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Chapter 1
Introduction

Nowadays, the field of cloud computing is experiencing an increased rate in
research focused on resource provisioning frameworks [107,119]. These works
have encouraged the utilisations of robust and available programmable infras-
tructures. A typical parallel programming model that has been employed for
data intensive and distributed workloads on clouds is MapReduce (MR) [176].
Researchers and organisations utilise MR for applications that process large
data sets in parallel on clusters. The data are processed in a scalable, reliable
and fault-tolerant manner [136].

MapReduce has several implementations designed for specific purposes.
For instance, MARISSA [43] is an implementation for streaming science
applications. Twister [51] allows for data access via local disks, and of-
fers efficient support for iterative MapReduce computations. Mars [72] is a
MapReduce framework on graphics processors. Mars hides the programming
complexity of the GPU behind the simple and familiar MapReduce interface.

One of such implementation developed for distributed storage and pro-
cessing large datasets using commodity hardware is the apache hadoop [80].
The core of Hadoop includes a distributed file system (i.e., Hadoop Dis-
tributed File System (HDFS)) and a MapReduce processor [167]. Hadoop
executes the MapReduce programs written in different languages. HDFS is
utilised for storing data and the provision of resources for job processing to
promote I/O performance. In spite of all the benefits derived from Hadoop,
the infrastructure has few challenges. One of such challenges is how Hadoop
deals with tasks which require abnormally long run time. MapReduce re-
processes unusually long tasks (straggler tasks) on available nodes to finish
the computation faster (as backup tasks) [9]. This phenomenon is known
as speculative execution. Moreover, to ensure that challenges on cloud in-
frastructures (including MR) are tackled with less costs and efforts [4], re-
searchers and developers have resorted to the application of simulations (i.e.,
computer and cloud simulations).
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Several benefits have been derived from the application of cloud simula-
tions [138]. Since these simulations enable the provisioning of requisite com-
putational capacity to solve problems in a reasonable amount of time [171].
Also, the flexible nature of cloud simulations provide researcher with more
options which are risk-free as compared to the real life experiments [63].

Over time, research has progressed to evaluating computer simulations
and their tools to highlight their benefits and disadvantages. Mansouri et
al [107] reviewed over thirty-three cloud simulators based on multi-level fea-
ture analysis of simulators in the cloud computing environment. Byrne et
al [26] reviewed thirty-three simulators based on autonomous simulation plat-
forms (including plugins and extensions that different aspects of cloud, edge
and fog computing). Also, Fakhfakh [58] analyzed and compared twenty-
two popular cloud simulators on their general features while Zhao [181] re-
viewed eleven cloud simulators on their power consumption and response
time. Amongst the simulators reviewed includes CloudSim [27], CloudAna-
lyst [168], DISSECT-CF [84] and WorkflowSim [35]. One of the main benefits
of utilising simulations is the freedom to control the environment and to pro-
vision resources to meet demands. This is reflective of what pertains in
auto-scaling mechanisms (auto-scalers).

Auto-scaling mechanisms are designed to exhibit several resource provi-
sioning behaviours including scaling vertically (add more RAM or CPU to
existing Virtual Machines (VMs)) and horizontally (add more VMs) scal-
ing [54]. This is to ensure that jobs are processed in a scalable environment.
Several research efforts [104] have been carried out to analyse the resource
provisioning behaviours exhibited by auto-scalers, especially when they are
developed on different frameworks. Most of these research efforts applied
statistical and experimental [66] approaches. However, research has shown
that there are available flexible and verifiable ways to evaluate the resource
provisioning behaviours of auto-scaling mechanisms [111,131,140].

Now, the issues presented above require a strategic direction and proce-
dures to systematically tackle them. Therefore, an outline of research aims
is required to highlight the steps to be employed to address them.

1.1 Aims of the Research

I. To devise a framework that simplifies the selection of MapReduce sim-
ulators for researchers based on vital simulator features.

(a) The framework should enable researchers to analyse the strengths
and weaknesses of simulators.
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(b) The framework should comprise of MapReduce specific criteria
which allows users to determine the appropriate simulators for
research and development.

II. To offer a speculative execution approach for MR Hadoop that improves
job performance and scales with a data centre.

(a) To devise a solution that captures task run times during job pro-
cessing towards the determination of fast tasks and straggler tasks.

(b) To allow users to assess tasks behaviours on several MapReduce
Hadoop setups. To allow users to select tasks which require restart
or those which require rescheduling to other computers.

III. To enable users to analyse the virtual machine provision behaviours of
auto-scaling mechanisms independent of previous approaches.

(a) The framework should allow users to compare auto-scaling mech-
anisms from multiple sources to identify existing similarities.

(b) The framework should allow users to evaluate auto-scaling mech-
anisms based on job execution phases.

1.2 Dissertation Guide

This guide is designed to enable readers to peruse this dissertation in a sys-
tematic manner. An outline of chapter dependencies of this dissertation is
presented in figure 1.1 for the ease of navigating the dissertation.

Beginning from chapter 1.0 (i.e., introduction), readers can navigate their
way to other chapters (and sections of chapters) of the document following
the coloured dependency arrows. The arrows point towards the sections
that must be read before navigating towards later portions of the document.
The single circles represent sections in the dissertation. The double circles
represent the last sections (end goals) of a particular chapter.

There are five colours (i.e., yellow, red, blue, brown, green) on the figure
which helps readers to navigate towards our reading goals. Colour yellow
directs readers to the first reading goal (i.e., Contributions) in section 7.2.
Colour blue directs readers towards the second reading goal (i.e., Resource
Provisioning) in sections 2.9 and 2.10. Colours brown and red directs read-
ers to the third and fourth reading goals (i.e., MapReduce Classification
Framework and SE Approach) in sections 3.3 and 4.3. Colour green
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Figure 1.1: Dissertation Guide for Readers

directs readers to the fifth reading goal (i.e., Auto-Scaling Model) in sec-
tion 5.3. The colours are not needed to under the arrows on the figure but
they foster the navigation process (i.e., an additional tool).

Chapter 1.0 to section 1.2, introduces the dissertation’s direction and
research aims. These serve as the launch pad to navigate towards the reading
goals (as shown in figure 1.1). Now, let us discuss five reading goals described
below.

Contributions Beginning from chapter 1.0, a reader can navigate to section
7.2 to read the theses statements that highlights the research efforts of
this dissertation.

Resource Provisioning Discussions A reader traversing from chapter 1.0
to section 2 accesses the literature review segment of the dissertation.
Sections 2.1 to 2.2 presents the background information of this disser-
tation. It fosters the comprehension of the the design processes, and
the evaluation of approaches proposed in our theses. Reading from sec-
tions 2.5 to 2.8 provides a reader with detailed information about the
virtual resource provisioning content of this dissertation.

MapReduce Classification Framework A reader traversing sections 2.3
to 3.3 should see details of the processes utilized to create our first con-
tribution to science. However, for further comprehension, a reader must

4



first read the literature reviewed in section 2.5 to appreciate resource
provisioning on MapReduce.

SE Approach A reader traversing sections 2.4 to 4.3 should see the descrip-
tion of the design of our second contribution to science. Nevertheless,
the reader must read the introduction of MapReduce in section 3.1
before reading section 4.1. In section 4.1, we introduce MapReduce’s
Hadoop speculation execution and all the necessary information re-
quired before the design of our contribution. Also, the reasons for the
choice of the simulator utilized for the experiment in section 4.3 are
discussed in section 3.3. Hence, for comprehension, it is recommended
to read the evaluation of simulators in section 3.3 before 4.3.

Auto-Scaling Model A reader traversing sections 5.1 to 6.5 should see the
design of our third contribution to science. However, the reader must
read sections 2.5 before 5.1 to 5.2. The literature reviewed in section 2.5
to foster the comprehension of the research carried out in sections 5.1
to 5.2. Also, sections 2.6 to 2.8 should be read before section 5.3. Since
sections 2.6 to 2.8 provides the necessary background about the formal
technique (ASM theory) employed to design our model in sections 5.4
to 6.5.
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Chapter 2
Background and Related Works

2.1 Introduction

This chapter discuses the background information and research works related
to our dissertation. The purpose of the background section is to provide the
necessary concepts and definitions to achieve the aims of our research. These
includes concepts related to cloud computing models, computer simulation,
MR and the Abstract State Machines (ASM). Also, issues relating to few
cloud computing simulators are clarified on their application to real life and
industry. These discussions helps to clarify technical terminologies that are
utilised in our dissertation. Also, we reviewed research efforts related to the
aims of our dissertation. Let us get move into the discussion.

Currently, a couple research efforts are gear towards the identification of
appropriate cloud simulators for research. This is due to the fact high costs
in utilising real clouds for testing researchable ideas. One area which has
receive minimal attention is the evaluation of MR simulators. The MR in-
frastructure provides several benefits for parallel and distributed computing.
However, limited work has been done towards the recommendation of suit-
able tools. Therefore, a review of literature towards the design of framework
that simplifies the selection of simulators based on vital simulator features
will allow users to assess the strengths and the weaknesses of MR simulators
of their choice.

Moreover, the scalable and reliable nature of MR has made it the de facto
parallel programming model applicable on clouds for several researchers and
organisations. This feature is observable in its Hadoop open-source imple-
mentation, due to its capability to process structure, semi-structured and
unstructured data. However, one feature that reminds a challenge on the
hadoop framework is the its speculative execution. Therefore, the analysis of
previous research efforts will foster the identification of the challenges with
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the existing solutions towards the offering of an alternative approach.
Furthermore, several research activities have shown that the supply of

resources to cloud frameworks during job processing, enhances efficient ser-
vice delivery. This resource provision is mostly achieved via the application
of auto-scaling mechanisms (auto-scalers) on cloud infrastructures (includ-
ing MapReduce). However, the challenge then arises when these auto-scalers
originate from different frameworks with resource behaviours that can not be
identified. Hence, a literature review that focusses on the analyses previous
auto-scaling efforts will foster the design of a framework that evaluates the
resource provision behaviours of auto-scalers.

In addition, the evaluation of auto-scaling approaches cannot be con-
cluded without a review of the application of formal methods on cloud com-
puting and MR. This review focuses on assessing the flexibility and robust-
ness of formal methods; especially the application of ASMs on clouds and
other distributed systems. The review of ASMs technique will foster the de-
sign of a framework that allows users to compare auto-scaler developed on
different frameworks to identify existing similarities.

In conclusion, the results from these discussions are pivotal to our disser-
tation, as the rest of work related to them. Let us now begin by reviewing
some cloud computing models that are vital to our research.

2.2 Cloud Computing Models

Cloud Computing is a generic term for any information technology that de-
livers hosted services over the Internet. It is a technology that provides
hardware and software resources to users based on pay-as-you-use through
the Internet. Cloud computing technology has many features such as high
scalability, ease of access, lower business risks and maintenance expenses,
and reduced operating cost [5].

The major cloud computing service models are software as a service
(SaaS), platform as a service (PaaS), infrastructure as a service (IaaS), and
Container as a service (CaaS). However, we will discuss only on two mod-
els which are directly related to our research. This is because this research
focuses on the analysis of the job performance improvement of the MR pro-
gramming model when it is applied as a PaaS; and the analyses of the virtual
machine provision behaviours of several auto-scaling mechanisms on an IaaS
platform.

Platform as a service (PaaS) provides the appropriate environment for
developers to create applications and software deployed through the in-
ternet without needing any infrastructure [169]. PaaS allows customers
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to rent virtualized servers and attached services to execute their appli-
cations. The customer cannot control the cloud’s infrastructure, such
as servers, networks, storage, or OS. The service cost is determined ac-
cording to data transfer per GB, usage per hour, I/O requests per mil-
lion, storage use per GB, and data storage requests per thousand [15].

Infrastructure as a service (IaaS) provides the virtual infrastructure and
raw hardware required to foster the creation and managing of ser-
vices on storage devices and VMs via web-based services [106]. The
IaaS model is a result of the evolution of virtual private servers. The
provider of IaaS supplies users with a virtual server and one or more
CPUs executing several operations. The VMs are rented either for a
period of time as long as required. Also, the frameworks are billed
depending on the duration, and additional services the user requires.
The frameworks refer to the virtual servers containing several choices
of virtualized computing resources (processing, storage, and network)
offered by IaaS providers at standardized costs [126,133].

These services are only possible via vital technologies that ensure efficient
service delivery. These technologies allow users to access cloud resources
at a low cost to expand the frontiers of research and development. In the
next sub-section, we will discuss some of these technologies to highlight their
connections to our research, since they provide the necessary background for
our discussions.

2.2.1 Technologies behind Cloud Computing

The following state-of-the-art technologies are pivotal to our research on
MapReduce and the auto-scaling of cloud resources.

Virtualization Technology Virtualization techniques are the basis of cloud
computing since they render flexible and scalable hardware services.
These technologies partition hardware resources for the provision of
scalable computing platforms. Virtual machine technologies like hyper-
visor( [45,153]) enable users to create virtualised platforms for research
and development. Virtual network advances, such as Virtual Private
networks (VPN), support users with a customized network environment
to access cloud resources. The automatic scaling (or auto-scaling) of
the cloud resources to meet user demands is one of the techniques ap-
plied via virtualisation. In general, cloud resources are either scaled up
or down per user demands.
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Distributed Storage System A cloud storage model is a critical cloud
resource provisioned by cloud computing. Some of the technologies
that implement this model are network storage and distributed data
systems.

The network storage systems are supported by distributed storage
providers (e.g., data centres) to offer storage capacity via lease to
users. The data storage could be migrated, merged, and managed
transparently to end users for whatever data formats. Google File
System is a good reference [47].

The distributed data system provides data sources that can be sequen-
tially and randomly. Users could locate data sources in a large
distributed environment by the logical name instead of physical
locations. Virtual Data System (VDS) is a good reference [112].

2.3 Programming Model

An another essential concept required for the our research is the program-
ming model technology. This technology enables users to access large data
sets to design and create their applications. Programming model provide
their own set of rules, principles, and best practices, which govern the way
developers write code, manage data, handle errors, and interact with the un-
derlying hardware and operating system [97]. MR is a programming model
with associated implementations for processing and generating large data
sets across the Google worldwide infrastructures [46].

MapReduce MapReduce is a programming model for data intensive com-
puting used in Apache Hadoop. Researchers and organisations utilise
MR for application development. These applications process large data
sets in parallel on hardware clusters. The data is processed in a scal-
able, reliable and fault-tolerant manner. MR has three major parts,
including Master, Map function and Reduce function. The Master is
responsible for managing the backend Map and Reduce functions and
offering data and procedures to them [136]. A MR application contains
a workflow of jobs where each job makes two user-specified functions:
Map and Reduce. The Map function is applied to each input record
and produces a list of intermediate records. The Reduce function (also
called Reducer) is applied to each group of intermediate records with
the same key and produces a list of output records [95]. The master

9



node runs all the necessary services to organize the communication be-
tween Mappers and Reducers. An input file (or files) is separated into
the same parts called input chunks. The chunks are passed to the Map-
pers where they work in parallel to provide the data contained within
each chunk. As the data is provisioned by the Mappers, they have
separate output; then each Reducer gathers the data partition by each
Mapper, merges them, processes them, and produces the output file
as shown in figure 2.1. The main phases of MapReduce architecture
are Mapper, shuffle and Reducer. The Mapper processes input data
which are assigned by the master to perform some computation to the
produce intermediate results in the form of key/value pairs based on
user-defined code [94]. In the shuffle phase, data is transferred from
the Mapper disks rather than their main memories. The intermedi-
ate result are sorted by the keys so that all pairs with the same key
are grouped together. The Reduce function receives an intermediate
key and a set of values of the key. It merges these values together
to generates an output based on the user-defined code [13]. The net-
work is used to transfer the data from the local Map nodes to Reduce
nodes [49]. Some MapReduce implementations include Spark [178],
MARLA [56], BitDew [59], Themis [127], SASReduce [41], Disco [113],
Phoenix [150], MARISSA [43], Skynet [78], Google MapReduce [92],
Mars [72], Planet [122], LEMO-MR [57], Twister [51], DRYADLINQ [60],
DRYAD [75], MARIANE [55] and Hadoop [167]. These MR implemen-
tations have different approaches to data processing.

Chunk 
Chunk 
Chunk 
Chunk 

Chunk 
Chunk 

Reducer

Reducer

Output

Output

Input
(HDFS)

Intermediate Results

output
(HDFS)

Map Shuffle                        Sort Reduce 

Mapper

Mapper

Mapper

Execute Tasks Report Status

Figure 2.1: MapReduce Structure

Hadoop Apache hadoop is an open-source software framework that allows
processing and managing data on multiple machines. This framework
is designed to perform distributed processing with high error tolerance.
The core of Hadoop includes a distributed file system (HDFS) and
a MapReduce processor. In 2010, Yahoo introduced Hadoop YARN
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(Yet Another Resource Negotiator). YARN added new components to
Hadoop and assigned task tracker actions to the new components [167].
These include the Resource Manager, Application Manager and Node
Manager.

The resource manager runs as a daemon on a dedicated machine and
acts as the central authority allocating resources among competing ap-
plications of the cluster. The application master is responsible for man-
aging all aspects of job processing, including dynamically increasing
and decreasing of resources, managing the flow of execution (e.g., run-
ning reducers against the output of maps) and handling faults. The
node managers are responsible for monitoring resource availability.

A critical challenge that affects data processing on MRH is speculative
execution. If a task of a job requires an abnormally long execution time,
the total completion time of the job is affected. Such a task is called
a straggler task. MR reruns straggler tasks on a different machine to
finish the computation faster. The process of diagnosing straggler tasks
and assigning them to other nodes is called speculative execution [9].

The Hadoop distributed file system (HDFS) works closely with MRH
for distributed storage and computation across large clusters. HDFS
combines storage resources that can scale depending upon requests and
queries while remaining inexpensive and within budget [147]. HDFS
accepts data in any format like text, images, and videos, regardless
of architecture; and automatically optimizes them for high bandwidth
streaming [145].

The deployment of real clouds incurs high costs and great effort. In
general, cloud simulators have been utilised to evaluate the provision of cloud
resources in a flexible systematic manner. Let us now have an in-depth
discussion on cloud simulations.

2.4 Cloud Simulation

Computer Simulation (CS) is defined as a hybrid technology of using com-
puter science and technology to build simulation models and then perform
experimentation on the models under several conditions. It has advantages
such as high efficiency, high security, scalability, and flexibility. CS has be-
come an important tool for design, analysis, and evaluating systems (espe-
cially complex systems), and has been playing important roles in domains
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of astronautics, military, economy, medicine and entertainment, with great
success [102,175].

In general, simulation is widely used in science and industry to study
a variety of problems across a wide range of domains [2]. Simulation has
been applied in the area of cloud computing to allow users to solve several
challenges. This has brought loads of benefits to users of cloud simulators
to test their ideas before implementing them on live systems. Let us discuss
the benefits of cloud simulators.

A cloud simulator helps to model several kinds of cloud applications by
creating data centres, virtual machines and other utilities that can be con-
figured appropriately, thus making it easier to analyse several models. Cloud
simulators had been developed and are being actively used to conduct cloud
research. These simulators varies in features like availability of GUI, licens-
ing, base programming language, extensibility etc. The main benefits of
cloud simulators are:

Cost Minimization Purchasing softwares for cloud simulators costs less
when compared to buying hardware and proprietary software (operat-
ing systems, hypervisor etc). Also many simulators are available free
of cost [1].

Repeatable and Controllable Experiments Experimental set ups (i.e.
simulations) can be processed several times until the desire output is
obtained.

Environment A simulator provides the vital environment for evaluating
several scenarios under different workloads.

Do not require much of the expertise The application of a simulator
does not require special skills related to deployment of cloud. The
user just needs to possess the requisite programming skills for manip-
ulating the code according to his/her needs and the rest is left to the
simulator [148].

Reduced risk involved Utilising simulators (and not the real cloud) allows
users to test and verify the results without the risk of financial and
infrastructural loss. Also, available risks can be identified during the
implementation of design or any parameter [83].

In general, the architecture of a cloud simulator is four layered. They are
piq Resources layer, piiq Cloud Services layer, piiiq Application layer and pivq
Cloud Simulator Kernel layer as seen in figure 2.2.
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Application layer allows users to define, design and submit their applica-
tions through the virtualized mediums to utilise the resources.

Cloud Services layer virtualizes the available cloud resources for provi-
sioning user requests.

Resources layer provisions hardware elements such as CPU, memory, stor-
age and network bandwidth.

Cloud Simulator Kernel layer consists of the libraries for managing the
simulation and its parameters [107].

Application Layer

Cloud Service Layer

Resource Layer

Cloud Simulator Kernel Layer

Figure 2.2: General Architecture of a Cloud Simulator

Several cloud simulators are being utilised for research and developments
in real life and industry. Now, let us discuss a few of them to highlight their
benefits.

CloudSim is a widely used cloud computing simulator with several exten-
sions. It models data centers, virtual machines, service brokers, and
resource provisioning methods. It provides a flexible switching between
space-shared and time-shared allocation of processing elements to ser-
vices. Researchers can implement cloud-based application by very less
effort and time, and test the performance in heterogeneous environ-
ments [27].

By using CloudSim, researchers and industry-based developers are able
to test the performance of a newly developed application or service in
a controlled and easy to set-up environment. CloudSim structure is
composed of three main layers: piq User Code that provides the con-
figuration parameters for hosts, cloudlets, VMs, number of users, and
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Table 2.1: Technical Review of Cloud Simulators

Evaluation

Criteria
CloudSim [27] CloudAnalyst [168] MDCSim [100]

Platform SimJava CloudSim CSim
Language Java Java Java,C++

Availability Open Source Open Source Commercial
Application

Model
X X X

Communication
Model

Limited Full Limited

Energy Model X X X

Platform
Portability

X X X

Documentation
Available

X X �

Software or
Hardware

Software Software Software

GUI � X �

Publication
Year

2009 2010 2009

Last Updated
Date

14/10/2020 15/08/2016 N/A

broker scheduling algorithms, piiq Cloudsim that manages the execution
of core elements such as cloudlets and data centers during simulation,
and piiiq CloudSim core simulation engine that models queuing and
communication between component [107].

CloudAnalyst is an extension of cloudSim to enable applications to manage
workload descriptions including the number of users, data centers, and
cloud resources along with the location of both users and data centers.
CloudAnalyst can be used by application developers or researcher to
determine the best strategic allocation of resources among the available
cloud data centers. Data centers can be selected strategically consid-
ering the application workload and the available budget [168].

MDCSim Data Center Simulator (MDCSim) is a commercial comprehen-
sive and scalable simulation toolbox that is used for indepth analysis of
multi-tier data centers. It models the underlying hardware character-
istics of data center components and estimates the power consumption
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Table 2.2: Technical Review of Cloud Simulators

Evaluation

Criteria
DISSECT-CF [84] GreenCloud [88] WorkflowSim [35]

Platform – NS-2 CloudSim
Language Java C++, OTcl Java

Availability Open Source Open Source Open Source
Application

Model
X X X

Communication
Model

Full Full Limited

Energy Model X X X

Platform
Portability

X � X

Documentation
Available

X X X

Software or
Hardware

Software Software Software

GUI � Limited �

Publication
Year

2014 2010 2012

Last Updated
Date

13/09/2022 27/03/2021 08/11/2021

of data centers. Throughput and response time are considered as per-
formance metrics, and the topology of the data center is supplied as
a directed graph by the MDCSim network package. MDCSim helps
cloud users to examine different resource configurations to improve the
performance of web applications while keeping the power consumption
low [100].

DISSECT-CF The DIScrete event baSed Energy Consumption simulaTor
for Clouds and Federations tool is used to provision an energy-aware
scheduling for infrastructure clouds. DISSECT-CF supports a resource
sharing framework that can model the resource bottlenecks like CPU
and network. In addition, the optimization of generic resource sharing
performance enhances the entire simulation. DISSECT-CF presents a
more complete IaaS stack simulation. It allows to users to derive en-
ergy consumption from several resource usage counters. DISSECT-CF
consists of five layers: piq Infrastructure Management, piiq Infrastruc-
ture Simulation, piiiq Energy Modeling, pivq Unified resource sharing,
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Table 2.3: A Summary of Strengths of Surveyed Simulators Table 1

Simulators Strengths

CloudSim [27]

(1) It enables the modelling of data centers, virtual ma-
chines, and resource provisioning.
(2) It offers a basic energy consumption model based on
CPU utilization.
(3) It applies space-shared and time-shared allocation
policies.

CloudAnalyst [168]
(1) It presents a full GUI and geographical factors.
(2) It presents a wide range of configurable factors such
as data center distribution and user location.

MDCSim [100]

(1) It considers multi-tier data center structure for the
study of application the performance in a scalable plat-
form under different network loads with different tier
configurations.
(2) It supports power utilization and switches connected
along with nodes.
(3) It has low simulation overhead which is suitable for
the evaluation of large-scale and three-tiered applica-
tions with varying the configuration of each tier.

and pvq Event system [84,107].

GreenCloud [88] provides a more balanced trade-off between computing
performance (CPU power) and the energy consumption of server with
using three different power saving modes. Unlike common toolkits such
as CloudSim [27] or CloudAnalyst [168]. GreenCloud uses aggregates,
and processes information of the energy consumption in cloud data
centers. GreenCloud is an extension to the network simulator NS2
and presents a fine-grained model for energy consumed through several
networking components such as servers, switches, and links.

Additionally, GreenCloud takes into account the distribution of work-
load. The architecture of GreenCloud is a three-tier data center struc-
ture that consists of three layers: piq access, piiq aggregation, and piiiq
core layers. The aggregation layer can facilitate increasing number of
servers while keeping inexpensive switches (layer 2) in the access net-
work and so a loop-free structure is provided.

WorkflowSim is used for modelling scientific workflows in cloud environ-
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Table 2.4: A Summary of Strengths of Surveyed Simulators Table 2

Simulators Strengths/Focus

DISSECT-
CF [84]

(1) It provides a unified resource-sharing schema to en-
able in-data-center networking during experiments.
(2) It offers energy modeling for the monitoring of the
energy usage of different elements of resources such as
network links and disks.
(3) It determines the internal details for the definition of
new physical machines, cloud topology, VM schedulers,
and power states to obtain more accurate results.

GreenCloud [88]
(1) It offers enhanced capabilities for energy modeling.
(2) It presents several architectures such as a Two-tier
and Three-tier data center.

WorkflowSim [35]

(1) It supports a stack of workflow parser and workflow
engine delay to workflow optimization techniques with
better accuracy are implemented.
(2) It implements several workflow-scheduling methods
such as HEFT, Min-Min, and Max-Min for the compar-
ison of algorithms in a simple way.
(3) It considers task clustering and layered overhead to
the workflow simulation.

ment. Workflows in heterogeneous distributed systems show different
levels of overheads that are explained based on computational opera-
tions and miscellaneous works. Most simulators such as CloudSim do
not consider fine granularity simulations of workflows and task cluster-
ing. Task clustering reduces the number of jobs to be executed and so
execution overhead is decreased. Generally, a job may have high risk
for suffering from failures since it consists of several tasks. Researchers
with WorkflowSim can study the impact of job failures and the runtime
performance of workflows for different clustering methods [107].

WorkflowSim is composed of several components: piq Workflow Map-
per that maps abstract workflows to concrete workflows, piiq Workflow
Engine that controls the data dependencies, piiiq Workflow Scheduler
assigns jobs to resources, pivq Clustering Engine that groups small tasks
into a large job, (5) Failure Generator that injects task failures for each
execution site and (6) Failure Monitor that stores the failure informa-
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Table 2.5: A Summary of Limitations of Surveyed Simulators Table 1

Simulators Limitations

CloudSim [27]

(1) It considers the limited network model (only trans-
mission delay). Therefore, developers cannot test their
application in realistic network topologies. Since it does
not define switches and assumes that each VM is con-
nected with all the others.
(2) It does not consider the intra–data center communi-
cation and bandwidth sharing of links.

CloudAnalyst [168]

(1) It does not support network inside the data center
and pricing model. Therefore, developers cannot eval-
uate the profit of providers for choosing the provider
that satisfies the client’s resource request with the low-
est cost.
(2) It has no TCP/IP implementation and offers limited
support for power modeling.

MDCSim [100]

(1) ) It does not support federation policy and so devel-
opers cannot evaluate their applications in the hetero-
geneous cloud with various domains.
(2) It does not present complete network model. There-
fore, developers cannot explore the characteristics of
data centers in detail and model realistic network re-
quests in terms of topology.

tion such as resource id and task id [35].

A technical review of the survey simulators is shown in tables 2.1 and 2.2.
Also, the summary of strengths and weaknesses of survey simulators are
shown in tables 2.3 , 2.4, 2.5 and 2.6 .

In spite of the benefits derived from the usage of cloud simulators, there
are are few drawbacks.

Simplifications Simulations may lead to the oversimplification of complex
systems, which can lead to inaccurate or incomplete results [8].

Data requirements Accurate simulations often require a large amount of
data, which can be time-consuming and expensive to collect and pro-
cess [110]. Also, simulations may not fully capture all of the interac-
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Table 2.6: A Summary of Limitations of Surveyed Simulators Table 2

Simulators Limitations

DISSECT-
CF [84]

(1) It does not offer specific modules of security aspects
for cloud platforms.
(2) It provides a typical network model and so devel-
opers cannot define real network devices (e.g., routers,
switches) and simulate various network architectures.

GreenCloud [88]

(1) It has a scalability problem since it requires very
large simulation time and high memory spaces.
(2) It does not provide a full traffic aggregation model
and so developers cannot study the congestions control
strategies for cloud data centers

WorkflowSim [35]

(1) It includes limited types of failures. Therefore, de-
velopers cannot simulate the situation when a task is not
successfully sent due to network problems or workflow
scheduler issues.
(2) It does not consider the performance characteristic of
file I/O. Therefore, it cannot obtain suitable simulation
for data intensive applications since these applications
involve reading or writing huge data files.
(3) It supports only simple workflow techniques. There-
fore, it cannot be used for other important approaches
like workflow partitioning in their implementations.

tions and dependencies within a system, if absolute precautions are not
taken. This can lead to inaccurate or incomplete results [151].

Model validation The process of validating a simulation model to ensure
that it accurately reflects the real-world system it is meant to simulate
can be challenging [139].

Therefore, these drawbacks should be considered when using computer
simulations and efforts should be made to minimize their impact on the
accuracy and usefulness of simulation results.

The knowledge computer simulations and cloud simulations allows users
to have several options when embarking upon a research project. This pro-
vides flexibility and simplicity in their choice for cloud simulators. As dis-
cussed above, every simulator is designed for a specific purpose and cloud
platform.
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Researchers have carried out surveys to guide simulator users and de-
velopers towards their choice of simulators. However, concerning the MR
programming model, a limited work has been done. Let us now discuss a
survey about MR Simulators.

Table 2.7: Reviewed Articles for Cloud Simulators

Reference Year Main Goal Weaknesses

Pan et al. [121] 2008

Evaluates key con-
cepts of network
simulators including
GUI for simulation
execution and Model
documentation.

The review did not
consider simulators in
the cloud computing
environment.

Wang et
al. [162]

2012

Presents an analysis
of eight simulators on
whether simulators
were workload- or
resource-contention-
aware.

The evaluation did
not consider IoT-
based applications,
job reservations and
scheduling policies.

Zhao et al [181] 2012

Analyses eleven cloud
simulators on their
power consumption
and response time.

The work did not
present the merits, de-
merits of MR simula-
tors and their applica-
tions.

2.5 A Survey of Cloud Computing Simula-

tors

Simulation techniques have proven to be very effective in understanding com-
puter systems in a cost-effective and flexible environment. This is to due the
fact that researchers have realised that the most affordable option for testing
new ideas is the application of computer simulations. Due to this realisation,
researchers have likewise applied simulations to the cloud technology which
has really chalked remarkable advances in the cloud computing community.

The question that remains on the minds of many non-users is the differ-
ence between computer simulation and cloud simulation. Cloud Simulation
is the integration of some mature technologies such as simulation techniques,

20



Table 2.8: Reviewed Articles for Cloud Simulators

Reference Year Main Goal Weaknesses

Ahmed et al [1] 2014

Discusses eleven
cloud simulators
with nine specific
criteria including
federation policy, and
communication model

MR simulators were
not evaluated. Fur-
thermore, the analysis
did not consider ma-
jor mobile cloud issues
such as network access
management.

Ettikyala et
al. [53]

2015

Compares thirteen
cloud tools with five
evaluation criteria
such as security,
performance, and ap-
plication behaviours.

The review was done
based on generic crite-
ria without highlight-
ing the strengths and
weaknesses of the sim-
ulators.

Sinha et
al. [137]

2015

Provides an overview
of fourteen cloud sim-
ulators with six spe-
cific criteria including
availability and GUI
support.

The main features
of the simulators
were not highlighted.
Moreover, they did
not mention MR
simulators.

Kaur et al. [83] 2015

Analyses seven cloud
tools with nine specific
criteria such as sim-
ulation time and and
energy model.

It does not specify the
application of simula-
tors and their archi-
tectures.

virtualization technology and web service technologies [102]. Therefore, it is
pivotal say that computer simulation is an integral part of cloud simulation.

A couple of cloud technologies have been implemented as cloud simula-
tions. A typical example for complex data processing is the MR infrastruc-
ture. MapReduce simulations executes programs in two phases, map and re-
duce, so that each phase is defined by a function called Mapper and Reducer.
This two-phase pattern can be found in many programs and has turned into
a fundamental framework for several parallel computing research [63].

There have been many studies utilizing computer simulators to inves-
tigate distributed systems. This is due to the fact that they provide the
analysis of system behaviours by considering specific components under dif-
ferent scenarios. Over time, research has progressed to evaluating computer
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Table 2.9: Reviewed Articles for Cloud Simulators Cont’d

Reference Year Main Goal Weaknesses

Chernyshev et
al. [37]

2018

Reviews nine Inter-
net of Things (IoT)
simulators with eleven
evaluation criteria.

It does not analyse the
strengths and limita-
tions of simulators.

Azzedin et
al. [14]

2019

Presents three cate-
gories of existing IoT
architectures for mod-
elling trust.

Specific features such
as workload manage-
ment and streaming
processing required
current research and
tools development
were not discussed.

Mansouri et
al. [107]

2020

Investigates over
thirty-three cloud
tools based on multi-
level features.

A limited number of
MR tools were dis-
cussed.

simulators and highlighting their benefits and disadvantages. Also, due to
the availability of numerous cloud simulators it is important that critical
evaluation of simulators is done, in order to select a suitable ones for specific
research [107].

Currently, classification frameworks have been proposed to assist develop-
ers in the selection of suitable simulators. Now, we shall discuss these works
in order to devise a frame that simplifies the selection of MR simulators for
researchers based on vital simulator features.

Pan et al. [121] evaluated the current development status of network sim-
ulators. They discussed key concepts of network simulators while analysing
them. The features of the simulators were highlighted, including their cur-
rent status and future development prospects. Their work formed a base for
comparative studies for other distributed system simulators. These authors
limited their work to four network simulators; hence, their results would re-
quire revision regarding MR-oriented computation models. Since this work
did not consider the primary features required for MR.

A few research activities have been undertaken concerning classifying
cloud simulators. Cloud simulators provide a conducive environment for
assessing various scenarios under different workloads. Evaluations via soft-
ware costs less when compared to the purchasing and testing of hardware
and proprietary softwares.
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A few papers [1, 83, 148] classified various simulators based on nine eval-
uation criteria. These authors focused on evaluating various simulators to
improve simulation efficiency and cost based on three most relevant crite-
ria. First, they identified the base platform, which refers to the pre-existing
frameworks upon which simulators are built. Then, they analysed the energy
model offered to evaluate the consumption of data centres. Finally, they high-
lighted the importance of federation policies allowing coordination among
cloud service providers. However, their work did not extend to analysing the
strengths and weaknesses of MR specific simulators towards the improvement
of the programming model.

Moreover, Ettikyala et al. [53] compared fifteen cloud simulators with
five evaluation criteria. The study evaluated cloud computing systems ac-
cording to their security, performance, and application behaviours. Sinha et
al. [137] evaluated fifteen cloud simulators with six criteria. They analysed
the performance of cloud systems with reduced complexity. The outstanding
criteria used in their classification were focused on the software and hardware
features that can be simulated. These authors limited their work to popular
cloud computing simulators without discussing the application of the MR
computing model.

Chernyshev et al. [37] evaluated nine Internet of Things (IoT) simulators
with eleven evaluation criteria. Also, Azzedin et al. [14] evaluated three
categories of existing IoT architectures for modelling trust. These authors
discussed current IoT trust models based on trust design parameters and
their resistance to attack types. However, these authors limited their work
to IoT simulators without considering workload management and streaming
processing features required in a MR-specific classification framework.

Wang [162] analysed eight simulators with three evaluation criteria. The
main criterion was whether the simulators were workload- or resource con-
tention aware. Workload-aware simulators could predict the performance of
a MR job that runs on a cluster when other jobs are also running. However,
it does not consider IoT-based application, job reservation and scheduling
policies.

The issues highlighted in the discussion above shows that the research
community will welcome a framework that simplifies the selection of MR
simulators for researchers and practitioners. A summary of the reviews car-
ried out are highlighted in tables 2.7, to 2.9.

One of the challenges affecting job performance in MR and its Hadoop
implementation is speculative execution. Let us discuss research efforts made
towards resolving this challenge.
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2.6 Prior Speculative Execution Strategies

One of the attractive features of MR is its ability to automatically parallelize
a job into multiple tasks, and transparently handle job execution in a dis-
tributed setting. However, the job completion time on MR is determined by
the slowest task. During job processing, some tasks of the job spends abnor-
mally much time during execution, thus affecting the job’s entire completing
time. Such tasks (also known as straggler tasks) are reprocessed as backup
tasks on available nodes. This mechanism is known as speculative execution.
We review a couple of speculative execution strategies in this section.

The Hadoop Näıve Method was implemented with the Hadoop architec-
ture. However, most of the tasks processed during runtime were detected
as slow tasks and processed as backup tasks. This affected job completion
because there was no improvement in job completion time after processing
the backup tasks. Also, this strategy is not suitable in heterogeneous en-
vironments. Therefore, an approach that distinguishes straggler tasks from
the normal tasks during job processing will ensure job performance improve-
ments.

Zaharia et al. [179] developed the Longest Approximate Time To End
(LATE) algorithm. LATE is a simple, robust scheduling algorithm that uses
estimated finish times to detect straggler tasks. LATE is not suitable in
heterogeneous environments. Therefore, a dynamic approach that works in
all types of environments will help estimate the task runtime to ensure the
improvement of job performance.

Chen et al. [33] proposed a Self-Adaptive MR Scheduling Algorithm
(SAMR). SAMR uses historical information to classify nodes into the slow
map- and reduce-nodes. This makes SAMR dependent on previous tasks
information. Therefore, an approach that applies the information of current
tasks without depending on previous nodes will be welcomed in the research
community.

Sun et al. [146] designed ESAMR as an improvement on SAMR by util-
ising the K-means clustering algorithm to classify historical information.
Therefore, the reliance of ESAMR on previous task information makes it
only applicable when there is historical information. Moreover, the K-means
clustering algorithm utilised was not validated to determine the straggler
tasks. Therefore, an approach that is not affected by changes in dataset and
validates the kmeans clustering with silhouette scores will allow users to bet-
ter assess job performance. Also, the shortcomings in relation to ESAMR
concerning data cluster validation and online usage are addressed in our ap-
proach.
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Chen et al. [32] proposed the Maximum Cost Performance approach,
which considers the cost performance of cluster computing resources to es-
timate the slow tasks. However, in the map phase, task satisfying data
localisation executes faster than those not satisfying data localisation. This
provide an unfair comparison between the tasks at the same level. There-
fore, an approach that considers all tasks at the same level will ensure an
appropriate estimation of task run times.

Huang et al. [99] proposed a New Speculative Execution Algorithm Based
on C4.5 Decision Tree for Hadoop (SECDT) to improve predicted execution
times among previous research resulting in poor job performance. However,
navigating the decision tree implemented by this strategy is prone to signif-
icant overheads. Therefore, an approach that determines task run times via
snapshot captures will enable the improvement of job performance.

In conclusion, existing speculative execution strategies still encounter
challenges in managing straggler tasks in Hadoop. Hence, developing an
approach to improve job performance could further aid the research commu-
nity.

Now, job improvement on MapReduce or any cloud architecture is re-
quires the provision of resources to meet demands. In the next section, we
will discuss some auto-scaling mechanisms and how they are applied to dis-
tributed and cloud computing infrastructures (as well as MR).

2.7 Auto-Scaling Mechanisms in Cloud In-

frastructures

2.7.1 Overview

The auto-scaling mechanism (auto-scaler) of a cloud system is a essential
element for resource utilization enhancement, and thus reducing the infras-
tructure and management costs. An auto-scaling policy defines the condi-
tions under which computer resources can be added to or removed from a
cloud-based system, in order to satisfy the objectives of the application owner
or the expectations of the cloud infrastructure. Auto-scaling is divided into
scaling-up/-down and scaling-out/-in methods. Also, the two approaches
can be defined as vertical (add more RAM or CPU to existing VMs) and
horizontal (add more VMs) scaling [54].

The need to provision resources to users demands has triggered the de-
velopment of more auto-scaling mechanisms. Moreover, the quest for auto-
scaling cloud resources has been due to deviations in expected resources
versus actual resource usage [117]. This deviation was analysed by [104]
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which allowed auto-scaling techniques to be classified into demand-oriented
categories in their work.

Ghanbari et al. [66] formulated an auto-scaling approach that exploits
the trade-off between performance-related objectives and cost minimization.
However, the developed model does not sufficiently analyse the algorithms
generated. Since the auto-scaling mechanisms responsible for determining
the accuracy of the algorithms did not have sufficient information. Yang et
al. [174] investigated the problem of cost-aware auto-scaling along with pre-
dicted workloads in service clouds. However, the approach is only applicable
to service clouds. This inherent challenge limits the strategy’s extension to
several cloud platforms.

Gandhi et al. [62] discussed the implementation of a new cloud service,
Dependable Compute Cloud. However, the method applied does not offer
optimal estimates of the state of processes. Therefore, an approach that
models the state transition of processes will allow users to evaluate state
transitions during job processing.

Saxena et al. [134] developed an integrated proactive resource provisioning
and allocation approach. However, the approach requires further work on
tasks prediction and scheduling of VMs to reduce network traffic. Therefore,
an approach that allows the modelling of the auto-scaling of resources and
the scheduling of VMs can improve the current design.

Al-Dulaimy et al. [3] developed a novel Multi-Loop Control approach,
called MULTISCALER, to allocate resources to VMs based on Service Level
Agreements (SLA). However, their approach is limited to the provision of
platform metrics such as CPU utilisation as input for scaling. Therefore,
an approach that allows the modelling of hybrid scaling will allow service
providers to design their platforms to meet the demands of a larger section
of users.

Ullah et al. [156] proposed a Cartesian genetic programming based neural
network for resource utilisation estimation. However, the method utilized is
not integrated with predictive scaling mechanisms for the analysis of work-
loads. Therefore, an approach that allows the analysis of auto-scaling mech-
anism with emphasis on VMs provisions will allow the authors to improve
their current design for development.

So far, we have discussed the application of auto-scaling in clouds in
general. Now, let us investigate the application of auto-scaling techniques to
MapReduce and its Hadoop implementation. This will provide an in-depth
knowledge on the flexibility and scalability of the MR parallel computing
model.
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2.7.2 Auto-Scaling on MapReduce and Hadoop

A few research have been carried out about auto-scaling on MapReduce and
its Hadoop implementation.

Ramanathan et al. [125] proposed a scalability strategy of scale-out meth-
ods to obtain an accurate prediction of job completion times on MRH. How-
ever, the strategy developed was not extended to the applying machine learn-
ing on heterogeneous Hadoop clusters. An extension, when developed, could
ensure more flexibility. Applying a method that guarantees correctness when
designing the structure of the approach, will foster the achievement of this
extension.

Ismahene et al. [76] proposed an auto-scaling approach that automati-
cally allows the provision or removal of computation nodes. However, the
approach does not include a scaling policy for core and nodes, which can be
processed through efficient data distribution methods. This can be achieved
by applying a framework that allows users to assess the scaling policies of
system resources.

Hosamani et al. [73] proposed an approach that addresses the elastic
provisioning of Hadoop clusters. However, the prediction model proposed
utilized does not apply transfer learnings (reuse of a previously learned model
on a new problem) to achieve better results. In order to improve the results, a
framework that enables users to analyse and compare auto-scalers will allow
the authors to evaluate their strategy before implementation.

Nemouchi et al. [116] proposed an approach based on Hadoop that au-
tomatically adjusts the computation resources depending on the workload.
However, the approach does not incorporate a scaling policy for core nodes
which can be processed through the use of data distribution methods. There-
fore, the application of framework that allows users to examine the job ex-
ecution phases of auto-scalers while adjusting nodes, will help the authors
to assess their approach systematically towards the enhancement of their
technique .

Most of the auto-scaling research discussed above used statistical and
experimental procedures. The research community has given less attention
to devising a flexible and formal approach for analysing auto scalers. An
approach that can allow users to examine the job processing behaviours of
auto-scalers will be welcomed by the research community. A few authors
have used formal methods (especially the Abstract State Machine (ASM)
model) in cloud and distributed system. They applied them to prove the
feasibility of emerging cloud technologies [12]. Let us review these related
works.
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2.8 ASM Models for Clouds and Other Dis-

tributed Systems

Abstract State Machines represent a well-founded framework for system de-
sign and analysis introduced by Gurevich as evolving algebras [69]. They
are extensions of Finite State Machines where states replace unstructured
control states with arbitrary complex data [23]. ASMs provide the flexibility
to analyse and design systems formally, while considering all the essential
features of the application.

A few auto-scaling works have been undertaken relating to ASM mod-
elling. LakshmiPriya et al. [91] developed a formal framework for an au-
tonomous Network-Infrastructure for grids. However, the authors did not
include validation techniques and refinement schemes for grids. Therefore,
a model that includes formal framework with validation and refinement
schemes will allow users to apply the modelling and validating process to
grids.

Bianchi et al. [18] utilized ASM modelling to study Grid systems as a com-
position of interoperable building blocks. However, the architectural speci-
fications provided requires further works on capturing user requirements for
performance monitoring. Therefore, a model that provides ASM refinements
on user service requests and response for vertical and horizontal scaling will
be essentially required for model adaptability.

Bianchi et al. [19] also developed an ASM-based model for grid job man-
agement. Nevertheless, the resource dispatching policy of the model requires
further works. Therefore, an model that focuses on resources provisions be-
haviours will enable researchers and practitioners to evaluate all aspects of
distributing computing and to provide the upgrades required.

Arcaini et al. [12] employed ASM to formally analyse a client-server adap-
tivity component for clouds. However, their design was limited to commu-
nications between client-server applications. Extensions were not provided
to auto-scaling mechanisms. Therefore, model that focuses on auto-scaling
of resources during job processing will allow users to examine their work for
improvement.

Aside ASMs, several formal methods approaches have been applied to
cloud and distributed system to provision resources and to solve challenging
problems in real life and industry. In the next section, we shall review a
few of these approaches to highlight the role of formal methods in current
research.
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2.9 Formal Methods for Clouds and Other

Distributed Systems

Formal methods are system design techniques that use rigorously specified
mathematical models to build software and hardware systems. In contrast
to other design systems, formal methods use mathematical proof as a com-
plement to system testing in order to ensure correct behaviour. As systems
become more complicated, and safety becomes a more important issue, the
formal approach to system design offers another level of insurance [130].

Formal methods have been applied in cloud computing and distributed
systems to develop several frameworks. An aspect of cloud computing that
formal method can be applied to, is the auto-scaling of cloud resources. How-
ever, limited research has been carried out. Therefore, the application of
formal methods to auto-scaling will allow researchers to use mathematical
models to analyse the structure of auto-scaling mechanisms. This will foster
the provision resources to meet user demands without necessarily utilising
simulations.

A couple of researchers have applied formal methods to clouds (including
MR) and other distributed systems. Now, let us discuss these related works
in the light of our research.

Souri et al. [141] employed formal methods to verify their Dynamic Data
Replication with Consistency approach in Data Grids. Also, Souri et al. [140]
employed model checking techniques to verify a data replication approach in
distributed systems. These techniques are directly linked to the scaling of
resources to meet user demands; however the approaches proposed were not
extended to automatic scaling.

Moscato [111] described a modelling profile that enables model-driven
engineering analysis and verification of cloud-based services. Also, Sahli et
al. [131] employed formal approaches to verify their cloud systems’ elasticity
and plasticity properties. Analysing these approaches in contrast to grid
models, it may appear that the cloud models were more focused on meeting
user demands. However the cloud approaches did not focus entirely on auto-
scaling of mechanisms. Therefore, an approach that captures the modelling
of auto-scaling of cloud resources will provide users with an alternative to
the assessment of auto-scaling behaviours in clouds.

Krotsiani et al. [90] presented an approach for analyzing and validating
cloud certification processes based on formal techniques. Chen et al. [34]
employed model checking techniques to monitor the performance of their de-
veloped virtual machine migration model. Choucha et al. [39] applied formal
Computation Tree Logic (CTL) based properties verification to analyse a
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cloud-based infrastructure. Karthick et al. [81] proposed formal modelling
and verification of their resource allocation algorithm for secure service mi-
gration for commercial cloud systems.

All these approaches are tackled some aspects of cloud resource provi-
sion, however, the the approaches did not focus on analysing VMs provision
behaviours entirely. The introduction of an auto-scaling extension will help
researchers to evaluate the job execution phases of auto-scaling mechanisms.

Some authors applied formal methods in research involving MR and its
Hadoop implementation to show the wide applicability of these methods in
the field of cloud computing.

Camilli et al. [28] presented a framework for model checking very complex
systems based on iterative MR algorithms that use a fixed-point character-
ization of temporal operators of CTL. Lin et al. [101] presented the ABS-
YARN framework based on the formal modelling language Real-Time ABS.
Chiang et al. [38] adopted a Petri net (PN) to create a visual model of the
MR framework and to analyze its reachability property. However, an auto-
scaling extension that allow users to analyse resource provisions and usage
on MRH platforms was not tackler. Therefore, implementing a formal tech-
nique to assess auto-scaler behaviours will be vital in the clouds and other
distributed systems research community.

Now, in order to ensure a systematic design of our formal method ap-
proach, we will review a few concepts related to Abstract State Machines
(ASM). These concepts will foster a systematic design of our ASM model
that focuses on the VM provision behaviours of auto-scaling mechanisms.
Also, the concepts will provision the requisite information on the validation
of an ASM model.

2.10 Review of Abstract State Machine Con-

cepts

This section discusses foundational concepts utilized in the development of
an ASM model. The discussions begins with the formal definition of Abstract
State Machines and definitions applied to validate and verify a model.

2.10.1 Abstract State Machine Theory

This sub-section provides a review of the theoretical background for ASMs.
The review offers foundations for the sections discussing our model design.
The ASM theory encompasses a formal system engineering technique that
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guides software development. The ASM theory begins from software require-
ments capture to their implementation.

2.10.1.1 Abstract State Machines

ASMs are transition systems based on the state concept representing the
system’s instantaneous configuration under development, and transition rules
describing the change of state [12].

Definition 1 A transition systems M = (S, Ñ, L) is set of states S endowed
with a transition relation Ñ (a binary relation on S), such that every s P S has
some s 1 Ñ S, and a labelling function L:S Ñ P (Atoms). Where P (Atoms)
refers to the power set of Atoms, a collection of atomic descriptions [74].

Transition systems are models with a collection of states S, a relation Ñ,
such that the system can move from state to state. While associated with
each state s, the system has the set of atomic propositions L(s) which are
true at that particular state.

ASM states are multi-sorted first-order structures, i.e., domains of objects
with functions and predicates defined on them. ASM transition rules express
how ASM functions are updated and interpreted from one state to the next.
Therefore transition rules describe the system configuration changes.

The knowledge of ASM as transitions systems and their transition rules
allows users to modelled the system state changes where required. ASMs
state changes occur after ASM computations.

ASM computation is a sequence S0, S1, . . . , Sn, . . . of states. Where S0 is
an initial state and each Sn�1 is obtained from Sn by simultaneously firing
all the transition rules which are enabled in Sn. An ASM main rule is a
transition rule representing the computation’s starting point. The main rule
points towards the commencement of an ASM computation and ensures the
monitoring of the function updates. The basic form of a transition rule is
the guarded update:“if condition then Updates”, where Updates is a set of
functions of the form fpt1, ..., tnq :� t which are simultaneously executed
when Condition is true; f is an arbitrary n-ary function and t1, ..., tn, t are
first-order terms. This forms the foundation of the Control State ASMs.

Definition 2 A Control State ASM is defined as an ASM whose rules are
all of the forms as in Figure 2.3: a given control state i, only one of the
conditions condk can be true, 1 ¤ k ¤ n, if any; the machine executes rulek,
if condk is true and changes control state from i to jk; the state of the machine
remains the same when no condition is satisfied [22] .
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if ctl_state = i then

if cond1 then
rule1
ctl_state :=  j1

. . . 
if condn then

rulen
ctl_state :=  jn

jn

i

Figure 2.3: Control state ASMs

Control State ASMs are particularly useful to model system modes. The
development of our ASM model begins with the creation of a ground model
while utilising the model refinement technique. This allows users to appreci-
ate the analysis and design process for model reuse.

2.10.1.2 Ground model and model refinement

A ground model is an ASM that can be considered a rigorous high-level sys-
tem blueprint (”system contract”). It is specified using domain-specific terms
that all stakeholders can understand. The ground model is abstract, i.e., it
avoids irrelevant details necessary later for the implementation. It is correct
and consistent, i.e., if it reflects the intended initial requirements and removes
all the ambiguities of the initial textual requirements. However, it does not
need to be complete, i.e., it may leave some given functional requirements
unspecified. This concept is applied in creating ASM models, as it provides
information on the high-level features of the design and implementation of
ASM models.

This means that, all ASM models need ground model to guide their de-
velopment. Once the ground model is developed, it provides the necessary
platform to commence the model refinement.
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Figure 2.4: Borger’s Refinement

A model refinement is a general scheme for stepwise instantiations of
model abstractions towards concrete system elements. It provides control-
lable links between the more detailed descriptions of a model at the successive
stages of system development. It allows progression from an abstract model
to a more detailed one. ASM refinement allows one to refine either the sig-
nature (data refinement) or the control (operation refinement) [61]. This
process is closely linked with the ASM refinement method defined below.

Definition 3 The ASM refinement method is a practical stepwise method for
crossing levels of abstraction to link ASM models through well-documented in-
cremental development steps, starting from ground models and turning them
piecemeal into executable code [22].

The ASM refinement method works in conjunction with the Börger’s
refinement.

Definition 4 Börger’s refinement: Given a notion � of equivalence, an ASM
M� is a correct refinement of an ASM M if and only if for each M�-run
S0

�, S1
�,. . . , there is an M-run S0, S1, . . . and sequences i0 ¤ i1 ¤ . . . and

j0 ¤ j1 ¤ . . . such that i0 = j0 = 0 and Sik � Sjk for each k and either.

 both runs terminate, and their final states are the last pair of equivalent
states; or

 both runs and both sequences i0 ¤ i1 ¤ . . . and j0 ¤ j1 ¤ . . . are infinite.

The states Sik and S�
jk are the corresponding states of interest. They rep-

resent the endpoints of the corresponding computation segments for which
the equivalence is defined in terms of a relationship between their correspond-
ing points of interest, as seen in figure 2.4.

Börger’s refinement is applied with Schellhorn’s theorem of Forward Sim-
ulation Condition to validate and verify the ASM refinement process. Let us
define Schellhorn’s theorem of Forward Simulation Condition.
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Figure 2.5: ASM state refinement steps

Definition 5 Schellhorn’s theorem of Forward Simulation Condition (FSC)
[135] is defined on ASM run conditions. It states that: for two similar states
s � s1, not both final, there must be m,n, both non-zero, such that M reaches
a state sm with m rule applications (i.e. Zm(s,sm)) and M1 reaches a similar
state in n steps (i.e. Z1n(s1,s1n) and sm � s1 sn) as shown in figure 2.5.

Figure 2.5 shows that refinements can only be achieved in ASM via the
application of rules. Therefore, to achieve equivalence of the ground model
and their refinements, it is important to apply the requisite rules during the
ASM computations.

The development of ground models and their refinements is hinged on the
application of universes and signatures. Since they are the building blocks
of an ASM.

2.10.1.3 Universe and Signatures

The formal modelling method used in this work is the ASM model (pioneered
in [24]). ASM depicts states as basic sets (Universes) with functions and
relations interpreted on them. ASMs express Universes with signatures to
achieve model refinements.

A signature (or vocabulary) is a finite set of function names, each of
fixed arity. Furthermore, ASM also contains the symbols true, false, undef,
= and the usual Boolean operators. A state A of signature γ is a non-
empty set X together with interpretations of function names in γ on X. Key
Universes such as JOB, ARESOURCE, PROCESS and ASM functions such
as BelongsTo have been applied in previous ground models to formalize grid
computing models [115]. However, they will require redefinition to make
them suitable for our work. Moreover, we developed more universes and
functions to complement these ones for our work. Our model’s design and
analysis processes were accomplished with universe and signatures.

Once the model development is clearly defined, there is the need to verify
the ground model and its refinements to check for correctness. In this work,
the Computational Tree Logic is applied to accomplish that.
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2.10.1.4 Model Verification with Computational Tree Logic

Computational Tree Logic (CTL) is a branching-tree logic, that is, its model
of time is a tree-like structure in which the future is not determine; there are
different paths in the future, any one of which might be the ’actual’ path that
is realised. This is realised via the application of CTL temporal connectives.

The CTL temporal connectives is a pair of symbols. The first is the pair
of ’AE’. ’A’ stands for ”along all paths” (inevitably) and ’E’ stands for ”along
at least (there exists) one path (possibly)”. The second is the pair of ’X’,
’F’, ’G’, ’U’. Where ’X’ stands for ”Next state”, ’F’ for ”Some future state”,
’G’ for ”All future state” (globally) and ’U’ for ”Until” [74]. The symbols X,
F, G, U cannot occur without being preceded by A or an E; similarly; every
A or E must have one X, F, G and U to accompany it.

Definition 6 Let M = (S, Ñ, L) be a model for CTL, s in S, ϕ a CTL
formula. The relation M, s ( ϕ is defined by structural induction on ϕ of a
transition system.

The following notions will be required to verify our ASM notations.

 M, s ( EX ϕ ðñ for some s Ñ s1 we have M, s ( ϕ.

 M, s ( AG ϕ holds ðñ for all paths s1 Ñ s2Ñs3 . . ., where s1 equals s,
and all si along the path, we have M, s ( ϕ.

 M, s ( EG ϕ holds ðñ there is a path s1 Ñ s2Ñs3 . . ., where s1 equals
s, and for all si along the path, we have M, s ( ϕ.

 M, s ( AF ϕ holds ðñ for all paths s1 Ñ s2 . . ., where s1 equals s, there
is some si such that M, s ( ϕ.

 M, s ( EF ϕ holds ðñ there is a path s1 Ñ s2Ñs3 . . ., where s1 equals
s, for some si along the path, we have M, s ( ϕ.

2.11 Summary

In this chapter we discussed the background and research efforts related to
our dissertation. In the background, we discussed concepts that are applica-
ble in the later chapters of our work and also to provide clarity and focus to
our dissertation.

In the related works section several issues were discussed. These can be
segmented into three broad areas. Initially, we reviewed several research ac-
tivities to gear towards the evaluation of cloud simulators. These researches
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showed that, although a lot of efforts have been utilised to compared and
analyse cloud simulators; limited work related has been accomplished in re-
lation to MapReduce simulators. Therefore, a research towards the design of
framework that evaluates the strengths and the weakness of MR simulators
will be welcomed in the research community.

Moreover, we realized through research that, speculative execution re-
mains a challenge during job processing in MapReduce Hadoop. Although,
several approaches have been proposed, the existing designs had few chal-
lenges. Therefore, an alternative approach that improves job performance
will enable the determination straggler tasks during job processing.

Additionally, we reviewed literature related to auto-scaling approaches.
The review showed that, a couple of research efforts have been offered to en-
sure resource provision during data processing. However, most of the works
accomplished, utilised statistical and experimental procedures. Also, the is-
sue of evaluating the resource provisioning behaviours auto-scalers developed
from different platforms remained a challenge. Therefore, a framework that
allows users to analyses the VM provision behaviours of auto-scaling mecha-
nisms independent of previous strategies towards the identification of existing
similarities of auto-scalers.

Now, the issues discovered in the review literature in relation to the evalu-
ation of cloud computing simulators can be applied in the design a framework
that allows users to evaluate MR simulators and also provides recommenda-
tions for suitable ones for research and development.
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Chapter 3
MaReClass Framework Design
and Implementation

3.1 Introduction

This chapter focuses on the systematic analysis of cloud simulators based
on selected criteria. The simulators are discussed because of the features
required for their analysis and the choice of research they can be utilised for.
The chapter is comprises of three broad sections. First, a brief discussion on
MapReduce (MR) is provided. This lays the foundation for the research effort
carried out. Second, elaborate discussions on the various strategies employed
to classify MR Simulators is provisioned. Third, an in-depth analysis is
conducted on selected simulators to review their strengths and weaknesses.
Let us now begin the discussion on MapReduce.

3.2 Overview of the Classification Framework

In order to analyse the existing MR cloud simulation and modelling tools,
a classification framework was proposed. The classification framework con-
sists of a set of criteria used to evaluate and classify several MR simulators
to highlight their strengths and weaknesses. Also, the framework provides
a systematic approach to assist developers and researchers to identify ap-
propriate MR simulators for research and development. The criteria in the
framework were derived from the functional requirements of simulators. The
framework was designed in four steps.

� Step 1: Identification of the features of cloud computing simulator
through Systematic Literature Review (SLR).
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� Step 2: The previously identified list was reduced to a more MR specific
criteria via the analysis of MR themes.

� Step 3: Selection of simulators with features that identified with MR
through SLR.

� Step 4: Systematic assessment of the previously identified list of simu-
lators based on the MR specific criteria.

The first step produced thirty cloud computing themes from literature
which is shown in table 3.1. These themes were the most discussed topics
(i.e. keywords) related to cloud simulators. The themes were culled from
over fifty cloud computing research papers. Also, the research papers were
chosen via academic search engines and online libraries.

The same procedure (step 2) was utilised to refine the thirty themes to
thirteen themes most relevant to MR simulations as shown in figure 3.1. The
refining process focused on the most cited themes (keywords) amongst the
initial list shown in table 3.1.

The thirteen themes were utilised as criteria to evaluate MR specific simu-
lators. The evaluation showed that the absence of any of the thirteen criteria
rendered detailed MR simulations incomplete. Figure 3.1 offers an overview
of the selected criteria while highlighting the general and specific MR re-
quirements. Also, the figure shows that the generic themes (requirements)
support more simulators. However, the specific themes (requirement) sup-
port less number of simulators. Let us discuss the thirteen MR specific
themes which were used as our evaluation criteria.

3.2.1 MapReduce Computing Model

The MR computing model enables programmers to focus on computational
logic rather than the low-level programming details. This programming
model allows researchers and organisation to meet their big data analysis
requirements. For a simulator to be classified as supporting this feature, it
should be capable of accepting data that meets the basic requirement suit-
able for MR computations. This means that the simulator should be capable
of decomposing data sets into many independent sub-datasets for processing
a particular task [98]. Also, simulators should be capable of processing huge
amount of data with parallel, distributed algorithms on a simulated cluster
of commodity machines [42]. Moreover, a simulator must be able to compute
applications with high data intensity.
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Table 3.1: List of Cloud-Oriented Themes
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3.2.2 Infrastructure Implementation

Infrastructures spread across several data centres controlled by the organi-
zation or a third party, such as a co-location facility or cloud provider [123].
A simulator should be able to represent these infrastructure constructs (i.e.
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Figure 3.1: Criteria for Classification of MapReduce Simulators

basic build blocks). In general, simulators utilised Virtual Infrastructures
(VI) for infrastructure implementations. A VI is a software-based IT in-
frastructure being hosted on another physical infrastructure and meant to
be distributed as a service as in cloud computing’s infrastructure as a ser-
vice (IaaS) delivery model. It provides organizations, particularly smaller
ones that cannot afford to build their own physical infrastructure, access to
enterprise-grade technology such as servers and applications. The distribu-
tion is often done via the cloud, meaning over large networks such as the
internet.

Moreover, some simulators are built upon existing simulation frameworks.
The features of the existing platform are inherited. For instance, the MRSG
simulator is built on SimGrid and MR-CloudSim is built on CloudSim. Sim-
ulators in this category should have an underlying infrastructure model that
can interface with the MR framework.

The main features to consider for cloud simulators concerning this theme
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includes the cloud types, device interfaces, compatibility, deployment require-
ment, and development support [25].

3.2.3 Data Intensive MapReduce Applications

This criterion refers to the capability of simulators to run applications that
scale out on simulated environment to meet the demands of more than the
expected inflows of data [52]. The efficient of MR feature can be achieved
via the consideration and application of vital properties. These include piq
to accommodate large quantities of data and manipulate them efficiently;
piiq efficient programming model for data computation and analysis of data;
piiiq scalable underlying hardware and software; pivq the simulator should be
reliable.

For data intensive applications to foster high productivity, it is important
that the simulated system is scalable and the parameters of the applications
are appropriately tuned. The simulated system in this context refers to the
environment running the experiments.

3.2.4 Application Configuration Management

ACM allows a user to create templates to modify and manage application
configurations associated with server applications. ACM enables users to
update, and change configurations from a central location. This ensures
that applications are accurately and consistently configured [86]. ACM au-
tomates the configuration and reconfiguration of the servers and virtual ma-
chines (VMs)in the cloud, eliminating the requirement to manually change
or configure the servers, or write automation scripts.

The main requirements for ACM are piq It should enable users to access
any subset of versions of an object or to choose a version based on specified
properties piiq It should enable users to configure an object based on specified
properties of its components [82].

3.2.5 Data Replication and Locality

Data replication is the process of storing data at multiples locations. In
Hadoop, data locality means the computation is close to where the actual
data resides on the node instead of moving extensive data to computa-
tion [143]. This feature is crucial to jobs provision during data processing.

Also, simulators should be able to perform certain functions before qual-
ifying for this category. These include: piq continuous replication with many
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recovery points; piiq cross-platform replication (i.e., disk to cloud and vice
versa); piiiq replication of synchronized data with zero data loss.

Continuous replication with many recovery point: The distribution
of data across large scale databases is prone to system down times.
These down times affects the quantities of data stored cross various
nodes. It is imperative that continuous data replication is always ef-
fected to foster updated data on all storage points.

Cross-platform replication: Cross-platform replication focuses on the util-
isation of Internet Small Computer Systems Interface (iSCSI) network-
ing standard to set up shared-storage network on cluster computers for
user access. It is imperative that data snapshot replication between
local devices and the cloud is implemented effectively, to prevent un-
synchronized data stored across platforms.

Replication of synchronized data: The allocation of resource during task
processing ensures that algorithms can effectively execute their func-
tions. Hence, synchronized data foster high throughput for system
processes.

3.2.6 Network Packet-level simulation

This is used extensively for protocol design and evaluation. Simulator de-
signers utilise events to model real life expectations. Events in a packet
level simulation represent actions associated with processing a packet such
as transmitting the packet over a link. Thus the execution time in a packet
level simulation is proportional to the number of packets that must be pro-
cessed. This ensures that designs are assessed before implemented.

The factors to consider for this criteria are piq Simulator performance piiq
The amount of memory required piiiq The amount of computation time.

Simulator performance It is convenient to use the number of Packet
Transmissions that can be simulated per Second of wallclock time (or
PTS) as the metric to specify simulator speed. This metric is useful be-
cause given the PTS rate of a simulator, one can estimate the amount
of time that will be required to complete a simulation run. This is
possible if one knows the amount of traffic that must be simulated, and
the average number of hops required to transmit a packet from source
to destination.
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Table 3.2: Classification Framework
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The amount of memory required The simulator requires a certain amount
of memory to represent the state of each node, memory requirements
increase at least linearly with the number of nodes.

The amount of computation time The amount of time required to com-
plete a packet level simulation usually increases in proportion with the
amount of traffic that must be simulated [105].

3.2.7 Workloads Management and Resource Alloca-
tion

workloads require effective management to forestall processing challenges.
The challenges are (i) which processors to assign them, (ii) which schedul-
ing algorithm to utilize in the assignment and (iii) the estimation of their
processing duration. Resource allocation could often starve services if the
distribution is not managed precisely [108].

Furthermore, simulators in this category should possess workload man-
agement and resource allocation strategies. Resource allocation strategy is
an essential feature in the cloud computing environment as scarce resources
have to be put to optimal use and utilization. In the cloud computing envi-
ronment Resource Allocation is the process of allocating to the user applica-
tions according to the requirements and usage. A resource allocation strategy
for simulators should be based on such criteria as, application requirements,
service level agreements (SLA), over-provisioning and under-utilization of
resources. However, it should avoid the following criteria:

Resource contention situation arises when two applications try to access
the same resource at the same time.

Scarcity of resources arises when there are limited resources.

Resource fragmentation situation arises when the resources are isolated.
There will be enough resources but adequately to allocated to the
needed application.

Over-provisioning arises when the application gets surplus resources than
the demand.

Under-provisioning arises occurs when the application is assigned with
fewer numbers of resources than the demand [11,160].
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3.2.8 Workload Management Issues

Workload management issues are closely related to the previous criterion
and arise while running MR applications. The main issues are scalability of
application platforms, data locality, and replication [10].

Data distribution imbalances represent the presence of workload manage-
ment issues. In order to meet this feature, it is vital to assess how all the
workloads are distributed during data processing. The assessment is achieved
by implementing an efficient load-balancing algorithm to monitor workloads
during data processing. Also, there are challenges with monitoring which
data centre has more data.

3.2.9 Parameter Tunings and Scalability Analysis

This criterion refers to adjusting specific parameters of a model or algo-
rithm upwards or downwards. The adjustments are made to achieve an
improved result in the cloud infrastructure. Also, scalability analysis deter-
mines whether a proposed new algorithm is capable of increasing its capacity
with increasing demand. The algorithm capacity is the maximum workload
an algorithm can handle on a given device while still meeting its SLA (Ser-
vice Level Agreement) [103]. Simulators should be capable of supporting
changes in algorithms and performing scalability analysis to be considered
as supporting this criterion

Moreover, key parameters list should be measured and increased when
needed for a simulator to be considered in this category. Additionally, the
simulator itself should be able to scale with the increasing complexity of
the simulated system. The following factors can determine the availability
of this scalability analysis criteria. They are: load-, space-, space-time and
structural scalability [20].

Load Scalability A system has load scalability if it has the ability to func-
tion gracefully, i.e., without undue delay and without unproductive re-
source consumption or resource contention at light, moderate, or heavy
loads while making good use of available resources.

Space Scalability arises when there are limited A system or application is
regarded as having space scalability if its memory requirements do not
grow to intolerable levels as the number of items it supports increases.

Space-Time Scalability A system has space-time scalability if it continues
to function gracefully as the number of objects it encompasses increases
by orders of magnitude. A system may be space-time scalable if the
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Table 3.3: Classification Framework Cont’d
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data structures and algorithms used to implement it are conducive to
smooth and speedy operation whether the system is of moderate size
or large.

Structural Scalability We think of a system as being structurally scalable
if its implementation or standards do not impede the growth of the
number of objects it encompasses, or at least will not do so within a
chosen time frame.

Once the issues relating to this criterion has been tackled, an MR Sim-
ulator should be able to manage the issues of execution traces, production
workloads and resource allocation effectively.

3.2.10 Job and Task Scheduling Algorithms and Deci-
sions

Job scheduling is the process of allocating system resources to many different
tasks. Also, it determines which job to take from the queue and the amount
of time to allocate for the job. This ensures that all jobs are carried out fairly
and on time. Task scheduling in MRH involves assigning appropriate tasks
to the correct MR task [67].

Additionally, a simulator must be able to determine the following to qual-
ify in this category: piq CPU utilization; piiq throughput of all processes; and
piiiq turnaround time of various processes. However, if the requisite cre-
sources are not provisioned, the scheduling algorithms may not achieve high
throughput.

3.2.11 Replaying of Production Cluster Workloads and
Execution Traces

Workload traces are collected to track specific actions performed on MR
systems. They provide valuable information for troubleshooting MR issues
and performance [158]. A simulation’s efficiency could be measured by a
production workload’s replays and execution of traces. Since the nature of
an execution trace could determine the results obtained from an experiment.

The role clusters workloads and execution traces play are crucial to deter-
mining the appropriate MR simulator to be selected for research. Realistic
workloads allows cluster operators to run simulations with realistic inputs
and to amplifying the benefit of MapReduce simulators. Also, it allows MR
researchers to have a better understanding of the strengths and limitations
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Table 3.4: Technical Evaluation of MR Cloud Simulators
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of proposed optimization techniques. Workloads are expected to be repre-
sentative, that is, the synthetic workload should reproduce from the original
trace. These include: the distribution of input, shuffle, and output data sizes
(representative of data characteristics), the mix of job submission rates and
sequences, and the mix of common job types.

The primary properties observable in simulators in this category are piq
data characteristics, piiq job submission patterns, and piiiq common jobs.
Data characteristics refers to the distributions of input, shuffle, and output
data sizes of the synthetic workloads, which are representative and reproduces
from the original traces. The Job submission-rate per time unit is reproduced
only if the length of each sample is longer than the time unit involved. And
a representative workload should have the same frequencies of common jobs
as the original trace [36].

3.2.12 Stream Processing

This allows users to query a continuous data stream. The technology quickly
detects conditions within a short period of receiving the data. Stream pro-
cessing is also known as real-time/streaming analytics and complex event
processing [118,144].

In order to simulate streaming applications, the following properties must
be considered. They are piq Data Source and Transfer piiq Latency piiiq
Lifetime pivq Time/Order pvq Dynamism pviq Processing.

Data Source and Transfer describe the location of the data source in re-
lation to the stream processing application. The data source can be
external (e. g., an experimental instrument) or internal to the applica-
tion (e. g., the coupling of a simulation and analysis application on the
same resource). Output data is typically written to disk or transferred
via a networking interface.

Latency is defined as the time between arrival of new data and its process-
ing.

Throughput: describes the capacity of the streaming system, i.e. the rate
at which the incoming data is processed.

Lifetime Streaming applications operate on unbounded data streams. The
lifetime of a streaming application is often dependent on the data
source. In most cases it is not infinite and limited to e.g., the sim-
ulation or experiment runtime.
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Time/Order: Constraints defines the importance of order while processing
events.

Dynamism is variance of data rates and processing complexity observed
during the lifetime of a streaming application.

Processing This characteristics describes the complexity of data processing
that occurs on the incoming data. It depends e. g. on the amount of
data being processed (window size, historic data) and the algorithmic
complexity [31].

3.2.13 IoT-based Applications

IoT-based applications refer to systems that build on and utilize typical IoT
connections. IoT-based applications use machine learning algorithms to an-
alyze massive amounts of connected sensor data in the cloud. The require-
ments surrounding the IoT applications are broad and very dependent on the
type of sensor/application being implemented. IoT covers a wide range of
applications using different standards and technologies to serve a large num-
ber of applications. These applications have different network requirements,
different node distribution and different mobility scenarios. These connec-
tions include RFID, Wi-Fi, Bluetooth, and ZigBee. Also, this technology al-
lows comprehensive area connectivity using many technologies such as GSM,
GPRS, 3G, and LTE. These systems enable seamless information sharing
about the condition of things and the surrounding environment with people,
software systems and other machines [96]. The main requirements for IoT-
based applications are piq Application Requirement piiq Big Data Processing
Requirement piiiq Network and Processing Infrastructure Requirements.

Application Requirement The simulator should thus allow modelling of
different IoT-based applications depending on used big data process-
ing platforms such as MR. Since an IoT-based application generally
processes large data sets stored in clouds after being collected from
different devices.

Big Data Processing Requirement It is mandatorily required for a pro-
posed simulator to meet the big data processing requirement. Depend-
ing on various IoT-based applications, the simulator should offer the
capability that uses different big data processing technology to sup-
port batch processing or stream processing on the big data. Also, it
should allow modelling and simulating the execution of multiple jobs
simultaneously in a scalable manner as it happens in the real world.
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Table 3.5: Technical Evaluation of MR Cloud Simulators
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Table 3.6: A Summary of Strengths

Simulators Strengths/Focus

MrPerf [164]

(1) It helps in designing new high performance MR se-
tups and optimizing existing ones.
(2) It evaluates proposed designs and the topologies of
clusters.

MR-
Cloudsim [79]

(1) It provides a more accessible and cheaper way to
validate MR operations.

Mumak [79]
(1) It simplifies task execution without modelling the
shuffle and sort phase.

Network and Processing Infrastructure Requirements An IoT-based
application requires different types of storage that are commonly am-
bient in cloud-based data centres to store content from the various
devices. Thus, a storage layer should be modelled to simulate storage
(such as Amazon S3, Azure Blob Storage, Hadoop HDFS), retrieval of
any amount of data and subject to the availability of network band-
width. It is obvious that accessing files in storages at run-time incurs
additional delay for IoT-based application execution. This is due to the
latencies between the nodes and storages when transferring the data
files through the IoT network. Hence, the design of network between
nodes and storage is required to model the aforementioned delay [87].

Now that the evaluation criteria have been discussed, let us classify the
MapReduce simulators.

3.3 MR Simulators Classification frame work

The themes discussed in subsections 3.2.1 to 3.2.13 are utilised as evaluation
criteria to analyse and classify MR simulators. This section comprises two
subsections. First, it starts with classifying thirteen simulators. Second,
recommendations for simulator developers and other researchers in the field
are provided. Let us begin the discussion of the MR simulators employed for
the classification framework.

3.3.1 Classifying The Simulators

The MapReduce classification (MaReClass) framework displayed in figure 3.1
is applied to evaluate selected MR simulators as shown in tables 3.2 to 3.3.

52



Table 3.7: A Summary of Strengths

Simulators Strengths/Focus

SimMR [159]

(1) It allows the tuning up of parameters like schedulers
and job queues.
(2) It can assess various what-if questions and help avoid
error-prone decisions.

SimMapreduce
[152]

(1) It evaluates the performance of MR applications un-
der different scenarios.
(2) It provides essential entity services that can be pre-
defined in XML format.

IoTSim [180]
(1) It supports resource allocation by modelling large
scale multiple IoT applications to run simultaneously in
shared cloud data centres.

The MR simulators were chosen via academic search engines and online li-
braries after a systematic literature review (step 3). My analysis is done to
highlight the strength and weakness of each simulator and to recommend the
suitable ones for research.

Let us discuss the reviewed simulators (step 4).

3.3.1.1 MrPerf

The MrPerf simulator was designed as a tool for MR infrastructure. It helps
in designing new high performance MR setups and optimizing existing ones.

Architecture: The structure of MrPerf shown in figure 3.2 includes input
configuration that provides a set of files, and processes different processing
modules (readers). Also, these are responsible for initialising the simulator.
The ns-2 driver module provides the interface for network simulation. Sim-
ilarly, the disk module provides modeling for the disk I/O. All the modules
are driven by the MapReduce Heuristics module that simulates Hadoop’s
behavior.

Analysis: As a planning tool, it evaluates proposed designs and the
topologies of clusters. It can be utilised for making MR deployment far easier
via reduction in the number of parameters that have to be hand-tuned [164].
MrPerf captures various aspects of MR setup, and utilises the information
to predict expected application performance. The MR architecture enables
it to simulate task transfers to data nodes hence satisfying the packet-level
simulation requirement. As a design tool, it allows users to configure ob-
jects based on specified properties. Although based on Hadoop on, MrPerf
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Table 3.8: A Summary of Strengths Cont’d

Simulators Strengths/Focus

HSim [103]/
Hasim [85]

(1) It allows the computing of nodes with varied process-
ing capabilities to parallelly utilize MR applications.
(2) It allows packet-level simulations through the trans-
fer of tasks to node.

WaxElephant [129]

(1) It can synthesize workloads and execute them based
on statistical characteristics of workloads.
(2) It can load real MR workloads derived from the his-
torical log of Hadoop clusters, and It can replay the job
execution history.

MRSim [71]

(1) It models the behaviour of data mining algorithms
in hadoop environments.
(2) It analyses the behaviours of Hadoop job completion
times and hardware utilization.

MRSG [89]
(1) It is able to reproduce real executions of MR accu-
rately.
(2) It simulates MR with different cluster configurations.

BigDataSDNSim
[6]

(1) It offers holistic modelling and integration of MR
BDMS-based models that are compatible with SDN net-
work functions.
(2) It provides a framework for researchers to quantify
the impacts of MR applications in terms of a joint-design
of host and network.

does not simulate vital aspects of the platform, such as speculative execution
(which is, the reprocessing of straggler tasks during job executions) [165].

MrPerf cannot process streaming media, interface with IoT-based ap-
plications, tune parameters for large-scale setups with many variable, and
handle workload management issues. Also, it cannot handle reservation and
scheduling schemes.

My MaReClass framework has shown that MrPerf is not capable of sup-
porting most MR features. Therefore MaReClass does not recommend Mr-
Perf for MR research.

3.3.1.2 MR-CloudSim

MR-CloudSim implements the bare-bone structure of MR on the CloudSim
environment. This implementation aims to provide a more accessible and
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Figure 3.2: Mperf Structure [164]

cheaper way to validate MR operations.
Architecture: In order to implement MR in CloudSim, the MR model

was implemented outside of the original CloudSim code to minimize unpre-
dictable behaviour. This simulator provides a simplistic, single-state Map
and Reduce computation. Map class gets cloudlets and divides them into
a number of MapReduceFiles. MapReduceFile class defines cloudlet with
the additional characteristics (i.e., key, map/reduce maker, and pair parent
pointer) as input for MapReduce. Finally, Reduce class sorts the marked
MapReduceFiles according to their keys.

Analysis: It lacks sufficient support for network link modelling [29, 79].
Also, to provide a bridge between the two implementations, native CloudSim
code was modified [79]. MR-CloudSim does not utilize any typical MR Im-
plementation for experimentation. It cannot process streaming media inter-
face with IoT-based applications, job and task scheduling algorithms, data
replication and replay of production cluster workloads.

My MaReClass framework has shown that the MR-CloudSim is not ca-
pable of supporting most MR features. Therefore, MaReClass does not rec-
ommend MR-CloudSim for MR research.

3.3.1.3 Mumak

The goal of Mumak is to build a discrete event simulator for conditions when
a MRH scheduler performs actions on a large-scale workloads.

Architecture: Mumak comprises the following entities: client, job tracker,
a task tracker, and simulated engine [114]. As input, Mumak takes a work-
load and simulates them in a matter of hours, if not minutes, on very few
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machines. Additionally, this simulator utilizes data from real experiments to
estimate performance metrics (e.g., completion time) for Map and Reduce
tasks with different scheduling algorithms [180].

Analysis: Mumak simplifies task execution without modelling the shuffle
and sort phase. It omits resource utilisation, such as memory, CPU, and
network utilisation. Mumak can use the built-in MR schedulers as-is with-
out any changes. Mumak replays MR workload traces collected with a log
processing tool, called Rumen. It then reproduces all conditions of a produc-
tion cluster. The job submission, inter-arrival, dependencies, task completion
time are obtained by Rumen.

However, Mumak is not prepared for IoT-based applications, stream pro-
cessing, and practical parameter tuning. In cases where data from real ex-
periments does not exist, Mumak cannot estimate the completion time for
Map and Reduce tasks. The shuffle and sort phases are not modeled [163].

The MaReClass framework has shown that Mumak can perform MR sim-
ulations. Therefore, MaReClass recommends Mumak for MR research.

3.3.1.4 SimMR

The main goal of developing the MR simulator, called SimMR, was to design
an accurate and fast simulation environment [159]. It was also developed
for evaluating workload management.

Architecture: SimMR consists of the following three main components:
piq trace generator, piiq simulator engine and piiiq scheduling policy. These
components in its infrastructure implementation work to ensure the alloca-
tion of resources for optimization decisions in MR environments. SimMR has
scheduling policy that dictates the scheduler decisions on job ordering. The
policy also dictates the amount of resources to be allocated to different jobs
over time [93]. SimMR employs its simulator engine to engage in network
packet-level simulations but not as detailed as MrPerf [164].

Analysis: SimMR allows the tuning up of parameters like schedulers and
job queues. SimMR utilizes a propriety engine for its experimentation and
does not use any typical MapReduce Implementation. It simulates the MR
computing model and can assess various what-if questions and help avoid
error-prone decisions. However, SimMR cannot process IoT-based applica-
tions nor engage in stream processing.

The MaReClass framework has shown SimMR can handle data-intensive
MapReduce applications and replay collected job execution traces. There-
fore, MaReClass recommends SimMR for MR research.
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Figure 3.3: SimMapReduce Multi-layer Archtecture [152]

3.3.1.5 SimMapReduce

SimMapReduce(SMR) was designed to evaluate the performance of MapRe-
duce applications under different scenarios.

Architecture:The system design of SMR follows a multi-layered architec-
ture. It considers some features such as data locality and dependence between
Map and Reduce. These features made the simulator a flexible toolkit and
convenient for extension [152]. The main components are: piq FileManager
piiq MRMaster piiiq MRMasterScheduler pivq MRNode pvq MRBroker as seen
in figure 3.3. These components work to ensure the recording of details of
service demands including arrival time, deadline of tasks, locations and size
of files. Also, they handle task scheduling algorithms executions, and selec-
tion and tuning of key parameters such as input data, speed and reserved
MR slot numbers. Scheduling decisions including OS, master and broker
schedulings are tackled harmoniously as compared to MrPerf [165].

Analysis: SMRis uniquely capable of simulating various configurations of
clusters of shared-memory machines. It can also simulate parallel supercom-
puters or an extensive collection of networked computers. This simulator was
built on SimGrid as its infrastructure Implementations. It utilises a group
of java classes for its simulations.

However, it lacks the capability to interface with IoT-based applications,
replay the production cluster workload, and execute database traces. SMR
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does not support the processing of streaming data.
The MaReClass framework has shown that this simulator can perform

most MR simulations. Therefore, MaReClass recommends SimMapReduce
for MR research.

3.3.1.6 IoTSim

This simulator is built on top of CloudSim. IoTSim allows the simulation of
IoT applications and inherently supports big data processing. This simulator
inherently supports big data processing such as MR to facilitate research and
the analysis of IoT-Based applications. It analyses the impact and perfor-
mance of IoT-based applications [154,180].

Architecture: IoTSim has five main layers. These are the CloudSim core
simulation engine, CloudSim simulation layer, storage layer, extensive data
processing layer, and the user code layer [93].

Analysis: IotSim permits the modelling and simulation of network us-
age, storage and the processing of virtual machines. IoTSim supports the
data transfer via packet-level simulations. The simulator allows the tuning
of parameters to ensure the scalability of resources. IoTSim support re-
source allocation by modelling large scale multiple IoT applications to run
simultaneously in shared cloud data centres compared to MrPerf [165] and
MR-CloudSim [79]. IoTSim supports IoT-based big data processing using
the MapReduce model.

However, IoTSim does not utilize any typical MapReduce Implementa-
tion. IoTSim does not replay the production cluster workload, and execute
database traces.

My MaReClass framework has shown IoTSim is the only MR Simula-
tor capable of interfacing with IoT applications. Therefore, my framework
recommends IoTSim for MR research.

There are a couple offshoots from IoTSim which are used for various appli-
cations. IoTSim-Stream [16] is utilised for modelling stream applications in
cloud simulation. IoTSim-Edge [77] is used for modeling the behavior of In-
ternet of Things and edge computing environments. Iotsim-sdwan [7] is used
for interconnecting distributed datacenters over software-defined wide area
network (sd-wan). IoTSim-Osmosis [44] is used for modelling & simulating
IoT applications over an edge-cloud continuum. Lastly, IoTSim-Osmosis-
RES [149] is used for autonomic renewable energy-aware osmotic computing.
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3.3.1.7 HSim and HaSim

The HSim or HaSim simulator is designed for MRH applications. The con-
tributions of this simulator lie in its high efficiency to simulate the dynamic
behaviours of Hadoop environments.

Architecture: Many Hadoop parameters can be modelled in the simulator
by tuning their values [85, 103]. The critical parameters for running this
simulator include node-, cluster-, Hadoop system- and HSim parameters [17].
Also, it can be used to study the scalability of MR applications which might
involve several of nodes [172]. HSim/HaSim is suitable for heterogeneous
computing environments.

Analysis: HSim allows the computing of nodes with varied processing ca-
pabilities to parallelly utilize MapReduce applications. It allows packet-level
simulations through the transfer of tasks to node. Due to its Hadoop infras-
tructure implementation, it managements workloads and allocation resources
via several data nodes. HSim utilizes its two components (MapperSim and
ReducerSim) to write, copy and update files unto various data nodes for
task processing and trace executions. However, HSim does not support the
processing of streaming data and interfacing with IoT-based applications.

My MaReClass framework has shown that HSim is efficient and capable of
simulating MRH clusters as compared to MPerf [165]. Therefore, MaReClass
recommends this simulator for MR research due to the number of features it
supports.

3.3.1.8 WaxElephant

WaxElephant is designed to help Hadoop operators in scalability analysis
and parameter tuning.

Architecture: The simulator comprises a pluggable job scheduling module,
a load generator, and a simulator engine [129]as seen in figure 3.4. The
simulator’s job scheduling module receives jobs from the load generator and
monitors the status of computing nodes. The load generator is responsible
for producing MR jobs. It replays jobs collected from a historical log or
synthesizes a set of jobs that follow user-defined statistical properties [65,166].

Analysis: This simulator is capable of simulating the job execution phases
of Hadoop clusters compared to Mumak [114]. WaxElephant simulates the
complete progress process of map and reduce tasks as compared to Mr-
Perf [165]. Also, WaxElephant ensures parameter tuning required in every
efficient MR simulator. Some parameters utilised for simulating the cluster
environment include the cluster topology and the network transfer speed.
The network transfer speed allows the definitions of the various parameters
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required for the packet-level simulations. However, WaxElephant is incapable
of stream processing and interfacing with IoT-based applications.

WaxElephant has most of the features required to run MapReduce sim-
ulations according to my MaReClass framework. MaReClass recommends
WaxElephant for most MRH research.

3.3.1.9 MRSim

The goal of the MRSim project was to design and implement a MapReduce
simulator to model the behaviour of data mining algorithms in hadoop envi-
ronments.

Architecture: MRSim was created by extending the discrete event engine
used by SimJava to simulate the Hadoop environment [173]. MRSim utilises
its network topology component to initiate the connection between nodes
and for task transfers. The System is designed using object oriented based
models. The CPU, HDD and Network Interface models were designed to be
the basic blocks which can be grouped in PC machine entity as shown in
figure 3.5.Moreover, the network topology is responsible for monitoring job
completion times as part of the packet-level simulations. MRSim simulates
data splits locations and splits replications in local racks only. In contrast
to MPerf, MRSim simulates much more details for shared multi-core CPUs.
MRSim considers memory buffers, merge parameters, parallel copy and sort
parameters in its cluster configurations. The tuning of these parameters en-
sures accurate predictions of MR based applications. This simulator enables
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users to estimate the best job configuration to get optimum performance for
certain algorithms [128].

Analysis: MRSim offers functionalities for measuring the scalability of
MR applications. Also, it studies the effects of various Hadoop setup configu-
rations on the behaviours of these applications during job processing. MRSim
analyses the behaviours of Hadoop job completion times and hardware uti-
lization which are related to the Hadoop infrastructure implementation [71]
as compared to MrPerf [165].

However, MRSim cannot interface with IoT-based applications and re-
play production cluster workloads. No interface is provided to modify the
framework algorithms such as task scheduling and data distribution. Also,
MRSim cannot process streaming data.

MRSim has most of the features required for MR simulation according to
its assessment by my MaReClass framework. Therefore, MaReClass recom-
mends MRSim for MR research.
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Table 3.9: A Summary of Limitations

Simulators Limitations

MrPerf [164]

(1) It does not simulate vital aspects of the Hadoop
platform, such as speculative execution.
(2) It cannot handle reservation and scheduling schemes.
(3) It does not support the processing of streaming data.
(4) It does not interface with IoT-based applications.

MRSim [71]

(1) No interface is provided to modify the framework al-
gorithms such as task scheduling and data distribution.
(2) It cannot interface with IoT-based applications.
(3) It cannot replay production cluster workloads.

SimMR [159]
(1) It does not process streaming data and interface with
IoT-based Applications.

3.3.1.10 MRSG

The simulator aims to facilitate research on the behaviour of MR platforms
and possible technological changes.

Architecture: MRSG is developed on top of SimGrid, a simulation frame-
work for evaluating cluster, grid, and P2P (peer-to-peer) algorithms and
heuristics [128]. This simulator allows users to define task costs and inter-
mediary data [30]. MRSG provides a complete API to translate theoretical
algorithms, such as task scheduling and data distribution, into executable
code. Also, it provides the ease of changing and testing different cluster con-
figurations [89]. MRSG reproduces the real execution of MR accurately, even
with different cluster configurations. It utilises the simgrid APIs to initiate
task transfers between nodes on various clusters.

Analysis: MRSG provides a complete API to translate theoretical algo-
rithms, such as task scheduling and data distribution, into executable code.
The APIs allows users to configure the methods of objects to achieve specific
resource scaling targets. MRSG allows data replication, to enable or dis-
able the speculative execution as compared to MrPerf [165]. MRSG allows
the modification of MR mechanisms as compared to MRSim [71]. However,
this simulator cannot process streaming data and interface with IoT-based
Applications. It does not depend on any MapReduce Implementation for
experimentation.

My MaReClass framework has shown that the MRSG is capable of sim-
ulating MR effectively.Therefore, MaReClass recommends MRSG for MR
research.
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3.3.1.11 BigDataSDNSim

This simulator enables the modeling and simulation of the big data manage-
ment system YARN, its related programming models MR, and SDN-enabled
networks in a cloud computing environment.

Architecture: BigDataSDNSim (BDSS) is categorised into two main lay-
ers: programming and infrastructure and big data. This simulator offers
the holistic modelling and integration of MR Big Data Management System-
based models that are compatible with Software Defined Network(SDN) net-
work functions in cloud infrastructures. BigDataSDNSim (BDSS) provides
an infrastructure for researchers to quantify the performance impacts of MR

Table 3.10: A Summary of Limitations

Simulators Limitations

SimMapReduce
[152]

(1) System functionalities such as storage topologies and
friendlier GUI are absent. Also, redundant execution for
handing machines features and data loss are unresolved.

MR-
Cloudsim [79]

(1) It lacks sufficient support for network link modelling.
(2) It cannot represent real world systems.

WaxElephant [129]
(1) It does not support the processing of streaming data.
(2) It does not interface with IoT-based applications.

63



Table 3.11: A Summary of Limitations Cont’d

Simulators Limitations

Mumak [114]
(1) The shuffle and sort phases are not modelled.
(2) It cannot estimate the completion time for Map and
Reduce tasks in the absence of real experiments.

Hasim [85]
(1) It does not support the processing of streaming data.
(2) It does not interface with IoT-based applications.

MRSG [89]

(1) It does not have the ability to handle faults and
volatile environment.
(2) It cannot process streaming data nor interface with
IoT-based Applications.

applications in terms of a joint-design of host and network [6]. BDSS contains
a variety of application-network policies for diverse purposes (e.g., schedul-
ing and routing), which can be seamlessly extended without a deep under-
standing of the complex interactions among BigDataSDNSim’s components.
BDSS supports network packet-level as it closely monitors the bandwidth,
transmission-, processing-, and total completion times of tasks during data
processing.

In order to ensure that the design goals were met; key policies were
modelled and implemented. They are; MR application selection , HDFS
replica placement, VM-CPU scheduling, Traffic and routing algorithms poli-
cies. These policies ensure the support of BDSS for some of the primary
features required in an MR simulator.

Analysis: BDSS utilises the application selection policy to determine the
selection criteria based on given QoS. This policy meets the ACM feature
expected in MR simulators. The HDFS replica placement policy can be
extend to include general policies including scheduling and VM usage. The
features widely supported include tasks scheduling, data replication and the
MR computing model. However, this simulator cannot process streaming
data and interface with IoT-based Applications.

My MaReClass framework has shown that the BDSS is capable of sim-
ulating MR experiments related to SDNs effectively. Therefore MaReClass
recommends BDSS for MR research.

3.3.1.12 HDMSG-EXTENSION

This simulator was designed as tool that supports MR job execution phases
on large scale workloads. The simulator is group of classes that supports big
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Table 3.12: A Summary of Limitations Cont’d

Simulators Limitations

HSim [103]
(1) It cannot validate the accuracy of simulating the
behaviors of a larger scale Hadoop cluster.
(2) It does not interface with IoT-based applications.

IoTSim [180]
(1) It does not replay the production cluster workload
and execute database traces.

BigDataSDNSim
[6]

(1) It does not model and simulate of stream paradigms
in the context of big data Software Defined Network
powered cloud environments.
(2) It does not interface with IoT-based Applications.

data processing with Simgrid as the main backbone (available on GitHub 1).
HDMSG-EXTENSION (HDEXT) simulator permits the configuration of key
parameters to foster the scalability of workloads and efficient allocation of
resources. The parameters includes the number of nodes, CPU cores, band-
width, latency metrics, and the nodes’ speed. Other parameters that can
be defined include the number of mappers and reducers, file input size (in
megabytes), and block size (HDFS chunk size in megabytes).

HDEXT supports the configuration of network specific parameters to en-
sure efficient packet-level simulations. HDEXT is capable of simulating vari-
ous configurations of MR simulation, while replicating synchronize data with
zero data loss. The simulator supports the simulation of speculative exe-
cution compared to MrPerf [165]. Also, It allows the modification of MR
mechanisms as compared to MRSim [71]. The simulator utilise Simgrids
APIs to configured the methods of objects to translate algorithms such as
snapshot capturing and task monitoring into executable code. Also, HDEXT
applies Simgrids APIs to define task costs and intermediary data for various
data processing functions. The task cost allows the definition of simulation
start and completion times. However, the simulator cannot process stream-
ing data. Also, it cannot interface with IoT-based applications and replay
production cluster workloads.

My MaReClass framework has shown that the HDEXT is capable of
simulating MR effectively.Therefore, MaReClass recommends HDEXT for
MR research.

1https://github.com/EbenezerKomlaGavua/MapReduce_Snapshots
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Table 3.13: Yearly Improvements of MR Simulators

Simulators Year Improvements

Mumak [114],
MPerf [164]

2009

(1) Provides a discrete event simulator for
Mapreduce scheduler data processing on a
large-scale workload.
(2) Focuses on a realistic phase-level simula-
tor towards designing, provisioning, and fine-
tuning of Hadoop setups.

MRSim [71] 2010

(1) Captures the effects of different configu-
rations of MR applications. Models Hadoop
setup’s of an algorithm’s behavior in terms
of speed and hardware utilization.

SimMapReduce
[152],

SimMR [159]
2011

(1) Enhances the modelling of multi-layer
scheduling algorithms on user-level, job-level
or task-level by extending preserved classes.
(2) Supports fast simulation of complex
multi-hour workload in less than a second.

MR-
Cloudsim [79],

WaxEle-
phant [129]

2012

(1) Provide an easier way to examine MR
model in a data center.
(2) Synthesizes workloads and executes them
based on statistical characteristics of work-
loads.

3.3.1.13 DISSECT-CF

DISSECT-CF (as discussed in 2.4) supports data replication and locality and
IoT-based applications [84, 109]. It replays execution traces and processes
data intensive applications. However, it did does not support the MapReduce
computing model and stream processing.

My MaReClass framework has shown DISSECT-CF is efficient and capa-
ble of simulating most cloud computing experiments. Therefore MaReClass
recommends DISSECT-CF for research.
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Table 3.14: Yearly Improvements of MR Simulators Cont’d

Simulators Year Improvements

HSim [103],
Hasim [85],
MRSG [89]

2013

(1) Present accurate simulation of the dy-
namic behaviors of Hadoop clusters.
(2) Investigates the impacts of the large num-
ber of Hadoop parameters by tuning their
values.
(3) Supports the study of the scalability of
MR applications which might involve hun-
dreds of nodes.
(4) Provides functionalities absent in other
simulators, such as the speculative execution
mechanism and data replication.
(5) Allows the definition of task costs and
intermediary data through API functions,
rather then a single value.

IoTSim [180] 2017
(1) Offers support for the simulation of IoT
applications.

BigDataSDNSim
[6]

2021

(1) Provides support for simulating and eval-
uating the performance of big data applica-
tions in Software Defined Network enabled
cloud data centers.
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3.3.2 Evaluation of MapReduce Simulators

My MaReClass framework has shown the strengths and weaknesses of the
MR simulators as summarized in tables 3.6 to 3.12. A summarized assess-
ment of the yearly improvements provided by the MR simulators showing
efforts by researchers is shown in tables 3.13 to 3.14

A technical analysis summarized in table 3.4 to 3.5 shows specific details
associated with the features already discussed. These details show the specific
programming languages utilised in creating the simulators, the platforms
used on which certain simulators were developed and mostly especially the
last updated date of the MR simulators. The last updated date shows how
current a particular simulator is and why a researcher might opt to use
it for an experiment. Other features shown include the availability of the
simulator and its associated documentation and any existing energy model.
Such features are required by researchers in order for them to make informed
decision about the choice of MR simulators for research.

Each of the the MR simulators analysed support the feature discussed to
some extent. Therefore, equation 3.1 was utilised to determine the percent-
age representation of the support for the MR features as shown in figure 3.7.
However, in the situation where there is a partial support for a specific fea-
ture, equation 3.2 is applied to determine the percentage partial support.

PMSS � p
MSS

TNMSS

q � 100 (3.1)

PMSPS � p
MSS �B

TNMSS

q � 100 (3.2)

Where PMSS, MSS , TNMSS are the positive rational numbers for Per-
centage MR Simulators Feature Support, MR Simulators Feature Support
and Total Number of MR Simulators Feature Support. B is the positive ra-
tional number quantity of feature supported by a MR Simulator. PMSPS is
the the positive rational number for MapReduce Simulators Feature Partial
Support.

Figure 3.7 shows that aside MR-Cloudsim [79] and MrPerf [164], all the
other simulators support most of the features required for conducting MR
research with percentage representation above 50%. This makes most of the
simulators analysed recommendable for research and development as seen in
table 3.15.
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Table 3.15: Recommendation for MR Research

Simulators Recommended Not Recommended
MrPerf [164] – X
MRSim [71] X –
SimMR [159] X –
SimMapreduce [152] X –
MR-Cloudsim [79] – X
Waxelephant [129] X –
Mumak [114] X –
Hasim [85] X –
MRSG [89] X –
HSim [103] X –
IOTSim [180] X –
BigDataSDNSim [6] X –
HDMSG-EXT [64] X –

3.3.3 Recommendations

The systematic literature reviewed carried out in this chapter has highlighted
vital features required in cloud simulators for MR research. Therefore, it is
recommended that simulator developers focus on incorporating some of these
unavailable features into their works. Simulator developers are encouraged
to focus on notable features such as data locality and dependence between
Map and Reduce, as they provide essential services. Simulator developers
should focus on parameter tuning, scalability analysis, and job/task schedul-
ing algorithms and decisions. These features are the distinguishing factors of
the MR programming model. Therefore, neglecting them when developing
MR simulators will generate inaccurate results.

The researchers interested in monitoring speculative execution mecha-
nisms and data replication should select frameworks that can simulate cluster
environments. Simulating IoT applications is gradually becoming an impor-
tant area for researchers. Hence, simulators with IoT capabilities are recom-
mended for such research work since they have the ideal platform for IoT-
based applications. Most MR researchers prefer simulators that can replay
production cluster workloads. Therefore, simulators that replay production
cluster workloads with different scenarios of interest, assessing various what-if
questions and helping to avoid error-prone decisions, are recommended.

It is recommended for researchers interested in specific simulators, to
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evaluate the frameworks via MaReClass. Since it highlights the primary
features supported by MR simulators.

3.4 Summary

This chapter focused on the design and implementation of a MR Classifica-
tion framework(MaReClass). This was done via systematic literature review.

First, Thirty cloud computing simulator features were identified including
network topology support and job completion time estimation. Second, a
MR-specific evaluation refined the potential criteria to the thirteen themes
most relevant to Hadoop/MR simulations.

Third, MR simulators were identified through literature review. The
thirteen MR themes were utilised as evaluation criteria to assess the MR
simulators to determine, which specific MR experiments they were suitable
for. The evaluation work showed that the absence of any of the thirteen
criteria rendered detailed MR simulations incomplete.

Recommendations have been made for what simulator developers and
researchers should consider when planning their MR research.
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Chapter 4
Design and Implementation of a
Speculative Execution Strategy
on MapReduce Hadoop

4.1 Introduction

This chapter discusses my solution that tackles speculative execution on
MapReduce Hadoop (MRH). The chapter begins with a background dis-
cussion on MapReduce Hadoop to lay the foundation for my approach. In
the next section, we will discuss four algorithms that constitutes my solution.
The evaluation section discusses the implementation of the algorithms and
the results of the experiments carried out.
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Figure 4.1: Speculative Execution
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4.1.1 Background

4.1.1.1 Speculative Execution

The MRH model brings an essential benefit by automatically processing
faults. When a node is at fault or task is relative slow, MRH randomly
chooses another node to execute the straggler tasks. These faults are mainly
due to IO contentions, background services, hardware behaviours, unbal-
anced load or uneven distribution of resources and other reasons [132]. These
faults result in inconsistent speed between multiple tasks running the same
job. Without this mechanism of speculative execution, a job would be as
slow as the misbehaving straggler task. Some straggler tasks run signifi-
cantly slower than other tasks as shown in figure 4.1, where the straggler
tasks take more processing times than the normal MR tasks. This process is
Hadoop’s speculative execution [170].

4.2 Design of Speculative Execution Strat-

egy

This section focuses on the design of our Haspeck Solution. Haspeck is de-
signed to improve job performance on MRH. The approach consists of three
algorithms that are interconnected to ensure correct determination of task
run times, appropriate selection of backup tasks and reduction in the con-
sumption of system resources. The goals of this section are:

� To design an algorithm that captures task run times during data pro-
cessing on mappers and reducers. This is achieved by repetitive cap-
turing of the task run times at specific intervals.

� To design an algorithm that monitors task performance on their nodes.
The purpose of this algorithm is to ensure that, the straggler tasks are
rescheduled to available nodes and processed to reduce high consump-
tion of resources.

� To develop an algorithm that monitors tasks instances to ascertain the
completion of uploaded jobs. This algorithm is implemented with the
previous ones to ensure that all jobs uploaded are completely processed.

� To implement K-means clustering algorithm to determine straggler
tasks. The K-means clustering algorithm is applied with the Silhouette
Coefficient to validate the outputs of the clustered data sets.
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� To assess the algorithms on scalable configurations of MRH to prove
their applicability. A survey of industry and real-life MRH configura-
tions is conducted to ensure that the solution is applicable in real life
and industry.

4.2.1 Haspeck Solution on MapReduce

Our approach comprises of snapshot capturing, task performance monitor-
ing, and task instance monitoring algorithms as seen in algorithms 1 to 3,
and figures 4.2 and 4.4. Figure 4.2 shows the snapshots capturing state tran-
sitions during task processing. The algorithms works together to ensure that
straggler tasks are detected correctly and processed as backup tasks. This
approach is designed to dynamically collects real-time data from all types
of environments. This makes our approach more usable as compared to a
few existing approaches which struggle in heterogeneous environments. The
details of the algorithms are discussed below.

Snapshots Capturing Algorithm This algorithm initialises with task pro-
cessing to foster the capturing of task run times as seen in figure 4.4.
Nodes (N) are monitored before task processing begins. This is done to
capture the commencement of task processing (start times), as seen in
the snapshot capturing state diagram in figure 4.2. When job process-
ing commences, data is uploaded into the system for task processing to
commence.

The SnapStateFunction is activated, which causes Snap state (Cs) to be
updated to ready snap as seen in lines 1 to 3 of algorithm 1. However,
if a task is not ready (due to a fault), Cs is updated to pause snapping
and the system is checked (for the task to be restarted) as seen in lines
lines 4 to 7
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Algorithm 1 Snapshot Capturing Algorithm

Require: Variables: Ts � Task state, Cs � Snap state, N � Node
Require: Variables: QI � Tasks Instances, i � counter for QI

Require: Variables: Gs � captured snapshots
Require: SnapStateFunction: SnapState : Cs Ñ tsnap ready,

snapping, snap paused, snap completedu
1: for i   QI do
2: if Ts � ready then
3: Cs :� snap ready
4: else
5: Cs :� pause snapping
6: check the system and restart the task
7: end if
8: while Ts � running do
9: Cs :� snapping

10: Save the captured snapshots
11: Gs � Gs � 1snapping
12: end while
13: i � i� 1
14: end for
15: if Ts � terminated then
16: Cs :� pause snapping
17: end if
18: while i  � QI do
19: Cs :� snapping
20: Save the captured snapshots
21: if Ts � completed then
22: Cs :� snapping completed
23: Save the captured snapshots
24: Gs � Gs � 1snapping
25: end if
26: i � i� 1
27: end while
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While the updated data is being processed, (Cs) is updated from snap
ready to start snapping as as seen in lines 8 to 13. Task run times are
captured and saved as seen lines 9 to 10. Task run times are captured
on all nodes and saved on snapshots text files. Snapshots are captured
repeatedly for all the tasks running on nodes. The accumulated local
snapshots captured constitute the global snapshots (Gs).

The details captured include the start time, completion time, the node
on which the task is running, task identification, and task status. The
start and completion times are captured to monitor the rate of task
processing. The task status provides the task performance information.

Additionally, the TaskStateFunction is activated, which causes task
state (Ts) to be updated from ready to running as seen in the task
state diagram in figure 4.3. Ts remains unchanged until all the tasks
are completely processed. Then, it transitions from running to com-
pleted. However, when a task’s run time is unnecessarily longer that
expected, the task is suspended causes Ts to be updated to termi-
nated and Cs to pause snapping as seen in lines 15 to 17.

When a configurable percentage of the tasks have been processed with
captured run times; K-means clustering algorithm is employed to clas-
sify the captured data on the snapshots text files. The clustering is
utilised to determine the straggler tasks. The straggler tasks identified
from the clustered data are then processed as backup task on available
nodes. This causes Ts to be updated from terminated to rescheduled as
seen in figure 4.3.

When the tasks rescheduling is completed, the re-processing of the
backup tasks processing commences. This causes Ts to transition from
rescheduled to ready. The backup tasks are processed together with the
snapshot capturing until all the tasks are completely processed as seen
in lines 18 to 27.

Task Performance Monitoring Algorithm The task performance mon-
itoring and the snapshot capturing algorithms work concurrently to
ensure job performance improvement, as seen in figure 4.4.

Algorithm 2 is applied during task processing to monitor and evaluate
task performance. When data processing begins, all tasks (i.e., t �
t1,2,3,...n) are expected to process data at the same rate. These tasks
are allocated processes on compute nodes as seen in lines 1 to 2.

The TaskStateFunction is activated which causes Ts to be updated to
ready as seen in line 5. Tasks-instances (It, where t P It) are monitored
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Algorithm 2 Task Performance Monitoring Algorithm

Require: Variables: QI � Tasks Instances, TR � runningtasks
Require: Variables: Ni � Node, An � AvailNodes, TC � completedtasks
Require: Variables: T � tt1, t2, t3, ...tnu, Ts � Task State
Require: Variables: TET � task execution time, TMET � task maximum

execution time
Require: TaskStateFunction: TaskState : Ts Ñ tready, running,

termination, reschedule, completionu
1: Begin Tasks Processing in the Map or Reduce Phase
2: for t  � T do
3: statusÐ checkTasksStatus
4: switch pstatusq
5: Ts :� ready
6: case still Running:
7: monitor the progress of the task
8: Ts :� running
9: if TET ¡ TMET then

10: terminate the task
11: Ts :� terminated
12: reschedule straggler tasks on available nodes
13: Ts :� rescheduled
14: TR Ð pTR � tq
15: else
16: process all the tasks
17: end if
18: case finished Running:
19: Tasks completely processed
20: Ts :� completed
21: Output results
22: An Ð pAn �Niq
23: TC Ð pTC � tq
24: Qi Ð pQi � tq
25: end switch
26: end for
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to determine whether they are still running (TR) or are completely
processed (Tc) as seen in lines 6 and 18.

During task processing, tasks which have relatively longer running
times than the maximum execution times (TMET ) of the tasks being
processed are terminated as seen in lines 6 to 10. This causes Ts to
be updated to terminated as seen in line 11 and figure 4.3. The K-
means algorithm is applied to cluster all the captured task run times
as seen in figure 4.5. The tasks identified as straggler tasks are resched-
uled as seen in lines 12 to 14. Ts transitions from terminated through
rescheduled to ready as seen in figure 4.3.

The states of the tasks which do not exhibit relative longer run times,
transition from ready through running to completed. This enables their
compute nodes to be availed for processing backup tasks, and also
reduces the number of task instances. These processes are seen in
lines 18 to 26.

Task Instance Monitoring Algorithm A vital aspect of our approach
is monitoring task instances (Qi). The number of tasks are monitored
throughout their processing stages as is seen in algorithm 3. When the
number of active tasks are exhausted, job processing ends as seen in
lines 3 to 4. Otherwise, the task processing continues until the jobs
generated are completely processed as seen in lines 5 to 8.

Also, backup task instances are monitored during their processing until
they are all completely processed.

We can now discuss the K-mean Clustering Algorithm in the context of
our approach.
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Figure 4.4: Structure of Task Performance Monitoring Algorithm

4.2.2 Identifying Straggler Tasks with K-means Clus-
tering Algorithm

The identification of straggler tasks during job processing is a challenge that
required addressing in our approach. This is achieved via the adoption of a
clustering technique, after task run times have been captured via snapshots
capturing.

Clustering was considered because it is the type of unsupervised machine
learning technique which aims at partitioning sets of objects into groups
called clusters. These clusters can be mutually exclusive or they may overlap,

Algorithm 3 Task Instance Monitoring Algorithm

Require: Variables: QI � Tasks Instances
1: Check the number of Tasks Instances
2: for t P T do
3: if |Qi| � 0 then
4: Stop tasks monitoring
5: else
6: Continue with tasks monitoring
7: end if
8: end for
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Table 4.1: KMeans Clustering Silhouette Scores of No-Disrupted Data Clusters

Figure Number Silhouette Scores
4.6a 0.685
4.6b 0.604
4.6c 0.638
4.6d 0.615
4.7a 0.985
4.7b 0.985
4.7c 0.985
4.7d 0.985

depending on the approach used. It is in contrast to the supervised learning
techniques where the goal is to make predictions about output value y given
an input object or instance x [40]. This made the choice of clustering suitable
for our approach since there was no need for training any data set to achieve
our groupings.

Additionally, we considered the K-means clustering as the clustering tech-
nique for our approach because it is a hard clustering algorithm. K-means
partitions a set of n objects into k clusters, so that the resulting intra-cluster
similarity is high but the inter-cluster similarity is low [21]. It was the most
suitable clustering algorithm for our approach since two distinct groups are
required; thus fast tasks and straggler tasks.

Our approach applied the K-means clustering algorithm to categorise task
run times (dataset) received from the snapshot capturing algorithm. The
data set saved on snapshots text files during the map or the reduce phases
are clustered into fast and straggler tasks as seen in figure 4.5.
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Figure 4.5: Structure of Our Approach Implementation with Kmeans Clustering
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Figure 4.6: Kmeans Data Clusters of Tasks Execution times from 20 Nodes by
8 Cores Data Centre with No-Disruption

K-means optimizes the distance between the task run times to their centre
points, as seen in equation 4.1 [177].

JpV q �
Cḑ

i�1

Ci̧

j�1

p|xi � yj|q
2 (4.1)

The attributes of the data set captured for the clustering include; host-
name, task id, and partial execution times of the task’s progress. K-means
utilizes the task id and the execution times to cluster the data into two cat-
egories (fast and straggler tasks). The cluster with shorter average of the
partial execution times are the fast tasks, while the remainder of the tasks
are considered as straggler tasks.

Also, the K-means algorithm is implemented in our work as a decision-
making tool. Thus, it directs whether to process backup tasks or not. There
are cases where the dataset presented for clustering is uniform. However,
K-means still tries to cluster it. Thus, clustering results require validation
to determine the goodness of fit of the data clusters created as seen in fig-
ures 4.6a to 4.6d.
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In order to ensure the effective creation of clusters, four clustering val-
idation techniques were considered. These are Dunn [68], Davie-Bouldin,
Calinski-Harabasz indices, and the Silhouette score [157]. However, the
silhouette score was selected for our approach. The first three techniques
were not implemented because of the following reasons: first, although the
Calinski-Harabasz index defines how dense and separated a cluster is, the
absence of upper- and lower-bounds ranges made it inapplicable. Second,
the Davies-Bouldin index utilizes zero (0) as the upper bound; and values
closer to zero indicate a better partition. Moreover, the Davies-Bouldin index
did not have a lower bound. In the case of the Dunn index, higher indices
indicate better clustering. However, the absence of a lower bound makes it
inapplicable in our context. Since, without a closed range of clustering vali-
dation values, a deterministic algorithm based on them would be unreliable.
Also, the presence of the upper-lower bounds fosters faster approach and
makes the choice inappropriate for our research.

Nevertheless, the Silhouette score (Sx) utilizes an easy-to-evaluate metric
to determine the goodness of the clustering. Silhouette score values have a
closed range of -1 to 1 [182]. Thus, the silhouette score was chosen for this
work.

Algorithm 4 is utilised to identify the suitability of a clustering output for
fast and straggler tasks. This algorithm validates the silhouette scores after
the clustering exercise. It utilizes the values to decide whether to process
backup tasks or not. For instance, figures 4.6a to 4.6d show very close data
clusters which are difficult to ascertain the fast tasks or poor-performing
ones. However, figures 4.7a to 4.7d show well defined data clusters which
will require rescheduling of the straggler tasks.

Algorithm 4 Kmeans Clustering V alidation Algorithm

Require: : Set the Si threshold lower � bound as Zx � 0.685
Require: : Set the Si threshold upper � bound as Zy � 0.99

1: Initialize the clustering output as an array Arks
2: for k � 1 to A.length do
3: if Si ¡ Zx & Si ¤ Zy then
4: Reschedule tasks on available nodes
5: else
6: Run the tasks on current nodes
7: end if
8: end for

The results from the silhouette score are utilized to determine the good-
ness of the K-means clustering. If the silhouette score is higher than the
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Figure 4.7: Kmeans Clustering of Run Times from Experimental Scenarios

threshold lower-bound value Zx but less than the threshold upper bound
value Zy; backup tasks are required for the data cluster with the straggler
tasks as seen in line 3 . Otherwise, no intervention is applied to the task
executions. The remainder of the tasks are then processed on their original
nodes as seen in line 6.

Our silhouette score threshold lower and upper bound values were de-
termined from several clustering experiments carried out on our data set to
ensure that the range given satisfies all possible scenarios.

Let us now discuss the evaluation of the implementation of the job im-
provement strategy.

4.3 Evaluation of Haspeck

The consistent global snapshot strategy was assessed through three major
experiments to prove its applicability. They are (i) strategy implementation
overheads experiments (ii) job performance experiments (iii) evaluation with
Baseline Methods. The experiments enabled us to draw the necessary con-
clusions on the benefits of using our approach. The experiments aimed to
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detect and process straggler tasks as backup tasks during job processing to
improve job performance. Snapshots of task run times were captured during
job processing which were classified with the K-means clustering algorithm
into 2-k categories (fast and straggler tasks). The straggler tasks were then
processed as backup tasks on available nodes.

The experimental setup is described in the next sub-section.

4.3.1 Experimental Setup

A laptop (AMD Ryzen (TM)) 7- 4700U with Radeon Graphic, CPU@ 2Mhz,
(8 CPU), 16GB, Ubuntu 20.04 LTS was used for the evaluation of our ap-
proach. The following objectives were considered in order to achieve the goal
of the experiment:

 To determine the commencement time of job processing.

 To determine the completion time of job processing.

 To capture snapshots of task execution times.

 To capture task run times at specific intervals.

 To terminate straggler tasks.

 To restart straggler tasks on available nodes.

The first two bullet points foster the determination of the overheads intro-
duced by our approach. The last four bullet point ensures the measurements
of the jobs performance improvements. The termination and restart of the
straggler tasks reduces the high consumption of system resources.

The experiment was conducted on our extension of HDMSG MapReduce
(a MapReduce simulator with Simgrid as the main backbone) available on
GitHub 1. HDMSG was designed to run on single computer to simulate MR
Hadoop cluster behaviours, and as such no server was used in our experiment.
The choice of HDEXT was informed by the application of our MaReClass
framework. MaReClass recommended HDEXT as capable of simulating most
MR experiments (discussed in sub-section 3.3.1.12).

With respect to core MR simulations, simulators in general, have not
earn new features in the past seven or more years, therefore, it was feasible
to apply HDMSG for our approach. Although, there are few MR simulators

1https://github.com/EbenezerKomlaGavua/MapReduce_Snapshots
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with extensions to other features such as streaming and IoT; the core be-
haviours relevant for our research have not changed. This makes our choice
for HDMSG suitable for this experiment since it is a simulator capable of
simulating MR behaviours such as speculative execution and data replica-
tion. Therefore, we extended it with extra methods to make it capable for
running our experiments. Also, what was utilised for our experiment was
more advanced than the original HDMSG. Furthermore, HDMSG runs on
a top of the field simulator (Simgrid with regular updates; the latest being
v3.32 (e8d2ff8) updated in Oct 4, 2022).

In order to utilise HDEXT for the development of our Haspeck solution,
a couple of features had to be added to the simulator to make it applica-
ble. Several methods and classes were created for specific functions. A task
monitoring method was created to monitor the tasks running on the nodes
on the MR Hadoop cluster. This method was responsible for terminating
long running tasks. This method is not a node but a method which utilises
the APIs of the Simgrid simulator to monitor the task processing speeds on
nodes. A task rescheduling method was created to move the terminated tasks
to available nodes for reprocessing as backup tasks. This method took over
from the default task scheduling algorithms (FIFO scheduler) whenever there
was the need for task reprocessing. A snapshot capturing method was cre-
ated to capture the start times and completion times of tasks on the nodes.
These captured run times were saved on text files and used for the kmeans
clustering.

A disruption injection (extra task injection) method was created to send
extra (additional) tasks unto arbitrary nodes to serve as background noise.
These extra tasks (created randomly) caused actual the map or reduce task
to have longer run times on their respective nodes. The intensity of the
extra tasks range between twenty-five percent to ninety-five percent. The
intensity was increased gradually to correspond with the duration of the
mapper execution times. The costs for the extra tasks were determine by the
equation 4.2.

C � CF � phdfs chunck size bytes{mappersq (4.2)

Where C is the positive rational numbers for processing the extra cost
for a specific mapper execution time. The CF (Calibration factor) is a pos-
itive rational number that determines how long an extra task should run
to cause sufficient disruption. The Calibration factor is an integral part
of the HDMSG simulator which is employed to create task costs. The
hdfs chunck size bytes is the block size and mappers is the positive rational
number for the number of mappers per node.
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Table 4.2: Set up of HDMSG-EXT

Features HDMSG-EXT
No. of Nodes 20+
No. of Cores 8+
Mappers per node 5+
Reducers per node 5+
No. of Tasks 5+
Block Size(MB) 128+
File Input Size(MB) 1024+
Bandwidth 1Gbps+

The methods for the creation of map and reduce tasks were extended to
foster the scalability of the framework. A node scheduling class was created
to foster the chronological processing of data nodes to enable the capturing
of snapshots.

Ten-equal-length smaller mappers were created (from bigger mappers) as
checkpoint barriers to enable the snapshot capturing with simgrid. This was
done to ensure that the snapshot algorithm could capture the start-times and
completion-times of the smaller mappers. The experiments required that the
timelines of task processing were captured. Therefore, the checkpoint barrier
allowed the job processing performance of larger mappers to be monitored
and captured as snapshots.

In setting up the experiments, the infrastructure of HDEXT with Simgrid
were defined. The infrastructure was defined in terms of the following: the
number of nodes, CPU cores, bandwidth, latency metrics, and the nodes’
speed (in a picluster.xml file). Additionally, the number of mappers and
reducers, file input size (in megabytes), and block size (HDFS chunk size in
megabytes) were configured (in a config.txt file) to foster MR computations
as seen in table 4.2. Table 4.2 shows the upgrades made to the original
version of the HDMSG simulator to enable us perform our experiments.

Traffic is generated by the HDMSG.c file at the instance of job processing.
The distributedHdfsChunks class of the simulator causes tasks to be created.
These tasks are created via the calibrations of the parameters set in the
config file, HdmsgHost.c and HdmsgHost.h files of the simulator. The tasks
are forwarded to the nodes configured in the picluster file for processing
to commenced. The map tasks are processed first, which are followed by
shuffling and reduce tasks. The output of task processing is generated when
all the tasks created are completely processed.

To determine real life MR cluster infrastructure and application config-
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Table 4.3: Survey Table 1

Features
SandBox
Values

Standard
Values

Advance
Values [70]

Hadoop Cluster
Mode

Fully Distributed

Number of
nodes

2+ 4 - 10+ 12+

Network
Bandwidth

(Gbps)
1 2 10

Total HDFS
Capacity

128GB 8 - 80 TB 144TB

Disk Capacity 32 GB 256 GB - 1 TB 1.2TB
Total System
Memory(GB)

16 64 GB 128

CPU Speed
(Ghz)

2-2.5 2.5 - 3.5

Logical CPU
cores

16 24 - 32 48

No. of Mappers 11+ 16-21+ 32+
No. of Reducers 8 8-19+ 22+
Block Size (MB) 128 256

urations, two surveys about Hadoop cluster requirements were carried out.
The survey focused on identifying typical Hadoop configurations and organi-
zations actively utilizing hadoop clusters for their data processing in industry.

Several keywords such as hadoop clusters/ requirements, industry hadoop
cluster infrastructure/ setup/ configurations were employed on search engines
to locate current MRH cluster configurations.

Hadoop cluster configurations such as basic or standard deployments,
advances deployments, Hadoop cluster hardware recommendations for batch
processing, in-memory processing, medium data size and large data size were
identified from the first survey.

The first survey found that the most used CPU speed was 2-2.5Ghz,
data block sizes were between 128-256MB, network bandwidth was 1-10Gbps,
cluster nodes was four to forty, number of mappers and reducers were mostly
five to twelve per node, disk capacity range was 32 GB to 1.2TB and total
system memory was 16-512 GB. All Hadoop cluster configurations modes
were fully distributed as seen in tables 4.3 to 4.5.
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Table 4.4: Survey 1 Table 2

Features

Titanwolf
Processing

Values [155]
Hadoopilluminated Values [70]

Med. End
Values

High End
Values

Hadoop Cluster
Instal. Mode

Fully Distributed

No. of Nodes 20 18 12
Network

Bandwidth
10 Gbps 1 Gbps 10 Gbps

Disk Capacity 1.2TB 4 TB 36 TB
Total System

Memory
64 - 512GB 16 GB 48 GB

CPU Speed 2-2.5Ghz
Logical or

Virtual CPU
Cores

8 8 12

No. of Mappers 5 8
No. of Reducers 5 8

Block Size 256MB 128MB 256MB

The second survey found over one hundred and twenty top companies
actively utilising Hadoop clusters from several websites. Notable companies
amongst the list include Alibaba, AOL, Yahoo, Spotify, Last.fm, Ebay, Uni-
versity of Glasgow-Terrier Team and Criteo. From this list, the modal CPU
cores per node was eight and the modal cluster nodes was forty as seen in
table 4.6.

The findings of the survey fostered the selection of four infrastructure
scenarios (displayed in table 4.7) for our experiments. The experimental
scenarios comprise data nodes that ranges from twenty to one hundred nodes.
The range of CPU cores was eight to sixteen. Aside the values displayed in the
infrastructure scenarios table, network bandwidth of 10Gbps was simulated
for all infrastructure scenarios. Thee smallest data block size employed was
128MBs. All the experiments were run on fully distributed hadoop cluster
mode to ensure conformance with industry standard.

In terms of modelling real life applications on the above infrastructures,
the details below were identified from the survey. The number of mappers
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Table 4.5: Survey 1 Table 3

Features
Dzone [50] Packtpub [120]

Batching
Values

In-Memory
Values

Batching
Values

Hadoop cluster
instal. mode

Fully Distributed

Number of
cluster nodes

10 20

Network
Bandwidth

10Gbps

Total system
memory

60 GB 76GB 28GB

CPU speed 2-2.5Ghz
Logical or

virtual CPU
cores

12 16 8

No. of Mappers 8 12 5-6
No. of Reducers 8 4-5

Block size 128 MB

per node was obtained via equation 4.3, as stipulated in 2:

Y �
2Cores

3
(4.3)

where Y is a positive rational number that represents the number of mappers
per node. CORES is a positive integer which represents the CPU cores per
node.

The number of reducers per node was obtained via equation 4.4, as stip-
ulated in 3:

R � 0.95�N � T (4.4)

Where R and T are positive rational numbers representing the number of
reducers per node and the mapred tasktracker reduce tasks maximum value
respectively. T is the maximum number of reduce tasks that will be run
simultaneously by a task tracker (2 was used, since it is the default maximum
value). N is a positive integer representing the number of nodes running on
the cluster.

2https://data-flair.training/forums/topic/how-one-can-decide-for-a-job-how-many-
mapper-reducers-are-required/

3https://hadoop.apache.org/docs/r1.2.1/api/org/apache/hadoop/mapred/-
JobConf.html
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Table 4.6: Survey Two

SN Company
Cluster
nodes

Total
CPU
cores
nodes

Core
per
Node

Ref.

1 AOL 150 300 2

[161]
2 Last.fm 100 800 8
3 Spotify 1650 43000 26
4 eBay 532 4256 8
5 Cornell Uni. Web Lab 100 800 8
6 Alibaba 15 120 8

[142]

7 RightNow Technologies 16 128 8
8 Socialmedia.com 14 112 8
9 Criteo 2000 48000 24
10 Cooliris 15 120 8
11 Yahoo 4500 36000 8

[48]
12 LinkedIn 4100 82000 20
13 Rackspace 30 60 2
14 Facebook 1400 11200 8
15 Fox Audience Network 140 1120 8
16 Neptune 200 1600 8

[124]
17 Rapleaf 80 640 8
18 Uni. of Twente, DB Group 16 32 2
19 Uni. of Glasgow - Terrier Team 30 120 4
20 Contextweb 50 400 8

The File Input Size (in MB) for our experiment was obtained via equa-
tion 4.5

F � 512� p128 � pM � 4qq (4.5)

Where F and C are positive rational number representing the file size in
MB and the total number of mappers required for processing the file input
respectively. The five hundred and twelve (in MB) is the original input file
size of HDMSG and the one hundred and twenty-eight (in MB) is the block
size for the our extension (HDEXT). The default number of mappers on
HDMSG architecture is four.

Haspeck applies to both mappers and reducers. However, the evaluation
was mostly centred on mappers; since the mappers and reducers showed the
same workload pattern and behaviours after a series of initial experiments
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Table 4.7: Experimental Set up

Features Scenario 1 Scenario 2 Scenario 3 Scenario 4
No. of Nodes 20 20 40 100
No. of Cores 8 16 8 8
Mappers per

node
5 5 11 5

Total
Reducers

38 38 76 190

Total
Mappers

107 213 213 533

File Input
Size(MB)

13696 27264 27264 68224

Chunk 0
Chunk 1
Chunk 2
Chunk 3

Chunk 5
Chunk 4

Mapper

Mapper

Mapper

Reducer

Reducer

Output 0

Output 1

Input
(HDFS)

Intermediate Results

output
(HDFS)Map Phase Shuffle/sort Reduce Phase

processed data

Saved
Snapshots

Saved
Snapshots

Overheads Introduced on the 
Map Phase

Overheads Introduced on the 
Reduce Phase

Figure 4.8: Overheads Introduced by Our Approach on MapReduce

of applying Haspeck. This is irrespective of the fact that the map function
is commutative, and reducers apply a reducing function which is mostly an
associative and commutative. As such, the reducers were not ignored in the
development of Haspeck.

4.3.2 Determining the Overheads of Haspeck

This experiment determined the overheads introduced into the infrastructure
by the implementation of our approach. The overheads were caused by the
effects of the snapshots capturing process on the infrastructure as seen in
figure 4.8. The comprehension of the effects of the overheads fosters the
appreciation of the challenges and benefits in applying Haspeck on MRH.

The experiment was conducted on the four data centre scenarios discussed
in sub-section 4.3. The input file size was applied in modelling the execution
time of the mappers and reducers. The calibration for processing duration
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Figure 4.9: Cluster Overheads

of a mapper or a reducer was achieved via the get map cost method (for
mappers) and get reduce cost method (for reducers) of the simulator. This
method receives inputs from the file size, calibration factor, flops per mb and
the speed of a host. These inputs are utilized to set the duration for mappers
or reducers. As such, larger files had increased job processing duration while
smaller files had a lesser processing periods.

Mapper tasks with execution times from 0.5 to 2000 seconds were uti-
lized. The range for the experiment was derived via the multiplication of the
single values of one, two and five with the power series of ten. The value
of negative one produced 0.5 seconds and we scaled the executions until the
graph converged at 2000 seconds. This process was applied in order to obtain
a scalable range of task run times. The experiment was executed until the
values converged at 2000 seconds.

Since our approach involves capturing snapshots during the job process-
ing of mappers (i.e. smaller mappers created as checkpoint barriers discussed
in 4.3.1)), two measurements were taken. These are (i) the commencement
of jobs processing and (ii) The completion of the processing of jobs. To
determine the overhead on a single mapper, the differences between the com-
pletion times of the processed portion of the task and the start times of
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Figure 4.10: Strategy Overheads

the next portion of that same task are determined (that is, the period for
snapshot capturing). The summation of the differences of these values (i.e.
differences between completion times and start times) is subtracted from the
task’s run times (which is the ten-equal-length smaller mappers) as shown in
figure 4.10. The value realized is the overhead on a single mapper as shown
in equation 4.6 and figure 4.9.

QH � 100�
100pTH

E � p
°n�1

i�1 t
H,i
c � tH,i

s qq
TH
E

(4.6)

Where QH is the overhead of applying our approach on a mapper H in
percentage. TH

E is the task runtime of the given mapper. tH,i
s is the time

the ith snapshot of the mapper H was started to be captured. Similarly,
tH,i
c is the time when we finished capturing the snapshot of the same task.

Equation 4.6 is exemplified in figure 4.10.TH
E is obtained from subtracting

U from V. The letters a and c are the start times of the first two smaller
mappers, whilst b and d are the completion times of the first two smaller
mappers. Hence subtracting b from c produces the first gap (x1) introduced
because of our approach. These gaps x1 to x9 are summed up and divided
by the task run times to generate the overhead of a task.

The overheads of a single mapper were measured on the four data centre
scenarios as seen in tables 4.8 and illustrated in figure 4.9.

Scenario 20N�8c The impact of applying Haspeck was gradual. The over-
heads were high at the initial stages of the experiment. However, the
impact of applying Haspeck caused the high overheads to reduce grad-
ually with longer runtimes, as seen in figure 4.9. Therefore, in such
small infrastructures, our approach is only advisable to use with long
run times.

Scenarios 20N�16c and 40N�8c exhibited similar overhead behaviours
during task runs. Therefore, only the 40 by 8 set up was represented in
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Table 4.8: Strategy Implementation Overheads

Scenario overheads (%)
Map time (ms) 20N�8c 20N�16c 40N�8c 100N�8c

0.5 96 66 66 51
1 53 53 53 39
2 45 36 36 23
5 28 29 29 16
10 24 20 20 12
20 18 15 15 8
50 8 7 7 3
100 7 5 5 1
200 5 3 3 � 0
500 3 1 1 � 0
1000 1 � 0 � 0 � 0
2000 � 0 � 0 � 0 � 0

figure 4.9. The initial overheads observed were 1.5% lower (relatively)
than the 20N�8c data centre scenario. The figure shows that these
larger infrastructure scenarios converged faster than the previous. This
figure shows that the overheads of larger data centres improve better
than smaller ones when Haspeck is applied. Also, the overheads of
applying our approach with long run times have a higher chance of
improving than smaller ones.

Scenario 100N�8c demonstrates how Haspeck deals with larger data-centres.
The overhead further reduced over the above scenarios. The initial
overheads were 1.9% lower (relatively) than scenario 20N�8c and 1.3%
lower (relatively) than the other two scenarios. Also, as the task run
times increased, the overheads reduced drastically. Therefore, applying
Haspeck to this scenario shows that initial overheads are mostly lower
in large data centres. Additionally, it shows that with large configura-
tions, the overheads reduce faster with long mapper run times than in
the other scenarios.

The costs on the four algorithms of Haspeck appeared fixed and proportional
at the onset of data processing. However, as more jobs were processed, the
costs became variable, causing the overheads to reduce with time as seen
in figure 4.10. Moreover, the graphs was drawn relative to the disruption
introduced. Therefore, as more jobs are being processed, the disruption
reduced which caused the overheads to reduce.

93



100

1000

10000

100000

1000000

10000000

0.5 10 200

D
is

ru
p

ti
o

n
s 

To
ta

l E
xe

ct
u

ti
o

n
 T

im
es

 (
s)

Single Mapper Execution Time (s)

20 by 8

20 by 16

40 by 8

100 by 8 G
ra

p
h

  d
es

ig
n

ed
 w

it
h

 lo
g.

 s
ca

le

Figure 4.11: Disruptions Introduced on Experimental Scenarios

Therefore, from our experiments and industry surveys, we recommend
that infrastructures with fourteen to twenty cluster nodes and eight cores
should use our scenario 20N�8c data centre configuration. Infrastructures
with twenty-five to thirty five cluster nodes with either eight or sixteen cores
should use our 20N�16c data centre configuration. Infrastructures with forty
to sixty cluster nodes should use our 40N�16c data centre configuration.
Finally, infrastructures with one hundred to one hundred and fifty cluster
nodes should use our 100N�8c data centre configuration. Moreover, our
Haspeck solution is applicable to all the above configurations and the above
recommendations can be customized to suit user preferences.
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4.3.3 Job Performance Experiments

This experiment determined the impact of Haspeck on job performance. Four
measurements were taken to evaluate our approach. These are:

� Total execution times when there was no disruption on the MapReduce
set-up (i.e., a dedicated hadoop cluster scenario).

� Total execution times when disruptions were introduced on arbitrarily
nodes on the infrastructure (as discussed in sub-section 4.3.1). These
disruptions were created to interfere with job processing, so that the
task will have long run times than expected (this experiment was meant
to represent a hadoop cluster hosted in a multi-tenant environment).
These disruptions were introduced via the running of extra tasks on
arbitrarily nodes which were not linked to the original map or reduce
tasks. The extra tasks were designed to consume extra system re-
sources during the map and reduce phase. The disruptions represent
background services, IO contentions or uneven distribution of resources
on data nodes for industry research.

� Total execution times when tasks were terminated and processed as
backup tasks resuming from their snapshots on a different host (this
represents situations when mappers can restore their mid-execution
states (reschedule)). This is applied by applications with the capabili-
ties of storing their states during data processing. When such applica-
tions get terminated abruptly due to factors contributing to specula-
tive execution; the applications resume on available nodes and continue
from the point their processing was halted.

� Total execution times when tasks were terminated and processed as
backup tasks (restart) on a different host (providing insight into appli-
cations which cannot take advantage of state restoration)

These measurements were utilized to draw the graphs shown in figure 4.12.
The graphs of no disruption, reschedule and restart were drawn relative to
the disruption graphs which are shown in figure 4.11. Because we wanted
to observe the job performance improvements when Haspeck was applied in
spite of the disruptions introduced into the system. As such, the graphs are
not a time-series plots.

The disruption is at the 100% mark on figure 4.12; and its effect is com-
pletely reduced at the horizontal line at 0% on each graph. Therefore, job
performance improvement of the graph is seen by the reduction of the heights
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of the bars in the figure towards the 0% mark. The details of the impact
of Haspeck on the various scenarios are discussed below.

First, figure 4.12a displays the impact of Haspeck on the 20N�8c data
centre scenario. The job improvement on this data centre was gradual as seen
in the figure. In relation to the disruption graph, the slope began from above
80% at 0.5 seconds and improved to below 40% at 5 seconds. The job per-
formance improved to below 15% at 10 seconds. The application of Haspeck
caused job performance to improve from 10% to 2% from 20 seconds to
200 seconds relative to disruptions. Furthermore, figure 4.12a showed that
reschedule backup tasks improve better with Haspeck than restart backup
tasks relative to disruption.

Second, scenario 20N�16c data centre demonstrated considerably job
performance improvement than the previous data centre; since most of the
graphs were below the 80% mark as seen in figure 4.12b. In relation to the
disruption graph, the slope began from above 73% at 0.5 seconds to below
40% at 5 seconds. The job improvement increased to below 20% relative to
disruption at 20 seconds. Also, tasks that transfer their states perform better
with restart than those that cannot. Tasks with long run times exhibited big
improvements, as their values were below 10% relative to disruption graphs.
This means that as the jobs are processed for long tun times, the effects of
the disruptions were reduced as the graphs approached the 0% mark. For
industry practitioners, it is advisable to apply restart for long run times.

Third, scenario 40N�8c data centre improved more, compared to the
previous two scenarios as seen in figure 4.12c. In relation to the disruption
graph, the job improvement began from above 70% at 0.5 seconds to below
40% at 5 seconds. Job improvement continued to below 5% at 200 seconds.

Fourth, scenario 100N�8c improved much more than all the previous
three data centre scenarios. The graph showed a better job performance
improvement from below the 60% at 0.5 seconds relative to the disruption
graph, as seen in figure 4.12d. At 5 seconds, the graph was below 40%.
The job improvement continued to 10% and below at 20 seconds. The job
performance continue to an average of 2% at 200 seconds. The figure showed
that jobs with long run times has higher chances of improvement in this data
centre. As most of the graphs were below 10% relative to the disruption
graph. Also, this shows that they were closer to 0% mark; hence the effects
of the disruption introduced were reduced. Also, reschedule backup tasks
improved much better than the (restart) backup tasks. Since the reschedule
backup tasks have the capability to save their states, as such, they continued
data processing when they were moved to other nodes. In contrast, the
restart backup tasks had to begin all over, which delayed their task processing
duration when moved to other nodes.
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Figure 4.12: Jobs Improvement Experimental Scenarios (Drawn Relative to Dis-
ruptions)

In general, the graphs in figure 4.12 show an improvement of Haspeck
against disruptions from 0.5 seconds to 200 seconds, as the height of the
bar reduced as the execution times increased. Also, all the four data centres
showed an average of 8% job improvement at the 20 seconds mark. This
means after the first 20 seconds, jobs on all the data centres perform at an
optimum rate with a higher chance of job improvement when Haspeck is
applied. Let us now discuss the evaluation of our approach with baseline
methods.

4.3.4 Evaluation with Baseline Methods

In order to evaluate the performance improvements of Haspeck on MRH,
selected baseline methods discussed in section 2.6 were executed on our ex-
perimental set-up and the results compared. The methods utilised were the
Hadoop Naive, Longest Approximate Time To End (LATE) [179] and the
Self-Adaptive MR Scheduling Algorithms (SAMR) [33]. Appropriate pre-
cautions were taken to ensure that the values produced for analysis were
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accurate. These include:

 The application of the exact total execution times for no disruption and
disruption as discussed in section 4.3.3.

 Utilisation of the same data centre configurations applied to Haspeck to
foster effective comparison.

 The utilisation of the captured snapshots to determine the progress score.
Regarding Hadoop Naive, a task is declared as straggler task if its
progress score is smaller than the average progress score of all running
tasks minus 20%. In the case of LATE, straggler tasks which were
determined via the progress score applied in Hadoop Naive, was applied
together with a static variable (speculative cap which is analogous to
10% in its algorithm). These straggler tasks were determined on nodes
with progress rate greater than the slowNodeThreshold as stipulated
in [179]. In the case of SAMR, weights were computed and stored in an
xml file after job processing. These weights were utilised together with
the slowNodeThreshold applied by LATE to determine the straggle
tasks as stipulated in [33].

 Jobs were processed with the base line methods for the same duration as
our approach to ensure efficient comparison.

The measurements recorded after these experiments were utilised to draw
the graphs in figure 4.13. Let us now discuss the observations made after the
experiments.

4.3.4.1 Experimental Discussion

Experiments were carried out on the four data centre configurations discussed
in sub-section 4.3.3.The measurements were compared with Haspeck. The
graphs of all the methods were drawn relative to the disruption graphs as
seen in figure 4.13. Therefore, job improvements is seen by how close an
approach is to the 0% mark.

In determining the job improvements via the application of Haspeck to the
selected Baseline methods; we first computed the averages of all the relative
job improvements. Then we computed the ratio of the average relative job
improvements of a particular baseline method to the ratio of the average of
the relative job improvements of restart (i.e. Haspeck) as seen in equation 4.7.

JIR � pARJIB{ARJIHq (4.7)
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Figure 4.13: Comparison with Baseline Methods (Drawn Relative to Disrup-
tions)

Where JIR is a positive rational number representing the Job Improve-
ment Ratios. ARJIB is a positive rational number representing the Average
Relative Job Improvement of Baseline Methods. ARJIH is a positive rational
number representing the Average Relative Job Improvement of Haspeck.

Let us now highlight the job improvements observed with the data centre
configurations.

First, on the 20N�8c data centre configuration, Haspeck showed 1.67,
1.51 and 1.39 times average job improvements over Hadoop Naive, LATE and
SAMR as seen in figure 4.13a. Second, on the 20N�16c data centre configu-
ration, Haspeck showed 1.70, 1.52 and 1.40 times average job improvements
over Hadoop Naive, LATE and SAMR as seen in figure 4.13b. Third, 1.72.
1.54 and 1.43 times average job improvements were observed over Hadoop
Naive, LATE and SAMR in the 40N�8c data centre configuration. This is
seen in figure 4.13c. Fourth, the 100N�8c data centre configuration, Haspeck
showed 2.18, 1.84 and 1.56 times average job improvements over Hadoop
Naive, LATE and SAMR as seen in figure 4.13d.

In conclusion, larger data centres have a higher chance of improvement
when applying our approach. Haspeck works better with larger data centres
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(d) 5-k Data Clusters

Figure 4.14: Kmeans Data Clusters of Tasks Execution times from 20 Nodes by
8 Cores Data Centre with Disruption

because their sizes fosters scalability with long run times, which also ensures
reduction in system overheads.

4.3.5 Disruption identification with Kmeans Cluster-
ing

The task run times captured during the experiments were utilized for the K-
means clustering. Two categories of results were observed after the cluster-
ing. Disruption-induced and disruption-free categories. The straggler tasks
formed the disruption-induced data clusters are seen in figures 4.7a to 4.7d.
The large magnitudes of the straggler tasks, enabled k-means to properly
create the two categories.

To determine the number of k-clusters suitable for our work, we generated
several clusters from our experimental data set. A selected twenty data
clusters, generated from disruption-free and Disruption-induced categories is
shown as seen in figures 4.15 and 4.16. A visualization of some of the data
clusters (k=2 to k=5) for both categories is seen in figures 4.6 and 4.14.
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Table 4.9: KMeans Clustering Silhouette Scores of Disrupted Data Clusters

Figure Number Silhouette Scores
4.14a 0.985
4.14b 0.688
4.14c 0.604
4.14d 0.641

The silhouette scores of figures 4.6a to 4.6d show a reduction in value as the
number of data clusters increased as seen in table 4.1. These values are closer
to our silhouette score threshold lower-bound value. Furthermore, the values
of the silhouette scores of figures 4.14a to 4.14d showed similar reduction as
the number of data clusters increased as seen in table 4.9.

Although the visualization shows stragglers situated at the top of the
sub-figures in figure 4.14. The silhouette scores is confusing. This is due
to the fact that the euclidean distance between the centroids decreases as
the number of data clusters increases. This affects the decision making of
the silhouette scores and when to process straggler tasks are backup tasks
(generally, affecting the efficiency of Haspeck).

In general, the time bound for k=2 to k=20 data clusters are the same,
as such, the choice of k=2 for Haspeck inures to efficient decision making.

4.4 Summary

This chapter focused on designing and implementing a job performance so-
lution for MapReduce Hadoop. First, we reviewed a few concepts related to
MapReduce and Hadoop to provide the necessary background for our Haspeck
solution. Second, the three algorithms that form the intricate components
of our solution were described in detail. They are snapshot capturing, task
and node performance monitoring and task instance monitoring algorithms.
K-means clustering algorithm was applied to classify the captured snapshots
into straggler and non-straggler tasks. Silhouette score was implemented in
the K-means to validate the data clusters and also to determine when to
process straggler tasks as backup tasks. Our solution was evaluated after an
industry-specific survey on Hadoop implementations. This was to ensure that
the solution was applicable to industry and real life. Several experiments were
conducted, including the strategy implementation, job performance experi-
ments and evaluation with baseline methods. The experiments revealed that
implementing Haspeck reduced overhead as the mapper run times increased.
Also, the job performance improved on mappers with long run times.
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Figure 4.15: Kmeans Clusters on a No-Disrupted Data Center Scenario
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Figure 4.16: Kmeans Clusters on a Disrupted Data Center Scenario
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Furthermore, our evaluations helped us to conclude that, larger data cen-
tres with longer run times have a higher chance of improvement in apply-
ing Haspeck. These larger data centres operate by scaling available resources
to meet user demands which is implemented in auto-scaling mechanisms on
clouds. As discussed in previous chapters 2.7, auto-scaling approaches are
designed and implemented on MRH and other cloud infrastructures to foster
resource provisioning to meet user demands. This synchronises with Haspeck
aim for the improvement of job performance.

In the next chapter, we shall design an ASM Model to analyse the be-
haviours of cloud auto-scaling mechanisms. This is achieved via investigating
auto-scalers developed on DISSECT-CF.
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Chapter 5
Modelling Auto-Scaling Mecha-
nisms in Clouds

5.1 Introduction

In the previous chapter, we have discussed several job improvement ap-
proaches on MR. In those discussions, we saw that, the primary objective
of these approaches is to enhance resource provision to meet user demands
whilst reducing costs on the clouds. Furthermore, we discussed the benefits
of applying these approaches on cloud frameworks including MR.

In this chapter, we focus on analysing the behaviours of auto-scaling
mechanisms on cloud mechanisms. Cloud mechanisms are the essential com-
ponents that make up the architecture of a cloud environment. These mech-
anisms include several techniques and technologies to ensure the availability,
flexibility and cost savings of the resources provided over a distributed net-
work.

Our discussion in section 2.8 showed that several ground models for clouds
and distributed systems exits, however, these models lack components for ex-
tension to auto-scalers. The models did not discuss the job execution phases
of auto-scalers; neither did they highlight the specific features for vertical
and horizontal scaling of resources. Also, the existing ground model did not
highlight state changes during job processing; neither did they evaluate spe-
cific features of auto-scalers (such as VM provision thresholds). The absence
of these primary components makes the utilization of these ground models
unsuitable for auto-scalers. Due to these gaps, we set out to develop a ground
model and its refinements for evaluating auto-scalers.

The development of our Astam model first focused on investigating the
behaviours of auto-scalers on DISSECT-CF and literature. The investiga-
tions serve as an inspiration towards the identification; and the general com-
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prehension of the behaviours of shared components required for our model.
As such the best way to achieve this was to see several auto-scalers. These
components are documented and utilised for the design of Astam.

Once the ground model was established, we validated and refined it to
ascertain its suitability and applicability to other auto-scalers. The modeling
was done to show that, although the auto-scales were developed on different
cloud frameworks, they exhibited similar behaviours during job processing.

5.2 Investigating Auto-Scaling Mechanisms

In this section, the auto-scaling mechanisms offered alongside DISSECT-CF
are reviewed.

Many auto-scalers are evaluated through simulations. So, our investi-
gations were made of one such simulation environment. DISSECT-CF was
chosen for this work because it has been shown through research, to be
more efficient for auto-scaling experiments as compared to other simulators.
DISSECT-CF (discussed in sub-section 2.4) has five major subsystems which
allows the monitoring of auto-scaler behaviours.

In this research, the simulator’s infrastructure management system (i.e.,
which models cloud behaviour with its physical & virtual machines, net-
working and storage) is the main focus. In building our investigations, the
simulator’s auto-scaling related examples1 have been examined. The ex-
amination process involved the analysis of the internal components of the
simulator designed to ensure the auto-scaling resources. The specific actions
taken include:

� Running several experiments with the existing auto-scalers with jobs
from the Parallel Workloads Archive 2.

� Observing the the source codes closely before and also at run time to
comprehend how the algorithms are put together.

� Extracting the auto-scaling part from the rest.

� Based on the observation, two extra auto-scalers (one multimode and
one simple) were created.

� These are presented here as the model.

1available at https://github.com/kecskemeti/dissect-cf-examples and at
https://github.com/kecskemeti/dcf-exercises

2https://www.cse.huji.ac.il/labs/parallel/workload/logs.html.
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The auto-scaling mechanisms were built on several components presented
in figure 5.1. They can be grouped into two categories (i.e., simple and multi-
mode auto-scalers). The simple auto-scalers respond to demands by increas-
ing or decreasing the VM instance counts according to workload demands.
The multimode auto-scalers, in addition to exhibiting simple auto-scaler fea-
tures, monitor the VM counts during scaling operations while controlling the
utilisation of VMs. VM counts are monitored to assess the general perfor-
mance of the infrastructure to know when to increase them to meet workload
demands or decrease them to reduce consumption of system resources. Also,
VM utilisation are controlled via the engagement of a timer and an energy
meter which assess the resource usage within specific durations.

All auto-scalers are founded on a handful of classes like the Virtual Infras-
tructure (VI), JobArrivalHandler, BasicJobScheduler (BJS), JobLauncher,
JobToVmSchedulers, GenericTraceProducer (GTP) etc. VI has the dedi-
cated role of managing virtual machines belonging to particular applications.
JobArrivalHandlers abstract the application model with the help of replay-
ing customisable parts of pre-recorded workload traces. BasicJobScheduler
combines with the JobArrivalHandler’s functionality to process jobs. The
BasicJobScheduler takes basic job scheduling decisions as it does not have
information on other applications compared to the VI which has other classes
to supply the necessary information for decision making. Therefore, the Ba-
sicJobScheduler uses cluster utilisation patterns to monitor the VM utilisa-
tion on the infrastructure. Now let’s focus our attention on the available
auto-scalers offered with the simulator:

ThresholdBasedVI Mechanism (Threshold) is governed by a lower and
an upper threshold. As a multimode auto-scaler, it observes virtual ma-
chines utilisation and makes decisions based on how it relates to the
two thresholds in the VI. It removes VMs that are not used even to the
extent of the lower threshold. In contrast, it adds new VMs when the
number of VMs in the managed infrastructure are utilised more than
the upper threshold.

VMCreationPriorityBasedVI Mechanism (Vmcreate) is a variation
of the above approach, but instead of removing VMs, it tries to create
them first (i.e., it anticipates growth).

PoolingVI Mechanism (Pooling) is designed to keep a given number of
completely unused VMs for newly arriving jobs. As a multimode auto-
scaler, it extends the VI to accept new jobs anytime during the appli-
cation run time.
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Figure 5.1: Architectural view of Auto-Scaling Mechanisms on DISSECT-CF

VMOptimisationBased Mechanism (Vmopt) allows VMs created for
one kind of executable to be repurposed to execute others, fostering
VM reuse. Vmopt utilises a reservedset to monitor the VI for any
changes. As the number of VM request increases, the available VMs in
the reservedset are provisioned. It does not create new VMs.

FixedVM Mechanism (Fixed) is designed to accept jobs for processing
and scaling with reduced system resources. It is the only auto-scaler in
the simple category. It utilizes a basic scaling mechanism (called sim-
scaler) on a production cloud infrastructure. The simscaler combines
with the GenericTraceProducer (a class responsible for jobs generation)
to provision VMs and jobs for job processing. It generates VMs into a
simple IaaS infrastructure to process the generated jobs.

The knowledge of these auto-scalers helped us to design our Astam model,
supported by the ASM theory (discussed in 2.10.1). Now, Let us discuss the
design of our Astam model.
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5.3 Design of Astam Model

The modelling process incorporates all the various stages auto-scalers un-
dergo to provision resources. Our Astam model was developed following the
ASM refinement method (as design rationale) (discussed in 2.10.1.2), which
is presented in 5 steps. They are:

Step 1: Design and Analysis of Astam’s framework as displayed in fig-
ures 5.2 and 5.5. The framework shows our model’s ground model
for the two categories of auto-scalers. Figure 5.2 shows the basic ele-
ments (universes interacting with signatures with arrows) utilized in
designing our model. The arrows represent the relations between the
signatures and the universes while provisioning resources during the
multimode or simple auto-scaling. The signatures are declared through
functions created in accordance with sub-section 2.10.1.3. Figure 5.5
shows universes interacting with unidirectional and bidirectional ar-
rows. The bidirectional arrows represents information flow between
universes while the unidirectional arrow represent the expected state
changes during ASM runs.

Step 2: Design and implement the model’s ASM Transition Rules to reflect
the job execution phases. Five ASM rules were defined and discussed in
conjunction with the model refinement 2.10.1.2 and definitions 2 and 4.
This is to ensure the provision of details and clarifications of our model
as we progress towards lower levels of abstractions.

Step 3: Refine algorithms from the two categories of auto-scalers offered
with DISSECT-CF, with Transition Rules. This step was modelled
simultaneously with the previous step to ensure model coherence.

Step 4: Evaluation of the model (with existing auto-scalers) with the Tran-
sition Rules and evaluation goals. This process was achieved in con-
junction with the ASM refinement method (an ASM benchmark). The
evaluation goals were employed to check whether the application of our
model to existing auto-scalers produced ASM refinements which are
equivalent to our ground model. The evaluation goals were selected in
according to the application our transition rules and their alignment to
control state ASMs.

Step 5: Model Validation with validation goals on test cases created from
existing auto-scalers. The test cases are sets of codes abstracted from
the formalized algorithms of our auto-scalers to determine if the algo-
rithms satisfy our ground model requirements (universes and signatures
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Figure 5.2: Basic elements of the ASM model for Auto-Scaling

correctly. Computational Tree Logic (CTL) formulae were applied for
our model’s verification. CTL formulae were applied because they are
generally utilized for the model checking and verification of ASM mod-
els. Also, they provide the logical tools for checking the equivalence of
transitions systems.

5.3.1 Astam’s Universes

As part of step 1 of the design of Astam, let us discuss the universes utilised.
These universes are required to develop our ground model, as discussed in
sub-section 2.10.1.3. These existing universes (JOB, ARESOURCE, PRO-
CESS ) required redefinition to make them relevant to Astam.

The JOBHANDLER: is the universe that processes traces and sends its
jobs to a job launcher in the multimode auto-scaling mechanisms. In
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the simple auto-scaling mechanism, it is responsible for sending jobs to
VMs for processing.

The JOBLAUNCHER: is the universe that emits jobs for the multimode
mechanisms. This deals with the ordering and timing of new jobs before
they are released for processing.

The JOB : is the data submitted by a Jobhandler to be executed on a
node. It contains binaries of an application, libraries and resource
descriptions.

The ARESOURCE : Abstract resources represent the major resources
required for job processing. These include virtual appliances & infras-
tructures, cores, cloud service, CPU architecture, memory, and disk re-
quirements. Different categories of resources (i.e. heterogeneous nodes)
are also part of Aresources.

The VM: is the virtual machine required for processing jobs in an auto-
scaled infrastructure.

The TIME : is the duration a submitted job must spend being processed
by virtual machines. This is usually measured in seconds.

The PROCESS : is responsible for ensuring that installed tasks receive
the necessary attention from the Aresources and the VM.

The SERVICE : is responsible for service provision in multimode environ-
ments. Services are supplied per user requests at the time on service
clouds.

The VI : is responsible for managing VMs for applications in multimode
environments.

The SIMSCALER: is responsible for ensuring basic scaling activities in
simple auto-scaled environments.

The BASICJOBSCHEDULER (BJS): utilises clustering patterns to
monitor VMs in simple auto-scaled environments.

The GENERICTRACEPRODUCER (GTP): provisions sets of jobs
for specified durations in simple auto-scaled environments.

In order for our universes to be relatable, there is the need for ASM
functions. Let us now discuss the design process of the functions applied
in Astam. These functions are also part of step 1 of our model’s design.
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Figure 5.3: Job State Transitions
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Waiting

Figure 5.4: Process State Transitions

5.3.2 Astam’s Functions

Astam’s Functions were created per the specifications of control state ASM
(described in definition 2) and supported with State Transition Diagrams
in figures 5.3 and 5.4. Figure 5.3 shows the job states transitions when
mapped to a VM for processing. A job initially mapped to a VM is in the
submitted state. It is then transformed into a task for processing. When the
task receives the attention of the CPU, its state changes to running. If the
time allocated is sufficient, the job will be fully processed and moved to done
state. However, if the time runs out, the job is rescheduled for a later time,
which moves it to waiting until a VM is available for processing. However,
if an unexpected event such as system interrupt occurs, a job in the running
state is moved to the failed state.

Additionally, figure 5.4 shows process state transitions. When a process
is created to assist in job processing, it arrives in the new state. It then tran-
sitions to the ready state when it has sufficient aresouces to commence job
processing. The state changes to running when a job is installed a task and
has began processing it. This state will continue until the task is completely
processed. However, if the allocated aresouces are exhausted, the task is
rescheduled and the process state transitions to waiting.

The activities of the functions and the state diagrams illustrate the control
(operation) refinement steps of an ASM model. Our functions are shown in
table 5.1 and discussed below:

JobState depicts the state transitions of job during data processing. Jobs’
states transition from submitted to either done or failed as shown in
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Figure 5.5: Ground Model for ASM Auto-Scaling
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Table 5.1: List of ASM Functions

JobState: Job Ñ {idle, submitted, waiting, running, failed, done}
JobTime: Time Ñ {idle, started, processing, stopped, completed}
ProcessState: Process Ñ {new, ready, waiting, running, stopped}

SystemRequest: Request � AResource Ñ { true, false}
SystemState: InfraState Ñ {idle, active, waiting, busy, stopped, done}

JobOutcome: Job Ñ { success, failure}
Compatible: Select(attr(j),attr(vm)) Ñ {undef , true, false}

AddVM: VM � Job Ñ {undef , true, false}
MappedJob: Job � VM Ñ {undef , true, false}

MappedVM: Job � Process Ñ {undef , true, false}
ReqResources: SystemReq. � AResource Ñ {undef , true, false}

JobRequest: Job � AResource Ñ {undef , true, false}
ProcessRequest:Process � AResource Ñ {undef , true, false}

Event: Task Ñ { start, aborted, terminated}
InitReslist: IReslistÑ { IRLactive, IRLidle, IRLbusy}
QueReslist: QRlistÑ { QRLactive, QRLidle,QRLbusy}

JobHandReslist: JobhReslistÑ { JHRLactive, JHRLidle, JHRLbusy}
InitReqFunctions: InitReqFunÑ { IRFactive, IRFidle, IRFbusy}

JobProcessing: JobprocÑ { JPactive, JPidle, JPbusy}
Job: Process Ñ Job

Jobhandler: Job Ñ Joblauncher, Job Ñ VM
Submitted: Job � VM Ñ {undef , true, false}

BelongsTo: AResource � VM Ñ {undef , true, false}
DestroyVm: VM Ñ {undef , true, false}

ThresholdLevel: TLevel Ñ { undef , Tmin, Tavg, Tmax}
VmPosition: VMPost Ñ {undef , VMF , VML}

ReusableVm: RVM Ñ {undef , Qmin, Qavg, Qmax}
VmPool: VmpoolÑ {undef , Qmin, Qavg, Qmax}

NumofServiceRequest: NumofSerReqÑ { Nummin, Numavg, Nummax}
VMCount: NumofVMsÑ { Nummin, Numavg, Nummax}

VmUtilLevel: VmUL Ñ {undef , UtVMmin, UtVMavg, UtVMmax}
SimulationDuration: SimDurÑ { SDmin, SDavg, SDmax}

AveragQueTime: AvgQT Ñ { AQTmin, AQTavg, AQTmax}
AveragUtilPM: AvgUPM Ñ { AUPMmin, AUPMavg, AUPMmax}
WorkloadPrediction: PredWorkload Ñ { PWLactive, PWLinactive}
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figure 5.3 as explained above. The transitions occur per the application
of an ASM run during task processing.

JobTime depicts periods reflective of job states during task processing. It
combines with JobState to describe at what period a particular state
change occurred.

ProcessState illustrates process state transitions from new to stopped during
job processing as shown in figure 5.4 as explained above.

JobOutcome shows the results of an ASM run. It shows either success or
failure after job processing.

JobRequest invokes jobs generation which are mapped to VMs for task pro-
cessing. It combines with ProcessRequest to maintain a job and process
requests during job initialising and handling.

ProcessRequest invokes the provision of processes and maps them to tasks
for task processing.

MappedVM monitors the state of VMs and jobs connection for job initial-
ising and handling. It combines with MappedJob to maintain the link
between jobs and VMs.

BelongsTo This function ensures that there is enough aresources to support
a VM before it is selected.

Compatible ensures that the VM selected is the appropriate one. This is
done to prevent the selection of VMs with less utilisation which can be
destroy within a short period.

AddVM attaches a VM to a job at the VMs selection stage of job queuing.
It combines with Compatible and BelongsTo to foster the VM selection
process.

DestroyVM is activated to destroy VMs when the need arises. It is utilised
by auto-scalers to remove unused VMs. additionaly, it is used by certain
auto-scalers to monitor the duration VM utilisation. When the VMs
exceed those durations, DestroyVM is activated to remove them.

NumofServiceRequest monitors the number of service requests made during
job processing. It determines whether to scale up or scale down resource
provisions in workload prediction auto-scaling.

SystemRequest is the refinement for ProcessRequest and JobRequest.
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ReqResources is the refinement for MappedVM and MappedJob.

JobProcessing is the refinement function for the provision and monitoring
the vital portion of the job handling. It ensures that sufficient time is
allocated for tasks. It also models the outputs of job processing.

VMCount monitors the number of VMs provisioned for task processing.
If the number of VMs available are below the expected threshold, a
situation of VMs shortage is created. This causes jobs to queue. This
function is applied in the queuing phase of our model.

InitReslist is a refinement for the provision and monitoring of the aresources,
universes and functions required for the first phase (initial phase) of our
model.

QueReslist is a refinement for the provision and monitoring of the are-
sources, universes and functions required for the third phase (job queu-
ing) of our model.

Systemstate is a the refinement for ProcessState, JobState, and JobTime to
reflect system state changes.

VmRequest is the refinement for the VM selection process during job queu-
ing.

InitReqFunctions is the refinement for the provision and monitoring of the
aresources, universes and functions required for the second phase (job
initialising) of our model.

JobHandReslist is the refinement for the provision and monitoring of the
aresources, universes and functions required for the fourth phase (job
handling) of our model. It combines with a derived function called
jobhandling module to process the jobs generated.

Auto-scaler design is focused on optimizing metrics about the virtual in-
frastructure. We list functions modelling these metrics.

TLevel defines the VMs threshold required for certain auto-scalers. The
threshold could be Tmin, Tavg, or Tmax for minimum, average and max-
imum thresholds respectively.

V mUL defines VM utilization levels during job processing. The VM uti-
lization levels could be VMutmin, VMutavg or VMutmax .
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Table 5.2: ASM Verification Notations

Function Notations
State

Trans.:=True

State
Trans.:=False

or Undef
SystemRequest==sr srt srf

MappedJob==mj mjt mjf
MappedVM==mv mvt mvf
ReqResources==rr rrt rrf
JobRequest==jr jrt jrf

ProcessRequest==pr prt prf
Jobhandler==jh jht jhf / jfu
JobLauncher==jl jlt jlf / jlu

VmPool defines VM provisions in VM pools. Also, VmPool implements
RVM to monitor VM optimisation levels for reusable VMs. The quan-
tity of VMs in the pool could be Qmin, Qavg or Qmax for minimum,
average and maximum quantities respectively.

VMPost defines VMs’ position in the VI during job processing. VMs po-
sitions could be VMF , VML for first and last positions which depicts
the particular virtual machine that is being monitored by certain auto-
scalers. These auto-scalers destroy VMs with less utilisation, unless the
VM is the last one to be processed. If it is the last VM, its processing
is extended for an hour before it is removed.

These functions and universes were combined to create the algorithms in
the model.

5.3.3 Design of Astam Verification Process

In order for our Astam model to be applicable, our ground model and its
refinement must be correct and equivalent to each other. To achieve this, the
CTL connectives discussed in section 2.10.1.4 will be employed. Moreover,
this design process forms part of step 1 of our model’s design; which will be
applied in step 4 for our model’s verification.

The verification will be carried out in two stages. The phases of our
ground model and their refinements will be verified during an ASM run. To
achieve this verification, CTL connective were applied on the main ASM
universes and functions to enable state transitions.
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Algorithm 5 Simple Initial Phase

1: if Dvm P VM ^Dp P PROCESS^Dar P ARESOURCE^Dj P JOB^
Dt P Time then

2: processStateppq :� idle
3: end if
4: while SimScalerpj, vmq ^BJSpj, vmq ^GTP pjq do
5: if jobRequestpj, arq � true^ processRequestpp, arq � true then
6: JobT imepjq :� idle
7: end if
8: if mappedVMpj, pq � false^mappedJobpj, pq � false then
9: JobT imepjq :� idle

10: end if
11: if installedpj, vmq � false^ Jobhandlerpj, vmq � undef then
12: JobStatepjq :� idle^ JobT imepjq :� idle
13: end if
14: end while

Initial Phase

Jobs Queuing

Jobs Handling Jobs TerminationJobs Initialization

Figure 5.6: ASM Modelled Auto-Scaling Phases

The functions are jobhandler, joblauncher, jobRequest, processRequest,
MappedVM, MappedJobs, SystemRequest and ReqResources.

The jobRequest, processRequest, MappedVM and MappedJobs are used for
our ground model while SystemRequest and ReqResources are utilised for the
refinements.

In order to ensure flexibility in the verification process, verification nota-
tions are derived from the previous universes and functions as seen in table 5.2
on page 117. Table 5.2 shows the possible state changes for our verification
notation.

5.4 Refinement of the Multimode and Simple

Mechanisms

In this section we will discuss steps 2 and 3 of ASM model to ensure model
coherence.

Astam comprises of five Transition Rules as seen in figure 5.6. These
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Algorithm 6 Multimode Initial Phase

1: if Dvm P VM ^Dp P PROCESS^Dar P ARESOURCE^Dj P JOB^
Dt P Time then

2: processStateppq :� idle
3: end if
4: while V Ipj, vmq ^ JoblauncherpJobhandlerpj, vmqq do
5: if jobRequestpj, arq � false^ processRequestpp, arq � false then
6: JobT imepjq :� idle
7: end if
8: if mappedVMpj, pq � false^mappedJobpj, pq � false then
9: JobT imepjq :� idle

10: end if
11: if installedpj, vmq � false ^ JoblauncherpJobhandlerpj, vmq, vmq �

false then
12: JobStatepjq :� idle^ JobT imepjq :� idle
13: numofSerReqpsiq :� undef ^ V mUL � undef
14: V mpool :� undef ^RVM :� undef
15: end if
16: end while

rules are designed to reflect the execution phases an auto-scaler undergoes
during job processing. The rules enable users to analyse the VM provision
behaviours of auto-scaling mechanisms. We utilised algorithms to express
the details of our ground model shown in figure 5.5. These algorithms were
further refined according to the ASM refinement method (in definition 3)
into lower levels of abstractions.

The VM provision behaviours of our ground model and the refinements
are later compared for equivalence according to Börger’s refinement (de-
scribed in definition 4) to check for the consistency of state transitions.

Astam’s Transition Rules are: piq Initial Phase piiq Job Initialising piiiq
Job Queuing pivq Job Handling and pvq Job Termination. The initial phase
is the first transition rule of our model. This is the phase where all requisite
resources are availed for job processing to commence. The system state is
idle in this phase. The job initialising phase is the stage where job processing
commences with the activation of system requests, and the mapping of jobs
to VMs. The system state transitions to active in this phase. The job
queuing phase is the stage where jobs queue due to the unavailability of
VMs. The system state transitions to waiting in this phase. The job handling
stages is the actual job processing stage where all the requisite resources are
availed and jobs are allowed to processed till completion. The system state
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Algorithm 7 Refined Initial Phase

Require: AResource
1: if InitReslist � IRLidle ^ReqResources � false then
2: SystemStatepj, pq :� idle
3: end if
4: while SystemRequest � false^ReqResources � false do
5: SystemStatepj, pq :� idle
6: end while
7: if installedpj, vmq � false^ Jobhandlerpj, vmq � undef then
8: SystemStatepj, pq :� idle
9: end if

transitions to busy in this phase. The job termination phase is the final phase
of our transition rules. This is the stage where all upload jobs are completely
processed or a system interrupt causes job processing to halt. The system
state transitions to either done or stopped in this phase.

The rules are described below in conjunction with algorithms 5 to 19 to
identify the auto-scaling common practices. Astam is applied to auto-scalers
from multiple sources in algorithms 20 to 34 to evaluate its applicability.

Moreover, derived functions (ASM modules) were developed and applied
to the job execution phases of our model. These modules were introduced
to ensure modularisation. In the next sub-sections, we shall discuss our As-
tam’s Transition Rules.

5.4.1 Astam’s Transition Rules

Astam’s rules are described below from initial phase to job termination.
State transitions are highlighted to reflect the state changes in during job
processing. Also, we compare the two categories of auto-scalers to identify
similarities in their auto-scaling behaviours. Now let us discuss our first
transition rule.

5.4.1.1 Rule 1, Initial Phase

Algorithms 5 and 6 depict the first phase of our model in figure 5.5. They
also represent the initial phase for both Simple and Multimode auto-scalers.

At the initial phase, all requisite universes are provisioned for job pro-
cessing to commence, however the process state is updated to idle as seen in
lines 1 to 2 of algorithms 5 and 6. The system is inactive due to the absence
of the ASM rule that causes job processing to commence.
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Algorithm 8 Simple Jobs Initialising

1: if Dvm P VM ^Dp P PROCESS^Dar P ARESOURCE^Dj P JOB^
Dt P Time then

2: processStateppq :� ready
3: end if
4: while SimScalerpj, vmq ^BJSpj, vmq ^GTP pjq do
5: if jobRequestpj, arq � true^ processRequestpp, arq � true then
6: JobT imepjq :� started
7: end if
8: if mappedVMpj, pq � true^mappedJobpj, pq � true then
9: JobT imepjq :� started

10: end if
11: if installedpj, vmq � true^ Jobhandlerpj, vmq � true then
12: JobStatepjq :� submitted
13: end if
14: end while

JobS and VMs provisions are monitor by both auto-scalers. The Sim-
ple auto-scaler utilise the SimScaler(j,vm), BJS(j,vm) and GTP(j), while the
Multimode auto-scaler applies the VI(j, vm) and the joblauncher to do same
as seen in lines 4. Also, jobs and process requests are made but no response
is receieved. Jobs are not submitted to VMs, as such the VMs remain un-
mapped until an ASM rule is applied to cause a system state change to
occur.

The Mutimodes activate functions specific to their behaviours as seen
in lines 13 to 14 of algorithm 6. These functions are activated to monitor
specific indicators during auto-scaling. However, since job processing is not
initialised, they are all updated to idle. Algorithms 5 and 6 are refined in
algorithm 7.

Initial Phase Refinement The InitReslist derived function is utilised to
check for the provision of requisite universes for this phase. InitReslist
is a refinement for all required universes and functions for the initial
phase. systemstate is updated to idle as seen in lines 2. Since there
are not activities at this stage. Systemrequests and ReqResources are
mapped to false as jobs are not submitted to VMs. Also, Jobs and
VMs are not installed as tasks for processing for by the jobhandler for
processing. This causes systemstate to remain updated to idle.

This refinement is equivalent to our ground model’s algorithms dis-
cussed in algorithms 5 and 6, and seen in figure 5.5. Since the state
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Algorithm 9 Multimode Jobs Initialising

1: if Dvm P VM ^Dp P PROCESS^Dar P ARESOURCE^Dj P JOB^
Dt P Time then

2: processStateppq :� ready
3: end if
4: while V Ipj, vmq ^ JoblauncherpJobhandlerpj, vmqq do
5: if jobRequestpj, arq � true^ processRequestpp, arq � true then
6: JobT imepjq :� started
7: end if
8: if mappedVMpj, pq � true^mappedJobpj, pq � true then
9: JobT imepjq :� started

10: end if
11: if installedpj, vmq � true then
12: JobStatepjq :� submitted
13: end if
14: end while

changes of algorithm 7 are equivalent to the state transitions of our
ground model. This is seen in table 5.1, where the ground model func-
tions can be refined to derived functions and vice-versa.

5.4.1.2 Rule 2, Job Initializing

The second phase of our model (shown in figure 5.5) begins with a system call
(which is activated by the application of an control state ASM rule during
an ASM run). The system call provisions the universes assigned from the

Algorithm 10 Refined Job Initialising

Require: AResource
1: if InitReqFunctions � IRFactive then
2: SystemStatepj, pq :� active
3: while SystemRequest � true^ReqResources � true do
4: SystemStatepj, pq :� active
5: end while
6: if installedpj, vmq � true^ Jobhandlerpj, vmq � true then
7: SystemStatepj, pq :� active
8: end if
9: end if
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Algorithm 11 Simple Jobs Queuing

1: if Dj P JOB ^ Dar P ARESOURCE ^ Dp P PROCESS ^ Dvm P
VM ^ Dt P Time then

2: JobT imepjq :� started
3: end if
4: while SimScalerpj, vmq ^BJSpj, vmq ^GTP pjq do
5: processStateppq :� ready
6: if jobRequestpj, arq � true^ processRequestpp, arq � true then
7: JobT imepjq :� started
8: end if
9: if VMCount ¤ Nummin then

10: MappedVMpj, vmq :� false^ Jobhandlerpj, vmq :� false
11: JobStatepjq :� waiting
12: end if
13: end while

previous phase. This transitions processState from new to ready as seen in
lines 2 of our ground model algorithms 8 and 9 .

The auto-scalers specific universes are provisioned to monitor the activ-
ities of jobs and VM activities in line 4. The Simple auto-scalers utilise
SimScaler(j,vm), BJS(j,vm) and GTP(j) while Multimode auto-scalers apply
VI(j,vm) and the joblauncher.

JobRequests and processRequests are activated to connect VMs to Jobs.
This transitions jobtime to started as seen in line 6. Also, the system call
activates mapped VMs and jobs, which causes jobs and VMs to be installed
as tasks as seen in lines 8 to 11. The jobhandler is activated to process
the tasks in Simple scalers and jobhandler in Multimode auto-scalers.

The JobTime and Jobstate are updated tostarted and submitted respec-
tively as seen from lines 12.

The refinement of algorithms 8 and 9 are modelled in algorithm 10.

Job Initialising Refinement The InitReqFunctions ASM derived function
is introduced to check the provisioning of requisite universes for this
phase as seen in line 1 of algorithm 10. InitReqFunctions is a refinement
for all required universes and functions for job initialising.

The authentication of the universes updates Systemstate to active.
SystemRequest is activated for the job requests and VMs provisions.
This causes systemstate to be updated to active as seen in line 3 to 4.

ReqRequest is applied to map jobs to VMs to which are installed as
tasks for the Jobhandler and Joblauncher to enforce their processing.
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Algorithm 12 Multimode Jobs Queuing

1: if Dj P JOB ^ Dar P ARESOURCE ^ Dp P PROCESS ^ Dvm P
VM ^ Dt P Time then

2: JobT imepjq :� started
3: end if
4: while V Ipj, vmq do
5: processStateppq :� ready
6: if jobRequestpj, arq � true^ processRequestpp, arq � true then
7: JobT imepjq :� started
8: end if
9: if VMCount ¤ Nummin then

10: MappedVMpj, vmq :� false
11: JoblauncherpJobhandlerpj, vmqq :� false
12: JobStatepjq :� waiting
13: end if
14: end while

The activities of these functions, cause the Systemstate to be updated
to active as seen in line 7.

This refinement is equivalent to the algorithms 8 and 9 and the job
initialising phase of our ground model as seen in figure 5.5. Since the
state changes of algorithm 10 are equivalent to the state transitions of
our the ground model after the ASM run. This is seen in table 5.1,
where the ground functions can be refined to derived functions and
vice-versa.

5.4.1.3 Rule 3, Job Queuing

The job queuing phase commences when there is a shortage of VMs during
job processing. The phase is modelled as part of our ground model is seen
in algorithms 11-12 and figure 5.5 for Simple and Multimode auto-scalers.

When job queuing begins, universes are provisioned as part of the re-
sources from the previous phases. This causes jobTime and processState to
transitioned to started and ready respectively as seen in lines 1 to 5.

Job and process requests are activated to ensure VM provisions as seen in
lines 4 to 7. The VM count is monitored during job processing to determine
the quantity available. If the quantity is below the required threshold for job
processing; The MappedVM, Jobhandler and joblauncher are updated to false
to confirm low VM count. This causes the jobs provisioned to queue as there

124



Algorithm 13 Refined Jobs Queuing

Require: AResource
1: while InitReqFunctions � IRFactive ^ReqResources � true do
2: SystemStatepj, pq :� active
3: if QueReslist � QRLactive ^ SystemRequestpp, arq � true then
4: SystemStatepj, pq :� active
5: if VMCount ¤ Nummin then
6: ReqResources :� false^ Jobhandlerppj, vmq :� false
7: SystemStatepj, pq :� waiting
8: end if
9: end if

10: end while

is a shortage of VMs. This is seen in lines 9 to 12 of both algorithms. JobState
transitions to waiting to signify the current state of the modelling process.
Our ground model algorithms are refined in algorithm 13.

Job Queuing Refinement The InitReqFunctions and ReqRequest functions
are activated to foster resource provision and the mapping of VMs
to jobs. This causes SystemState to be updated to active as seen in
lines 1 to 2. The QueReslist derived function is introduced to provi-
sion universes and functions for job queuing. Also, SystemRequest is
activated to initiate jobs and VMs requests. These activities maintains
systemstate at active as seen in lines 3 to 4.

The VM count is monitored to check for the quantity of available VMs.
A reduction in the VM count causes ReqRequest and Jobhandler to be
updated to false. This situation causes the SystemState to transition
to waiting as seen in lines 5 to 7.

This refinement of job queuing is equivalent to our ground model algo-
rithms, as they all have their system states transitioning to waiting as
seen in figure 5.5. This is seen in table 5.1, where the ground functions
can be refined to derived functions and vice-versa.

5.4.1.4 Rule 4, Job Handling

The Job handling is the fourth phase of our model. In order to model the job
handling stage, there is the need to apply an a derived function called the
Jobhandling Module to optimize job handling. The purpose of the Jobhan-
dling Module is to optimise the VM selection process during the job queuing
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Algorithm 14 Simple Jobhandling Module JobHandModsimple

Require: AResource
1: while InitReqFunctions � IRFactive do
2: SystemStatepj, pq :� active
3: if QueReslist � QRLactive ^ SystemRequestpp, arq � true then
4: SystemStatepj, pq :� active
5: end if
6: while SimScalerpj, vmq ^BJSpj, vmq ^GTP pjq do
7: if VMCount ¤ Nummin then
8: ReqResources :� false^ Jobhandlerppj, vmq :� false
9: SystemStatepj, pq :� waiting

10: end if
11: if pReqResources � false^ installedptaskpj, vmqq � false then
12: AddVMpvm, jq :� true^ Compatiblepattrpjq, attrpvmqq :� true
13: belongsTopj, vmq :� true
14: ReqResources :� true
15: end if
16: end while
17: end while

phase. This function is created for each category of auto-scalers (i.e. Simple
and Multimode Jobhandling module). The Simple and Multimode Jobhan-
dling Modules shown in algorithms 14 and 15 perform similar functions but
with structural differences.

The Simple Jobhandling Module utilise InitReqFunctions and QueRes-
list to check for the provision for job initialising and queuing universes and
functions. Once they are authenticated, systemState is updated to active as
seen in lines1 to 4.

Auto-scaler specific universes are provisioned to foster the exhibitions of
varied VM provision behaviours during job processing. This activates VMs
and jobs requests. The VM count is monitored for expected quantities. If
the VM count is below the required threshold, a state change occurs. This
causes ReqResources (which maps jobs to VMs) to be updated to false, as
well as the Jobhandler. The systemState transitions to waiting as seen in
lines 6 to 10 of algorithms 14 and 15.

The ReqResources is rechecked periodically, to confirm if jobs have been
mapped to VMs and installed as tasks. If the response is negative, the VM
selection mode is activated via AddVM function. The VM selections process,
checks if the appropriate VMs (i.e. VMs with the required level of utilisation)
are being selected. Once these features have been confirmed to be available,
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Algorithm 15 Multimode Jobhandling Module pJobHandModmultimodeq

Require: AResource
1: while InitReqFunctions � IRFactive do
2: SystemStatepj, pq :� active
3: if QueReslist � QRLactive ^ SystemRequestpp, arq � true then
4: SystemStatepj, pq :� active
5: end if
6: while V Ipj, vmq do
7: if VMCount ¤ Nummin then
8: ReqResources :� false^JoblauncherpJobhandlerpj, vmq, vmq :�

false
9: SystemStatepj, pq :� waiting

10: end if
11: while V mRequestpj, vmq � active do
12: ReqResources :� true
13: end while
14: end while
15: end while

the jobs are then mapped to VMs as seen in lines 11 to 16 of algorithm 14.
The VM selection process is slightly different for the Multimode Jobhan-

dling module. The VmRequest function (which is a refinement of the VM
selection process) is activated. This causes jobs to be mapped to VMs via
the ReqResources as seen in lines 11 to 14 of algorithm 15. The application of
the Jobhandling Modules fosters varied VM provision modelling behaviours
in the categories of auto-scalers.

Job handling commences with the application of InitReqFunctions to
check the provision of job initialising universes and functions. Once these
are active, the JobhandMod is activated to provision all the universes and
functions for job handling. This causes SystemState to be updated to active
as seen in lines 1 to 3 of algorithm 16.

Sufficient time request is made and the response granted by the ARe-
sources to ensure that the jobs provisioned are adequately processed. The
SystemRequest is actovated to foster jobs and process requests. An authenti-
cation of this request, maps jobs to VMs via ReqResources. This causes the
mapped jobs and VMs to be installs as tasks to either continue ( i.e. if the
jobs were queuing) or commence job handling (i.e. if the job processing had
just initialised) job processing activity as seen in lines 5 to 7.

The outputs of job processing are monitored with SimulionDuration, Av-
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Algorithm 16 Job Handling

Require: AResource
1: while InitReqFunctions � IRFactive ^ SystemRequestpp, arq :� true

do
2: JobHandModmultimode :� active^ Jobhandlerppj, vmq :� true
3: SystemStatepj, pq :� active
4: while t P TIME ^ TimeRequestpj, pq � true^mappedVMpj, vmq �

true do
5: if SystemRequestpp, arq � true then
6: ReqResources :� true
7: installedpj, vmq :� true^ eventptq � started
8: SimulationDuration :� SDmax

9: AveragUtilPM :� AUPMmax

10: AveragQueT ime :� AQTmax

11: end if
12: SystemStatepj, pq :� busy
13: end while
14: end while

erageUtilPM and AverageQueTime. These three functions monitor the pe-
riod utilised for job processing, the average utilisation of PMs and the average
queuing time of the VMs. The job processing activity causes the SystemState
to transition to busy as seen in lines 9 to 12.

Our ground model’s job handling algorithms are refined in algorithm 17.

Job Handling Refinement In order to ensure that the requisite universes
for job initialising are provisioned, the InitReqFunctions and SystemRe-
quest functions are activated. This causes SystemState to be updated
to active as seen in line 1 of algorithm 17. Also, the Jobhandling Mod-
ule and the jobhandler are activated to foster VMs selection during job
queuing and the installing of mapped VMs and jobs as tasks for job
processing as seen in line 2.

The JobProcessing function is activated to foster time requests and the
mapping of jobs to VMs for job processing. Also, the output of job
handling show are modelled as the job processing ensues. This activity
causes the SystemState to transition to busyas seen in lines 5 to 12.

This refinement is equivalent to our ground model’s job handling al-
gorithm, as the ASM run causes SystemState to transition to busy as
seen in figure 5.5. This is seen in table 5.1, where the ground functions
can be refined to derived functions and vice-versa.
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Algorithm 17 Refined Job Handling

Require: AResource
1: while InitReqFunctions � IRFactive ^ SystemRequestpp, arq :� true

do
2: JobHandModmultimode :� active^ Jobhandlerpj, vmq :� true
3: SystemStatepj, pq :� active
4: while JobProcessing � JPactive do
5: SystemRequestpp, arq :� true^ReqResources :� true
6: SystemStatepj, pq :� busy
7: end while
8: end while

5.4.1.5 Rule 5, Job Termination

Job Termination is the fifth phase of our model. This phase requires two
conditions to be initiated. First, a system failure or an abrupt system call
to halt job processing. Second, the exhaustion of jobs generated (i.e. the
complete processing of uploaded jobs).

The job termination phase is as a result of the activities of job handling
as seen in algorithm 18 of our ground model. Hence, there must be ongoing
activities to demonstrate job processing in the system, before job termination
occurred.

Therefore, before the processing of jobs is terminated, the universes and
functions required for job initialising should be provisioned. This updates
processState to ready as seen in lines 1 to 2.

Job processing is monitored via amount of time allocated, and how long
jobs remain mapped to VMs. As job are being processed, ProcessState and
jobState transtion to running. Also jobTimes updated to processing as seen in
lines 3 to 10. When a system interrupt occurs which causes the job processing
to halt; jobstate transitions to failed and processState to stopped as seen in
lines 11 to 13.

Moreover, when job processing is completed; jobState transitions to done,
jobTime to completed, and event(t) to terminate as seen in lines 15 to 18
depicting the exhaustion of job generated.

The state changes can be seen in the process and job states figures 5.4
and 5.3. The job termination algorithm is refined in algorithm 19.

Job Termination Refinement is accomplished via he introduction of pri-
mary derived functions such as InitReqFunctions, SystemRequest and
ReqResources. These function ensures that adequate universes and
functions are provisioned for job initialising and job handling. This

129



Algorithm 18 Job Termination

1: if Dj P JOB ^ Dar P ARESOURCE ^ Dp P PROCESS ^ Dt P Time^
JobRequestpj, arq then

2: processState :� ready
3: while t P TIME ^ TimeRequestpj, pq � true^mappedVMpj, vmq �

true do
4: JobT imepjq :� processing
5: while processRequestpp, arq � true^jobhandlerpj, vmq � true do
6: installedpj, vmq :� true^ eventptq :� started
7: JobStatepjq :� running ^ ProcessStateppq :� running
8: JobT imepjq :� processing
9: end while

10: end while
11: if jobRequestpj, arq � true^ eventptaskppqq � terminate then
12: JobStatepjq :� failed^ processStateppq :� stopped
13: end if
14: end if
15: if Ej P JOB ^ Ep P PROCESS ^ JobRequestpj, arq then
16: Eventptq :� Terminate^ jobT imepjq :� Completed
17: jobStatepjq :� done
18: end if

causes systemstate to transitions to active as seen in lines 1 to 2 of
algorithm 19.

The JobHandReslist function (a refinement of job handling specific
functions) and the jobhandler are activated to foster job processing.
This causes systemstate to transition to busy as seen in lines 3 to 4.

When a system call arrives that causes job processing to terminate
while systemstate is busy ; the systemstate is automatically updated
to stopped as seen in lines 5 to 6. This event signifies an abrupt job
termination.

Furthermore, when SystemRequest is active while there are not jobs for
VMs to process; event is updated to terminate and systemstate to done
as seen in lines 7 to 9. This signifies the completion of job processing.

This refinement (algorithm 19) is equivalent to our ground model’s
algorithm 18 as systemstate transitioned to either stopped or done as
a response to the job termination conditions. This is seen in table 5.1,
where the ASM functions can be refined to derived functions and vice-
versa. Also, it is reflective of this phase depicted in our ground model
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Algorithm 19 Refined Job Termination

Require: AResource
1: while InitReqFunctions � IRFactive ^ SystemRequestpp, arq � true

do
2: ReqResources :� true^ SystemStatepj, pq :� active
3: while JobHandReslist � JHRLactive^ jobhandlerpj, vmq � true do
4: SystemStatepj, pq :� busy
5: if SystemStatepj, pq � busy ^ eventptaskppqq � terminate then
6: SystemStatepj, pq :� stopped
7: else if SystemRequestpp, arq^Ej P JOB^Ep P PROCESS then
8: Eventptq :� Terminate
9: SystemStatepj, pq :� done

10: end if
11: end while
12: end while

figure in 5.5 and our modelled auto-scaling phases figure in 5.6

5.5 Summary

In this chapter, we designed our Astam model via investigating of the resource
provision behaviours of auto-scalers offered by the DISSECT-CF simulator.
The investigations helped us to comprehend how the various components of
the simulator are connected. Two categories of auto-scalers ( simple and mul-
timode) were identified with their specific features. It was observed that, the
VMs provisioning is done per the specifications of respective mechanisms.
Some auto-scalers prefer VM Pools, while others create VMs during auto-
scaling. This is accomplished while monitoring the utilization levels of VMs.
These observations helped us to created extra auto-scalers and to design our
model.

Five Transition rules and a ground model framework were proposed. Al-
gorithms were generated and formalized from the auto-scalers identified from
our investigations. These algorithms reflected our ground model’s framework.
These algorithms were refined according to ASM model refinement method
discussed in sub-section 2.10.1.2.

The formalized algorithms of the simple and multimode auto-scalers were
compared with each other. Also, the ground models were compared with their
refinements. The comparisons were accomplished via Astam’s transitions
rules and in accordance with Börger’s refinement discussed in definition 4.
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Equivalence of state transitions were achieved via the application of de-
rived functions and control ASMs. As such, refined algorithms can be refined
back to their ground models where required.

The comparisons of the two categories of auto-scalers enabled us to con-
clude that, although the auto-scalers were developed on different frameworks,
they exhibited similar VM provision behaviours during job processing.
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Chapter 6
Astam Evaluation, Verification
and Validation

6.1 Introduction

In this chapter, we will discuss the evaluation, verification and validation of
our Astam model. The evaluation describes the application of our model to
formalized algorithms of specific auto-scalers offered by DISSECT-CF. Also,
we describe the application of Astam to other auto-scalers whose algorithms
have been made public. The verification section focuses on the application
of computational tree logic properties to determine the correctness of Astam.
Then, we validate Astam by generating test cases from the formalized algo-
rithms and running them on CoreASM toolkit to determine the adherence of
our model to guarded updates. Now let us discuss the evaluation of Astam.

6.2 Astam Model Evaluation

This section describes the observed state transitions and the equivalence of
our ground model and its refinements, when Astam was applied to specific
auto-scalers. Our evaluation criteria are discussed into detail to emphasize
the application of ASM refinement method described in sub-section 2.10.1.

6.2.1 Discussion of Astam Evaluation criteria

We applied the following criteria to evaluate our Astam model. Let us now
focus on discussing the criteria.

� To assess the equivalence of the refined auto-scaler algorithms to the
ground model via the application of universes and signatures. This
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Algorithm 20 Threshold Initial Phase

Require: AResource
1: if InitReslist � IRLidle then
2: TLevel :� undef ^ SystemStatepj, pq :� idle
3: end if
4: while SystemRequest � false do
5: SystemStatepj, pq :� idle
6: end while
7: if ReqResources � false then
8: SystemStatepj, pq :� idle
9: end if

10: if installedpj, vmq � false ^ JoblauncherpJobhandlerpj, vmqq � false
then

11: SystemStatepj, pq :� idle
12: end if

Algorithm 21 V mopt Jobs Initializing

Require: AResource
1: if InitReqFunctions � IRFactive ^ SystemRequest � true then
2: JoblauncherpJobhandlerpj, vmqq :� true^ReqResources :� true
3: RVM :� Qmin

4: SystemStatepj, pq :� active
5: end if

involves examining the algorithms of the job execution phases of the
auto-scalers to ensure that they are equivalent to our ground model.

� To examine the application of derived functions (modules) to portions
of auto-scaling modelling; such as job initialising, VM selection and job
handling to ensure the application of ASM Model Refinement.

� To assess the application of guarded updates (which is reflective of con-
trol state ASMs) and Börger’s refinement on auto-scalers.

The functions and state transitions for the initial phase and job initialising
are the same for all auto-scalers. Therefore, only one auto-scaler will be
modelled to discuss the first two phases. This is to reduce the repetition of
algorithms. Let us discuss the evaluation of our ASM rules.
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Figure 6.1: Vmopt auto-scaler job initialising

6.2.2 Evaluating Astam’s Transition Rules

This sub-section describes the evaluation of our model’s rules introduced
in 5.4.1. Let us begin the discussions with Rule 1.

6.2.2.1 Rule 1, Initial Phase:

This phase was evaluated per sub-section 5.4.1.1 of our model. The auto-
scalers are expected to exhibited state transitions equivalent to the first phase
of our ground model as seen in algorithm 5, and its refinement.

Algorithm 20 is used to discuss the evaluation of the intial phase for all
auto-scalers, since aside the specific function TLevel, all the state changes
are the same for all auto-scalers.

At the initial phase, all the auto-scalers apply the InitReslist function
to access universes and functions. However, no aresources are provisioned.
Therefore systemstate is updated to TLevel and the auto-scaler threshold
monitoring function TLevel is updated to undef as seen in lines 1 to 3 of
algorithm 20.

Also, job and process requests are made but no responses are received (as
expected). Hence, there was no state transitions for systemstate as seen in
lines 4 to 6. The lack of response to job requests showed that, there was no
provision of VMs to be mapped to jobs; and no tasks were likewise installed
for processing. This causes the Joblauncher to be updated to false and
system state to idle as as seen in lines 7 to 12.

This refinement is equivalent to the initial phase of our ground model
shown in figure 5.5. Since the system state transitions to idle as seen in
algorithm 7. Also, the refinement satisfies the evaluation criteria discussed
in sub-section 6.2.1 because derived function were applied to at the initial
phase of this refinement. Also, state transitions are observed when conditions
were met, which are reflective of guarded updates of control state ASMs.
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Algorithm 22 Threshold Jobs Queuing

Require: AResource
1: while InitReqFunctions � IRFactive do
2: ReqResources :� true^ TLevel :� Tmin

3: SystemStatepj, pq :� active
4: if QueReslist � QRLactive then
5: SystemStatepj, pq :� active
6: end if
7: if VMCount ¤ Nummin then
8: ReqResources :� false
9: JoblauncherpJobhandlerpj, vmqq :� false

10: TLevel :� Tavg
11: SystemStatepj, pq :� waiting
12: end if
13: end while

6.2.2.2 Rule 2, Job Initialising

Job Initialising was evaluated with sub-section 5.4.1.2. Algorithm 21 is
utilised to discuss the job initialising evaluation for the auto-scalers, since
aside the specific reusable VMs function RVM, all the state changes are the
same for all auto-scalers.

The InitReqFunctions derived function is applied to provision Aresources
via universes and functions for job initialising. The SystemRequests and Re-
qResources functions activate jobs and VMs requests and the mapping of
VMs to jobs which are installed as tasks. This causes job processing to
commence as seen in lines 1 to 2 and in figure 6.1. The reusable VMs
function RVM is updated to minimum state. This causes SystemState to
transition to active as seen in lines 3 to 5 of algorithm 21.

This evaluation process is applicable to threshold, vmcreate, Pooling and
FixedVM auto-scalers. In the case of the other multimode auto-scalers, thresh-
old transitions to Tmin, vmcreate to Tmin and pooling to Qmin during job
initialising.

This refinement is equivalent to the job initialising of our model shown
in figure 5.5 and algorithm 10. Also, the refinement satisfies our evaluation
criteria discussed in sub-section 6.2.1 since derived function were applied
to cause job initialising. Also, state transitions are seen when conditions
were met, which are reflective of guarded updates of control state ASMs.
Moreover, from figure 6.1, we can see that the algorithms for job initialising
can be refined back to the ground model in an ASM run.
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Algorithm 23 Threshold Jobs handling

Require: AResource
1: while InitReqFunctions � IRFactive do
2: JobHandModmultimode :� active^ReqResources :� true
3: if JobHandReslist � JHRLactive ^ TLevel � Tmax then
4: SystemRequestpp, arq :� true^ SystemStatepj, pq :� busy
5: end if
6: if CurrThresholdvm   Tavg then
7: DestroyVM :� true
8: else if pCurrThresholdvm   Tavgq ^ pCurrV mPost :� VMLq then
9: CurrT imepvmq � T3600s ^DestroyVMpvmq :� true

10: JoblauncherpJobhandlerpj, vmqq :� true^ReqResources :� true
11: SimulationDuration :� SDmax ^ AveragUtilPM :� AQTmax

12: SystemStatepj, pq :� busy
13: end if
14: end while

6.2.2.3 Rule 3, Job Queuing:

Job queuing evaluation was achieved via Rule 3 of the model discussed in
sub-section 5.4.1.3. Algorithm 22 representing the the job queuing phase of
threshold is used for our discussion.

The InitReqFunctions is activated to cause the provision of Aresources
via universes to foster job initialising. This caused SystemState to transition
to active. Tlevel transitions to Tmin (i.e., minimum VM threshold utilisation)
as seen in lines 1 to 3 of algorithms 23.

QueResList is activated to monitor process and job requests, and the
mapping of VMs to jobs. The VM counts are also monitored regularly via
VMCount. A reduction in the number of VMs, causes ReqResources to be
updated to false (signifying VMs shortage). Also, Tlevel transitions to Tavg
(i.e., average VM threshold utilisation). This causes SystemState to transi-
tion to waiting as seen in lines 4 to 10 of algorithms 22.

This evaluation process is applicable to all auto-scalers. In the case of
the other multimode auto-scalers Vmcreate transitioned to Tavg, Pooling to
Qavg and Vmopt to Qavg during job queuing.

This refinement is equivalent to the job queuing of our model shown
in figure 5.5 and algorithm 13. Also, the refinement satisfies the evaluation
criteria discussed in subsection 6.2.1. This is seen in the application of derived
functions to model job queuing. Also, state changes are seen when function
conditions were met, which are reflective of guarded updates of control state
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Algorithm 24 V mcreate Jobs handling

Require: AResource
1: while InitReqFunctions � IRFactive do
2: JobHandMODmultimode :� active
3: if JobHandReslist � JHRLactive ^ TLevel � Tmax then
4: SystemRequestpp, arq :� true^ SystemStatepj, pq :� busy
5: end if
6: if Utmax ¡ Tmin then
7: AddVMpvmq :� true^ReqResources :� true
8: else if pUtavg ¡ Tminq ^ pCurrThresholdvm ¡ Tminq then
9: AddVM :� true^ReqResources :� true

10: JoblauncherpJobhandlerpj, vmqq :� true
11: SystemStatepj, pq :� busy
12: SimulationDuration :� SDmax ^ AveragUtilPM :� AUPMmax

13: AveragQueT ime :� AQTmax

14: end if
15: end while

ASMs.

6.2.2.4 Rule 4, Job Handling:

Job handling was evaluated per Rule 4 (discussed in sub-section 5.4.1.4).
The auto-scaling mechanisms applied the job handling modules created

for their categories as seen in algorithms 14 and 15.
Algorithms 23 to 26 are utilised for the job handling discussions since the

auto-scalers have specific functions that must be modelled differently.
In order for job processing to commences, the auto-scalers activate the

InitRequiredFunctions, JobHandRelist derived functions and the jobhandling
modules. This fosters the provision of resources via universes and functions
for job initialising. This causes SystemState to transition to busy as seen
in lines 1 to 5.

The auto-scalers exhibited behaviours per their core functions. The be-
haviours are analysed below.

First, threshold and vmcreate applied VmUL to monitor VM utiliza-
tion. VmUL is utilised differently in the two auto-scalers. In the case of thresh-
old, if the current VM utilisation is lower than the average VM threshold,
the VMs are destroyed. However, if the current VM utilisation is lower than
the average VM threshold but the VM is the last VM being processed; the
duration period is extended by one hour to receive a new job before the VM
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Algorithm 25 Vmopt Jobs handling

Require: AResource
1: while InitReqFunctions � IRFactive do
2: JobHandMODmultimode :� active
3: if pJobHandReslist � activeq ^RVM � Qmax then
4: ReqResources :� true^ SystemStatepj, pq :� busy
5: end if
6: if RVM ¡� Qmin then
7: SystemRequestpp, arq :� true^ReqResources :� true
8: JoblauncherpJobhandlerpj, vmqq :� true
9: SystemStatepj, pq :� busy

10: SimulationDuration :� SDmax ^ AveragUtilPM :� AUPMmax

11: AveragQueT ime :� AQTmax

12: end if
13: end while

is destroyed. This is seen in lines 6 to 10 of algorithms 23.
In the case of Vmcreate, if the maximum utilisation of VMs is greater

than the expected VM threshold, more VMs added are created. Also, if the
current threshold is greater than the expected VM threshold, more VMs are
created. This causes SystemState to transition to busy as seen in lines 6 to 11
of algorithms 24.

Second, Vmopt monitors the VM count of reusable VMs in the VI. If
the number reusable VMs are more than and equal to the minimum number
expected, the job processing continues until all the jobs are processed as seen
in lines 6 to 11 of algorithms 25.

Third, Pooling monitors the VM count in the VM pool during job pro-
cessing. If the number of VMs are more that the minimum expected, more
VMs are created. the job processing continues until all the jobs are pro-
cessed as seen in lines 6 to 11 of algorithms 26. This causes SystemState to
transition to busy.

These job handling refinements are equivalent to the algorithms of our
ground model shown 16 to 17 which are reflective of figure 5.5. Also, the
refinement satisfies the evaluation criteria discussed in sub-section 6.2.1. This
is seen in the application of derived functions to model job initialising to job
handling. Also, state changes are seen when the conditions for our function
are met, which are reflective of guarded updates of control state ASMs.
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Algorithm 26 Pooling Jobs handling

Require: AResource
1: while InitReqFunctions � IRFactive do
2: JobHandMODmultimode :� active
3: if JobHandReslist � JHRLactive ^ V mpool � Qmax then
4: ReqResources :� true^ SystemStatepj, pq :� busy
5: end if
6: if V mpool ¡�MinQ then
7: AddVMpj, vmq :� true^ReqResources :� true
8: JoblauncherpJobhandlerpj, vmqq :� true
9: SystemStatepj, pq :� busy

10: SimulationDuration :� SDmax

11: AveragQueT ime :� AQTmax ^ AveragUtilPM :� AUPMmax

12: end if
13: end while

6.2.2.5 Rule 5, Job Termination:

Job Termination was evaluated per subsection 5.4.1.5. The pooling auto-
scaler was utilised to evaluate the job termination phase. The evaluation
of job termination required a modelling that showed an interaction of the
previously discussed phases.

Initially, InitRequiredFunctions, jobhandling modules are activated for the
provision of Aresources via universes and functions towards job initialising
and job handling. The JobHandRelist is triggered to foster the job handling
process. SystemState transitions to busy as seen in lines 1 to 4 of algorithm 27.

Moreover, the VM count is monitored in the VM pool. If the number of
VMs in the VM pool is within the minimum range, more VM are provisioned.
This causes the systemState to transition to busy as seen in lines 6 to 17.
The output functions SimulationDuration transitions to SDmax, Average-
QueTime to AQTmax and AverageUtilPM transitions to AUPMmax as seen
in lines 8 to 10.

Furthermore, while jobs are being processed, a terminate event causes sys-
temState transitions to stopped and event to terminate as seen in lines11 to 12.
Also, when the jobs generated are exhausted while SystemRequest is acti-
vated; event transitions to terminate and systemstate to done as seen in
lines13 to 17.

This pooling auto-scaler refinement of job termination is equivalent to the
rule 5 of our model shown in figure 5.5, and algorithm 18 to 19. Also, the
refinement satisfies the evaluation criteria discussed in sub-section 6.2.1.
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Algorithm 27 Pooling Jobs Termination

Require: AResource
1: while InitReqFunctions � IRFactive do
2: JobHandMODmultimode :� active
3: if JobHandReslist � JHRLactive ^ V mpool � Qmax then
4: ReqResources :� true^ SystemStatepj, pq :� busy
5: end if
6: if V mpool ¡�MinQ then
7: AddVMpj, vmq :� true^ReqResources :� true
8: SystemStatepj, pq :� busy
9: SimulationDuration :� SDmax

10: AveragQueT ime :� AQTmax ^ AveragUtilPM :� AUPMmax

11: end if
12: if SystemStatepj, pq � busy ^ eventptaskppqq � terminate then
13: SystemStatepj, pq :� stopped
14: else if SystemRequestpp, arq ^ Ej P JOB ^ Ep P PROCESS then
15: Eventptq :� Terminate
16: SystemStatepj, pq :� done
17: end if
18: end while

This is seen in the application of derived functions to model job initialising
to job termination. State changes are seen when the conditions for function
are met, which are reflective of guarded updates of control state ASMs. Also,
there is interaction between the phases of our model via the application of
universes and functions.

In conclusion, this refinement enabled us to assess the applicability of our
model to the auto-scalers offered with DISSECT-CF. Also, it enabled us to
evaluated their VM provision behaviours. Now, we move ahead to apply our
model to other auto-scalers.

6.3 Adoption of Astam with other auto-sca-

ling algorithms

The literature in section 2.7 analysed past auto-scalers mechanisms, and
selected [174] for in-depth analysis with our Astam model. The algorithms
of Yang et al.’s work have been made public; hence it was possible to apply
our model. This auto-scaler presents a typical auto-scaling approach using
workload prediction, as well as horizontal and vertical scaling. Therefore, it
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Algorithm 28 LoadPredict Jobs Initializing

Require: AResource
1: if InitReqFunctions � IRFactive ^ SystemRequestpp, arq � true then
2: WorkloadPrediction :� PWLactive ^ReqResources :� true
3: SystemStatepj, pq :� active
4: end if
5: while Ds P SERV ICE^servRequestps, arq^SystemRequestpp, arq do
6: for all s P SERV ICE do
7: ReqResources :� true^ JoblauncherpJobhandlerpj, vmqq :� true
8: V mpoolt :� Qmin ^ V mULt :� VMutmin ^RtScalingi :� active
9: Pre-scalingpt�1q :� active^NumofSerReqt :� Nummin

10: end for
11: SystemStatepj, pq :� active
12: end while

was possible to analyse and classified it as a multimode auto-scaler due to
its specific features. Also, our model’s usability was evaluated by adopting
this auto-scaling mechanism.

The discussions here do not include the initial phase and job termination
because they are the same for all auto-scalers. Let us begin our discussion
with job initialising.

Job Initialising The job initialising phase is evaluated per Rule 2 of our
Astam model discussed in sub-section 5.4.1.2. The InitRequiredFunc-
tions function is applied to foster Aresource provisions via the inter-
actions of universes and function. Workloads are predicted during job
initialising which causes the systemstate transition to active as seen in
lines 1 to 3 of algorithm 28 and in figure 6.2. SystemRequests and Re-
qResourcesare activated which causes jobs to be mapped to VMs and
installed as tasks.

Services are provisioned for users as the number of service requests
increase. This causes the provision of more VMs in the VM pool.
Resource scaling and VM utilisation (VmUL) are activated as seen in
lines 5 to 8.

Also, pre-scaling pt� 1qth Interval is activated as the provision of user
services increases which causes systemstate to transition to active as
seen in lines 9 to 11.

This refinement is equivalent to the job initialising phase of our ground
model’s algorithm 9. Since systemstate transitions to active as seen in
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Algorithm 29 LoadPredict Jobs Queuing

Require: AResource
1: if InitReqFunctions � IRFactive ^ SystemRequestpp, arq � true then
2: ReqResources :� true^ SystemStatepj, pq :� active
3: WorkloadPrediction :� PWLactive ^ReqResources :� true
4: end if
5: if QueReslist � QRLactive then
6: SystemStatepj, pq :� active
7: end if
8: while Ds P SERV ICE^servRequestps, arq^SystemRequestpp, arq do
9: for all s P SERV ICE do

10: if VMCount ¤ Nummin then
11: ReqResources :� false
12: JoblauncherpJobhandlerpj, vmqq :� false
13: V mpool :� Qavg ^ V mULt :� VMutavg
14: NumofSerReq :� Qavg

15: SystemStatepj, pq :� waiting
16: end if
17: end for
18: end while

figure 5.5. Also, from figure 6.2, we can see that the algorithms for job
initialising can be refined back to the ground model in an ASM run.

Job Queuing This phase is evaluated per rule 3 of our Astam model dis-
cussed in sub-section 5.4.1.3. InitRequiredFunctions function is applied
to foster Aresource provisions via the interactions of universes and func-
tion. The prediction of workloads is activated which causes the sys-
temstate to transition to active as seen in lines 1 to 3 of algorithm 29.
Also, QueReslist is activated to monitor the functions required for job
queuing.

Services are provision per the requests of SystemRequests, and ReqRe-
sources causes jobs to be mapped to VMs and installed as tasks. The
number of VMs provisioned is monitored via VMcount. When the
threshold of VM count reduces, the Joblauncher and ReqResources are
updated to false. Which signifies VMs shortage as seen in lines 8 to 15.
The states of the VM pool, VM Utilisation and the number of ser-
vice request were updated to average utilisation and quantities. The
systemstate transitioned to waiting as seen in line 16.

The refinement of this phase is equivalent to the job queuing phase
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Algorithm 30 LoadPredict Jobhandling Module pJobHandModLq

Require: AResource
1: if InitReqFunctions � IRFactive ^ SystemRequestpp, arq � true then
2: SystemStatepj, pq :� active
3: end if
4: if QueReslist � QRLactive then
5: WorkloadPrediction :� PWLactive ^ReqResources :� true
6: SystemStatepj, pq :� active
7: end if
8: while Ds P SERV ICE : servRequestps, arq � true do
9: for all s P SERV ICE � true do

10: if VMCount ¤ Nummin then
11: ReqResources :� false
12: JoblauncherpJobhandlerpj, vmqq :� false
13: V mpool :� Qavg ^ V mULt :� VMutavg
14: NumofSerReq :� Qavg

15: end if
16: SystemStatepj, pq :� waiting
17: end for
18: if V mRequestpj, vmq � active then
19: ReqResources :� true
20: end if
21: end while

of our ground model, shown in algorithm 12 of our model, reflective
of our ground model’s figure 5.5. Since the system states transitions
to waiting.

Job Handling This phase is evaluated per rule 4 of our Astam model dis-
cussed in sub-section 5.4.1.4. In order to evaluate this auto-scaler, the
jobhandling module for multimode auto-scalers is adopted and applied
to optimize VM selection as seen in algorithm 30.

Lines 1 to 16 have been described as part of job queuing in algorithm 29;
therefore VM selection is activated via VmRequest. This caused VMs
and Jobs to be mapped and installed as tasks to continue job processing
as seen in lines 18 to 21 of algorithm 30.

The modelling of the auto-scaler by [174] requires the application of Ini-
tReqFunctions to initiate job processing. This activates the Workload
prediction function and jobhandling module. This causes systemstate
to be updated to active as seen in lines 1 to 5 of algorithm 31.
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Algorithm 31 LoadPredict Jobs handling

Require: AResource
1: if InitReqFunctions � IRFactive ^ SystemRequestpp, arq � true then
2: WorkloadPrediction :� PWLactive ^ReqResources :� true
3: JobHandModL :� active^ JoblauncherpJobhandlerpj, vmqq :� true
4: SystemStatepj, pq :� active
5: end if
6: while JobHandReslist � JHRLactive do
7: if V mULt ¡ VMutmax then
8: SystemStatepj, pq :� busy
9: end if

10: for all vm P VM do
11: if V mULt ¡ VMutmax then
12: selfhealingSU :� active
13: end if
14: if V mULt ¡ VMutmax then
15: ARSU :� active
16: end if
17: if V mULt   VMutmin then
18: ARpV RqSD :� active
19: end if
20: end for
21: AveragUtilPM :� AQTmax

22: SimulationDuration :� SDmax ^ AveragQueT ime :� AUTmax

23: SystemStatepj, pq :� busy
24: end while

JobHandReslist is activated to foster the provision of resources via uni-
verses and functions for job handling which causes the VMs utilisation
levels to increase. A maximum utilisation threshold causes system-
state to transition to busy as seen in lines 6 to 9.

Self-healing scaling up is activated to ensure that more Aresources are
provisioned to support the increased VM utilisation threshold as seen
in lines 10 to 13. This occurs when more VMs are provisioned with an
accompanying increase in VM utilisation threshold.

Also, the high VM utilisation threshold causes resource-level scaling up
to be activated. This utilises unallocated Aresources to scale up the
VMs as seen in lines 14 to 16.

However, when the VM utilisation threshold decreases, Aresources scal-
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Algorithm 32 V irtual Resource scaling down

Require: AResource
1: while JobHandModL � busy do
2: SystemStatepj, pq :� busy
3: while JobHandReslist � JHRLactive do
4: if V mULt   VMutmax then
5: VMLevelSD :� active
6: end if
7: if V mULt   VMutmin then
8: RLevelSD :� active
9: end if

10: SystemStatepj, pq :� busy
11: end while
12: end while

ing down is activated as seen in lines 17 to 19. This causes the outputs
of job processing to be generated. The simulation duration average
queuing time and average utilisation of PMs are is updated to maxi-
mum values. The systemstate is updated to busy.

This refinement is equivalent to the job handling phase of our ground
model shown in figure 5.5.

The auto-scaler by [174] employs three specialised scaling operations
in this phase.

Virtual Resource Scaling Down: During job handling, when the
VM utilisation threshold is below the expected maximum thresh-
old, VM level scaling down is activated. This causes unused Are-
sources of VMs to be scaled down as seen in lines 3 to 6 of al-
gorithm 32. Also, when the state of the VM utilisation threshold
still remains the same, the resource level scaling down is activated
as seen in lines 7 to 9. SystemState remained updated to busy
throughout this operation.

Pre-scaling at pt� 1qth interval: Moreover, the number of service
requests are predicted during job handling. This activated the
computation of VM utilisation threshold at pt � 1qth intervals as
seen in lines 3 to 5 of algorithm 33. When the VM utilisation
threshold at pt � 1qth interval is greater than the maximum VM
utilisation threshold, cost aware scaling up is activated as seen in

146



Algorithm 33 Pre–scaling at the pt� 1qth interval

Require: AResource
1: while JobHandModL � busy do
2: SystemStatepj, pq :� busy
3: while JobHandReslist � JHRLactive do
4: Predict�NumofSerReqt�1 :� active
5: Calculate� V mULt�1 :� active
6: if V mULt�1 ¡ VMutmax then
7: Cost� AwareP�SU :� active
8: end if
9: SystemStatepj, pq :� busy

10: end while
11: end while

Algorithm 34 Cost–aware Pre–scaling up

Require: AResource
1: while JobHandModL � busy do
2: SystemStatepj, pq :� busy
3: while JobHandReslist � JHRLactive do
4: V mLevelSU :� active
5: if NumOfRequests ¡ 0 then
6: if Aresource   NumOfRequests then
7: SmallestV MSU :� active
8: else
9: RlevelSU :� active_ VMlevelSU :� active

10: end if
11: end if
12: SystemStatepj, pq :� busy
13: end while
14: end while

lines 6 to 8. SystemState remained updated to busy throughout
this operation.

Cost-aware Pre-scaling up: Moreover, during VM level scaling up,
when the number of user requests is greater than zero and the Are-
sources provisioned are not sufficient to handle user requests. The
VM with the smallest capacity is activated as seen in lines 3 to 7 of
algorithm 24. Conversely, if the Aresources are sufficient, a com-
parison between resource level scaling up and VM level scaling up
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Figure 6.2: Workload Predicted Auto-Scaler Job Initialising

is made to select the appropriate option as seen in lines 8 to 10.The
SystemState remained updated to busy throughout this operation.

This refinements satisfies our evaluation criteria since derived functions
were applied to evaluate job initialising to job handling of [174]. Also, the sys-
temstate transitioned during the modelling of the phases. The refinements
of the specialised operations are equivalent to our ground model.

Now, Let us discuss the verification of Astam with CTL Properties.

6.4 Verification of Astam with CTL Proper-

ties

The verification of Astam (which is part of step 4 of our model’s design) was
achieved per definition 6 of transition systems and our verification notations
described in sub-section 5.3.3. This is accomplished to ensure that our ASM
refinements are equivalent to our ground model. Equations 6.1 and 6.2 show
how the CTL properties were applied to verify key universes and functions
that are reflective of our ground model in figure 5.5. Equations 6.1 represents
the state transitions in our ground model while figure 6.2 represent the state
transitions in the refinements.
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Now, let us discuss the equations beginning with equation 6.1 .

1. Init.P : M, si ( jhf ^ prf ^ jrf ^mvf ^mjf

2.JobI. : M, si ( jhf ^ prf ^ jrf ^mvf ^mjf

Ñ AXpjht^ prt^ jrt^mvt^mjtq

3.JobQ. : M, si ( EF pjht^ prt^ jrt^mvt^mjtq

Ñ EXpjhf ^ prf ^ jrf ^mvf ^mjfq

4.JobH. : M, si ( AGpjhf ^ prf ^ jrf ^mvf ^mjfq

Ñ AXpjht^ prt^ jrt^mvt^mjtq

5.JobT. : M, si ( EF pjht^ prt^ jrt^mvt^mjtq

Ñ EXpjht^ prt^ jrt^mvt^mjtq

(6.1)

According to equation 6.1, in line 1 (which represents the Initial phase of
our model) the universes and functions are updated to false. This is reflective
of the inactivity at the initial phase where the systemState transitions to idle
as seen in algorithms 5 and 6.

In line 2, (Job initialising) the functions which were initially at a false
state, along all paths in the next state transition to true where systemState
was updated to active. This is reflective of algorithms 8 and 9.

In line 3 (Job queuing), there exists a path in the future where functions
currently updated to true transitioning to false due to the possibility of
VMs depletions. This causes systemState to transition to waiting which is
reflective of algorithms 11 and 12.

In line 4 (Job handling), along all paths and in all future states, once Are-
sources are provisioned and VMs are mapped to jobs, the functions transition
from false to true in the next state (after VM Selection), causing systemState
transition to busy. Which is reflective of algorithm 16.

In line 5 (Job termination), task processing gets terminate when there
is an abrupt system interrupt or when all the jobs uploaded are exhausted.
Therefore, there exists a possibility of the functions to transition from true
to true in the next future states, fostering job processing to terminate. This
causes systemState to transition to either stopped or done as seen in algo-
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rithm 18.

1. Init.P : M, si ( jhf ^ jlf ^ srf ^ rrf

2.JobI. : M, si ( jhf ^ jlf ^ srf ^ rrf Ñ AXpjht^ jlt^ srt^ rrtq

3.JobQ. : M, si ( EF pjht^ jlt^ srt^ rrtq Ñ EXpjhf ^ jlf ^ srf ^ rrfq

4.JobH. : M, si ( AGpjhf ^ jlf ^ srf ^ rrfq Ñ AXpjht^ jlt^ srt^ rrtq

5.JobT. : M, si ( EF pjht^ jlt^ srt^ rrtq Ñ EXpjht^ jlt^ srt^ rrtq

(6.2)
In line 1 of equation 6.2, the refined functions transition to false after the

ASM run which caused systemState to transition to idle which is reflective
of the refined initial phase algorithm 7.

In line 2, the functions previously updated to false (in line 1), along
all paths transition to true in the next phase (i.e., job initialising). This
caused systemstate to transition to active as seen in algorithm 10.

In line 3, the functions previously updated to true (in line 2), along some
paths in the next state due to the possibility of VM shortage, transition to
false. Systemstate is updated to waiting. This is reflective of algorithm 13.

In line 4, along all paths (globally), once Aresources are provisioned, the
functions previously updated to false (in line 3), transition to true in the
next state, when all conditions are right (after VM Selection). systemState
to transition to busy which is reflective of algorithm 17.

In line 5, task processing get terminated in the next possible path for
functions previously updated to true (in line 4). This happens when the
conditions of job termination are met. This causes systemState to be updated
to either stopped or done.

The verification process showed, that refinements are equivalent to our
ground model as the functions and state transitions exhibited similar VMs
provision behaviours. Additionally, this equivalence of state transitions aligns
with definitions 5 to 4 of Schellhorn’s theorem and Börger’s refinement of
ASM verification.

Now let us move on to discuss the validation of Astam with CoreASM.

6.5 Validation of Astam with CoreASM

6.5.1 Introduction

Our ASM model’s validation (step 5 of our model’s design) was achieved
through the creation of test cases from our ground model algorithms and
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their refinements. These test case were developed on CoreASM (plug-in
available for the Eclipse IDE).

The processes utilized for validating the test cases, the expected results
and the subsequent results are described below. The test cases for validat-
ing Astam (i.e., coreasm specifications) were grouped into three major derived
functions (also know as modules). They are: job initialising, queuing, and
handling specifications.

The test cases were designed as interactive sequences with suitable assess-
ment criteria to describe the expectations of our model’s states. This was
accomplished to see if specified assertions hold in given states. The test cases
were processed and examined if all the assertions were satisfied. A satisfied
assertion finished with a pass verdict. However, as soon as an assertion was
not satisfied, the simulation was interrupted, reporting a violation.

At each step, the simulator (CoreASM) performed update monitoring to
ensure that all states were updated. Our validation goals are:

� To assess the interactions of the phases of our ground model via the
application of universes and signatures.

� To examine the application of derived functions (modules) as refine-
ments of our ground model.

� To assess the application of guarded updates (which are reflective of
control state ASMs) to ensure equivalence (between ground model al-
gorithms and their refinements).

Let us now outline the steps employed to examine the application of our
validation goals on the test cases.

� Assess the test cases to ascertain the the provision of resources via the
application of universes and functions for all the job execution phases.

� Monitor VM counts to ascertain the queuing of job for VMs (at step
2), and VM selection when jobs are mapped to VMs.

� Report all state changes during this process. The expected state up-
date should be idle for the initial phase, submitted or active for job
initialising, waiting for job queuing, busy for job handling and ei-
ther stopped or done for job termination.

We applied the validation goals on the test cases developed for the refined
algorithms of our ground model’s algorithm to proved their equivalence. Ta-
ble 6.1 depicts the relationship between our algorithms and the validated
CoreASM Specifications.
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JobInitReqFunMod.casm

JobQueReqFunMod.casm

SimJobhandMod.casm MultiJobhandMod.casm

JobHandVmReqMod.casm

Figure 6.3: ASM Validation Modules

6.6 Creation of Astam Modules for Model

Validation

CoreASM modules (CoreModules) were created to ensure modularisation
amongst the CoreASM specification. Also, they were developed to support
the ASM specifications with signatures, universes, functions required for val-
idation process. The CoreModules were designed with ASM application rules
which aligned with the control state ASM definition 2 to ensure that, once
the conditions for state transitions are met, system states are updated ac-
cordingly. The conditions in the test cases are designed to be set to true. If
this condition is met, system states are automatically updated.

Three key modules were applied to support our model validation as seen
in figure 6.3. Figure 6.3 represents the actual file names of the modules with
the ASM specification file extensions (.casm). The arrows represents the lev-
els of dependency of each file from the bottom to the top. The topmost file is
the module for job initialising, which is followed by the job queuing module.
The jobhandler module for SimpleMultimode auto-scalers are on the same
level, which are followed by a general jobhandler module with VM selection
integrated refinements. The MultiJobHandMod and SimJobHandMod mod-
ules were validated and applied to the Multimodes and Simple auto-scalers
as seen in MultiJobHandMod.casm and SimJobHandMod.casm. The two
modules were validated separately.
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In order to validate the modules, the test cases were scrutized for the pro-
vision of aresources and job queuing resources via the application of the Ini-
tReqFunctions, VMcount and QueReslist functions. All the test cases gen-
erated positive assertion verdicts with the expected state transtions. The
CoreModules were then applied in the validation of the other test cases rep-
resenting the phases of our ground model. Let us discuss the ASM validation
rules in the next section.

6.7 Astam Transition Rules Validation with

CoreModules

In this section, the validation of the ASM rules is discussed extensively to
highlight the applicability of our model. The Simple and Multimode auto-
scalers were validated separately. Also, the ground model and their refine-
ments were all validated separately. As mentioned above, the test cases of
the refinements are expected to show equivalence to the test cases of our
ground model. Also, the results for the ground model and the refinement
are expected to show positive assertion verdicts. Details of the validation of
Astam’s transition rules are described below.

6.7.1 Initial Phase

This phase was validated following rule 5.4.1.1 of our model as seen in the
JobInitFunMod.casm file. A series of test case assessements were done to
validate the initial phase of our model. The ground model and its refinement
were checked for the provision of universes (including specific auto-scalers
universes) and functions. The jobRequest and processRequest were utilised
for the ground model; while InitReslist, SystemRequest and ReqResource
functions were employed for refinement. The jobState, jobTime and system-
state were updated to idle.

6.7.2 Job Initialising

This phase was validated following rule 5.4.1.2 of our model. The validation
required a re-run of the initial phase to ensure coherence. This fostered the
mapping of jobs to VMs, and their installation as tasks. The test cases
were assessed for the provision of resources via universes and functions. The
systemstate transitions to active; and jobState was updated to submitted.
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Table 6.1: Algorithms with Associated ASM Specification Files (AN: Algorithm
Numbers)

AN Algorithms File Names

5 Simple Initial Phase SimpleInitialPhase.casm

6 Multimode Job Initial MultimodeInitialPhase.casm

7 Refined Initial Phase RefinedInitialPhase.casm

8 Simple Job Initialising SimpleJobJobInitialising.casm

9 Multimode Job Initialising MultimodeInitialising.casm

10 Refined Job Initialising RefinedJobInitialising.casm

11 Simple Job Queuing SimpleJobQue.casm

12 Multimode Job Queuing MultimodeJobQue.casm

13 Refined Job Queuing RefinedJobQue.casm

14 Simple Jobhand. SimJobHandMod.casm

15 Multi. Jobhand. Mod. MultiJobHandMod.casm

16 Job Handling JobHandling.casm

17 Refined Job Handling RefinedJobHandling.casm

18 Job Termination JobTermination.casm

19 Refined Job Termination RefinedJobTermination.casm

20 LoadPred. Jobs Init LoadPredJobInit.casm

21 LoadPred. Jobs Que LoadPredJobQue.casm

22 LoadPred. Jobh. Mod LoadPredJobHandMod.casm

23 LoadPred. Job hand. LoadPredJobHand.casm

24 Virt. Res. Scal. down LoadVirtResScalDown.casm

25 Pre-scaling Int. LoadPreScalInterval.casm

26 Cost-Aware Pre-scal. LoadCostAwarePSU.casm

27 Threshold Initial Phase ThresholdInitPhase.casm

28 Vmopt Jobs Init. VmoptJobInit.casm

29 Threshold Jobs Que. ThresJobQue.casm

30 Thres. Jobhanding ThresJobHand.casm

31 VmCreate Jobs handling VmCreateJobHand.casm

32 Vmopt Jobs handling VmoptJobHand.casm

33 Pooling Jobs handling Mod PoolJobHandling.casm

34 Pooling Jobs Term Mod PoolJobTermination.casm
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6.7.3 Job Queuing

The test cases created to validate job queuing applied rule 3 discussed in sub-
section 5.4.1.3. The test cases were assessed for the provision of resources via
universes and functions. The VMCount function was applied to monitor the
number of VMs during job processing. The systemstate and JobState were
updated to waiting.

6.7.4 Job Handling

The test case created to validate Job handling applied rule 4 of our model dis-
cussed in sub-section 5.4.1.4. The validation applied the MultiJobHandMod
and SimJobHandMod modules described in section 6.6. Derived functions
(InitReqFunctions in the JobInitFunMod.casm files) were utilised to provi-
sion universes and functions from the previous phases. Also, job queuing
and VM selection were monitored via the jobhandling modules in JobHand-
VmReqMod.casm file. In the case of the refinement, the Jobhandling module
mentioned above was applied.

6.7.5 Job Termination

Job termination was validated following sub-section 5.4.1.5 of our model.
The test cases developed for this phase checked the conditions for job termi-
nation. Previous phases were re-executed and validated sequentially to lead
to job termination. The primary conditions for job termination were vali-
dated. The test case (with universes designed to stop working midway) was
assessed for system interruptions. Also, the test case (designed to monitor
the availability of jobs) was monitored for the quantity of jobs available at
the end of task processing. The jobtime was updated to completed. Also,
systemstate transitioned to done (as expected).

In conclusion, the test cases developed from our ground model algorithms
and their refinements aligned with the validation goals discussed in sec-
tion 6.5.1. In general, the test cases of the refinements showed equivalence
to the test cases of our ground model. Also, the results for the ground model
and the refinement showed positive assertion verdicts. Now let us summarize
this chapter.

6.8 Summary

In this chapter, we discussed the processes utilised to evaluate, verify and val-
idate our Astam Model. The evaluation section applied our Transition Rules
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and evaluation criteria to examine the algorithms developed from available
auto-scalers. The evaluation extended to other auto-scalers whose algorithms
were made public. The evaluation showed the equivalence of the refinements
(of the auto-scalers) to our ground model and their alignment with the eval-
uation criteria. For the model verification, the Computational Tree Logic
(CTL) formulae were applied to our notations to ensure the correctness of
our refinements. Moreover, we developed test cases from the formalized al-
gorithms of the auto-scalers and validated on the CoreASM simulator. The
test cases were grouped into several specifications and validated.

Finally, the discussions of this chapter provided sufficient information
to show that our Astam model was designed to reflect the observations of
the investigations carried out in section 5.2. This shows that, although the
auto-scalers were designed on different frameworks, they exhibit similar VM
provision behaviours during job processing. These behaviours are not only
limited to cloud computing framework but also the MR programming model
which have been proved via research to support auto-scaling mechanisms.

To allow for further scrutiny and reuse, the validated CoreASM Specifi-
cations are available in the Auto-Scaling-ASM repository on Github1. Now
let us move on to conclude our dissertation.

1https://github.com/EbenezerKomlaGavua/Auto-Scaling-ASM
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Chapter 7
Conclusion

This dissertation focused on the application of cloud computing simulators
and the modelling of resource provisions to meet user demands. As such,
three research efforts were carried out. These are discussed below.

The initial research effort focused on the evaluation and comparisons
of MR simulators. Literature was reviewed systematically to identify sim-
ulator features that were specific to cloud computing in general. These
cloud-oriented features were again revised to MR specific features. These
were utilised as evaluation criteria (classification framework) to analyse the
strengths and weaknesses of MapReduce related simulators. The classifica-
tion framework showed that MR simulators support features, including data-
intensive applications, application configuration management, and suitable
infrastructural implementation. The research showed that the older sim-
ulators developed are not suitable for current research. This was due to
the fact that they lack most of the features required to carry out MR re-
search. However, they provided the platform for simulators developed re-
cently and do support more features for efficient research. The investigation
enabled the recommendations to be provided to users concerning the choice
of MR simulators for research and development. Therefore, the results of
the initial research effort simplifies the selection of MapReduce simulators
for researchers. The research fostered the adherence to systematic litera-
ture review procedures. Since initially, several simulators were considered
(including peer-to-peer simulators) which were not MR specific. These were
removed due to the absence of the expected features. This prolonged the
investigation process which will not be repeated in future research activities.
Also, with the further improvements on several MR simulators. The selection
of simulators will be much simpler with this classification framework.

As the strengths and weaknesses of the simulators were been analysed,
one challenge with the MR Hadoop became apparent (i.e.,speculative exe-
cution). Since some simulators could simulate speculative execution while
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others could not. Therefore, this challenge was further investigated, which
led to the design of an approach to tackle speculative execution in MapRe-
duce Hadoop. Three algorithms were developed towards job performance
improvement. The algorithms are: (i) snapshot capturing (ii) task perfor-
mance monitoring and (iii) task instance monitoring algorithms. K-means
clustering technique was applied to classify captured task run times into two
categories (straggler and non-straggler tasks). Also, Silhouette score was im-
plemented on the clustering algorithm as a decision-making tool. This was
because K-means tried to classify all data set regardless of their distribution.
Thus, the clustering results required validation to determine their goodness
of fit. Hence, a silhouette score was applied to determine when to process
backup tasks on available nodes. This approach was evaluated on several
data centre configurations and against baseline methods. These configura-
tions were selected based on a survey of industry requirements for Hadoop
clusters and applications. Experiments were carried out which were directed
by three objectives; namely (i) the determination of overheads caused by
implementing the approach and (ii) the job performance improvements (iii)
comparison with baseline methods. The experiments were carried out on the
HDMSG-EXTENSION simulator (one of the simulators evaluated by the first
research effort). The experiments showed that (i) the overheads caused by
applying the proposed approach were reduced faster with large data centres
than with smaller data centres. (ii) mapper tasks with typically longer task
run times had better chances for improvements. (iii) Our approach showed
improved performance over Hadoop Naive, Longest Approximate Time to
End (LATE) and the Self-Adaptive MR Scheduling Algorithms (SAMR)
methods. Therefore, adequate Hadoop data centre recommendations have
been provided for users who will apply this approach. The design of this
approach showed that, it is vital to conduct surveys from industry to ensure
that solutions provisioned are applicable to real life and industry.

Furthermore, it was discovered through literature that resource provision
was pivotal to the meeting user demands during job processing. However,
the issue of evaluating auto-scaling mechanisms to determine existing similar
behaviours remained a challenge. Especially when the auto-scalers were de-
veloped on different infrastructures. Therefore, an ASM model was develop
to analyse resource provision behaviours on cloud mechanisms.

Initially, investigations about the VM provision behaviours of the auto-
scaling mechanisms offered with the DISSECT-CF simulator was accom-
plished as a motivation towards the model. Two categories of auto-scalers
(simple and multimode) and their integral components were identified. These
components were required in the design an auto-scaler and could be mod-
elled with ASMs. Then, ASMs were applied to model and analyse the VM
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provision behaviours of auto-scaling mechanism. To achieve this, algorithms
were generated from the auto-scalers investigated earlier, according to the
ASM model refinement method. These algorithms were formalized to reflect
job execution phases, which represented our ground model’s Transition Rules.
The initial algorithms were refined according to the ASM refinement method,
and compared to their refinements according to Börger’s refinement to check
for equivalence. The model was utilised to evaluate other auto-scalers to en-
sure applicability. The CTL formulae was applied on the model’s notations
to check for correctness. CTL was utilised because it is generally efficient in
model checking. The verification of the model shows that it is readily usable
for modelling other solutions. Test cases were developed and validated on
the CoreASM (plug-in available for the Eclipse IDE) from the formalised
algorithms according to validation rules. The validation rules were created
in accordance with the ground model’s Transition Rules and ASM guarded
updates. The application of ASM technique has foster a rigorous analysis of
the auto-scalers’ algorithms which confirms the initial investigations carried
out. This shows that if such techniques are applied to most experiments in
industry, concrete reasons can be provided for the reliability of products.

Although this research has achieved our research aims, a couple of tasks
are left to be accomplished. Let us now discuss our future research direction.

7.1 Future Research Direction

As future work, we plan to design an auto-scaling algorithm which will be
implemented on MapReduce Hadoop. Our Snapshot capturing algorithm
will be applied to foster a comparison with the job performance approach.
Also, a couple of classification and clustering techniques will be applied to
provide further extensions.

Furthermore, we plan to implement CTL properties on test cases as an
extension to our ASM verifications. This study will be achieved via available
model-based testing and verification approaches. Moreover, developing an
ASM unified behavioural model for auto-scaled IoT applications will be con-
sidered. This will aim at fostering the assessment of the interaction of IoT
applications during their service delivery in clouds. Also, we will consider the
applicability areas for our ASM model through more job-related scenarios.
These experiments will ensure the modelling of the behaviour of jobs.

Our research efforts in our dissertation has fostered the development of
three major contributions to science. Now, let us outline these contributions.
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7.2 Contributions to Science

This work contributes to the field of Cloud Computing, Distributed Systems
and Software Engineering.

Thesis I: MaReClass allows the evaluation of simulators by identifying
MapReduce specific criteria required to render detailed simulations complete.
MaReClass simplifies the selection of MapReduce simulators with features
relevant to the choice of research. The framework fosters systematic analysis
of the strengths and weaknesses of mapreduce simulators. [P4, P5]

Thesis II: Haspeck can improve job performance on MapReduce Hadoop
even with the challenges presented by speculative execution. Haspeck imple-
ments snapshots capturing to determine task run times, which inures the
early detection and selection of straggler tasks as backup tasks. The appli-
cation of kmeans clustering with silhouette coefficients fosters the runtime
reduction via small overheads for long running mappers and reducers in my
solution. [P2, P3, P6]

Thesis III: Astam is capable of analysing the virtual machine provision
behaviours of auto-scaling mechanisms. The Astam model allows the formali-
sation and comparisons of auto-scaling algorithms from multiple sources. The
model can assess formalized auto-scaled algorithms emanating from distinc-
tive architectures to show that they exhibit similar VM provision behaviours.
The flexibility of Astam’s transition rules allows the adoption of auto-scaling
mechanisms with extra features besides vertical and horizontal scaling to
foster their evaluation. [P1, P7]

7.2.1 Author’s Publications During Research

(P1) Ebenezer Komla Gavua, Gabor Kecskemeti: “Formalizing cloud auto-
scaling algorithms with the abstract sate machine model” In: Vadászné,
Bognár Gabriella; Piller, Imre (eds.) Doktoranduszok Fóruma : Miskolc,
2019. november 21. : Gépészmérnöki és Informatikai Kar Szekciókiadványa
Miskolc, Hungary : Miskolci Egyetem Tudományos és Nemzetközi Rek-
torhelyettesi Titkárság (2020) 188 p. pp. 37-43., 7 p.

(P2) Ebenezer Komla Gavua, Gabor Kecskemeti: “Improving MapReduce
Speculative Executions with Global Snapshots” In: The 12th Confer-
ence of PhD Students in Computer Science: Volume of short papers
Szeged, Hungary : Szegedi Tudományegyetem (2020) pp. 62-65. , 4 p.
Scientific
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(P3) Ebenezer Komla Gavua, Gabor Kecskemeti: “Application of Kmeans
and Hierarchical Agglomerative Clustering Techniques on MapReduce”
In: Barna, Boglárka Johanna; Kovács, Petra; Molnár, Dóra; Pató,
Viktória Lilla (eds.) XXIII. Tavaszi Szél Konferencia 2020. Absz-
traktkötet: MI és a tudomány jövője Bp, Hungary: Association of
Hungarian PHD and DLA Students (2020) 600 p. pp. 354-354., 1 p.
Scientific

(P4) Ebenezer Komla Gavua, Gabor Kecskemeti: “A Comparative Analy-
sis and Evaluation of MapReduce Cloud Computing Simulators” In:
Waleed, W. Smari (eds.) 2019 International Conference on High Per-
formance Computing & Simulation (HPCS) Piscataway (NJ), United
States of America : IEEE (2019) Paper: 222, 8 p. DOI Scopus index

(P5) Ebenezer Komla Gavua, Gabor Kecskemeti: “Evaluation of MapRe-
duce Simulators Towards the Improvement of DISSECT-CF” In: Németh,
Katalin (eds.) Tavaszi Szél 2019 Konferencia. Nemzetközi Multidisz-
ciplináris Konferencia : Absztraktkötet Bp, Hungary: Association of
Hungarian PHD and DLA Students (2019) 742 p. pp. 429-429. , 1 p.
Scientific

(P6) Ebenezer Komla Gavua and Gabor Kecskemeti, “Improving MapRe-
duce Speculative Executions with Global Snapshots” International Jour-
nal of Advanced Computer Science and Applications(IJACSA), 14(1),
2023. Web of Science (WoS), (Q3+ Scopus Index), Impact Factor
(1.16), Journal Article

(P7) Ebenezer Komla Gavua, Gabor Kecskemeti: “ASM-based Formal Model
for Analysing Cloud Auto-Scaling Mechanisms”, Int. Journal. of Com-
puting and Informatic (Informatica). Web of Science (WoS) (Q3+ Sco-
pus Index), 47 (2023) 75–96. https://doi.org/10.31449/inf.v47i6.4622.
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[131] Hamza Sahli, Fäıza Belala, and Chafia Bouanaka. Formal verification
of cloud systems elasticity. International Journal of Critical Computer-
Based Systems, 6(4):364–384, 2016.

175

https://www.projectpro.io/article/top-10-industries-using-big-data
https://www.projectpro.io/article/top-10-industries-using-big-data


[132] Sherif Sakr, Anna Liu, and Ayman G Fayoumi. The family of mapre-
duce and large-scale data processing systems. ACM Computing Surveys
(CSUR), 46(1):1–44, 2013.

[133] Mario Santana. Infrastructure as a service (iaas). In Cloud Computing
Security, pages 65–70. CRC Press, 2020.

[134] Deepika Saxena and Ashutosh Kumar Singh. A proactive autoscal-
ing and energy-efficient vm allocation framework using online multi-
resource neural network for cloud data center. Neurocomputing,
426:248–264, 2021.

[135] Gerhard Schellhorn. Asm refinement and generalizations of forward
simulation in data refinement: A comparison. Theoretical Computer
Science, 336(2-3):403–435, 2005.

[136] Hermes Senger, Veronica Gil-Costa, Luciana Arantes, Cesar AC Mar-
condes, Mauricio Marin, Liria M Sato, and Fabŕıcio AB Da Silva. Bsp
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