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1 Introduction

Nowadays, the field of cloud computing is experiencing an increased rate
in research focused on resource provisioning frameworks [7]. These works
have encouraged the utilisation of robust and available programmable infras-
tructures. A typical parallel programming model that has been employed
for data intensive and distributed workloads on clouds is MapReduce (MR).
Researchers and organisations utilise MR for applications that process large
data sets in parallel on clusters [4].

MapReduce has several implementations designed for specific purposes.
One of such implementation developed for distributed storage and processing
large datasets is apache hadoop. The core of Hadoop includes the Hadoop
Distributed File System (HDFS) and a MR processor [5]. Hadoop executes
MR programs written in different languages. In spite of all the benefits de-
rived from Hadoop, it has few challenges. One of such challenges is how it
deals with tasks which require abnormally long run time. MR reprocesses
unusually long tasks (straggler tasks) on available nodes to finish the compu-
tation faster (as backup tasks) [4]. This phenomenon is known as speculative
execution. Moreover, to ensure that challenges on clouds are tackled with
less efforts [1], researchers have resorted to the use of simulations.

Several benefits have been derived from the application of cloud sim-
ulations. Since these simulations foster the provisions of requisite com-
putational capacity to solve problems in a reasonable amount of time [9].
Over time, research has progressed to evaluating computer simulations tools
to highlight their benefits and disadvantages. Mansouri et al [7] reviewed
over thirty-three cloud simulators based on multi-level feature analysis of
simulators. Byrne et al [2] reviewed thirty-three simulators based on au-
tonomous simulation platforms. Amongst the simulators reviewed includes
CloudSim [3] and DISSECT-CF [6]. One of the main benefits of utilising sim-
ulations is the provisioning of resources to meet demands. This is reflective
of what pertains in auto-scaling mechanisms (auto-scalers).

Several auto-scaling research efforts have been carried out to analyse the
resource provisioning behaviours exhibited by auto-scalers; especially when
they emanate from different cloud infrastructures. Most of these efforts ap-
plied statistical and experimental [10] approaches. However, research has
shown that there are available flexible and verifiable ways to evaluate the
resource provisioning behaviours of auto-scalers [8].

Now, the issues presented above require a strategic direction to system-
atically tackle them. Therefore, an outline of research aims is required to
highlight the steps to be employed to address them.
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1.1 Aims of the Research

I. To devise a framework that simplifies the selection of MapReduce sim-
ulators for researchers based on vital simulator features.

(a) The framework should enable researchers to analyse the strengths
and weaknesses of simulators.

(b) The framework should comprise of MR specific criteria which al-
lows users to determine the appropriate simulators for research
and development.

II. To offer a speculative execution approach for MR Hadoop that improves
job performance and scales with a data centre.

(a) To devise a solution that captures task run times during job pro-
cessing towards the determination of fast tasks and straggler tasks.

(b) To allow users to assess tasks behaviours on several MapReduce
Hadoop setups.

III. To enable users to analyse the virtual machine provision behaviours of
auto-scaling mechanisms independent of previous approaches.

(a) The framework should allow users to compare auto-scaling mech-
anisms from multiple sources to identify existing similarities.

(b) The framework should allow users to evaluate auto-scaling mech-
anisms based on job execution phases.

2 Background

2.1 Cloud Simulation

Computer Simulation (CS) has become an important tool for design, analy-
sis, and evaluating systems, and has been playing important roles in several
domains including economy, medicine and entertainment, with great success.
The main benefits of cloud simulators are cost minimization and repeatable
and controllable experiments. Some of the few drawbacks of CS are simpli-
fications and Model validation [9]. The effects of these drawbacks should be
minimized to ensure the usefulness of simulation results.
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2.2 Abstract State Machine Theory

The ASM theory encompasses a formal system engineering technique that
guides software development. It begins from software requirements capture
to their implementation. This theory is implemented via the ASM ground
moddel. A ground model is an ASM that can be considered a rigorous high-
level system blueprint. It is mostly developed via a model refinement process.
A model refinement is a general scheme allows progression from an abstract
model to a more detailed one [8]. This process is closely linked with the ASM
refinement method and Börger’s refinement. Now, let us discuss the design
of our Mareclass framework.

3 MapReduce Simulators Selection Frame-

work Design and Implementation

3.1 Overview of the Classification Framework

In order to analyse the existing MR cloud simulation and modelling tools, a
classification (MaReClass) framework was proposed. Our MaReClass frame-
work consists of a set of criteria used to evaluate and classify several MR sim-
ulators to highlight their strengths and weaknesses. The criteria in the frame-
work were derived from the functional requirements of simulators. MaReClass
was designed in four steps.

� Step 1: Identification of the features of cloud computing simulator
through Systematic Literature Review (SLR).

� Step 2: The previously identified list was reduced to a more MR specific
criteria via the analysis of MR themes.

� Step 3: Selection of simulators with features that identified with MR
through SLR.

� Step 4: Systematic assessment of the previously identified list of simu-
lators based on the MR specific criteria.

The first step produced thirty cloud computing themes from literature.
These themes were the most discussed topics (i.e. keywords) related to cloud
simulators. The themes were culled from over fifty cloud computing research
papers. Also, the research papers were chosen via academic search engines
and online libraries. The same procedure (step 2) was utilised to refine the
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Figure 1: Criteria for Classification of MapReduce Simulators

thirty themes to thirteen themes most relevant to MR simulations as shown
in figure 1. The refining process focused on the most cited themes amongst
the initial list. The thirteen themes were utilised as criteria to evaluate MR
specific simulators. The evaluation showed that the absence of any of the
thirteen criteria rendered detailed MR simulations incomplete.

3.2 MapReduce Simulators Classification framework

Our MaReClass framework displayed in figure 1 was applied to evaluate
selected MR simulators as shown in figure 2.

Our analysis has shown that each of the MR simulators support MR
features to some extent. Therefore, from figure 2 we can see that aside MR-
Cloudsim and MrPerf, all the other simulators support most of the features
required for conducting MR research with percentage representation above
50%. Therefore, it is recommended that simulator developers focus on in-
corporating some of these unavailable features into their works. Let us now
discuss the design and implementation of a Haspeck solution on MRH.
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tures

4 Design and Implementation of Haspeck So-

lution on MapReduce Hadoop

4.1 Design of Haspeck Solution

Haspeck consists of three algorithms designed to dynamically collects real-
time data from all types of environments. These algorithms are intercon-
nected to ensure the determination of task run times and appropriate se-
lection of backup tasks. The algorithms are the snapshots capturing, task
performance and task instance monitoring algorithms. K-means clustering
algorithm is implemented with silhouette scores to categorise task run times
(data set) received from the snapshot capturing algorithm. The data set are
classified into straggler and non-straggler tasks.

Furthermore, the K-means algorithm was implemented in our work as
a decision-making tool. There are cases where the data set presented for
clustering is uniform. However, K-means still tries to cluster it. Thus, clus-
tering results require validation to determine the goodness of fit of the data
clusters as seen in figures 3a to 3b. As such, silhouette scores was employed
to validate well-defined data clusters as seen in figures 4a to 4b; which will
require rescheduling of the straggler tasks.
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Figure 3: Kmeans Data Clusters of Tasks Execution times from 20 Nodes by 8
Cores Data Centre with No-Disruption

Table 1: KMeans Clustering Silhouette Scores of No-Disrupted Data Clusters

Figure Number Silhouette Scores
3a 0.685
3b 0.615
4a 0.985
4b 0.985

4.2 Evaluation of Haspeck

Our Haspeck solution was assessed through three major experiments to prove
its applicability. They are (i) strategy implementation overheads (ii) job
performance (iii) Evaluation with Baseline Methods. The experiments en-
abled us to see the applicability of our approach. The experiment was con-
ducted on our extension of HDMSG MapReduce (a MapReduce simulator
with Simgrid as the main backbone) available on GitHub 1. A laptop (AMD
Ryzen (TM)) 7- 4700U with Radeon Graphic, CPU@ 2Mhz, (8 CPU), 16GB,
Ubuntu 20.04 LTS was used for the evaluation of our approach. To deter-
mine real life MR cluster infrastructure and application configurations, two
surveys about hadoop cluster requirements were carried out. The survey fo-
cused on identifying typical hadoop configurations and organisations actively
utilising hadoop clusters. The findings of the survey fostered the selection of
four infrastructure scenarios (displayed in table 2) for our experiments.

1https://github.com/EbenezerKomlaGavua/MapReduce_Snapshots
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Figure 4: Kmeans Clustering of Run Times from Experimental Scenarios

Table 2: Experimental Set up

Features Scenario 1 Scenario 2 Scenario 3 Scenario 4
No. of Nodes 20 20 40 100
No. of Cores 8 16 8 8
Mappers per

node
5 5 11 5

Total
Reducers

38 38 76 190

Total
Mappers

107 213 213 533

File Input
Size(MB)

13696 27264 27264 68224

4.3 Determining the Overheads of Haspeck

This experiment determined the overheads introduced into the infrastruc-
ture by the implementation of our approach. The overheads were caused
by the effects of the snapshots capturing process on the infrastructure. The
experiment was conducted on the four data centre scenarios discussed in
sub-section 4.2. Mapper tasks with execution times from 0.5 to 2000 seconds
were utilized and we scaled the executions until the graph converged at 2000
seconds. Since Haspeck involves capturing snapshots during the processing
of smaller mappers (as checkpoint barriers), measurements were taken and
utilised to determine the overheads on a single mapper. The overheads of a
single mapper were measured on the four data centre scenarios are seen in
figure 5. Let us discuss the results of the overheads.

First, the impact of applying Haspeck was gradual on the 20N�8c sce-
nario. The overheads were high at the initial stages of the experiment. How-
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Figure 5: Cluster Overheads

ever, the overheads reduced gradually with longer run times, as seen in figure
5. Second, the 20N�16c and 40N�8c scenarios exhibited similar overhead
behaviours during task runs. Therefore, only the 40N�8c set up was shown
in figure 5. The initial overheads observed were 1.5% lower (relatively) than
the 20N�8c data centre scenario. Third, the 100N�8c scenario demonstrates
how Haspeck deals with larger data-centres. The initial overheads were 1.9%
lower (relatively) than scenario 20N�8c and 1.3% lower (relatively) than the
other two scenarios. Also, as the task run times increased, the overheads
reduced drastically. Therefore, applying Haspeck to this scenario shows that
initial overheads are mostly lower in large data centres. In conclusion, the
overheads reduce faster with long mapper run times.

4.4 Job Performance Experiments

This experiment determined the impact of Haspeck on job performance. Four
measurements were taken to evaluate Haspeck. These are:

� Total execution times when there was no-disruption on the MapReduce
set-up (i.e., a dedicated hadoop cluster scenario).
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� Total execution times when disruptions were introduced on arbitrarily
nodes on the infrastructure.

� Total execution times when tasks were terminated and processed as
backup tasks resuming from their snapshots on a different host (this
represents situations when mappers can restore their mid-execution
states) (i.e. reschedule backup tasks).

� Total execution times when tasks were terminated and processed as
backup tasks restart on a different host.

These measurements were utilized to draw the graphs shown in figure 6
relative to the disruption introduced. This was done to show the job per-
formance improvements compared to the disruptions. The disruption in-
troduced is at the 100% mark on figure 6. The effects of the disruption is
reduced at the horizontal line at 0% on each graph. Therefore, job perfor-
mance improvement of the graph is seen by the reduction of the heights of
the bars in the figure towards the 0% mark. The details of the scenarios are
discussed as follows.

First, figure 6a shows the behaviour of scenario 20N�8c data centre. The
job performance improvement slope began from above 80% at 0.5 seconds
and continued to below 40% at 5 seconds. Haspeck improved from below
20% at 10 seconds to below 5% at 200 seconds relative to disruptions.

Second, scenario 20N�16c data centre (figure 6b) demonstrated consid-
erably improvement compared to the 20N�8c data centre as the bar graphs
were below the 80% mark. The job performance improvement slope began
from above 73% at 0.5 seconds to below 40% at 5 seconds. Haspeck improved
to below 20% at 20 seconds. Third, scenario 40N�8c data centre improved
more compared to the previous two previous scenarios as seen in figure 6c. In
relation to the disruption graph, the job improvement began from above 70%
at 0.5 seconds to below 40% at 5 seconds. Haspeck improved to 5% and below
at 200 seconds. Fourth, The 100N�8c (figure 6d) scenario improved more
than all the previous three scenarios. The graph showed a better improve-
ment from below the 60% at 0.5 seconds. At 5 seconds, Haspeck improved
to 40%. The job performance improvement continued to 2% at 200 seconds.
The figure showed that jobs with long run times had higher chances of im-
provement in this data centre. In general, all the four data centres showed
an average of 8% job improvement at the 20 seconds mark. This means after
the first 20 seconds, jobs on all the data centres perform at an optimum rate.

Futhermore, some baseline methods were executed on our experimental
set-up and the results compared Haspeck. The methods were the Hadoop
Naive, Longest Approximate Time To End (LATE) and the Self-Adaptive
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Figure 6: Jobs Improvement Experimental Scenarios (Drawn Relative to Disrup-
tions)

MR Scheduling Algorithms (SAMR) [4]. Appropriate precautions were taken
to ensure that the values produced for analysis were accurate.

4.5 Experimental Discussion

The experiments of the baseline methods were carried out on the four data
centre scenarios discussed in sub-section 4.4. The measurements were com-
pared with Haspeck. Also, the graphs of all the methods were drawn relative
to disruptions as seen in figure 7. Let us now highlight the job improvements
observed. First, on the 20N�8c data centre configuration, our approach
showed 1.67, 1.51 and 1.39 times average job improvements over Hadoop
Naive, LATE and SAMR as seen in figure 7a. Second, on the 20N�16c data
centre configuration, our approach showed 1.70, 1.52 and 1.40 times average
job improvements over Hadoop Naive, LATE and SAMR as seen in figure 7b.
Third, 1.72. 1.54 and 1.43 times average job improvements were observed
over Hadoop Naive, LATE and SAMR in the 40N�8c data centre configu-
ration as seen in figure 7c. Fourth, the 100N�8c data centre configuration
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Figure 7: Comparison with Baseline Methods (Drawn Relative to Disruptions)

showed 2.18, 1.84 and 1.56 times average job improvements over Hadoop
Naive, LATE and SAMR as seen in figure 7d.

4.6 Disruption identification with Kmeans Clustering

The task run times captured during the experiments were utilized for the K-
means clustering. Two categories of results were observed after the cluster-
ing. Disruption-induced and disruption-free categories. The straggler tasks
formed the disruption-induced data clusters are seen in figures 4a and 4b.
To determine the number of k-clusters suitable for our work, we generated
several clusters from our experimental data set. A visualization of some of
the data clusters (k=2 to k=5) for both categories is seen in figures 3. The
silhouette scores of figures 3a and 3b show a reduction in value as the number
of data clusters increased as seen in table 1. These values are closer to our
silhouette score threshold lower-bound value. This is due to the fact that the
euclidean distance between the centroids decreases as the number of data
clusters increase. This affects the decision making of the silhouette scores.
Nevertheless, the time bound for all data clusters are almost the same.
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5 Modelling Auto-Scaling Mechanisms in

Clouds

5.1 Investigating the behaviours of Auto-Scaling Mech-
anisms

The design of our Astam Model required the establishment of a ground
model. However, we needed to investigate the behaviours of auto-scalers on
DISSECT-CF and literature as an inspiration. This helped to identify shared
components and their behaviours. These components were documented to
aid the design of Astam. Once the ground model was established, it was
validated together with its refinements to ascertain its applicability to other
auto-scalers.

Many auto-scalers are evaluated through simulations. So, our investi-
gations were made of one such simulation environment. DISSECT-CF was
chosen for this work because it has been shown through research, to be more
efficient for auto-scaling experiments as compared to other simulators. In
this research, the simulator’s infrastructure management system is the main
focus. In building our investigations, the simulator’s auto-scaling related
examples2 were examined. The specific actions taken include:

� The source code was observed before and also at run time about how
the algorithms are put together.

� The auto-scaling part was extracted out from the rest and presented.

� Based on the observation, two extra auto-scalers were created.

� These are presented here as the model.

The auto-scalers were built on several components presented in figure 8.
They can be grouped into two categories (i.e., simple and multimode auto-
scalers). The simple auto-scalers respond to demands by increasing or de-
creasing the VM instance counts according to workload demands. The mul-
timode auto-scalers, in addition to exhibiting simple auto-scaler features,
monitor the VM counts during scaling operations while controlling the util-
isation of VMs. The auto-scalers offered by DISSECT-CF are Threshold-
BasedVI (Threshold), VMCreationPriorityBasedVI (Vmcreate), PoolingVI
Mechanism (Pooling), VMOptimisationBased (Vmopt) and FixedVM (Fixed)
as seen in figure 8. Now, let us discuss the design of our Astam model.

2available at https://github.com/kecskemeti/dissect-cf-examples and at
https://github.com/kecskemeti/dcf-exercises
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Figure 8: Architectural view of Auto-Scaling Mechanisms on DISSECT-CF.

5.2 Design of an Astam Model

The modelling process incorporates all the stages auto-scalers undergo to
provision resources. Our Astam model was design per the ASM refinement
method (as design rationale), which is presented in 5 steps. They are:

Step 1: Design and Analysis of the model’s framework as displayed in fig-
ures 9 and 11. The framework shows our model’s ground model for
the two categories of auto-scalers. Figure 9 shows the basic elements
utilized in designing our model. The bidirectional arrows represent the
relations between the signatures and the universes while provisioning
resources during the multimode or simple auto-scaling. Figure 11 shows
universes interacting with unidirectional and bidirectional arrows.

Step 2: Design and implement the model’s ASM Transition Rules to reflect
the job execution phases.

Step 3: Refine algorithms from the two categories of auto-scalers offered
with DISSECT-CF, with Transition Rules.

Step 4: Evaluation of the model with the Transition Rules and evaluation
goals.
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Figure 10: ASM Modelled Auto-Scaling Phases

Step 5: Model Validation with validation goals on test cases created from
existing auto-scalers. Computational Tree Logic (CTL) formulae were
applied for Astam’s verification.

ASM functions (seen in table 3) were designed to relate to Astam’s uni-
verses (as shown in figure 9).

5.3 Refinement of the Multimode and Simple Mecha-
nisms

Our Astam model comprises of five Transition Rules as seen in figure 10.
These rules are designed to reflect the job execution phases an auto-scaler
undergoes during job processing. The rules enable users to analyse the VM
provision behaviours of auto-scalers. We utilised algorithms to express the
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Figure 11: Ground Model for ASM Auto-Scaling Job Initialising

Algorithm 1 Simple Jobs Initialising

1: if Dvm P VM ^Dp P PROCESS^Dar P ARESOURCE^Dj P JOB^
Dt P Time then

2: processStateppq :� ready
3: end if
4: while SimScalerpj, vmq ^BJSpj, vmq ^GTP pjq do
5: if jobRequestpj, arq � true^ processRequestpp, arq � true then
6: JobT imepjq :� started
7: end if
8: if mappedVMpj, pq � true^mappedJobpj, pq � true then
9: JobT imepjq :� started

10: end if
11: if installedpj, vmq � true^ Jobhandlerpj, vmq � true then
12: JobStatepjq :� submitted
13: end if
14: end while

details of our ground model shown in figure 11. These algorithms were further
refined according to the ASM refinement method. Our ground model and
the refinements are later compared for equivalence according to Börger’s
refinement to check for the consistency of state transitions.

The ASM Transition rules are: piq Initial Phase piiq Job Initialising piiiq
Job Queuing pivq Job Handling and pvq Job Termination. Derived functions
were were introduced to ensure modularisation. In the next sub-sections, we
discusss the job initialising phase to illustrate Astam’s refinement process via
transition rules. State transitions are highlighted to reflect the state changes
during job processing. Now let us discuss Astam’s Job Initialising Phase.

Astam’s job initialising phase (figure 11) begins with a system call. Uni-
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Table 3: List of ASM Functions

JobState: Job Ñ {idle, submitted, waiting, running, failed, done}
ProcessState: Process Ñ {new, ready, waiting, running, stopped}

SystemRequest: Request � AResource Ñ { true, false}
SystemState: InfraState Ñ {idle, active, waiting, busy, stopped, done}

MappedJob: Job � VM Ñ {undef , true, false}
MappedVM: Job � Process Ñ {undef , true, false}

ReqResources: SystemReq. � AResource Ñ {undef , true, false}
JobRequest: Job � AResource Ñ {undef , true, false}

ProcessRequest:Process � AResource Ñ {undef , true, false}
InitReslist: IReslistÑ { IRLactive, IRLidle, IRLbusy}

InitReqFunctions: InitReqFunÑ { IRFactive, IRFidle, IRFbusy}
Job: Process Ñ Job

Jobhandler: Job Ñ Joblauncher, Job Ñ VM
NumofSerReq: NumofSerReqÑ { undef , Nummin, Numavg, Nummax}

WorkloadPrediction: PredWorkload Ñ { PWLactive, PWLinactive}

verses are assigned to foster job processing. This transitions processState
from new to ready as seen in lines 2 of our ground model algorithms 1 and 2.
The auto-scalers specific universes are provisioned to monitor the activities
of jobs and VM in line 4. The Simple auto-scalers utilise SimScaler(j,vm),
BJS(j,vm) and GTP(j) while Multimode auto-scalers apply VI(j,vm) and
the joblauncher. JobRequests and processRequests are activated to connect
VMs to Jobs. This transitions jobtime to started as seen in line 6. VMs
are mapped to jobs, which causes jobs and VMs to be installed as tasks as
seen in lines 8 to 11. The jobhandler is activated to process the tasks in
Simple scalers and joblauncher in Multimode auto-scalers. The JobTime
and Jobstate are updated to started and submitted as seen from lines 12.
The refinement of algorithms 1 and 2 are modelled in algorithm 3.

Job Initialising Refinement The InitReqFunctions ASM derived function
is introduced to check the provisioning of requisite universes for this
phase as seen in line 1 of algorithm 3. InitReqFunctions is a refinement
for all required universes and functions for job initialising. The authen-
tication of the universes updates Systemstate to active. SystemRequest
is activated for the job requests and VMs provisions. This causes sys-
temstate to be updated to active as seen in line 3 to 4. ReqRequest is
applied to map jobs to VMs to which are installed as tasks for the Job-
handler and Joblauncher to enforce their processing. The activities of
these functions, cause the Systemstate to be updated to active as seen
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Algorithm 2 Multimode Jobs Initialising

1: if Dvm P VM ^Dp P PROCESS^Dar P ARESOURCE^Dj P JOB^
Dt P Time then

2: processStateppq :� ready
3: end if
4: while V Ipj, vmq ^ JoblauncherpJobhandlerpj, vmqq do
5: if jobRequestpj, arq � true^ processRequestpp, arq � true then
6: JobT imepjq :� started
7: end if
8: if mappedVMpj, pq � true^mappedJobpj, pq � true then
9: JobT imepjq :� started

10: end if
11: if installedpj, vmq � true then
12: JobStatepjq :� submitted
13: end if
14: end while

in line 7. This refinement is equivalent to the algorithms 1 and 2 and
the job initialising phase of our ground model as seen in figure 11. Since
the state changes of algorithm 3 are equivalent to the state transitions
of our the ground model after the ASM run.

The equivalence of state transitions achieved during the ASM runs via
the application of derived functions helped us to conclude that, although the
auto-scalers were developed on different frameworks, they exhibited similar
VM provision behaviours during job processing. In the next section, we will
evaluate Astam and its applicability.

Algorithm 3 Refined Job Initialising

Require: AResource
1: if InitReqFunctions � IRFactive then
2: SystemStatepj, pq :� active
3: while SystemRequest � true^ReqResources � true do
4: SystemStatepj, pq :� active
5: end while
6: if installedpj, vmq � true^ Jobhandlerpj, vmq � true then
7: SystemStatepj, pq :� active
8: end if
9: end if
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Algorithm 4 V mopt Jobs Initializing

Require: AResource
1: if InitReqFunctions � IRFactive ^ SystemRequest � true then
2: JoblauncherpJobhandlerpj, vmqq :� true^ReqResources :� true
3: RVM :� Qmin

4: SystemStatepj, pq :� active
5: end if

6 Astam Evaluation and Validation

Our Astam model was evaluated emphasizing the application of the ASM
theory. Test Cases were generated from the formalized algorithms and vali-
dated on CoreASM toolkit to assess the application of guarded updates. Now
let us discuss the application of Astam’s job initialising phase on the Vmopt
auto-scaler.

6.1 Astam Model Evaluation

Algorithm 4 is utilised to discuss the job initialising evaluation for the auto-
scalers, since aside the specific reusable VMs function RVM, all the state
changes are the same for all auto-scalers. InitReqFunctions is applied to pro-
vision Aresources for job initialising. The SystemRequests and ReqResources
functions activate jobs and VMs requests and the mapping of VMs to jobs
which are installed as tasks. This causes job processing to commence as seen
in lines 1 to 2. The reusable VMs function RVM is updated to minimum
state. This causes SystemState to transition to active as seen in lines 3 to 5
of algorithm 4. This evaluation process is applicable to all auto-scalers. This
refinement is equivalent to the job initialising of our model shown in fig-
ure 11 and algorithm 3, since the derived functions can be refined back to
the ground model.

6.2 Adoption of Astam with Other Auto-Scaling Al-
gorithms

The related works analysed past auto-scalers mechanisms, and selected [10]
for in-depth analysis with our Astam model. The algorithms of Yang et
al.’s work have been made public; hence it was possible to apply our model.
[10] presents an approach using workload prediction, as well as horizontal
and vertical scaling. Therefore, it was possible to analyse and classified it
as a multimode auto-scaler due to its specific features. Figure 12 shows the
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Figure 12: Workload Predicted Auto-Scaler Job Initialising

refining process of our ground model (M ) to [10]’s refinement(M 1) at the
job initialising phase. Derived functions (InitReqFunctions) are employed to
foster the resource provisioning. This causes the prediction of Workloads at
the commencement of job processing. Resource scaling up and pre-scaling
pt� 1qth Interval are activated per user service requests. SystemState transi-
tions to active. Figure 12 shows the equivalence between M and M 1 due to
the application of derived function; which can be refined back to the ground
model in accordance to the ASM method.

7 Conclusion and Future Research Direction

This dissertation focused on the analysing MR simulators and modeling re-
source provisions to meet user demands. As such, three research efforts were
carried out. First, a MaReClass framework was designed and implemented
to simplify the selection of MR simulators for research and development.
Second,a Haspeck solution was designed and implemented to improve job
performance on MRH. Third, an Astam model was designed for analysing
the VM provision behaviours of cloud auto-scaling mechanism.

As future work, we plan to design an auto-scaling algorithm which will be
implemented on MapReduce Hadoop. Our Snapshot capturing algorithm will
be applied to foster a comparison with the job performance approach. Also,
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a couple of classification and clustering techniques will be applied to provide
further extensions. Furthermore, we plan to implement CTL properties on
test cases as an extension to our ASM verifications. This study will be
achieved via available model-based testing and verification approaches.

Our research efforts in our dissertation has fostered the development of
three major contributions to science. Now, let us outline these contributions.

7.1 Contributions to Science

This work contributes to the field of Cloud Computing, Distributed Systems
and Software Engineering.

Thesis I: MaReClass allows the evaluation of simulators by identifying
MapReduce specific criteria required to render detailed simulations complete.
MaReClass simplifies the selection of MapReduce simulators with features
relevant to the choice of research. The framework fosters systematic analysis
of the strengths and weaknesses of mapreduce simulators. [P4, P5]

Thesis II: Haspeck can improve job performance on MapReduce Hadoop
even with the challenges presented by speculative execution. Haspeck imple-
ments snapshots capturing to determine task run times, which inures the
early detection and selection of straggler tasks as backup tasks. The appli-
cation of kmeans clustering with silhouette coefficients fosters the runtime
reduction via small overheads for long running mappers and reducers in my
solution. [P2, P3, P6]

Thesis III: Astam is capable of analysing the virtual machine provision
behaviours of auto-scaling mechanisms. The Astam model allows the formali-
sation and comparisons of auto-scaling algorithms from multiple sources. The
model can assess formalized auto-scaled algorithms emanating from distinc-
tive architectures to show that they exhibit similar VM provision behaviours.
The flexibility of Astam’s transition rules allows the adoption of auto-scaling
mechanisms with extra features besides vertical and horizontal scaling to
foster their evaluation. [P1, P7]

7.2 Author’s Publications During Research

(P1) Ebenezer Komla Gavua, Gabor Kecskemeti: “Formalizing cloud auto-
scaling algorithms with the abstract sate machine model” In: Vadászné,
Bognár Gabriella; Piller, Imre (eds.) Doktoranduszok Fóruma : Miskolc,
2019. november 21. : Gépészmérnöki és Informatikai Kar Szekciókiadványa
Miskolc, Hungary : Miskolci Egyetem Tudományos és Nemzetközi Rek-
torhelyettesi Titkárság (2020) 188 p. pp. 37-43., 7 p.
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(P2) Ebenezer Komla Gavua, Gabor Kecskemeti: “Improving MapReduce
Speculative Executions with Global Snapshots” In: The 12th Confer-
ence of PhD Students in Computer Science: Volume of short papers
Szeged, Hungary : Szegedi Tudományegyetem (2020) pp. 62-65. , 4 p.
Scientific

(P3) Ebenezer Komla Gavua, Gabor Kecskemeti: “Application of Kmeans
and Hierarchical Agglomerative Clustering Techniques on MapReduce”
In: Barna, Boglárka Johanna; Kovács, Petra; Molnár, Dóra; Pató,
Viktória Lilla (eds.) XXIII. Tavaszi Szél Konferencia 2020. Absz-
traktkötet: MI és a tudomány jövője Bp, Hungary: Association of
Hungarian PHD and DLA Students (2020) 600 p. pp. 354-354., 1 p.
Scientific

(P4) Ebenezer Komla Gavua, Gabor Kecskemeti: “A Comparative Analy-
sis and Evaluation of MapReduce Cloud Computing Simulators” In:
Waleed, W. Smari (eds.) 2019 International Conference on High Per-
formance Computing & Simulation (HPCS) Piscataway (NJ), United
States of America : IEEE (2019) Paper: 222, 8 p. DOI Scopus index

(P5) Ebenezer Komla Gavua, Gabor Kecskemeti: “Evaluation of MapRe-
duce Simulators Towards the Improvement of DISSECT-CF” In: Németh,
Katalin (eds.) Tavaszi Szél 2019 Konferencia. Nemzetközi Multidisz-
ciplináris Konferencia : Absztraktkötet Bp, Hungary: Association of
Hungarian PHD and DLA Students (2019) 742 p. pp. 429-429. , 1 p.
Scientific

(P6) Ebenezer Komla Gavua and Gabor Kecskemeti, “Improving MapRe-
duce Speculative Executions with Global Snapshots” International Jour-
nal of Advanced Computer Science and Applications(IJACSA), 14(1),
2023. Web of Science (WoS), (Q3+ Scopus Index), Impact Factor
(1.16), Journal Article

(P7) Ebenezer Komla Gavua, Gabor Kecskemeti: “ASM-based Formal Model
for Analysing Cloud Auto-Scaling Mechanisms”, Int. Journal. of Com-
puting and Informatic (Informatica). Web of Science (WoS) (Q3+ Sco-
pus Index), 47 (2023) 75–96. https://doi.org/10.31449/inf.v47i6.4622.
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