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“Data science is all about asking interesting questions based on the data you have

—or often the data you don’t have.”

SARAH JARVIS
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1. ABBREVIATION

AREMO Alkali Rare Earth Metal Oxide

BET Brunauer-Emmett-Teller method
CAT Catalyst

Class Classification

COND Reaction conditions

DFT Density Functional Theory

DNT Dinitrotoluene

EDA Exploratory Data Analysis

HNB Hydrogenation of Nitrobenzene

ID Identification

IQR Interquartile ranges

KKD Knowledge Discovery in Databases
MCDM Multi-Criteria Decision Making
MIRA 21 Miskolc Ranking 2021

ML Machine Learning

MOF Metal organic frameworks

N-BCNT Nitrogen-doped Bamboo-like Carbon Nanotube
PER Catalyst performance

PVP Polyvinylpyrrolidone

RMSE Root-mean-square error

SBA-15 Mesoporous silica - Santa Barbara Amorphous-15
SoS Support on Support

STY Space-Time Yield

SUS Sustainability

TDA Diaminotoluene

T™MO Transition Metal Oxide

TOF Turnover Frequency

TON Turnover Number
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2. INTRODUCTION

2.1. AmM

Looking at the centuries-old history of the science of catalysis, the hope of
fully recognising and understanding it seems to be slipping away. Despite today’s
technological tools, which allow a more detailed study of the phenomenon, the
infinite pile of accumulated data creates confusion in clear vision. However, artificial
intelligence has opened new horizons on data transformation into information and
into knowledgel. Catalyst design is an area in which computational chemistry and

machine learning techniques lead to outstanding results?.

My doctoral dissertation aims to emphasize the data-driven catalyst design.
The objective is to elevate the catalyst basic research results to the next level on the

path to industrial application by using them in a practice-oriented way.

My research work is based on two pillars, whose
database was built from more than 15.000 data points
published in scientific literature. The first pillar is the
establishment of MIRA21 (MIskolc RAnking 2021) model,
a functional and practical mathematical model of catalyst

characterization and exact comparison of each other Eta-Chen C8

Fessarch

(Figure 1). The second pillar of our research is the . L
Figure 1 Denomination of

application of EDA (Exploratory Data Analysis), which the model

refers to preliminary work on predicting catalyst composition through machine

learning.

In the first chapter of this study, the phenomenon of catalysis is reviewed. The
most important properties of catalysts, their classification, and the possibilities for
catalyst characterization are summarized. The state of data analysis will be also
presented briefly. The methodology of the MIRA21 model, as well as the
presentation of the data analysis, are detailed in the chapter of the methods. In the
next section, the first results of the MIRA21 model for the hydrogenation of
nitrobenzene are presented. To investigate the extension of the application, the
qualification of catalysts suitable for the hydrogenation of dinitrotoluene was also
discussed here. In the discussion chapter, the results to date are reviewed and

conclusions regarding catalyst design are drawn. The database has been expanded,

3
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and the MIRA model has been revised and modified. Finally, the points of thesis are

determined.

2.2. INTRODUCTION TO CATALYSIS

Catalytic science is constantly evolving and plays an important role in many
areas such as sustainable energy sources, environmental protection or drug
development3. Design and development of catalysts enable many applications, such
as increasing the efficiency of industrial processes, solving environmental problems,

and creating new materials.

Rational catalysis design requires a complete understanding of the catalytic
process, from the phenomena of catalysis, through the most important properties
and their relationships, to the classification of the catalyst. Structure-activity
relationship needs deeper and detailed knowledge of the above topics. This
knowledge enables scientists and engineers to develop unique catalysts that

improve efficiency and selectivity of chemical reactions.

Prior to proceeding, it should be noted that the relationship between
academic research and industrial research is significant in this study. As a
development engineer in the chemical industry, the practicality of the industrial
environment in the research process must be considered, and, therefore, the
industrial aspect is always mentioned in my dissertation in addition to the scientific

approach.
2.2.1. PHENOMENON OF CATALYSIS

The history of chemistry development is closely intertwined with the
phenomenon of catalysis*. The word is Greek consist of the words “cata”and “lysein”,
meaning down + tear or break, so that the catalyst can degrade the forces that inhibit
the reaction. G. C. Bond, one of the well-known catalytic researchers, is humorous in
his book, but he points out that although the word catalysis is used in different
senses in different periods of history, they still have something in common>. Whether
these inhibition forces are dismantled with a chemical substance or a marriage
broker - because the Chinese term “tsoo mei” for a catalyst also means a marriage

broker - the essence is to bring together the different parties®.
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The phenomenon of catalysis was already well-known to the ancient Greeks,
but it was recognized only in the 19th century. Swedish chemist Berzelius was one of
the pioneers in the field of chemistry. He has defined the phenomenon of catalysis,
among many other discoveries, in 1836, and based it on the fact that at that time,
substances that apparently did not participate in reactions but were necessary to
make them occur, were already consciously used. Berzelius called the catalysis,
according to its original meaning “in a state outside the law”, and substances with
such properties were called “catalysts””. The concept of catalysis has been modified
and clarified several times over the centuries, as a result of the development of

sciences.

Age of Artificial Intolligence In Catalysis 1 Tare
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Figure 2 Short timeline of catalysis research °

The advancement of catalysis research has been on the rise for more than 200
years and many milestones can be highlighted (Figure 2)°. The use of catalysts has
achieved outstanding results in chemical industry processes such as ammonia
synthesis, methanol synthesis, polymerization processes, and the operation of
motor vehicles 19-12, The further technological development of the chemical industry
is based on the latest scientific results, aimed at the production of specific, multi-
component catalysts associated with extraordinary performance!3-15, Artificial
intelligence science was already present in the 1940s, but only the technological
developments of the last 20-30 years have enabled the real evolution of artificial

intelligence in several fields such as catalysis chemistry1®.
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Energy
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PRODUCT

Reaction coordinate

Figure 3 Energetic presentation of catalyst role

However, what are catalysts? Catalysts promote processes that are kinetically
impossible, require extreme conditions, take infinite time, or do not occur at all
(Figure 3)°. Catalysts reduce the activation energies of reactions, which allow to
open new reaction paths and thus increase the reaction rate. However, the catalyst
alters the speed of the reaction, but not its thermodynamics and not its
stoichiometry. The process can be described as a catalytic cycle in which the catalyst
remains “theoretically unchanged” and would not consume?®. Indeed, it is recognized
this is a much more complex process. In practice, catalytic technology can also be

considered the cornerstone of green chemistry.

Many expectations are held regarding catalysts properties. In comparison to
this, it seems that the number of parameters that influence them is “always one
more”. This could be predicted by a complex set of parameters, but the task in most

cases, remains undetermined.
2.2.2. CATALYST CHARACTERISTIC FEATURES

In general, the most important properties of catalysts can be said to be given
mainly by a triumvirate: activity, selectivity, and stability (Figure 4, inner circle). The
importance of the three listed characteristics is indisputable, regardless of whether
it is academic or industrial research. The characteristics most frequently discussed
together are activity and selectivity. The question of stability, which is more

interesting from the perspective of economic and sustainability issues, complicates

6



A DATA-DRIVEN MODELLING APPROACH FOR HETEROGENEOUS CATALYSIS RESEARCH ALEXANDRA JAKAB-NACSA

the picture. Other parameters associated with these properties can be read in the

outer circle.

Figure 4 Most important catalyst qualification factors'> (TON - Turnover Number, TOF- Turnover
Frequency)

ACTIVITY

The catalyst has a significant effect on the rate of reaction. Activity is a term
used to describe the rate of a reaction. The catalyst activity is thus manifested in the
fact that it significantly increases the speed of the reaction, which can be described
in several ways. Table 1 highlights the most frequently used concepts for
characterizing activity. The table contains the metrics used to characterize the

activity, their basic calculation method, and the measurement units.

Although conversion (Table 1, 4th line) is in fact the most common catalyst
performance characteristic, it must be clarified when defining it. The conversion of
areaction is described by a ratio, in which the denominator is the amount of starting
substance, and the numerator is the amount of substance consumed. In order to
properly operate this metric number, the conversion must specify the exact
component to be monitored as well as the time conversion is connected to. The
definition of instantaneous conversion as well as a total conversion is possiblel?.
The calculation of the conversion also depends on whether the conversion is a batch,

semi-batch or continuous process from an operational point of view!8.
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Table 1 Summary of properties describing the activity of the catalyst®

NAME EQUATIONS UNIT
: converted amount of substanse of a reactant mol mol
Reaction rate (r) - or ——
volume or catalyst mass * time l*h  kg=*h
dny
Kinetic activity e k* Vi f(ca)
mol
(simple irreversible —
, where na is molar amount of component A, k is the S

reaction)

rate constant, and f (ca) is a concentration term

Vo
m m’
Space velocit cat
p y kg * 5
, where V, is the volume flow rate, m_,is catalyst mass
Npp — Ny
Npo
. mol
Conversion ) ) —or%
, where n,  is starting molar amount of A component, mol
n, is molar amount of A component
Space-time yield Desired product quantity mol
(STY) Catalyst volume * time l1*h
Turnover frequency volumetric rate of reaction . 1
time™

(TOF) number of centers/volume

Turnover number

TOF * lifetime of the catalyst -
(TON)

Another performance feature is STY (space-time yield) extraction, which
provides a basis for comparison already during the size increase, in the way of

industrial application.

It is necessary to highlight the characteristics of TON and TOF in the table.
Although the definitions of this metrics have long been used, they are not clear and
uniform19-22, These concepts can be derived from the science of biocatalysis and
enzyme kinetics and from there they were adopted by heterogeneous and
homogeneous catalysis research?3. The study by Kozuch et al. provides a detailed
overview of these concepts and their interpretation?4. Research efforts have raised
several important questions, such as the combination of the two concepts, the

8



A DATA-DRIVEN MODELLING APPROACH FOR HETEROGENEOUS CATALYSIS RESEARCH ALEXANDRA JAKAB-NACSA

relationship between TOF value and reaction concentration or the effect of
circumstances, which makes these metrics difficult to determine. Kozuch et al.

defined the standard TOF value, and the TON value associated with it.
SELECTIVITY

One of the 12 principles of green chemistry prefers selective catalysts instead
of stoichiometric agents, since the main objective is to minimize unnecessary waste
during production?>. From a sustainability point of view, as well as an economic

point of view, the use of catalysts with high selectivity is beneficial.

In fact, the selectivity is a parameter that characterizes the quality of the
product formed during the reaction. Selectivity is an issue that can be approached

from several angles and, therefore, can be interpreted and detailed in several ways.
According to the IUPAC the term can be used in two different ways:

“It sometimes refers to the discrimination shown by a given reactant A when it
reacts with two alternative reactants B and C, or in two different ways (e.g. at two

different sites) with a reactant B.”26

“The term also sometimes refers to the ratio of products obtained from given
reactants. This meaning is of importance for catalysts, which can have a wide range of
selectivities. Selectivity is quantitatively expressed by ratios of rate constants for the

alternative reactions, or by the decadic logarithms of such ratios.”?’

In practice, it can be said that it catalyses only one of the several
thermodynamic pathways possible. Based on this, chemo-, regio-, and stereo-
selectivity can be discussed?8. In this case, the ratio of the resulting products is
usually calculated. Another formula focuses on the proportion of the original

material converted to the desired product®.

Selectivity is one of the most useful parameters to measure and control
during catalysts. Somorjai et al. have compiled a systematic study summarizing the
molecular factors affecting catalytic selectivity in heterogeneous reactions2?. In
their research summarizing catalytic selectivity, seven molecular factors are

determined in addition to reaction conditions.
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One of the factors influencing catalyst selectivity is reaction conditions such
as temperature, pressure, catalyst composition, or reaction type. Another group is
composed of molecular factors, which are intermediate products of reaction, surface
structure and composition, oxidation state, charge transport, intermediates, and

induced restructuring by adsorbate.
STABILITY

Since catalyst stability has a serious economic impact, this parameter must

be considered in the design of catalysts.

The lifetime of catalysts is determined by chemical, physical and thermal
stability concepts39-32, In industrial reactions, the activity and selectivity of catalysts
decrease after a certain period and are replaced. Through the examination and
monitoring of these properties, the stability of the catalyst is described.
Deterioration of catalyst stability can also be caused by catalyst poisoning, coking,

loss of active catalyst due to evaporation or decomposition caused by overheating33.

The concept of stability is closely related to the deactivation of catalysts. The
2015 review study by Morris et al. describes in detail, among other things,
mechanisms, types, possible causes and methods of minimization of deactivation
and also methods of regeneration34 According to their study, the cause of
deactivation consists essentially of three kinds: chemical, mechanical, and thermal.
Most catalyst deactivation processes can be avoided through the prevention process.
Regeneration of catalysts is a process which can be carried out under certain

conditions, in particular to restore the loss of activity 3>-37.

Stability of catalysts is generally measured by measuring the time
dependence of factors characteristic of catalyst activity. Vylder et al. designed a
laboratory-scaled liquid solid (LS)2 plug-flow reactor with a fixed-bed catalyst to
investigate the deactivation of heterogeneous catalysts by determining the turnover

frequency3s.
LABORATORY TEST

During catalyst development, catalysts produced are tested for the first time
in the laboratory. Thus, the above-mentioned performance indicators of catalysts are

valid under certain experimental conditions.

10
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INPUT s VARIABLES OF O UTPUT
INDEPENDENT LABORATORY DEPENDENT
VARIABLES  ° EXPERIMENT T ARIABLES
MEASURABLE MEASURARLE

CONTROLLED

CATALYST PERFORMANCE
CATALYST FEATURES INDICATORS
REACTION CONDITIONS

REACTION PARTHERS

MEASURARBLE, UNCONTROLLED -
UNENOWHN, UNCONTROLLED X

Figure 5 Most important experimental variables for laboratory development in academic and
industrial research3®

Figure 5 summarizes the variables associated with the laboratory
experiments3940, Input parameters and output parameters are present. Input
parameters can be independent measurable parameters, controlled parameters, or
uncontrolled external parameters. Independent variables include reaction
conditions such as temperature or pressure, catalyst parameters or, for example,
quantity of starting materials. Output parameters are the parameters that can be

analysed to characterize the performance of the catalyst.
ECONOMY AND SUSTAINABILITY

Over the past decades, the design of chemical catalysts has experienced a
paradigm shift towards the priority of economy and sustainability. Heterogeneous
catalysis plays a vital role in various processes, from petrochemical production,
through fine chemical industry to environmental remediation*!. Due to the
increasing concern about the impact on the environment and depletion of natural
resources, it is important to develop environmentally friendly and cost-effective

catalysts.

Economic and sustainable considerations in catalyst design include
optimizing catalyst efficiency, selectivity and stability to minimize raw materials
consumption and maximize product yield42-44. Various catalyst cost estimation

programmes or guidelines have already been developed, indicating the economy*5-

48,

Furthermore, sustainable efforts include minimising waste generation and

the use of environmentally friendly materials, including nanomaterials that enhance

11
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catalyst activity*>->1. These developments are consistent with efforts to combat
climate change through carbon capture and use and the production of renewable

energy.

2.2.3. CLASSIFICATION OF CATALYSTS

Catalysts can be classified according to several classification criteria. They
can also be classified based on state, structure, composition, or application. In Figure
6, the different clustering of homogeneous and heterogeneous catalyst was
emphasized. On some points, the groups found in the literature differ as well as
depending on the catalysts for which the categorization of the reaction group
contains®2-56, The classification of catalysts provides the basis for building a
database, the central element of which can be the grouping of the catalyst according
to different aspects and the examination of the catalytic performance of the groups

formed in this way.

CATALYST [rmical state | cas | uguio | soun

LI AMECES CRGANIC | INDRGANIC
CLASSIFICATION MEGE CF AETION | HOMOGENEOUS | HETEROGENEOUS | BIOCATALYST

COMPOEITIGN, | SUPPORTED | BULK

[ ACID | BASE

| AP ATION FIME CHEMICALS | PETROLEUM INDIUSTRY.ETC.
S0~ FXCHANGE EGH
= ACID —— RCARBIN BASLD

HokBELoUs
abIETAL BASED

= |IIFTFHWI'|H¢|LH —
o AREDN [ASED
~——cBIICA AASED
—ul3ECH DR AT
wiWAMGITION METAL ODES AND RERVATVES
Yot - HASE —-m'I -aALEALN METAL OXIFE AND DERIVATIVES
R0 METAL DXIRES AND DERWATIVES
———mWATTE MATERIAL RASED

=il ATES, LAY MINERALG AND TTOLTTS

bl ET AL COMM ER

Figure 6 Classification of catalysts52-54

Homogeneous and heterogeneous catalysis are two distinct types of catalytic
processes that differ in the phase of the catalyst relative to the reactant. In

heterogeneous catalysis, catalyst and reaction agents are in different stages>’. In

12
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heterogeneous reactions, compared to homogeneous catalysis, reactions are
performed at higher temperatures and at higher reaction rates, with lower
selectiveness. However, due to the simple separation and recyclability of catalysts, it

is used more frequently in industry than in homogeneous catalysis.

Although heterogeneous catalysis research is promising and essential for
industrial applications, there are some challenging aspects faced by researchers>8.
Heterogeneous catalysts often have complex structures and nanoscale active sites,
requiring complex analytical methods. The analysis and characterization of catalysts
under industrial reaction conditions can be particularly difficult because these
conditions differ significantly from normal laboratory conditions. The catalyst
design itself is a very time-consuming and energy-consuming process. The
development of catalysts to maximize their activity, selectivity and stability requires
deep knowledge of material science, surface chemistry, reaction kinetics and
computational chemistry. It is difficult to determine the exact reaction mechanisms
on heterogeneous catalyst surfaces due to the transitional and dynamic properties
of the adsorbed species. Heterogeneous catalysts may deactivate over time due to
factors such as contamination, poisoning or decomposition, leading to reduce in
catalyst activity and lifetime>°. Furthermore, mass transfer limits can hinder the
access of the catalysts to the active site and affect the overall performance of the
catalyst. Another difficulty and challenge at the same time is the issue of scale-up,

reproducibility, recovery process, real-time monitoring and so on.

Despite all challenges, research efforts continued with the support of
advanced experimental techniques and computational methods to understand

heterogeneous catalysis and to continuous innovations in chemical industry.

2.3. THE ERA OF BIG DATA IN CHEMISTRY

Scientific research has undergone major changes in recent years as data
growth has increased exponentially. The amount of data in scientific research is
growing rapidly, which brings both benefits and challenges. On the one hand, this
amount of data allows researchers to make new discoveries and better understand

things. For example, in field like new energy power and energy storage, and chemo

13
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and bioinformatics or management system, big data has led to significant

progress60-62,

However, it is not easy to handle such a large amount of data. Researchers
have difficulty managing, processing, and analysing all data and information.
Sometimes, they cannot use all the data they have. Furthermore, sharing data
between different research groups can be difficult due to different formats, rules,

and encryption.

Over the past few decades, the number of published articles in the field of
scientific publications has increased exponentially, which constitute the source of
data for various disciplines®3. Although this level of growth in scientific literature
represents progress, it also poses challenges in terms of access and overload of

information.

Catalysis ® Heterogeneous catalyst ® Heterogeneous catalysis

30.000

20.000

Number of articles

Figure 7 Change in the number of publications over the past period [ searching criteria: catalysis,
heterogeneous catalyst and heterogeneous catalysis keywords, 2010-2023, review articles and
research articles]%*

The increase in scientific publications is due to several factors. Technological
advances and digitization have made it easier for researchers to share their findings

with a global audience. Free-access journals are becoming more common, enabling

the rapid dissemination of research results. Furthermore, inter-disciplinary

14
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research and international cooperation have contributed to a wide range of

published works.

ScienceDirect is a leading source of scientific, technical, and medical research
in the world. Based on the keyword searchers, the database contains more than 1
million research articles and reviews in the field of chemistry and approximately half
a million in the field of catalysis®. Figure 7 illustrates the scientific trend in
publications over the past few years based on the defined keywords, such as
‘heterogenous catalysis’. By contrast, while doctoral students can read and process
hundreds of scientific articles during four-year doctoral education, thousands of

new scientific publications are produced every year on heterogeneous catalysis.
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Figure 8 Visualization of bibliometric networks in case of catalysis keyword®> [searching criteria:
catalysis keyword, 2010-2023, relevance, first 200 articles]

Science of chemical catalysis is continuously evolving, researchers explore
new boundaries, and respond to critical challenges. Figure 8 presents a bibliometric
network of catalysis based on the most relevant 2000 articles from 2010 to 20236465,
The objective of visualizing the bibliographic network is to provide a clear and

comprehensive representation of the relationship between scientific publications,
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authors, or research areas®. The different colours represent the connection point
between terms and clusters generated by the VOSviewer software program. Based
on visual data processing, recent research focuses on photocatalysis, heterogeneous
catalysis, organocatalysis, homogeneous and asymmetric catalysis. From this figure,
the most studied topics in the field of heterogeneous catalysis are metal-organic
frameworks, cooperative catalysis, electrocatalysis, synergistic effects and reaction
mechanisms. Density Functional Theory (DFT) appears among the keywords as a
theoretical method for the study of chemical reactions, and palladium also appears,

as one of the most used noble metals in heterogeneous catalysis.

2.4. DATA ANALYSIS IN CATALYSIS

The focus of this doctoral work is to collect, systematize, analyse, and
interpret data accumulated during catalysis research, which is difficult to use
directly to support the development of catalysts. Catalysis plays an important role in
accelerating chemical reactions and has a major impact on various industrial
processes, energy production and environmental protection. As the field of catalysis
evolves, the importance of data analysis to understand the complex mechanism of

catalytic processes becomes increasingly apparent®”.

In modern catalytic research, many data are collected from experiments,
simulations, and theoretical calculations. Data analysis enables researchers to
extract valuable information from these high-dimensional data sets and reveal

patterns, relationships and trends that would otherwise remain hidden®8-70.

Data analysis plays an important role in identifying the active sites of the
catalyst surface. The relationship and interpretation of activity data with structural
and composition information provides insights into the structure-activity
relationship of catalysts7172. It can also be an important step for researchers in the
field of kinetic analysis and reaction mechanism. Through data analysis,
experimental data can be combined with kinetic models, to determine activation
energies and identify reaction transition states’374 This knowledge is very
important in the design of practical catalysts and in the development of more

efficient selective catalysts.
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In addition to many other possibilities of application, the age of big data has
an important impact on catalysis research. Machine learning algorithms are capable
of processing large datasets, recognizing hidden patterns, and generating prediction.
In catalysis, machine learning technology is used to find new catalysts, predict
catalytic performance, and optimize reaction conditions. These data-driven
approaches can accelerate catalyst research and facilitate the discovery of new

catalytic systems16,

2.5. MACHINE LEARNING IN CATALYSIS: A SYNERGISTIC PARTNERSHIP

Machine learning (ML) is a field of artificial intelligence that enables
computers to learn from experience (with mathematical data models) and improve
their performance continuously without the need for special programming?’s.
Algorithms have been developed to search for patterns and rules in large data sets,

to predict, decide and solve problems.

Machine learning can be seen as the latest tool in catalytic research, as it
provides researchers with the opportunity to effectively model and interpret
modern catalytic systems containing many variables and complexity1676-79, These
studies build algorithms from experimental data or literature data using
mathematical models to predict processes through ML and gain new knowledge of

certain processes.

The more commonly used term is catalysis informatics, an interdisciplinary
field that lies at the boundary between catalysis and informatics. The main goal of
this field is to promote and accelerate the research, development and optimization

of catalytic processes using information technology methods and technologies80.81,

Information technology allows modelling, simulating, speeding up quantum
chemical simulations, and collecting data on catalytic reactions. With computer
tools, data can be extracted and analysed, which helps relationships, and
correlations related to catalytic processes. This enables a better understanding of
the correlation between catalytic systems, reaction mechanisms and the properties

of the catalytic process describing the performance of the catalyst.
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2.6. DATA PROCESSING IN LITERATURE RESEARCH: COMPARISON OF CATALYSTS

The process of designing catalysts also requires literature research, in most
cases involving catalyst mapping, which is developed and published by different

research groups.

Information literature research is superficial, resulting in a large amount of
data available, but it is difficult to see by us more. A deeper literature search, which
already deals with processing and interpretation of data, helps researchers to

understand more complex relationships.

However, in this regard, comparison of catalyst in catalysis research is a

challenge, as many factors make it difficult to handle data properly.

The first problem is the lack of data unification. Various research groups use
different methods and conditions to examine catalysts and test them in catalytic
reactions. Different data collection methods, reaction conditions and properties
make it difficult to compare. In addition to different measurement methods, the
quantitative and qualitative characteristics of catalysts are not standardized. Since
catalysts are usually complex compounds, and their effects on catalytic systems are
numerous, it is not trivial to interpret and compare data. The specificity of the
reaction of the catalyst makes comparison even more complicated. The process and
performance of catalyst are also influenced by environmental factors such as
temperature, pressure, and type of reaction. The inclusion of such variables makes
the comparison task even more difficult. Not to mention that many data are still in

the dark because of possible encryption of innovation processes.

Taking all these into consideration, thorough processing and understanding
of the data collected during literary research create the opportunity to accelerate

innovative studies.
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2.7. OBJECTIVE OF THE DOCTORAL STUDY

DATA

Literature research | Data extraction | Data organization

INFORMATION

KNOWLEDGE

Catalyst design strategy | Training data sat for ML

Figure 9 From data to knowledge - schematic of PhD study

My doctoral thesis summarizes my research in the field of data-based catalyst
design and contributes to new methods of catalyst research. The goal is to build a
hierarchy of data-information-knowledge from the data point through various
methods and achieve catalyst design strategies in advance (Figure 9). The main
objective of catalyst design is to optimize catalyst composition through analysing
literature and experimental data, using various mathematical models and computer

software to predict and apply catalyst composition.

During literature research, the structure of specialized literature
publications, how research results are discussed, and the data content of
publications became known. It was determined which parameters are useful for
extracting information from publications and which are appropriate for the

characterization of catalysts.

The literature contains inconsistent data that are difficult to compare each
other directly. Since data sets are difficult to handle in this way, in collaboration to
the University of Miskolc Catalyst Group, a database was created and then
standardized with the MIRA21 model into a single quantifiable data per catalyst. The
catalysts have thus become rankable and classable. In the next step of information

collection, data were cleaned up and parameters selected, and the correlation
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between parameters and factors influencing the composition of optimal catalysts
were investigated. As the process of exploring data analysis continued, data
appeared to be very well used by artificial intelligence, especially in machine
learning. Thus, catalyst design guidelines and machine learning data sets were

created as a result of data analysis processes before machine learning.

Throughout my doctoral studies, new knowledge was gained in the field of
catalysis informatics, which helps to promote the use of artificial intelligence in the
design of catalysts. Given our considerable accumulation of knowledge on the
semantic aspects of publications based on human learning, this research also forms

a solid basis for utilizing the potential of semantic searches.

2.8. THE CHOSEN TEST REACTIONS

The first catalyst design reactions are the catalytic hydrogenation of nitro-
aromatic compounds such as nitrobenzene and 2,4-dinitrotoluene, known chemical

reactions with important industrial applications.

Aromatic nitrogen compounds are widely used in explosives, pesticides,
fertilizers, dyes, pharmaceuticals, plastics, resin, and fuel additives. The growing
demand for these industrial sectors has an impact on the market for nitrobenzene,

especially nitrobenzene, which was estimated at $10.38 billion in 202382,

The hydrogenation of aromatic nitrates has been widely studied83-86.
Nitrobenzene is the raw material for the production of nitric acid®’. The reduction of
nitrobenzene by Bechamp is the oldest technology of aniline synthesis, which uses
iron in the presence of hydrochloride, while modern industrial aniline production
processes are performed by catalytic hydrogenation of nitrobenzene in gaseous or
liquid phases and in the presence of metal catalysts88. The following reaction
equation shows the general reaction of the hydrogenation of nitrobenzene to alanine

(Figure 10).

cat.

NO » NH
\ / 2 Ha 2

nitrobenzene aniline

Figure 10 General reaction of nitrobenzene to aniline by hydrogenation
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Toluene-diisocyanate is produced in a continuous process of three steps
(Figure 11). Dinitrotoluene is produced in the first step by toluene nitration. The
second and decisive step is the catalytic hydrogenation of dinitrotoluene into

toluene diamine. In the last step, toluene diamine forms toluene diisocyanate.

The second stage of the industrial process is catalyst hydrogenation of
dinitrotoluene to toluene diamine using high-pressure and high-temperature solid
catalysts (100-150°C, 5-8 bar). This step was previously done with iron fillers and
water hydrochloric acid but is hydrogenated today using Ra-Ni or Pd/C catalysts®°.
Figure 11 shows the general reaction equation with the main product of the

hydrogenation of 2,4-dinitrotoluene.

NO, NH,

+6H, St o +4 H,0

N02 N H2
2,4-dinitrotoluene 2,4-toluenediamine

Figure 11 General equation of dinitrotoluene hydrogenation with the main 2,4 isomer

Since my doctoral dissertation contains a complete literature survey and data

analysis of these two reactions, it is not discussed in detail in this paragraph.
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3. METHODS

3.1. MIRA MODEL

The Miskolc Ranking 2021 (MIRA21) methodology is a multi-step process for
comparing catalysts employed in a specific reaction and identifying new patterns
among parameters characterizing catalytic processes. This is a systematic approach
to create a simple, general parameter from parameter vectors for the comparison

and analysis of catalysts data.

3.1.1. METHODOLOGY

EXAMPLE
1l

Codour D T4 8
Numbee ol knawn CATA » T
patamatens =
S -
o
Humber of studied | Q2 CATC
pararmeters . . 3

REA m- | - 8.9

Code of the
reoctian

Figure 12 Visualization of quantitative description of a catalyst by MIRA21 number with
corresponding classification and colour code: D1 (top10%), Q1(0-25%), Q2(25-50%), Q3(50-75%),
Q4(75-100%), the deepening of the colour indicates the rank

Figure 12 shows the formation of MIRA21 number assigned to each catalyst
tested. Furthermore, this number provides two indexes. The subscript represents
the number of attributes that were studied (number of parameters studied) and the
superscript indicates the number of attributes available in the scientific publication
(the number of known parameters). These two parameters provide additional
information on the detail level of published data available. If only a few known
parameters are available in the publication, the characterization of the catalyst
according to the MIRA21 model is less robust. The acronym HNB (Hydrogenation of
NitroBenzene) shows the type of the catalytic reaction. The D1 classifies
corresponds to the top 10% of the catalyst. Quartiles are also defined, using four

classes: Q1 (first), Q2 (second), Q3 (third), Q4 (fourth).
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unﬂwh_dﬂ_u Pm-gmgﬂan 2] Documentation and reporting discovered knowledge In o review

Figure 13 MIRA21 methodology through KDD steps®

The establishment of MIRA21 methodology based on the so-called
Knowledge Discovery in Databases (KKD) process®0. KDD is a methodological
process used in data extraction and machine learning to extract valuable and
previously unknown information or patterns from large-scale data sets. Figure 13

demonstrates the methodology of the MIRA21 model according to KDD process.

The main purpose of the MIRA21 model is to provide a standard for assessing
the “goodness” of a catalyst with objective numerical data and to compare and
classify it accordingly. The classification promotes the efficient selection of
appropriate links relevant to support the design of a new catalyst or improve
existing ones. The comparison of special catalysts for a reaction allows the
monitoring of trends in research and development. Standardization of access data

in MIRA21 will also promote accurate and consistent data in future publications.

The application field of the model has been reduced to catalytic reactions,
mainly heterogeneous catalytic reactions. This methodology was developed using

the hydrogenation reaction of aromatic nitrogen compounds described above.

The literature sources determine the validity and reliability of research.

When choosing literature, reliance on the sources written by recognized authors,
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published in high-quality journals, and used in the past to obtain reliable

information is worthwhile.

mstaiz lal hsmp - et
St Commtairy s -
=" - ——— . =
i Eagrasmy W ¥ o Jremp— o=

fspemms ; x; -

Data quality

Figure 14 Selection criteria?191

Figure 14 summarizes the three steps of selecting the processed scientific
articles. The primary criteria were determined based on the quartiles of the journals.
The value of Q index was examined based on the latest results of the Scimago
Journal&Country Rank?2. As a priority, the research results of journal that received
Q1 and Q2 certification were accepted. The second criteria for selecting are the date
of publications, since new research is usually related to current scientific and
technological developments, which helps to keep up with the latest discoveries and
promote the process of innovation. Afterwards, a rapid informational analysis of
literature is also required, resulting in articles that have a strong lack of data or

unrelated content being filtered.

PARAMETER TUNING

OPTIONS

DESCRIPTOR
SYSTEM

- PREUMINARY WORK | PUBLISHING PRACTICE
CHEMICAL KNOWLEDGE AND EXPERIENCE

by o group of ooodemic ond
indutriol oxporty

Figure 15 Establishment of descriptor system by a critical rigorous method
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It is quite difficult to find suitable descriptors for the catalytic process or
catalyst, as the activity of solid catalysts is a function of many variables. Descriptors
are used in several field in different senses?3-95. In this case, they refer to concepts
or characteristics that describe, identify or mark catalyst. The design of the
descriptor system was preceded by the compilation of the initial list of parameters
(Figure 15). The second pillar is literature research practice, because publication
habits clearly limit the types of descriptions to be used. The final element of the
process is to select a system composed of 15 parameters based on the professional

knowledge and experience of the Chemical Institute’s Catalytic Hydrogenation

Group.
MIRAZ descriptor system
1 i)

e T

a a ] )
Cotolysl perldrmanca Reaction conditions Catalyut conditions Sustalnabliity paromaters
Maximum convarsion Temparature Catalyst particle size Reactivation Informyation

Froduct yisd Prossuns Cotalyst surfoce amsa Stabllity Infermation
Product selectivity Time Carrier study information
Turnever Number Malar “""";’“:“ ‘:T Initial Carrler effoct Information
cataiys

Matar amount of starting
reactant

Figure 16 Classification a hierarchy of parameters and descriptors

The model descriptor system can be divided into 4 classes as shown in Figure
16. The quantifiable classes are the performance of the catalyst, the reaction
conditions, and the catalyst conditions. Sustainability parameters include the non-

quantifiable class.

During the development of the methodology, the independence of
parameters was not evaluated. Table 2 demonstrates in detail the descriptor system

of the 15 parameters, with their notation, unit, and definition.
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Table 2 Descriptor system of MIRA21 model for heterogeneous catalytic reactions

Descriptor system

Categories
Notation
Definition

Maximum o, Maximum reactants conversion achieved
1. XREAmax . n/n % .
conversion on a given catalyst
2. Yer Product Yield n/n% Product yield for maximum conversion
. Product selectivity for maximum
Ser Product Selectivity n/n% . v
conversion

Number of moles of product formed per 1
4. TONpr  Turn Over Number - mol active metal when the maximum
conversion reached

Catalyst performance
I
w

Reaction temperature for maximum

5. Tmax.conv. Temperature K .

conversion

Reaction pressure for maximum
6.  Pmax.conv. Pressure atm .

conversion

. . Time required to reach maximum

7.  tmax.conv. Time min )

conversion

The molar amount of the active metal
Molar amount of . . . .
8. Ncat. e mol involved in the reaction - in case of several
initial catalyst
metals, the sum of molar numbers

Reaction conditions
11

Molar amount of The initial amount of starting reagent
9.  nstart . mol . . .
starting reactant involved in the reaction

Quantifiable parameters

10. CPS  Catalyst Particle Size nm Average particle size of the catalyst

Catalyst (active metal + support) surface
area

Catalyst conditions
111

11. CSA  Catalyst Surface Area m?/g

publication contain information about these subjects?
Reactivation means the physical process

Does the

@ 12 Rea Information about _ by which the activity of the catalyst used
2N ' Reactivation returns to or near the original activity
g 2 level.
o £
g o 13, Stab Information about _ Stability means preservation of catalytic
o B3 : stability of catalyst activity
= =
'g o 14 Information about _ Carrier effect means that the catalyst
S -% ' catalyst carrier effect support influences the catalytic reaction
+
Z Z Care
%2]
2 15 Catalyst carrier _Nature of the effect (positive, no effect,
' effect negative)
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The maximum conversion, Xprmax Obtains the highest priority in the data
analysis. All additional data depend on the conversion. The determination of the

maximum conversion is based on the following equation (Eq. (1)):

consumed Nyeqctant

Xega - * 100
max initial nycqcrant

The following equation was used to calculate the yield of the product, Yer (Eq.
(2)):

synthetized ngproguct
= *

100

PR — .
theoretical ngpoquce

The product selectivity, Ser of the catalyst was calculated as follows (Eq. (3)):

synthetized ngproguct
PR =

* 100

consumed Ngproguct

Where n4proguce the molar amount of the desired product, and n,.qctan: the

molar amount of the reactant.

In general, the conversion, yield, and selectivity necessary to describe
catalytic performance can be found through literature research. Publications usually
contain only some of these three data or pair data. Therefore, using all three

attributes in ranking even though their independence was not examined.

Several publications have been published regarding the explanation of TOF (
turnover frequency) and TON (turnover number)?996.97, The study of Kozuch et al.
wrote a detailed discussion about the definition and application of these metric

numbers and use of TOF in connection of heterogeneous catalysis®’.

Although Boduart first defined the frequency of rotation in the 1960s, the
concepts of TOF and TON numbers in heterogeneous catalysis are still differents.
The experience of literacy has shown that these metric numbers are used in a variety
of ways to communicate the results of scientific research. Most of the data in articles

were found as the TON number.

To standardize the data, TON was determined according to the following
definition: “turnover number specifies the maximum use that can be made of a

catalyst for a special reaction under defined reaction conditions by the number of
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molecular reactions or reaction cycles occurring at the reactive centre up to the

decay of activity”??.

According to this explanation, the following equation (Eq. (4)) was used to

calculate the Turnover number, TONpr:

synthetized ngproguct

TO NPR ==
Ncatalyst

where Ncagalyse is the corresponding molar amount of catalytically active

metal.

It was found catalysts tested in a tube reactor. In cases where the residence
time could not clearly determine, data was uniformly recorded for 60 minutes. These

cases are marked “*” in the data set.

The second class consists of data about the reaction conditions: reaction
temperature, reaction pressure, reaction time to reach maximum conversion, the
molar amount of the catalyst, and the molar amount of the reactant. In the industrial
process, the hydrogenation reactions are performed at high temperatures and
pressures. However, in the MIRA21 model, temperature and pressure were scaled
and measured from a thermodynamic economics point of view. The higher
temperature and pressure, the more expensive the reaction from an energy point of

view is.

If more than one maximum conversion data point is defined, the second
priority is the reaction time. The calculation of the molar number of the catalyst was
defined as the molar number of the active metal involved in the reaction. If more

than two active metals are used, the total catalyst quantity is the sum of the molar
quantity.

The third class of characteristics is the particle size and the specific surface
area of the catalyst. These parameters are important to note because the surface of

the catalyst and the support differ, and they apply to the prepared catalyst.

Normally, the size of the particles and the specific surface area are clearly
correlated190-102, The optimal surface that the reactant can contact varies depending
on the type of the reaction. Consequently, if the reaction agent is inaccessible, it is

necessary to increase the specific surface are. For this reason, both properties were
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included in the descriptor system. On the other hand, the size of particles can be
decisive parameter from an industrial point of view, not only for the reaction but also
for the separation technique. The distribution of particle size is another key
parameter in case of catalyst characterizationl93-105, However, the practice of
publishing has shown that the distribution of particle sizes is not standardized and
rarely described by researchers, so this parameter has been omitted from the

system.

The last class of the descriptors contains non-quantifiable parameters. The
objective of the descriptor group is to investigate catalyst from the sustainability
point of view. Almost all catalysts studied were self-made and are therefore not
commercially available. In the evaluation of the appropriateness of a catalyst,
economic and environmental sustainability considerations also arise. Although
there may be several indicators of stability, the descriptors are determined by the
data available in the publications. Data on catalyst reactivation methods, catalyst

stability, and catalyst carrier effect were included.

Data normalization and weighting

1-10 2.5~7.5 4-6 2.5-7.5

Cmniyet R Wpsciis orilllizns Ezmyyel rEnlesm LA il Erp——

Figure 17 Initial weighting system of MIRA21 model

The collected data must be converted into appropriate forms for data mining.
Our model applies data normalization and weighting techniques. In the first step,
the initial weights of the four classes were determined (Figure 17). The purpose of
the weighting method is to provide a usable numerical value that also distinguishes

the four classes with minimal distortion.

The first class characterizes the catalytic performance in a scale of 1 to 10,
and 10 is the highest performance. The second type of parameters for the reaction
conditions are the temperature, pressure, time, and quantity of the initial materials.
They considered their 50% less weight than the first class. The third class consists
of the physical parameters of the catalyst. These parameters have 80 per cent less
weight than the first class. The fourth category deals with sustainability. Most

scientific publications do not include studies on sustainability, even though
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sustainability is one of the most pressing issues of our time. This is why this category

has a greater weight than the third, which supports the importance of sustainability.

Non-quantifiable data were scored at 2.5 or 7.5 points, except carrier effects.
In case of carrier effects, the nature of the effect was also examined. If the studied
catalyst carrier had a positive effect on catalytic performance, it got 7.5 points. If the
catalyst support has no effect on the reaction, it received 5 points. The catalyst that

negatively affected the hydrogenation reaction, received 2.5 points.

Frequently, the values of conversion, yield, and selectivity were given
inaccurately. Authors often use the context of “above 99%” or “more than 99%” to
characterize catalytic performance. Therefore, there is no difference between 99%
and 100% and a maximum score were given to conversions for values of 99% or

more.

The following equation was used to normalize the data from quantifiable

parameters (Eq. (5)):

(MAX — MIN) * A — ming
At = MIN + - (5)
maxa — minp

where A is the value of the attribute, A® is the transformed attribute
value,min, and max, are the corresponding calculated minimum and maximum
values of the attribute in the data set, MIN is the minimum scoring point and MAX
is the maximum scoring point. As the data sets change, the minimum and maximum
values of the specified attributes also change, meaning that the scale depends on the

current data set. Outliers can also significantly affect the scaling and scoring system.

The normalized data was summed in a multiplication function, and the
logarithm to the base ten of the resulting sum was taken. The following equation

shows the formulation of the MIRA21 number (Eq. (6)):
n
MIRA21 = 1og1_[A§ (6)
i=1

where i=1...15 the number of attributes, and A? is the transformed value of
an attribute between the corresponding scores. The value can be specified with a
decimal point due to the logarithmic calculation. However, the second decimal point

was also indicated in the tables of ranked catalysts because of ranking clarification.
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Each catalyst can be characterized by MIRA21 having a maximum value of
13.43. The ranking is based on the calculated MIRA21 numbers. In addition to
establishing the ranking, the results were divided into quantiles. The upper limit of

the D1 class score was calculated by the following equation (Eq. (7):

(7)

MAXrank — MINrank)

ScorelimitofD1class = MAXrank — ( 10

where MAXrank is the highestand MINrank is the lowest score of MIRA21
ranking. Quartiles were also defined according to this principle, wherein the first
decile and four quartiles: D1, Q1, Q2, Q3, Q4 were used. The first quartile is made up
of Q1 and the top 10% (D1).

3.1.2. DATABASE DESIGN

Data processing was performed in Microsoft Excel from the data collection to
the data normalization and evaluation.1%¢ (Appendix 1). In Excel, a separate
spreadsheet was created for the descriptor system, where you can change the
parameter weight. Data storage of journal articles, data storage of catalyst
composition, raw data collection based on MIRA21 model, determination of data
normalization, calculation of MIRA21 number, ranking, classification, and evaluation

are performed on a separate spreadsheet.

During the processing of data, three types of data were generated. The first
data type provides explicit data about the attribute called available data. The second
is extracted data, which can be calculated from known information. The third is the
graphical data called the readable data. Derivative and readable data are also
marked in the data set. Calculations were made in a predetermined way. Origin was

used to read the figures of journal articles107.

Although a descriptor system is available, reading, and interpreting literature
is often subjective because the researchers themselves have different backgrounds,
interests, and experiences. In other words, the scientific results described can be
interpreted differently depending on the context of the text and focus on different
aspects. Therefore, it is thought that three curators work together during data

processing, checking each other, comparing results, and discussing the points
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concerned. In the event of conflicting data, the entry of data with the participation

of several researchers were occurred.

The application and review of the MIRAZ1 model methodology can be found

in the results and discussion section of the doctoral thesis.

3.2. EXPLORATORY DATA ANALYSIS

The aim of the study is also to investigate how to obtain conscious data
analysis from the collection of data guided by chemical intuition and to obtain results

suitable for the construction of machine learning algorithms.

Exploratory data analysis (EDA) is the application of several statistical
techniques aimed at investigating, describing, and summarizing the nature of
datal%8, This allows us to identify possible errors, reveal the existence of an outlier,
check the relationship between variables (correlations) and their possible
redundancy, and conduct a descriptive analysis of data using graphical
representations and summaries of the most important aspects1%9, EDA of previous
catalytic data reveals the exploration of correlations between the physicochemical

properties and performance of catalysts110-116,

EXPLORATORY DATA ANALYSIS

UNIVARIATE ANALYSIS wihiL VARADLE
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BIVARIATE ANALYSIS m

HEW D TWE VARIMILES AFFECT EACH OTHER? HOW ARE THEY MELATED? HEW 18 1T COMPARED TGO DTHERT
TEST OPIRONGE ARE THE SAME DUT THERT ARE ADDITIONAL DPTIONE FUCH AS SCATTERING DMAGIAME, CORRELATION ANALYHE.

MULTIVARIATE ANALYSIS

FUEDICTION PROBLEMS Ol OTHED DROBUIME BIVELVING MORE THAN TWO VARIABLES
CORNELATION MATRNG AND HEATMAPR, CROES-TREQUENCY TABLES. ITC,

Figure 18 Types of EDA117.118
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Before performing data analysis for statistical or prediction purposes, for
example using machine learning, it is inevitable to understand the raw data in
question. Understanding and evaluating the quality of data is necessary to detect and
treat atypical or incorrect points to avoid possible errors that may affect the results

of analysis.

One way to carry out this pre-processing is through exploratory data analysis.

EDA can be divided into three parts!1? (Figure 18):

= Univariate analysis
= Bivariate analysis

= Multivariate analysis
Figure shows the most typical tool for the given type of analysis.

3.2.1. UNIVARIATE ANALYSIS

Univariate analysis is a type of statistical analysis that focuses on a single
variable at a time. Its aim is to explore and summarize the characteristics of given

variables to gain an understanding of its distribution and characteristics120.

A single-variable analysis technique group is graphical, table, descriptive and

inferential statistics!!”.

Figure 18 presents the types of univariate data analysis in detail. In univariate
analysis, frequency tables and bar graphs can be used to investigate variable
distribution, histograms and box diagrams can be used to investigate continuous
variables. Descriptive statistical analysis such as mean, median, mode, range,

variance, standard deviation is also related.

Data visualization is a critical step in data science process. To enhance
understanding, hybrid plots are used which combine the strengths of different chart

types and helps to avoid losing valuable information.

To visualize the distribution of the dataset and summarize statistics, the
combination of violin and strip plots were applied. Violin plot is a combination of a
box plot and a kernel density plot!17. The strip plot represents an implementation of
a scatterplot that shows exactly the inner structure of distribution, its sample size,

and the location of the individual observations.
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3.2.2. BIVARIATE ANALYSIS

A bivariate correlation analysis whether and how two variables are linearly

consistent, i.e. if one variable change linearly as the other variable changes.

Correlation is a bivariate analysis that measures the strength and the
direction of the relationship between two variables!21. Regarding the strength of the
relationship, the values of the correlation vary between +1 and —1. A value of +1
indicates the perfect relationship between two variables. When the correlation
coefficient values go towards 0, the relationship between the two variables becomes
weaker. The direction of the relationship is indicated by the coefficient symbol, +
symbol represents a positive relationship, and — symbol represents a negative
correlation. In general, in statistics, four types of correlations are measured:
Pearson’s correlation, Kendall’s correlation, Spearman’s correlation, and Point-

Biserial’s correlation. Pearson’s correlation analysis is the most common method.

In the correlation analysis the first step is to make sure that the following five

assumptions are met for calculating the Pearson’s coefficient122:

» Level of Measurement: The two variables should be measured at the interval
or ratio level.

= Linear Relationship: There should exist a linear relationship between the two
variables.

* Normality: Both variables should be roughly normally distributed.

= Related Pairs: Each observation in the dataset should have a pair of values.

= No Outliers: There should be no extreme outliers in the dataset!23,

If the data does not match the normal distribution, another correlation
analysis must be performed. The second most used type is Spearman correlation,
because it relies on nearly all the same assumptions as the Pearson’s correlation, but
it does not rely on normality, and the data can be ordinal as well and thus, it is a non-

parametric test.

Spearman's coefficient (p) is used to measure the monotonic correlation
between two variables!24. A monotonic function is a function of one variable which

is either entirely increasing or decreasing. The Spearman correlation coefficient is
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defined as the Pearson correlation coefficient between the rank variables2> ( Eq.
(8)).

63 d?

T am?-1) 8

p=1

where d is the difference between the values of rank x; and rank yi, n is the

number of observations.

The correlation coefficients between different variables are visualized in

correlation heatmap that is a graphical representation of a correlation matrix.

To visualize the relationships between each variable, joint and pair plot were
used126, It produces a matrix of relationships between each variable in your data for
an instant examination. It can also be a great starting point to determine types of
regression analysis to use. The plot is supplemented with kernel density estimate
(KDE) along the diagonal, which provides the distribution of the data. There is a
categorical variable within our data frame, and it can be used to visually enhance the

plots and see trends and distributions for each category by coloring.

3.2.3. PROCESS OF EDA IN THIS STUDY
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Figure 19 Process of our exploratory data analysis

Data analysis can be described in a multi-step process, as a result of which
the necessary database is prepared for machine learning and a catalyst design

strategy can be complied (Figure 19).
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The next step is to clean and filter data based on the MIRA21 model database.
During the data cleaning, the data were examined by descriptive statistical tests and
then the parameters of the descriptor system were selected which exploratory data
analysis were also occurred. After the univariate analysis process was performed,
which examined the data sets of each parameter by performing violin and strip
diagrams and determined the filters for the filtered data sets during the bivariate
analysis. The normal distribution examination determines the correlation analysis
to be performed. Subsequently, correlation analysis and pair analysis were
performed. The data analysis results and conclusions are contained in the results

and discussion section.

The EDA was carried out in python programming environment by using

NumPy, Pandas, Seaborn, and Matplotlib libraries127-130,

4, RESULTS AND DISCUSSION

4.1. MIRA21 STUDY OF NITROBENZENE HYDROGENATION REACTION131

MIRA21 model was initiated for use with catalysts suitable for nitrobenzene
hydrogenation. The chemical reaction chosen is well-known in industrial and

academic research.

BorsodChem manufactures toluene diamine by using aniline. In recent years
the production of aniline itself has also been carried out in the company. In my R&D
work, I also participate in the research into the hydrogenation process of aromatic
nitro compounds, so this process is close to me. The industrial experience and

approach contribute to correct interpretation of model-based analysis.

The university's Laszl6 Vanyorek group is engaged in the development of
catalysts for the catalytic hydrogenation of nitrobenzene and dinitrotoluenel32-134,
The group's experiments and results provide an opportunity to test and refine the
model in-house and to take advantage of the application possibilities. In addition,
theoretical chemical calculations are also carried out at the University in connection
with TDA and MDI production, so this is a well-known reaction from the side of

computational chemistry?3s.
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4.1.1. CATALYSIS LIBRARY
The Chapter describing the method of the MIRA21 model discusses which
sources are used to build a catalyst database. As described above, the criteria for

selecting literature were determined.

Scientific publications with a Q1 or Q2 rating ( according to Scimago Journal
Rank) in 2019 are included in the database®!. Since hydrogenation of nitrobenzene
is a regularly studied topic, only the results of the latest papers were collected.
Consequently, only with articles written after 2000 were selected. The articles that
met the first two criteria were then reviewed in terms of data content by quickly

reading them.

At the time, a check was conducted whether the selected articles relating to
the development of catalysts belonging to the corresponding reaction type, on the
one hand, and whether the data could be collected from the articles by
understanding the descriptor system. Many papers were excluded from the study
because, although suitable for research conditions, they describe a more kinetic

result or examine the effects of conditions, and do not focus on catalyst research.
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Figure 20 Summary of research database information [Box A) general information about the
search is provided (publication year, Q index), box B) the distribution of the active metal components of
the catalytic collection is presented in a donut diagram, box C) the distribution of the carriers is
presented]

Figure 20 shows the filter conditions for collecting data and the first
information collected from the database. The literature research was occurred based

on the following keywords: ‘nitrobenzene, catalytic hydrogenation, aniline, catalyst’.

86% of the publications studied were classified as Q1, and 75% were published after

37



A DATA-DRIVEN MODELLING APPROACH FOR HETEROGENEOUS CATALYSIS RESEARCH ALEXANDRA JAKAB-NACSA

2010. In general, catalysts are supported systems that include one or two active

components.

85% of catalysts are monometallic, while 15% of catalysts consist of two
active components. A large percentage of prepared and applied hydrogenation
catalysts contain palladium or platinum as active metal (Figure 20). Many studies
have also been conducted on the catalysts of Ru, Rh, Co, Fe, Au and Cu. The
distribution of active metals is slightly distorted. The occurrence of an active metal
increased not only with the number of objects tested, but also with the number of

catalysts tested.

Further examination of input data shows the variability of catalyst
composition. Carbon based supports are usually used as catalyst carrier. Most of the
carbon-containing catalysts are activated carbon due to their low cost, high
performance, easy regeneration a reusability. Moreover, many experiments have
been conducted to develop carbon nanotube catalysts. The group of oxide catalyst
carriers is much more heterogeneous, for example, there are silicon, titanium,

cerium, and aluminium oxide catalysts of this class.

During the process, two PhD colleagues and I reviewed and collected the
scientific publications. The data processing was also carried out by three of us and
the data was then checked. The construction of the first database of the MIRA21
model was an extremely time-consuming task, as human subjectivity had an
important role to play in collecting data in literary processing. Therefore, initially,
individual publications were managed in such a way that they were discussed
together to reach an agreement on issues relating to data management. Such a

question was, for example, how to enter conversion data semantically.

As a result, a catalyst library was created, consisting of 45 articles and 154

catalyst data sets, including about 4,500 data points 136-179,
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4.1.2. RESULTS
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Figure 21 Information content of studied scientific publications

After the database was completed, the descriptor system was studied by

univariate analysis.

Based on the data quality and frequency (Figure 21), catalysts can be well
characterized with the determined parameters. The figure indicates that in 80 % of
cases, catalysts can be characterized by at least 13 parameters. The minimum
characteristics due to sustainability parameters are 4. Furthermore, most catalysts
are characterized by 14 parameters. Based on the data processing, it was observed
that the content of information differed even between catalysts examined within an
article, as in many cases only the results of catalysts considered the best were

described in detail or only this was further investigated.
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Figure 22 Relative frequency of data occurrence according to MIRA21 descriptors

Figure 22 summarizes how the data availability for the different descriptors
has changed. The parameters that characterize catalyst performance and the
parameters that describe catalyst experimental conditions are high-quality data
available. In most cases, the extraction data was not available and so it had to be
calculated. The two essential characteristics of chemical reactions are temperature
and pressure. These indicators are always present in scientific publications, as was
the case with us. However, in several cases, no response time has been given. In these
cases, conversion rates and selection data were also missing or there was insufficient
data to determine their calculation (flow reactor systems). More than 90% of the
molar amounts are available from articles or can be deduced from other data. An
interesting observation is that in some cases the molar amount of catalysts was not
possible to calculate because the required data were not clearly presented.
Furthermore, in some experiments, the initial molar amount of the original

substrate was so low that it was difficult to interpret the performance of the reaction.
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A small amount of information was available about the physical properties of
catalysts. The most applied analytical measurements were the Brunauer-Emmett-
Teller (BET) method and electron scanning microscopy analysis. The selected
physical parameters are not often found in the article. In this case, the sustainability

data indicate whether there is information on the subject in the publication.
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Figure 23 Data distribution of catalyst performance descriptors on a box and whisker chart:
maximum conversion, aniline yield and selectivity data in percentage (left), TON [-] (right) [On each
box plot, the central black line indicates the median, and the solid pat of the column shows the first
quartile, and the striped part shows the third quartile]

According to the data analysis, it was found that the distribution of data by
catalytic performance descriptors varies (Figure 22). The next box-and-whisker
chart shows the minimum, maximum, Q1-Q3 range (contains the Q1-Q2-Q3
quartiles), median values of the conversion, yield, and selectivity values (Figure 23).
The central black line shows the median. The end of the vertical black lines shows
the minimum and maximum values of attributes. The solid column shows the first

quartile, the striped column shows the third quartile. The meeting of solid and

striped columns shows the median value.

Among the parameters describing catalyst performance, the selectivity can
be highlighted, because as shown in the figure, the data range is much smaller than
the other range, and the range between Q1 and Q3 is between 92 and 99 %. Outliers

can be seen in all cases, but in data sets, the TON value has a significantly different
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maximum value. The TON value is displayed between 0 and 2000 in the diagram, but
the maximum value is not displayed in the diagram, which indicates an outlier.
Examining the data set, the highest TON was about 35 000 in two cases. The main
reason for this difference is the different amount of catalyst used in hydrogenation

test experiments.
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Figure 24 Applied reaction conditions (top - temperature, bottom - pressure) [First x-axis
shows the ranges, and the second x-axis shows the average scoring of ranges in MIRA21 (According to
Eq. 5and Eq. 6).]

As shown in Figure 24 , the catalyst used for hydrogenation has been tested
in a wide range of reaction conditions. Compared to industrial conditions, laboratory
experiments are usually carried out at lower temperatures. Catalysts are tested atan
average temperature of 90°C, the general range was 293-412, but industrial aniline

production occurs at 230-250 °C.
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A normally used reaction pressure was less than 16 atm for hydrogenation of
nitrobenzene under laboratory conditions. In our database, there is an outlier in
terms of pressure. Zhao et al. studied the hydrogenation reaction of supercritical
carbon dioxidel71. They studied the influence of pressure, solvent and particle size
on this reaction catalysed by Pt/C. It was shown that conversion increased as CO2

pressure increased to 10 MPa but declined at pressure greater than 14 MPa.

The reaction time of the test experiments also differs greatly. In some catalyst
tests, the hydrogenation time was several hours. The reason for multi-hour
observation could be mainly to achieve maximum conversion that conversion
increased over time. The shortest reaction time is 7 minutes for a carbon nanotube-

based platinum catalyst under elevated conditions.

The last description evaluated the sustainability of catalysis. These questions
can be answered for all catalysts. The catalysts examined in terms of reactivation,
stability and catalyst support received a “+” rating. Furthermore, the catalytic whose
support favoured the reaction received an additional “+” rating. Descriptors of
regeneration defined for physical techniques, but regeneration procedures that
contain chemical treatments were also included due to experience in data analysis.
Zhang et al. studied the stability of cobalt catalysts and their recycling potential [77].
After each reaction, the catalyst was washed with ethanol and dried. The catalyst

was reused at least five times without loss of activity. In a publication on cerium-

based catalysts, centrifugation was used to separate the catalyst to reuse it [62].

Stability was reported in 27% of the samples. An important requirement for
the catalyst to have a long life. During the stability test, the number of cycles the
catalyst performs before the catalyst's activity begins to decline is determined. In
articles in which several catalysts have been tested, only the best of these catalysts
has been examined or described for stability. This may be one of the reasons for the
low amount of data on the subject. the stability of the context was encountered as
the recyclability or reusability of a catalyst in the articles. For example, Qu and others
have investigated the stability of AuPd/TiO2 catalysts for solvent-free

hydrogenation of nitrobenzene to aniline [79].

In several cases, the article focused on the effect of catalyst support. In a large

proportion of studies, type of catalyst carriers was the catalyst’s innovative part. For
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this reaction, researchers used various supports, including conventional carbon-
based support systems, carbon nanotubes, cerium oxides and porous organic
polymers. Gao et al. prepared several types of carbon hybrids based on N and S co-
doped carbon for catalytic hydrogenation and investigated the role of cobalt salt
[55]. These catalysts showed that they could effectively reduce functionalized nitro

aromatic compounds to corresponding amines.

4.1.3. OVERALL RANKING
After the establishment of the data base, the MIRA21 rankings were
implemented. Data scaling was done according to data normalization. The changes

to the scale are already contained in the method description.

If the occurrence of data according to the descriptors was examined,
information on reactivation, stability, surface of catalyst, carrier effect and particle
size was the least available data. This experience correlates with the scoring of
descriptors, except in the case of the last class of descriptor, but this was deliberate.
We expected that these parameters could be used to differentiate the catalysts. This

is the reason for the greater weighting of the sustainability questions.

12
DI Q1 Q2 Q3 eQ4
11
s 10
€
—
g s ¥ .
o 7 -
=
T .
6 . ® ®
5 ®
4
7 8 9 10 11 12 13 14 15

Number of known parameters

Figure 25 Effect of increasing number of known parameters for MIRA21 number

To provide evidence for our previous statement, Figure 25 highlights one of
the bases of the number MIRA21. The more information about catalyst given, the

higher the number MIRA21 that can be assigned to the catalyst. Furthermore, as the
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amount of data about the catalyst increases, the difference between the catalysts also
increases. Reduced parameters were also studied. If the number from 15 to 10 was
reduced, a much more unclear picture of the relative quality of catalysts was

experienced.
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Figure 26 Distribution of catalysts according to classification (D1, Q1, Q2, Q3, and Q4) system

Figure 26 shows the distribution of the catalyst classifications. The total Q1
is made up of the Q1 and D1 categorises. According to the MIRA21 model, 12
catalysts were placed got D1 category. 60 of 154 catalysts were placed in the first

quartile and 16 were placed in the last quartile.

The appendix contains catalysts from the catalyst data library (Q1-Q4), which
provides catalyst identifiers, catalyst name, MIRA21 number, number of known
parameters and classification (Appendix 2). Catalyst ID consists of reaction type,

author address ID, year of publication, and the serial number of the catalyst.
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Table 3 Identification of D1 classified catalysts according to MIRA21 model

KNOWN MIRA21

RANK CATALYSTID  CAT. Name in Journal Clas
parameters  number

1 HNB_XIA2021_1 0.07%Pt/@-ZrO2/SBA-15 15 12.22 D1
2 HNB_BRA2015_1 Pd/C 15 12.22 D1
3 HNB_TAI2017_3 Co@NMC-800 15 12.13 D1
4 HNB_MIS2019_1 Pd/N-BCNT 15 12.04 D1
5 HNB_SHA2015_1 Pt/CMK-3 15 11.92 D1
6 HNB_MIS2020_1 5w/w% Pd-CC 15 11.84 D1
7 HNB_SHA2020_1 Pt/meso-Al203 15 11.83 D1
8 HNB_BEI2013_2 Pd/MWCNT-SA-4.3 15 11.79 D1
9 HNB_GUA2017_4 Pd/N@CNTs-1.5 h 15 11.77 D1
10 HNB_GUA2020_2 Pt CeO2-R-600 15 11.72 D1
11 HNB_HAN2013_1 Pt@MIL-101 15 11.69 D1
12 HNB_LAN2020_3 v-Fe203/NPC-800 15 11.65 D1

By calculating the number of MIRA21, determining the classification and
classification of catalysts, the best catalysts based on our descriptor system were
specified. Table 3 presents the D1 catalysts with known parameters, MIRA21
number and classification. The experimental results of the D1 catalyst were

published after 2013.
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Figure 27 Distribution of active metals (A) and type of catalyst carriers (B) in D1 classified catalysts
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Figure 27 summarizes the catalyst composition according to active
compounds and catalyst carrier. The highest - rank monometallic catalysts included
palladium or platinum as active compounds which are also supported by catalysts
that have been classified Q1, so the situation is also similar. The results show that
palladium and platinum can achieve similar good results, but from an economic
point of view, it is not important which catalyst is used, it is also worthwhile
optimizing the catalyst for cost. The results of catalyst support are no longer so
uniform. The range of suitable types of carriers is quite varied. Among carriers,
however, carbon-based carriers can be distinguished. For carbon-based substrates,
the latest nanotube solutions can be highlighted from the database. From the D1
category, it can also be seen that it is difficult to compete with traditional Pd/C

catalysts, as it is also one of the best.

The D1 catalyst experiments were carried out at temperatures ranging from
20 to 80 °C. There were much larger differences in the reaction pressure. The
catalytic performance parameters of the D1 catalyst are almost identical, except for
the TON value. Experiments with the D1 catalyst were conducted between 20 and
80°C. There were large differences in the content of professional information in the
articles, whether it was a study of reactivation, regeneration, support effect or

stability.

Y. Zhang et al. prepared hybrid 0.07% Pt/@-ZrO2/SBA-15 nanostructure
catalyst which demonstrated 100% conversion and 100% aniline selectivity at 40
°C, 7 atm in 50 minutes 173. The high activity, selectivity, and stability of the catalyst
can be attributed to the special structure of the catalyst and the synergistic effect
within it. The authors compared this catalyst to many other catalysts from different

study.

Research of Turakova et al. focused on the mechanism of the liquid phase
hydrogenation of nitrobenzene 174, They used a conventional palladium catalyst with
activated carbon support. At 70 °C and 30 atm the nitrobenzene conversion was
almost 100% after 40 minutes. This high pressure is commonly used in industrial

applications.

The D1 category of MIRA21 also includes non-noble metal catalysts for

nitrobenzene hydrogenation. It should be noted that most of the hydrogenation
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catalysts developed contain precious metals. In contrast, researchers from Taiwan
developed an Co-based N-doped mesoporous carbon catalyst that demonstrates
high catalytic activity and chemo selectivity for various nitro aromatics at 80 °C and
1 MPa with only 2 mol% of cobalt1¢®. The synthesis of the catalysts facilitates the
simultaneous optimization of porous features and cobalt nanoparticles. The
research F. Zhang et al. have developed a new approach to improve the catalytic
activity by the formation of an embedded cobalt-based catalyst with N- doped

mesoporous carbon.

Another new trend in hydrogenation catalyst development is the “support on
support” (SoS) type catalyst that contains a nitrogen-doped bamboo-like carbon
nanotube (N-BCNT) on the surface of zeolite!37. Vanyorek et al. developed a SoS
system to improve the effectiveness of aniline production. Examination of various
noble metal catalysts has shown that Pt/N-BCNT-zeolite was the most active (at 50
°C, 5 atm). However, in the case of Pd/N-BCNT only one main by-product was

formed.

Li et al. prepared and investigated a platinum nanoparticle containing
catalyst with a CMK3 ordered mesoporous carbon supportl’3. They examined its
catalytic activity for the hydrogenation of nitrobenzene and its derivatives in
ethanol. According to the study, the performance of the Pt/CMK-3 catalyst was
excellent within a very short time. A reusability test of the catalyst was also done.
The Pt/CMK-3 catalyst could be recovered easily and could be reused more than 14

times with no loss in activity.

Researchers from the University of Miskolc examined another type of
catalyst. They prepared a carbonized cellulose catalyst support and used palladium
nanoparticles as active metal for hydrogenation!32, The temperature dependence of
the catalytic reaction was examined. The catalyst developed by Prekob et al. reached

100% conversion at 323 Kand 20 atm in 240 minutes.

Nie et al. synthetize a mesoporous Al203-supported platinum catalyst179.
They developed a special, solvent-free, rapid, and generalized method for catalyst
preparation by ball milling. The catalyst performed well in the selective

hydrogenation of nitrobenzene at 40 °C and 20 atm.
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The research of Z. Wang et al. yielded a mild, green, and sustainable
preparation method of a Pd/CNT catalyst'7°. The focal point of the process is that
the implementation occurred in aqueous solution and at room temperature. The
catalyst has shown high performance within 15 minutes under mild conditions.
According to the recyclability test, the catalyst could be used three times without

demonstrating a loss in activity and selectivity.

Experiments of Dong et al. focused on metallic impurities in carbon
nanomaterials7?. They demonstrated the deactivation effect of residual growth of
N-doped carbon nanotubes for hydrogenation. This effect was examined through
carbon nanotubes supported by palladium nanoparticles with controllable iron
contamination. Only tens of ppm of iron contamination had a significant negative

impact on the catalytic performance.

Cerium-oxide is a less commonly used catalyst support. According to a study,
cerium-oxide supported platinum catalyst demonstrated a high level of aniline
productivity. Q. Zhang et al studied the effect of the shape of the support and the key
role of additional cerium ions sites!55. The shape effect was attributed to exposed
crystal planes on CeO2 with different reducibility. High temperature reduction has
improved the performance of the catalyst by providing additional Ce3* sites on the
surface. They prepared Na-containing cerium-oxide support because they found that

Na* could help stabilize the Ce3* surface.

Metal-organic frameworks have gained attention in recent years. Du et al.
fabricated homogeneously dispersed platinum adatoms in an ordered mesoporous
meta-organic framework>7. Pt@MIL-101 catalysts also demonstrated a high
catalytic activity under relatively mild conditions (20 °C and 10 atm). The high
efficiency of the catalyst was attributed to the homogeneous deposition of platinum

particles in the carrier.

The research of Lv et al. dealt with a preparation of iron oxide modified N-
doped porous carbon catalyst derived from porous organic polymers!’7. The great
advantage of the catalysts is that it can be easily recycled with a magnet and reused
at least 10 times without reducing the catalytic activity and selectivity, according to

the experiments.
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4.1.4. CONCLUSION OF THE FIRST TEST SYSTEM

The aim of this research is to demonstrate the functioning of the MIRA21
model by studying the catalytic hydrogenation of nitrobenzene. The first section
contains general information on the selected reaction, describes the MIRA21
ranking model, and compares 154 catalysts from 45 articles published over the past

20 years (2000-2020).

The aim of MIRA21 is to characterize the effectiveness of each catalyst with
clear, objective, and minimal distortion of numerical data. A mathematical equation
containing 15 factors was derived to classify catalysts. According to literature
analysis, 15 parameters were found sufficient and necessary to distinguish between
catalysts. However, due to the possible correlation between the descriptors,
revisions to our descriptor system are justified. Outliers were identified during data

processing. These exclusions have a significant impact on scale and score.

Using of MIRA21 facilitated the collection of information, because it
determined the focus of the articles during the data processing. According to the
model, the developed catalysts became more comparable. The ranking helps the
researchers work by showing a simple number, which characterizes the
hydrogenation catalyst. The ranking model can be flexibly applied to other catalytic

reactions.

As the results of data processing, the experience was that the information
found in articles are difficult to use due to the non-standardized data within them.
Unclear wordings do not help the reader understand the main points of the
publication. A pivotal point among the attributes describing the catalysts is the TON
number. Furthermore, few studies would guide catalyst development on the path of
industrial application. Based on the research, exploring knowledge about the

sustainability of catalysts is beyond the focus of most research.

The ranking of the catalysts enabled the new development trends and
directions to be mapped. According to MIRA21 model, the conclusions of this review

about nitrobenzene hydrogenation to aniline are as follows.

Monometallic-supported catalysts are the most suitable for the
hydrogenation of nitrobenzene, bimetallic or multimetallic catalysts did not show

significant advantages. However, based on the results of the newest catalysts with
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the highest MIRA21 number, the metal content of the support has a positive impact
on the catalyst performance. It is also observed that in the case of platinum catalyst,
various transition metal oxides promote the hydrogenation properties of platinum.
It turned out that small amount of platinum combined with transition metal oxides

can be an effective competitor for palladium-carbon catalysts.

Precious metals are most used for aniline production, especially palladium or
platinum, but there are some non-noble metals used as catalysts with excellent
activity and selectivity, such as iron and cobalt. Development of novel carbon
materials dominates activated carbon as a catalyst carrier, as the application of
carbon nanotube carriers became more common due to their good catalytic
performance. Classified catalysts D1 are composed of special compositions such as
platinum adatoms in ordered mesoporous metal-organic frameworks or iron oxide

modified N-doped porous catalyst derived from porous organic polymers.

4.2. MIRA21 STUDY OF DINITROTOLUENE HYDROGENATION180

4.2.1. Aim

The model's application has two directions: one is the revision of the
descriptor system by statistical methods, and the other is the application of the
model to other reactions. Hydrogenation of 2,4-dinitrotoluene to 2,4-toluene is an
important technological step in the polyurethane industry. The technological
process, the reaction mechanism and the reaction kinetics have been studied and
generally accepted, but much remains to be learned about the catalysis of this
process. Therefore, the map of the current state of the development of catalysts also
facilitates the development of scientific research. However, the review of the
literature on catalysts used in TDA synthesis does not provide sufficient information
to achieve this objective. The comparison of the catalysts studied so far provides a
much more complete picture of the latest developments in their effectiveness. The
MIRA21 model was therefore used to conduct the characterization, comparison,

ranking and classification of catalysts131.
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4.2.2. CATALYST LIBRARY
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Figure 28 Publication year distribution of 56 articles after first selection (Box A), and Q index
distribution of 15 articles after second selection (Box B)

The results of the literature research are surprising because there are
relatively few published scientific results about the dinitrotoluene hydrogenation
process. They were mostly prepared before the 2000s. Based on Google Scholar
searches for the keywords ‘dinitrotoluene hydrogenation’, 2210 matches were given,
however if ‘toluenediamine’ was added there were only 212 hits. 92 pieces of these
included scientific results obtained after 2010. To demonstrate this, the keyword
‘kinetic’ was added to the initial search, which then yielded 120 articles. Overall, only
a few research groups have studied TDA synthesis and have prepared catalysts for
this reaction. On one hand, a smaller database reduces the reliability of the MIRA21
results. On the other hand, a smaller dataset makes it easier to delineate the possible

research pathways on the topic.

After the first selection 56 articles remained. During the data analysis, it was
justified to change the publication year selection criteria (after 2000). Figure 28 A)
shows the distribution of scientific publications according to publication date. B)
part of the figure presents the studied articles based on its Q-index in 2021 after the
primary article selection (relevance, publication year, Q-index). The figure shows
that the data used to analyse the catalysts mainly came from Q1 articles. A few

publications whose publisher has since ceased to exist were also included in the
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analysis, because they had previously provided space for the publication of high-

quality scientific works.
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Figure 29 Composition of 58 studied catalysts according to support and active component

Selected 58 qualified catalysts of 15 articles are mostly supported catalyst
(Figure 29 left)143144,146,147,149,157,169,181-196 Most of the produced catalysts contain
one active component on the support (middle of the figure). The catalysts with two
active components generally apply palladium-platinum, palladium-iron
combinations. Catalytic systems containing three active components are composed
of either iridium-manganese-iron, iridium-iron-cobalt or nickel-lanthanum-boron.
The frequency of the active metal components is in the order of Pd > Pt > Ni. In
addition to palladium and platinum, nickel can also be seen, which is used as a
common catalyst in industrial practice (Figure 29 right). Regarding the catalyst
carrier, metal oxides (zirconium, chromium, titanium, aluminum, and silicon),
ferrites, maghemites, zeolites, and activated carbon as typical in the chemical
industry were identified. Occasionally, PVP-based catalysts were also

investigated19¢,
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4.2.3. OVERALL RANKING

Based on catalyst library available data, it is difficult to get a consistent
picture of DNT hydrogenation catalysts. However, these catalysts can be well
qualified and comparable according to MIRA21 model. A total of 58 catalysts from

15 articles reporting research results were successfully analysed.

The catalyst is detailed because 10 or more known parameters (of 15) can be
collected in each case. Test reaction conditions are 295-393 K and 1-50 atm, except
in two cases (95-150 atm). The rime required to convert maximum amount ranged
from a few minutes to a one-day interval, indicating a relatively large standard

deviation. The average reaction time for conversion of 100% in 60 minutes.

The amount of initial dinitrotoluene was in the range of 0.002 and 0.3 mol.
The amount of active metal in the catalyst also showed a large deviation from
5.13*10-7 mol to 0.034 mol. Despite the low amount of catalyst as was mentioned
above, 100% conversion was achieved!l. The increased amount of material was

typical for nickel-type catalysts.
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9
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Figure 30 Catalyst performance of catalysts - conversion and selectivity depend on
classification

Figure 30 shows the catalytic performance results of selected, studied,

characterized, classified catalysts. The conversion rate of the catalyst studied in the
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D1-Q1-Q2 class is over 99 n/n%, but the selectivity is much more differentiated.
Based on these results, it can be said that achieving a pure TDA product produced

during hydrogenation is a serious challenge for researchers. The worst catalysts(Q4)

SR

performed at less than 50 n/n%.
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Figure 31 Distribution and active components of catalysts according to MIRA21 ranking and
classification (D1-best, Q4-worst qualification - according to MIRAZ21 colouring)

The catalyst composition changes according to the MIRA21 model
classification. Figure 31 shows the active components and support types of catalytic
system based on their classification. The best-performing catalysts (class D1)
consist of palladium or platinum and transition metal oxide support. Although nickel
is more widely used in the industry, these types of catalysts are at the bottom of the
list. Iridium, an active component of catalyst also got relatively good number of
MIRAZ21s. Most of unsupported catalysts, carbon black, aluminium oxide, silicon
oxide is in the lower half of the ranking. Practically, the catalyst carrier of the system

differed according to the MIRA21 classes. It can be found in Q2 and Q4 classes mainly
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activated carbon supports. Catalysts with transition metal supports are at the top of

the ranking.

Table 4 TOPS8 catalyst of DNT MIRA21 ranking

Active  Numberof o0

No. CATALYST ID Catalyst name Support known
component number
parameters

Chromium

HDNT/MIS/2021/2/2 Pt/CrO2 i Platinum 15 11.50
(IV)-dioxide
HDNT/MIS/2021/2/1  Pd/CrO2 Chromium 1 dium 15 11.49
(IV)-dioxide
HDNT/MIS/2021/3/1 Pd/NiFe204 Nickel ferrite Palladium 15 11.45
HDNT/TIA/2020/1/3  15PyZr02-300  ZTCOMUmM™ b ium 13 11.44
dioxide
HDNT/TIA/2020/1/4 15Pt/ZrO2-400  Zireonium- Platinum 13 11.43
dioxide
HDNT/TIA/2020/1/2  15PyZr02-200  ZTCOMUm™ b ium 13 11.42
dioxide
HDNT/MIS/2021/1/2  Pd/maghemite Maghemite Palladium 15 11.35
HDNT/TIA/2020/1/5  45Pt/ZrO2-300 Z‘;fg:;;;“ Platinum 13 11.06

The 8 best D1 classified catalysts are listed in Table 4. These columns include
the ID code, catalyst name, type of catalyst support, active component, known
parameters, calculated MIRA21 number. Additional results are included in Appendix

3.

The best DNT hydrogenation MIRA21 catalysts consist of an active
component and a transitional metal oxide support. Based on these results, the
catalysts containing platinum produced better results than their competitors. The
synergistic effect of the combination of active components is difficult to assess
because there is not enough information. Class D1 includes catalysts that are studied
based on sustainability considerations such as stability and reactivation capability,

too.

When compared to the catalyst classification analysed for nitrobenzene
hydrogenation reactions, the best catalyst in the MIRA21 classification was similar

to the first-class Pt/ZrO:z catalyst, one of the most effective catalysts. Zhang et al.
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developed hybrid nanostructure catalysts Pt/ZrOz/SBA-15 that had excellent
catalytic performance at 313 K, 7 atm and 50 minutes for hydrogenation of
nitrobenzene to anilinel”3. They found that ZrO: dispersion in the SBA-15 improved
the catalyst performance due to its mesoporous structure. Consequently, it would be

useful to try this catalyst for TDA synthesis as well.

The work of Hajdu et al. focused on the development of new magnetic
catalysts for the hydrogenation of DNT to TDA18%9193197 Qne of the catalysts is
Pd/NiFe204 that has achieved 99 n/n% TDA yield at 333 K and 20 atm. In this work,
they synthetized nickel ferrite spinel nanoparticles to solve the problem of
separating the catalyst from the products by magnetization. Another magnetic
catalyst with good catalytic performance is Pd/maghemite, which is made by a
combustion method with a sonochemical step. Palladium on a maghemite support
resulted a high catalytic activity for TDA synthesis at about 60 minutes and under

the same reaction conditions as ferrite hydrogenation.

The first and second position of the MIRA were those of chromium oxide
platinum and palladium catalysts. These innovative systems have produced
excellent catalysts with performance. It was prepared with chromium (IV) oxide
nanowires decorated with platinum and palladium nanoparticles. These catalysts
showed high catalytic activity at 333 K and 20 atm. If a catalyst Pt/CrO2 was used,
304.8 mol TDA would be produced under these conditions, while only 1 mol of
precious metal catalyst would be used. If palladium is used, only 60.14 mol TDA is
produced, but it is also relatively large quantity. From an industrial point of view, it
is important to separate this type of catalyst from the reaction mixture easily due to
its magnetic properties. The stability of the catalyst has been studied, and it has been

found that the catalyst can be used at least four times without regeneration.

Ren and his colleagues made half of the D1 class catalysts, and these catalytic
systems consisted of zirconium oxide supports and platinum precious metal198. Ren
et al. prepared ZrOz-supported platinum catalysts with different Pt concentrations
and at different reduction temperatures. They found that 0.156% Pt/ZrO:2 catalyst
has the highest catalytic performance at 353 Kand 20 atm. According to their results,
the use of this catalyst reached an initial hydrogen consumption of 4583 mol H2 mol

Pt-1 min-1. In this work, they investigated the interaction between the precious metal
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and the oxide support. It was found that zirconium oxide has the highest adsorption

capacity for platinum ions due to its ability to be protonated and deprotonated.

4.2.4. CONCLUSIONS OF THE SECOND TEST

The purpose of this study was to summarize the hydrogenation of
dinitrotoluene to toluenediamine and testing the applicability of MIRA model. 58
catalysts were selected from 15 research articles and studied using the MIRA21
model, which covers the complete scientific literature on catalysts of DNT
hydrogenation. According to ranking and classification, eight catalysts were ranked

in the highest class (D1).

The number of catalysts developed for the synthesis of TDA is low, as
scientific research focuses mainly on reaction mechanisms and reaction kinetics.
Despite this, many different catalysts have been developed. Based on the descriptor

system, the catalysts tested were well characterized.

More than 80 %of the 58 catalysts produced and tested have an excellent
conversion, but only 45 % have demonstrated a selectivity above 90 n/n%. More
than 80% of the catalysts produced are composed of a single active component.
Since the combination of catalysts has not been investigated in large numbers, one
suggested direction of research is multicomponent catalysts. The development of
catalysts represents a new trend that has led to the creation of many high-
performance catalysts. According to the analysed catalysts, catalysts with oxide
and/or magnetic supports showed better results under laboratory conditions
compared to traditional carbon-based supports. Carbon-supported nickel catalysts
are mainly used in industry, but nickel catalysts have not produced the best results.
The advantage of a good magnetic catalyst is that it can be repaired, but the economic

impact of its industrial application must also be taken into account.

4.3. REVISION OF MIRA21

During the doctoral research, the MIRA21 model was established, which
characterized catalysts with quantified values that were comparable and classified.
15 parameters were chosen based on the catalysts were characterized from
literature sources. The model was used for catalysts for hydrogenation of

nitrobenzene and dinitrotoluene.
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The data were normalized and weighted, and the MIRA21 number describing
the catalyst was obtained with a calculation formula. Based on the number MIRA21,
a ranking and classes were created that facilitate a faster and more transparent
classification of catalysts. Using this model, recent research was analysed, qualified
catalysts, and found the most promising results. Model descriptor systems and
classifications have begun to be used in the Institute of Chemistry, on the one hand
as catalyst characteristics formulas, and on the other as publication writing

standards.

Research in literature, data collection and correct interpretation, as well as

data evaluation, have enabled us to gain experience in order to plan further research.

The study and processing of specialized literature has given rise to
experience that reveals difficulties in formulating and interpreting research results.
It was recognized that the formal structure of the database must be modified. The
frequency and consistent handling of selected descriptors were observed. It is also
considered that the scope of data sets and the examination of outliers are justified.
It was found that a lack of examination of the relationship between parameter can
distort the system. It was noted that, by adjusting the weighting criteria system, a
flexible operational classification could be established. This classification proved
beneficial in the selection or development of catalysts. It was also found that the
model could be applied appropriately to almost the same reaction, but additional

research on its applicability is required.

The discussion of the results was extended in two additional directions. One
was to analyse the databases built, and the other was to review the model itself. The
creation of catalyst databases and data analysis also opened a new research chapter

focusing on the possibilities of applying machine learning to catalyst research.
4.4. EXPLORATORY DATA ANALYSIS ON DNT CATALYST LIBRARY199

Literature data on 2,4-dinitrotoluene hydrogenation catalysts for the
synthesis of toluenediamine were analysed with the MIRA21 descriptor system.

First, the relationship between the different variables was examined, and
then patterns were searched in the system regarding the composition of the catalyst.

As a result of the correlation examination of properties describing the catalyst,
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information was collected for the ranking. By mapping the patterns, the composition
of those catalysts can be predicted which can provide excellent performance during

the hydrogenation of 2,4-dinitrotoluene.

Since there was a relatively small amount of data available for this reaction,
the results carried some uncertainty. However, the applicability of exploratory data

analysis procedure to other reactions is undeniable.

The study used Exploratory Data Analysis (EDA) to understand the
relationship between individual variables such as catalyst performance, reaction
conditions, catalyst composition and sustainable parameters. The results would be
applicable to catalyst design and would also be possible to use machine learning

tools.

Table 5 Selected parameters for EDA

Catalyst Catalyst Reaction Catalyst Sustainability
composition performance conditions properties parameters

Maximum Catalyst o
. Temperature . . Reactivation
conversion particle size
. Catalyst surface .
Product yield Pressure Y Stability
area
Product Time :
. Catalyst Carrier
selectivity
Turnover Molar amount
number of catalyst

Molar amount
of 2,4-

dinitrotoluene
Prior to the data analysis, a selection process was performed, in which the
parameters of the descriptor system were selected (Table 5, coloured cells). Only
quantifiable data were examined and thus sustainability parameters were not
analysed. On the other hand, there is insufficient data on variables related to the
physical properties of catalysts. Therefore, catalyst properties were also excluded
from the analysis. This allows the relationship between catalyst performance and
reaction conditions to be investigated. To sum, two types of descriptor variable

group were studied include 9 different parameters (grey) for correlation analysis.
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In addition, catalyst composition group was also examined (purple): active
metal content, type and number of active metal component and catalyst carrier.
Catalyst composition as a parameter group was also included in the analysis, since
the aim of the work was to map the relationship between input (composition) and
output parameters such as catalyst performance. This group include quantifiable
(active metal content) data, which are treated in the same way as the other
quantifiable parameters. Furthermore, there are quality parameters that can be
classified and are generally considered to be a third dimension with colour

markings.

4.4.1. DATA DISTRIBUTION
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Figure 32 Violin plot diagram of the selected variables [M =active component w/w%, X=conversion,
Y=yield, S=selectivity, TON=turnover number, T=temperature, P=pressure, t=time, CAT=molar amount
of active component, DNT=molar amount of dinitrotoluene]

Before correlation analysis, it is necessary to examine the numerical data set
applied. The violin plot of the catalyst library was created using the studied
parameters (Figure 32). This special type of plot can show the data median, the data

range between the quarters and the whole distribution of different data values. The

width of the curve means the frequency of the data point.

The sample was heterogeneous in terms of data values. Based on the
diagrams of the different parameters, it can be concluded that the data do not follow
the normal distribution. In most cases, the form of the violin is much more similar

to the bimodal distribution or the log normal distribution with its asymmetries. In
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case of maximum conversion (X), time (t), catalyst amount (CAT), there is also a

shape that shows that there may be exceptions in the system.

One of the conditions for correlation analysis is the evaluation of the outliers
and their omissions. To ensure that outliers do not affect correlation analysis, the
data were filtered. By displaying the data, the extreme values were selected and
removed from the data set. This filtering occurred by defining the limit values of the
justified parameters. The catalyst with a maximum conversion rate of more than
50%, a product rate of more than 50%, a reaction time of less than 240 minutes and
a pressure of less than 50 atm was analysed. Unfortunately, data cleaning processes
reduce the available data, but also reduce the distortion of correlation analysis

results.

4.4.2. CORRELATION ANALYSIS
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Figure 33 Results of Spearman correlation analysis [The colour of each element of the matrix shows
the strength of the connection between the parameters. The table shows the indicators used in relation
to the value of the correlation coefficient20. (M =active metal content, X=conversion, Y=yield,
S=selectivity, TON=turnover number, T=temperature, P=pressure, t=time, CAT=molar amount of active
component, DNT=molar amount of dinitrotoluene)]
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Figure 33 summarizes the results of Spearman's correlation analysis in a
correlation matrix, and the correlation coefficient values are indicated by colour and
number in the heat map. The figure was created based on the filtered data set. The
entire data set’s correlation matrix and the difference correlation matrix are

included in the attachments (Appendix 4-5).

The correlation coefficients calculated between individual parameter pairs
vary greatly. The results show that there is a practically perfect correlation and a
strong relationship. Product yield (Y) and product selectivity (S) are perfect because
these two parameters can be derived from each other. Therefore, from the
perspective of the MIRA21 model, it is justified to modify the parameter set and
remove one. There is also a strong correlation between the quantity of starting
material (DNT), and the temperature (T). As a results, the higher the amount of
starting material, the higher the reaction temperature used. The correlation
coefficient of the catalyst material quantity-temperature pair is 0.41. Accordingly, in
the case of larger starting materials (DNT, CAT), the catalysts are tested at higher

temperature.

A moderate relationship between the active metal content (M) and CAT was
determined. These data are also derived from each other, so the relationship
between them is clear. Therefore, the higher correlation coefficient value of CAT-M-

TON-T is not surprising.

Promising conclusion was that the catalyst’s maximum conversion and active
metal content had a moderate negative relationship (p =-0.54). This would indicate
that the conversion decreases as the quantity of active components of the catalyst
increases. This question must be overcome to reach the right conclusion. Similar
results were obtained in the product yield-reaction time pairs (p =0.45).
Temperature-pressure, metal content-pressure and temperature-selectivity
relationships can also be characterized with moderate correlation coefficient

between 0.4 and 0.42.

Accordingly, the correlation analysis can determine that there is a parameter
among the selected that must be deleted from the model because it significantly
distorts it. Furthermore, the parameter weight should be considered, but this

requires further investigation into a larger data set.
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4.4.3. EVALUATION OF DNT HYDROGENATION DATABASE
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Figure 34 Pair plot analysis of descriptors by catalyst carrier (TMO-transition metal oxide)
[No.A_COMP=number of active component, M =active metal content, X=conversion, Y=yield,
S=selectivity, TON=turnover number, T=temperature, P=pressure, t=time, CAT=molar amount of active
component, DNT=molar amount of dinitrotoluene]

A pair plot can confirm or deny the conclusions drawn from the correlation

analysis. The selectivity-yield plot clearly demonstrates the linear relationship

between the data that is not even rejected by separation according to the catalyst

carriers. The high correlation between temperature and the amount of DNT

previously mentioned during correlation analysis is no longer so clear. In this case,

even after data filtering, there is an outlier in the system, which can have a significant

impact on the correlation coefficient.
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As regards catalyst support, it is difficult to distinguish patterns because the
results are quite different even for specific support. It was also found well-worked
transition metal, carbon, polymer, or zeolite-based catalysts. From the point of view
of distribution, catalysts supported by TMOs need a lower active metal content and

can achieve greater selectivity under certain conditions.
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Figure 35 Pair plot analysis of descriptors by the catalyst’s main active component
fNo.A_COMP=number of active component, M =active metal content, X=conversion, Y=yield,
=selectivity, TON=turnover number, T=temperature, P=pressure, t=time, CAT=molar amount of active
component, DNT=molar amount of dinitrotoluene]

Because the most common active components of catalysts are palladium and
platinum (Figure 35). Itis worth investigating the plots of the pair classified by noble
metals. Although the joint examination of the two metals and the nickel is technically
important, the data analysis of the nickel experiment is not favourable, because the
conditions and parameters of the nickel experiment can be completely different.

This is an interesting point of analysis that should be considered later. In this figure,
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it is much easier to classify data points into classes. Platinum-containing catalysts
form an independent group at several locations. These catalysts have a lower content
of precious metals and can achieve maximum conversion in a shorter time. The
performance of these catalysts is excellent. They have a 100% conversion rate and a

relatively high TON value.
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Figure 36 joint plots of active metal content - maximum conversion (first), time-yield (second),
selectivity - temperature (third) by catalyst combinations (combination of catalyst compositions
marked by different colours.)

Returning to correlation analysis, pair plot analysis helps to better examine
pairs that show a certain degree of correlation. 3 parameter pairs were highlighted,
the 2D diagram being coloured according to the catalytic system (Figure 36). The
three pair plot can conclude that in case of moderate correlation, it is worthwhile to
examine the data set more closely, because the correlation may not exist, or a specific
parameter causes the correlation. For example, the temperature-selectivity diagram
of nickel-zeolite and platinum-transition metal oxide catalysts could show
correlation. Given the volume of data, this correlation should be treated with

uncertainty.

The more data sets are diverse and the more catalysts they contain, the higher
the reliability of results and the better the observed trends can be supported. As a
result, the analysis of data continued with a larger database, forming the foundation
for catalyst database for the catalytic hydrogenation of nitrobenzene, but with a

more extensive set of data, revised descriptor system.
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4.5. MIRA23 - THE UPDATED DATABASE

4.5.1. NEW CATALYST LIBRARY

Based on previous experience with the construction of databases and the
comparison of catalysts, the updating of databases has begun. In the new database,
[ have tried to increase the number of catalysts suitable for the hydrogenation of
nitrobenzene, using a more in-depth literature research process, which also contains
the latest literature results. The new database was modified in accordance with

previous experiences both in data collection and in parameter list.
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Figure 37 New database information

The general information of the database together with the parameter
selection are summarized in Figure 37. The literature search resulted in a MIRA

library of nearly 13,000 data points and 391 catalysts136-141,143-148,152-156,158-161,163-

172,175,176,178,194,201-315_

In recent years, the number of research on this topic, i.e.,, the number of
people involved in catalyst development, has increased considerably. This is
apparent from the publication data. The published data are reliable according to the

quality of the journals (75% Q1 articles).
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Figure 38 Composition of studied catalyst [TMO-transition metal oxide, AREMO - alkali rare earth
metal oxide, Si based - silicon oxide and SBA-15]

A database of highly diverse catalytic systems was created and analysed a
wide range of catalyst components (Figure 38). Especially for selected reactions,
palladium, platinum, and nickel catalysts are still being developed with catalyst

supports, mainly carbon-based solutions.

4.5.2. EXTENDED DATA COLLECTION

Based on the previous experience and information, some new parameters
have been added to the extended database. Subsequently, according to data
processing and data analysis, the MIRA system was modified by comparing the new

information with the original descriptor system.
The following new parameters have been added to the database:

1) The TOF value was included in the parameter that describes the
performance of the catalyst. The reason for the inclusion of the TOF
parameter is also empirical. Within a course, PhD students analysed
various reactions in which most of the feedback was related to the TOF
parameter. By examining the TOF value in a larger data set, it is possible
to avoid it leaving the system due to sampling errors.

2) The catalyst weight is an experimental parameter usually available in
literature studies if other information is not specified. The catalyst mass
is determined according to the amount used during the catalyst test

experiment.

68



A DATA-DRIVEN MODELLING APPROACH FOR HETEROGENEOUS CATALYSIS RESEARCH ALEXANDRA JAKAB-NACSA

3) The transformation of sustainable parameters has been the most
important. The content of the subjectivity and information of the selected
parameters is inappropriate in terms of data analysis and its information
content was also low. Therefore, it was necessary to modify this
parameter class. In addition to existing parameters of the descriptor
system, new quantitatively sustainable parameters have been included in
data collection. It was characterized stability with quantifiable data and
the catalyst price, furthermore three parameters related to catalyst
sustainability have been included as new parameters. Bystrzanowska et
al. carried out the heterogeneous metal catalysts greenness ranking
according to toxicity of pure metals and metal salt, endangered elements,
and life cycle assessment point of view316, During their research, they
created an element ranking using the TOPSIS algorithm, which is also

used in sustainability parameters (Table 6).

Table 6 New stability parameters and definitions

Notation Definition

From 0 to n, where 0 is no information about
stability, 1 means that the stability was

STAB Stability " investigated, 2,3... the number of cycles until
the conversion remains above 90%
Toxicity _ Rank of the active component according to

toxicity316

Rank of the active component according to

Greenness Endangered elements - o
endangered element scenario

Rank of the elements according to life cycle

Life cycle assessment -
Y assessment316

4) The estimated catalytic cost has been added to the system based on the
active component to emphasize the industrial applicability. The catalyst
price is given on the basis of the number of active components in a gram

of catalyst.
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4.5.3. CORRELATION ANALYSIS

Previous correlation studies have shown the strength of relationships
between individual parameters. Afterwards, a correlation analysis was carried out
on the expanded catalyst database designed for the hydrogenation of nitrobenzene.
The analysis was conducted in the same way as the previous one, on the selected
appropriate parameters. In advance, a violin plot with strip plot were prepared that

would be suitable for examining the distribution of the data set.

Prior to the analysis of correlation data, the data set was statistically
analysed. Based on this, parameters of low relative frequency were filtered that do
not participate in correlation analysis. Product yield was excluded from the analysis
according to the previous tests correlation result. Another difference is that the TOF,

the catalyst mass, and the catalyst price are included in the analysis.
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Figure 39 Combined violin and strip plot of the parameters in nitrobenzene hydrogenation database [
M12 = main active component, C=conversion, Y=yield, S=selectivity, TON=turnover number,
TOF=turnover frequency, T=temperature, P=pressure, t=time, CAT=weight of catalyst, AC=molar
amount of active component, NB=molar amount of nitrobenzene, PRICE=catalyst price according to
the active component]

Figure 39 shows the distribution of the series of applied catalyst data by
parameter. Because of the analysis of the data set of individual parameters, most
parameters have deviations that must be removed for statistical analysis. The

outliers of the data set were filtered with interquartile ranges (IQR), and the general
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rule is that the outlier is an observation that falls below the 25t percentile - 1.5 *IQR

or above the 75t percentile + 1.5 * IQR317.
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Figure 40 Correlation analysis after data filtering of nitrobenzene hydrogenation database [M12 =
main active component w/w%, C=conversion, Y=yield, S=selectivity, TON=turnover number,
TOF=turnover frequency, T=temperature, P=pressure, t=time, CAT=weight of catalyst, AC=molar
amount of active component, NB=molar amount of nitrobenzene, PRICE=catalyst price according to
the active component]

Data were not normally distributed, regardless of data filtering, so the
correlation analysis of parameters was performed with Spearman's correlation
analysis (Figure 40). Only parameters that the data set was complete or almost
complete are included in correlation analysis. Looking at the filtered data set, it can
be observed that, statistically, the descriptor system has one strong correlation

relationships.

This was only because the active component w/w% (M12) was also included
in the data analysis and must be related to the molar quantity of active components
(AC) and the weight of catalyst (CAT). Furthermore, TOF values had a moderate
correlation with most parameters. This was possible because there are few

parameters available from TOF values and the distribution was not representative.
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Most of the parameters showed a weak correlation. The moderated
correlation parameter pairs will be show later. There was a moderate correlation
between temperature and price, as well as between active components and time.
Moderate correlation coefficients were also obtained for the conversion and price

relationships, TON, and the quantity of active components.

4.5.4. MODIFIED DESCRIPTOR SYSTEM

Based on experience gained during the construction of the catalyst library
and the correlation analysis, the catalyst ranking MIRA 2023 were characterized
with a descriptor system of 13 parameters and calculated the MIRA23 number from

it as a fresh method.

The yield parameter has been omitted based on the results of MIRA21
correlation analysis. With respect to data frequency, the performance of
heterogeneous catalysts can be well characterized by TOF values but is lower than
other (26%) characteristics and the correlation results show moderate connections,
this parameter has also been omitted from the comparison. The three parameters of

the catalyst greenness were also included in a single parameter (forming an

average).
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Figure 41 MIRA23 descriptor system

Figure 41 shows the modified descriptor system, which identifies catalysts in
a single, comparable quantifiable data. Using the 13-parameter descriptor system,
catalysts were analysed according to the MIRA23 model, ranked, and classified them

into categories.
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Table 7 Detailed description of 13 parameter descriptor system

Catalyst performance

Reaction conditions

Catalyst conditions

Sustainability parameters

Descriptor system

=
=]
-
=
<
-
=]
4

Definition

Maximum reactants conversion achieved

1. Xreamax Maximum conversion n/n% .
on a given catalyst
.. Pr lectivity for maximum
. 2 Spr Product Selectivity n/n% oduct.se ectivity for maximu
— conversion
Number of moles of product formed per
3. TONpr  Turn Over Number - 1 mol active metal when the maximum
conversion reached
4 Tmaxeom Mermpemine K Reactlor.l temperature for maximum
conversion
R ion pr re for maximum
5. Pmaxconv. Pressure atm eactio 1 pressure for maximu
conversion
. . Time required to reach maximum
6.  tmax.conv. Time min .
c conversion
- The molar amount of the active metal
Molar amount of involved in the reaction - in case of
7. Ncat. e ey mol
initial catalyst several metals, the sum of molar
numbers
Molar amount of The initial amount of starting reagent
8. Nstart . mol . . .
starting reactant involved in the reaction
9. CPS Catalyst Particle Size  nm  Average particle size of the catalyst
Catalyst (active metal + support) surface
10. CSA Catalyst Surface Area m?/g area il ppe)
From 0 to n, where 0 is no information
about stability, 1 means that the stability
11. STAB Stability - was investigated, 2,3... the number of
cycles until the conversion remains above
90%
Toxicity i Rargk_of the active component according to
toxicity316
= g
g ) ,
12 S e i Rank of the active componer_ltg?:cordmg to
$ endangered element scenario
S
. Rank of the elements according to life
Life cycle assessment - f oG g to lif
cycle assessment:
, Price is of 1 gram catalyst according to the
13. PR Price euro/g /19 Y 9

active component concentration in euro
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Table 7 shows the detailed description of the modified descriptor system. As
it can be seen, among the sustainability parameters (light blue colour) of catalysts,
toxicity, endangered elements, and life cycle assessment categories, since they can
be evaluated on the same scale, it had characterized them with quantifiable data

such as the average value and identified them with the name "Greenness".

4.5.5. MIRA23 RANKING
From the normalized and weighted data, the MIRA23 number were
calculated, which characterizes the system together with the number of known

parameters. In this case, the model is applied completely identical to MIRA21, and
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D1 Q1 Q2 Q3 Q4
MIRA21 13 47 49 29 16
MIRA23 4 54 188 97 48

Figure 42 Classification of catalyst with MIRA21 and MIRA23 model

Analysing 391 catalysts, 4 were classified into D1 and 54 into Q1. These
catalysts have 11 or 12 parameters available. The complete list can be found in the
appendix (Appendix 6). Figure 42 shows the comparison of the first database with
the newer and larger database. The figure shows that as the data amount increases,
classification approaches the normal distribution much better, thereby increasing

the representativeness of the sample.
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Figure 43 Q1 Catalytic systems of MIRA21 ranking, dark purple shows the main active metal, light
purple shows the second active metal [MOF=metal organic framework, AREMO=alkali rare earth
metal oxide.]

Of almost four hundred catalysts, 58 received such high marks that they
entered the first quarter. The following diagram shows the composition system of
the Q1 catalyst (Figure 43). On the x axis, the results are grouped by active
component and catalyst carrier, allowing easy access to combinations that have

obtained good Q1 certification.

The results demonstrate that most of the catalysts that get best results are
carbon based iron and aluminium oxide-based platinum catalysts, in addition to
platinum or palladium based on carbon and platinum based on cerium oxide. Since
each row represents a separate catalyst, the quantitative feature in this case
indicates that the combination of a catalyst carrier and catalyst shows really good

results with several parameter settings.

About 40% of catalysts contain carbon-based support, 40% of which is also
N-doped porous carbon, and there are also a significant number of carbon nanotube

catalysts. In addition, active carbon, carbon black and rarer carbon foam and
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carbonated cellulose have also achieved excellent results in the hydrogenation

reaction of nitrobenzene.

Q1 catalysts have an average conversion rate of 91% and a selectivity rate of
92%, with an average TON value of 3012. Laboratory experiments were usually
conducted between 300 and 400 K, with the pressure applied already on a larger
scale (1-50), but typically on 14 atm. The average reaction time was 144 minutes,
but some catalysts achieved almost 100% conversion time in 8-10 minutes?9. In
most cases, the stability tests of catalysts have been successful and more than 90%
conversion has been achieved by the tests over 15 cycles!>8, The catalyst price is
about €0.63/gram depending on the active component. In the case of palladium and

platinum, active components are used in all forms between 0.07 and 5 w/w%.

4.5.6. CATALYST COMPOSITION OPTIMIZATION
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Figure 44 Multi-criteria decision making options318 [AREMO - Alkaline rare earth metal
oxide, No Ac - No active component, MOF - Metal organic frameworks |
Based on the MIRA23 model and classification, promising components can
be determined for catalytic design and research. If confronted with an industrial or
academic decision-making task aimed at choosing the right catalyst, several data-
related challenges would be encountered. There is a multiparametric system on

which the catalyst must be selected based on the criteria. The parameter units are
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not uniform, the target direction is opposite. It does not necessarily know the

statistical characteristics of the descriptors.

To resolve the difficulties and to solve the catalyst selection task, there are
several multi-criteria decisions making (MCDM) options (Figure 44) related to the
procedure of MIRA23318, In the satisfaction degree method, the value of each
parameter is set to a level that it cannot accept above or below, depending on the
direction of the parameter (minimum or maximum). By Maximin and maximax
techniques, normalized but unweighted data sets are considered for each catalyst.
In the case of maximin method, the best alternative is selected from the worst
options, while in case of maximax method, the best of the best options is selected.
The lexicographic methodology requires a clear order of importance, which may be
difficult even for the decision maker. There are also several weighting methods that
can help decision makers in the right direction, such as the SMART or Analytic

Hierarchy Process method319.
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Figure 45 Comparison of MCDM and MIRAZ3 results

MDCM is an extremely complex scientific field, including many other
methods. My goal was to compare the results of MIRA23 with the relevant methods
and to draw further conclusions from it. The results are summarized in Figure 45.
Using the maximax method, the normal data series were selected, placed them in the

order of descending, and then selected the best catalyst. The results showed that
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there were 157 catalysts of this type, which the first selection was considered. The
above combinations are all part of the maximax results. The method of satisfaction
degree was also carried out, where different levels for each parameter were set,
resulting in 13 catalysts. the minimum conversion (88%), selectivity (98%), TON
(337), the maximum price (0.49 EUR/g) and time (240 min) were determined,

adjusted for the average.

In the diagram, cells marked in dark blue give the most suitable catalyst
combination by the maximax and MIRA23 method, while light blue cells provide the
most suitable catalyst combinations based on three methods. Based on these, the
best is proven to be the aluminium oxide supported palladium or platinum catalysts,

as well as carbon based platinum and mixed supports with platinum.

4.5.7. ROLE OF WEIGHTING

The parameters describing the catalyst were first weighed based on
professional experience. It was then examined whether the correlation between the
individual parameters is worth changing the weighting. As a result of correlation
analysis, the descriptor system was modified, but maintained the weight. The
MIRA23 weighting system was also tested, in which the weights were changed and
examined their effects on ranking. As a result, the priority ranking for performance
(PER), sustainability (SUS) and reaction conditions (COND) has been completed. The
individual parameters were weighted from 1 to 10, and according to different

preferences, increasing scores were given to more parameters.

Before the test, outliers were removed and reduced the possibility of result
distortion. The data were standardized between 0 and 1, so that they were
independent of the measurement unit and on the same scale. The weights were set

to be so that their sum is 1(Eq. (8)):

Si:ZWj*XU:l (8)
J

where w; the weight of the j component, and x;; the values of the j’ parameter

in case of i’ catalyst. The sum of the normalized values multiplied by weight gives

the catalyst point.
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To see the weight effect of a parameter class, two levels were set as weight and
change them according to the parameter class. In the preliminary version, weight
was not applied, in the second case performance was preferred, in the third case
already reaction conditions and in the fourth case sustainability parameters. The
main result is shown in Figure 46. For this figure, the best 58 catalysts were used
from different weight cases that formed the Q1 class in the previous one to make the

comparison authoritative.
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Figure 46 Effect of weighting (SUS weight - sustainability parameters are preferred)

Compared to the previous MCDM comparison, catalyst compositions were marked
that were not included in the Q1 class of the new ranking in light grey. It was marked
in light blue the catalyst combinations typical of the Q1 unweighted class. Those that
have appeared in the case of sustainability are in light green. The other two weight
cases cover the other two. Compared to the original MIRA23 weighted system, the
biggest difference is that catalysts containing cobalt have been eliminated, but

ruthenium catalysts have been included among the best.

Even from this diagram, the weighting of sustainability parameters has a significant
impact on ranking and classification. To verify this, the catalysts were compared on
the basis of their CAT ID number, divided into specific catalyst units. In the first three

weighting systems, the agreement is 88-97 % in the Q1 class, whereas in the case of
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sustainability it is about 20 %. On this basis, the descriptor system can be said to be

the most sensitive to sustainability among the four parameter classes.

4.5.8. PATTERN RESEARCH

In the field of data mining, ongoing work has focused on patterning and
classification processes. In this process, joint plots were created, and extracted
important information from the data. Consequently, in the search for patterns, the
relationship between parameters were investigated and the influences of catalyst

output parameters on input parameters.

For two-variable tests, a scatter plot was first prepared that contained all
two-variable variations and their results in a matrix. The appendix contains the

distribution matrix presented according to the active component (Appendix 7.)

The joint plot diagram is graphical representation that are used to visualize
the relationship between two numerical variables. In each diagram, two variables
appear on the x- and y axes, and the third analysis aspect is coloured. This usually
means categorization of active components or categorization of catalyst carriers. All
parameter combinations were prepared, and subsequently, an assessment was
made to identify trends for each combination. The objective was to determine if an
apparent grouping could be created based on the catalyst composition. Of the more
than 300 figures, only a select few are emphasized. These figures serve the purpose

of either reviewing the results of correlation analysis or illustrating specific patterns.

Figure 47 shows the relationship between the conversion and the
concentration of the active component of the catalyst. The diagram is classified by
active component quality. When drawing filtered data sets, there is no clear
correlation in the data, but the colour of several groups in both cases is very well

separated.

Figure A demonstrates 4 distinct groups as concentration functions. The
largest data set group used a low concentration of active components, and the
results were extremely dispersed in terms of conversion values. This includes most
catalysts containing palladium or platinum. The following group consists of cobalt
catalysts, where the concentration of the active components used is higher, but
conversion has completely different values. The third group is composed of nickel

catalysts with an active component content greater than 10w/w%, but these have a
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particularly low conversion rate. The fourth group is composed of catalysts with high
concentrations of nickel or iron and achieves high conversion. For groups, the
number of elements is decreasing, and the standard deviation is decreasing. This
leads to the conclusion that, in the case of palladium and platinum catalysts, the
concentration of active metals is not a decisive factor in conversion. On the other
hand, even in different parameter sets, high conversion can be achieved with iron-
containing catalysts. The data distribution is presented by the distribution functions
of the diagrams on both sides, in which case the most common element distribution

is displayed.

Conversion |%]

S et e e e

Main active component [w/w9%)

Figure 47 Joint plot of Main active component concentration (w/w%) and Conversion classified by
catalyst active component (M1)

The same four groups are visible in the catalyst support. The second three
groups are almost completely homogeneous, indicating that the catalyst's active
components and support pairs have produced these results. The second group
consists of cobalt catalysts based on polymers, the third group consists of nickel
catalysts without support, and the fourth group consists of iron and nickel catalysts
based on carbon. Of course, it also seems that, with low active metal concentrations,

most palladium and platinum catalysts have achieved nearly 100% conversion.

81



A DATA-DRIVEN MODELLING APPROACH FOR HETEROGENEOUS CATALYSIS RESEARCH

1o

05

Selectivity [9]

w

w0

e @
o

®

i 2

J UM X

o

e 00O OO BSEPBSDS

oo

M1
Geida
Patmum
Pallaoium
MNocksd
Fauthersiam
Cobalt
Rnodium
on
Malybdenum
Coppos

Sevor

] 10 15

Main active component [w/w%)]

2

ALEXANDRA JAKAB-NACSA

Figure 48 Active component concentration vs. selectivity results

The distribution of this group as a selectivity function was also examined, and

found that the results were completely similar, with the only difference that the

selectivity function here is much smaller ranging from 80 to 100 % (Figure 48).
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Figure 49 Palladium and platinum catalyst conversion results according to active component

concentration
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As previously highlighted, due to the inability to draw any further
conclusions in the case of the most used catalysts, palladium and platinum, the
following figure shows the conversion values obtained as a function of the
concentration of the active components of the catalyst (Figure 49). The palladium
catalyst produced typically has a palladium concentration between 0-1 w/w% and
between 3.5 and 4.5 w/w%. In platinum catalysts, the typical concentrations are
between 0-1 and 2-3 w/w%, but there are also catalysts with a platinum content of
5 w/w%. The conversion results show that there is an extremely large standard
deviation for different concentrations. The impact of additional parameters on

conversion is important.
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Figure 50 TON-Active component joint plot results sorted by active component type

The paired correlation coefficient of the parameter TON and the quantity of
active component material was -0.4. Negative correlation means that the larger one
value is, the smaller the other value. The size of the coefficient shows a moderate
correlation. When you look at the filtered data set, this result is partially
recognizable (Figure 50). This can be explained by the fact that the value of TON
itself is inversely proportional to the amount of catalyst. However, correlation is

influenced by additional values such as initial nitrobenzene amounts and selectivity.
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It can also be seen that there are different results according to active components,
although the limits are less clear. It should be noted that among platinum catalysts
there are catalysts that have achieved outstanding TON values with low active

component content.

It can be also forming clusters in the TON-AC component diagram. Cobalt-
type compounds form a group (green) with a very low number of TONs, but with
variable active component quantity. The next clearly distinguishable group (yellow)
are catalysts with a low platinum content that can be characterized by high TON
values. And between them (red and blue) there are two other groups. The group
marked in red clearly contains catalysts that contain nickel, while the other group is

much more diverse, but mainly contains palladium.

|
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Figure 51 Active component concentration versus reaction time results

Figure 51 shows the concentration of the active component and the reaction
time. The difference between the figures is that a single filter was used in the first
figure, a data filter was used twice in the second figure. The data were filtered using

the same statistical method.

After the first filter, four groups are also visible, which were first examined in
the confined diagram according to the active component. The two different groups
in the second figure are groups of about 8-10% cobalt catalysts with a reaction time

of less than 150 minutes. In addition, Palladium red data points are visible, which
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are very dispersed in terms of reaction time, with an active component

concentration of 2 to 4 %.
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Figure 52 Temperature joint plots vs. time, active component

The correlation coefficient between the applied reaction temperature and the
reaction time parameter was +0.33 (Figure 52). The relationship between the two
parameters is not clear and unfounded. At higher temperatures, the range of
response time is expanded. Another questionable correlation is that between active
components and temperatures (p=+0.38). On the right, different reaction
temperatures are typical depending on the quality of the catalyst involved. In this

case, trends depend on composition, so it is difficult to observe.
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Figure 53 Active component concentration, Conversion [C], Temperature [T] vs. price

The following table shows the relationship between the price and the three
highlighted parameters (Figure 53). In the first example, a linear relationship

between the content of catalyst active components and the price based on the quality
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of the catalyst active components can be seen. Based on spring data of the year,
catalysts containing gold, palladium and platinum are most cost dependent. The
middle figure shows the correlation between conversion and catalyst price. Catalysts
that achieve 100% conversion, mainly palladium and platinum catalysts, have great
potential for cost optimization. Some well-functioning catalyst converters have been
tested, and they are associated with a very high price. The third figure also aims to
examine the results of correlation analysis. There is no direct correlation between
the catalyst price and the reaction temperature used. Examining together with the
medium figure can find catalyst compositions that achieve high conversion at a
certain temperature and at a low price. Lower-cost palladium and platinum catalysts
achieved a conversion rate of about 100% between 300 and 350 K, while gold, cobalt

and ruthenium catalysts were similar at a higher temperature of 375-425 K.

In the analysis, it has happened several times that the distribution function
of the joint plots has not been shown or appears as a needle. This can be due to the

characteristics of the data distribution.

4.6. OUTLOOK

After the database data analysis developed during our work, an attempt was
made to use the investigated nitrobenzene database for machine learning purposes.
Our goal was to estimate the value of the output parameter by using a subset of the

collected parameters as input parameters.

The process was shown in Figure 54. Following data collection and analysis,
data cleaning and filtering was performed, then the input and output parameters
were determined for machine learning. We selected the parameters based on the
previous data analysis results of MIRA (catalyst performance, reaction condition and

catalyst composition parameters).

Training and test datasets were generated, and various linear and nonlinear
algorithms were used during model building to find the most suitable predictive

model.
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« MIRA catalyst datobase

DATA COLLECTICN » Define descriptor system and collect all
data
+ Data filtering
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test data
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Figure 54 Application process of machine learning for the MIRA database

During the evaluation, the results were graphically presented and RMSE
(root-mean-square error) and R? values were calculated. The results from a
professional perspective were assessed and further development opportunities
were discussed for the supervised machine learning method. In the next phase, our
initial database was returned to, and the development process was initiated once

again.
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Figure 55 Using of machine learning for prediction of reaction time
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Continuing and constant refinement is being carried out beyond the doctoral
research. Increasingly promising results are being achieved through the continuous

fine-tuning of machine learning.

One of the promising results from our second test is being illustrated in the
Figure 55. My goal is to utilize this example to showcase the application potential of
the database in machine learning. In the scatter plot, normalized values are
indicated. The straight line in the diagram represents the linear relationship and
perfect correlation between the real data and estimated data according to our input
parameters. The better the point fits into the line, the better the prediction, i.e. the
input parameter can predict what the output parameter is and how long the reaction

time is.

By applying machine learning in catalysis research, we have gained access to
new and substantial amounts of data, the evaluation of which remains a priority task
in the future. Evaluating new information not only expands our existing knowledge
but also raises additional questions regarding the efficiency of our model and data
collection process. The depth of this understanding enables us to enhance our
machine learning model, fine-tune parameters, and improve predictive

performance, thereby facilitating catalyst design and research processes.

Utilizing the vast amount of data provided by machine learning helps uncover
connections and patterns within the data, expanding our knowledge and more

effectively applying information to solve real industrial problems.
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5. SUMMARY

JOURNEYING FROM TRADITIONAL LITERATURE RESEARCH TO MACHINE LEARNING

The phrase best summarizes the last four years of my travel during my
doctoral work. My doctoral research commenced with the development of aromatic
nitro compounds catalytic hydrogenation processes and the exploration of
corresponding hydrogenation catalysts. Among the traditional literature research,

numerous inquiries arose, leading to the initiation of data collection.

The process of data collection evolved into a comprehensive catalyst
database. Data comparison transformed into the MIRA (Miskolc Ranking) model,
while data analysis transitioned an Exploratory Data Analysis. Subsequently, data

utilization progressed into Machine Learning.

The catalyst database currently contains over 15,000 data points, inclusive
450 distinct catalyst combinations and experimental hydrogenation tests on
aromatic nitrogen compounds. This extensive catalyst library comprises scientific
sources and their quality, publication dates, the composition of the catalyst, and the

parameters that characterize the catalyst.

These parameters, along with the database itself, are the basis of the MIRA
model. Miskolc Ranking methodology embodies a multi-step approach for
identifying novel patterns, potentially useful and interpreted in data collected for the
selected catalytic reaction. This functional and practical mathematical framework
aids in precise catalyst characterization and comparison. Employing a 15-parameter
system, catalysts were characterized via model, the data was standardized and
weighed, and then created a single quantifiable data using mathematical formulas.
The catalysts were ranked and classified according to the MIRA number obtained so
far to facilitate comparison. This model extends to catalysts used in hydrogenation

reactions of nitrobenzene and dinitrotoluene.

A comprehensive review of the model was carried out through Exploratory
Data Analysis. The data set was examined, carried out data cleaning and data
filtering. Based on correlation analysis, modifications were made to the model, and
an expanded database was established for validation. Using the MIRA model, best

catalyst combinations were determined. Exploratory data analysis also produced
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additional chemical insights, revealing patterns within parameters pairs and
catalyst compositions. Completed data sets have been transferred to machine
learning applications and form training and testing sets for various parameter

predictions.

In essence, extracting valuable chemical information from data leads to
profound acquisition of knowledge. Personally, this journey has provided knowledge
of multivariate data analysis and promoted understanding of artificial intelligence
applications, thus enriching my knowledge of catalyst hydrogenation of aromatic

nitro compounds.

Furthermore, my doctoral research has led to fruitful results. The
establishment of MIRA highlighted the shortcomings of contemporary publishing
practices. As a result, members of the Institute of Chemistry have aligned themselves

with the standard MIRA descriptor systems in their publications.

The MIRA model also extends to a successful method of literature research,
validated through education implementation. University students use the system t
identify process weaknesses, which leads to valuable insight into the application of
the model. Work is currently underway to use this model for the data base of

methanol production from carbon dioxide.

Cooperation between the Institute of Chemistry and computer scientists
aims to exploit artificial intelligence for chemical applications. Ilook forward to the

continuation of this collaborative effort.

Overall, my work summarizes the latest research findings and introduces
novel catalyst design approach, based on data-driven research. It also provides tools
for the development of industrial catalysts, bridges the gap between the results of
scientific research and the practical application through the MIRA model. The
consideration of sustainability parameters clearly shifts catalyst qualification
towards application. This work serves as an example of data analysis and the

integration of artificial intelligence to optimize industrial processes.
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6. OSSZEFOGLALO

UTAZAS A ,,HAGYOMANYOS” IRODALOMKUTATASTOL A GEPI TANULASIG

Az itt All6 kifejezés a legjobb 0sszefoglalasa a kutaté munkam soran megtett
utamnak. A doktori kutatdsom az aromas nitrovegyiiletek katalitikus hidrogénezési
folyamatanak fejlesztésével kezd6dott, és a hozza kapcsoldd6d hidrogénezd
katalizatorok feltérképezésével folytatédott. A ,hagyomanyos” irodalomkutatas

soran szamos kérdés mertilt fel, amely az adatgy(ijtés elkezdéséhez vezetett.

Az adatok halmaza egy atfogo6 katalizator-adatbazissa alakult at. Az adatok
Osszehasonlitdsa a MIRA (Miskolc Ranking) modell 1étrejottéhez, mig az
adatelemzés az ugynevezett feltar6 adatelemzéshez vezetett (Exploratory Data

Analysis). Késébb ez a folyamat a gépi tanuldsban latszott kiteljesedni.

A katalizator-adatbazis jelenleg tobb, mint 15.000 adatot tartalmaz, amely
450 kiilonb6zd katalizator kombinaciot és kisérleti hidrogénezési tesztet ir le
aromds nitrovegylletekre. Kiterjed az adatok tudomanyos forrasaira, azok
mindségére, a publikalas kortiilményeire, a katalizatorok dsszetételére, el6allitasara,

katalizatort jellemz6 paraméterekre.

Az adatbazis paraméterei, valamint a benne foglalt adathalmaz alkotjak a
MIRA modell alapjat. A MIRA egy tobblépcs6s mddszer, amely olyan 0j informacié
azonositasara szolgal az adott katalitikus reakciora vonatkozé adatok révén, amely
potencialisan felhasznalhaték a katalizatorfejlesztésben és tervezésben. Ez a
funkcionalis és  gyakorlatias matematikai keret segit az egzakt
katalizatorjellemzésben és azok 6sszehasonlitasaban. A modell egy 15 paraméteres
deszkriptor rendszerbdl épiil fel, amelynek segitségével megvaldsithato a
katalizatorok jellemzése. Az adatok normalizalasa és a paraméter szerinti sulyozas
utan egy matematikai formula szerint kiszamithaté a MIRA szam. A katalizatorok ez
alapjan rangsorolhaték és osztalyozhatok, ez altal konnyebbé téve az
0sszehasonlitast. A modell jelen alkalmazasban a nitrobenzol és a dinitrotoluol

katalitikus hidrogénezésére hasznalt katalizatorokra terjed ki.

Az adatok atfogo6 feliilvizsgalata feltar6 adatelemzéssel tortént. Ennek soran
az adathalmaz atvizsgalasra keriilt, adattisztitdson és adatszlirésen esett at.

Korrelaciés analizis segitségével megvizsgalasra kertiltek a paraméterek kozotti
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kapcsolatok és erdsségeik. Az addigi tapasztalatok és az elemzés eredményeképpen
modositott adatgytijtéssel egy kibdvitett adatbazis létrehozasara kertilt sor, szintén
a nitrobenzol hidrogénezésére vonatkozoan. A kibdvitett adatbazis katalizatorainak
adatelemzését kovetéen megtortént a MIRA21 modell feliilvizsgalata és kismértéki
modositassal 1étrejott a MIRA23 modell. A MIRA23 szerinti mindsitést kovetéen
meghatarozasra keriiltek a legjobb Kkatalizdtor kombinaciék. A paronkénti
adatelemzés soran mintazatok fedezhetdk fel, amelyek 01j informaciéként szolgalnak
a kiillonb6z6 katalizator kombinaciokrdl. Az adattisztitidson és sziirésen atesett
adathalmaz felhasznalasanak kiterjesztése a tovabbiakban a gépi tanuldsban vald
alkalmazasra terjedt ki. Ennek soran az adathalmazt, mint tanulé és teszt
adathalmazt hasznalja az algoritmus, hogy prediktaljon altalunk kivalasztott
tulajdonsagokat a bemeneti paraméterek alapjan. A kutatasi munka jelenleg is

folyamatban van.

A doktori értekezés az adatokbdl torténd értékes kémiai informacidk
kinyerésére iranyult, melynek révén 0j ismeret szerezhetd. Szamomra ez a négy év a
tobbvaltozds adatelemzés és a mesterséges intelligencia tudomanyanak, inkabb egy
szeletének, megismerését eredményezte, valamint alkalmazasi lehet6ségeinek
végtelen tarhazat mutatta be. Ezzel egyidejiileg bizonyitva azt is, hogy mar a gépi
tanulas kiindulasi adathalmazanak megvalasztasanal is rengeteg kérdés meriil fel,
amely tovabbi komplex el6készitési folyamatokat igényel. Emellett tudasom
szélesedett azaltal, hogy az aromas nitrovegyliletek hidrogénezésére alkalmas

katalizatorok fejlesztési iranyvonalait és kutatasi eredményeit is megismertem.

Ezenfeliil a doktori munkam tovabbi pozitiv hozadékkal jart. A MIRA
létrehozasa ravilagitott arra, hogy a kortars publikaciés gyakorlat meglehet6sen
rendszertelen és hianyos. A MIRA alkalmazasaval a Kémiai Intézet publikaciéi sokkal
atlathatébb és precizebb moédon kerililnek megirasra. A modellt tovabba volt
lehet6ség egyetemi hallgatok segitségével is tesztelni, amely nemcsak a MIRA
tovabbfejlesztését tAmogatta, hanem a hallgat6k szamara is betekintést nyujtott a
modell alkalmazasi lehetéségeibe. Jelenleg is folyik kutatasi munka, melynek soran
a metanol szén-dioxidbol torténé gyartasara adaptaljuk a rendszert. A doktori

értekezés tovabb erositette a Kémiai Intézet és a mesterséges intelligencia
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tudomanyaban jartas egyetemi szakemberek egyiittmiikodését kémiai kutatasi

témakban, amelyben szeretnék a tovabbiakban is részt venni.

Osszefoglalva tehat elmondhatd, hogy a doktori munka o6sszefoglalja az
aromas nitrovegyiiletek hidrogénezo katalizatorainak legfrissebb és legigéretesebb
kutatasi eredményeit és 0j, adatalapt kutatasra épiil6 katalizator tervezési stratégiat
mutat be. Emellett egy olyan eszkoz, amely az ipari katalizatorok fejlesztésében is
elényt jelenthet, hiszen athidalja azokat a réseket, amelyek a tudomanyos kutatas és
a gyakorlati alkalmazas kozott jelentkeznek. A fenntarthatdsdgi paraméterek
figyelembevételével példaul egyértelmlien az ipari megvalésithatésagra keriil a
hangsuly. Ezenfeliil az adatelemzés és a mesterséges intelligencia integracidja egy
ipari katalizatorfejlesztésbe j6 példaként szolgdl a vegyipari innovaciés

lehetdségekre.
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7. NEW SCIENTIFIC RESULTS — THESES

1. A MATHEMATICAL FRAMEWORK WAS DEVELOPED FOR CHARACTERIZING CATALYSTS BY A

SINGLE QUANTITATIVE DATA.
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Figure T 1 Visualization of MIRA21 number

As a result of the research MIRA (MIskolc RAnking) model was established,
which can be used to characterize catalysts described in scientific research using a
single quantitative data. 13 parameters that can be used to characterize catalyst
were determined. 13-parameter descriptor system was created, each characterized
by quantifiable data. The parameters are divided into four groups, namely the
variables that characterize the performance of the catalyst, the parameters that
describe the reaction conditions, the properties of catalyst and the sustainability
parameters. A mathematical procedure was developed that allows easy
identification and comparison of catalysts. In mathematical procedures, parameters
are normalized, then weighted by group, and the number of MIRAs is generated
using mathematical formulas. Catalysts ranked and classified become comparative

by the number of MIRAs.
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Figure T 2 Descriptor system of the model
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2. THEDESCRIPTOR SYSTEM AND THE UNIQUE WEIGHT FACTORS HAVE BEEN REVIEWED ON THE
BASIS OF WHICH A GENERAL WEIGHT FACTOR HAS BEEN PROPOSED, MAKING BOTH THE

RANKING AND CLASSIFICATION CLEAR.

During PhD work, the descriptor system was revised by Exploratory Data
Analysis. Based on the evaluation, version MIRA23 was created by slightly modifying
the MIRA21 model. The weighting of all parameters was validated.

The system is suitable for the characterization of catalysts for hydrogenation of

nitrobenzene, and it can be applied on any catalytic system based on the test180.199,

3. MIRA21(23) DATA- AND CATALYST RATING SYSTEM, TOGETHER WITH MACHINE

LEARNING, CAN BE USED TO CREATE NEW CATALYST DESIGN STRATEGIES.

The steps taken in doctoral thesis provide a new catalyst design strategy. The
first step is the application of the MIRA model, then the Exploratory Data Analysis

and the application Machine Learning methods.

_---’_--‘-“—- +’——‘

EXPLORATORY DATA ANALYSIS

UNIVARIATE ANALYSIS

GRAFHICAL REIFRISENTATION

oL ¥ S Y

lTR.ﬁIHIHG AND TEST SET OF DATA

MACHINE LEARNING

Figure T 3 Catalyst design strategy

4. FOR SPECIFIC ACTIVE METALS, IT IS POSSIBLE TO DETERMINE THE CONCENTRATION RANGE

TO ACHIEVE A CONVERSION LEVEL HIGHER THAN A CERTAIN LEVEL.

Based on the examination of the parameter system of the developed multivariate
method, chemical information was produced with the help of Exploratory Data

Analysis. In the analysis of joint plots, groups of different compositions and
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performance characteristics can be distinguished depending on the composition of
the catalyst. Based on Figure T4, in case of iron active component, a conversion of

more than 70% can be achieved at a concentration of 20-22%.
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Figure T 4 Joint plot of Active component concentration (M12 w/w%) and Conversion classified by
catalyst active component(M1)

5. IN CATALYST RESEARCH, SUSTAINABILITY PARAMETERS WERE FIRST DEFINED AS

DESCRIPTOR INDICATORS OF CATALYSTS USING MATHEMATICAL PROCEDURES.

Table T 1 Sustainability parameters

From 0 to n, where 0 is no information
about stability, 1 means that the stability

11. STAB Stability - was investigated, 2,3... the number of
» cycles until the conversion remains above
& 90%
£
.. Rank of the active component accordin,
& Toxicity - f p g
= to toxicity316
(=7 1%}
2 § Rank of the acti t di
= ank of the active component accordin
= 12. S  Endangered elements - p Gl g
< S to endangered element scenario
= S
« . :
. Rank of the elemen rdin |
§ % e T i ank of the ele ;:S according to life
i cycle assessment
Price is of 1 gram catalyst according to
13. PR Price euro/g the active component concentration in

euro
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10. APPENDIX

1. EXCEL DATABASE SYSTEM106

TEMPERATURE

SPREADSHEET

2. FIRST TEST SYSTEM RESULTS — NITROBENZENE HYDROGENATION CATALYSTS
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HNB_HYD2016_3
HNB_BEI2012_3
HNB_CHE2009_1*
HNB_FUY2018_2
HNB_FUY2018_1
HNB_BEI2005_2
HNB_GUA2017_2
HNB_BEI2012_2
HNB_BEI2005_1
HNB_CHE2009_2*
HNB_CHE2009_3*
HNB_BEI2013_3
HNB_GUA2017_1
HNB_BEI2007_3
HNB_BEI2012_1
HNB_BEI2013_1
HNB_GUA2020_2
HNB_BEI2014_1
HNB_BEI2008_1
HNB_BEI2013_5
HNB_BEI2010_1
HNB_WUH2016_1
HNB_GUA2020_1
HNB_BLO2015_7
HNB_GUA2020_1
HNB_TAI2017_2
HNB_TIA2019_1
HNB_INC2018_1
HNB_BEI2010_2
HNB_BEI2010_3
HNB_POR2016_4
HNB_BEI2007_1
HNB_POR2016_2
HNB_POR2016_1
HNB_GUA2020_3
HNB_BLO2015_6
HNB_BLO2015_5
HNB_GUA2020_4
HNB_TAI2017_4
HNB_GUA2017_3
HNB_BLO2015_3
HNB_MIS2019_2
HNB_BEI2010_4
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CAT. Name in journal

Ni/C-A1203
Pt/TiO2/RGO
1 wt% Pd/HT
PtCo nanoparticle
PtCo nanoflower
Pt CNT
Pd/CNT
Pt/RGO
PtCNT
1 wt% Pd/MgO
1 wt% Pd/Y-A1203
Pd/MWCNT-SA-3.6
Pd/NCNT
Pt/CNTs LRT
Pt/TiO2
Pd/MWCNT-SA-6.0
Pt/CeO2-R
Pd/Fe20s
Pd/FSA
Pd/MWCNT-IM
5wt% Pt/MWNT
C-Fe304-Pd
Pt/CeO2-C
Ru-14
Pt CeO2-R-300
Co@NMC-700
Co-NSPC-N
Pd/NH2-UiO-66
27,4wt% Pt/MWNT
50wt% Pt/MWNT
50 wt% NiO/A1203+5i02
Pt/CNTs HRT
0,3 wt% Pd/A1203/1,85
1 wt% Pd/AI203
Pt/CeO2-P
Ru-12
Ru-7
Pt CeO2-C-600
Co@NMC-900
Pd/CNT
Ru-5
Pt/N-BCNT
10wt% Pt/C

KNOWN
parameters

14
14
14
14
15
15
14
15
14
14
15
15
15
14
15
15
15
14
15
14
14
15
14
15
15
15
15
14
14
15
15
15
15
15
14
14
15
15
15
14
14
14

ALEXANDRA JAKAB-NACSA

MIRA21

number s
11.51 Q1
11.51 Q1
11.49 Q1
1147 Q1
11.42 Q1
1141 Q1
11.33 Q1
11.33 Q1
11.32 Q1
11.32 Q1
11.31 Q1
11.30 Q1
11.30 Q1
11.29 Q1
11.28 Q1
11.26 Q1
11.11 Q1
11.09 Q1
11.08 Q1
11.04 Q1
10.98 Q1
10.96 Q1
10.95 Q1
10.91 Q1
10.90 Q1
10.90 Q1
10.87 Q1
10.85 Q1
10.84 Q1
10.84 Q1
10.83 Q1
10.83 Q1
10.78 Q1
10.76 Q1
10.72 Q1
10.72 Q1
10.71 Q1
10.70 Q1
10.67 Q1
10.63 Q1
10.63 Q1
10.62 Q1

126



A DATA-DRIVEN MODELLING APPROACH FOR HETEROGENEOUS CATALYSIS RESEARCH

ALEXANDRA JAKAB-NACSA

CATALYST ID CAT. Name in Journal KNOWN MIRAZL Class
parameters | number

HNB_BLO2015_4 Ru-11
HNB_XIA2019_1 Ni-Zn/AC-350 15 10.51
HNB_MIS2019_3 Rh/N-BCNT 14 10.49
HNB_HAN2010_1 Ni-5/5i102-EN 15 10.41
HNB_POR2016_4 50 wt% NiO/AI203+5102 15 10.36
HNB_BEI2013_6 Pd/AC 14 10.32
HNB_BEI2007_2 Pt/AC HRT 15 10.31
HNB_BLO2015_2 Ru-16 14 10.31
HNB_CAR2018_1 AuPd/TiO2 (MIM) 14 10.21
HNB_POR2008_1 NiFC1 14 10.18
HNB_POR2008_2 NiFC2 14 10.17
HNB_HYD2016_1 Ni/C 15 10.16
HNB_TIA2019_2 Co-NSPC-C 15 10.10
HNB_POR2008_3 NiFC3 14 10.07
HNB_GUA2020_6 Pt CeO2-P-600 15 10.05
HNB_BEI2013_4 Pd NPs-4.3 14 10.04
HNB_WUH2019_1 Co@CN-800 13 9.99
HNB_TOU2020_1 PdB 14 9.92
HNB_CAR2018_7 AuPd/TiOz (Snv) 14 9.89
HNB_BEI2010_5 5wt% Pt/C 14 9.88
HNB_BLO2015_1 Ru-18 14 9.77
HNB_TAI2017_9 Co@NC@Si02-800 14 9.75
HNB_LAN2020_2 v-Fe203/NPC-700 14 9.70
HNB_TAI2017_12 Co@NMC-800 (1:2) 13 9.60
HNB_LAN2020_1 v-Fe203/NPC-600 14 9.58
HNB_CAR2018_3 Pd/TiO2 (M) 14 9.56
HNB_TIA2019_3 Co-NSPC-5 15 9.55
HNB_CHA2016_3 Nil.99P-s-1h 13 9.54
HNB_BEI2017_1 Co3S4 13 9.51
HNB_TOK2004_1 Pt/C 200 °C-2h 14 9.47
HNB_TAI2017_5 Co/NMC-800 13 9.47
HNB_TAI2017_7 Co@NMC-800-H2504 13 9.43
HNB_TAI2017_8 Co@NC-800 14 9.42
HNB_CAR2018_6 AuPd/TiO2 (Cim) 14 9.39
HNB_HAR2019_1 FeOx@CN-hpes-400 13 9.39
HNB_LAN2020_4 v-Fe203/NPC-900 14 9.35
HNB_TOK2004_3 Pt/C 500 °C-2h 14 9.35
HNB_TIA2019_4 Co-NSPC-Cl1 15 9.32
HNB_TOK2004_2 Pt/C 300 °C-2h 14 9.31
HNB_CAR2018_4 AuPd/MgO (Mmm) 14 9.30
HNB_HYD2008_4* Ru/SBA-15 12 9.25
HNB_LAN2020_5 v-Fe203/NPC-1000 14 9.22
HNB_HYD2008_5* Ru/SBA-15 12 9.15
HNB_POR2008_4 RNi 13 9.12
HNB_HAN2010_4 Ni-15/5i02-EN 13 9.11
HNB_TOK2004_4 Pt/C 600 °C-2h 14 9.08
HNB_HYD2008_3* Ru/SBA-15 12 9.03
HNB_CHA2016_2 Nil.91P-s-0.5 h 13 8.97
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RANK

CATALYST ID

HNB_CHA2016_4
HNB_GUA2020_3
HNB_NAN2014_1
HNB_HAN2010_2
HNB_BEI2007_4
HNB_HAN2010_3
HNB_HAN2010_3
HNB_CHA2016_1
HNB_TAI2017_1
HNB_HYD2008_2*
HNB_BEI2005_3
HNB_BEI2005_1
HNB_TAI2017_10
HNB_BEI2013_7
HNB_CAR2018_5
HNB_TOK2004_5
HNB_TAI2017_6
HNB_XIA2021_2
HNB_GUA2020_5
HNB_HAN2010_5
HNB_CAR2018_2
HNB_HYD2008_1*
HNB_TAI2017_11
HNB_NAN2014_3
HNB_XIA2021_3
HNB_XIA2021_4
HNB_NAN2014_2
HNB_BEI2013_8
HNB_NAN2014_4
HNB_GLA2002_3
HNB_GLA2002_2
HNB_SHA2015_2
HNB_BEI2013_9
HNB_GLA2002_1
HNB_FUY2018_3
HNB_SHA2006_1
HNB_SHA2000_1
HNB_SHA2000_2
HNB_DAL2015_1*
HNB_NAN2014_5
HNB_SHA2000_3
HNB_QIN2016_2
HNB_QIN2016_3
HNB_SHA2000_6
HNB_SHA2000_4
HNB_SHA2000_5
HNB_SHA2006_2
HNB_DAL2015_2*
HNB_NAN2014_6
HNB_SHA2000_7
HNB_QIN2016_1

CAT. Name in Journal

Ni2.05P-s-3 h
Pt CeO2-C-300
Pt/AIO(OH)
Ni-5/Si02-NI
Pt/AC LRT
Ni-5/S5i02-AC
Ni-5/5i02-AC
Nil.96P-s-10 min
Co@NMC-600
Ru/SBA-15
Pt AC
Cu/SiO2
Ni@NMC-800
Pd/ALOs
AuPd/C (M)
Pt/C 750 °C-3h
CoOx@NMC-800
0.075%Pt/SBA-15
Pt CeO2-P-300
Raney Ni
Au/TiO2 (Mm)
Ru/SBA-15
Fe@NMC-800
Pt/MWCNTs
0.07%Pt/ZrO2
0.09%Pt/y-AlOs
Pt/Al20s
Pd/SiO2
Pt/AC
Pd/CSXU
Pd/CA1
Pt/C
Pd/MgO
Pd/CN1
Pt/C
Meso Ni-B
Pd-B/SiOz(fresh)
Pd-B/SiO:2 (473 K)
Pd/AM
Pt/TiO2
Pd-B/SiO: (673 K)
Ni-Fe-1/SiO:2
Ni-Fe-2/Si0O2
Pd/SiO: (fresh)
Pd-B/SiO: (873 K)
Pd-B/SiO:2 (973 K)
Regular Ni-B
Pd/CNF/monolith
Pt/MCM-41
Pd-B
Fe/SiO2

KNOWN  MIRA21 (as.
parameters

ALEXANDRA JAKAB-NACSA

number

8.88
8.81
8.80
8.76
8.76
8.75
8.69
8.63
8.60
8.50
8.49
8.43
8.42
8.38
8.38
8.26
8.17
8.16
8.09
8.04
7.99
7.92
7.92
7.90
7.89
7.86
7.84
7.80
7.77
7.57
7.45
7.41
7.26
6.97
6.95
6.91
6.91
6.90
6.90
6.88
6.77
6.76
6.66
6.54
6.48
6.41
6.39
6.34
5.78
5.71
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3. SECOND TEST - DNT CATALYST RESULTS

10
11
12

13
14
15
16

17

18
19
20

21

22

23

24

25

26

27

28

29

30

e
=
n
>~
=
<
=
<
]

Catalyst name

Catalyst
support

Main active
component

ALEXANDRA JAKAB-NACSA

Known Par.

HDNT/MIS/2021/2/2 Pt/CrO» Chromium(IV)- | i 15 1150 | D1
dioxide
HDNT/MIS/2021/2/1 Pd/CrO» Chromium(IV)- | o 1 dium | 15 1149 | D1
dioxide
HDNT/MIS/2021/3/1 Pd/NiFe204 Nickel ferrite Palladium 15 11.45 D1
HDNT/TIA/2020/1/3 15Pt/ZrO»-300 Zirconium- Platinum 13 1144 | D1
dioxide
HDNT/TIA/2020/1/4 15Pt/ZrOs-400 Zirconium- Platinum 13 1143 | D1
dioxide
HDNT/TIA/2020/1/2 15Pt/ZrO»-200 Zirconium- Platinum 13 1142 | D1
dioxide
HDNT/MIS/2021/1/2 Pd/maghemite Maghemite Palladium 15 11.35 D1
HDNT/TIA/2020/1/5 | 45Pt/ZrOs-300 Zirconium- Platinum 13 11.06 | DI
dioxide
HDNT/TIA/2020/1/6 60Pt/Zr0s-300 Zirconium- Platinum 13 11.01 | Q1
dioxide
HDNT/TIA/2020/1/7 | 85PY/ZrO»-300 Zirconium- Platinum 13 11.00 | Q1
dioxide
HDNT/M1IS/2021/3/2 Pd/CoFe204 Cobalt ferrite Palladium 15 10.84 Q1
HDNT/SHA/2012/1/1 | Ni/HY catalyst HY r;zzf:ular Nickel 15 1077 | Q1
HDNT/MIS/2021/1/1 Pt/maghemite Maghemite Platinum 15 10.67 Q1
HDNT/MIS/2021/3/3 Pd/CuFe204 Copper ferrite Palladium 15 10.48 Q1
HDNT/MIS/2022/1/3 | Pd/NiFe:0-NH: | Nickel-ferrite | Palladium | 13 1031 | Q1
HDNT/MIS/2022/1/1 Pd/CoFe20s+-NH:2 Cobalt-ferrite Palladium 13 10.28
HDNT/MIS/2021/1/3 Pd-— Maghemite Palladium | 14 10.14
Pt/maghemite
HDNT/PUN/1999/1/5 20% Ni/HY HY zeolite Nickel 14 9.50
HDNT/DAL/1997/1/2 | PVP-Pd-1/4 Pt PVP Palladium | 13 9.47
HDNT/PUN/1999/1/6 10% Ni/HY HY zeolite Nickel 14 9.44
HDNT/MES/2001/1/1 MGPd05 ChemvironSC 1 dium | 13 9.24
XII active carbon
Chemviron SC .
HDNT/MES/2001/1/3 MGPd1b , Palladium | 13 9.23
XII active carbon
Chemviron SC .
HDNT/MES/2001/1/8 MGPd5a ) Palladium | 13 9.20
XII active carbon
HDNT/HAN/2001/1/2 B Chemically Iridium 13 9.19
activated carbon
Chemviron SC .
HDNT/MES/2001/1/4 MGPd1c . Palladium | 13 9.19
XII active carbon
HDNT/HAN/2001/1/1 A Chemically Iridium 13 9.19
activated carbon
Chemviron SC .
HDNT/MES/2001/1/7 MGPd5 . Palladium | 13 9.17
XII active carbon
Chemviron SC .
HDNT/MES/2001/1/5 MGPd1d . Palladium | 13 9.14
XII active carbon
Chemviron SC .
HDNT/MES/2001/1/2 MGPd1a ) Palladium | 13 9.13
XII active carbon
Chemviron SC .
HDNT/MES/2001/1/6 MGPd3 Palladium | 13 9.06

XII active carbon
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HDNT/HAN/2001/1/3

HDNT/MIS/2022/1/2
HDNT/ZUR/1987/1/1
HDNT/HAN/2001/1/4

HDNT/HAN/2001/1/5

HDNT/PUN/1999/1/2
HDNT/SHA/2012/1/4
HDNT/SHA/2012/1/3
HDNT/SHA/2012/1/2
HDNT/SHA/2012/1/1
HDNT/SAP/2004/1/3
HDNT/SHA/2012/1/5
HDNT/SAP/2004/1/2

HDNT/TIA/2020/1/1
HDNT/PUN/1999/1/4

HDNT/TAE/1993/1/1

HDNT/TAE/1993/1/3

HDNT/TAE/1993/1/2

HDNT/TAE/1993/1/4

HDNT/PUN/1999/1/1

HDNT/BAR/2000/1/1

HDNT/DAL/1997/1/1
HDNT/PUN/1999/1/3
HDNT/TAE/1993/1/7
HDNT/TAE/1993/1/8

HDNT/TAE/1993/1/6

HDNT/TAE/1993/1/5
HDNT/SAP/2004/1/1

C

Pd/CdFe:0s-
NH2

0.5 % Pt/AlOs
D

E

20% Ni/SiO2
Ni-La6-B
Ni-La4-B
Ni-La2-B
Ni-La0-B

Pt/C in ethanol
Ni-La8-B
Pt/C in ethanol

15Pt/ZrO2-100
20% Ni/HZSM-5
SA

DA
SAON

DAON
20% Ni/ALOs

PA(AAEMA)2/E
MA/EGDMA

PVP-PdCl2
20% Ni/TiO2
VB
VON

DAOH

DAOS

Pt/C in scCO2
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Steam activated
carbon

Cadmium-ferrite

Al203

Steam activated
carbon
Oleophilic
carbon black
Si02

Active carbon

Active carbon
Zirconium-
dioxide
HZSM-5
Activated
carbon
Activated
carbon
Activated
carbon
Activated
carbon
AI203
Polymer-
supported
complex
PVP
TiO2
Carbon Black
Carbon Black

Activated
carbon
Activated
carbon
Active carbon

Palladium

Palladium
Platinum

Palladium

Palladium

Nickel
Nickel
Nickel
Nickel
Nickel
Platinum
Nickel

Platinum
Platinum
Nickel

Palladium

Palladium

Palladium

Palladium

Nickel

Palladium

Palladium
Nickel
Palladium

Palladium

Palladium

Palladium

Platinum

ALEXANDRA JAKAB-NACSA

13 9.03

13 8.95
13 8.88
13 8.79

13 8.78

14 8.63
12 8.36
12 8.34
12 8.33
12 8.32
13 8.02
12 7.92
13 7.90

13 7.85
14 7.75

11 7.58
11 7.52
11 7.50

11 7.49

14 7.43

13 7.27

10 6.99
14 6.95
10 6.80
10 6.80

10 6.80

10 6.80
13 6.68

130



A DATA-DRIVEN MODELLING APPROACH FOR HETEROGENEOUS CATALYSIS RESEARCH ALEXANDRA JAKAB-NACSA

4. RESULTS OF SPEARMAN CORRELATION ANALYSIS WITH FULL DATA SET
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6. FULL RANKING OF THE NITROBENZENE HYDROGENATION CATALYSTS

Cat appellation Known p. MIRA21 Class

1 HNB/CAM/2021/109/2 Pt(OUT)/HNT 12 105 D1
2 HNB/CAM/2021/109/1 Pt(IN)/HNT 12 10.3 D1
3 HNB/ZHA/2020/92/4 Pt/CeO2-R-600 12 10.0 D1
4 HNB/L1/2015/35/1 Pt/CMK-3 11 9.9 D1
5 HNB/NIE/2020/93/5 Pt/m-Al203-400-20mg 12 9.8 Q1

6 HNB/ZHA/2021/113/1 0.07%Pt/@-ZrO2/SBA-15 12 9.8 Q1

7 HNB/NIE/2020/93/7 Pt/m-Al203-400-30mg 12 9.8 Q1

8 HNB/NIE/2020/93/2 Pt/m-A1203-400-20mg 12 9.8 Q1
9 HNB/NIE/2020/93/6 Pt/m-Al1203-400-20mg 12 9.8 Q1
10 HNB/NIE/2020/93/8 Pt/m-Al203-400-40mg 12 9.7 Q1
11 HNB/WAN/2013/19/2 Pd/MWCNT-SA-4.3 11 9.6 Q1
12 HNB/PRE/2022/116/1 Pd/CF 12 9.6 Q1
13 HNB/HAJ/2022/118/2 Pd/ZnFe204 12 9.5 Q1
14 HNB/HUA/2019/91/1 Ni/Zn/AC-350 12 9.5 Q1
15 HNB/HAJ/2022/115/1 Pd/MnFe204 (573K) 12 9.5 Q1
16 HNB/ZHA/2020/92/3 Pt/CeO2-R-600 12 9.5 Q1
17 HNB/PRE/2020/95/1 5% w/w Pd-CC 12 9.5 Q1
18 HNB/LV/2020/105/6 Y-Fe203/NPC-800 11 9.4 Q1
19 HNB/LV/2020/105/3 Y-Fe203/NPC-800 11 9.4 Q1
20 HNB/LV/2020/105/9 Y-Fe20O3/NPC-800 10 94 Q1
21 HNB/LV/2020/105/10 Y-Fe2O3/NPC-800 11 9.4 Q1
22 HNB/TUR/2015/24/1 Pd/C 11 94 Q1
23 HNB/LV/2020/105/11 Y-Fe203/NPC-800 10 9.3 Q1
24 HNB/LV/2020/105/2 Y-Fe203/NPC-700 11 9.3 Q1
25 HNB/LV/2020/105/7 Y-Fe203/NPC-800 11 9.3 Q1
26 HNB/LV/2020/105/1 Y-Fe203/NPC-600 11 9.3 Q1
27 HNB/NIE/2020/93/4 Pt/m-Al1203-400-20mg 12 9.2 Q1
28 HNB/LV/2020/105/12 Y-Fe203/NPC-800 11 9.2 Q1
29 HNB/NIE/2020/93/3 Pt/m-Al1203-400-20mg 12 9.2 Q1
30 HNB/SHI/2016/45/4 Pt/H-NCNTs 11 9.2 Q1
31 HNB/ZHA/2020/92/2 Pt/CeO2-R-300 11 9.2 Q1
32 HNB/ZHA/2007/128/3 Pt/CNTs LRT 11 9.2 Q1
33 HNB/NIE/2020/93/1 Pt/m-A1203-400-20mg 12 9.1 Q1
34 HNB/NIE/2020/93/9 Pt/m-Al203-400-40mg 11 9.1 Q1
35 HNB/ZHA/2020/92/6 Pt/CeO2-C-600 11 9.1 Q1
36 HNB/PRE/2021/114/1 Pd-Pt/CB 11 9.0 Q1
37 HNB/ZHA/2022/117/1 Pd/PIL-Tf2N 11 9.0 Q1
38 HNB/PRE/2021/114/2 Pd-Pt/Fe203-CB 11 9.0 Q1
39 HNB/PRE/2021/114/3 Pd-Pt/NiO-CB 11 9.0 Q1
40 HNB/ZHA/2012/12/3 Pt/TiO2/RGO 11 9.0 Q1
41 HNB/ZHA/2020/92/1 Pt/CeO2-R-300 11 9.0 Q1
42 HNB/HAJ/2022/118/3 Pd/NiZnFe204 11 9.0 Q1
43 HNB/WAN/2010/1/1 Ni-5/SiOz-en 11 9.0 Q1
44 HNB/LV/2020/105/8 Y-Fe203/NPC-800 11 9.0 Q1
45 HNB/SHI/2016/45/3 Pt/L-NCNTs 11 9.0 Q1
46 HNB/HAJ/2022/115/2 Pd/MnFe204 (623K) 11 8.9 Q1
47 HNB/HA]J/2022/118/1 Pd/NiFe204 11 8.9 Q1
48 HNB/SAN/2009/122/1 1 wt% Pd/HT 11 8.9 Q1
49 HNB/HAJ/2022/115/3 Pd/MnFe204 (673K) 11 8.9 Q1
50 HNB/SAN/2009/122/1 1 wt% Pd/Y-A1203 11 8.9 Q1
51 HNB/SAN/2009/122/1 1 wt% Pd/MgO 11 8.9 Q1
52 HNB/HE/2021/111/1 CuAlOx 1,10-phen 11 8.9 Q1
58 HNB/SHI/2016/45/2 Pt/oCNTs 11 8.9 Q1
54 HNB/ZHA/2017/55/3 Co@NMC-800 11 8.8 Q1
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HNB/WAN/2020/97/2
HNB/GAO/2019/88/1
HNB/ZHA/2020/92/8
HNB/WAN/2016/44/1
HNB/WAN/2019/74/3
HNB/ZHA/2012/12/2
HNB/ZHA/2012/12/1
HNB/LIU/2016/39/1
HNB/ZHA/2007/128/2
HNB/ZHA/2007/128/1
HNB/SHI/2016/45/1
HNB/DAI/2019/77/4
HNB/DU/2013/18/1
HNB/SUN/2010/2/3
HNB/SUN/2010/2/8
HNB/WAN/2020/97/1
HNB/COU/2016/40/3
HNB/COU/2016/40/2
HNB/SUN/2010/2/5
HNB/SUN/2010/2/2
HNB/COU/2016/40/1
HNB/VAN/2019/79/2
HNB/LIN/2019/84/2
HNB/LIN/2019/84/3
HNB/SUN/2010/2/4
HNB/LAN/2008/123/1
HNB/SUN/2010/2/1
HNB/LIN/2019/84/6
HNB/SUN/2010/2/9
HNB/MIA/2018/69/1
HNB/MOH/2012/9/1
HNB/DU/2013/18/2
HNB/TIA/2021/108/1
HNB/MOH/2012/9/2
HNB/VAN/2019/79/1
HNB/LIU/2020/101/6
HNB/LV/2020/105/4
HNB/LIU/2020/101/4
HNB/SUN/2010/2/6
HNB/LV/2020/105/5
HNB/WAN/2013/19/6
HNB/WAN/2013/19/3
HNB/WAN/2013/19/1
HNB/MAH/2008/127/1
HNB/MAH/2008/127/2
HNB/DON/2017/57/1
HNB/DON/2017/57/2
HNB/DU/2013/18/3
HNB/VAN/2019/79/3
HNB/MAH/2008/127/3
HNB/SUN/2010/2/10
HNB/WAN/2019/74/5
HNB/QU/2018/83/5
HNB/WAN/2020/97/3
HNB/WAN/2013/19/5
HNB/WAN/2021/106/2
HNB/DU/2013/18/4

Co NPs/NC
Co-NSPC-N
Pt/CeO2-P-600
Co-Ni NW
Fe-N-C-700
Pt/RGO
Pt/TiO2
Ni-B/SiO2sol
Pt/AC HRT
Pt/CNTs HRT
Pt/CNTs
Co/NC-0.30
Pt@MIL-101 9000:1
5wt% Pt/MWNT
27 Awt%Pt/MWNT
Co SAs/NC
0,3 wt% Pd/A1203/5
0,3 wt% Pd/A1203/1,85
5wt% Pt/MWNT
5wt% Pt/MWNT
1 wt% Pd/AI203
Pt/N-BCNT
0.25% Pt/ - MoC
0.25% Pt/a - MoC
5wt% Pt/MWNT
Pd/FSA
5wt% Pt/MWNT
0.25% Pt/ - MoC
10wt%Pt/C
PtCo nanoflower
Ni/SBA-15
Pt@MIL-101 36000:1
Pt2/C3N4
Ni/MgO
Pd/N-BCNT
NiMo-10.7
Y-Fe2O3/NPC-900
NiMo-10.7
27 Awt%Pt/MWNT
Y-Fe203/NPC-1000
Pd/AC
Pd/MWCNT-SA-3.6
Pd/MWCNT-SA-6.0
NiFC1
NiFC2
Pd/CNT
Pd/NCNT
Pt@MIL-101 72000:1
Rh/N-BCNT
NiFC3
5wt%Pt/C
Fe-N-C-700
Pd-6Ni-N-C60
Co NPs/AC
Pd/MWCNT-IIM
Pd/LDHI1

Pt@eMIL-101 72000:1

11
11
11
11
11
11
11
11
11
11
11
11
10
10
10
11
11
11
10
10
11
10
10
10
10
10
10
10
10
10
10

10
10
10
10
10
10
10
10
10

10
10

O

10
10
10
10
10
11

10

8.8 Q1
8.8 Q1
8.8 Q1
8.8 Q1
8.8
8.8
8.8
8.8
8.7
8.7
8.7
8.7
8.7
8.6
8.6
8.6
8.6
8.6
8.6
8.6
8.6
8.5
8.5
8.5
8.5
8.5
8.4
8.4
8.4
8.4
8.4
8.4
8.4
8.4
8.4
8.4
8.4
8.4
8.3
8.3
8.3
8.3
8.3
8.3
8.3
8.3
8.3
8.2
8.2
8.2
8.2
8.2
8.2
8.2
8.2
8.2
8.2
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HNB/ZHA/2007/128/4
HNB/WAN/2010/1/2
HNB/GAO/2019/88/5
HNB/QU/2019/85/4
HNB/QU/2017/49/3
HNB/LIN/2019/84/5
HNB/WAN/2019/74/4
HNB/EAS/2015/28/5
HNB/ZHA/2017/55/2
HNB/DAI/2019/77/5
HNB/GAO/2019/88/6
HNB/HAR/2012/13/1
HNB/RAJ/2012/10/1
HNB/LIU/2021/112/4
HNB/COU/2016/40/4
HNB/RAJ/2012/10/2
HNB/GAO/2019/88/2
HNB/X10/2020/104/5
HNB/EAS/2015/28/6
HNB/SUN/2010/2/7
HNB/GAO/2019/88/7
HNB/QU/2018/71/1
HNB/ZHA/2017/55/4
HNB/WAN/2019/74/6
HNB/DAI/2019/77/7
HNB/LI/2015/35/2
HNB/LIN/2019/84/4
HNB/ZHA/2020/102/1
HNB/HU/2019/80/1
HNB/WAN/2019/74/2
HNB/RA]J/2012/10/3
HNB/WAN/2010/1/3
HNB/GAO/2019/88/3
HNB/LIU/2021/112/5
HNB/QU/2018/71/7
HNB/MIA/2018/69/2
HNB/DAI/2019/77/3
HNB/LIN/2019/84/1
HNB/SUN/2018/68/1
HNB/NIE/2020/93/10
HNB/SUN/2018/68/4
HNB/ZHA/2021/113/2
HNB/NIE/2020/93/11
HNB/LIN/2012/11/3
HNB/WAN/2021/106/3
HNB/LI/2019/90/1
HNB/GAO/2019/88/4
HNB/DON/2017/57/3
HNB/LIU/2020/101/7
HNB/CHE/2018/64/1
HNB/CHE/2018/64/7
HNB/CHE/2018/64/14
HNB/SUN/2018/68/3
HNB/WAN/2021/106/6
HNB/ZHA/2020/92/5
HNB/LIU/2020/101/5
HNB/ZHA/2022/117/3

Pt/AC LRT
Ni-5/SiO2-n1
Co-NSPC-N/N2
Ni-N-C60
Ni/C60-Ac-B4-30
0.25% Pt/ - MoC
Fe-N-C-800
Ru-7/Fe304-Y Fe203
Co@NMC-700
Co/NC-0.35
Co-NSPC-N/KSCN
Pd/PEG4000
Ni/rutile-500
NiCu/C@Si02-800
50 wt% NiO/AI203+5i02
Ni/anatase-500
Co-NSPC-C
2Co-1Zn@NC-800
Ru-12/ Fe304-Y Fe203
50wt%Pt/MWNT
Co-NSPC-N/110
AuPd/TiO2 (Mim)
Co@NMC-900
Fe-N-C-800
Co/NC-0.45
Pt/C
0.25% Pt/ - MoC
Ag@SiO2 -CH20
Co@CN-800
Fe-N-C-600
Ni/TiO2-500
Ni-5/5102-ac
Co-NSPC-S
NiCu/C@SiO2-850
AuPd/TiO2(Sim)
PtCo nanoparticle
Co/NC-0.25
0.5% Pt/C
Co@mesoNC
Pt/m-Al203-600-40mg
Co@mesoNC
0.075%Pt/SBA-15
Pt/m-Al203-800-40mg
Ni/TiO2@C-11%
Pd/LDHO0.8
FeOx@CN-hpes
Co-NSPC-Cl
Pd/N@CNT-1.5
NiMo-10.7-G
Pd/MIL-101
Pd/SiO3
Pd/UiO-66
Co@mesoNC
Pd/Si02
Pt/CeO2-C-300
NiMo-8

Pd/PIL-PF6

\© O O O

8.2
8.2
8.2
8.2
8.2
8.2
8.2
8.1
8.1
8.1
8.1
8.1
8.1
8.1
8.1
8.1
8.1
8.1
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
79
7.9
79
7.9
7.9
7.8
7.8
7.8
7.8
7.8
7.8
7.7
7.7
7.7
7.7
7.7
7.7
7.7
7.7
7.7
7.7
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
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HNB/CHE/2018/64/10
HNB/CHE/2018/64/12
HNB/QU/2018/83/6
HNB/GAR/2019/89/1
HNB/WAN/2021/106/5
HNB/CHE/2018/64/6
HNB/CHE/2018/64/8
HNB/ZHA/2021/113/3
HNB/EAS/2015/28/7
HNB/QU/2018/83/2
HNB/WAN/2021/106/4
HNB/ZHA/2022/117/2
HNB/ZHA/2021/113/4
HNB/LIU/2020/101/3
HNB/SUN/2018/68/6
HNB/MAK/2012/4/1
HNB/WAN/2021/106/1
HNB/PEI/2020/103/4
HNB/QU/2017/49/4
HNB/QU/2019/85/3
HNB/LIU/2021/112/3
HNB/PEI/2020/103/6
HNB/MAH/2008/127/4
HNB/LIN/2012/11/1
HNB/EAS/2015/28/4
HNB/GEL/2002/119/3
HNB/LIU/2021/112/6
HNB/EAS/2015/28/3
HNB/QU/2017/49/2
HNB/GEL/2002/119/2
HNB/CHE/2018/64/13
HNB/GEL/2002/119/1
HNB/QU/2018/71/3
HNB/PE1/2020/103/1
HNB/SUN/2018/68/2
HNB/QU/2018/83/4
HNB/CHA/2008/124/4
HNB/FAN/2014/22/1
HNB/DAI/2019/77/1
HNB/PEI/2020/103/2
HNB/MAK/2012/4/2
HNB/X10/2020/104/3
HNB/HAR/2012/13/5
HNB/CHE/2018/64/2
HNB/PEI/2020/103/3
HNB/LEN/2016/37/4
HNB/LEN/2016/37/5
HNB/CHE/2018/64/11
HNB/CHA/2008/124/5
HNB/LEN/2016/37/6
HNB/PE1/2020/103/5
HNB/QU/2018/71/6
HNB/WAN/2019/78/2
HNB/HAR/2012/13/2
HNB/WAN/2014/23/1
HNB/LEN/2016/37/3
HNB/CHA/2008/124/3

Pd/ZIF-8
Pd/HKUST-1
Pd-6Ni-COO-C60
PdB
Pd/C
Pd/Si02
Pd/Y-A1203
0.07%Pt/ZrO2
Ru-14/FeO-Fe304
Ni-Pd
Pd/LDH-700
Pd/PIL-C1
0.09%Pt/y-A1203
NiMo-16
Co@mesoNC
Au/TiO2
Pd/LDH1.2
Pt/Co-No-RT
Ni/C60-Ac-B4-30*
Ni-COO-C60
NiCu/C@SiO2-750
Pt/Co-CTAB-RT
Rni
Ni/TiO2
Ru-11/Fe304-Y Fe203
Pd/CSXU
NiCu/C@Si02-900
Ru-5/Fe304-Y Fe203
Ni/C60-Ac-B4_10
Pd/CA1
Pd/HKUST-2
Pd/CN1
Pd/TiO2(Mim)
Pt/Co-No-60
Co@mesoNC
Pd-6Ni-C60
Ru/SBA-15
Pt/AIO(OH)
Co/NC-0.15
Pt/Co-No-90
Au/CeO2
2Co-1Zn@NC-900
Pd/PEG4000
Pd/MIL-101
Pt/Co-No-90
Ru/C60 10/1
Ru/C60 20/1
Pd/ZIF-8
Ru/SBA-15
Ru/C60 30/1
Pt/Co-PVP-RT
AuPd/TiO2(Cim)
Pd/PVA78000
Pd/PEG4000
Pd/Fe304 catdr
Ru/C60 5/1
Ru/SBA-15

—_ —_
OO\DOWOO\DO\D\D\O\D

—_
o \©

O O 00 O 0 WO 0 O & 0 VW O VW WOV VW O O O O

—_
® 0 © o

—_
o

e O 00 O O O O OV O \OC VW O O O O O O

7.6
7.6
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.4
7.4
7.4
7.4
7.4
7.4
7.4
7.4
7.4
7.4
7.4
7.4
7.4
7.4
7.4
7.4
7.4
7.4
7.4
7.4
7.4
7.4
7.4
7.4
73
7.3
7.3
7.3
7.3
73
7.3
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HNB/LEN/2016/37/7
HNB/LIU/2019/81/13
HNB/ZHA/2020/92/7
HNB/SUN/2018/68/5
HNB/QU/2018/71/4
HNB/SHI/2016/45/5
HNB/XU/2017/56/1
HNB/QU/2019/85/2
HNB/QU/2017/49/1
HNB/CHE/2018/64/9
HNB/LIU/2020/101/1
HNB/WAN/2019/74/1
HNB/DAI/2019/77/9
HNB/LIU/2019/81/12
HNB/ZHA/2017/55/9
HNB/ZHA/2017/55/8
HNB/ZHA/2020/102/5
HNB/CHA/2008/124/2
HNB/LIN/2012/11/4
HNB/CHE/2018/64/3
HNB/LIU/2016/48/4
HNB/HUA/2017/50/6
HNB/EAS/2015/28/2
HNB/LIU/2019/81/1
HNB/HAR/2012/13/6
HNB/LV/2020/105/13
HNB/LIN/2012/11/2
HNB/LEN/2016/37/2
HNB/WAN/2013/19/7
HNB/DAI/2019/77/8
HNB/HAR/2012/13/3
HNB/CHE/2018/64/15
HNB/EAS/2015/28/1
HNB/WAN/2016/44/1
HNB/QU/2018/71/5
HNB/LIU/2019/81/14
HNB/LIU/2020/101/2
HNB/HAR/2012/13/7
HNB/WAN/2013/19/4
HNB/QU/2018/71/2
HNB/CHA/2008/124/1
HNB/ZHA/2017/55/12
HNB/JIA/2021/107/1
HNB/WAN/2013/19/8
HNB/LIU/2019/81/2
HNB/ZHA/2017/55/5
HNB/HAR/2012/13/4
HNB/LIU/2019/81/11
HNB/ZHA/2017/55/7
HNB/PRE/2021/110/2
HNB/TIA/2021/108/3
HNB/MOR/2017/53/1
HNB/ZHA/2017/55/1
HNB/TOR/2017/59/1
HNB/CHE/2018/64/5
HNB/TOM/2014/27/5
HNB/LIU/2019/81/6

Ru/C60 50/1
Ni-A1203-C
Pt/CeO2-P-300
Co@mesoNC
AuPd/MgO(Mim)
5 wt% Pt/C
Co354
Ni-C60
Ni/C60-Ac-B4_1
Pd/Y-A1203
Ni
Fe-N-C-500
Co/NC-0.30
Ni-TiO2-C
Co@NC@SiO2-800
Co@NC-800
Ag@SiO2 -C7H60
Ru/SBA-15
Ni/TiO2@C-29.2%
Pd/MIL-101
NiP-s-1h
P123-Pd(OAc)2
Ru-16/Fe304-Y Fe203
Ni@C
Pd/PEG4000
Y-Fe203 nanopowder
Ni/TiO2@C-2%
Ru/C60 2/1
Pd/A1203
Co/NC-0.30
Pd/PEG4000
Pd/UiO-66
Ru-18
Co-Ni NP
AuPd/C(Mim)
Ni-ZrO2-C
NiMo-32
Pd/PEG4001
Pd NPs- 4.3
Au/TiO2(Mim)
Ru/SBA-15
Co@NMC-800 (1:2)
Pd-Ni/Y-Al203
Pd/siO2
Co@C
Co/NMC-800
Pd/PEG4000
Ni-CeO2-C
Co@NMC-800-H2504
Pd/GCF-AC1
Pt NPs/C3N4
FeS2
Co@NMC-600
Au/TiO2NT
Pd/MIL-101
Ru/CNT

Ni@C+A1203
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7.3
7.3
7.3
7.3
7.3
7.3
7.3
7.3
7.3
7.3
7.2
7.2
7.2
7.2
7.2
7.1
7.1
7.1
7.1
7.1
7.1
7.1
7.1
7.1
7.1
7.1
7.1
7.1
7.1
7.0
7.0
7.0
6.9
6.9
6.9
6.9
6.9
6.9
6.8
6.8
6.8
6.8
6.7
6.7
6.7
6.7
6.7
6.7
6.7
6.7
6.6
6.6
6.6
6.6
6.6
6.5
6.5
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HNB/ZHA/2020/102/2
HNB/CHE/2018/64/4
HNB/LIU/2019/81/9
HNB/ZHA/2020/102/3
HNB/WAN/2013/19/9
HNB/LIU/2019/81/15
HNB/PRE/2021/110/1
HNB/LIU/2016/48/3
HNB/LIU/2019/81/8
HNB/LIU/2016/48/5
HNB/ZUO/2017/66/3
HNB/LIU/2019/81/7
HNB/ZHA/2020/102/6
HNB/LIU/2019/81/5
HNB/LEN/2016/37/1
HNB/LIU/2016/48/2
HNB/X10/2020/104/2
HNB/ZHA/2017/55/11
HNB/SUN/2016/54/2
HNB/SUN/2016/54/3
HNB/XI0/2020/104/1
HNB/ZHA/2017/55/10
HNB/XI0/2020/104/4
HNB/LIU/2016/48/6
HNB/ZHA/2017/55/6
HNB/PAC/2011/3/4
HNB/HUA/2017/50/5
HNB/TIA/2021/108/2
HNB/LIU/2019/81/4
HNB/LIU/2016/48/7
HNB/LIU/2016/48/8
HNB/LI/2017/61/1
HNB/QU/2018/83/3
HNB/WAN/2019/78/3
HNB/YU/2000/125/1
HNB/WAN/2019/78/4
HNB/YU/2000/125/2
HNB/QU/2019/85/5
HNB/LIU/2019/81/3
HNB/ZHA/2020/102/4
HNB/YU/2000/125/3
HNB/QU/2019/85/1
HNB/QIN/2013/15/12
HNB/WAN/2019/78/1
HNB/YU/2000/125/6
HNB/DAI/2019/77/6
HNB/QIN/2013/15/7
HNB/PRE/2021/110/3
HNB/PRE/2019/87/1
HNB/MIA/2018/69/3
HNB/HUA/2017/50/4
HNB/QIN/2013/15/9
HNB/HU/2019/80/2
HNB/YU/2000/125/4
HNB/HU/2019/80/3
HNB/LIU/2019/81/10
HNB/YU/2000/125/5

Ag@siO2 -C2H40
Pd/MIL-101
Ni@C+Hydrotalcite
Ag@SiO2 -C3H60
Pd/MgO
Au/CeO2
Pd/GCF
NiP-s-0.5h
Ni@C+5i02
NiP-s-3h
PP-1:1-800
Ni@C+TiO2
Ag@SiO2 -C7H600.1
Ni/CeO2-in situ reduced
Ru/C60 1/1
NiP-s-10min
1Co-1Zn@NC-900
Fe@NMC-800
Ni-Fe-1/5i02
Ni-Fe-2/5i02
1Co-2Zn@NC-900
Ni@NMC-800
1Co-0Zn@NC-900
NiP-s-5h
CoOx@NMC-800
C60-b
P123-PdCI2
Pt1/C3N4
Ni/CeO2
NiP-s-10h
NiP-s-15h
MoS2 microflowers
Pd-N-C60
Pd/PVA145000
Pd-B/SiO2(fresh)
Pd/PVA205000
Pd-B/SiO2 (473 K)
Ni-N
Ni@C+CeO2
Ag@SiO2 -C3H600.1
Pd-B/SiO2 (673 K)
Ni-B4
Ni-Mo-P
Pd/PVA47000
Pd/SiO2 (fresh)
Co/NC-0.40
Ni-Co-P
Pd/GCF-AC2
Pd/N-BCNT
Commercial Pt/C
P123-RuClI3*3H20
Ni-Zn-P
Fe@CN-800
Pd-B/SiO2 (873 K)
Ni@CN-800
Co@C+CeO2

Pd-B/SiO2 (973 K)
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6.5
6.5
6.5
6.5
6.5
6.4
6.4
6.4
6.4
6.4
6.3
6.3
6.3
6.3
6.3
6.3
6.3
6.2
6.2
6.2
6.2
6.2
6.1
6.1
6.1
6.1
6.1
6.1
6.0
6.0
59
59
5.8
5.8
57
5.7
5.7
57
5.7
57
5.7
5.7
57
5.7
57
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
55
55
55
5.5
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HNB/X10/2020/75/1
HNB/QIN/2013/15/6
HNB/PAC/2011/3/3
HNB/PAC/2011/3/2
HNB/LIU/2021/112/2
HNB/XI10/2020/75/5
HNB/QIN/2013/15/8
HNB/QIN/2013/15/2
HNB/ZUO/2017/66/2
HNB/PAC/2011/3/5
HNB/PAC/2011/3/1
HNB/LIU/2021/112/7
HNB/WAN/2019/74/9
HNB/HUA/2017/50/3
HNB/DAI/2019/77/2
HNB/HU/2019/80/4
HNB/LIU/2021/112/1
HNB/LIU/2021/112/8
HNB/LIU/2016/48/1
HNB/TOM/2014/27/4
HNB/ZUO/2017/66/6
HNB/KAT/2012/8/2
HNB/KAT/2012/8/3
HNB/QU/2018/83/1
HNB/ZUO/2017/66/5
HNB/LI/2006/126/1
HNB/HUA/2017/50/1
HNB/XIO/2020/75/2
HNB/HUA/2017/50/2
HNB/LI/2006/126/2
HNB/XI0/2020/75/3
HNB/QIN/2013/15/5
HNB/QIN/2013/15/1
HNB/WAN/2019/74/8
HNB/QIN/2013/15/3
HNB/QIN/2013/15/4
HNB/X10/2020/75/4
HNB/SUN/2016/54/1
HNB/TOM/2014/27/3
HNB/ZUO/2017/66/4
HNB/ZUO/2017/66/1
HNB/QIN/2013/15/10
HNB/QIN/2013/15/11
HNB/TOR/2013/16/1
HNB/TOR/2013/16/4
HNB/TOR/2013/16/5
HNB/TOR/2013/16/2
HNB/TOR/2013/16/3
HNB/TOM/2014/27/1
HNB/TOR/2013/16/6
HNB/WAN/2019/74/7
HNB/TOM/2014/27/2

NOCNTSs-d
Ni-Fe-P
C60-b
C60
Ni/C@Si02-800
NOCNTs-(Fe)
Ni-Cu-P
Ni-Al-P
PP-1:1-600
C60-(Na)
C60
FeCu/C@SiO2-800
Fe/N-C-700
P123-RhCI3
Co/NC-0.20
Cu@CN-800
NiCu@SiO2-H2-800
CoCu/C@Si02-800
Ni2P-f
Pt/C
PP-1:3-800
Pt/TiO2
Pt/C
Pd
PP-1:3-600
Meso Ni-B
P123-CoCI2
NOCNTSs-c
P123-NiCl2
Regular Ni-B
NOCNTSs-b
Ni-Mn-P
Ni-P
Fe-C-700
Ni-Ca-P
Ni-Mg-P
NOCNTs-a
Fe/SiO2
Pd/C
PP-1:3-400
PP-1:1-400
Ni-La-P
Ni-Ce-P
Au/TiO2-T
Au/SiO2-T
Au/SiO2-H2
Au/TiO2-H2
Au/TiO2-U
Ru/C
Au/Si02-U
N-C-700
Rh/C
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5.5
54
54
54
53
53
53
52
52
52
52
52
5.1
5.1
5.1
5.1
5.1
5.0
5.0
5.0
49
4.9
49
4.9
49
4.8
4.8
4.8
4.8
4.8
4.8
4.7
4.7
4.7
4.7
4.7
4.7
4.6
4.6
4.6
4.6
4.5
45
4.5
45
44
44
44
4.3
42
3.9
3.6
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7. SCATTER PLOT OF THE SELECTED PARAMETERS - NITROBENZENE HYDROGENATION

CATALYSTS
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11. ACKNOWLEDGEMENT/KOSZONETNYILVANITAS

Nagy tisztelettel és halaval szeretném kifejezni koszonetemet Prof. Dr.
Viskolcz Béla urnak, a Kémia Intézet igazgatdjanak, aki szamomra nem csupan egy
egyszerli témavezet6 volt, hanem inkabb egy iranytli a tudomanyos kutatasok
labirintusaban. Az altala nyujtott szakmai segitség és iranymutatas felbecsiilhetetlen
értéket képvisel szamomra. Mély halaval tartozom inspiral6 beszédeiért, melyek a
legnehezebb pillanatokban is erét adtak, és segitettek kitartani a kutatas soran.
Oszinte készonettel adézom elképeszté menedzseri készségeiért, melyek

rendszerezetté és gordiilékennyé tették a munkafolyamataimat.

Nem hagyhatom figyelmen kiviil Farkas Laszl6, Manager Technology Support,
ipari konzulensem kiemelkedd szerepét és befolyasat az utam alakulasaban. O volt
az, aki rabirt arra, hogy ne csak a kényelmes mederben haladjak, hanem vallaljam fel
a doktori képzés kihivasait. Ahogy a doktori képzés kanyargd utjain haladtam,
mindvégig mellettem allt, értékes gondolatokkal és mélyrehaté tanacsokkal latott el.
Mindig rendelkezésemre Allt, tiirelmesen valaszolt kérdéseimre, meghallgatta
aggodalmaimat, és batoritott arra, hogy ne féljek a valtozasto6l vagy a nehézségektol.

Halaval és koszonettel tartozom neki mindazért, amit értem tett.

Kiilon koszonettel tartozom Garami Attildnak, az Energia-, Keramia- és
Polimertechnoldgiai Intézet adjunktusanak, aki az adatelemzés és a mesterséges
intelligencia modszereinek alkalmazasaval tamogatta kutatasomat. Vilagossa tette
tovabba szamomra az Osszetettebb problémakat és megnyitotta az ajtot azok
megértéséhez. O volt az, akinek a segitségével az elméleti alapoktdl a gyakorlati

alkalmazasig sokat tanulhattam.

Halaval tartozom a Kémiai Intézet katalitikus hidrogénezéssel foglalkozo
csoportjanak, akik hozzajarultak a doktori munkam targyat képezd MIRA21 modell
létrehozasahoz. Koszonom, Vanyorek Laszlonak, Sikora Emdkének, Prekob
Adamnak és Hajdu Viktérianak a segitségét és egyiittm{ikodését. Koszonom Dr. Fiser
Bélanak és Dr. Sz4ri Milan egyetemi munkatarsaknak, akik tdmogattak és értékes

észrevételeket tettek.

Koszonettel tartozom Dr. Nehéz Karolynak, az Informatikai Intézet

igazgatdjanak, valamint Szab6 Martin tanarsegédnek a MIRA adatbazis webalapu
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fejlesztésében val6 kdzremiikodésért. Halasan koszondm tovabba Dr. Banhidi Olivér,
cimzetes egyetemi tanar tamogatasat és online tanorait, amelyek bevezettek az

adatelemzés vilagaba.

Az oktatok és nem oktaté munkatarsak a Kémiai Intézetben
kulcsfontossaguiak voltak az utam soran. Mindig segit6készen alltak
rendelkezésemre, legyen sz6 akar technikai kérdésekrél, akar szakmai tamogatasral.

Halaval tartozom értik!

Nem tudom eléggé kifejezni, milyen halas vagyok a férjemnek. Mindvégig
mellettem allt ezen az uton, tirelmesen meghallgatta az aggodalmaimat és
dromomet, és mindig biztatott a kitartasra. 0 mindig ott volt az oldalamon, hogy erét
adjon, amikor sziikségem volt ra, és 6romomre osztozzon az eredményeimben. A

férjem szeretete és tamogatasa a legnagyobb kincs az életemben.

Az én két kisgyermekemnek is halaval tartozom, amiért megértéssel
fogadtak, amikor nem tudtam veliik lenni, és tamogattak engem azzal, hogy maguk
is er6t adtak. Az 6 artatlan 6romeik és szeretetiik folyamatos inspiraciét nyujtanak,
és mindig emlékeztetnek arra, hogy miért is vallaltam mindezt. A csalddomnak mély
halaval tartozom mindazért, amit értem tettek. Az 6 segitségiik nélkil joval

bonyolultabb lett volna az utam.

Végiil, de nem utolsésorban, halaval tartozom a Technoldgiai Tamogatas
O0sszes munkatarsanak, akik rugalmas egylttmi{ikodésiikkel, készséges

segitségiikkel és hozzaértésiikkel hozzajarultak a sikeres eredmények eléréséhez.

Halasan koszondm Purzsa Tamas Vice President Urnak, hogy lehet6vé tette

szamomra, hogy elkezdhessem Ph.D. képzésemet munkam mellett.

[ am deeply grateful to Mr. Zhao Nan for enabling me to successfully complete my

doctoral studies.

[ appreciate the opportunity provided by Wanhua-BorsodChem to conduct
my Ph.D. Study.

Prepared with the professional support of Doctoral Student Scholarship

Program of the Co-operative Doctoral Program of the Ministry of Innovation and
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