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INTRODUCTION 

The field of polymer science emerged to develop new materials for growing civil and military 

needs. It tends to be more interdisciplinary than most sciences, combining chemistry, chemical 

engineering, and other fields as well[1,2]. In 1937 one of the most special polymer types with 

versatile properties was discovered[3] (Figure 1). This special type of polymer is polyurethane 

(PU), which was developed by Otto Bayer to compete with nylon[4,5]. Bayer’s invention ranks 

among the most important breakthroughs in polymer science. 

 

Figure 1. Timeline of major developments in the history of polyurethane. 

Polyurethane is used in a large array of industries as flexible, and rigid foams, elastomers, and 

thermoplastic materials[6]. Most of the PU types are designed to make life more comfortable and 

products more durable[7,8]. Polyurethanes (PU) are a special group of heterochain polymers, 

formed by the reaction of isocyanate (NCO) and hydroxyl (OH) groups[9,10]. Isocyanate is a 

chemical that contains at least one isocyanate group (-N=C=O) in its structure. In PU synthesis two 

types of isocyanates, aromatic and aliphatic ones are used[11]. The other main raw materials in PU 

synthesis are polyols containing two or more hydroxyl groups[12]. Beside the effect of  the 

chemical structure and the functionality of isocyanates and polyols on urethane formation[13], 

polyurethane synthesis can be finetuned by applying various additional compounds such as 

catalysts, chain extenders, crosslinkers, surfactants, and blowing agents[14]. In relation to PU 

synthesis, catalysts are often used to accelerate the reaction rate of polynucleophiles with 

isocyanate groups or to promote the trimerization of the isocyanate group to form cross-linked 

polymers. In the production of PU, the amount of applied catalysts is small, but their impact is 

significant[15]. Catalysts play an important role in the control and balance between the gelling and 
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blowing reactions. They help to accurately control the relative reaction rates of the isocyanate with 

both alcohol and water. The imbalance between these is one of the reason for the foam to collapse 

or the formation of inappropriate cells that can be closed or opened prematurely[16,17]. 

Polyurethane catalysts mainly include organic acids, organic bases (amine catalysts), and organo-

tin (organometallic) compounds[18–21]. Organic acids are able to promote urethane formation 

under mild polymerization conditions and low catalyst loadings[22]. Amine catalysts applied in 

PU synthesis can be divided into aliphatic, cyclic, aromatic, alcohol, and ether amines[20],[23].  

 

MOTIVATION OF THE DISSERTATION 

The motivation of my work was to better understand urethane formation processes both 

with and without the presence of different organocatalysts by using computational chemistry 

tools. 

 

 

METHODS 

Different density functional methods were tested such as B3LYP[24], BHandHLYP[25], 

and ωB97X-D[26], in combination with the 6-31G(d)[27–29] basis set. However, only the 

BHandHLYP method was suitable to locate all the critical points on the potential energy 

surfaces (PES) of the studied catalytic processes. The effect of solvent (e.g. acetonitrile, MeCN, 

εr = 35.688) has also been considered by employing the SMD polarizable continuum model. 

To further improve the accuracy of the results, the G3MP2BHandHLYP composite 

method[30–32] was applied and used in the discussion of the results. The G3MP2BHandHLYP 

composite method was not applicable in case of larger species (e.g., 2,2-

dimorpholinodiethylether (DMDEE)), because the computational cost of the calculations 

exceeded the available limit. Therefore, a quasi-G3MP2BHandHLYP (qG3MP2BHandHLYP) 

protocol was employed as it was described before[33].  

Furthermore, to handle the thermodynamic properties of zwitterionic structures within the 

proposed mechanisms a correction which was previously successfully used in the literature to 

handle a similar system was employed[34].  
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NEW SCIENTIFIC RESULTS – THESIS 

During my Ph.D. I studied the effect of organocatalysts on urethane formation using 

computational tools, and the following main conclusions are drawn as new scientific results: 

1st Thesis 

Method test has been carried out and a computational protocol applicable to the study of 

catalytic and catalyst-free urethane formation reactions has been selected. The protocol includes 

the G3MP2BHandHLYP composite method in combination with the SMD implicit solvation 

model. To keep the computational protocol as simple as possible, but finetune the energy of 

zwitterionic species, a correction has also been introduced and applied (Figure 1T). 

 

Figure 1T Relative enthalpy (∆rH) profile of the phenyl isocyanate (PhNCO) and butan-1-ol 
(BuOH) reaction in the preseance of 4-methylmorpholine (catalyst) before (black line) and  
after the correction (blue line).  
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2nd Thesis 

The catalyst-free reaction mechanism of phenyl isocyanate and alcohol (methanol (MeOH), 

and butan-1-ol (BuOH)) has been described by applying density functional theory and 

composite methods. It was found that the relative enthalpy difference in the barrier heights 

(∆rH[TSBuOH-TSMeOH]) when MeOH or BuOH are involved in the reaction with phenyl isocyanate 

is just 0.3 kJ/mol, which indicates that increasing the length of the aliphatic chain of the alcohol 

did not have a significant effect on urethane bond formation (Figure 2T). 

 

Figure 2T Relative enthalpy (∆rH) profile of phenyl isocyanate (PhNCO) - methanol (MeOH) 
and PhNCO - butan-1-ol (BuOH) reactions, indicated with black and red lines, respectively. 
Calculated at the G3PMP2BHandHLYP theory level (298.15 K and 1 atm) in acetonitrile using 
the SMD implicit solvent model. 
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3rd Thesis 

A general mechanism for catalytic urethane formation in the presence of amine catalysts 

has been proposed and verified by using theoretical methods and literature data (Figure 3T). 

The mechanism was tested in the cases of 18 catalysts. The proposed reaction mechanism of 

amine catalysed urethane formation contains seven steps. It starts with the formation of an 

alcohol-catalyst complex (RC1), which is followed by the formation of an alcohol-catalyst-

isocyanate trimolecular complex (RC2). After these steps, a proton transfer occurs between the 

alcohol and the amine group of the catalyst (TS1). This leads to the next step where the 

intermediate (IM) will be formed. Thereafter, the catalyst will return the proton through a 

transition state (TS2), and thus, a product complex is formed (PC). In the final step, the catalysts 

and the product will be separated (P).  

 

Figure 3T Schematic representation of the general amine -catalized urethane formation 
mechanism, where RC—reactant complex, TS—transition state, and PC—product complex. 
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4th Thesis 

A general mechanism for catalytic urethane formation in the presence of acid catalysts has 

been proposed and studied using theoretical methods (Figure 4T). The proposed reaction 

mechanism of acid catalysed urethane formation contains five steps. First, a complex (RC1) 

between the alcohol and the catalyst is formed. Then, in the next step the isocyanate is added 

to the system, and RC2, a trimolecular complex is formed. After the complex formation, 

transition state (TS) develops and where a proton transfer between the alcohol and the catalyst, 

also between the N=C=O and catalyst occurs. Before the reaction completes, a product complex 

(PC) is forming, where the urethane bond is complete. In the final step, the catalysts and the 

product will be separated (P). The mechanism was tested in case of three different acid 

catalysts. 

 

Figure 4T  Schematic representation of the general organic acid-catalyzed urethane formation, 
where RC—reactant complex, TS—transition state, and PC—product complex. 
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5th Thesis 

A new reaction mechanism was proposed for the stoichiometric reaction between 2-

dimethylaminoethanol (DMEA) and phenyl isocyanate (Figure 5T). By comparing the catalytic 

and stoichiometric processes, it was found that the catalytic process is more effective for 

urethane formation even if the difference in energy is not so high. Thus, DMEA can act as an 

effective catalyst and after some time, it can also react with free isocyanates and be built into 

the polymer chain which will reduce the volatile organic compound (VOC) content in the final 

product.  

 

Figure 5T Schematic representation of the reaction mechanism of 2-dimethylaminoethanol 
(DMEA) - isocyanate stoichiometric reaction, where R—reactant, RC—reactant complex, 
TS—transition state, IM—intermediate, and PC—product complex. 
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SUMMARY 

Polyurethanes are some of the most versatile and unique polymers used in the industry for 

manufacturing a wide variety of products. The synthesis of polyurethanes from diisocyanates 

and polyols under industrial conditions requires a catalyst or often a combination of catalysts, 

which can be regarded as the most important component of the reaction system besides the 

starting materials. Therefore, one of the main development trends in PU synthesis is finding 

improved catalysts. In this doctoral dissertation, urethane formation in catalyst-free and 

catalytic processes was studied using computational chemical tools, and the general formation 

mechanisms are proposed in the presence of amine and acid catalysts. The catalyst-free reaction 

mechanism of phenyl isocyanate and alcohol (methanol (MeOH), and butan-1-ol (BuOH)) has 

also been described. It was found that the relative enthalpy difference in the barrier heights 

(∆rH[TSBuOH-TSMeOH]) when MeOH or BuOH are involved in the reaction with phenyl isocyanate 

is just 0.3 kJ/mol, which indicates that increasing the length of the aliphatic chain of the alcohol 

did not have a significant effect on urethane bond formation.  

Furthermore, the applicability of the proposed general amine catalysed urethane formation 

mechanism was tested and verified in the case of 18 catalyst. Additionally, the general 

mechanism for urethane formation in the presence of acid catalysts has also been tested and 

studied for three systems.  

Some of the studied amine catalysts contain reactive functional groups (e.g. OH) and thus, 

these species can act as stoichiometric reactants with isocyanates which will lead to the 

formation of urethane bonds. Therefore, a stoichiometric reaction was proposed when 2-

dimethylaminoethanol (DMEA) reacts with phenyl isocyanate. It was found that  DMEA can 

act as an effective catalyst and after some time, it can also react with free isocyanates and be 

built into the polymer chain which will reduce the volatile organic compound (VOC) content 

in the final product. Taking into account the environmental impact of VOC reduction, these 

results can be employed in the design of more effective and safer catalysts for polyurethane 

synthesis.  

It can be stated, that through this doctoral dissertation, a deeper understanding of the effect 

of catalysts on urethane formation is achieved. Meanwhile, the computed and measured 

thermodynamic properties were in good agreement with each other, which proves the validity 

of the proposed mechanisms and verifies the method selection as well.  
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