 
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5. Eredmények 
 

Az OM és SEM-EDX vizsgálatok alapján a minták 

alapanyaga kvarc volt a dédestapolcsányi és rimakokovai 

mintáknak (Majoros, 2019), kalcit és muszkovit a szendrőládi 

mintáknak (Majoros et al., 2022), kvarc és rétegszilikátok 

(muszkovit, klorit) a szendrői, meszesi (Leskóné Majoros et al., 

2021), rakacaszendi, velemi és fertőrákosi (Leskóné Majoros et 

al., 2025a) mintáknak, valamint muszkovit a parengi mintáknak 

(Majoros, 2019). 

A fontosabb járulékos ásványokat tekintve, tartalmaztak 

a minták TiO2-ot (rutil és anatáz optikai megfigyelések alapján), 

cirkont, monacit-(Ce) szemcséket, xenotimot, allanitot, 

fluorapatitot, goyazit-gorceixit elegysort, bastnäsit-parisit-(Ce) 

elegysort, bastnäsit-(Ce) és bastnäsit-(La) elegysort, valamint 

grafitot. 

A TEM vizsgálatok során minden esetben a minták 

dúsítási kísérleténél kapott frakciókat vizsgáltam Cu griden 

készített preparátumon. A parengi mintában, valamint a 

dédestapolcsányi minta „ezüstszürke” frakciójában 400–800 

nm-es, hatszöges alakú, rendezett kristályszerkezettel 

rendelkező, idiomorf-hipidiomorf grafit szemcséket észleltem. A 

dédestapolcsányi minta „fekete” frakciójában ezzel szemben 

400–600 nm-es, (ál)hatszöges alakú, idiomorf-hipidiomorf 

szemcséket figyeltem meg részleges rendezettséggel. A 

szendrőládi mintában pedig 80–200 nm-es nagyságú, rendezett 

kristályszerkezettel rendelkező grafit szemcséket azonosítottam, 

amelyek megjelenése a hexagonális dipiramisos grafitnak felel 

meg c tengely szerinti nézetben (Palache et al., 1944). 

Az XRD vizsgálatokkal a magyarországi lelőhelyekről 

származó minták esetében nem lehetett egyértelműen 

azonosítani a grafitot a nagy átfedéssel elhelyezkedő grafit- és 
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kvarc-reflexiók miatt. A grafit 26°–27°(2θ) érték közötti csúcsa 

(hkl = 002) majdnem egybeesik a kvarc csúcsával, így ezek 

együttes megjelenése aszimmetrikus csúcsot eredményez. A 

többi grafit csúcs pedig a grafit kis mennyisége és a kitüntetett 

orientáció miatt nem jelenik meg a felvételeken. Rietveld-

illesztéssel azonban lehetséges volt a magyarországi mintákban 

lévő grafit kimutatása. 

A rimakokovai múzeumi példánynál és a parengi 

mintánál viszont már az XRD vizsgálatnál is egyértelmű volt a 

grafit jelenléte, ráadásul mindkét politípus is megfigyelhető volt 

(Majoros, 2019). 

Bár az XRF vizsgálattal nem lehet közvetlenül kimutatni 

a grafitot, mégis végeztem ilyen méréseket, hogy a minták fő- és 

nyomelem tartalmainak ismeretében kiegészítsem és 

alátámasszam a SEM-EDX és XRD mérések eredményeit. A 

rimakokovai múzeumi minta és a szendrői minták kivételével 

mindegyik lelőhelyről származó mintából porítottam, és 

vizsgáltam XRF módszerrel. 

Az XRF mérés során meghatározott fő- és nyomelem 

tartalmak egybevágnak a SEM-EDX és XRD mérések során 

tapasztaltakkal. Az XRF vizsgálat során továbbá lehetséges a 

mért minták fél-kvantitatív kiértékelése is. Az adatok közül 

kitűnik a dédestapolcsányi, szendrőládi, velemi, fertőrákosi és 

parengi minták magas V-tartalma (~200–700 ppm), amely 

összhangban van a SEM-EDX és XRD mérések során 

észleltekkel. 

A 2. ábrán az ICP-MS vizsgálatok során kapott, PAAS-

ra normalizált nyomelem tartalom eredményei láthatók (PAAS 

értékek Taylor és McLennan (1985) után). A kapott adatok 

közül kitűnik a magas V- (a dédestapolcsányi és a szendrőládi 

fúrómag mintáknál), Sm- (a szendrőládi fúrómag mintáknál és a 

szendrői mintánál), Sr- (a szendrőládi mintáknál), U- (a 
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dédestapolcsányi és a szendrőládi fúrómag mintáknál), Nb- (a 

szendrőládi fúrómag mintáknál) és Ba-tartalom (a 

dédestapolcsányi mintáknál). Negatív anomália figyelhető meg a 

Rb és a Th esetében az összes mintánál. 

 

 
2. ábra: Az ICP-MS vizsgálatok során kapott, PAAS-ra normalizált 

nyomelem tartalmak eredményei 

(PAAS értékek Taylor és McLennan (1985) után) 

 

 

A szimultán DTA-TG-DTG vizsgálatok során minden 

minta esetében ~600–800 °C körüli hőmérsékleten a grafit 

exoterm reakciója volt megfigyelhető. A grafit termális 

reakciója mellett pedig a dédestapolcsányi (3. ábra), szendrőládi 

és szendrői minták esetében ~150–500 °C között szerves anyag 

(részlegesen grafitosodott anyag) exoterm reakciója is észlelhető 

volt. 
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3. ábra: A szimultán DTA-TG-DTG vizsgálatok eredményei (kék – DTA, 

zöld – TG, fekete – DTG), Dédestapolcsány 

 

A Raman-spektroszkópos mérések során a mintáimban 

minden esetben a G-sáv (~1580 cm-1) mellett megjelentek a D-

sávok is (D1-sáv ~1350 cm-1-nél és D2-sáv ~1620 cm-1-nél) az 

elsőrendű tartományban. A másodrendű tartományban a 

dédestapolcsányi mintánál 3 sáv (S2-, S3- és S4-sáv), a többi 

mintánál négy sáv volt azonosítható; közülük három sáv 

alacsony intenzitással (S1-, S3- és S4-sáv) és egy sáv (S2-sáv) 

nagy intenzitással jelent meg. A 4. ábra egy kiértékelt Raman-

spektrumot mutat, a grafit első- és másodrendű sávjaival. 

 
4. ábra: Egy kiértékelt Raman-spektrum a grafit első- és másodrendű 

sávjaival. Fertőrákos (Leskóné Majoros et al., 2025a nyomán)  
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6. Diszkusszió 

 

6.1. A grafit kimutatása 

 

A SEM-EDX vizsgálatokkal mindegyik mintánál (kivéve 

a szendrőládi Helle-patak menti feltárásokból származó minták) 

egyértelmű volt egy széntartalmú anyag jelenléte, amelyet az 

optikai megfigyelések erősítettek meg, hogy a grafitosodás 

útjára léptek. Szinte minden esetben unduláló kioltás, bireflexió 

és anizotróp viselkedés jellemezte a grafitosodott anyagot. 

Az XRD vizsgálatokkal a magyarországi lelőhelyekről 

származó minták esetében nem lehetett egyértelműen 

azonosítani a grafitot, Rietveld-illesztéssel azonban lehetséges 

volt a hazai mintákban lévő grafit kimutatása. 

A szimultán DTA-TG-DTG vizsgálat szintén alkalmas a 

mintákban lévő grafit- és szervesanyag-tartalom kimutatására és 

mennyiségi meghatározására, azonban a grafit szerkezetének 

rendezettségi állapotára nem ad információt, erre a Raman-

spektroszkópia és a TEM nyújtott megoldást. A 

termogravimetriai vizsgálatok minden esetben igazolták a grafit 

jelenlétét a mintákban, a TEM mérések során pedig egy-egy 

grafit szemcse rácsszerkezete, rendezettségi állapota is feltárásra 

került. 

 

6.2. A grafit-kristályosodás genetikai viszonyai 

 

A grafit Raman-spektrumát felhasználva alkalmas a 

képződési csúcshőmérséklet meghatározására (Henry et al., 

2019). Elsőként Beyssac et al. (2002), majd Aoya et al. (2010) 

formuláját alkalmaztam a képződési csúcshőmérséklet 

kiszámításához. A kapott hőmérséklet értékek beleillenek a 
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vizsgált területek földtani hátterébe (Fülöp, 1994; Babinszki et 

al., 2023; Ion et al., 2023). 

A grafit minden vizsgált lelőhely esetében a 

metamorfózissal szingenetikus képződésű; a regionális 

metamorfózis során, nyírás hatására a kőzetekben lévő szerves 

anyag a grafitosodás útjára lépett. 

Az általam vizsgált grafit lelőhelyek genetikailag a 4B 

típusú metamorfizált grafittelepek (Kužvart, 1984) kategóriába 

illenek. A magyarországi és a rimakokovai előfordulások a 

regionális metamorfózis során képződő, míg a parengi a 

regionális, majd kontakt metamorfózis során képződő grafittelep 

alkategóriába esik bele. 

 

6.3. Gazdaságföldtani értékelés 

 

A grafit gazdaságföldtani értékeléséhez figyelembe kell 

venni a szemcseméretét (felhasználás szempontjából fontos), a 

kőzetekben lévő mennyiségét, valamint a kinyerhetőségét. 

A nyersanyag kereskedelem osztályozása szerint 

(Mitchell, 1993) az általam vizsgált mintákban lévő grafit két 

kategóriába sorolható be: „amorf” (kriptokristályos, szemcsék 

<70 μm) és „lemezes-pikkelyes grafit” (finomszemcsés 70–150 

μm-es és durvaszemcsés >150 μm pikkelyek). 

Ami a grafit mennyiségét illeti, erre a szimultán DTA-

TG-DTG vizsgálatokból és a Rietveld-illesztéssel számolt 

grafittartalmakból lehet következtetni. Ezek együttes használata 

jó becslést ad ugyanis a mintákban lévő szerves és grafitosodott 

anyag mennyiségéről (Majoros et al., 2022). 

A magyarországi mintákat tekintve mindenhol ~2–5 

tömeg% a grafit, grafitosodott anyag mennyisége. A grafit 

hidrofób természetét kihasználva viszont fel lehetett dúsítani a 

mintákat ~10 tömeg%-os grafittartalomra.  



11 

 

7. Tézisek 

 

1) Röntgen-pordiffrakciós vizsgálatokhoz kapcsolódó új 

eredmények: 

a) Megállapítottam, hogy az általam vizsgált 

magyarországi potenciálisan grafittartalmú minták 

átlagkőzet röntgen-pordiffrakciós vizsgálata során nem 

lehet egyértelműen kimutatni a grafitot (átlapoló 

csúcsok, kitüntetett orientáció és kis mennyisége miatt). 

A grafittartalom meghatározásához Rietveld-illesztés 

szükséges, de optikai mikroszkópia és Raman-

spektroszkópia, valamint termogravimetria nélkül nem 

oldható meg. 

 

Legtöbbször Rietveld-illesztéssel csak akkor lehetséges a 

mintákban lévő grafit mennyiségi számolása, ha annak jelenlétét 

legalább optikai mikroszkópos és Raman-spektroszkópos 

módszerekkel bizonyítottuk (5. ábra). A kapott eredményeket 

viszont így is szükséges termogravimetriával ellenőrizni és 

korrigálni, a magas hibalehetőség miatt. 

 

  
5. ábra: Grafit pikkely polarizációs mikroszkóp ráeső fényében, 1N-nál 

vizsgálva (balra), valamint a Raman-spektroszkópos mérések helye a grafit 

pikkelyen belül (jobbra). Meszes 

50 μm 
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b) A Rietveld-illesztés során, míg egy egyszerű 

alapanyagban, például kalcit esetén (ahol nincs 

csúcsátfedés), a mintában lévő grafittartalom kimutatási 

határa körülbelül 0,5 tömeg% lehet, addig kvarc 

alapanyagban ez az érték ~1 tömeg%. Ezzel szemben 

egy összetettebb mintában, amely filloszilikátokat és 

kvarcot is tartalmaz, akár ~5 tömeg% is lehet a grafit 

kimutatási határa (Leskóné Majoros et al., 2025b). 

 

Ezért szükséges a vizuális megerősítés az XRD 

kiértékelés előtt, mivel a Rietveld-illesztés dekonvolúciós 

eljárásai lehetővé teszik az egyes fázisok mennyiségének 

kiszámítását még csúcsátfedés és 1–5 tömeg%-os mennyiség 

esetén is, feltéve, hogy az adott fázis valóban jelen van a 

mintában (Leskóné Majoros et al., 2025b). 
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2) A Raman-spektroszkópos eredmények alapján, 

meghatároztam grafit geotermometriával a grafit átlagos 

képződési csúcshőmérsékletét Beyssac et al. (2002) és 

Aoya et al. (2010) formuláit alkalmazva. A számolt 

átlagos képződési hőmérséklet: 

a) az Upponyi-hegység területéről (Dédestapolcsány, 

Rágyincs-völgy): ~335 °C (±50 °C), 

b) a Szendrői-hegység területéről (Szendrőlád és 

Meszes): ~405 °C (±50 °C) (Majoros et al., 2022) és 

~420 °C (±50 °C) (Leskóné Majoros et al., 2025b), 

c) a Kőszegi-hegység területéről (Velem): ~400 °C 

(±50 °C), 

d) a Soproni-hegység területéről (Fertőrákos): ~440 

°C (±50 °C) (Leskóné Majoros et al., 2025a). 

 

A grafit Raman-spektrumát felhasználva alkalmas a 

képződési csúcshőmérséklet meghatározására (Henry et al., 

2019). Ehhez szükséges egyik paraméter az R2 területarány 

érték, amely kiszámítása az alábbi egyenlet alapján lehetséges: 

R2 = D1 ⁄ (G + D1 + D2), 

ahol G = G-sáv alatti terület, D1 = D1-sáv alatti terület, D2 = 

D2-sáv alatti terület. 

Elsőként Beyssac et al. (2002) formuláját alkalmaztam a 

képződési csúcshőmérséklet kiszámításához: 

T (°C) = −445*R2 + 641 (±50 °C). 

Ez az egyenlet 330 és 650 °C között adja meg a 

maximális hőmérsékletet. Bár regionális metamorfózis során 

képződött grafitra van az egyenlet kidolgozva, azonban 514,5 

nm-es lézer alkalmazásával. A méréseim viszont 532 nm-es 

lézerrel történtek, ezért egy másik egyenletet is kerestem, amely 
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szintén 532 nm-es lézert használ. Így Aoya et al. (2010) 

formuláját is alkalmaztam: 

T (°C) = 221*(R2)2 – 637,1*R2 + 672,3 (±50 °C). 

Az utóbbi egyenlet 340 és 655 °C között érvényes, és 

kontakt metamorf kőzetekre fejlesztették ki. A mérési 

körülményeket (eltérő hullámhosszúságú lézer alkalmazása), 

illetve a különböző metamorfózison átesett kőzeteket tekintve 

Aoya et al. (2010) megállapításai alapján bármely egyenlet 

alkalmazható, hiszen a képződési csúcshőmérsékletre számolt 

különbség minden esetben kisebb 10 °C-nál (méréseik szerint 5–

10 °C közé esnek), amely bőven benne van a hibatartományban 

(±50 °C). Az 1. táblázat tartalmazza az R2 értékeket és a kétféle 

formulával számított képződési hőmérséklet eredményeket 

lelőhelyenként. 

 
1. táblázat: Lelőhelyenként a kétféle formulával számított átlagos képződési 

csúcshőmérséklet eredmények (±50 °C), valamint a kapott hőmérséklet 

eredmények közötti különbség 

 

R2 

érték 

[-] 

Beyssac et 

al. (2002)-

féle 

hőmérséklet 

[°C] 

Aoya et al. 

(2010)-féle 

hőmérséklet 

[°C] 

Különbség 

[°C] 

Dédestapolcsány 0,69 334 338 -4 

Szendrőlád, 

SZL-6 
0,53 408 400 8 

Meszes 0,48 425 417 8 

Velem 0,54 401 394 7 

Fertőrákos 0,44 443 434 9 

Pareng 0,56 390 384 6 
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3) A grafit morfológiájához kapcsolódó megállapításaim: 

a) A grafit morfológiája és szöveti bélyegei alapján két 

alaptípust határoztam meg az általam vizsgált 

magyarországi mintákat tekintve: 

 Pikkelyes megjelenés: kőzetszínező pikkely (1–20 

μm-es nagyságban, a kőzet alapanyagában elszórva, 

Dédestapolcsány), nem deformált pikkely (20–100 

μm-es nagyságban, például Dédestapolcsány, 

Szendrőlád, Meszes, Velem, Fertőrákos), valamint 

deformált pikkely (kinkesedett, 20–150 μm-es 

nagyságban, például Szendrő, Meszes, 

Rakacaszend). 

 Aggregátumos megjelenés: szemcsés halmaz (10–30 

μm-es nagyságban Meszesnél, valamint 50–300 μm-

es nagyságban Fertőrákosnál), aggregátum (grafitos 

keverék, 30–300 μm-es nagyságban, például 

Dédestapolcsánynál grafit-szericit-kvarc, 

Szendrőládnál grafit-muszkovit-kalcit vagy grafit-

Ti-Zr keverék), valamint mikroredő, lencseszerű 

aggregátum (a 20–50 μm-es nagyságú pikkelyek 

>300 μm-es nagyságú lemezszerű aggregátumokba 

rendeződnek, mikroredőket formálnak, például 

Szendrőlád). 

 

A különböző lelőhelyekről származó mintákban a grafit 

eltérő morfológiával (6. ábra), nagyságban és rendezettségi 

szerkezettel volt megfigyelhető (néha egy mintán belül is). Ez 

főként függ a rendelkezésre álló szerves anyag mennyiségétől és 

eloszlásától a kőzetben, valamint a grafitosodást okozó 

deformációs (nyírási) hatásoktól (Buseck és Beyssac, 2014). 
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Morfológia alapján hat csoportot lehet 

megkülönböztetni, amelyeket két fő alaptípusba lehet sorolni: 

pikkelyes megjelenés (1–3.) és aggregátumos megjelenés (4–6.): 

1. Kőzetszínező pikkely (1–20 μm-es nagyságban, a kőzet 

alapanyagában elszórva, például Dédestapolcsány és Pareng) 

2. Nem deformált pikkely (20–100 μm-es nagyságban, például 

Dédestapolcsány, Szendrőlád, Meszes, Velem, Fertőrákos, 

valamint 100–1000 μm-es nagyságban Rimakokovánál) 

3. Deformált pikkely (kinkesedett, 20–150 μm-es nagyságban, 

például Szendrő, Meszes, Rakacaszend, valamint 100–800 μm-

es nagyságban Parengnél) 

4. Szemcsés halmaz (10–30 μm-es nagyságban Meszesnél, 

valamint 50–300 μm-es nagyságban Fertőrákosnál) 

5. Aggregátum (grafitos keverék, 30–300 μm-es nagyságban, 

például Dédestapolcsánynál grafit-szericit-kvarc, Szendrőládnál 

grafit-muszkovit-kalcit vagy grafit-Ti-Zr keverék) 

6. Mikroredő, lencseszerű aggregátum (a 20–50 μm-es nagyságú 

pikkelyek >300 μm-es nagyságú lemezszerű aggregátumokba 

rendeződnek, mikroredőket formálnak, például Szendrőlád) 

 
6. ábra: Különböző morfológiájú grafit pikkelyek és halmazok, polarizációs 

mikroszkóp ráeső fény, 1N 
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b) Magyarországi lelőhelyről (Szendrőlád, Helle-patak, 

Szendrői-hegység) először találtam és írtam le 

hexagonális dipiramisos morfológiájú grafitot. 

 

A TEM vizsgálatok során a szendrőládi mintában 80–

200 nm-es nagyságú, rendezett kristályszerkezettel rendelkező 

grafit szemcséket azonosítottam, amelyek megjelenése a 

hexagonális dipiramisos grafitnak felel meg c tengely szerinti 

nézetben (7. ábra) (Palache et al., 1944). 

 

  
7. ábra: Hexagonális dipiramisos megjelenésű, rendezett kristályszerkezettel 

rendelkező grafit szemcse c tengely szerinti nézetben (elméleti modell1 – 

balra, szendrőládi minta – jobbra) 

 

  

                                                           
1Elméleti modell: https://www.mindat.org/min-1740.html. Utoljára frissítve: 

2025.03.29. 

https://www.mindat.org/min-1740.html
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4) A magyarországi lelőhelyekről származó minták 

esetében megállapítottam, hogy az általam vizsgált 

kőzetekben található grafit a metamorfózissal 

szingenetikus képződésű; a grafit regionális 

metamorfózis során, nyírózónákban keletkezett. 

 

A minták szövete jól tükrözi a deformáció hatására 

kialakult irányított szövetet, amelyben a nyírási zónára jellemző 

deformációs elemek is jól megfigyelhetők voltak: krenulációs 

palásság, mikroredőzöttség (8. ábra), kalcit kristályok 

deformációs ikresedése, nyomásárnyék rutil szemcsék körül, 

valamint grafit kristályok unduláló kioltása. 

 

  
8. ábra: Mikroredőket formáló, irányítottan elhelyezkedő grafit pikkelyek 

(világos barna). Polarizációs mikroszkóp ráeső fény, 1N. Szendrőlád 

(Majoros, 2019) 
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5) A grafit kristályszerkezeti rendezettségét érintő 

megállapításaim: 

 

a) Sorrendbe állítottam a magyarországi formációkat a 

bennük található grafitosodott anyag R1 (R1=D1/G 

intenzitás arány) és GFWHM (G-sáv félértékszélessége) 

kristályossági foka alapján. A kisfokútól a nagyobb 

fokú kristályszerkezeti rendezettséget mutatva az 

alábbi sorrendet állapítottam meg: 

 Tapolcsányi Formáció (R1=4,34 és GFWHM=126) 

 Szendrőládi Mészkő Formáció (R1=0,94 és 

GFWHM=30) 

 Kőszegi Metamorfit Komplexum (R1=0,77 és 

GFWHM=22) 

 Szendrői Fillit Formáció (R1=0,57 és GFWHM=21) 

 Fertőrákosi Metamorfit Komplexum (R1=0,44 és 

GFWHM=20) 
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b) Megállapítottam a grafit geotermometriával számított 

képződési hőmérséklet értékek és a termogravimetriai 

vizsgálatok során kapott DTA csúcshőmérséklet 

eredmények alapján, hogy a magyarországi mintákban 

található grafitnak minél rendezettebb a kristályrácsa, 

annál magasabb az oxidációs hőmérséklete (9. ábra). 

 

 
9. ábra: A grafit geotermometriával számított képződési hőmérséklet értékek 

és a termogravimetriai vizsgálatok során kapott DTA csúcshőmérséklet 

eredmények vonaldiagramon ábrázolva 
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6) Meghatároztam, hogy a grafithoz társult kritikus 

elemeket hordozó ásványok közül a TiO2 fázisok (>1 

tömeg%), helyettesítő elemként pedig a V dúsulása 

jelentős (~200–1000 ppm) az általam vizsgált mintákban. 

A nyomelemtartalom értelmezésével az alábbi geokémiai 

trendeket észleltem: 

 A dédestapolcsányi, szendrőládi, parengi és 

rimakokovai mintáknál kiemelkedően magas a V-

tartalom (2. táblázat). Utóbbinál ez okozza a 

muszkovitok makroszkóposan is megfigyelhető 

világoszöld színét (10. ábra; Majoros, 2019). 

 
2. táblázat: A minták V-tartalma ICP-MS mérés alapján (ppm). A parengi 

minta V-tartalma XRF mérés szemi-kvantitatív kiértékelése alapján (ppm). 

PAAS értékek Taylor és McLennan (1985) után 

 

P
A

A
S

 

D
éd

es
ta

p
. 

1
. 

fe
lt

á
rá

s 

D
éd

es
ta

p
. 

2
. 

fe
lt

á
rá

s 

S
ze

n
d

rő
lá

d
 

3
6

9
 

S
ze

n
d

rő
lá

d
 

3
7

1
 

S
ze

n
d

rő
lá

d
  

3
7

3
 

P
a

re
n

g
 

V 150 477 957 334 320 843 473 

 

 
10. ábra: A rimakokovai múzeumi példányról készült diffraktogram. 

Balra középen a mért felület, jobbra középen a bekeretezett rész 

kinagyítása (Majoros, 2019)  
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 A mintákban a magas vanádium-tartalmat nem 

kíséri jelentős króm dúsulás. Bár a SEM-EDX 

mérések során egyetlen króm-tartalmú fázist sem 

sikerült azonosítanom, azonban megfigyeltem, hogy 

a minták Cr-tartalma hasonló tendenciát mutat a V-

tartalommal (11. ábra). 

 

 
11. ábra: Az XRF mérés során, a mintákban mért Cr- és V-tartalom (ppm), 

valamint a Rietveld-illesztés során meghatározott 10Å csillámtartalom 

(tömeg%) logaritmikus skálán ábrázolva 
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7) Magyarországi lelőhelyről új ásvány leírás: 

a) Az Upponyi-hegységből elsőként írtam le goyazit-

gorceixit összetételű elegysort a dédestapolcsányi 

mintákból (Majoros, 2017). 

b) A Szendrői-hegységből (Szendrőládról) elsőként írtam 

le molibdenit ásványt, valamint bastnäsit-(Ce) és 

bastnäsit-(La) elegysort (Majoros et al., 2022). 

c) A Kőszegi-hegységből új ásványként írtam le allanitot, 

valamint bastnäsit-(Ce) és bastnäsit-(La) elegysort a 

velemi mintákból (12. ábra). Korábban Demény (1986) 

optikai mikroszkópos vizsgálattal mutatott ki apatitot 

erről a területről, de a SEM-EDX méréseim során 

pontosítani tudtam, hogy minden apatit fluorapatit. 

 

 

  

  
12. ábra: Apatit (1. pont) szegélyi részén monacittal (2. pont), valamint allanit 

szemcsék (3. pont), mellettük bastnäsit elegykristályok (4. pont) a csillám 

alapanyagban (klorit – 5. pont, és Na-tartalmú muszkovit – 6. pont), elszórtan 

TiO2 szemcsékkel és kvarccal (Q). Visszaszórt elektronkép (balra), 

elemtérképek (jobbra). Velem 
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8) Az általam vizsgált magyarországi lelőhelyekről 

származó grafit nyersanyag kereskedelmi osztályozását 

elvégeztem Mitchell (1993) alapján. Az alábbi 

kategóriákba tudtam besorolni a mintákban észlelt grafit 

szemcséket: 

 „Amorf” (kriptokristályos, szemcsék <70 μm): a 

dédestapolcsányi minták alapanyagában elszórt, 1–

20 μm-es, kőzetszínező pikkelyes grafit (Majoros, 

2019); a szendrőládi mintákban észlelt 20–50 μm-es 

pikkelyek (Majoros et al., 2022); 10–50 μm-es 

pikkelyek a meszesi (Leskóné Majoros et al., 2021), 

velemi és fertőrákosi (Leskóné Majoros et al., 

2025a) mintákban. 

 „Lemezes-pikkelyes grafit” (finomszemcsés 70–150 

μm-es és durvaszemcsés >150 μm pikkelyek): 

dédestapolcsányi, szendrői, meszesi (Leskóné 

Majoros et al., 2021), rakacaszendi és fertőrákosi 

(Leskóné Majoros et al., 2025a) mintákban észlelt 

>70 μm-es grafit pikkelyek. 
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9) Elvégeztem a vizsgált magyarországi lelőhelyek esetében 

a grafit dúsíthatósági kísérletét. A kísérlet sikeres volt, a 

mintákban lévő grafittartalmat átlagosan 3–5-szörösére 

tudtam dúsítani a grafit hidrofób természetét 

kihasználva. 

 

A magyarországi mintákat tekintve mindenhol ~2–5 

tömeg% a grafit, grafitosodott anyag mennyisége. A grafit 

hidrofób természetét kihasználva viszont fel lehetett dúsítani a 

mintákat ~10 tömeg%-os grafittartalomra (3. táblázat). 

 
3. táblázat: Összefoglaló táblázat a mintákban lévő eredeti grafittartalomról 

(Rietveld-illesztéssel számolt), a dúsítási kísérlet során kinyert frakció 

grafittartalmáról (Rietveld-illesztéssel számolt), valamint a dúsítás mértékéről 

Minta 

Eredeti 

grafittartalom 

[tömeg%] 

Kinyert 

frakció 

[tömeg%] 

Dúsulás 

mértéke 

[-] 

DTAP 2/1 2,1 10,1 4,8 

SZL-1A 2,2 10,3 4,7 

M-3B 2,7 7,9 2,9 

VT-9/2 0,3 8,3 33,2 

FR-2 5,7 7,6 1,3 
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