DOI 10.14750/ME.2024.012

UNIVERSITY OF MISKOLC

>

20—

-T2

FACULTY OF MECHANICAL ENGINEERING AND
INFORMATICS

Utilizing Data-Balancing Techniques to Improve Al-Based Prediction of Software Bugs and
Code Smells

PhD DISSERTATION

AUTHOR:

Nasraldeen Alnor Adam Khleel
MSc in Software Engineering

Jozset Hatvany Doctoral School of

Information Science, Engineering and Technology

HEAD OF DOCTORAL SCHOOL

Prof. Dr. Jeno SZIGETI

ACADEMIC SUPERVISOR

Dr. Kéroly Nehéz

Miskolc
2023

http://dx.doi.org/10.14750/ME.2024.012

DOI 10.14750/ME.2024.012

Declaration of Authorship

The author hereby declares that this dissertation has not been submitted, either in the same or
in a different form, to this or to any other university for obtaining a PhD degree. The author
confirms that the submitted work is his own and the appropriate credit has been given where
reference has been addressed to the work of others.

Author's declaration

I, the undersigned, Nasraldeen Alnor Adam Khleel, declare that | have prepared this doctoral
dissertation and have used only the sources provided.

All parts that | have taken from another source, either directly or in the same content but
paraphrased, are clearly marked with the source.

November 20, 2023.

Nasraldeen Alnor Adam Khleel

http://dx.doi.org/10.14750/ME.2024.012

DOI 10.14750/ME.2024.012

Acknowledgments

First and foremost, | would like to praise and thank God, Allah, almighty, who has granted me
countless blessings, knowledge, inspiration, and opportunity to me so that I was able to
accomplish my dissertation.

I would also like to thank the University of Miskolc, Faculty of Mechanical Engineering and
Informatics for the opportunity given to me to study for a PhD in Information Technology.

Apart from my efforts to harvest the fruits of this work, the success of this thesis depends on
the encouragement and guidelines of many others. This dissertation became a reality because
of the help and support of people around me; it was also a result of a lot of effort and hard work
during the past four years.

Above all, I would like to thank my supervisor, Dr. Karoly Nehéz, for his continued to support,
direction, and encouragement over the past years; this dissertation would not have been
possible without him, |1 would also like to thank everyone in the computer science department.

Furthermore, | am grateful to many of my colleagues in our department for their help and
support in organizing the events associated with the doctorate. | also express my thankful
feelings to my colleagues for their help. Lastly but not least, | owe my loving thanks and deep
sense of gratitude to my siblings and my parents for their support and encouragement.

Nasraldeen Alnor Adam Khleel

http://dx.doi.org/10.14750/ME.2024.012

DOI 10.14750/ME.2024.012

Table of Contents
Declaration of Authorship /
Author's declaration I
Acknowledgments]
List of Abbreviations vi
List of Figures Vil
List of Tables Xi
Chapter 1 Introduction 1
11 Motivation 2
1.2 Problem Statement 3
1.3 The objectives of the thesis 3
14 Dissertation Guide 4
Chapter 2 Literature Review and Theoretical Background 5
2.1 Software Bugs 5
2.1.1 Software Bug Prediction (SBP) 5
2.1.2 Software Bug Prediction Approaches 6
2.1.2.1 With-in Project Defect Prediction (WPDP) 6
2.1.2.2 Cross Project Defect Prediction (CPDP) for Similar Dataset 6
2.1.2.3 Cross Project Defect Prediction (CPDP) for Heterogeneous Dataset 6
2.2 Code Smells 7
2.2.1 Types of Code Smells 7
2211 God class 7
2212 Data class 7
2.2.1.3 Feature envy 7
2.2.1.4 Long method 8
2.2.2 Code Smells Detection 8
23 Software Metrics 8
24 Summary 11
Chapter 3 Artificial Intelligence (Al) 12
3.1 Artificial Intelligence Techniques 12
3.1.1 Machine Learning (ML) 12
3.1.1.1 Supervised learning 13
3.1.1.2 Unsupervised learning 15
3.1.13 Reinforcement learning 16
3.1.2 Artificial Neural Networks (ANNs) 16
3.1.2.1 Multi-layer Perceptron (MLP) 17
3.1.2.2 Deep learning (DL) 17
3.1.23 Recurrent Neural Networks (RNNs) 19
3.2 Summary 22
Chapter 4 Data Imbalance and Data-Balancing Methods 23

http://dx.doi.org/10.14750/ME.2024.012

DOI 10.14750/ME.2024.012

v

4.1 Data Imbalance 23
4.2 Data-Balancing Methods 23
4.2.1 Data Sampling (Resampling) Methods 24
4.2.1.1 Undersampling Methods 24

4.2.1.2 Oversampling Methods 24

4.2.1.3 Hybrid (Combined-Sampling Methods) 25

43 Summary 25
Chapter 5 Proposed Methodology and Implementation 27
5.1 Experimental Design 27
5.1.1 Proposed Approaches 27

5.1.2 The Public Benchmark Datasets Used in This Research 28
5.1.2.1 Software Bug Data Sets 28

5.1.2.2 Code Smells Data Sets 29

5.1.3 Data Pre-processing 29

5.1.4 Features Selection 30

5.1.5 Balancing Data sets 32

5.1.6 Models Building and Evaluation 36

5.2 Summary 40
Chapter 6 Experimental Results and Discussion of Software Bugs Prediction (SBP) 41
6.1 ML Techniques in SBP 41

6.2 LSTM and GRU with Undersampling Methods in SBP 45

6.3 Bi-LSTM with Oversampling Methods in Software Defect Prediction (SDP) 51

6.4 CNN and GRU with Hybrid (combined)-Sampling Methods in SDP 61

6.5 Summary 72
Chapter 7 Experimental Results and Discussion of Code Smells Detection 73
7.1 ML techniques with Oversampling Methods in Code Smells Detection 73

7.2 A Convolutional Neural Network (CNN) with Oversampling Methods 79

7.3 Bi-LSTM and GRU with Under and Oversampling Methods in Code Smells Detection 84

7.4 Summary 95
Chapter 8 Conclusion 96
8.1 Contributions 96
8.1.1 Theses - New Scientific Results 96

8.2 Future Research Direction 929
Appendices 100
Appendix 1: LSTM and GRU with Undersampling Methods in SBP 100
Appendix 2: Bi-LSTM with Oversampling Methods in SDP 101
Appendix 3: CNN and GRU with Hybrid (Combined)-Sampling Methods in SDP 102
Appendix 4: Bi-LSTM and GRU with Under and Oversampling Methods 104
Author’s Publication 111
Publications Related to the Dissertation 111

Other Publications Journal Articles and Conference Proceeding 112

http://dx.doi.org/10.14750/ME.2024.012

DOI 10.14750/ME.2024.012

References 113

http://dx.doi.org/10.14750/ME.2024.012

List of Abbreviations

(SBP)

(Al)

(ML)

(ANNs)

(CI)

(CD)

(WPDP)
(CPDP)

(LOC)

(CCN)

(DIT)

(CBO)

(NOC)

(RFC)
(CYCLO)
(LCOM)
(CLASS_FAN_OUT)
(LAA)
(LOCNAMM¥)
(WMC)

(TCC)

(ATFD)
(NOAM)
(NOM)
(WMCNAMM®*)
(FDP)

(NOPA)
(NOPK)
(AMWNAMM*)
(NMO)

(NOCS)
(AMW)
(CFNAMM¥)
(NIM)
(NOMNAMM®*)
(MAXNESTING)
(CINT)

(NOII)

(NOA)

(WOC)

(CDISP)
(CLNAMM)
(MaMCLS§)
(NOP)
(MeMCLS$)
(NOAV)
(NMCS§)
(ATLD*)

DOI 10.14750/ME.2024.012 vi

Software Bugs Prediction

Artificial Intelligence

Machine Learning

Artificial Neural Networks

Continuous Integration

Continuous Deployment

With-in Project Defect Prediction

Cross Project Defect Prediction

Lines of Code

Cyclomatic Complexity Number

Depth of Inheritance Tree

Coupling Between Objects

Number of Children

Response for a Class

McCabe’s CYCLOmatic complexity

Lack of Cohesion between Methods

Class Fan Out Complexity

Locality of Attribute Accesses

Lines of Code Excluding Accessor and Mutator Methods
Weighted Methods per Class

Tight Class Cohesion

Access To Foreign Data

Number of Accessor Methods

Number of Methods

Weighted Methods Count of Not Accessor or Mutator Methods
Foreign Data Providers

Number of Public Attributes

Number of Packages

Average Methods Weight of Not Accessor or Mutator Methods
Number of Methods Overridden

Number of Classes

Average Methods Weight

Called Foreign Not Accessor or Mutator Methods
Number of Inherited Methods

Number of Methods Excluding Accessor and Mutator Methods
Maximum Nesting Level of Control Structures
Coupling Intensity

Number of Implemented Interfaces

Number of Attributes

Weight of Class

Coupling Dispersion

Called Local Not Accessor or Mutator Methods
Maximum Message Chain Length

Number of Parameters

Mean Message Chain Length

Number of Accessd Variables

Number of Message Chain Statements

Access To Local Data

http://dx.doi.org/10.14750/ME.2024.012

(CC)
(NOLV)
(CM)
(DT)
(ID3)
(CART)
(RF)
(NB)
(SVM)
(KNN)
(LR)
(XGB)
(MLP)
(BL)
(Relu)
(Tanh)
(CNN)
(RNNs)
(LSTM)
(Bi-LSTM)
(GRU)
(SMOTE)
(QC)
(MCC)
(ROC)
(AUC)
(AUCPR)
(MSE)
(TPR)
(FPR)
(TNR)
(FNR)
(SDP)

DOI 10.14750/ME.2024.012 Ui

Control Coupling

Number of Local Variable

Number of Methods Affected by the Measured Method
Decision Tree

Iterative Dichotomiser 3

Classification and Regression Trees
Random Forest

Naive Bayes

Support Vector Machine

K-Nearest Neighbor

Logistic Regression

XGBoost

Multi-layer Perceptron

Deep Learning

Rectified Linear unit

Hyperbolic Tangent

Convolutional Neural Network
Recurrent Neural Networks
Long-Short-Term-Memory

Bidirectional Long-Short-Term-Memory
Gated Recurrent Unit

Synthetic Minority Oversampling Technique
Qualitas Corpus

Matthews Correlation Coefficient
Receiver Operating Characteristic

Area Under the ROC Curve

The Area Under the Precision-Recall Curve
Mean Square Error

True Positive Rate

False Positive Rate

True Negative Rate

False Negative Rate

Software Defect Prediction

http://dx.doi.org/10.14750/ME.2024.012

DOI 10.14750/ME.2024.012

VI
List of Figures
Figure 3.1 The typical ANN architeCture[70]ccueoveieirirerereeeeeee e 17
Figure 3.2 The typical CNN architeCture[80]ccevieiiiieieeceeereeeee e s 18
Figure 3.3 Interacting layers of the repeating module in an LSTM Networks[40]........ccccoeevvevvevieenenne. 20
Figure 3.4 Interacting layers of the repeating module in a Bi-LSTM Network[86]ccccecvververuennee 21
Figure 3.5 Interacting layers of the repeating module in a GRU Networks[7]cccovevevereeceeninenene. 22
Figure 4.1 Shows how data sampling methods deal with class imbalance............c.cccccoeveinnnnenne. 25
Figure 5.1 The architecture of the methodology followed in the dissertationc.cccccoeeveerenereenne. 27
Figure 5.2 Distribution of learning instances over the original and balanced data sets (The public
unified bug dataset)-by applying the Near Miss Methodcceeceveeierinecciccceeee e 34
Figure 5.3 Distribution of learning instances over the original and balanced data sets (The PROMISE
datasets)-by applying the SMOTE Tomek Method..........ccveciiieieiiceeeceeeeseee e 34
Figure 5.4 Distribution of learning instances over the original and balanced data sets (The PROMISE
datasets)-by applying the Random Oversampling and SMOTE methods..........c.cceecvvereienereeriennennnne 35
Figure 5.5 Distribution of learning instances over the original and balanced data sets (The Qualitas
Corpus Systems)-by applying the SMOTE Method..........cccooiverieieieieireeeee e 35
Figure 5.6 Distribution of learning instances over the original and balanced data sets (The Qualitas
Corpus Systems)-by applying the Random Oversampling methodccceveieeceieceecieceeeece e, 36
Figure 5.7 Distribution of learning instances over the original and balanced data sets (The Qualitas
Corpus Systems)-by applying the Random Oversampling and Tomek Links methodsc............ 36
Figure 6.1 Comparison of ROC curves for Models Across the jm1 Dataset.........ccccocevvevverenerenereenen 42
Figure 6.2 Comparison of ROC curves for Models Across the pcl Datasetcccevveeeveneevenieeneenn, 42
Figure 6.3 Comparison of ROC curves for Models Across the KC1 Datasetccccoevvevveerereneniennes 43
Figure 6.4 Comparison of ROC curves for Models Across the Kc2 Datasetcccoevvevvevererenereenes 43
Figure 6.5 Showcases the boxplots illustrating the performance measures achieved by the proposed
models on all datasets, encompassing both class-level and file-level metrics........cccocovveeeveeieneeneee 46
Figure 6.6 Represents the training and validation accuracy of the models across all datasets - class-
TEVET MBITICS .ottt ettt ettt s b et et et e st e st e se e s e ebestesbentenseneeneesesseesensens 47
Figure 6.7 Represents the training and validation accuracy of the models across all datasets - file-level
TTIBETICS ettt ettt ettt et b e bbbttt e st a bt bbbt e b et e Rt R eh e eh e Rt bt et e b et et e st e n e n e bt be e e nen 47
Figure 6.8 Represents the training and validation loss of the models across all datasets - class-level
TTIBETICS ettt ettt ettt a bbbt bttt a st h bt e bbb e b et e Rt Rt h e bkt h et et et et e st et en e e bt be e e nen 48
Figure 6.9 Represents the training and validation loss of the models across all datasets - file-level
0] (ot OSSR 48
Figure 6.10 Illustrates the ROC Curves of the models across all datasets - class-level metrics........... 49
Figure 6.11 Illustrates the ROC Curves of the models across all datasets - file-level metrics 49
Figure 6.12 Boxplots represent performance measures obtained by the model on the original and
DAIANCEA TALASELS.eeveeteeiiiesieee ettt sttt et eseebe s b e s be s b e s te s e e e e eneesensesaennas 54
Figure 6.13 Training and validation accuracy for the original datasets.........ccccoevveeveviereecereeiere e 55
Figure 6.14 Training and validation accuracy for the balanced datasets - Random Oversampling......55
Figure 6.15 Training and validation accuracy for the balanced datasets — SMOTE..............cccccervenene. 56
Figure 6.16 Training and validation loss for the original datasets............cccoceevevieceenenceese e 56
Figure 6.17 Training and validation loss for the balanced datasets - Random Oversampling.............. 57
Figure 6.18 Training and validation loss for the balanced datasets - SMOTEcccocceevveeieneenenne. 57
Figure 6.19 ROC curves for the original datasetS..........ccevieierieriesereseese st 58
Figure 6.20 ROC curves for the balanced datasets- Random Oversampling..........cccocoveerereenieneeenne. 58
Figure 6.21 ROC curves for the balanced datasets- SMOTEccooieieviniecereceeceee e 59

Figure 6.22 Boxplots represent performance measures obtained by proposed models on all datasets. 64

http://dx.doi.org/10.14750/ME.2024.012

DOI 10.14750/ME.2024.012

IX
Figure 6.23 Training and Validation Accuracy for the original data sets - CNN model 65
Figure 6.24 Training and Validation Accuracy for the balanced data sets - CNN model..................... 65
Figure 6.25 Training and Validation Accuracy for the original data sets - GRU model 66
Figure 6.26 Training and Validation Accuracy for the balanced data sets - GRU model..................... 66
Figure 6.27 Training and Validation Loss for the original data sets - CNN modelcccccecvvennenne. 67
Figure 6.28 Training and Validation Loss for the balanced data sets - CNN modelcccoc.......... 67
Figure 6.29 Training and Validation Loss for the original data sets - GRU model............cccccecvvennnee. 68
Figure 6.30 Training and Validation Loss for the balanced data sets - GRU modelccccceeneenee. 68
Figure 6.31 ROC curves for the original data sets - CNN MOdelcccoeveeveriecieneceee e 69
Figure 6.32 ROC curves for the balanced data sets - CNN modelccocevevirenenencneineneneneen 69
Figure 6.33 ROC curves for the original data sets - GRU mModelc.ccoveeevivieceeneiiece e 70
Figure 6.34 ROC curves for the balanced data sets - GRU modelccoooveievieeniiieeceeeee e, 70
Figure 7.1 Box Plots represent the models' performance measures on all considered code smells_
OFIGINAL GATASELSveeeeeteet ettt b e bt bbb e se bt ebe e b e 76
Figure 7.2 Box Plots represent the models' performance measures on all considered code smells_
0T LT g ot I 1 ST £ S 76

Figure 7.3 The ROC curves obtained by the models on all considered code smells_ original datasets77
Figure 7.4 The ROC curves obtained by the models on all considered code smells_ balanced datasets

.. 78
Figure 7.5 Boxplots represent performance measures obtained by CNN Model............cccccvvrenennenne. 81
Figure 7.6 Training and Validation Accuracy over original datasetsc.cceceveeveeveieeceseeeece e 81
Figure 7.7 Training and Validation Accuracy over balanced datasets..........c..cccovvevererieeeinenencnennes 82
Figure 7.8 Training and validation loss over original datasetscceeveveveeveecieceseceece e 82
Figure 7.9 Training and validation loss over balanced datasets..........ccccveveeeeveeneeceeseseece e 83
Figure 7.10 Training and Validation Accuracy on the original datasets using Bi-LSTM Model......... 87
Figure 7.11 Training and Validation Accuracy on the original datasets using GRU Model 87
Figure 7.12 Training and Validation Loss on the original datasets using Bi-LSTM Model................. 88
Figure 7.13 Training and Validation Loss on the original datasets using GRU Model......................... 88
Figure 7.14 ROC curves for the original datasets - Bi-LSTM Modelccooeeieveiiiiecineeiee e 89
Figure 7.15 ROC curves for the original datasets - GRU MOdEl...........ccccovveeveriecenineee e 89
Figure 7.16 Boxplots representing performance measures obtained by models on the original datasets
.. 90
Figure 7.17 Boxplots representing performance measures obtained by models on the balanced
datasets- Random OVErSAMPIINGcceiieiiiieieeieiteete sttt e et s re et e e e re s beeaesteeraenbesbeessenbeereenes 91
Figure 7.18 Boxplots representing performance measures obtained by models on the balanced
AAtaSELS- TOMEK TINKS ...oviieieieieieeeee sttt sttt ettt st a et et e st eseeseseensees 92

Appendix 1: 0.1 Figure 1. lllustrates the AUCPR of the models across all datasets - class-level metrics

.. 100
Appendix 1: 0.2 Figure 2. Illustrates the AUCPR of the models across all datasets - file-level metrics

.. 100
Appendix 2: 0.1 Figure 1. AUCPR for the original dataSetsccoceeeerereereneeere e 101
Appendix 2: 0.2 Figure 2. AUCPR for the balanced datasets - Random Oversampling 101
Appendix 2: 0.3 Figure 3. AUCPR for the balanced datasets — SMOTEccceccevevveveneecienieeeene 102
Appendix 3: 0.1 Figure 1. AUCPR for the original data sets - CNN model 102

Appendix 3: 0.2 Figure 2. AUCPR for the balanced data sets - CNN model....................... 103

http://dx.doi.org/10.14750/ME.2024.012

DOI 10.14750/ME.2024.012

X
Appendix 3: 0.3 Figure 3. AUCPR for the original data sets - GRU modelcc.c....... 103
Appendix 3: 0.4 Figure 4. AUCPR for the balanced data sets - GRU model........................ 104
Appendix 4: 0.1 Figure 1. Training and Validation Accuracy on the balanced datasets using
Bi-LSTM Model-Random OVersampling.........cccccceiieieiieeiieeie e s 104
Appendix 4: 0.2 Figure 2. Training and Validation Accuracy on the balanced datasets using
Bi-LSTM Model- TOMEK TINKScciiiiiiiiieieee e 105
Appendix 4: 0.3 Figure 3. Training and Validation Accuracy on the balanced datasets using
GRU Model-Random OVersamplingccooeieieieniienisisesieeeeese e 105
Appendix 4: 0.4 Figure 4. Training and Validation Accuracy on the balanced datasets using
GRU Model- TOMEK HNKS ..ot 106
Appendix 4: 0.5 Figure 5. Training and Validation Loss on the balanced datasets using Bi-
LSTM Model-Random OVErSamMPIINGcccoiiiiiiiiiieeie s 106
Appendix 4: 0.6 Figure 6. Training and Validation Loss on the balanced datasets using Bi-
LSTM Model- TOMEK TINKSc.ooiiiiicie e 107
Appendix 4: 0.7 Figure 7. Training and Validation Loss on the balanced datasets using GRU
Model-Random OVErsampPling.........cccvoiiiieiiiie i 107
Appendix 4: 0.8 Figure 8. Training and Validation Loss on the balanced datasets using GRU
MOdel - TOMEK TINKS.......oiiiiiiiieee e bbb 108
Appendix 4: 0.9 Figure 9. ROC curves for the balanced datasets - Bi-LSTM Model-Random
OVEISAMPIING ...ttt et e s et e e e e sbe e beastesaeenteeneesreenteannenreas 108
Appendix 4: 0.10 Figure 10. ROC curves for the balanced datasets - Bi-LSTM Model- Tomek
JINKS bRttt bbb bR e e 109
Appendix 4: 0.11 Figure 11. ROC curves for the balanced datasets - GRU Model-Random
L@V =T 5TV o] o] 1o OSSPSR 109

Appendix 4: 0.12 Figure 12. ROC curves for the balanced datasets - GRU Model- Tomek links

http://dx.doi.org/10.14750/ME.2024.012

DOI 10.14750/ME.2024.012

XI
List of Tables
Table 2.1 Show the StatiC COUE MELIICS........oiiiieiiee e e 9
Table 2.2 Description list of 20 traditional static code MEtricscccoovvveriiereiienienesieens 10
Table 2.3 Descriptions of McCabe's and Halstead MEtriCSc.ovvierieiiniiniesieseere e 10
Table 5.1 Description of the NASA datasets.........cccooreiiiiiiiiniiieeeree e 28
Table 5.2 Description of the public unified bug datasetccccooveiriiiienieee e, 29
Table 5.3 Description of the PROMISE datasets............ccovieiiriiinieieresc e, 29
Table 5.4 Description of the Qualitas COrpuSs SYSEEMSccccvriiiriiieieie e, 29
Table 5.5 Parameter settings of the models (Classical teChniqUES)ccovvvevvrieiieicniinnnnn, 38
Table 5.6 Parameter settings of the models (Advanced techniques)cccccvevveiveiivereiiiennnn, 38
Table 5.7 CONTUSION MALTIX ...vviviiiiiiiie ettt 38
Table 6.1 Performance measures of the proposed models on the jm1 datasetc..c....... 41
Table 6.2 Performance measures of the proposed models on the pcl dataset..............c..c.c..... 41
Table 6.3 Performance measures of the proposed models on the kcl dataset......................... 41
Table 6.4 Performance measures of the proposed models on the kc2 dataset......................... 41
Table 6.5 Comparing the results of our study with the results of studies that used the same
dataset and algorithms across the jm1 and pcl dataset...........cccccevveveeieiiece e, 43
Table 6.6 Comparing the results of our study with the results of studies that used the same
dataset and algorithms across the kcl and Kc2 datasets...........cccevveveiieiiece e, 44

Table 6.7 Performance measures for the proposed models over class level metrics dataset...45
Table 6.8 Performance measures for the proposed models over file level metrics dataset46
Table 6.9 Comparison of the proposed approach with other existing approaches based on the
ACCUIACY AN AUC ...ttt sttt e et e s e sbe e teene e s beenbeaneesneenteeneeeseenneens 50
Table 6.10 Performance analysis for proposed Bi-LSTM Network - Original Datasets......... 51
Table 6.11 Performance analysis for proposed Bi-LSTM Network - Balanced Datasets using

Random Oversampling TEChNIQUEc.ooiiiiiiiieee e 52
Table 6.12 Performance analysis for proposed Bi-LSTM Network - Balanced Datasets using
SMOTE TECNNIGUE ...t 53
Table 6.13 Comparison of the results of the proposed Bi-LSTM Model based on the original
and balanced datasets in terms of accuracy using paired t-test...........cccevvrereneieneniesieeeen, 53
Table 6.14 Performance measures of the baseline model (RF) and Bi-LSTM............c........... 59
Table 6.15 Comparison of the proposed Bi-LSTM with other existing approaches............... 60
Table 6.16 Performance analysis for proposed CNN Model-Original Data sets..................... 61
Table 6.17 Performance analysis for proposed CNN Model-Balanced Datasets..................... 61
Table 6.18 Performance analysis for proposed GRU Model-Original Data sets..................... 62
Table 6.19 Performance analysis for proposed GRU Model-Balanced Datasets..................... 62
Table 6.20 Performance analysis for proposed models based on precision and recall measures
= CNIN MOGEL ..ottt b et b e b s e 62
Table 6.21 Performance analysis for proposed models based on precision and recall measures
= GRU MOGEL ...ttt ae st et r e ene e 62
Table 6.22 Summarizes the range of measures values for the proposed models on the original
AN DAIANCEA ALASELSeiveeieeie ettt ae e e s reebe et e sae e seeneeeneenneens 63
Table 6.23 Comparison of the proposed models in terms of accuracy using paired t-test......64
Table 6.24 Performance measures of the baseline model (RF) and proposed models............. 71

Table 6.25 Comparison of the proposed models with other existing approaches 71

http://dx.doi.org/10.14750/ME.2024.012

DOI 10.14750/ME.2024.012 "

Table 7.1 Evaluation Results for the Class-Level Dataset: God class_ original and balanced

DALASEES ...ttt b bRttt b b bbb e ne e e 74
Table 7.2 Evaluation Results for the Class-Level Dataset: Data class_ original and balanced
QALASEES ...ttt E bR bRt e bbb bbb e e 74
Table 7.3 Evaluation Results for the Method-Level Dataset: Long method_ original and
DAIANCEA JATASELS.veveiieie ettt bbbt e s 75
Table 7.4 Evaluation Results for the Method-Level Dataset: Feature envy_ original and
DAIANCEA ALASELS. ... eeveieieiiee ittt sb e e e e nre e e enes 75
Table 7.5 Comparison of the proposed method with other existing methods based on the
210101] €T3 PP U PR PP PPP TIPS 78
Table 7.6 Comparison of the proposed method with other existing methods based on AUC.79
Table 7.7 Performance analysis for proposed CNN Model - Original Datasets...................... 80
Table 7.8 Performance analysis for proposed CNN Model - Balanced Datasets..................... 80
Table 7.9 Comparison of the proposed method with other existing methods based on the
10101] €Ty PP PP PP PPPOPRPRP 83
Table 7.10 Evaluation results for the original datasets............ccocvriieieniiniseeeee, 84
Table 7.11 Evaluation results for the balanced datasets - Random Oversampling.................. 85
Table 7.12 Evaluation results for the balanced datasets - Tomek linkS..........c.ccocvvvviviiininnnen, 86
Table 7.13 Comparison of the proposed models in terms of accuracy using paired t-test- based
on the original and balanced datasets (using Random Oversampling)ccccceeevevvevieneenenn, 92
Table 7.14 Comparison of the proposed models in terms of accuracy using paired t-test- based
on the original and balanced datasets (Using TOMeK LINKS).........ccccovvevieiiieniiienee e, 93
Table 7.15 Comparison of the proposed models with other existing approaches based on the
001U (03 PSR UPPSPPR 93
Table 7.16 Comparison of the proposed models with other existing approaches based on AUC
.. 94
Table 7.17 Comparison of the proposed models with other existing approaches in terms of
accuracy averages using paired t-test- based on Random Oversamplingcccccccvevvvriennenn. 94

Table 7.18 Comparison of the proposed models with other existing approaches in terms of
accuracy averages using paired t-test- based on Tomek Links.........ccccocvviveriiiniieeiineiesienen, 95

http://dx.doi.org/10.14750/ME.2024.012

DOI 10.14750/ME.2024.012

Chapter 1 Introduction

In the field of software engineering, ensuring the quality of software systems is of paramount
importance. Software quality assurance is a crucial discipline within software engineering that
focuses on ensuring the high standards, reliability, and functionality of software products
throughout their development life cycle. The primary goal of software quality assurance is to
identify and mitigate defects, errors, code smells and inconsistencies in software, ultimately
leading to the delivery of a high-quality product that meets user requirements and expectations
[1]. Due to the increasing size and complexity of software products and inadequate software
testing, no system or software can claim to be free of software bugs or code smells. Software
bugs and code smells can significantly impact software applications' performance,
maintainability, and user experience. Detecting and predicting these issues early in the software
development life cycle can save substantial time, effort, and resources. There are many
activities related to software testing, such as implementing processes, procedures, and
standards that must be carried out in a specific sequence to ensure that quality objectives are
achieved or testing a product for issues such as software bugs and code smells. Software bugs
are defects or errors in computer programs or systems that cause incorrect or unexpected
operations that negatively affect software quality, reliability, and maintenance costs [2].
Software Bugs Prediction (SBP) is one of the most popular and active research areas in
software engineering. SBP is a process for classifying fault-prone software modules based on
some underlying properties of the systems, like software metrics that are extracted and
collected from real data sets (historical data) during the software development process [3].
Code smells are one of the most accepted approaches to identifying design problems in the
source code, which refers to any symptom or anomaly in the source code that violates design
or implementation principles. The detection of code smells is a particularly crucial step for
guiding the subsequent steps in the refactoring process. Early detection of code smells is vital
to aid software maintainability and improve software quality [4]. Software metrics have
essential roles in predicting software bugs and code smells, and most recent strategies for
predicting software bugs and code smells rely on software metrics as independent variables.
Software metrics are essential aids in measuring and improving software quality, and these
metrics are used to measure and characterize software engineering products[5]. The critical
role of software metrics is to estimate and measure some characteristics of systems, such as
classes, inheritance, encapsulation, etc.[6]. The most popular software metrics are object-
oriented metrics, which have been presented by Abreu, Chidamber and Kemerer, Li and Henry,
MOOD, Lorenz, and Kidd. These metrics can be classified into different classes, like metrics
for source code analysis, software testing, quality assurances, etc.[4]. Static code analysis is a
method of analyzing source code without its execution to find potential problems like software
bugs and code smells that might arise at runtime. So, static code analysis aims to check the
quality of the source code and address weaknesses[7]. Based on the literature review. Recently,
many commercial and open-source tools evolved for static code analysis to provide an efficient,
value-added solution to many of the problems that software development organizations face.
However, numerous false positives and negative results make these tools hard to use in
practice[8]. So, another methodology or approach for static code analysis must be found, such
as artificial intelligence techniques. Artificial Intelligence (Al) is a wide-ranging branch of
computer science concerned with the simulation of human intelligence in machines that are
programmed to think like humans and mimic their actions. Al handles issues related to
implementing human behaviour and emotion and software intelligence. The most popular Al

http://dx.doi.org/10.14750/ME.2024.012

DOI 10.14750/ME.2024.012

techniques used for the prediction of software bugs and code smells are Machine Learning
(ML) techniques. The ML field is developed from the expanded field of Al, which aims to
imitate human intelligence abilities by machines. ML is the process of gaining knowledge from
historical data. ML uses statistical rules to build various mathematical models for creating the
conclusion from the data sample[9]. ML is an area of research where computer programs can
learn and get better at performing specific tasks by training on massive quantities of historical
data. ML algorithms can be applied to analyze data from different perspectives to allow
developers to obtain helpful information[4]. ML techniques, and software metrics have
emerged as powerful tools for automating the prediction of software bugs and code smells[5].
However, one major challenge faced in this domain is the class imbalance problem, where the
distribution of classes in the training dataset is uneven. In other words, one class has
significantly more instances than the others, leading to an imbalanced representation of classes.
The class imbalance issue poses a significant obstacle as it can lead to biased models that fail
to accurately capture the rare occurrences of software bugs or code smells, thus affecting the
overall predictive performance[7]. Therefore, this research aims to explore the role of data-
balancing methods in addressing the class imbalance problem when applying ML techniques
for predicting software bugs and code smells using software metrics. The research will begin
with a comprehensive literature review, examining existing studies predicting software bugs
and code smells using ML techniques. This review will also encompass different data-
balancing methods commonly employed in the field. The research outcomes will provide
valuable insights and guidelines for software developers and researchers aiming to leverage
ML-based techniques to accurately predict software bugs and code smells. In conclusion, this
dissertation aims to contribute to the field of software engineering by investigating the
application of data-balancing methods in ML-based prediction of software bugs and code
smells using software metrics. By addressing the class imbalance problem, the research
endeavours to enhance the accuracy and reliability of predictive models, ultimately assisting in
developing more robust and high-quality software systems[10].

1.1 Motivation

The software industry plays a critical role in today's technologically advanced world, with
software systems powering various aspects of our lives. However, software bugs and code
smells can lead to system failures, security vulnerabilities, and compromised user experiences.
Identifying software bugs and code smells is usually a challenging task due to the huge code
base of software projects, and developers spend a significant amount of time locating and fixing
them, making this an active research area in software engineering. To produce high-quality
software and gain customer loyalty, the final product should have as few defects as
possible[11]. Detecting and addressing these issues early in the software development process
is essential to ensure reliable and high-quality software systems. ML techniques, and software
metrics have shown promise in automating the prediction of software bugs and code smells.
However, the class imbalance problem remains a significant challenge in this domain, affecting
the accuracy and effectiveness of the predictive models[7]. Therefore, the motivation behind
this dissertation is driven by the need to address the class imbalance problem in the ML-based
prediction of software bugs and code smells using software metrics and shed light on the
suitability and effectiveness of various data-balancing methods commonly employed in the
domain of the prediction of software bugs and code smells. By investigating and evaluating
data-balancing methods, this research seeks to improve the accuracy and reliability of

http://dx.doi.org/10.14750/ME.2024.012

DOI 10.14750/ME.2024.012

predictive models, ultimately contributing to developing more robust and high-quality software
systems.

1.2 Problem Statement

Software bugs and code smells can be identified by manual or automated source code analysis.
The manual recognition of software bugs and code smells on the source code by developers is
an error-prone, costly, and time-consuming activity since it depends on the developer’s degree
of experience and perception[12]. Previous work provided several tools for predicting software
bugs and code smells. These tools rely on prediction rules that compare the values of relevant
software metrics extracted from source code against empirically identified thresholds to
discriminate defective source code. The limitations of these tools are that the performance is
strongly influenced by the thresholds needed to identify defective and non-defective instances.
To overcome these limitations, researchers recently adopted and developed many automatic
tools, such as machine-learning techniques, where a classifier is trained on previous source
code releases by exploiting a set of independent variables (e.g., structural, historical, or textual
metrics). But recent studies indicate that machine-learning techniques are not always suitable
for predicting software bugs and code smells due to the problem of imbalanced data[13]. The
data sets of software bugs and code smells are often imbalanced, which means the defective
modules are often less than the non-defective ones. Using an imbalanced data set to train
classification algorithms can lead to misclassification, as the classifier may be biased and not
correctly classify instances of the minority label. The problem addressed by this dissertation is
the lack of effective approaches to address the class imbalance problem in the ML-based
prediction of software bugs and code smells using software metrics. Existing research in this
area often overlooks the impact of class imbalance on model performance and fails to provide
comprehensive solutions. As a result, the accuracy and reliability of the predictive models are
compromised, leading to suboptimal detection of software bugs and code smells in real-world
software projects. The inadequate handling of class imbalance in software bugs and code smell
prediction can have severe consequences[14]. Most ML techniques can predict better when the
number of instances of each class is equal. So, data imbalance is the biggest problem faced by
ML techniques. This problem severely hinders the efficiency of these techniques and produces
imbalanced false-positive and false-negative results. False negatives, where actual software
bugs or code smells are incorrectly classified as non-issues, can result in software systems with
hidden vulnerabilities or quality issues. False positives, where non-issues are incorrectly
classified as software bugs or code smells, can lead to wasted development efforts and
unnecessary maintenance activities. To address this problem, this dissertation aims to
investigate and evaluate various data-balancing methods in the context of ML-based prediction
of software bugs and code smells using software metrics. The research seeks to identify and
employ suitable data-balancing techniques that effectively address the class imbalance
problem, improve model sensitivity to the minority class, and enhance the accuracy and
reliability of the predictive models[7], [15].

1.3 The objectives of the thesis

ML techniques and data-balancing methods can provide new and performing ways for software
bug and code smell prediction, with more flexibility than heuristics approaches, and can also
help software companies to reduce rework and improve the quality and reliability of software.
To the best of our knowledge, based on the literature review, no more research is conducted to

DOI 10.14750/ME.2024.012

predict software bugs and code smells using ML techniques combined with data-balancing
methods. Based on the previous studies, balancing the data by applying data-balancing methods
can improve the performance of ML models in predicting software bugs and code smells. The
specific objectives of this thesis are:

e Toinvestigate the standard machine-learning techniques used for predicting software bugs
and code smells.

e To assess the impact of class imbalance on the performance of ML-based prediction
models for software bugs and code smells. This involves analyzing the biases introduced
by class imbalance and understanding how they affect the predictive models' accuracy.

e To evaluate various data-balancing methods to address class imbalance in software bug
and code smell prediction.

e To enhance the performance of predictive models for software bugs and code smells by
developing a novel prediction methodology based on machine-learning techniques
combined with data-balancing methods. | will apply various machine-learning algorithms
and data-balancing methods to develop the methodology.

e To validate the effectiveness of the developed methodology and the impact of data-
balancing methods using real-world software datasets. The validation will involve
conducting several experiments and comparisons with baseline models, evaluating the
performance measures, and assessing the statistical significance of the results.

e To show that the performance of machine-learning techniques in predicting software bugs
and code smells can be significantly improved when balancing the data set by applying
data-balancing methods.

1.4 Dissertation Guide

The remaining structure of this dissertation is organized as follows. Chapter 2 presents a
theoretical background, and the literature is addressed based on the software bugs, code smells,
and software metrics. Chapter 3 provides an overview of artificial intelligence techniques.
Specifically, it describes the artificial intelligence techniques used in this research work such
as ML and Artificial Neural Networks (ANNs). Chapter 4 provides a short background of
imbalanced data and data-balancing methods. Chapter 5 presents the proposed methodology
and implementation, which describes the experiments performed. Several experiments are
conducted to predict software bugs and code smells based on ML techniques and data-
balancing methods. Chapter 6 presents the experimental results and discussion of SBP,
describing the experiment outcome and discussion. Chapter 7 presents the experimental results
and discussion of code smell detection, which describes the experiments outcome and
discussion. Chapter 8 presents the conclusion, firstly, contributions involving new scientific
results are presented, and then the future research direction is presented.

DOI 10.14750/ME.2024.012

Chapter 2 Literature Review and Theoretical Background

This chapter addresses the theoretical background and literature related to software bugs, code
smells, and software metrics. This comprehensive exploration delves into the fundamental
concepts and theories surrounding software defects, identifying code smells, and the software
metrics used to quantify and assess software quality. By examining the existing body of
knowledge, this chapter establishes a solid foundation for the subsequent analysis and research
conducted in this field. Furthermore, this chapter also discusses the public benchmark datasets
of software bugs and code smells. These datasets, meticulously curated and made accessible to
researchers and practitioners, serve as valuable resources for evaluating and comparing various
bug detection and code smell detection techniques. The availability of these standardized
datasets fosters reproducibility and facilitates advancements in bug detection methodologies,
ultimately contributing to the ongoing improvement of software reliability and maintainability.

2.1 Software Bugs

Due to the expansion in the scale of software projects and the increase in complexity, software
bug prediction has become the focus of attention to increase software quality[16], [17].
Software bugs can be defined as defects or faults in computer programs that occur during the
software development process which may cause many problems for users and developers aside
and may lead to the failure of the software to meet the desired expectations, and reduce
customer satisfaction[18], [19]. Software bugs identify are one of the most common causes of
wasted time and increase maintenance costs during the software lifecycle. Where early
prediction of software bugs in the early stages of software development can improve the quality
and reliability of systems, and reduce development costs, time, rework efforts, etc.[11]. Dealing
with software bugs during the development process is problematic, as critical software bugs
lead to potential risks that can lead to project failure. To produce high-quality software, the
final product delivered should have as limited software bugs as possible[20]. The software bugs
are classified into two classes: intrinsic software bugs refer to bugs that were introduced by one
or more specific changes to the source code and extrinsic software bugs refer to bugs that were
introduced by changes not recorded in the version control system[21]. Developers employ
various techniques like debugging tools, code reviews, unit testing, and system testing to detect
and resolve software bugs before releasing software to users. In recent years, the adoption of
agile development methodologies and continuous integration/continuous deployment (CI/CD)
practices has helped in catching software bugs early and reducing their impact. Additionally,
bug bounty programs, where individuals are rewarded for discovering and reporting
vulnerabilities, have gained popularity in promoting proactive bug detection. Despite
advancements in bug detection and prevention, software bugs can never be eliminated. The
complexity of modern software systems and the constant evolution of technology make bug-
free software an elusive goal. However, with vigilant testing, thorough debugging, and
continuous improvement practices, developers can minimize the occurrence and impact of
software bugs, resulting in more reliable and secure software products[22].

2.1.1 Software Bug Prediction (SBP)

Predicting software bugs helps in improving the overall quality and reliability of the software.
By identifying potential issues in advance, developers can implement preventive measures,
conduct targeted testing, and ensure that the software meets the required quality standards[18].

DOI 10.14750/ME.2024.012

Moreover, predicting software bugs is not only about preventing immediate issues but also
about continuously improving the software development process. By analyzing past bug data
and patterns, developers can identify areas of weakness, improve coding practices, enhance
testing strategies, and implement measures to prevent similar software bugs in future
projects[19]. SBP is a mechanism that can be used to trace modules in software and determines
whether a software module is faulty by considering some characteristics of parameters
collected from software projects[23]. The process of SBP refers to the techniques or tools that
use historical defect data to classify defect-prone software modules and build a relationship
between software metrics and software defects. The SBP process depends on three main
components: dependent variables, independent variables, and a model. Dependent variables are
the defect data for the piece of code (defective or non-defective), which can be binary or ordinal
variables. Independent variables (inputs) are the software metrics that score the software code.
The model contains the rules or algorithms which predict the dependent variable from the
independent variables[24]. The studies’ efforts in building SBP models can be categorized into
two approaches: the first approach is to manually design new features or new sets of features
to represent defects, while the second approach involves applying new and improved ML-based
classifiers. Current work in predicting software bugs focuses on the second approach that
includes: estimating the number of defects in software systems, discovering how software
defects relate to software metrics and classifying software defects into two categories of
"defect-prone and non-defect-prone"[16].

2.1.2 Software Bug Prediction Approaches

Based on the type of data and the context of the prediction, SBP can be categorized into
different types, which are:

2.1.2.1 With-in Project Defect Prediction (WPDP)

The With-in Project Defect Prediction (WPDP) approach involves using historical data to
predict defects within a single project. WPDP approach uses data from the same project to train
the prediction models, such as source code metrics, bug reports, and code reviews. This
approach is usually more accurate since it is based on the specific context of the predicted
project, but it requires a significant amount of historical data from the same project[25].

2.1.2.2 Cross Project Defect Prediction (CPDP) for Similar Dataset

Cross Project Defect Prediction (CPDP) approach for a similar dataset: This approach involves
predicting defects in a new project using historical data from similar projects. The CPDP
approach uses data from one or more similar projects to train the prediction models and then
apply them to the new project. This approach can be useful when there is not enough data for
WPDP. Still, it assumes that the new project has a similar development context to the projects
used for training[25].

2.1.2.3 Cross Project Defect Prediction (CPDP) for Heterogeneous Dataset

Cross Project Defect Prediction (CPDP) approach for a heterogeneous dataset: This approach
involves predicting defects in a new project using historical data from projects that differ in
their development context or characteristics. The CPDP approach uses data from one or more
heterogeneous projects to train the prediction models and then apply them to the new project.

DOI 10.14750/ME.2024.012

This approach can be challenging since the development contexts of the projects used for
training and the new project may differ significantly. Still, it can be useful when there is
insufficient data for WPDP or CPDP for a similar dataset[25].

2.2 Code Smells

Code smells are design issues or changes to source codes because of activities performed by
developers during emergencies or coding solutions that indicate a violation of software design
rules, e.g.: abstraction or hierarchy encapsulation which can cause serious problems during
systems maintenance and may impact the software quality in the future[26], [27]. Code smells
may lead to future degradation in software projects making software hard to evolve and
maintain, and it can effective indicate whether source code should be refactored [28], [29]
Code smells are often associated with potential software bugs or vulnerabilities. They can
indicate areas of code that are more prone to errors, such as complex conditional logic,
unhandled exceptions, or inconsistent naming conventions. By detecting code smells,
developers can proactively address these areas, reducing the likelihood of software bugs and
improving the overall reliability and robustness of the software[30].

2.2.1 Types of Code Smells

There are many types of code smells but the most common are God class, Data class, Feature
envy, and Long method.

2.2.1.1 God class

God classes refer to large, complex, and non-cohesive modules or classes that violate the
principle of implementing only one concept per class and dominate a significant part of the
main system behaviour by implementing almost all the system functionalities[28]. It is
distinguished by its complexity and encompassing many instance variables and methods [19],
[31].

2.2.1.2 Data class

Data Class is a class that has only data without functions or any behaviors and does not process
this data[13], [28], [32].Or it is a class that passively stores data[33]. This class constitutes
smells that contain something unnecessary whose removal can make code easier to understand,
effective, and cleaner[34].

2.2.1.3 Feature envy

Feature Envy is a sign of a breach of the rule of grouping behaviour with related data and
happens when a method is more interested in other properties of the classes than in the ones
from its class[35]. This kind of smell affects the coupling, cohesion, and encapsulation design
aspects of the system, representing a problem in the abstract design of the system. It is classified
as a coupler smell and affects method/property entities. Thus, this method tends to make so
many calls to use the data of the other classes [28], [34].

DOI 10.14750/ME.2024.012

2.2.1.4 Long method

The Long Method code smells refer to the method that is too long and increases the system’s
compatibility. It is classified as a blotter smell that affects method-level entities[35]. It is
methods that tend to centralize a class’s functionality and tends to have too much code, to be
complex, to be difficult to understand, and to use large amounts of data from other classes [4],
[36].

2.2.2 Code Smells Detection

Code smell detection is fundamental to improving software quality and maintainability,
reducing the risk of software failure, and it is a primary requirement to guide the subsequent
steps in the refactoring process. Detecting code smells is not only about fixing immediate issues
but also about continuous improvement. By regularly monitoring and addressing code smells,
developers can learn from past mistakes, refine their coding practices, and evolve as software
engineers. This iterative process fosters a culture of quality and craftsmanship, leading to better
code quality and more efficient development practices over time[28]. Detection rules of code
smells are approaches used to detect code smells through a combination of different software
metrics with predefined threshold values. Most approaches for code smell detection use object-
oriented metrics to determine if a software system contains code smells or not[14]. Most current
detectors need the specification of thresholds that allow them to distinguish smelly and non-
smelly codes[37]. Many approaches have been presented by the authors for uncovering the
smells from the software systems. Different detection methodologies differ from manual to
visualization-based, semi-automatic studies, automatic studies, empirical-based evaluation,
and metrics-based detection of smells. Most techniques used to detection of code smells rely
on heuristics and discriminate code artifacts affected (or not) by a particular type of smells
through the application of detection rules which compare the values of metrics extracted from
source code against some empirically identified thresholds. Researchers recently adopted ML
techniques to detect code smells to avoid thresholds and decrease the false positive rate in code
smell detection tools [38], [39].

2.3 Software Metrics

Software Metrics play the most vital role in building a prediction model to improve software
quality by predicting as many software defects as possible. Software metrics are essential aids
in measuring and improving software quality, which are used to measure and characterize
software engineering products[34]. Software metrics can be used to collect information
regarding the structural properties of a software design, which can be further statistically
analyzed, interpreted, and linked to its quality. Software metrics provide quantitative data that
can be analyzed to identify potential areas of concern. By measuring various aspects of the
codebase, such as complexity, size, or adherence to coding standards[40]. Software metrics
help identify patterns and indicators associated with software bugs or code smells. By
analyzing historical data and correlating software metrics with known issues, developers can
spot recurring patterns or combinations of software metrics that indicate potential problems.
This enables them to proactively address these areas to prevent software bugs or improve code
quality. Moreover, software metrics support decision-making in bug prevention and code
quality improvement efforts. By utilizing software metrics, developers can make informed
decisions regarding code refactoring, architectural changes, or allocation of resources to

DOI 10.14750/ME.2024.012

address code smells and potential bug-prone areas effectively [41], [42]. Software metrics can
be classified as static code metrics and process metrics. Static code metrics can be directly
extracted from source code, like Lines of Code (LOC), and Cyclomatic Complexity Number
(CCN). Object-oriented metrics are a subcategory of static code metrics, like Depth of
Inheritance Tree (DIT), Coupling Between Objects (CBO), Number of Children (NOC), and
Response for Class (RFC)[4]. Object-oriented metrics are often used to assess testability,
maintainability, or reusability of source code[18]. Tables 2.1 and 2.2 show the static code
metrics. Process metrics can be extracted from the source code management system based on
historical changes in source code over time. These metrics reflect the modifications over time,
e.g., changes in source code, the number of code changes, developer information, etc.[43], [44].
Several researchers in the primary studies used McCabe and Halstead metrics as independent
variables in the studies of software bug and code smells. The first use of McCabe metrics was
to characterize code features related to software quality. McCabe's has considered four basic
software metrics: cyclomatic complexity, essential complexity, design complexity, and lines
of code[45]. Halstead also considered that the software metrics fall into three groups: base
measures, derived measures, and line of code measures [46], [47]. Table 2.3 shows McCabe's
and Halstead metrics. Metrics can also be classified based on the development phase of the
software life cycle, into source code level metrics, detailed design level metrics, or test level
metrics [48], [49].

Table 2.1 Show the static code metrics

Size Complexity Cohesion Coupling Encapsulation | Inheritance
Lines of Code McCabe’s Lack of Class Fan Out Locality of Depth of
(LOC) CYCLOmatic Cohesion Complexity Attribute Inheritance
complexity (CYCLO) between (CLASS_FAN_OUT) Accesses Tree (DIT)
Methods (LAA)
(LCOM)
Lines of Code Weighted Methods | Tight Class | Access To Foreign Data Number of Response
Excluding per Class (WMC) Cohesion (ATFD) Accessor for a Class
Accessor and (TCC) Methods (RFC)
Mutator Methods (NOAM)
(LOCNAMM*)
Number of Weighted Methods Foreign Data Providers Number of Number of
Methods (NOM) Count of Not (FDP) Public Children
Accessor or Mutator Attributes (NOC)
Methods (NOPA)
(WMCNAMM*)

Number of Average Methods Coupling Between Number of
Packages Weight of Not Obijects (CBO) Methods
(NOPK) Accessor or Mutator Overridden

Methods (NMO)
(AMWNAMM*)
Number of Average Methods Called Foreign Not Number of
Classes (NOCS) Weight (AMW) Accessor or Mutator Inherited
Methods (CFNAMM?™*) Methods
(NIM)

Number of Maximum Nesting Coupling Intensity Number of
Methods Level of Control (CINT) Implemente
Excluding Structures d Interfaces

Accessor and (MAXNESTING) (NOII)
Mutator Methods
(NOMNAMM™*)

DOI 10.14750/ME.2024.012

10
Number of Weight of Class Coupling Dispersion
Attributes (WOC) (CDISP)
(NOA)
Called Local Not Maximum Message
Accessor or Mutator Chain Length
Methods (MaMCLY$)
(CLNAMM)
Number of Mean Message Chain
Parameters (NOP) Length (MeMCLY$)
Number of Accessd Number of Message
Variables (NOAV) Chain Statements
(NMCS$)
Access To Local Control Coupling (CC)
Data (ATLD¥*)
Number of Local Number of Methods
Variable (NOLV) Affected by the
Measured Method (CM)

Metrics having a

“*” in the name are customized versions of standard metrics, or slight

modifications of original metrics. Metrics with a “§” suffix, refer to metrics that have been
defined specifically for detecting the Message Chain code smell.

Table 2.2 Description list of 20 traditional static code metrics

Attribute Description
dit The maximum distance from a given class to the root of an inheritance tree
noc Number of children of a given class in an inheritance tree
cho Number of classes that are coupled to a given class
rfc Number of distinct methods invoked by code in a given class
Icom Number of method pairs in a class that do not share access to any class attributes
Icom3 Another type of the lcom metric proposed by Henderson—Sellers
npm Number of public methods in a given class
loc Number of lines of code in a given class
dam The ratio of the number of private/protected attributes to the total number of attributes in a given class
moa Number of attributes in a given class that are of user-defined types
mfa Number of methods inherited by a given class divided by the total number of methods that can be
accessed by the member methods of the given class
cam The ratio of the sum of the number of different parameter types of every method in a given class to the
product of the number of methods in the given class and the number of different method parameter
types in the whole class
ic Number of parent classes that a given class is coupled to
chm Total number of new or overwritten methods that all inherited methods in a given class are coupled to
amc The average size of methods in a given class
ca Afferent coupling, which measures the number of classes that depend on a given class
ce Efferent coupling, which measures the number of classes that a given class depends on
max_cc The maximum McCabe's cyclomatic complexity (CC)
score of methods in a given class
avg_cc The arithmetic mean of McCabe's cyclomatic
complexity (CC) scores of methods in a given class

Table 2.3 Descriptions of McCabe's and Halstead Metrics

Metrics Type Description
Loc McCabe It counts the line of code in software module.
v(Q) McCabe Measure McCabe Cyclomatic Complexity.
ev (9) McCabe McCabe Essential Complexity.
iv (9) McCabe McCabe Design Complexity.
N Derived Halstead Total number of operators and operands.

DOI 10.14750/ME.2024.012

11
V Derived Halstead Volume.
L Derived Halstead Program length.
D Derived Halstead Measure difficulty.
I Derived Halstead Measure Intelligence.
E Derived Halstead Measure Effort.
B Derived Halstead Effort estimate.
T Derived Halstead Time Estimator.
Locoed Line Count Number of lines in software module.
Locomment Line Count Number of comments.
Loblank Line Count Number of blank lines.
Locodeandcomment Line Count Number of codes and comments.
unig_op Basic Halstead Unigue operators.
unig_opnd Basic Halstead Unigue operands.
total_op Basic Halstead Total operators.
total_opnd Basic Halstead Total operands.
BranchCount Branch Total Number of branch count.

2.4 Summary

In this chapter, we have discussed the theoretical background and literature related to the
fundamental concepts of our dissertation. We discussed the importance of the prediction of
software bugs and code smells, the strategies and approaches used to predict software bugs and
code smells, and software metrics used in the prediction of software bugs and code smells.
While predicting software bugs and code smells have distinct focuses, they share a common
goal of improving software quality. They both rely on indicators, adopt a proactive approach,
use software metrics as indicators, and contribute to continuous improvement. By integrating
the prediction of software bugs and code smells into the development process, developers can
enhance software quality, prevent software bugs, and create more maintainable code. Overall,
we realized that predicting software bugs and detecting code smells is crucial for cost-effective
development, quality assurance, user satisfaction, security, reputation, and compliance.
Developers can proactively identify and resolve software bugs to deliver higher-quality
software that meets user expectations and industry standards. Additionally, software metrics
play a crucial role in software development by providing quantitative data to support decision-
making, track progress, and drive continuous improvement. So, predicting software bugs and
detecting code smells based on software metrics are essential for developing high-quality,
reliable, and maintainable software products.

DOI 10.14750/ME.2024.012 "

Chapter 3 Artificial Intelligence (Al)

This chapter provides an overview of artificial intelligence techniques. It aims to equip readers
with a fundamental understanding of the various approaches and methodologies that form the
backbone of Al applications. Moreover, particular emphasis is placed on the artificial
intelligence techniques utilized in this research, such as Machine Learning (ML) and Artificial
Neural Networks (ANNS).

3.1 Artificial Intelligence Techniques

The field of Artificial intelligence (Al) is witnessing a recent upsurge in research, tools
development, and deployment of applications[23]. Al is being widely adopted and incorporated
into almost every kind of software application. where software engineers need to have a
thorough grasp of what Al is and understand how to incorporate Al into the software
development lifecycle[50]. Al is a branch of Computer Science that pursues creating computers
or machines as intelligent as human beings. Al is accomplished by studying how the human
brain thinks and how humans learn, decide, and work while trying to solve a problem. Al
techniques such as ML, Neural Networks, fuzzy logic, etc. have been advocated by many
researchers and developers as the way to improve many of the software development activities.
Al techniques, specifically, ML techniques are commonly used for the prediction of software
bugs and code smells compared to other techniques such as manual code inspection or rule-
based approaches because they offer automation, scalability, and a data-driven approach[51].
ML models can handle large codebases, learn from historical data and leverage code metrics
for data-driven analysis, capturing complex patterns and dependencies that may not be apparent
through traditional methods, and adapt to new patterns, making them effective in identifying
software bugs and code smells that may be difficult to detect manually. They provide objective
and consistent analysis, enable early detection and prevention of issues, allowing developers
to address issues before they become critical. They optimize resource allocation by prioritizing
bug fixes based on severity or impact. Overall, ML techniques enhance the accuracy,
efficiency, and overall quality of the prediction of software bugs and code smells processes,
making them valuable tools for software development. There are several ML techniques
commonly used in the prediction of software bugs and code smells[52].

3.1.1 Machine Learning (ML)

Machine learning (ML) is an area of research where computer programs can learn and get better
at performing specific tasks by training on historical data or study of computer algorithms that
provide systems the ability to automatically learn and improve from experience[10]. It is
generally seen as a sub-field of Al. ML algorithms can be applied to analyze data from different
perspectives to allow developers to obtain useful information [53], [54]. ML algorithms allow
the systems to make decisions autonomously without any external support. Such decisions are
made by finding valuable underlying patterns within complex data. High quantities of data are
needed to develop ML model-based prediction [55], [56]. ML algorithms build models from
training examples, which are then used to make predictions when faced with new
examples[30]. ML techniques can be categorized into supervised, unsupervised, and
reinforcement [35], [37]. ML algorithms have received extensive attention in the field of
software engineering for a considerable period. Therefore, recently ML algorithms have been
adopted to enhance research tasks in the prediction of software bugs and code smells[9].

DOI 10.14750/ME.2024.012 13

3.1.1.1 Supervised learning

Supervised Learning is the ML task of inferring a function from labeled training data which
consists of a set of training examples. Supervised learning is applied when the data is in the
form of input variables and output target values[56]. In supervised learning, the training dataset
has an output variable that needs to be predicted or classified. All algorithms learn some kind
of patterns from the training dataset and apply them to the test dataset for prediction or
classification[57]. It has two known supervised learning tasks (classification, and regression).
Classification concerns building a predictive model for function with discrete range, while
regression concerns continuous range model building. Supervised learning is fairly common in
classification problems because the goal is often to get the computer to learn a classification
system that we have created[58]. The most commonly supervised ML methods include concept
learning, classification, rule learning, instance-based learning, Bayesian learning, linear
regression, neural network, SVM, etc.[56]. The following subsections describe the supervised
ML techniques used in our research work.

31111 Decision Tree (DT)

Decision Tree (DT) is a popular supervised machine-learning method used for the purpose of
regression and classification[4]. It refers to a hierarchal model or a tree with decision nodes
that have more than one branch and leaf nodes that represent the decision. Each node ina DT
represents a feature in an instance to be classified, and each branch represents the value
thresholds the contained nodes can assume. Instances are categorized beginning at the root
node and sorted based on their attribute values [21], [59]. There are different types of decision
trees. The classic among them is the ID3 (lterative Dichotomiser 3), birthing trees by
recursively choosing the best feature to split the data. C4.5, its successor, added the ability to
handle continuous attributes and pruning to trim excessive branches. CART (Classification and
Regression Trees) is another heavyweight, excelling in both classification and regression tasks.
Chi-Square is one of the oldest tree classification methods. It determines the statistical
significance of the differences between sub-nodes and parent nodes. It is measured as the sum
of squares of standardized differences between observed and expected frequencies of the target
variable. Random Forests brings a dash of unpredictability to the mix, employing an ensemble
of decision trees for robust performance. On the other hand, Gradient Boosted Trees take a
sequential approach, refining the mistakes of previous trees to boost accuracy. ID3 is the most
common type of decision tree. In the ID3 DT, all features are set as a root node. After that, the
features are divided by finding the Entropy that measures the harmony in the data; the entropy
values are between 0 and 1[35], [37]. Mathematically, Entropy for one attribute is represented
as:

E(F) =¥{.; — pi log; p; (1)

Where C is the number of outputs, p; is the probability of occurrences of each output from all
outputs, and F is a feature with some data.

31112 Random Forest (RF)

Random Forest (RF) is one of the most utilized models due to its effortlessness and the way it
can be used for characterization and relapse assignments. It is adaptable and simple to utilize
ML calculation, even without hyper-parameter tuning[35]. RF classifier is a special case of

DOI 10.14750/ME.2024.012 "

Bagging consisting of a collection of tree-structured classifiers. RF selects random features to
create bootstrap models using DT. RF algorithm considers K randomly chosen attributes at
each node to construct a classification tree. In the classification setting, the prediction of the
RF is the most dominant class among predictions by individual trees[60]. If there are T trees in
the forest, then the number of votes received by a class m is:

Un = 2?:1 I(Ct ==m) (2)

where C, is the prediction of the t tree on a particular instance. The indicator function I(C, =
= m) takes on the value 1 if the condition is met, else it is zero.

3.1.1.13 Naive Bayes (NB)

Naive Bayes (NB) is a supervised learning algorithm and defines as a simple probabilistic
classifier and efficient based on the Bayes’ theorem with an independence assumption between
the features, this means that the Naive Bayes classifier is based on estimating the probabilities
of the unobserved node, based on the observed probabilities [21], [61]. Bayes’ theorem finds
the probability of an event occurring given the probability of another event that has already
occurred. Bayes’ theorem is stated mathematically as the following equation:

P(B|A)P(A)
P(A|B) = TR ®3)

In the above equation, using Bayes’ theorem, we can find the probability of A, given that B
occurred. A is the hypothesis, and B is the evidence, P(B|A) is the probability of B given that A
is True, P(A) and P(B) are the independent probabilities of A and B.

31114 Support Vector Machine (SVM)

Support Vector Machine (SVM) is one of the regulated ML models which is, for the most part,
utilized for classification and relapse investigation. The primary role is to discover a hyper-
plane, which divides the dimensional data completely into two categories [2], [62]. SVMs are
based on a "margin™ on either side of a hyperplane separating two features. Its optimizing
objective is to increase the margin and create the most significant distance between features in
the hyperplane. Complexity is not affected by the number of features. So SVM is appropriate
for learning tasks where the number of features is so much concerning the number of training
instances. The principal objective of SVM is to outline a model that predicts the dataset's target
estimation in the testing stage. Subsequently, SVM becomes a decent contender for planning a
model in anticipating issue-inclined modules[63]. The general type of SVM work is defined
as:

FG) =W =*QXx + b (4)

Where w is a weight vector, x is the input vector, b is the intercept and bias term of the
hyperplane equations.

3.1.1.15 K-Nearest Neighbor (K-NN)

K-Nearest Neighbor (K-NN) define as a simple supervised classification algorithm in which
an object is classified by looking at the K nearest objects and by choice of the most frequently
occurring class[64]. It is also a lazy-learning technique that classifies elements based on their
position and space in a hyperplane. Since in the K-NN algorithm, we need k nearest points.

DOI 10.14750/ME.2024.012 15

Thus, the first step is calculating the distance between the input data point and other points in
our training data[63]. The distance between these two points is:

dx.y) = Jzif;l(xi —) (5)

Suppose x is a point with coordinates (xq,x;,....xp) and y is a point with coordinates
(Y1,)’21---v)’p)-

3.1.1.1.6 Logistic Regression (LR)

Logistic Regression (LR) is a popular statistical model used for binary classification problems,
where the goal is to predict the probability of an instance belonging to a certain class. It models
the relationship between the input features and the probability of the positive class using a
logistic function. Logistic regression uses a logistic function called a sigmoid function to map
predictions and their probabilities. The sigmoid function refers to an S-shaped curve that
converts any real value to a range between 0 and 1 [61], [64]-[66]. The sigmoid function is
referred to as an activation function for logistic regression and is defined as:

f(x) = (6)

Where f(x) is the predicted probability that the target variable y belongs to the positive class,
given the feature value X, e is the base of the natural logarithm (approximately 2.71828). In
many cases, multiple explanatory variables affect the value of the dependent variable. To model
such input datasets, logistic regression formulas assume a linear relationship between the
independent variables. The sigmoid function can be modified, and the final output variable
calculated as:

1
1+e*

y:f(Bo‘l‘Bl*X1+B2*X2+...+BH*XH) (7)

Where fo, f1, p-, ..., pn are the coefficients (also known as weights or parameters) associated
with each feature, x;, xz, ..., x, are the feature values.

3.1.1.1.7 XGBoost

XGBoost (XGB) is one of the recently introduced robust ML algorithms. XGB is a powerful
gradient boosting algorithm that is widely used for supervised learning tasks such as regression
and classification. It is known for its high predictive performance and efficient computation[63].
The formula for the XGB model is given as:

§. = Fx) =b+n If_; fi (x)) (8)

where b is the base prediction, n is the learning rate hyperparameter that helps control overfitting
by reducing the contributions of each booster, and each of the K boosters f;, is a decision tree.

3.1.1.2 Unsupervised learning

Unsupervised Learning is also called learning from observation. Unsupervised learning is
applied when the data is available only in the form of an input and there is no corresponding
output variable. Such algorithms model the underlying patterns in the data in order to learn
more about its characteristics[56]. Unsupervised learning seems much harder: the goal is to
have the computer learn how to do something that we don't tell it how to do[58]. In

DOI 10.14750/ME.2024.012 16

unsupervised learning, the system has to explore any patterns based only on the common
properties of the example without knowing how many or even if there are any patterns. The
most common methods in unsupervised learning are association rule mining, sequential pattern
mining, and clustering[67].

3.1.1.3 Reinforcement learning

Reinforcement learning is somewhere between supervised and unsupervised learning[68].
Reinforcement learning is applied when the task at hand is to make a sequence of decisions
toward a final reward[56]. Where the algorithm learns a policy of how to act given an
observation of the world. Every action has some impact on the environment, and the
environment provides feedback that guides the learning algorithm[58]. During the learning
process, an artificial agent gets either rewards or penalties for the actions it performs. Its goal
is to maximize the total reward. In reinforcement learning, the algorithm gets told when the
answer is wrong but does not get told how to correct it. It has to explore and try out different
possibilities until it works out how to get the answer right[68]. Examples include learning
agents to play computer games or performing robotics tasks with end goals[56].

3.1.2 Artificial Neural Networks (ANNS)

Artificial neural networks (ANNS) are biologically inspired computer software built to imitate
the way in which the human brain processes information[21]. ANNs are ML models or
nonlinear classifiers used to model complex relationships between inputs and outputs. An
ANNs model contains multiple units (layers) for information processing which are known as
neurons. The layers are typically named the input layer, hidden layer, and output layer [69],
[70]. The typical architecture of ANN is shown in Figure 3.1. When implementing a neural
network, a set of consistent training values must be available to set up the expected operation
of the network and a set of validation values to validate the training process[71]. ANNSs collect
knowledge by detecting the patterns and relationships in data and learning or training through
experience. When neural networks are used for data analysis, it must be important to
distinguish between ANN Models which refer to the network's arrangement, and ANN
Algorithms which refer to computations that eventually produce the network outputs. There
are two approaches to training ANNSs: supervised and unsupervised. The most often used ANNs
for prediction and classification tasks is a fully connected and supervised network with a
backpropagation learning rule. During the learning stage, the weights of each neuron are
considered and adjusted according to the requirements. To obtain the final weight for neurons,
each neuron gives input to each preceding layer, and later these inputs are multiplied by their
weight. According to this process, the neuron computes the activation level from this sum, and
the output is sent to the following layer where the final solution is estimated [28], [34]. The
output of a neuron that is in the layer can be described by the equation below:

n
Y, =f (Z. Wi * X + b;) 9)
]:

where Y; represents network output, n is the total number of inputs to this neuron, x; represents
network input, w;; is the connection weights between input and output nodes, b; is the bias and
fi is the transfer function.

DOI 10.14750/ME.2024.012 .

Inputs wi Hidden Layer waj Ouiput Laywe

M
AN .
= M - Y1
I N
~

Figure 3.1 The typical ANN architecture[70]

3.1.2.1 Multi-layer Perceptron (MLP)

A Multi-layer Perceptron (MLP) network is a particular type of artificial neural network that
consists of different layers (input layer, hidden layer, and output layer). It was created to solve
nonlinear classification problems that cannot be solved by a single layer. A multilayer neural
network consists of many units (neurons) joined together in a pattern of connections[37]. It
uses nodes with a specified weight to connect the layers. Each node is a neuron that utilizes a
nonlinear activation function. The backpropagation algorithm is used to train the model in the
multilayer perceptron network[5]. The formula of the multilayer perceptron network model is
as follows:

fx) = (Yo wi*x)+b (10)

Where m is the number of neurons in the previous layer, w;is a random weight, x; is the input
value, b is a random bias.

3.1.2.2 Deep learning (DL)

Deep learning (DL) algorithms have received extensive attention in the field of software
engineering for a considerable period. DL is one of the Al functions that mimic the workings
of the human brain. It allows and helps to solve complex problems by using a data set that is
very diverse, unstructured, and interconnected[72]. DL is a type of ML that allows
computational models consisting of multiple processing layers to learn data representations
with multiple levels of abstraction. DL architecture has been widely used to solve many
detections, classification, and prediction problems[73]. There are many activation functions
used in DL such as sigmoid, Rectified Linear unit (Relu), and Hyperbolic Tangent (Tanh).
Activation functions are a critical component of DL, serving as the nonlinearities that allow
neural networks to model complex relationships in data. Their importance lies in their ability
to introduce non-linearity, control gradient flow during training, and adapt the network's
behaviour to different problem domains. The right choice of activation function can
significantly impact training speed, model performance, and the ability to capture intricate
patterns in data. Whether it is the efficiency of ReLU, the sigmoid's interpretability, or the
tanh's versatility, selecting the appropriate activation function is a key decision in designing
neural networks. Therefore, activation functions enable the training of the DL model quickly
and accurately. Relu and sigmoid [74], [75] are the most common activation functions used in

DOI 10.14750/ME.2024.012 18

DL. So, in our proposed models, we used the Relu activation function for the inputs and hidden
layers and the Sigmoid activation function for the output layer. The equations to calculate Relu
and sigmoid are as follows:

h™ = ReLUW,™ ' x V™ ! + pm~1) (11)

where h;™ represents convolutional layer, W;™* represents the weights of neuron, V;" !
represents the nodes, and b™ 1 represents the bias layer.

1
S = Tremowm (12)

where X; represents the input, W; is the weight of the input and b is the bias.

31221 Convolutional Neural Network (CNN)

Convolutional Neural Network (CNN) is a special type of deep neural network, or a class of
convolutional feedforward neural networks used to process data that has a known, grid-like
topology. It is constructed to mimic the visual perception of biological processes and can be
used for both supervised learning and unsupervised learning[76]. CNN has been tremendously
successful in practical applications, including speech recognition, image classification, and
natural language processing [77], [78]. The CNN model is inspired by the typical CNN
architecture used in image classification and consists of a feature extraction part and a
classification part, as shown in Figure 3.2. These parts consist of multiple layers of convolution,
batch normalization, and maximum merge layers. These layers constitute the hidden layer of
the architecture. Convolution is a fundamental operation enabling the network to detect and
learn relevant features within the input data automatically. Convolutional layers employ small
learnable filters or kernels to slide over the input. Each filter is a small matrix (usually 3x3 or
5x5) that slides over the input data. These filters capture specific features such as edges,
textures, or more complex patterns. This process of convolution generates feature maps that
highlight where these patterns are found in the input, while the maximum pooling layer
achieves a reduction in the dimension of the feature space. Batch normalization is used to
mitigate the effect of different input distributions for each training mini batch for the purpose
of improving training [79], [80].

classification
feature exiraction
. Yes
A - -
Ly — — >
14
| '__.:J =
2 ¥ J—) | = No
=1 | Ll
|
N——
Sonrce File Inpats Cenvelutional ~ MaxPooling Flarten Laver Batch Dense ~Dropost Gurpat Laver
Layer Laver Normalizatior Layers

Layer

Figure 3.2 The typical CNN architecture[80]

DOI 10.14750/ME.2024.012 19

3.1.2.3 Recurrent Neural Networks (RNNs)

Recurrent Neural Networks (RNNs) are a type of ANNS that can process a sequence of inputs
and retain its state while processing the next sequence of inputs and can efficiently acquire the
nonlinear features that are in order. Where the nodes and their connections form a temporally
directed graph along a temporal sequence [81], [82]. RNN is widely used to solve many
different problems, such as pattern recognition, identification, classification, vision, speech,
control systems, etc.[83]. Due to the problem of long-term dependencies that arise when the
input sequence is too long, RNN cannot guarantee a long-term nonlinear relationship. This
means that there is a gradient vanishing and gradient explosion phenomenon in the learning
sequence. RNNs can use memory units (internal state) to learn the relationship between the
sequence pieces, making it possible for RNNs to capture contextual features of the
sequence[84]. Many optimization theories and improved algorithms have been introduced to
solve this problem such as Long-Short-Term-Memory (LSTM) networks, Bidirectional LSTM,
Gated Recurrent Unit (GRU) networks, echo state networks, Independent RNN, etc. Standard
RNNs take sequences as inputs, and each step of the sequence refers to a certain moment[85].
For a certain moment t, the output h; not only depends on the current input x, but is also
influenced by the output from the previous moment t — 1. The output of moment (t) can be
formulated as the following equation:

hy = f(U X x,+ WX h,_; +b) (13)

Where U and W denote the weights of the RNN, b denotes the bias, f is the activation function
of the neurons.

31231 Long-Short-Term-Memory (LSTM)

Long-Short-Term-Memory (LSTM) networks are a special type of RNN designed to recognize
patterns in data sequences. LSTM networks were introduced to avoid or handle long-term
dependency problems without being affected by an unstable gradient[55]. This problem
frequently occurs in regular RNNs when connecting previous information to new
information[48]. LSTM networks offer a set of key features that distinguish them in the realm
of RNNSs. Their primary strengths lie in their ability to capture long-term dependencies in
sequential data, thanks to memory cells and gating mechanisms that control information flow.
LSTMs incorporate three essential gates: the forget gate, which decides what to discard from
the previous state; the input gate, responsible for selectively updating the memory cell with
new information; and the output gate, which regulates the information output as the hidden
state. Due to the ability of the LSTM network to recognize longer sequences of time-series
data, LSTM models can provide high predictive performance[84]. Figure 3.3 shows the
interacting layers of the repeating module in LSTM Networks. The cell state carries the
information from the previous moments and will flow through the entire LSTM chain, which
is the key that LSTM can have long-should be filtered from the previous moment, the output
of the forget gate can be formulated as the following equation:

fi = o(Wg. [heq, X¢] + by) (14)

Where ¢ denotes the activation function, Wy and by denote the weights and bias of the forget

gate, respectively. The input gate determines what information should be kept from the current
moment, and its output can be formulated as the following equation:

DOI 10.14750/ME.2024.012 20

it = o(W;. [heq x¢] + by) (15)

Where o denotes the activation function, W; and b; denote the weights and bias of the input
gate, respectively. With the information from forget gate and input gate, the cell state C;_; is
updated through the following formula:

C; = tanh(W,. [hy_; x] +b.) (16)
Ct = ft X Ct—l +1 X Ct)

C, is a candidate value that is going to be added into the cell state and C, is the current updated
cell state. Finally, the output gate decides what information should be output according to the
previous output and current cell state.

o = o(W,. [h_1 X¢+ be] (17)
ht = Ot X tanh(Ct)

ht-1 ht (ht=1
! T 1
> +) = > | —>
T MI Y
A (—* 5 (‘* L A

N

o o =2

|—
1

Y

Xt-1) Xt (Xt+1

Figure 3.3 Interacting layers of the repeating module in an LSTM Networks[40]

3.1.2.3.2 Bidirectional Long-Short-Term-Memory (Bi-LSTM)

The idea behind Bidirectional Long-Short-Term-Memory (Bi-LSTM) networks is to exploit
spatial features to capture bidirectional temporal dependencies from historical data to overcome
the limitations of traditional RNNs [73], [86], [87]. Bi-LSTM networks are a new way to train
data by expanding the capabilities of LSTM networks[84]; it uses two separate hidden layers
to train the input data twice in the forward and backward directions, as shown in Figure 3.4.
With the regular LSTM Networks, the input flows in one direction, either backward or forward.
Bi-LSTM Networks are the process of making any neural networks have the sequence
information in both directions (a sequence processing model that consists of two LSTM): one
taking the input in a forward direction (past to future), and the other in a backward direction
(future to past) [2].

DOI 10.14750/ME.2024.012)1

outpats [h1 nt | it . nr
i o 'y Y
Activation — —— o 7
Laver . 3 S e
~ . /, o
Backward «— ISIM | N\ ISTM | Nei——| ISTM | bel— = | ISTM | Ne——
Laver : N ! . ’
" J
A A A A
Forward - &
Laver — 5 ESTM N 13 ESTAI [N— 15 ISTM | N—p e — 1y ISTAI NS
P . £ = B : P
4\// ‘_T,/ ! / ‘/
Inpats s {3 (%11 5T |

Figure 3.4 Inte}acting layers oFthe repeating m:)dule ina Bi-LSTMyNetwork[86]

3.1.2.3.3 Gated Recurrent Unit (GRU)

Gated Recurrent Unit (GRU) network is one of the optimized structures of the RNN[73]. The
goal of the GRU network is to solve the long-term dependence and gradient disappearance
problem of RNN[7]. The GRU is like LSTM in a forget gate but has fewer parameters than
LSTM and uses an update gate and reset gate as shown in Figure 3.5. The GRU network uses
the update and reset gates to improve and optimize the learning mechanism[83]. The update
gate helps the model to determine how much of the past information (from previous time steps)
needs to be passed along to the future and the reset gate helps the model to decide how much
of the past information to forget. Due to the ability of the GRU network to recognize longer
sequences of time-series data, it can provide high predictive performance [84], [88], [89]. The
update gate model in the GRU network is calculated as shown in the equation below.

z(t) = o(W(z). [h(t - 1),x(t)] + b,) (18)

the z(t)represents the update gate, h(t — 1) represents the output of the previous neuron,
x(t)represents the input of the current neuron, W (z)represents the weight of the update gate,
b, is the bias for the update gate, and o represents the sigmoid function. The reset gate model
in the GRU neural networks is calculated as shown in equation below.

r(t) = o(W(r). [h(t —1),x(t)] + b;) (19)

r(t)represents the reset gate, h(t — 1) represents the output of the previous neuron,
x(t)represents the input of the current neuron, W (r)represents the weight of the reset gate, b,
is the bias for the reset gate, and o represents the sigmoid function. The output value of the
GRU hidden layer is shown in equation below.

h(t) = tanh(Wh. [rt * h(t — 1), x(1)]) (20)

h(t)represents the output value to be determined in this neuron, h(t — 1)represents the output
of the previous neuron, x(t)represents the input of the current neuron, Wh represents the
weight of the update gate, and tanh () represents the hyperbolic tangent function. rt is used to
control how much memory needs to be retained. the hidden layer information of the last output
as shown in equation below.

h(t) = (1 —z(®)) *h(t— 1) + z(t) * h(t) (21)

DOI 10.14750/ME.2024.012 ’

+
A

-

Y
7

X1

Figure 3.5 Interacting layers of the repeating module in a GRU Networks[7]

3.2 Summary

In this chapter we have provided an overview of artificial intelligence techniques, in particular,
ML techniques. Specifically, we focused on describing ML techniques that are commonly used
in the literature for the prediction of software bugs and code smells. We concluded that ML
techniques have recently gained attention in the literature for the prediction of software bugs
and code smells due to their ability to recognize patterns, automate processes, handle large-
scale data, adapt to different contexts, continuously improve, and complement static analysis.
ML models can analyze code metrics, historical bug data, or code smells indicators to identify
patterns that indicate the presence of software bugs or code quality issues. By automating the
analysis, ML techniques save time and effort for developers. ML models are scalable, adaptable
to different coding styles and programming languages, and can continuously learn and improve
over time. They complement static analysis tools by providing a more comprehensive analysis
of code quality. While ML techniques are not infallible and require domain expertise for
interpretation, they offer valuable insights and support in creating more reliable and
maintainable software.

DOI 10.14750/ME.2024.012)3

Chapter 4 Data Imbalance and Data-Balancing Methods

This chapter offers a concise introduction to the concept of data imbalance and data-balancing
methods, with a special emphasis on data sampling methods.

4.1 Data Imbalance

The data imbalance problem is a hot topic being investigated recently by ML and data mining
researchers, especially in the context of the prediction of software bugs and code smells. It is
considered one of the current research topics of interest in supervised classification that
frequently appears in several real-world datasets[90]. The main characteristic of the
imbalanced data is class imbalances. The class imbalance can be intrinsic property or due to
limitations to obtaining data such as cost, privacy, and large effort[13]. The class imbalance
problem occurs when, in a dataset, one of the classes has fewer instances, usually called the
minority class, than the other class, usually called the majority class[91]. In bug prediction, this
means that the dataset may have a significantly higher number of non-buggy instances
compared to buggy instances, while in code smells, certain types of code smells may be
underrepresented compared to others[92]. This problem produces a poor classification rate for
the minority class, which is usually the most important. Consequently, it becomes difficult for
a classifier to effectively discriminate between the minority and majority classes, especially if
the class imbalance is extreme, which has aroused the interest of many researchers to solve the
problem of class imbalance[93].

4.2 Data-Balancing Methods

Data imbalance is a common challenge in the prediction of software bugs and code smells
tasks, where certain classes of interest are underrepresented compared to others. Data-
balancing methods are crucial in addressing this issue and improving the performance and
accuracy of the models[13]. By balancing the data, these methods help in achieving improved
model performance, avoiding bias in predictions, enhancing the detection of rare events,
preventing overfitting, and providing valuable insights into software bugs and code smells.
Overall, data-balancing ensures that the models are trained on a more representative
distribution of instances, leading to more accurate and reliable predictions in the prediction of
software bugs and code smells tasks. Several data-balancing techniques have been developed
to overcome the class imbalance problem, these techniques include subset methods, cost-
sensitive learning, algorithm-level implementations, ensemble learning, feature selection
methods, sampling methods, etc.[15]. These techniques can be grouped into two distinct
categories: external methods that use existing algorithms without modification (corresponds to
methods that operate on the dataset in a preprocessing step preceding classification), and
internal methods that create new algorithms or modify existing algorithms to take into account
class imbalances (modifies the classification algorithm in order to put more emphasis on the
minority class), the two types of methods can be roughly divided into data level and algorithm
level [91], [93]. The most common techniques used in previous work to deal with the class
imbalance problem are external methods which are based on the data sampling technique
(Oversampling and Undersampling methods) [87], [94].

DOI 10.14750/ME.2024.012 ”

4.2.1 Data Sampling (Resampling) Methods

Data sampling techniques are more prevalent in the studies of the prediction of software bugs
and code smell due to their easy employment and independence (i.e., they can be applied to
any prediction model)[87]. Therefore, data sampling techniques are commonly used to address
the class imbalance problem in ML. These techniques are popular due to their simplicity,
compatibility with various algorithms, computational efficiency, and retention of information.
Data sampling methods are relatively easy to understand and implement, work well with
different learning algorithms, and have minimal computational overhead[93]. Additionally,
models trained on balanced data can provide more interpretable results. Data sampling methods
tend to adjust the prior distribution of the majority and minority classes in the training data by
either reducing the majority class instances or increasing the minority class instances to obtain
a balanced class distribution and reduce the discrepancy among the sizes of the classes. There
are three main categories of data sampling techniques that are: Oversampling Methods,
Undersampling Methods, and Hybrid (Combined-Sampling Methods)[95]. Figure 4.1 shows
how data sampling methods deal with class imbalance.

4.2.1.1 Undersampling Methods

Undersampling is a non-heuristic method where a subset of the majority class is chosen to
create a balanced class distribution. The advantage of this method is that the elimination of
some examples could significantly reduce the size of the data and therefore decrease the run-
time cost, especially in the case of big data[95]. There are many Undersampling methods such
as Random Undersampling, Near Miss, Tomek links, etc.

e Random Undersampling is an Undersampling method aiming to randomly eliminate
samples of the majority class to obtain a balanced dataset[15]. This algorithm randomly
removes samples of the majority class using either sampling with or without
replacement[94], despite its simplicity, Random Undersampling is one of the most effective
resampling methods [13], [15].

e Near Miss is an Undersampling method, which aims to balance class distribution by
selecting examples based on the distance of majority class examples to minority class
examples[96].

e Tomek links is a method of Undersampling developed by Tomek (1976) This algorithm
works by deleting negative classes and positive classes further that have similar
characteristics [95].

4.2.1.2 Oversampling Methods

Oversampling is a non-heuristic method used to address data imbalance in ML by increasing
the number of instances in the minority class[15]. These methods aim to provide the model
with more examples of the minority class, making it easier for the model to learn its patterns
and improve its ability to classify it accurately [95], [97]. Oversampling methods are more
effective than Undersampling methods in prediction accuracy[13]. There are many
Oversampling methods such as Random Oversampling, Synthetic Minority Oversampling
Technigue (SMOTE), etc.
e Random Oversampling is a simple approach where we take samples at random from the
small class and duplicate these instances so that it reaches a size comparable with the

DOI 10.14750/ME.2024.012 ’

majority class, it is defined as a method developed to increase the size of a training data set
by making multiple copies of some minority classes[93].

e SMOTE is an Oversampling method based on creating synthetic instances for the minority
classes. It is a method in which new samples of minority class are synthesized based on the
feature space similarities among existing minority examples[87]. It is the most widely used
and referenced method among the Oversampling methods[92]. The algorithm takes each
minority class sample and introduces synthetic samples along the line joining the current
instance and some of its k nearest neighbors from the same class. Depending on how much
Oversampling is needed, the algorithm chooses randomly from the k nearest neighbors of
them and forms pairs of vectors that are used to create the synthetic samples. The new
instances create larger and denser decision regions. This helps classifiers learn more from
the minority classes in those decision regions, rather than from the large classes
surrounding those regions[93].

4.2.1.3 Hybrid (Combined-Sampling Methods)

Combined-sampling methods refer to the integration of multiple sampling techniques into a

single approach (such as Oversampling and Undersampling) to improve the effectiveness and

efficiency of the sampling process[98]. These methods aim to leverage the strengths of

different sampling techniques while mitigating their limitations. There are various hybrid

sampling methods, for example SMOTE Tomek method[95].

e SMOTE Tomek is a new technique that was applied using the library from imbalanced
learn, which combines the SMOTE function for Oversampling and the Tomek Link
function for Undersampling[99].

Undersampling Oversampling
i‘ Copesofthe S
e minanty class /.
. Samples of 3(;
st majorty diass |
o -
B 7
| = T
¥ — — !] I l
Original dataset Original dataset

Figure 4.1 Shows how data sampling methods deal with class imbalance

4.3 Summary

In this chapter we have provided a short background of data imbalance and data-balancing
methods. Specifically, we focused on describing data-balancing methods that are commonly
used in the literature to address the problem of data imbalance in datasets of software bug and
code smells. We concluded that data imbalance can pose challenges for ML models because
they tend to favor the majority class and may struggle to adequately learn from the minority
class. This can result in biased or inaccurate predictions, where the model may have high
accuracy overall but performs poorly on the minority class or rare occurrences. In the context

DOI 10.14750/ME.2024.012 26

of software bugs and code smells, this means that the model may have difficulties accurately
identifying and predicting the occurrences of software bugs or specific code smells. Therefore,
data imbalance should be addressed to ensure that the ML model can effectively learn from
and make accurate predictions on all classes of interest, including the minority class instances.
By applying data-balancing methods along with ML techniques in the prediction of software
bugs and code smells, developers and analysts can build models that are more accurate, reliable,
and unbiased. These methods help overcome the limitations of imbalanced datasets and ensure
that the model's predictions are representative of the actual occurrence of software bugs and
code smells in the software codebase.

DOI 10.14750/ME.2024.012 -

Chapter 5 Proposed Methodology and Implementation

This chapter presents our proposed methodology and implementation, which describes the
experiments performed. Several experiments and comparisons are conducted to predict
software bugs and code smells based on ML techniques and data-balancing methods. The
architecture of the methodology followed in the dissertation can be visualized in Figure 5.1.

* !
Selectionof | Datasets of Balanced L Solit Data | Prediction l
AMetrics software bugs Datasets i s | Results ||
™ 7 J and code A) l o
— smTIk ~ ' --
¥
Data Pre-
processing | Train and Test
'l Datasets
4
; — v
Features
Source Code Extraction AModel | / Performance
R Hory Building Evaluation

Sampling Methods -

Figure 5.1 The architecture of the methodology followed in the dissertation

5.1 Experimental Design

This subsection presents the process of experimental design for our proposed approaches. We
also discuss experimental design phases that are used in the experiments, such as proposed ML
models, the data sets that are used to train and test the models, data pre-processing and features
selection, data-balancing methods that are used to balance data sets, and performance measures
that are used to evaluate and compare our proposed approaches with other existing approaches.

5.1.1 Proposed Approaches

In relation to software bug prediction, we developed four approaches. The first approach was
developed based on four ML models which are DT, NB, RF, and LR. The second approach
was developed based on combining two RNN models, namely LSTM and GRU, with an
Undersampling method (Near Miss). The third approach was developed by combining a Bi-
LSTM network with Oversampling methods (Random Oversampling and SMOTE). The fourth
approach was developed using a combination method based on CNN and GRU with a hybrid
sampling method (SMOTE Tomek).

Concerning code smell detection, we developed three approaches. The first approach was
developed based on several ML algorithms which are DT, K-NN, SVM, XGB, and MLP
combined with an Oversampling method (Random Oversampling). The second approach was
developed based on a CNN combined with Oversampling method (SMOTE). The third
approach was developed based on two RNN models (Bi-LSTM and GRU) combined with two
sampling methods (Random Oversampling and Tomek links).

DOI 10.14750/ME.2024.012 2

5.1.2 The Public Benchmark Datasets Used in This Research

When researching software bug prediction and code smell detection or related topics, it is
essential to utilize appropriate data sets specifically designed for this purpose. To perform the
experiments of this research and verify the validity of the proposed methods, the used datasets
were obtained from the public benchmark datasets of software bugs and code smells that
contain information for several projects. We used a public dataset because this is a
benchmarking procedure for research on software bugs and code smells.

5.1.2.1 Software Bug Data Sets

We used three different public datasets to perform software bug prediction experiments. The
first group was obtained from the NASA datasets, we selected four NASA public datasets,
these datasets were collected from real software projects by NASA [100], [101]. Table 5.1
shows information about the NASA datasets. The second group was obtained from a public
unified bug dataset, the authors considered 5 public datasets and downloaded the corresponding
source code for each system in the datasets and source code analysis was performed to obtain
a standard set of source code metrics. They have produced a unified bug dataset at the class
and file level that is suitable for the building of new bug prediction models. Furthermore, they
have compared the metric definitions and values of the different bug datasets[102]. The
defective instances for the unified bug dataset (Class level metrics and File level metrics) are
8780 and 10240. While the non-defective instances are 38838 and 33504, respectively. Table
5.2 shows information about the public unified bug dataset. The third group was obtained from
the PROMISE repository datasets. We selected six open-source Java projects from the
PROMISE dataset. The source code and corresponding PROMISE data for all projects are
public [47], [103], [104]. These projects cover applications such as XML parsers, text search
engine libraries, and data transport adapters, and these projects have traditional static metrics
for each Java file. To guarantee the generality of the evaluation results, experimental datasets
consist of projects with different sizes and defect rates (in the six projects, the maximum
number of instances is 965, and the minimum number of instances is 205. In addition, the
minimum defect rate is 2.23% and the maximum defect rate is 92.19%). The defective instances
for the PROMISE datasets (ant, camel, ivy, jedit, log4j, and xerces) are (166, 188, 40, 11, 16,
and 151), respectively. While the non-defective instances are (579, 777, 312, 481, 189, and
437), respectively. Table 5.3 shows the essential information of selected projects, including
project name, project version, number of instances, and defect rate or the percentage of
defective instances.

Table 5.1 Description of the NASA datasets

Project Name | # Modules | % Defects | Language Description
JM1 10885 19% C Real-time predictive ground system: Uses
simulations to generate predictions.
PC1 1107 6.8% C Flight software for earth orbiting satellite.
KC1 2107 15.4% C++ Storage management for receiving and
processing ground data.
KC2 523 20% C++ Software for science data processing.

DOI 10.14750/ME.2024.012 29

Table 5.2 Description of the public unified bug dataset

Dataset Software Lines of code
PROMISE Ant, Camel, Ckjm, Forrest, vy, JEdit, Log4J, Lucene, PBeans, 2,805,253
Poi, Synapse, Velocity, Xalan, Xerces
Eclipse Eclipse 3,087,826

Bug Dataset
Bug Prediction Eclipse JDT Core, Eclipse PDE Ul, Equinox Framework, Lucene, 1,171,220

Dataset Mylyn
Bug catchers Apache Commons, ArgoUML, Eclipse JDT Core 1,833,876
Bug Dataset

GitHub Android Universal Image Loader, Antlr 4, Broadleaf Commerce, 1,707,446
Bug Dataset Ceylon IDE Eclipse Plugin, Elasticsearch, Hazelcast, JUnit,

MapDB, mcMMO, MCT, Neo4J, Netty, OrientDB, Oryx, Titan

Table 5.3 Description of the PROMISE datasets

Project Name | Project Version | # Of Instances | Defect Rate %
ant 1.7 745 22.28%
camel 1.6 965 19.48%
ivy 2.0 352 11.36%
jedit 4.3 492 2.23%
log4j 1.2 205 92.19%
Xerces 14 588 74.31%

5.1.2.2 Code Smells Data Sets

We used the proposed datasets in Arcelli Fontana et al [4] to perform code smell detection
experiments. The authors selected 74 open-source systems from Qualitas Corpus as shown in
Table 5.4. The Qualitas Corpus (QC) systems were collected by Tempero et al[105]. The QC
systems comprise 111 systems written in Java belonging to different application domains and
characterized by different sizes. The QC systems datasets consisted of 561 smelly instances
and 1119 non-smelly instances. The first two datasets pertain to code smells at the class level,
specifically for the god class (with 140 smelly cases and 280 non-smelly instances) and data
class (with 140 smelly cases and 280 non-smelly instances). In contrast, the remaining two
datasets focus on code smells at the method level: feature envy (with 140 smelly instances and
280 non-smelly instances) and long method (with 141 smelly instances and 279 non-smelly
instances). The reason for selecting these datasets is that (i) the QC systems are the largest
curated corpus for code analysis studies, with the current version having 495 code sets,
representing 100 unique systems. The corpus has been successful in that groups outside its
original creators are now using it, and the number and size of code analysis studies have
significantly increased since it became available. (ii) Systems must be able to calculate metric
values correctly. Moreover, these data sets are freely available, and researchers can iterate,
compare and evaluate their studies. The selected metrics in QC systems are at class and method
levels; the set of metrics is standard metrics covering different aspects of the code, i.e.,
complexity, cohesion, size, and coupling [4].

Table 5.4 Description of the Qualitas Corpus Systems
Number of systems | Lines of code | Number of packages |Number of classes
74 6,785,568 3420 51,826

5.1.3 Data Pre-processing

Pre-processing the collected data is one of the essential stages before constructing the model.
To generate a good model, data quality needs to be considered. Not all data collected is suitable

DOI 10.14750/ME.2024.012 20

for training and model building. Anyhow, the inputs will significantly impact the model's
performance and later affect the output[106]. Data pre-processing is a group of techniques that
are applied to the data to improve the data quality before model building to remove noise and
unwanted outliers from the data set, dealing with missing values, feature type conversion, etc.
Outliers are data points that deviate significantly from most of the data in a dataset. Detecting
and handling outliers is crucial in data analysis and modelling, as they can disproportionately
influence statistical measures and ML algorithms. Outliers can be detected using various
methods, such as visual inspection of the data, statistical measures such as the Z-score or the
interquartile range, or ML techniques. Once outliers are detected, they can be handled in
various ways, such as removing them from the dataset, replacing them with the mean or median
of the data, using outlier detection techniques using ML, or using algorithms less sensitive to
outliers. All outliers in the data sets were treated by replacing them with the mean. All datasets
are pre-processed by dealing with missing content and constant values. Handling missing
values treatment improves performance measures and avoids biased results. Incomplete data
can bias the results of the ML models and/or reduce the model’s accuracy. Datasets used
contain instances from different projects. Considering that, there are three main methods for
handling missing data: deletion, imputation, and modelling. Deletion methods involve
removing the missing values or the cases with missing values from the data set. Imputation
means replacing the missing values with estimated values based on the available data.
Modelling methods require incorporating the missing data mechanism into the analysis model
or using methods that directly handle missing data. Missing values for the datasets used in this
research are handled based on imputation methods, which means replacing them with the mean.
In addition, instances are scaled to reduce the distance between independent variables.
Normalization is necessary to convert the values into scaled values (transforming the features
to be on a similar scale) to increase the model's efficiency. Therefore, the data set was
normalized using Min—Max and Standard scaling. The formula for Min-Max scaling is given
by (22), and the formula for Standard scaling is given by (23). After that, constant, quasi-
constant and duplicated features are removed. It is followed by feature selection extracting
feature subset that contributes maximum to the ML algorithms prediction variable[107].

Xnew = (X - Xmin) / (Xmax_ Xmin) (22)

Where X: It is a set of the observed values present in X, X min: It is the minimum values in X
and X max: It is the maximum values in X.

Xscaled = X— U/ © (23)

Where X q1eq: It is the scaled value, X: It is the original value, u: It is the mean of the feature
and o: It is the standard deviation of the feature.

5.1.4 Features Selection

Feature selection is a critical process in ML that involves choosing the most relevant and
informative features from the original set [108]. The objective is to enhance model
performance, mitigate overfitting, and improve interpretability. Feature extraction facilitates
the conversion of pre-processed data into a form that the classification engine can use [109],
[110]. Feature selection in ML encompasses various methods, such as Filter Methods, Wrapper
Methods, Embedded Methods, Dimensionality Reduction Techniques and Hybrid Methods
aimed at identifying and utilizing the most relevant features for model training [111]. Filter

DOI 10.14750/ME.2024.012 a1

methods employ diverse criteria such as statistical tests, correlation coefficients, or information
gain to rank and filter features based on their intrinsic characteristics, irrespective of the
specific ML model. By efficiently screening out less informative or redundant features early in
the process, filter methods help mitigate the curse of dimensionality and enhance computational
efficiency. Wrapper methods in feature selection are dynamic techniques that assess the
relevance of subsets of features by integrating them into the model training and evaluation
process. Unlike filter methods that evaluate features independently, wrapper methods employ
a trial-and-error approach, testing different combinations of features to identify the most
informative subset. Standard wrapper methods include forward selection, backward
elimination, and recursive feature elimination. Forward selection starts with an empty set and
iteratively adds features based on their impact on model performance. In contrast, backward
elimination begins with all features and progressively removes the least relevant ones.
Recursive Feature Elimination recursively fits the model and eliminates the least significant
feature in each iteration. Wrapper methods, while computationally more intensive than filter
methods, are advantageous for capturing feature interactions and dependencies that contribute
to optimal model performance. However, their increased computational cost may limit their
application to high-dimensional datasets. Embedded methods for feature selection incorporate
feature selection as part of the model training process. Unlike filter methods, which assess
features independently of the learning algorithm, and wrapper methods, which evaluate subsets
of features through iterative model training, embedded methods simultaneously perform
feature selection and model training. These methods aim to identify the most relevant features
for prediction and classification tasks while optimizing the model's performance. One popular
embedded method is Least Absolute Shrinkage and Selection Operator, which introduces a
penalty term to the linear regression cost function, promoting sparsity in the feature
coefficients. Tree-based algorithms like Random Forests and Gradient Boosted Trees also
inherently provide feature importance scores during their training process, allowing for the
automatic selection of the most influential features. Embedded methods are advantageous as
they streamline the feature selection process within the model training, potentially leading to
more efficient and interpretable models. Dimensionality reduction techniques are methods
employed in ML to reduce the number of input features while preserving the essential
information within the data. One widely used technique is Principal Component Analysis,
which transforms the original features into a set of uncorrelated variables called principal
components. These components retain most of the variance in the data, enabling a more
compact representation. Hybrid methods in feature selection represent a fusion of multiple
techniques to achieve a more comprehensive and robust approach. These methods combine
aspects of both filter and wrapper methods or leverage various strategies simultaneously. For
instance, Boruta integrates the power of random forest classifiers with a shadow feature
mechanism to identify relevant features, providing a hybrid solution. Genetic Algorithms,
another hybrid approach, employs evolutionary algorithms to search for an optimal subset of
features. Hybrid methods strive to harness the strengths of different feature selection
techniques, addressing their limitations and producing more effective results. By combining
diverse strategies, these methods offer a versatile and adaptable approach to feature selection,
suitable for various datasets and ML tasks. The choice of a hybrid method depends on the
specific characteristics of the data and the goals of the feature selection process. Each type of
feature selection caters to specific data characteristics and model requirements, which is crucial
in optimizing performance and interpretability in ML applications [7], [63]. In this research,

DOI 10.14750/ME.2024.012 2

we applied the embedded method because it is faster and less computationally expensive than
other methods and is suitable for ML models.

5.1.5 Balancing Data sets

Balancing data sets is an essential step in ML and data analysis when dealing with imbalanced
data, where the number of instances in different classes or categories is significantly
skewed[13], [14]. Balancing the data sets helps ensure that the model's performance is not
biased towards the majority class and can effectively learn from the minority class. In practice,
the datasets of software bugs and code smell often suffer from a common problem which is a
class imbalance problem[40]. The reference datasets are not balance distributed, which shows
a lack in the actual distribution of learning instances (The number of defective or smelly cases
is smaller than non-defective or non-smelly), we manage this problem by modifying the
original datasets to increase the realism of the data. The distribution of the dataset was modified
by applying different data sampling methods such as Near Miss, Tomek links, Random
Oversampling, SMOTE, and SMOTE Tomek.

e The process of Near Miss is as follows:

1- Identify minority class instances: Identify the instances belonging to the minority class.

2- Near Miss Selection:

» For each instance in the minority class, calculate the distance to its k nearest neighbors in
the majority class. The instances in the majority class that are closest to the minority class
form "near misses."

> Select the "near misses" based on a criterion. There are three common types of Near Miss
methods:

- Near Miss-1: Keep majority instances whose average distance to k nearest minority
instances is the smallest.

- Near Miss-2: Keep majority instances whose average distance to k nearest minority
instances is the largest.

- Near Miss-3: Remove majority instances if the average distance to k nearest minority
instances is smaller than the average distance to k nearest majority instances.

3- Majority class reduction: Remove the selected majority class instances to balance the class

distribution. This reduction process aims to create a balanced dataset with fewer instances from

the majority class.

4- Balanced dataset: Combine the minority class instances with the selected majority class

instances to create a balanced dataset.

e The process of Tomek Links is as follows:

1- Identify minority class instances: Identify the instances belonging to the minority class

(fraudulent transactions).

2- Find Nearest Neighbors:

» Calculate the distance to all other instances for each instance in the dataset.

» For each instance, identify its nearest neighbor from a different class. A Tomek link is
formed if:

- Instance A belongs to the minority class.

- Instance B belongs to the majority class.

- Instance B is the nearest neighbor of instance A.

- Instance A is the nearest neighbor of instance B.

DOI 10.14750/ME.2024.012 2

3- Tomek Link removal: Remove the instances that form Tomek links. This process removes
instances that are ambiguous or near the decision boundary between classes.

4- Balanced dataset: Combine the instances after removing Tomek links to create a more
balanced dataset.

e The process of Random Oversampling is as follows:

1- Identify minority class instances: Identify the instances belonging to the minority class.

2- Random Oversampling: Randomly select instances from the minority class and duplicate
them until the desired proportion of the minority class is met.

3- Repeat the process: Repeat step 2 until the class distribution is balanced. The number of
duplicates needed depends on the degree of imbalance and the desired balance ratio.

4- Balanced dataset: Combine the original minority class instances with duplicated ones to
create a more balanced dataset.

e The process to generate the synthetic samples SMOTE is as follows:

1- Choose random data from the minority class.

2- Calculate the Euclidean distance between the random data and its k nearest neighbors.

3- Multiply the difference with a random number between 0 and 1, then add the result to the
minority class as a synthetic sample.

4- Repeat the procedure until the desired proportion of minority class is met.

e The process of SMOTE-Tomek is as follows:

1- (Start of SMOTE) Choose random data from the minority class.

2- Calculate the distance between the random data and its k nearest neighbors.

3- Multiply the difference with a random number between 0 and 1, then add the result to the
minority class as a synthetic sample.

4- Repeat step number 2-3 until the desired proportion of minority class is met. (End of
SMOTE)

5- (Start of Tomek Links) Choose random data from the majority class.

6- If the random data nearest neighbor is the data from the minority class (i.e. create the Tomek
Link), then remove the Tomek Link.

Figures 5.2 to 5.7 show the distribution of learning instances over the original and balanced
data sets.

e Regarding the unified bug dataset: The distribution of learning defective instances over the
original data sets (Class level metrics and File level metrics) is (8780 and 10240),
respectively. At the same time the distribution of learning non-defective instances is (38838
and 33504), respectively.

» Following the implementation of the Near Miss method, the distribution of learning
defective instances over the balanced data sets (Class level metrics and File level metrics)
became (8780 and 10240), respectively. While the distribution of learning non-defective
instances became (8780 and 10240), respectively.

DOI 10.14750/ME.2024.012

Distribution of learning instances-Original Datasets

| = non-defective instances

& 35000 W defective Instances
g 30000 +
; zsm
£ 20000
|
% 15000
-
g 10000 -
£ 5000

Class level metrics File Ievel metrics

Datasets

Number of iearning instances

§ § 8 § 3

o

34

Distribution of learning instances-Balanced Datasets

N non-defective [nstances
W defoctive instances

Class Jevel metrics File level metrics
Datasets

Figure 5.2 Distribution of learning instances over the original and balanced data sets (The public unified bug
dataset)-by applying the Near Miss method

Number of learning Instances

Regarding PROMISE datasets: The distribution of learning defective instances over the
original data sets (ant, camel, ivy, jedit, log4j, and xerces) is (166, 188, 40, 11, 16, and
151), respectively. At the same time the distribution of learning non-defective instances is
(579, 777, 312, 481, 189, and 437), respectively.

Following the implementation of SMOTE Tomek method, the distribution of learning
defective instances over the balanced data sets (ant, camel, ivy, jedit, log4j, and xerces)
became (559, 751, 297, 466, 185 and 418), respectively. While the distribution of learning
non-defective instances became (559, 751, 297, 466, 185 and 418), respectively.

5¥588583¢%

Distribution of learning instances

Distribution of learning instances

Jedit
Original Datasets

ant camel Ny log4) xerces

800
== non-defective instances == non-defective instances
W defective Instances g 700 = defective instances
c
£ e00
H
500
2
£ a00
&
S
-~ 300
°
$ 200
5 100
z

logd) xerces

ant

Ny jedit
Balanced Datasets(SMOTE Tomek)

Figure 5.3 Distribution of learning instances over the original and balanced data sets (The PROMISE datasets)-
by applying the SMOTE Tomek method

» Following the implementation of Random Oversampling method, the distribution of
learning defective instances over the balanced data sets (ant, camel, ivy, jedit, log4j, and
xerces) became (579, 777, 312, 481, 189 and 437), respectively. At the same time the
distribution of learning non-defective instances became (579, 777, 312, 481, 189, and 437),
respectively.

DOI 10.14750/ME.2024.012

> Following the implementation of SMOTE method, the distribution of learning defective
instances over the balanced data sets (ant, camel, ivy, jedit, log4j, and xerces) became (579,
777,312, 481, 189 and 437), respectively. While the distribution of learning non-defective
instances became (579, 777, 312, 481, 189, and 437), respectively.

Distribution of learning instances Distribution of learning instances Distribution of learning instances
B0 a0 - 8OO ¢
== non-defective instances == non-defective instonces == non-defective instances
g 00 B defactiva Instances : 1700 | S0 defectiva Instances :no B defactive Instances
5 W i §] E @
pun. E 500 | E w0
™ Fan ™
i i i
s 30 . X0 % 0
e o Fan
2 100 ; 100 5 100

in amel Wy edit lopd] xerces
Origlnal Datasets

mtoamel Ny edit bogd) mrces
Balanced Datasets(Random Oversampling)

m ame

it logd| xerces
Balanced Datnsers{SMOTE)

wy

Figure 5.4 Distribution of learning instances over the original and balanced data sets (The PROMISE datasets)-
by applying the Random Oversampling and SMOTE methods

e Regarding the QC systems datasets: The distribution of learning smelly instances over the
original data sets (God Class, Data Class, Feature envy and Long method) is (140, 140, 140
and 141), respectively. At the same time the distribution of learning non-smelly instances
is (280, 280, 280 and 279), respectively.

» Following the implementation of SMOTE method, the distribution of learning smelly
instances over the balanced data sets (God Class, Data Class, Feature envy and Long
method) became (280, 280, 280 and 279), respectively. While the distribution of learning
non-smelly instances became (280, 280, 280 and 279), respectively.

Distribution of learning instances-Original Datasets Distribution of learning instances-Balanced Datasets
=== non-smelly Instances =5 non-smelly instances

% 250 1 B amelly instances ¢ 2% W smelly instances

g
o -
g g

E 150 £ 150

H &

S 1001 % 100

é ;

P :

God Class
Datasetls

Data Class Festure Envy Long Method

God Class

Data Class
Datasety

Featute Envy Long Method

Figure 5.5 Distribution of learning instances over the original and balanced data sets (The Qualitas Corpus
Systems)-by applying the SMOTE method

» Following the implementation of Random Oversampling method, the distribution of
learning smelly instances over the balanced data sets (God Class, Data Class, Feature envy

DOI 10.14750/ME.2024.012 -

and Long method) became (280, 280, 280 and 279), respectively. At the same time the
distribution of learning non-smelly instances became (280, 280, 280 and 279), respectively.
Following the implementation of Tomek Links method, the distribution of learning smelly
instances over the balanced data sets (God Class, Data Class, Feature envy and Long
method) became (140, 140, 140 and 141), respectively. While the distribution of learning
non-smelly instances became (263, 256, 261and 270), respectively.

Distribution of learning instances-Original Datasets

== non-smelly Instances
B amelly instances

Distribution of learning instances-Balanced Datasets

=N non-smelly instances
W amelly instances

§ & % &
5 § ¥ %

:

Number of learning Instances
Number of learning Instances

God Class Data Class Featute Enyy Long Method

Datasets

God Class Data Class Feature Envy Long Method

Datasets

Figure 5.6 Distribution of learning instances over the original and balanced data sets (The Qualitas Corpus
Systems)-by applying the Random Oversampling method

Distribution of learning instances Distribution of leaning instances Distribution of learning instances
= non smelly nsrances W on smelly Istances | W pan smelly istancas

) T ainelly Instanges g 0 amelly atances | 3 250 S il Insthncen
i ¢
%m Em' Em
: % 150 f 1501 E 150
i i i
3 - ¥ 10
% i !
3% : 0 i

0
God Class Dt Class Feature Envy Long Method

0 .
God Class Data Clasy Peaturs Lnvy Long Method
Balanced Dutasets(Random Ovarsampling)

Bilanced Datusts Tome (k)

(]
God Cless Data Clnss Feature Envy Long Methiod
Otlginai Datasety

Figure 5.7 Distribution of learning instances over the original and balanced data sets (The Qualitas Corpus
Systems)-by applying the Random Oversampling and Tomek Links methods

5.1.6 Models Building and Evaluation

In building and evaluating the proposed prediction models, we adopted a systematic and
methodical methodology which depends on ML techniques in conjunction with data-balancing
methods to predict software bugs and code smells effectively. It's a common practice in the
field to divide data into two sets: a training set used to teach the model and a test set used to
assess its performance [112]. The datasets used to train and test our proposed ML models were
obtained from public benchmark datasets of software bugs and code smells that contain
information for several projects. Datasets are shuffled and split into testing and training sets.
Training is performed with 80% of the dataset (random selection of features), while the

DOI 10.14750/ME.2024.012 -

remaining 20% is used for validation and testing. The author utilized the Jupyter editor as a
computing environment to construct models using the Python programming language to
implement the methodology. Moreover, we harnessed a range of libraries and tools to
efficiently handle data, construct models, and create insightful visualizations. Specifically,
Pandas for data manipulation, scikit-learn, Keras, and TensorFlow for data modeling, and
Matplotlib along with Seaborn for data visualization were employed. Moreover, Cross-
validation is a vital technique in ML used to evaluate the performance and generalizability of
predictive models. It involves partitioning a dataset into subsets, typically referred to as folds,
and systematically training and evaluating the model multiple times. Cross-validation helps
mitigate issues like overfitting and provides a more reliable assessment of how well a model
will perform on unseen data. It is an essential tool for selecting models, tuning
hyperparameters, and ensuring the model's generalization across different subsets of the
dataset. Cross-validation comes in various forms such as K-Fold Cross-Validation, Stratified
K-Fold Cross-Validation, Leave-One-Out Cross-Validation, Leave-P-Out Cross-Validation,
etc. to suit different data characteristics and modelling objectives. K-Fold Cross-Validation and
Stratified K-Fold Cross-Validation are the most standard methods of Cross-validation. K-Fold
Cross-Validation is a method where the data is divided into k subsets, and the model is trained
on k-1 folds while being tested on the remaining fold. This process is repeated k times, and
performance metrics are averaged to provide a more robust estimate of the model's
effectiveness. Stratified K-Fold Cross-Validation is a variation of the standard K-Fold Cross-
Validation method that maintains the class distribution in each fold, is beneficial for
imbalanced datasets, and is designed to address the potential issue of imbalanced class
distributions in the dataset. Therefore, we applied Stratified K-Fold Cross-Validation method
to evaluate the performance of our proposed predictive models. Each model was developed
separately with different parameters. Once a prediction model is built, its performance must be
evaluated. We evaluated the performance of our proposed models based on a set of standard
performance measures such as the confusion matrix, Matthews Correlation Coefficient (MCC),
the area under a receiver operating characteristic curve (AUC), the area under the precision-
recall curve (AUCPR) and mean square error (MSE) [17], [39].

e Parameter settings of the models:

Hyperparameters encompass a diverse set of configuration settings crucial for shaping the
behaviour of ML models. For instance, in Support Vector Machines, Kernel Parameters, such
as those in the Radial Basis Function, significantly influence the model's capacity to handle
complex relationships in the data. Decision Tree Parameters, including maximum depth and
minimum samples per split, are pivotal for controlling the tree's complexity and preventing
overfitting. Random Forests involve hyperparameters like the Number of Trees and Depth,
determining the ensemble's robustness and individual tree characteristics. In k-Nearest
Neighbors, the choice of k, or the number of nearest neighbors considered, impacts the model's
flexibility and sensitivity to noise [39]. Additionally, Neural Networks involve several
hyperparameters, such as Cell Type, Bidirectional layers, Dropouts, Dense layers, Optimizer,
Learning Rate, Regularization Strength, Number of Iterations (Epochs), Batch Size, Hidden
Layers, and Neurons, each playing a role in the network's architecture, convergence, and
generalization. Learning Rate, a critical hyperparameter, dictates the step size during
optimization, affecting the convergence speed and potential overshooting of optimal solutions.
Regularization Strength is pivotal for preventing overfitting by controlling the complexity of

DOI 10.14750/ME.2024.012 28

the model. The Number of Iterations (Epochs) determines how many times the entire training
dataset is processed, balancing between underfitting and overfitting. Batch Size influences the
optimization efficiency, impacting both speed and memory usage. Several Hidden Layers and
Neurons, pivotal for capturing intricate relationships within data. Activation Functions
introduce non-linearity, influencing the model's capacity to learn intricate mappings. Practical
tuning of these hyperparameters is essential for optimizing model performance across diverse
ML paradigms. Tables 5.5 and 5.6 show the parameter settings of the models [17], [37].

Table 5.5 Parameter settings of the models (Classical techniques)

Models parameters
NB No passing parameters (default parameters)
LR Random_state=0
DT No passing parameters (default parameters)
RF n_estimators = 100
K-NN n_neighbors =7
SVM probability = True, kernel = 'linear’
XGB max_depth=3, n_estimators=100, n_jobs=2, objectvie="binary:logistic’,
learning_rate=0.01, subsample=0.7, colsample bytree=0.8
MLP hidden layer sizes=(10,5), max_iter=1000
Table 5.6 Parameter settings of the models (Advanced techniques)
Models
Parameters Bi-LSTM LSTM CNN GRU
Cell type LSTM (64, 32), LSTM (64, 32),
(Bidirectional) return_sequences | return_sequences - -
=True =True
Layers. GRU - - - 100
Activation function ReLU + sigmoid RelLU + sigmoid ReLU + Tanh + Sigmoid
Sigmoid
Dropouts 0.2 0.2 0.2 0.2
Dense 64, 1 64, 1 10,1 1
Optimizer Adam Adam Adam Adam
Learning Rate 0.01 0.01 0.01 0.01
Loos Function Mean squared Mean squared Mean squared Mean squared
error (MSE) error (MSE) error (MSE) error (MSE)
Batch Size 64 64 25 64
Epochs 100 100 100 100
Validation Split 0.1 0.1 0.1 0.1
Verbose 1 1 - 1

e A confusion matrix is a specific Table used to measure the performance of a model.
Accuracy, Precision, Recall, and F-measure are the typical performance measurement
parameters used in the confusion matrix. A confusion matrix summarizes the results of the
testing algorithm. It presents a report of (i) True Positive Rate (TPR), (ii) False Positive
Rate (FPR), (iii) True Negative Rate (TNR), and (iv) False Negative Rate (FNR)[18], [112].
Table 5.7 shows the confusion matrix.

Table 5.7 Confusion matrix

Predicted Values Actual Values

Positive (Yes) Negative (No)
Positive (Yes) TP FP
Negative (No) FN TN

- The accuracy is the ratio of true results that are calculated as the sum of true positive and
true negative instances divided by the sum of true positive, true negative, false positive and

DOI 10.14750/ME.2024.012 29

false negative. The top (maximum) accuracy is 1, whereas the low (minimum) accuracy is
0[18]. Accuracy can be computed by using the following formula:

(TP + TN)
(TP + TN+ FP + FN)

Accuracy = (24)
Precision is defined as the number of true positive predictions divided by the total number
of positive predictions or fraction of true positive and predicted yes instances[18]. The top
(maximum) precision is 1, whereas the low (minimum) is 0 and it can be calculated as:

TP
(TP + FP)

Precision = (25)
The recall is the number of positive predictions divided by the total number of positives or
defined as the fraction between true positive instances and actual yes instances. The top
(maximum) recall is 1, whereas the low (minimum) is 0[18]. The formula of recall is given
below:

TP
TP + FN

Recall = (26)
The F-Measure is the weighted harmonic mean of precision and recall or defined as the
fraction between the product of the recall and precision to the summation of recall and
precision parameter of classification, it is used to combine the recall and precision measures
in one measure to compare different algorithms[18]. The F-Measure formula is given below:

(2 Recall * Precision) (27)

F— Measure = (Recall + Precision)
The Matthews Correlation Coefficient (MCC) is a measure used for model evaluation by
measuring the difference between the predicted values and actual values [81], [82],
[101].The MCC formula is given below:

MCC = TP+ TN — FP % FN / /(TP + FP) * (TP + FN) * (TN + FP) * (TN + FN) (28)

The Area Under the ROC Curve (AUC) is a graph that shows the performance of
classification models with all classification thresholds and plots based on two parameters,
actual positive rate (TPR) and false-positive rate (FPR) [61], [112]. The AUC formula is
given below:

M(M+1)

: (29)

Zinsi € Positive Class Fank(insj)—

M. N

AUC =

Where Y5, € positive class Tank (ins;) Itis the sum of the ranks of all positive samples, and
M and N are the number of positive and negative examples, respectively.

The Area Under the Precision-Recall curve (AUCPR) is a curve that plots the Precision
versus the Recall or a single number summary of the information in the precision-recall
curve[113]. The AUCPR formula is given below:

AUCPR = [Precision(Recall) d(Recall) (30)

DOI 10.14750/ME.2024.012 40

e The Mean Square Error (MSE) is a metric that measures the amount of error in the model.
It assesses the average squared difference between the actual and predicted values [42],
[112]. The MSE formula is given below:

MSE= = Y7 (x(D) - y(D))? (31)

Where n is the number of observations, x(i) is the actual value, y(i) is the observed or predicted
value for the " observation.

5.2 Summary

This chapter presents the proposed methodology and implementation for predicting software
bugs and code smells. Our proposed methodology was based on various ML techniques and
data-balancing methods (data sampling methods). Public benchmark datasets of software bugs
and code smells have been used to ensure the methodology performs well across different types
of software projects. To check how well our methodology works, we balanced the original data
sets using different data sampling methods and then conducted extensive Python experiments.
Additionally, we used various Hyperparameters to set our proposed models and evaluate the
model’s performance using various performance measures.

DOI 10.14750/ME.2024.012 "

Chapter 6 Experimental Results and Discussion of Software Bugs Prediction (SBP)

This subsection presents the results obtained from the experiments explained in the previous
section (proposed methodology and implementation) which includes the results of SBP.

6.1 ML Techniques in SBP

In this sub-section, we discuss the findings of the first study. The goal was to present a
comprehensive study on ML techniques successfully used in previous studies to predict
software bugs. The study also presented a method for SBP based on supervised ML algorithms
namely, DT, NB, RF, and LR. The experiments have been conducted based on benchmark
datasets obtained from the NASA datasets (jm1, pc1, Kc1 and Kc2). The experimental results
were evaluated and compared based on various performance measures (accuracy, precision,
recall, f-measure, and AUC).

The performance of the prediction models is reported in Tables 6.1 to 6.6 and Figures 6.1 to
6.4.

Tables 6.1 to 6.4 show the performance of the proposed models on the four data sets based on
all performance measures. The maximum (best) accuracy value is 99%, which DT and RF
models in JM1, PCland KC1 datasets achieved. The maximum (best) precision value is 99%,
which DT and RF models in JM1, PCland KC1 datasets achieved. The maximum (best) recall
value is 100%, which was achieved by DT and RF models in all datasets. The maximum (best)
F-measure value is 99%, achieved by DT and RF models in the PC1 dataset.

Table 6.1 Performance measures of the proposed models on the jm1 dataset

Proposed models Performance measures
Accuracy | Precision | Recall | F-measure
DT 0.99 0.99 1.00 0.99
NB 0.80 0.81 0.97 0.89
RF 0.99 0.99 1.00 0.99
LR 0.81 0.82 0.99 0.89

Table 6.2 Performance measures of the proposed models on the pcl dataset

Proposed models

Performance measures

Accuracy | Precision | Recall | F-measure
DT 0.99 0.99 1.00 1.00
NB 0.91 0.94 0.96 0.95
RF 0.99 0.99 1.00 1.00
LR 0.93 0.94 0.99 0.96

Table 6.3 Performance measures of the proposed models on the kcl dataset

Proposed models Performance measures
Accuracy | Precision | Recall | F-measure
DT 0.99 0.99 1.00 0.99
NB 0.85 0.88 0.96 0.92
RF 0.99 0.99 1.00 0.99
LR 0.85 0.87 0.96 0.92

Table 6.4 Performance

measures of the proposed models on the kc2 dataset

Proposed models

Performance measures

Accuracy | Precision | Recall | F-measure
DT 0.98 0.98 1.00 0.99
NB 0.83 0.83 0.98 0.90
RF 0.98 0.98 1.00 0.99
LR 0.84 0.86 0.96 0.91

DOI 10.14750/ME.2024.012 "

Figures 6.1 to 6.4 present the Receiver Operating Characteristic (ROC) Curves for the proposed
models on the four data sets. The vertical axis presents the actual positive rate of the model,
and the horizontal axis illustrates the false positive rate. The AUC is a sign of the performance
of the model. The larger AUC is, the better the model performance will be. Based on the
Figures, the values are encouraging and indicate our proposed model’s efficiency in SBP.
Regarding the jm1 dataset, the best AUC is 97%, which the DT and RF models obtain. The
worst AUC is 52% which is obtained by the NB and LR models. Regarding the pcl dataset,
the best AUC is 96% which the DT and RF models obtain. The worst AUC is 54%, which the
NB model obtains. Regarding the kcl dataset, the best AUC is 96% which the DT and RF
models obtain. The worst AUC is 59%, which the LR model obtains. Regarding the kc2 dataset,
the best AUC is 96%, which the DT and RF models obtain. The worst AUC is 60%, which the
NB model obtains. The results show that DT and RF models have better AUC values than NB
and LR models.

ROC curves Tor jml dataset

1o 4 —————————
e o o -
L] /
L] ’I
o.s - L] -
= : L~
n
z O-°7 1 -
= . o~
[Ty] (] -
£ o.ad ¥ o
]
= . -
= 1 ’_I.’ ——— model_DT{auc = 0.973)
0.2 ' ,,’ - - model NBlauc = O0.523)
B ——— model_RF{auc = 0. 975)
0.0 - ¥ — == model_ LR{auc = 0.5258)
0.0 0.2 O <3 .5 0.8 1.0
False Positive Rate
Figure 6.1 Comparison of ROC curves for Models Across the jm1 Dataset
ROC curves Tor pcl dataset
rP04 L ——————
———————
|]
oas - ;
|]
s [
g]
w O-8 H
= [}
= "
= n
= oo g
[&}
= it
= 5 -
1 ——= model DT{auc — 0. 961)
Q.2 9 - model NBlauc = O.5471)
——= model_RFlauc = 0.961)
0.0 - — model LR{auc = 0.578)
. o2 O 2 o6 o8 1.0

False Positive Rate

Figure 6.2 Comparison of ROC curves for Models Across the pcl Dataset

DOI 10.14750/ME.2024.012 43

ROC curves for kcl dataset

B s et -
__________ -
T > ol
L] ,/
os - ; -
L] L] o
e o e all
@ 0.6 - 3 T
= |] L
=] e
[T " -
=1 o
= o4 } =
= . ==
= ' i"f'" —— = model DT{auc = 0.964)
0.2 :I’ model _MNBl{auc = O0.609)
1} ——= moadel_RF{auc = 0.967)
o.o :’ —_— == maodel LR{auc = 0.596)
(o e] o.2 O3 o.& 0.8 1.0
False Positive Rate
Figure 6.3 Comparison of ROC curves for Models Across the kcl Dataset
ROC curves Tor kc2Z2 dataset
1.0 ————
————————————— .
i e
a - -
o8 - o
" e
B |] L o
= ' S
w 0.8 7 -
= [] -
=] -
E n ’__—"
S o ir
= o
—_ (]
::, ——— model_DT{auc = 0.963)
0.2 :II model MNB{auc = O.603)
=| —— = moadel_RFlauc = 0.963)
oo — == model LR{auc = 0.680)
T T T T T T
. o2 O <3 0.6 0.8 1.0

False Positive Rate

Figure 6.4 Comparison of ROC curves for Models Across the kc2 Dataset

Tables 6.5 and 6.6 show our study's comparison results with previous studies that used the
same dataset based on performance measures, namely accuracy, precision, recall and f-
measure. The best values are indicated with bold text and "- "to indicate the approaches that
did not provide results in a particular data set. According to the Tables, some of the results in
the previous studies are better than ours. Still, in most cases, our method outperforms the other
state-of-the-art methods and provides better predictive performance.

Table 6.5 Comparing the results of our study with the results of studies that used the same dataset and
algorithms across the jm1 and pcl dataset

jm1 dataset
Performance ML Studies

measure models | First study[82] | Second study[114] | Third study[10] | Our study
DT - - 0.81 0.99

Accuracy NB - - 0.81 0.80
RF - - 0.82 0.99
DT - - 0.90 0.99

F-measure NB 0.75 - 0.89 0.89
RF 0.76 - 0.90 0.99

DOI 10.14750/ME.2024.012

44

| LR | 0.74 | - | - | 0.89

pcl dataset
DT - - 0.93 0.99
Accuracy NB - - 0.88 0.91
RF - - 0.93 0.99
DT - - 0.97 1.00
F-measure NB 0.89 - 0.94 0.95
RF 0.91 - 0.97 1.00
LR 0.91 - - 0.96
Table 6.6 Comparing the results of our study with the results of studies that used the same dataset and

algorithms across the kcl and kc2 datasets
kcl dataset
Performance ML Studies
measure models | Firststudy[82] | Second study[114] | Third study[10] | Our study

DT - - 0.84 0.99
Accuracy NB - 0.82 0.82 0.85
RF - - 0.85 0.99
Precision NB - 0.80 - 0.88
Recall NB - 0.83 - 0.96
DT - - 0.92 0.99
F-measure NB 0.82 0.81 0.90 0.92
RF 0.82 - 0.92 0.99
LR 0.81 - - 0.92

kc2 dataset
DT - - 0.82 0.98
Accuracy NB - - 0.84 0.83
RF - - 0.82 0.98
DT - - 0.89 0.99
F-measure NB 0.80 - 0.90 0.90
RF 0.76 - 0.89 0.99
LR 0.79 - - 0.91

In summary, this research aimed to provide a comprehensive study on ML techniques in SBP,
and propose a method for SBP based on supervised ML algorithms. The results of the proposed
method were compared with some results presented in previous studies. When conducting the
literature review, we uncovered many papers delving into the realm of ML models for
predicting software bugs. Notably, our examination revealed that a predominant portion of
these studies employed ML techniques such as NB, ANNs and SVM for software bug
prediction. Additionally, it is worth noting that our review encompasses an array of research
papers, each contributing unique insights into the application and effectiveness of these ML
models in the context of bug prediction. Regarding evaluating the results obtained from our
proposed method and their comparison with the results of other studies, we conclude that the
DT and RF classifiers achieved commendable scores compared to other classifiers, and our
method outperforms other methods in predicting software bugs. The evaluation process and
the study's results unequivocally demonstrate the efficacy of ML algorithms in SBP.
Furthermore, this research underscores the need for additional investigation into the realm of
static code analysis, as it can potentially uncover and predect software bugs more
comprehensively. In our future work, we will combine ML techniques with data-balancing
method to improve the accuracy of SBP. By employing ML techniques coupled with advanced
data-balancing methods, we can not only enhance the accuracy of SBP but also pave the way
for more robust and reliable software development practices.

DOI 10.14750/ME.2024.012 4

6.2 LSTM and GRU with Undersampling Methods in SBP

In this sub-section, we discuss the findings of the second study. The goal was to present a
method based on combining two RNN models namely LSTM and GRU with the
Undersampling method (Near Miss) for SBP. The experiments have been conducted based on
benchmark datasets obtained from the public unified bug dataset. The experimental results
were evaluated and compared based on various performance measures (accuracy, precision,
recall, f-measure, MCC, AUC, AUCPR and MSE).

The performance of the prediction models is reported in Tables 6.7 to 6.9, and Figures 6.5 to
6.11, appendix 1 (Figures 1 and 2).

Table 6.7 shows the results of the LSTM and GRU models based on both the original and
balanced datasets, emphasising class-level measures.. Notably, we observed that both the
LSTM and GRU models attained the highest accuracy of 93% on the balanced dataset, while
the GRU model exhibited the lowest accuracy of 82% on the original dataset. In terms of
precision, the LSTM model achieved the highest value of 95% on the balanced dataset, while
the GRU model demonstrated the lowest precision of 58% on the original dataset. As for recall,
both models obtained the highest score of 92% on the balanced dataset, whereas the GRU
model exhibited the lowest recall of 16% on the original dataset. Both models achieved the
highest F-Measure score of 93% on the balanced dataset. However, the GRU model had the
lowest score of 26% on the original dataset. . Both models achieved the highest MCC of 86%
on the balanced dataset, whereas the GRU model had the lowest MCC of 23% on the original
dataset. The LSTM model attained the highest AUC score of 97% on the balanced dataset, and
the GRU model achieved the lowest score of 77% on the original dataset. On the balanced
dataset, both models demonstrated the highest AUCPR score of 97%, while the GRU model
exhibited the lowest AUCPR score of 44% on the original dataset. Additionally, the GRU
model recorded the highest MSE of 0.130 on the original dataset, while the LSTM model
achieved the lowest MSE of 0.051 on the balanced dataset.

Table 6.7 Performance measures for the proposed models over class level metrics dataset
Original Dataset

Performance Measures
Proposed Models Accuracy | Precision | Recall | F-measure | MCC | AUC | AUCPR | MSE

LSTM 0.83 0.60 0.25 0.35 0.30 | 0.78 0.48 0.125
GRU 0.82 0.58 0.16 0.26 023 | 0.77 0.44 0.130
Averages 0.82 0.59 0.20 0.30 026 | 0.77 0.46 0.130

Balanced Dataset
Performance Measures
Proposed Models | Accuracy | Precision | Recall | F-measure | MCC | AUC | AUCPR | MSE

LSTM 0.93 0.95 0.92 0.93 0.86 | 0.97 0.97 0.051
GRU 0.93 0.94 0.92 0.93 0.86 | 0.96 0.97 0.063
Averages 0.93 0.94 0.92 0.93 0.86 | 0.96 0.97 0.057

Table 6.8 shows the results of LSTM and GRU models based on on the original and balanced
datasets, focusing on file-level metrics. Remarkably, both the LSTM and GRU models
achieved the highest accuracy of 88% on the balanced dataset. In contrast the lowest accuracy
of 78% was observed for both models (LSTM and GRU) on the original dataset. Furthermore,
the balanced dataset yielded the highest precision of 94% for both models (LSTM and GRU),
while the GRU model had the lowest precision of 61% on the original dataset. Regarding recall,
the balanced dataset produced the highest score of 81% for both models. Conversely, when
applied to the original dataset, the LSTM model achieved the lowest recall of 18%. Similarly,

DOI 10.14750/ME.2024.012 46

the balanced dataset resulted in the highest f-measure of 87% for both the LSTM and GRU
models. Conversely, the LSTM model exhibited the lowest f-measure of 28% when working
with the original dataset. Furthermore, both models (LSTM and GRU) attained the highest
MCC of 76% on the balanced dataset, while the LSTM model had the lowest MCC of 24% on
the original dataset. Similarly, the balanced dataset yielded the highest AUC of 93% for both
models (LSTM and GRU), while the original dataset yielded the lowest AUC of 75% for both
models (LSTM and GRU). Both models also achieved the highest AUCPR on the balanced
dataset, 95%, and the lowest AUCPR on the original dataset, 49%. In conclusion, both models
(LSTM and GRU) achieved the highest MSE of 0.152 on the original dataset, while the LSTM
model obtained the lowest MSE of 0.090 on the balanced dataset.

Table 6.8 Performance measures for the proposed models over file level metrics dataset
Original Dataset
Performance Measures
Proposed Models | Accuracy | Precision | Recall | F-measure | MCC | AUC | AUCPR | MSE

LSTM 0.78 0.62 0.18 0.28 0.24 0.75 0.49 0.152
GRU 0.78 0.61 0.22 0.33 0.27 0.75 0.49 0.152
Averages 0.78 0.61 0.20 0.30 0.25 0.75 0.49 0.152

Balanced Dataset

Performance Measures
Proposed Models | Accuracy | Precision | Recall | F-measure | MCC | AUC | AUCPR | MSE

LSTM 0.88 0.94 0.81 0.87 0.76 0.93 0.95 0.090
GRU 0.88 0.94 0.81 0.87 0.76 0.93 0.95 0.093
Averages 0.88 0.94 0.81 0.87 0.76 0.93 0.95 0.091

Boxplots are particularly useful for comparing distributions between group or visualizing
multiple datasets or subsets within a single dataset. Therefore, we aggregated the achieved
results to get a more accurate overview of the quality of the results using boxplots. Figure 6.5
displays Box plots, which effectively depict a ranges of performance measures for all datasets.
The ranges of performance measures (Accuracy, Precision, Recall, F-measure, MCC, AUC and
AUCPR) on the original datasets are 78% to 83%, 58% to 62%, 16% to 25%, 26% to 35%,
23% to 30%, 75% to 78%, 44% to 49%, respectively. While, the ranges of performance
measures (Accuracy, Precision, Recall, F-measure, MCC, AUC and AUCPR) on the balanced
datasets are 88% to 93%, 94% to 95%, 81% to 92%, 87% to 93%, 76% to 86%, 93% to 97%,
95% to 97%, respectively.

Original Dataset Balanced Dataset
0.8
- - | - =
0.7
y 0.6 == y 090 . .
o]
g g
c 05 €
¢ == foss
£ 04 &
03 o & 00

L}

. 675 +— ' ' ’
AccuracyPrecision Recall FMeasure MCC AUC AUCPR AecuracyPrecision Recall F-Measure MCT AUC AUCPR
Performance Measures Performance Measures

Figure 6.5 Showcases the boxplots illustrating the performance measures achieved by the proposed models on
all datasets, encompassing both class-level and file-level metrics

DOI 10.14750/ME.2024.012 47

Figures 6.6 to 6.9 show the training and validation accuracy and training and validation loss of
the models on the original and balanced datasets.

Figures 6.6 and 6.7 show the training and validation accuracy of the models on the original and
balanced datasets. The vertical axis presents the accuracy of the model, and the horizontal axis
illustrates the number of epochs. Accuracy is the fraction of predictions that our model
predicted right.

Regarding the original datasets, the LSTM model learned 83% accuracy for the class-level
metrics dataset and 78% accuracy for the file level metrics dataset dataset at the 100th epoch.
The GRU model learned 82% accuracy for the class level metrics dataset and 78% accuracy
for the file-level metrics dataset dataset at the 100th epoch.

Regarding the balanced datasets, the LSTM model learned 93% accuracy for the class-level
metrics dataset and 88% accuracy for the file-level metrics dataset dataset at the 100th epoch.
The GRU model, the model learned 93% accuracy for the class-level metrics dataset and 88%
accuracy for the file-level metrics dataset at the 100th epoch.

Training and Valldation Accuracy-LSTM Model Training and Validation Accuracy-GRU Model
e T O sl Datasetn) G Nes
J Valldation{Originel Dntesatys)
o.n3s f | 4 o.630 i/ ' | \
J \ (0 \ : I\
o.830 / V ‘ \ |V — i VLA v 4 \\ AV el kl
/j | Y [y nf" f onse | |7 | W/ U/ \/ v
N IA) TN st s \‘(\ A W, Wy .
3 omnas i [¥\ o.n1s S
| M ARS \
/ (BYAY [! onie
o.nzo N /
"\ \ v Orginmet »)
/ tuine D
onis . - 1) : . w000 . ; : ; aina)
o 20 a0 wQ no wo " 20 “0 “o "0 100
Epochs Epochn
Training and Validation Accuracy-LSTM Modal Training and Validation Accuracy-Gnu Model
Sraining anc Yanratinn Sccttasy 2 R TecR syt R I
0.0 i '
a.92 v \f | v \(
e o0.%0 r| \
5 a7 E o.00 /
o5 | o.06
T " o0 T Bal O
s oimmnroes Basasata) o > =8 Owtaeata)
o0 o s o no o z0 aa a0 o
Fuachs Feashs

Figure 6.6 Represents the training and validation accuracy of the models across all datasets - class-level metrics

Training and Validation Accuracy-LSTM Model Training and Validation Accuracy-GRU Maode!
0.7
¢ |
o.79n I i (| o.7ua | |
| L 1 A
A 1R\ AN A o rwa | | % ! \ A
| Y I AV | Al {
E"-”o L o A 4.\/"‘./%".: (A" o.793 | LA !
ARV LTS bl / v A MOSAR SR N
| A ST orvo | | " IV"\,/ AW lV-“./ W f VN
v | » / v
[o.7an | / _/\[v
O.780 aTee N
Trm g (OF i el Datauats) o.rea VrmininatOnainm Datanats)
o.rrs Criginal ") I Vol aan(Onigingl Detasets)
' - - v - o.ra2 - - - ey ”
o 20 a0 o0 a0 100 o 20 a0 o 0o 100
tooehe Frreseha
Training and Validation Accuv-:y-LhtM Model X Training and V.lul.ucp AcCCuracy GRU Model
080 .) 080
o.ne / A 5 0.0
E AN v \ |
1 N v / Vv AP~
o.n8 / S o.88 " [
l 3
o.nr i ony
ol n.ae
| Teabing(Matans nd Dutarets) a.e5 | e o)
tatad Dalanced D) | "t Datnast
a 70 %0 wo 80 100 o 0 ao wo no wo
Epuchs Epochs

Figure 6.7 Represents the training and validation accuracy of the models across all datasets - file-level metrics

DOI 10.14750/ME.2024.012 48

Figures 6.8 and 6.9 show the training and validation loss of the models on the original and
balanced datasets. The vertical axis presents the loss of the model, and the horizontal axis
illustrates the number of epochs. The loss indicates how bad a model prediction was. Regarding
the original datasets, the LSTM model loss is 0.125 for the class-level metrics dataset and 0.152
for the file-level metrics dataset dataset at the 100th epoch. The GRU model loss is 0.130 for
the class-level metrics dataset and 0.152 for the file-level metrics dataset at the 100th epoch.
Regarding the balanced datasets, the LSTM model loss is 0.051 for the class level metrics
dataset and 0.090 for the file level metrics dataset dataset at the 100th epoch. The GRU model,
the model loss is 0.063 for the class-level metrics dataset and 0.093 for the file-level metrics
dataset at the 100th epoch. These Figures demonstrate a consistent trend of increasing accuracy
and decreasing loss as the number of epochs advances. The high accuracy achieved, and the
low loss obtained serve as evidence of the effective training and validation of the proposed

models.

Training and Validation Loss-LSTM Modsl Training snd Validstion Loss-GRYU Model
o34 Training(Oipinsl Datasets) TrniningOriginel Datasets)
Original D] 0.16 Validatian(Onginal Datsssts)
0.140
0.33% A r 0.13 N |
\ \ VA ‘ |
!°*"° ‘ J / \ A 30.14 {' A ‘
AV B\) i\ Y n A |\
0125 \ A) V \ A L
f\ 0.3 \ { \ 1\/‘ [MM ‘
MY > \ \ \J Y AW
0.120 WA _| W IRNNAY Y v ;
o 20 w0 "o 100) 20 0 @ o 100
Epochn Epochs
Training and Validation Loss-LSTM Model Training and Validation Loss GRU Model
e Trmining(Balanced Datasatn) 013 Training{Balanced Datasets)
Valldation(Balanced Datnants) < lanin ol b)
025 o1z
011
o020
o.10 ’
g o.an g 0,08 l \ A
. o.0n A | TN \
_ 5 VA A
0.20 b 0.07 \ A I+ [A \
_ o.00 A \ J Y
r + N - = . $ + n.on =g s
o 20 a0 w0 80 100 o 20 “0 wo no wo
Ppochs P hin

Figure 6.8 Represents the training and validation loss of the models across all datasets - class-level metrics

Training and Validation Loss-LSTM Model Training and Validation Loss-GRU Model
0. 160 T Original) Temtning{Original Datasats)
Validation(Original Datsssis) n.Ane Validutinn(Oviginel Dutasets)
0.A8n
0156 \ 0164
\
£ oass
5 e g 0,152 :\
031832 W=\, A\
A, Y1 el | |
0.15%0 \ Wl \J BN | A)
~A(M, A N oply A
o148 { FNPUAS AL
oaan
('))‘n "I no -o ll;ll o 0 & l’ll Io‘n
[Epocnn
Training and Validation Loss-LSTM Model Training and Valldation Losn-GRU Model
a.116 " wdt D) od)
Ratanced D (Balanced O)
0110 0.12
o.105
o
0,100
g a.oes \ 3 w10
0.090 ;
o.0n
0086 N
a080 o.08
i - . -~ v r X
o 20 a0 w0 no wo o 20 a0 “o 6o 0o
fpochs Cpachs

Figure 6.9 Represents the training and validation loss of the models across all datasets - file-level metrics

DOI 10.14750/ME.2024.012

Figures 6.10 and 6.11 show the ROC curves of the model on the original and balanced datasets.
The vertical axis presents the actual positive rate of the model, and the horizontal axis illustrates
the false positive rate. The AUC is a sign of the performance of the model. The larger AUC is,
the better the model performance will be. Based on the Figures, the values are encouraging and
indicate our proposed models’ efficiency in SBP. Regarding the original datasets, the LSTM
model obtained the best AUC which is 78% on the class-level metrics data set. The worst AUC
obtained by both models (LSTM and GRU) which is 75% on the file-level metrics dataset.
Regarding the balanced datasets, the LSTM model obtained the best AUC which is 97% on the
class-level metrics data set. The worst AUC obtained by both models (LSTM and GRU) which
IS 93% on the file-level metrics dataset. Further in appendix 1, Figures 1 and 2 display the

AUCPR scores obtained by the proposed models on the original and balanced datasets.

f ROC Curve-Original Datasets
1O | e LHTM Model(AURGC = 0.781)
a.n
§ 0.6
i o4
02
0.0
e T 17 T
0.0 0.2 X .6 0.8 1.0
Falue Positive Kate
ROC Curve-Balanced Datasets
1.0
on
i..
i 0.4
0.2
0.0 “ LETM Model(AUROC « 0.874)
0.0 oz 0.4 0.0 0. 1.0
Falsn Positive Mate

ROC Curve-Original Datasets
—— GRU Model(AURGC = 0.770)

- 1 T -1 T T
0.0 o2 0.q 0.6 o.s Lo
Falve Positive Kate

ROC Curve-Balanced Datasats.

= GRU Model(AURDC « 0,968)
e 2 -

T T) v
0.0 02 4 0.0 0.8 10
Falne Positive fate

Figure 6.10 Illustrates the ROC Curves of the models across all datasets - class-level metrics

ROC Curve-Qriginal Datasats
1.0 = LSTM Mode((AURDEC = 0.750)
on
§ on
0.4
£
0.2
0.0
T ' ' '
0.0 0.2 a4 0.6 o.n 10
Falue Positive Rate
ROC Curve-Balanced Datasats
10
on
é o
0.4
E
0.2
0.0 = LETM Madel (AURGE = O.8M87)
— v v ——————
o0 0.2 0.4 o6 o.n 1.0
Faluw Postiive fate

“ol0 oz

'ROC Curve-Original Datasats
— GRY Model(AUROE = 0,750)

— : . —
0.0 0.2 0.4 0.6 on 10
Falum Posttive Ante

ROC Curve-Balanced Datasets

= ORU MadelAUROC - 0.83k)

' — —r
0.4 o.¢ o.a 1.0
Falve Positive inte

Figure 6.11 Illustrates the ROC Curves of the models across all datasets - file-level metrics

== A=s e d

DOI 10.14750/ME.2024.012 0

Table 6.9 shows the comparison results of our method with some previous studies based on
some performance measures namely accuracy and AUC. The best values are indicated with
bold text and - "to indicate the approaches that did not provide results in a particular data set.
The comprehensive findings, presented in Table 6.9, showed that while certain earlier studies
displayed higher values, our proposed method surpassed other techniques on most datasets.
This indicates the superior performance of our approach and its potential to outperform existing
methods in the context of software bug prediction. By conducting this rigorous evaluation and
providing empirical evidence, our study contributes valuable insights to the field and
underscores the effectiveness of our novel approach in improving bug prediction accuracy.

Table 6.9 Comparison of the proposed approach with other existing approaches based on the accuracy and AUC

Approaches Datasets Accuracy AUC
LSTM [2] JIRA dataset 0.89 -
NB[21] software fault datasets (DS1, DS2, 0.89, 0.95, 0.95 -
DS3)
DT[21] software fault datasets (DS1, DS2, 0.95, 0.97, 0.99 -
DS3)
ANNSs[21] software fault datasets (DS1, DS2, 0.93, 0.95, 0.96 -
DS3)
LSTM[55] Bug report datasets (Eclipse Platform 0.67,0.76 -
ul, JDT)
CNN and RF with Bug report datasets (Mozilla, Eclipse, 0.94, 0.95, 0.94,
Boosting[60] JBoss, OpenFOAM, Firefox) 0.98, 0.97 -
Defect prediction via PROMISE datasets (Camel, Lucene, 0.79, 0.68, 0.79,
attention-based RNNs (DP- Poi, Xerces, Jedit, Xalan, Synapse) - 0.76, 0.82, 0.67,
ARNN)[84] 0.64
Credibility-based NASA datasets (CM1, KC1, PC1, JM1) - 0.72,0.67, 0.85,
imbalance boosting[115] 0.67
Defect prediction through Code4Bench for C/C++ code 0.69
attention-based -
GRU-LSTM[116]
Deep Neural Unified bug dataset (Bug drediction
Networks[117] Dataset, PROMISE dataset, GitHub - 0.81
bug dataset)
Our models (LSTM, GRU) | Unified Bug Dataset Balanced Dataset 0.93,0.93 0.97,0.96
(class-level)
Our models (LSTM, GRU) | Unified Bug Dataset Balanced Dataset 0.88, 0.88 0.93,0.93
(file-level)

In summary, the primary objective of this study was to present a method based on combining
two RNN models namely LSTM and GRU with the Undersampling method (Near Miss) for
SBP. We compared the results obtained by the proposed method based on the original and
balanced datasets to investigate the impact of Undersampling methods on improving the
accuracy of ML techniques. Additionally, the proposed method's results were compared with
those presented in previous studies. After comparing the results obtained by the proposed
models on the original datasets with results obtained by the proposed models on the balanced
datasets, as shown in the Tables and Figures, we note that the models got good scores on the
balanced datasets and the results improved further due to balancing, which indicated that the
combination of LSTM and GRU with the Undersampling method (Near Miss) positively
affects bug prediction performance in datasets with imbalanced class distributions. Moreover,
data sampling methods play an essential role in improving the accuracy of the ML models in
predicting software bug. Regarding evaluating the results obtained from our proposed method

DOI 10.14750/ME.2024.012 61

and their comparison with some results of other studies, we conclude that our models are
promising, competitive and outperform other models in the previous studies. Moving forward,
our future work aims to evaluate the robustness of the proposed method on a wide range of
datasets.

6.3 Bi-LSTM with Oversampling Methods in Software Defect Prediction (SDP)

In this sub-section, we discuss the findings of the third study, the goal was to present a method
based on combining a Bi-LSTM network with Oversampling methods (Random Oversampling
and SMOTE) for SDP. The experiments have been conducted based on benchmark datasets
obtained from the PROMISE repository. The experimental results were evaluated and
compared based on various performance measures (accuracy, precision, recall, f-measure,
MCC, AUC, AUCPR, and MSE).

The performance of the prediction model is reported in Tables 6.10 to 6.15, and Figures 6.12
to 6.21, appendix 2 (Figures 1,2,3).

According to Table 6.10: Accuracy for the various original datasets: the highest accuracy was
achieved by the proposed model on the jedit dataset, which is 97%. The lowest accuracy was
achieved by the proposed model on the ant dataset, which is 80%. Precision for the various
original datasets: the highest Precision was achieved by the proposed model on the log4j and
xerces datasets, which is 95%. The proposed model achieved the lowest Precision on the jedit
dataset, 0%. Recall for the various original datasets: the highest Recall was achieved by the
proposed model on the log4j dataset, which is 100%. The lowest Recall was achieved by the
proposed model on the jedit dataset, which is 0%. F-Measure for the various original datasets:
the highest F-Measure was achieved by the proposed model on the log4j dataset, which is 97%.
The lowest F-Measure was achieved by the proposed model on the jedit dataset, which is 0%.
MCC for the various original datasets: the highest MCC was achieved by the proposed model
on the xerces dataset, which is 75%. The lowest MCC was achieved by the proposed model on
the jedit and log4j datasets, which is 0%. AUC for the various original datasets: the highest
AUC was achieved by the proposed model on the xerces dataset, 94%. The lowest AUC was
achieved by the proposed model on the log4j dataset, which is 60%. AUCPR for the various
original datasets: the highest AUCPR was achieved by the proposed model on the xerces
dataset, 98%. The lowest AUCPR was achieved by the proposed model on the jedit dataset,
which is 29%. MSE for the various original datasets: the highest MSE was achieved by the
proposed model on the ant dataset, which is 0.152. The lowest MSE was achieved by the
proposed model on the jedit dataset, which is 0.030.

Table 6.10 Performance analysis for proposed Bi-LSTM Network - Original Datasets

Performance Measures

Datasets | Accuracy | Precision | Recall | F-Measure | MCC | AUC | AUCPR | MSE
ant 0.80 0.50 0.50 0.50 0.37 | 0.79 0.48 0.152
camel 0.82 0.56 0.28 0.37 0.30 | 0.69 0.37 0.146
ivy 0.87 0.50 0.22 0.31 0.27 | 0.72 0.40 0.105
jedit 0.97 0.00 0.00 0.00 0.00 | 0.85 0.29 0.030
log4j 0.95 0.95 1.00 0.97 0.00 | 0.60 0.96 0.041
Xerces 0.91 0.95 0.92 0.94 0.75 | 094 0.98 0.075
Averages 0.88 0.57 0.48 0.51 0.28 0.76 0.58 0.091

According to Table 6.11: Accuracy for the various balanced datasets using Random
Oversampling: the highest accuracy was achieved by the proposed model on the jedit and log4j

DOI 10.14750/ME.2024.012 o

datasets, which is 99%. The lowest accuracy was achieved by the proposed model on the ivy
dataset, which is 90%. Precision for the various balanced datasets using Random
Oversampling: The highest Precision was achieved by the proposed model on the log4j dataset,
which is 100%. The proposed model on the ivy dataset achieved the lowest Precision, which is
82%. Recall for the various balanced datasets using Random Oversampling: The highest Recall
was achieved by the proposed model on the ivy and jedit datasets, which is 100%. The lowest
Recall was achieved by the proposed model on the xerces dataset, which is 92%. F-Measure
for the various balanced datasets using Random Oversampling: the highest F-Measure was
achieved by the proposed model on the jedit and log4j datasets, which is 99%. The lowest F-
Measure was achieved by the proposed model on the ivy dataset, which is 90%. MCC for the
various the various balanced datasets using Random Oversampling: the highest MCC was
achieved by the proposed model on the jedit and log4j datasets, which is 97%. The lowest MCC
was achieved by the proposed model on the camel and ivy datasets, which is 81%. AUC for the
various balanced datasets using Random Oversampling: The highest AUC was achieved by the
proposed model on the jedit and log4j datasets, which is 99%. The lowest AUC was achieved
by the proposed model on the camel and ivy datasets, which is 93%. AUCPR for the various
balanced datasets using Random Oversampling: the highest AUCPR was achieved by the
proposed model on the jedit and log4j datasets, which is 99%. The lowest AUCPR was
achieved by the proposed model on the ivy dataset, which is 86%. MSE for the various balanced
datasets using Random Oversampling: the highest MSE was achieved by the proposed model
on the ivy dataset, which is 0.092. The lowest MSE was achieved by the proposed model on
the jedit dataset, which is 0.009.

Table 6.11 Performance analysis for proposed Bi-LSTM Network - Balanced Datasets using Random
Oversampling Technique

Performance Measures

Datasets Accuracy | Precision | Recall | F-Measure | MCC | AUC | AUCPR MSE
ant 0.91 0.89 0.94 0.91 0.82 | 0.95 0.93 0.073
camel 0.91 0.87 0.98 0.92 0.81 | 0.93 0.92 0.082
Ivy 0.90 0.82 1.00 0.90 0.81 | 0.93 0.86 0.092
jedit 0.99 0.98 1.00 0.99 0.97 | 0.99 0.99 0.009
log4j 0.99 1.00 0.98 0.99 0.97 | 0.99 0.99 0.012
Xerces 0.95 0.98 0.92 0.95 0.89 | 097 0.98 0.049
Averages 0.94 0.92 0.97 0.94 0.87 | 0.96 0.94 0.052

According to Table 6.12: Accuracy for the various balanced datasets using SMOTE: the highest
accuracy was achieved by the proposed model on the log4j dataset, which is 100%. The
proposed model achieved the lowest accuracy on the ant dataset, 84%. Precision for the various
balanced datasets using SMOTE: The highest Precision was achieved by the proposed model
on the log4j dataset, which is 100%. The lowest Precision was achieved by the proposed model
on the ant dataset, which is 81%. Recall for the various balanced datasets using SMOTE: the
highest Recall was achieved by the proposed model on the jedit and log4j datasets, which is
100%. The lowest Recall was achieved by the proposed model on the ant and camel datasets,
which is 88%. F-Measure for the various balanced datasets using SMOTE: the highest F-
Measure was achieved by the proposed model on the log4j dataset, which is 100%. The lowest
F-Measure was achieved by the proposed model on the ant dataset, which is 85%. MCC for
the various balanced datasets using SMOTE: the highest MCC was achieved by the proposed
model on the log4j dataset, which is 100%. The lowest MCC was achieved by the proposed
model on the ant dataset, which is 67%. AUC for the various balanced datasets using SMOTE:

DOI 10.14750/ME.2024.012 63

the highest AUC was achieved by the proposed model on the log4j dataset, which is 100%.
The lowest AUC was achieved by the proposed model on the ant dataset, which is 90%.
AUCPR for the various balanced datasets using SMOTE: the highest AUCPR was achieved by
the proposed model on the log4j dataset, which is 100%. The lowest AUCPR was achieved by
the proposed model on the ant and camel datasets, which is 91%. MSE for the various balanced
datasets using SMOTE: the highest MSE was achieved by the proposed model on the ant
dataset, which is 0.124. The lowest MSE was achieved by the proposed model on the log4j
dataset, which is 0.001.

Table 6.12 Performance analysis for proposed Bi-LSTM Network - Balanced Datasets using SMOTE Technigue

Performance Measures

Datasets Accuracy | Precision | Recall | F-Measure | MCC | AUC | AUCPR MSE
Ant 0.84 0.81 0.88 0.85 0.67 0.90 0.91 0.124
camel 0.87 0.89 0.88 0.89 0.74 | 091 0.91 0.113
Ivy 0.89 0.83 0.97 0.89 0.78 0.94 0.92 0.101
Jedit 0.99 0.98 1.00 0.99 0.97 0.99 0.99 0.011
log4j 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.001
xerces 0.93 0.93 0.92 0.93 0.85 0.96 0.97 0.067
Averages 0.92 0.90 0.94 0.92 0.83 0.95 0.95 0.069

Table 6.13 presents the statistical analysis results (paired t-test) of the proposed model on the
original and balanced datasets (using Random Oversampling and SMOTE) in terms of mean,
Standard Deviation (STD), min, max, and P value. We notice that the mean values of the Bi-
LSTM model are 0.88 on the original datasets, 0.94 on the balanced datasets using Random
Oversampling, and 0.92 on the balanced datasets using SMOTE. The STD values of the Bi-
LSTM model are 0.06 on the original datasets, 0.04 on the balanced datasets using Random
Oversampling, and 0.06 on the balanced datasets using SMOTE. The Min values of the Bi-
LSTM model are 0.80 on the original datasets, 0.90 on the balanced datasets using Random
Oversampling, and 0.84 on the balanced datasets using SMOTE. The Max values of the Bi-
LSTM model are 0.97 on the original datasets, 0.99 on the balanced datasets using Random
Oversampling, and 1.00 on the balanced datasets using SMOTE. The P value of the Bi-LSTM
model is 0.01 on the original and balanced datasets using Random Oversampling and 0.00 on
the original and balanced datasets using SMOTE. Based on the P value of the model on the
original and balanced data sets, we note that the P value is less than 0.05, which indicates a
difference between the results of the model on the original and balanced data sets.

Table 6.13 Comparison of the results of the proposed Bi-LSTM Model based on the original and balanced
datasets in terms of accuracy using paired t-test

Paired t-test Original Balanced Datasets using Original Balanced Datasets
Datasets Random Oversampling Datasets using SMOTE
Mean 0.88 0.94 0.88 0.92
STD 0.06 0.04 0.06 0.06
Min 0.80 0.90 0.80 0.84
Max 0.97 0.99 0.97 1.00
P value 0.01 0.00

We used Boxplots to aggregate the achieved results to get a more accurate overview of the
quality of the results. Figure 6.12 shows the Box plots for the performance measures (Accuracy,
Precision, Recall, F-measure, MCC, AUC, AUCPR, and MSE) on the original and balanced
datasets: The averages of (Accuracy, Precision, Recall, F-measure, MCC, AUC, AUCPR, and

DOI 10.14750/ME.2024.012 ”

MSE) on the original datasets are 0.88, 0.57, 0.48, 0.51, 0.28, 0.76, 0.58, and 0.091,
respectively. The averages of (Accuracy, Precision, Recall, F-measure, MCC, AUC, AUCPR,
and MSE) on the balanced data sets (using Random Oversampling) are 0.94, 0.92, 0.97, 0.94,
0.87, 0.96, 0.94, and 0.052, respectively. The averages of (Accuracy, Precision, Recall, F-
measure, MCC, AUC, AUCPR, and MSE) on the balanced data sets (using SMOTE) are 0.92,
0.90, 0.94, 0.92, 0.83, 0.95, 0.95, and 0.069, respectively.

Original Datasets Balanced Datasets(Random Oversampling) Balanced Datasets|SMOTE)
101 T Lﬂ[-%,. -% ' Lo-.i o .@ jg
i i [
08| =~) 08 4 E
) 7 i
5 08 306 3 067
i E i
- -
£ £
i ot Yoa ¥ 04
¢ I i i
02 0z 021
00 % | ap j\ 00 1 !
T T T T: T T T T T T T T T T T Y
Accuracyprecision RacallF-Measure MCC - AUC - MUCPR MSE Becuracyvecision RecallF-Measure MCC AUC MICPR MSE Accuracypraciston RecallF-Measire MCC AUC BUICPR MSE
Parformance Measures Performance Measures Performance Measures

Figure 6.12 Boxplots represent performance measures obtained by the model on the original and balanced
datasets

Figures 6.13 to 6.18 show the training and validation accuracy and training and validation loss
of the model on the original and balanced datasets.

Figures 6.13, 6.14, and 6.15 show the training and validation accuracy of the model on the
original and balanced datasets. The vertical axis presents the accuracy of the model, and the
horizontal axis illustrates the number of epochs. Accuracy is the fraction of predictions that our
model predicted right.

Figure 6.13 shows the accuracy values of the model on the original datasets. From the Figure,
the model learned 80% accuracy for the ant dataset, 82% accuracy for the camel dataset, 87%
accuracy for the ivy dataset, 97% accuracy for the jedit dataset, 95% accuracy for the log4j
dataset, and 91% accuracy for xerces dataset at the 100th epoch.

DOI 10.14750/ME.2024.012

55

Traineng and d Accuracy-ant-1.7 o Training and Accuracy-camel-1.6 g and d; y-ivy-2.0 datasst
— ass
s . — Tawming = eming) ass
i batamion [ass Naidatan |
asco I " A e | ..
| WYL L aee| Ui o e AN
}/ ase- My I v \
i MIATE 8 Wz i N 2! |
: om0 iy | e Y i | 4 §
4 »L i) 3 v 7\ s
o Wi W < qse v ~ <am
il ¢
omn | ¥ an | oars
—— Taining
s ark Valization
_ aml
® 2 o - L 100 3 £ o @ m 100] » © w o« =0
Esochs Epoans Ezotte
Trainmg and A y-jedit-4.3 da Training and Accuracy-log4j-1.2 d Training and Accuracy-xerces-1.4 d
s Los | -
285 7
a3 ass| N o
| AN asal | W |
paes o450 |
- - -
i s | §om §om: "
3 3 2o =)
< osa < FET "
8754 ‘ J
nes ors |
e |
— Tammy ‘ — Temiting — Tainng
= ettt o] lidatisn ot wigtatoan
® » © © = w0 c » =) » 08 o =) - I~ 10
Epeche Epeche Epochs

Figure 6.13 Training and validation accuracy for the original datasets

Figure 6.14 shows the accuracy values of the model on the balanced datasets (using Random
Oversampling). From the Figure, the model learned 91% accuracy for the ant dataset, 91%
accuracy for the camel dataset, 90% accuracy for the ivy dataset, 99% accuracy for the jedit
dataset, 99% accuracy for the log4j dataset, and 95% accuracy for xerces dataset at the 100th

epoch.
Traming and Valid Accuracy-ant-1.7 dataset Traiming and Validation Accuracy<amal-1.6 & 2 g and Vaid AcTuracy-ivy-2.0 dataset
s
ass{ v y 835 | — waming PG
| Vadidation) 240 ‘alstation 2
0% | T - oy ‘
a1 " | LY
Y . N T | ik | | ‘ ”
o f Wt i »080 I\ Bas / '] AL
v b 4 4 1 » 3
§ oo Y 5 ais Ay - I b "u‘”
3 ‘ [: 34| "I] [11" !
ars{ ‘ (| h e I l f Il‘
| (VY 045 ‘ ‘ \
ars | | [ok | il | — Wwining
oss 233
[= = ® ') e ° = w 3 = 100] = ® ® ®© 00
Epacns fpocrs Epochs
L:mning and Validation Accuracy-jedit-4.3 d ;;‘. g and Accuracy-bogdi- L2 Traming and d Accuracy-xerces-1.4 dataset
Pl Jy—u= — Traising = — Tmining o~ N
ass | L4 = P—— as . — VeSdation . R ¥ 0951 — Wentetion . Al S Ny AT
I 1} = - Y ¥ .
nes | ",' ,r'vl. {\ ' uss Y i '
- LI/ 1) A J
poss | > " y ¥ o .,?,
2o | Se71 |l Al ! :
s | i { " i /1Y i ase J
oars 4
s ors
1 | 8s o
nes | »b — ‘Eaming
. . . . - = st . _ . - L o6 |
L] » «© © © w0 £ n « w L 100 0 - w 0 = e
Eaocts Epochs Esochs

Figure 6.14 Training and validation accuracy for the balanced datasets - Random Oversampling

Figure 6.15 shows the accuracy values of the model on the balanced datasets (using SMOTE).
From the Figure, the model learned 84% accuracy for the ant dataset, 87% accuracy for the
camel dataset, 89% accuracy for the ivy dataset, 99% accuracy for the jedit dataset, 100%
accuracy for the log4j dataset, and 93% accuracy for xerces dataset at the 100th epoch.

DOI 10.14750/ME.2024.012

Training and Validation Accuracy-ant-1.7 dataset Traiming and Validation Accuracy-camel-1,8 d

2854

035
o
s

>

v

; ase

3
durs-

are

ass

oed -

56

Training and Vakdation Accuracy-vy-2.0 d

. Nl — Fong) a5+ — Tamng
NX peve! Valtganen " ‘widinar
y | \ o83 4 A1l
<' W) ”h y |' ass | | -‘h‘u.
d | W ass !]
\ i | pese; Y 3] A/
A Al " VR = ue . .',,'ﬂ ¥
: Sarsi ! 5 W iV
H H |
| | H W & 9537 ¥ l| \
Pl amo! ¥ |
/ are |
wEs,
0es
— Treining 050 I'
Saiation o&
0 © @ = w0 ° 2 w0 = 200 [» » w L] 100
Epocrs oo Epoxt
Training and Validation Accuracy-jedit-4.3 dataset Training and Validation Accuracy-logdi-1.2 data éning and Vakdation Accuracy-xerces-1.4 dataset
. ~ o~ Le AR A A A
[TH
o Lot
rY aw AL
. » 08 | > Iy
1) i A Eoss)
| ar: M z
< < om
ok
ars
- Teiming os —— Trmaving —— Taming
el\tation ‘@iseran aldatian
ore
] ® w = 100] = = © L 90 3 x » w L 100
Epectn Epecha Epoct

Figure 6.15 Training and validation accuracy for the balanced datasets —- SMOTE

Figures 6.16, 6.17, and 6.18 show the training and validation loss of the model on the original
and balanced datasets. The vertical axis presents the loss of the model, and the horizontal axis
illustrates the number of epochs. The loss indicates how bad a model prediction was.

Figure 6.16 shows the loss values of the model on the original datasets. From the Figure, the
model loss is 0.152 for the ant dataset, 0.146 for the camel dataset, 0.105 for the ivy dataset,
0.030 for the jedit dataset, 0.041 for the log4j dataset, and 0.075 for the xerces dataset at the

100th epoch.
Training and Loss-ant-1.7 dataset Training and Losscamel-1.8 d Training and Validation Loss-ivy-2,0 dataset
a1
~— Waining - — Taming ais — Trai=ng
alizates ‘aidatan WaltzaDom
815 ats |
il 2151 | o
| sz
fon . faus " :
3 | Y 3 ~ Saw 1
0as A | ",, . ./
\ | (P i ane
v ¥ \ A Y
ona L \ V' L E
210
.08 - - ass
® - = 20 e » x & © 10 [» @« @ o 0o
Esoona Epoxha Epocts
Training and Loss-jedit-4.3 & Training and Loss-iogdi-1.2 d g and ion Loss-xerces-1.4
— Tmmnng — Twmeg — Tmining
. \eligmbon | 020 Vasdatian aan: \aletation
ais’
LY ais e
Y
z g goazi i)
Sam Samwf | Sa! |
ane Sel 14 \
oS | sy s 4%
o008 A
a2+ 00) -
= = wo ® » = w© w© we 0 x~ © w ™ 100
fpochs Epachs Epoces

Figure 6.16 Training and validation loss for the original datasets

Figure 6.17 shows the loss values of the model on the balanced datasets (using Random
Oversampling). From the Figure, the model loss is 0.073 for the ant dataset, 0.082 for the camel
dataset, 0.092 for the ivy dataset, 0.009 for the jedit dataset, 0.012 for the log4j dataset, and
0.049 for the xerces dataset at the 100th epoch.

DOI 10.14750/ME.2024.012

Training and Validation Loss-ant-1.7 dataset Traiming and Vabdstion Loss-camsel-1.8 4. Traiming asd d Loss-vy-2.0 4
tse
| =Tl — tanng s’ — Waining
0290 ¢ i [222s - wicanon | \abaenan
arrs . 1), (- o200 g oxs | |
2150 | A | 017s i | |
oo n 1
2 OIS v f 2 aise
g b NN 5 { £ I
a0 e 1 5\ 815+ i ‘
2108 f]
asrs | 08
i 0s7s
agso - w/ A
asss hti oos
00Is
o » « w 3 wo ° 20 4 w = 108 £ » © ® © 102
fpecm Epocns Epocts
Training and Validation Lossedit-4.3 dataset Training and Validation Loss-log4j-1.2 1 ining and VaBdation Loss-xerzes-1.4 dataset
s — Tmming 435 — Waung a206 — WY
‘valaton Veication [asatica
= 21734
azm
oz) nso
g ot | o Y «'.‘. eV) g 238
2 3 R \ 3 aage!
eto| \ 4 835 14 |
" y \ [| 0s2s | TR N
W= as ! o w \
cos i N L. sl
aes - wozs |
° = ® w ® 1o ® = = = ® 0 ° = ® = =
Epocha Epacks Epochs

Figure 6.17 Training and validation loss for the balanced datasets - Random Oversampling

Figure 6.18 shows the loss values of the model on the balanced datasets (using SMOTE). From
the Figure, the model loss is 0.124 for the ant dataset, 0.113 for the camel dataset, 0.101 for
the ivy dataset, 0.011 for the jedit dataset, 0.001 for the log4j dataset, and 0.067 for the xerces
dataset at the 100th epoch. As shown in the Figures, the accuracy of training and validation
increases, and the loss decreases with increasing epochs. Regarding the high accuracy and low
loss obtained by the proposed model, we note that the model is well-trained and validated.

Traéning and 3, Loss-ant-L.7 d Training and Vali Loss-camel-1.6 dataset Training and Valid Loss-ivy-2.0 &
aase
oz o vainieg — S o - o
\aidatan 222 waliganan ‘@lgatien
) .
o | ."‘ | s) - LM)
i | | s {R)
.) A ¢ G150 ol g8 N\
Joas {4 . s VA 3
014 LI y N aioe L' A S o f O
9 i ¥ oy L N
f aers =LA ‘ U N
012 ! DAY d
o aos \
n » a s = 108 0 2 a2 ® = 100 ° » © @ o 00
pocne Epochs Epocty
i Training and Vahdation Loss-jedit-4.3 dataset Traiming and Validation Loss-iogdj-1.2 & Training and san Lo rees-La
— waining — Sining 0200 — Tamng
Wadeton a3 veigaron alsatios
aze! | Qs
\ | = a1
o1s san| A a1ss |
¢ £ : :
S Ses Zauw
012 W k b
ato | 0075 -
o005 &35 1 N | nose
e i 0033 o~
220
0 » = = = 100 € £ © - = 08 0 » « @ w 100
Epocne Epoces fpocks

Figure 6.18 Training and validation loss for the balanced datasets - SMOTE

Figures 6.19 to 6.21 show the ROC curves of the model on the original and balanced datasets.
The vertical axis presents the actual positive rate of the model, and the horizontal axis illustrates
the false positive rate. The AUC is a sign of the performance of the model. The larger AUC is,
the better the model performance will be. Based on the Figures, the values are encouraging and
indicate our proposed model efficiency in SDP. The best AUC obtained by the proposed model
in the original data sets is 94% on the xerces data set. The worst AUC is 60% on the log4j data

DOI 10.14750/ME.2024.012

58

set. The best AUC obtained by the proposed model in the balanced data sets (using Random
Oversampling) is 99% on the jedit and log4j data sets, while the worst AUC is 93% on the
camel and ivy data sets. The best AUC obtained by the proposed model in the balanced data
sets (using SMOTE) is 100% on the log4j data set, while the worst AUC is 90% on the ant data
set. Further in appendix 2, Figures 1 to 3 show the AUCPR of the model on the original and
balanced datasets.

ROC curve-ant-1.7 datass ROC curve-camel-1.6 da ROC curve-jvy-2.0 13
%9 z r [B9 — BiLSTH ModeMAUROC = 0.457) — i e=————s=
e ‘ e { —
. (= ._.’_'r“ s n.i s i . |1.l~l b
i & i e i | —
§ 08 Re so8! ® 3 go08;
= I = - T r
1.l B =
a4 J £ ne +5 £ nal
£l £ |} 3 |
Taz: T Tozi £ o u[
I } r
oni e BHLSTM M4GEUIROC= 27833 m,! P aadll —o EESTI Mol AREOC = 0.732}
) a2 s e es 10 2o ar o4 as os 10 as a2) a6 oz 19
Faba Pozitve Rate Falve Positve Ruate Faite Fosltve Rate
ROC curvejedit-4.3 datasst ROC curve-logdi1.2 ROC curvs-xerces-1 .4 &
o 15! r ¥ 2 =
J |
: BB . os [. os I ,_1
N 3 | | A
; o8| 5 06 2 a& r]
: 5 | i |
£ nei £ os! £ nal i
: i | B
ozl Taxdr 03 ‘ |
suld —— BHLSTH MogeHAURDE = D.858) doit - ERASTI Medel{AROC = 0.593) asdl - ST MossHAREOT = 0943}
00 a3 a4 s o8 0 a8 a2 ot 2% s 10 as a2 ot a8 as 10
Falze Fosiuve Rate #3ite Fostuve Rate Faite Fosluve Rate

Figure 6.19 ROC curves for the original datasets

ROC curve-ant-1.7 d

ROC curve-camel-1.6 d

1o ——— ol ” 0|
r i
| =
. 051 o 251 { o 08 r
= i = 3
= = = r
co,i* f R0 sas; I
3) £ 2 -
z 3 - 3 :
3 |
cok! Enc: f énu i
S : bl
Tazq ! oz oz
| 3 4
P i § “w BELSTH ModeX AUROC = 0.253} ap! “= ELITM ModsHAURDC = 29313} a0t < - S-LSTM MOSEHAURDC = .935) |
0 a2 o4 o6 s 0 1] a2 oA 0% o 10 00 e2 o4 L) as 19
Faise Posmive Aate False Fosnive Falce Positive Rate
ROC curve-jedit-4.3 dataset ROC curve-logdj-1.2 datasst ROC curve-verces-1.4 datasat
10 T : 10 | r_;_'m‘,—_.-m
Ers o8- as| ¢
2 | 2 -4 | 4
| : 2 |3
051 | gos: s 08|
27| 2 }
s] = =
Eoolt H fal!
£ o | =08 | a4
: || P || !
-ui ! a2 a3
|
P | { e BLSTH ModeX AUROC = 0.957) Py = BLSTH HosslAURDC = 2985} asd | “— BHSTM Msdei(ALADC = 8.375) |
1 i
20 a2 24 as o8 19 oo ez ot as (1] 10 (] 02 oA % os 10
Faise Posmive Rate Fsize Pasitive Rate Falve Pocitive Rate

Figure 6.20 ROC curves for the balanced datasets- Random Oversampling

ROC curww ant: LY datanet

tute
.

e Besitive
- »
-
~

o BANTIV Wbl AR -
L3 e o ax
Falen Pusitioe Bave

ROC curvi Joifit 4.3 duteset

T Pauitiee Rate

- AN T Mamdlbnos -

e L8 “e " “

Figure 6.21 ROC curves for the balanced datasets- SMOTE

DOI 10.14750/ME.2024.012

» .y

24

BOC curwe-Camul L0 hatanet

-_— — ie

-

e
J

.

e

as

.

Niee Puziiee Rete

w

BEORTI Mt AUNET = HENe
. o ag
Falne Fusitien fate

us e wr

ROC curve logaf 1.7 dutuuet
— Lo

/i

Fe Paekiee Sate

LS MassiAMESE - § oy

“l . - .

» un
Fudun Pusitine Rate

ROC enrvepnries . & detwret

ROC Carve-lvy-2.0 s set

“ BRI M AT -

w4 “ 1o
Fulun Funttios Rase

us

“ MELSTM Mamel| ALMGE = 59w i)

“e "
Folow Pualiine Rate

59

Table 6.14 shows the comparison of the results produced using our models with those obtained
using the baseline model (RF) based on six performance measures: accuracy precision, recall,
f-Measure, MCC, and AUC. We also compared the results produced using our model with
those obtained in previous studies based on six performance measures: accuracy precision,
recall, f-measure, MCC, and AUC. Table 6.15 compares the values of performance measures
obtained by our Bi-LSTM network and the performance values in previous studies. The best
values are indicated with bold text and "- " indicate the approaches that did not provide results
in a particular data set. According to Table 6.15, some of the results in the previous studies are
better than ours. Still, in most cases, our model outperforms the other state-of-the-art
approaches and provides better predictive performance.

Table 6.14 Performance measures of the baseline model (RF) and Bi-LSTM

Performance Measures
Models Datasets | Accuracy | Precision | Recall | F-Measure | MCC | AUC
ant 0.81 0.53 0.53 0.53 0.41 0.70
camel 0.81 0.47 0.19 0.27 0.20 0.57
ivy 0.89 0.57 0.44 0.50 0.44 0.69
RF jedit 0.97 0.00 0.00 0.00 0.00 0.50
log4j 0.98 0.97 1.00 0.99 0.69 0.75
Xerces 0.95 0.96 0.98 0.97 0.86 0.92
Averages 0.90 0.58 0.52 0.54 0.43 0.58
ant 0.91 0.89 0.94 0.91 0.82 0.95
camel 0.91 0.87 0.98 0.92 0.81 0.93
Bi-LSTM with ivy 0.90 0.82 1.00 0.90 0.81 0.93
Random jedit 0.99 0.98 1.00 0.99 0.97 0.99
Oversampling log4j 0.99 1.00 0.98 0.99 0.97 0.99
Technique Xerces 0.95 0.98 0.92 0.95 0.89 0.97
Averages 0.94 0.92 0.97 0.94 0.87 0.96
ant 0.84 0.81 0.88 0.85 0.67 0.90
camel 0.87 0.89 0.88 0.89 0.74 0.91
Bi-LSTM with ivy 0.89 0.83 0.97 0.89 0.78 0.94
SMOTE jedit 0.99 0.98 1.00 0.99 0.97 0.99
Technique log4j 1.00 1.00 1.00 1.00 1.00 | 1.00
Xerces 0.93 0.93 0.92 0.93 0.85 0.96
Averages 0.92 0.90 0.94 0.92 0.83 0.95

DOI 10.14750/ME.2024.012

60
Table 6.15 Comparison of the proposed Bi-LSTM with other existing approaches
Performance Measures
Approaches Datasets Accuracy | Precision Recall F- MCC AUC
Measure
CNNI7] ant, camel, ivy, | 0.85,0.84, | 0.87,0.81, | 0.82,0.90, | 0.85, 0.85, | 0.69, 0.69, | 0.91, 0.90,
jedit, log4j, 0.95, 0.97, | 0.92,0.94, | 0.98, 1.00, | 0.95,0.97, | 0.90,0.93, | 0.98, 0.96,
Xerces 0.97,0.95 | 0.98,0.93 | 0.98,0.98 | 0.98,0.95 | 0.94,0.90 | 0.99,0.98
GRUI7] ant, camel, ivy, | 0.83,0.82, | 0.88,0.82, | 0.81, 0.82, | 0.85,0.82, | 0.67,0.63, | 0.89, 0.87,
jedit, log4j, 0.95, 0.99, | 0.95,0.98, | 0.95, 1.00, | 0.95,0.99, | 0.90,0.97, | 0.98, 1.00,
Xerces 0.96,0.93 | 0.98,0.92 | 0.950.94 | 0.96,0.93 | 0.91,0.85 | 0.98,0.97
LSTM[40] Unified bug 0.93,0.88 | 0.95,0.94 | 0.92,0.81 | 0.93,0.87 | 0.86,0.76 | 0.97,0.93
dataset (class-
level, file-level)
GRUJ40] unified bug 0.93,0.88 | 0.94,0.94 | 0.92,0.81 | 0.93,0.87 | 0.86,0.76 | 0.96,0.93
dataset (class-
level, file-level)
Hybrid Neural | JEdit, IVY, Ant, | 0.97,0.88, | 1.00,0.99, | 1.00, 0.88, | 0.98, 0.93, - -
Network Camel 0.81,0.81 | 0.93,1.00 | 0.84,0.81 | 0.88,0.89
model[46]
LSTM[48] Camel 0.51 0.41 0.46 - -
LSTMI55] Bug report 0.67,0.76 | 0.70,0.76 | 0.86,1.00 | 0.77,0.86 - -
datasets (Eclipse
platform Ul and
JDT)
CNNJ79] ant, camel, ivy, 0.39, 0.52, | 0.30, 0.42,
jedit, log4j - - - 0.31, 0.00, | 0.25, 0.00,
0.97 0.00 -
BPDET[81] CM1, JM1, 0.84,0.76, | 0.42,0.23, | 0.75, 0.75,
KC1, MC1, - - - 0.83,0.96, | 0.33,0.14, | 0.81, 0.85,
PC1, MW1 0.92,0.90 | 0.38,0.33 | 0.88,0.77
DP-ARNNJ84] | Camel, Xerces, - - - 0.51, 0.27, - 0.79, 0.76,
JEdit 0.56 0.82
LR[96] Ant, Camel, - - - 0.52,0.34, - -
VY 0.30
K-NN[96] Ant, Camel, - - - 0.53, 0.37, - -
VY 0.30
MLP[96] Ant, Camel, - - - 0.50, 0.38, - -
IvY 0.25
SVM[96] Ant, Camel, - - - 0.50, - -
vy 0.084,
0.28
CBIL[103] Camel, JEdit, - - - 0.93, 0.85, - 0.96, 0.91,
Xerces 0.95 0.98
LSTM[104] Camel, Jedit, - - - 0.37,0.44, - -
Log4j, Xerces 0.52, 0.26
HyGRAR[106] JEdit, Ant 0.98,0.96 | 0.70,0.98 | 0.63,0.85 - 0.81,0.92
SPFCNN[107] CM1, IM1, 0.85,0.74, | 0.92,0.87,
KC1, PC1, - - - - 0.78,0.87, | 0.88,0.93,
MW1 0.80 0.90
Our model (Bi- | ant, camel, ivy, | 0.91,0.91, | 0.89,0.87, | 0.94,0.98, | 0.91,0.92, | 0.82,0.81, | 0.95, 0.93,
LSTM with jedit, log4j, 0.90, 0.99, | 0.82,0.98, | 1.00, 1.00, | 0.90,0.99, | 0.81,0.97, | 0.93,0.99,
Random Xerces 0.99,0.95 | 1.00,0.98 | 0.98,0.92 | 0.99,0.95 | 0.97,0.89 | 0.99,0.97
Oversampling
Technique)
Our model (Bi- | ant, camel, ivy, | 0.84,0.87, | 0.81,0.89, | 0.88,0.88, | 0.85,0.89, | 0.67,0.74, | 0.90, 0.91,
LSTM with jedit, log4j, 0.89, 0.99, | 0.83,0.98, | 0.97,1.00, | 0.89,0.99, | 0.78,0.97, | 0.94, 0.99,
SMOTE Xerces 1.00,0.93 | 1.00,0.93 | 1.00,0.92 | 1.00,0.93 | 1.00,0.85 | 1.00,0.96
Technique)

DOI 10.14750/ME.2024.012 61

In summary, this study aimed to present a method based on combining a Bi-LSTM network
with Oversampling methods (Random Oversampling and SMOTE) for SDP. We compared the
results obtained by the proposed method based on the original and balanced datasets to
investigate the impact of Oversampling methods on improving the accuracy of ML techniques.
Additionally, the proposed method's results were compared with those presented in previous
studies. After comparing the results obtained by the proposed model on the original datasets
with results obtained by the proposed model on the balanced datasets, as shown in the Tables
and Figures, we note that the model got good scores on the balanced datasets and the results
improved further due to balancing, which indicated that the combination of a Bi-LSTM
network with Oversampling methods (Random Oversampling and SMOTE) positively affects
defect prediction performance in datasets with imbalanced class distributions. Moreover, data
sampling methods play an essential role in improving the accuracy of ML models in SDP.
Regarding evaluating the results obtained from our proposed method and their comparison with
some results of other studies, we conclude that our model is promising in predicting software
defects and outperforms other models in the previous studies. Additionally, this research has
significant implications for software developers and practitioners who aim to improve software
quality and reduce the risk of defects in software systems.

6.4 CNN and GRU with Hybrid (combined)-Sampling Methods in SDP

In this sub-section, we discuss the findings of the fourth study. The goal was to propose a novel
SDP approach based on CNN and GRU combined with hybrid sampling method (SMOTE
Tomek) for SDP. The experiments were conducted based on benchmark datasets from the
PROMISE repository. The experimental results were evaluated and compared based on various
performance measures (accuracy, precision, recall, f-measure, MCC, AUC, AUCPR, and
MSE).

The performance of the prediction models is reported in Tables 6.16 to 6.25, and Figures 6.22
to 6.34, appendix 3 (Figures 1 to 4).

Table 6.16 Performance analysis for proposed CNN Model-Original Data sets

Performance Measures

Datasets | Accuracy | Precision | Recall | F-Measure | MCC | AUC | AUCPR | MSE
ant 0.83 0.67 0.33 0.44 0.38 0.82 0.57 0.131
camel 0.82 0.62 0.14 0.23 0.23 0.74 0.39 0.136
ivy 0.90 0.67 0.44 0.53 0.49 0.81 0.53 0.086
jedit 0.96 0.00 0.00 0.00 0.01 0.83 0.07 0.037
log4j 0.95 0.95 1.00 0.97 0.00 0.46 0.93 0.048
Xerces 0.94 0.94 0.99 0.96 0.83 0.95 0.98 0.049
Averages 0.90 0.64 0.48 0.52 0.32 0.76 0.57 0.081

Table 6.17 Performance analysis for proposed CNN Model-Balanced Datasets
Performance Measures

Datasets | Accuracy | Precision | Recall | F-Measure | MCC | AUC | AUCPR | MSE
ant 0.85 0.87 0.82 0.85 0.69 | 091 0.92 0.117
camel 0.84 0.81 0.90 0.85 0.69 | 0.90 0.89 0.132
ivy 0.95 0.92 0.98 0.95 0.90 | 0.98 0.96 0.051
jedit 0.97 0.94 1.00 0.97 0.93 | 0.96 0.88 0.027
log4j 0.97 0.98 0.98 0.98 094 | 0.99 0.99 0.028
Xerces 0.95 0.93 0.98 0.95 0.90 | 0.98 0.98 0.043
Averages 0.92 0.90 0.94 0.92 0.84 | 0.95 0.93 0.066

DOI 10.14750/ME.2024.012

62

Table 6.18 Performance analysis for proposed GRU Model-Original Data sets

Performance Measures
Datasets | Accuracy | Precision | Recall | F-Measure | MCC | AUC | AUCPR | MSE
ant 0.81 0.52 0.47 0.49 037 | 0.73 0.47 0.152
camel 0.79 0.30 0.08 0.13 0.06 | 0.70 0.31 0.146
ivy 0.92 0.80 0.44 0.57 055 | 071 0.56 0.076
jedit 0.97 0.00 0.00 0.00 0.00 | 0.93 0.24 0.028
log4j 0.95 0.95 1.00 0.97 0.00 | 0.29 0.93 0.048
Xerces 0.91 0.92 0.96 0.94 0.74 | 0.89 0.91 0.090
Averages 0.89 0.58 0.49 0.51 0.28 | 0.70 0.57 0.090

Table 6.19 Performance analysis for proposed GRU Model-Balanced Datasets

Performance Measures
Datasets | Accuracy | Precision | Recall | F-Measure | MCC | AUC | AUCPR | MSE
ant 0.83 0.88 0.81 0.85 0.67 | 0.89 0.89 0.130
camel 0.82 0.82 0.82 0.82 0.63 | 0.87 0.84 0.144
ivy 0.95 0.95 0.95 0.95 0.90 | 0.98 0.99 0.055
jedit 0.99 0.98 1.00 0.99 0.97 1.00 1.00 0.026
log4j 0.96 0.98 0.95 0.96 091 | 0.98 0.98 0.073
Xerces 0.93 0.92 0.94 0.93 0.85 | 0.97 0.98 0.064
Averages 0.91 0.92 0.91 0.91 082 | 094 0.94 0.082

Table 6.20 Performance analysis for proposed models based on precision and recall measures - CNN Model

Performance Measures
Original Data sets Precision Recall
Defective Non-defective Defective Non-defective
class class class class
ant 0.67 0.85 0.33 0.96
camel 0.62 0.83 0.14 0.98
ivy 0.67 0.92 0.44 0.97
jedit 0.00 0.97 0.00 0.99
log4j 0.95 0.00 1.00 0.00
Xerces 0.94 0.96 0.99 0.79
Averages 0.64 0.75 0.48 0.78
Performance Measures
Balanced Datasets Precision Recall
Defective Non-defective Defective Non-defective
class class class class
ant 0.87 0.82 0.82 0.87
camel 0.81 0.89 0.90 0.79
ivy 0.92 0.98 0.98 0.91
jedit 0.94 1.00 1.00 0.94
log4j 0.98 0.97 0.98 0.97
Xerces 0.93 0.98 0.98 0.93
Averages 0.90 0.94 0.94 0.90
Table 6.21 Performance analysis for proposed models based on precision and recall measures - GRU Model
Performance Measures
Original Data sets Precision Recall
Defective Non-defective Defective Non-defective
class class class class
ant 0.52 0.87 0.47 0.89
camel 0.30 0.82 0.08 0.96
ivy 0.80 0.92 0.44 0.98
jedit 0.00 0.97 0.00 1.00
log4j 0.95 0.00 1.00 0.00

DOI 10.14750/ME.2024.012

63
Xerces 0.92 0.85 0.96 0.76
Averages 0.58 0.73 0.49 0.76
Performance Measures
Balanced Datasets Precision Recall
Defective Non-defective Defective Non-defective
class class class class
ant 0.88 0.79 0.81 0.86
camel 0.82 0.82 0.82 0.82
ivy 0.95 0.95 0.95 0.95
jedit 0.98 1.00 1.00 0.98
log4j 0.98 0.94 0.95 0.97
Xerces 0.92 0.94 0.94 0.91
Averages 0.92 0.90 0.91 0.91

Table 6.22 Summarizes the range of measures values for the proposed models on the original and balanced

datasets
Model Accuracy Precision | Recall | F-measure | MCC | AUC | AUCPR MSE
CNN model on | 0.82t00.96 0.00 to 0.00 to 0.00 to 0.00to | 0.46to 0.07 to 0.037 to
the original 0.95 1.00 0.97 0.83 0.95 0.98 0.136
datasets
CNN model on | 0.84to0 0.97 0.81to 0.82to 0.85to 0.69to | 0.90to | 0.88to | 0.027to
the balanced 0.98 1.00 0.98 0.94 0.99 0.99 0.132
datasets
GRU model on | 0.79 to 0.97 0.00 to 0.00to 0.00 to 0.00to | 0.29t0o | 0.24to 00.028
the original 0.95 1.00 0.97 0.74 0.93 0.93 t0 0.152
datasets
GRU model on | 0.821t00.99 0.82to 0.81to 0.82to 0.63to | 0.87to 0.84 to 0.026 to
the balanced 0.98 1.00 0.99 0.97 1.00 1.00 0.144
datasets

Table 6.23 presents the statistical analysis results (paired t-test) of proposed models on the
original and balanced datasets regarding mean, Standard Deviation (STD), min, max, and P
value. We notice that the mean values of the CNN model are 0.90 on the original datasets and
0.92 on the balanced datasets, while the mean values of the GRU model are 0.89 on the original
datasets and 0.91 on the balanced datasets. The STD values of the CNN model are 0.06 on the
original datasets and 0.06 on the balanced datasets, while the STD values of the GRU model
are 0.07 on the original datasets and 0.07 on the balanced datasets. The Min values of the CNN
model are 0.82 on the original datasets and 0.84 on the balanced datasets, while the Min values
of the GRU model are 0.79 on the original datasets and 0.82 on the balanced datasets. The Max
values of the CNN model are 0.96 on the original datasets and 0.97 on the balanced datasets,
while the Max values of the GRU model are 0.97 on the original datasets and 0.99 on the
balanced datasets. The P value of the CNN model is 0.015 based on the original and balanced
datasets, while the P value of the GRU model is 0.000 based on the original and balanced
datasets. Based on the P value of both models on the original and balanced data sets, we note
that the P value is less than 0.05, indicating a difference between the results of the models on
the original and balanced data sets.

DOI 10.14750/ME.2024.012 -

Table 6.23 Comparison of the proposed models in terms of accuracy using paired t-test

CNN Model GRU Model
Paired t-test Original Balanced Original Balanced
Datasets Datasets Datasets Datasets
Mean 0.90 0.92 0.89 0.91
STD 0.06 0.06 0.07 0.07
Min 0.82 0.84 0.79 0.82
Max 0.96 0.97 0.97 0.99
P value 0.015 0.000

We used Boxplots to aggregate the achieved results to get a more accurate overview of the
quality of the results. Figure 6.22 shows the Box plots of performance measures for the original
and balanced datasets (Accuracy, Precision, Recall, F-measure, MCC, AUC, AUCPR, and
MSE). The CNN model averages on the original datasets (Accuracy, Precision, Recall, F-
measure, MCC, AUC, AUCPR, and MSE) are 0.90, 0.64, 0.48, 0.52, 0.32, 0.76, 0.57, and
0.081, respectively. The CNN model averages on the balanced data sets (Accuracy, Precision,
Recall, F-measure, MCC, AUC, AUCPR, and MSE) are 0.92, 0.90, 0.94, 0.92, 0.84, 0.95, 0.93,
and 0.066, respectively. The GRU model averages on the original datasets (Accuracy,
Precision, Recall, F-measure, MCC, AUC, AUCPR, and MSE) are 0.89, 0.58, 0.49, 0.51, 0.28,
0.70, 0.57, and 0.090, respectively. The averages of (Accuracy, Precision, Recall, F-measure,
MCC, AUC, AUCPR, and MSE) of the GRU model on the balanced data sets are 0.91, 0.92,
0.91, 0.91, 0.82, 0.94, 0.94, and 0.082, respectively.

CNN Mod.l Orloln-l D-l- --'- GRU Mod-l o |q|nn| Dut- --n

w0

" T | g =5 |
» _.!ﬁ » ‘.i :
s | - " -

'
Nec ur-cﬁnlnun Nac l"' Monsurs MCC HJC MJCPN H!‘ Mcuvlc’ﬁtzl wion Mee AIH' M-llu'l MCC MIC MIC“N m:
Parformuncs Moasunss Partfarmancs Maasuras

NN Mod-l ll-l-n:-d Datanats GRU Modal-Balanced Datassts

“—#*3!*3 :ﬁ%iﬁ-?@
§\o= é\os

§oa Foa

. = ==

T T -y v T ' 1 v 1 T
Ace um:W- mian Mec llll' Mlllur' "C(NIC Acen mMsn AccurncyPrwciston Mecall F-Measurs MCC Mc acen MSE
Parfarmunce Measurss Parfarmuncs Measures

Figure 6.22 Boxplots represent performance measures obtained by proposed models on all datasets

Figures 6.23 to 6.30 show the training and validation accuracy and training and validation loss
of the models on the original and balanced datasets.

Figures 6.23 to 6.26 show the training and validation accuracy of the models. The vertical axis
presents the accuracy of the model, and the horizontal axis illustrates the number of epochs.
Accuracy is the fraction of predictions that our model predicted right.

Figure 6.23 shows the accuracy values of the CNN model on the original data sets. The
accuracy values are 0.83 on the ant data set, 0.82 on the camel data set, 0.90 on the ivy data set,
0.96 on the jedit data set, 0.95 on the log4j data set, and 0.94 on the xerces data set.

DOI 10.14750/ME.2024.012

Figure 6.23 Training and Validation Accuracy for the original data sets - CNN model

65
Training and Validation Accuracy-ant-1.7 Tralning and Validation Accuracy-camel-1.6 Training and Validation Accuracy-ivy-2.0
ams] N A ‘ i
= N A “".'"-‘r"y.'."\"\' neeo: oM/ Moy =
N . AW AN \ N/ "
o ’g a7 . a8
» » »
Sorsi | 3 oS0 H
g g s g
Lo < e
ar as -
o nars |
— Taniag — Tralsing — Tuinng
Py widation B0 ¢ Weitation o5 Vahigution
2 » « w = 0o ° » © “© = 109 [») = = ne
Epocns Epeche Epocnn
sl g and Validation A jedit-4.3 Traiming and Vafidation Accuracy-logéj-1.2 ining and Vaiid:) y-xerces-1.4
| e 19
as| [6s R o A o L7 da 3
¥ v -
os: " Lo 1§
> a8
i for: fur
a7 F H
Sl et das
0% | s ‘ os/ |
w— Training ns - Tralring —— TWaining
as ! alitaTion | “Walutatioe 0s elicatine
LE RS e v —
v x » = = 05 L] » L] = » u 0 0 = = = 100
Egochs Epechs Epocts

Figure 6.24 shows the accuracy values of the CNN model on the balanced data sets. The
accuracy values are 0.85 on the ant data set, 0.84 on the camel data set, 0.95 on the ivy data set,
0.97 on the jedit data set, 0.97 on the log4j data set, and 0.95 on the xerces data set.

_Ty_uﬂlg_g :ﬂw Acoxn:r‘ut-lJ Trasning and hun_[l:i &gwu'a-d-l.c- L Traming L"ﬁ Acmq_wl-);oi
. A A " nae |
" | .\\\.' Yy | " and "r.. o |
W A A/ : H Y N ' ’ | |
Ly Ja v ~A a’ ol Y-
| N e | \J \ u '
i A i " Tad Y
3 soamx| 5 ‘-"I‘
Fan| ¥ b
4 L] i 4 o ‘
e ‘ .“:
Tanng ALY [1] Weltving
W et W lulwiien Mk shwmint
240 o = iz = = =, ang | 2 ~ = = 2 = = = = =1
' m 3 b - W " n - “ “ wa (] » o - w wo
Tomene Epaaia e
_Training and Vakidation Accuracy jedit-4.3 Tralaing and Validetion Accuracytopdj-1.2 Training and Validation Accuracy:verces 1.4
uw A8 Daimng " e AN
) Y 0 _:‘.,-I_,-,, AT O
oy ‘ ”\, ".,) o 4 .' .\tl’ P; v
’ ..
¥ oe ue \’\' - 3
300 | E o HEINE
Y [\ fas! 4
LA < 1 |
|
o8 | “=w \g1e 70| —=p
et dation Witdation
| . s .
" »n © w L] 0 ° n “w0 » = %0 ° E] - w© = =
Tpochs L Tpache

Figure 6.24 Training and Validation Accuracy for the balanced data sets - CNN model

Figure 6.25 shows the accuracy values of the GRU model on the original data sets. The
accuracy values are 0.81 on the ant data set, 0.79 on the camel data set, 0.92 on the ivy data
set, 0.97 on the jedit data set, 0.95 on the log4j data set, and 0.91 on the xerces data set.

DOI 10.14750/ME.2024.012

Training and Vakd Accuracy-ant-1.7 aas g and Accuracy-camel-1.6 Training and Accuracy-ivy-2.0
o ol | — g b
086 | wtdanen n i ‘}, “‘l, tdatizn o9 N
L ‘ | y .. | § b A ‘-" !] ‘lv A |
Y | | LW \
| i v‘f LI | a2 l‘l an Ay L Y v; el ! ||
Fom! LT R > | : Al | 2 | ¥ y v
i NiRaLY iom| . L AW | £ asel I
: 1) [3 |\ U rod s i : WM |
§0%; : vl ‘iun‘ '”‘I -’ " !u !
ers!) o " ”
em| | o)
oTe - TFainng
o » © ® = 190 2 -] ® ® = 100 o » £ = = =
Esocta Epocy Epech:
Training and Validation Accuracy-jedit-4.3 Training and Validation Accuracy-iogdj-1.2 Training arnid A y-xerces-1.4
ners - | — Taisng 10 —— Sniwng
f Waliranos as i o | Velidation ~ . u/
€580 T “§ # 1
i | o |1 !
Sours: 4 oz »a8 ".'.
$ {4 4 IA M
] 3 E . Ay
v - A
L T das a7 I“
0.9%5 - 1 "‘H
023 —— Taleng s !
0.960 « a3z Valrigtien |
0 o w0 w L] 190] - = - = 100 0 n £ @ = 00
Epeche Epochs Egocha

Figure 6.25 Training and Validation Accuracy for the original data sets - GRU model

66

Figure 6.26 shows the accuracy values of the GRU model on the balanced datasets. The
accuracy values are 0.83 on the ant data set, 0.82 on the camel data set, 0.95 on the ivy data set,

0.99 on the jedit data set, 0.96 on the log4j data set, and 0.93 on the xerces data set.

— Paning

&1 Vwtstaticn

Accurany
pop B
8 4 8
-t

P
u

_ Waluing and Validation Accracy ant-L.7"

10
AR
as | | VY

o8

a7y

Accuracy

s

Training and validaticn Accuracy-jedit-4.3

j{a‘mbngandvdtuﬁm Accuracy-camel-16 ing and Validation Accuracy-ivy-2.0
285 — Taming S 180 | Tamng ~o T il
| VmErtation e avs ! Valddatios
.8 | _ ¥
MY nse | AJ
s | Af VY 4
» A | > 08 Rl |
e o 3 J
3 U s uss r
I's] A sl Tars| o
280 | i 0re -
ass | | ass |
ol = 3 L Lod i
o o © w = 110 L} = @ = = 100
Ezochs Epachs

Accurniy
®
w

I
-

Traming and Validation Accuracy-fogsj-1.2

P
S

Training and Validati

Accuracy-xerces-1.4

| T Wainiag
Valitation | =0
|] “ as -
f ¥
/
4, \ Zus AU
4.0 ' 3 Y
i s -y
T Loy]
as{ A — Faining
‘alisavan
® ® = @ = s o = S L = o
Epeces Epocss

Figure 6.26 Training and Validation Accuracy for the balanced data sets - GRU model

Figures 6.27 to 6.30 show the training and validation loss of the models. The vertical axis
presents the loss of the model, and the horizontal axis illustrates the number of epochs. The
loss indicates how bad a model prediction was.
Figure 6.27 shows the loss values of the CNN model on the original data sets. The loss values
are 0.131 on the ant data set, 0.136 on the camel data set, 0.086 on the ivy data set, 0.037 on
the jedit data set, 0.048 on the log4j data set, and 0.049 on the xerces data set.

DOI 10.14750/ME.2024.012

Training and Loss-ant-1.7 Training and Vaid Loss-camel-1.6 Training and Validation Loss-ivy-2.0
— Trainiog — Twiing — Twining
- alidation | | alication | 00 \aldation
e a2s @30
an s
a2
. 220 3020 : |
Sen 2 Saw
228 .
1% aié Py A ais \
214 P A Ly . s " ™ -
a1z PN e Mo Lt s il A P
- —_— - — .z -— —— -—— -
o » 20 © L we] » ® @ L] %0 ° x » & 0 30
Epochs Epochs Epochs
Training and Loss-jedit-3.3 Training and Loss-logdj-1.2 Trasning and Validation Loss-xerces-1.4
055 - — Trwining ot | — Tmining | — wmiming
‘eeligstion | | VeSdaticn as! Veidstion
830 - o |
axs -
| 3| 03|
2020 | s | .
3 | 5 | :
215 | oz ~ ez
ST 8 S Ve .
- a1 WAy - o3 WA A
2.05 e T N]
- e s R
] 2 ® ® = 103 3 = « & = we e = ® @ = w00
fpochs Epocts Epocts

Figure 6.27 Training and Validation Loss for the original data sets - CNN model

Figure 6.28 shows the loss values of the CNN model on the balanced data sets. The loss values
are 0.117 on the ant data set, 0.132 on the camel data set, 0.051 on the ivy data set, 0.027 on
the jedit data set, 0.028 on the log4j data set, and 0.043 on the xerces data set.

)
an
0o

fanl

__roining and Valdatien Losvani-d?

ey wio

Vet tudat it
nan

nas

Trulmng und Validatien Loss-jedit a1

Pmrvng

LI am

us
wan |
i
-Dlll
0y
|
|

|
(LB

1

= Traming and Valldatian uu—n.lkl.i =

utony
[Wllfatiun

Training and Validation Loss logdj- 1.3

Tumwny
‘ i

Trasming and Validation Less vy 2.0

Vwiliey
-

Trainiog =nd Validation Lose xerces-1.4 |

g
e lutmtinn
\
A,
LENMY, o L
] u = - M) 196
P

Figure 6.28 Training and Validation Loss for the balanced data sets - CNN model

Figure 6.29 shows the loss values of the GRU model on the original data sets. The loss values
are 0.152 on the ant data set, 0.146 on the camel data set, 0.076 on the ivy data set, 0.028 on
the jedit data set, 0.048 on the log4j data set, and 0.090 on the xerces data set.

DOI 10.14750/ME.2024.012

Traineng and Validation Losa-ant-1.7 Trammmp and Vaiudstion Lass-camed 1.8 fraining and Yalidation Loss vy 2.0
w2 Mg 83 — Bmtring “n Yaniey
Welsatien | Weadatiam X Watdetten
a0 an Fon
_n
ws LR
o R
g i fais L)
= “ s
nis ik
.l
(3% I
s [an |
Lt
. - - R W - oyt [Py . e }
Ea - - - ns ’ n o - - ive . m a - - [
Ui T Fpatiy
Trainiog and Validation Loss-jedit-4.3 Traindng and Validation Less logej-1.3 Traming and Valldation Lees-aarces-1 4
B — . . — ool . it - y - :
Nariine na | Narmng [P Neiairg
Laad Welubetin | s el el sbutien
ur s
wae
"
- e |
us
i . ax
S8a
“ - “am
s
uo4 i
na :
2
e as A - "
AR = 338 —! an nes | v NN
» - - -~ \oo " - - .l " 10 . - - - - 3
¥ tauers Upves o

Figure 6.29 Training and Validation Loss for the original data sets - GRU model

Figure 6.30 shows the loss values of the GRU model on the balanced data sets. The loss values
are 0.130 on the ant data set, 0.144 on the camel data set, 0.055 on the ivy data set, 0.026 on
the jedit data set, 0.073 on the log4j data set, and 0.064 on the xerces data set. As shown in the
Figures, the accuracy of training and validation increases, and the loss decreases with
increasing epochs. Regarding the high accuracy and low loss obtained by the proposed models,
we note that the models are well-trained and validated.

___Training snd Vaidation Loss-ant-1.7 __Training and Validatiun Loga-camel 1.8 ____Training and Validation Luss-dvy 2.0
néeo Yutnng | “e Baruny nin Reinmy
| . bation M basation et
e | e
nn
oo | wa
n»
i i Fias
Sam L i
an
nan a%n
Wi o
nas ’ L B3) -
. | | noe -
s m - - - 10 * » © » 0 10 u x w o o
i 4 ¥ proes W Famihy
Trnining wnd Velidution Loss-jedit-a.) __Yraining and Validation Losvingdj-1.2 Training and Validation Loss-aurcas-1.4
.4 Naising | — Dunsag n ' Bainieg
wed Veinsation | valisatan Vet
" ‘ b \ na
wee | ‘ |
™ | g e
- 3 3
) a2 v b2
a1
ol | ; o
(%)
ooy
s m < ™) " 105 R » . @ " wa l » a “ - ™
Tpnm (s (-

Figure 6.30 Training and Validation Loss for the balanced data sets - GRU model

Figures 6.31 to 6.34 show the ROC curves of the models on the original and balanced datasets.
The vertical axis presents the actual positive rate of the model, and the horizontal axis illustrates
the false positive rate. The AUC is a sign of the performance of the model. The larger the AUC
is, the better the model performance will be. Based on the Figures, the values are encouraging

and indicate our proposed model’s efficiency in SDP.
Figure 6.31 shows the AUC values of the CNN model on the original data sets. The best AUC
obtained is 95% on the xerces data set, while the worst AUC is 46% on the log4j data set.

DOI 10.14750/ME.2024.012

69

Receiver Operating Charactaristic Carve-ant-1.7 Recelver Operating Characteristic Curve-camel-L6 Recaiver Operating Charactenstic Curve-lvy-2.0
s — B0 e M oS IEROC v GTAT el L8 OuN MoselAUROC = 0839 TS
r S -— -
os - LS r ok
2 = 3 F e
= — T -~ *
x o 4': L =5 -3 o
.‘;. —-"’ E “? i 5 il F—"
3 ’ 3 | ;-" 3 o |
24! 2ol ges
2 f ¥ ? o H
Shazl o # ezl I &,
£
4 N AL = 0825 r
no: * WoARMIRDE = 0428 | g 4 LU
ad a2 hetd as o v °0 a2 (] as o3 10 a0 02 o 0E - 82 10
Felse Poditive Rate False Posarve Uate Falsz Positive Aate
R perating Ch ic Corvejedit4,3 Receiver Ogesating Characiestitic Curve-fogdi-1.2 . Receiver Qperaling Characteristic Curve-xerces-1.4
e L0 — CHM ModelBEROC « 0.462) i | =
| 1
a5 o 08 3 e | LY !
3 3 s |.H
& P = [r
; 06 5 a% 5 as [t
3 s § | f
£ne- £ aa- £ ue
: r H s
Z H E |
a2- 02 0zl
B A —— CIN MeSeHALROC = 0.E3T) e >~ “! \ o DN Model{ SURDC = $.95T)
a0 0z a4 I as 10 0o a2 22 as o 10 o a2 o4 ae aa 1s
Faice 2osntive Raze Falve Pautive 2ate False Pavitvs Rate

Figure 6.31 ROC curves for the original data sets - CNN model

Figure 6.32 shows the AUC values of the CNN model on the balanced data sets. The best AUC
obtained is 99% on the log4j and xerces data sets, while the worst AUC is 90% on the camel

P g C i Curve-ant-1.7 Operating Ch wstic Carve-camsl-1,6 Receiver Operating Characterstic Curve-ivy-2.0
1o _-'_r___._,’—r' is 15
.‘,‘l" F o
-
. ox : s aa } . s
s s s
= = Fs =
é os ’o % as f é os
F 3 f{ £ i]
Zesl doa: g o
5 H 3 H
Fari | a2 F Fazl J
} | 4
eol | —= CHM NodslAUROC = 9913} | an! b ~—— I Madel{AURDC = 0907} ppe ~— CNN Madel[AURDE = £.980}
2.0 a2 ot e aa Lo a0 82 oA o aa e oo a2 oA o as 10
Faize Posttive Rate False Posttive Rade

Fuize Positive Rats

Receiver Oparating Characteristic Curve-jedit-3.3
19

oe

True Positive Rate

oz

- —= NN Nodel [AUROC = ¢.9%9)

0o -

a0 o2 os oS

Talsn Pasitive Rate

et e

Receiver Operating Charactanstic Curve-logdi-1.2

Recesver Oparating Charactsnstic Curve-rerces-1.4

e~ P
'
2 a8 . ag r
] i |4
: 3 |3
s 06 gu ’
2 2
i 3
204 g as
. s
E <
0z, a2 i
] i
il e CNN Model(AURDS = 2.938) dall —— CNN ModeH{AUROS = 0.585)
oo a2 o o as is an ez a4 o as pe g
Faise Pusitree Ratw False Pozsive Rate

Figure 6.32 ROC curves for the balanced data sets - CNN model

Figure 6.33 shows the AUC values of the GRU model on the original data sets. The best AUC
obtained is 93% on the jedit data set, while the worst AUC is 29% on the log4j data set.

DOI 10.14750/ME.2024.012

70

1 WAY MdnRALROC « & 7318
slll 2
!u - o
§ "
L ne ;‘
‘! ,

-
.

IV. i . us us el

Fatve Fuiitien fale

Recetymr Dparating Characteristic Curve jedit 4.3
L - — .

L4 =
- -

-

Trum Pasvie Seve

"
.

Rocaiver Operating Chataciariatic Curve-camal 1.8

L

wn Praibiee Hale
v » 4 -
- - -

B
>

-

-

Recolvet Oparating Characteristic Curve-logd 3.2 Mncuivar Operuting Charauturivtic Curvesnrims- 1.4

Lo

= (R MudaAUNDC - OR) I)

Ny

. na s - La
Faton Ponibon Ruin

TR e RUNOC - W)

Povw Portive Sate

18

Reciver Operating Chatactaristic Curve:ivy-2.0

AU Meda IO - 2717}

oo

Le

- »
- -

[
-

-
~

|

L) L L) s us i

Folon Fuallinn Rote

o=

s Al

i

= G MR AURDE - B 20 l
s us
Pabin Panttive Buin

Figure 6.33 ROC curves for the original data sets - GRU model

T G RO - 1)

'3
=

L3

“

PR .
Faban Puniim Ratn

w

B

L2}

ax i de (=)
Fane Paation Ruts

a w L oy

Figure 6.34 shows the AUC values of the GRU model on the balanced data sets. The best AUC
obtained is 100% on the jedit data set, while the worst AUC is 87% on the camel data set.
Further, in appendix 3, Figures 1 to 4 show the AUCPR of the models on the original and
balanced datasets.

Raceiver Operating Characteristic Curve-ant-1.7 Racetver Operating Charactaristic Curve-camel-1.6 Raceiver Operating Characteristic Curve-ivy-2.0
197 gyt 10 > - R
o | j' I
o 1T ™ 4 g™
s = pe =
= . = e =
; 28 r E a% P ; os
s = =
3 b : | 3
Ses: f das! 2 fae-
3 s 4
z £ ’ £
Faz ezl y a2
’
aol © —— GRU MoSeAUROC = 0.298} eol b — GRY Modei AURCC = 0.524) agl | —— GRU ModeljALRDC = 0.983)
Y] a3 ol s o8 19 ao 03 04 o8 oa 10 00 02 0a aE 28 10
Faise Positive Rate Faise Posstive Raty Fatye Positive Retx

Receiver Operating mmanslx cwye—lgjf}.z necgim Operating mnttenstx (urve—:(ertes-_l.l

Receiver Operating Characteristic curvejgdﬁ-l.s

w0 & 10| 10 —
—F
o
s
K
£ 08 L0 o0]
- ' - -
o = = :
Su‘ su' r_I 3“
s 3 H
$ oa 2oa| 2ea
i S 3
o2 | az| Teal |
oo —— GRU ModellAUROC = 1.D00) asl b —~— GRU Model(AURDC = 0.886) ani 3 ~— TRU Hodel[AURDS = 0.573)
Y 02 a4 o os 10 a0 a2 04 Y a1 1o ae 0z os os as 10

Faise Positive Rate Falae Posttrve Raze Faise Pesitive Rate

Figure 6.34 ROC curves for the balanced data sets - GRU model

Table 6.24 shows the comparison of the results produced using our models with those obtained
using the baseline model (RF) based on six performance measures: accuracy precision, recall,
f-Measure, MCC, and AUC. According to Table 6.24, our models outperform the baseline
model in some datasets. We also compared the results produced using our models with those
obtained in previous studies based on six performance measures: accuracy precision, recall, f-
Measure, MCC, and AUC. Table 6.25 compares the performance measures obtained by our
models and the performance values in previous studies. The best values are indicated with bold

DOI 10.14750/ME.2024.012

71

text and - "to indicate the approaches that did not provide results in a particular data set.
According to Table 6.25, some of the results in the previous studies are better than ours. Still,
in most cases, our models outperform the state-of-the-art approaches and provide better
predictive performance.

Table 6.24 Performance measures of the baseline model (RF) and proposed models

Performance Measures
Models Datasets Accuracy Precision Recall F-Measure MCC AUC
ant 0.83 0.57 0.57 0.57 0.45 0.72
camel 0.82 0.56 0.28 0.37 0.30 0.61
ivy 0.90 0.67 0.44 0.53 0.49 0.70
RF jedit 0.97 0.00 0.00 0.00 0.00 0.50
log4j 0.98 0.97 1.00 0.99 0.69 0.75
Xerces 0.95 0.95 0.99 0.97 0.86 0.90
Averages 0.90 0.62 0.54 0.57 0.46 0.69
ant 0.85 0.87 0.82 0.85 0.69 0.91
camel 0.84 0.81 0.90 0.85 0.69 0.90
CNN with SMOTE ivy 0.95 0.92 0.98 0.95 0.90 0.98
Tomek jedit 0.97 0.94 1.00 0.97 0.93 0.96
log4j 0.97 0.98 0.98 0.98 0.94 0.99
Xerces 0.95 0.93 0.98 0.95 0.90 0.98
Averages 0.92 0.90 0.94 0.92 0.84 0.95
ant 0.83 0.88 0.81 0.85 0.67 0.89
camel 0.82 0.82 0.82 0.82 0.63 0.87
GRU with SMOTE ivy 0.95 0.95 0.95 0.95 0.90 0.98
Tomek jedit 0.99 0.98 1.00 0.99 0.97 1.00
log4j 0.96 0.98 0.95 0.96 0.91 0.98
Xerces 0.93 0.92 0.94 0.93 0.85 0.97
Averages 0.91 0.92 0.91 0.91 0.82 0.94
Table 6.25 Comparison of the proposed models with other existing approaches
Performance Measures
Approaches Datasets Accuracy | Precision Recall F-Measure MCC AUC
Hybrid Neural JEdit, IVY, | 0.97,0.88, | 1.00,0.99, | 1.00,0.88, | 0.98,0.93, - -
Network Ant, Camel | 0.81,0.81 | 0.93,1.00 | 0.84,0.81 | 0.88,0.89
model[46]
LSTM[48] Camel - 0.51 0.41 0.46 - -
CNNI[80] ant, camel, 0.39,0.52, | 0.30,0.42,
ivy, jedit, - - - 0.31,0.00, | 0.25, 0.00,
log4j 0.97 0.00 -
BPDET[82] CM1, IM1, 0.84,0.76, | 0.42,0.23, | 0.75, 0.75,
KC1, MC1, 0.83,0.96, | 0.33,0.14, | 0.81, 0.85,
PC1, MW1 - - - 0.92,0.90 | 0.38,0.33 | 0.88,0.77
DP-ARNNI84] Camel, - - - 0.51,0.27, 0.79,0.76,
Xerces, JEdit 0.56 - 0.82
ant, camel, 0.42, 0.20,
RF[87] ivy, jedit - - - - 0.24,0.26 -
ant, camel, 0.29,0.18,
DT[87] ivy, jedit - - - - 0.20,0.12 -
LR[96] Ant, Camel, - - - 0.52, 0.34, - -
VY 0.30
K-NN[96] Ant, Camel, - - - 0.53, 0.37, - -
VY 0.30
MLP[96] Ant, Camel, - - - 0.50, 0.38, - -
VY 0.25

DOI 10.14750/ME.2024.012

72
SVM[96] Ant, Camel, - - - 0.50, 0.084, - -
vy 0.28
CBIL[103] Camel, JEdit, - - - 0.93, 0.85, 0.96, 0.91,
Xerces 0.95 - 0.98
DP-LSTM[104] | Camel, Jedit, - - - 0.37,0.44, - -
Log4j, Xerces 0.52, 0.26
HyGRAR[106] JEdit, Ant 0.98,0.96 | 0.70,0.98 | 0.63,0.85 - - 0.81,0.92
SPFCNN[107] CM1, M1, 0.85,0.74, | 0.92,0.87,
KC1, PC1, 0.78,0.87, | 0.88,0.93,
MW1 - - - - 0.80 0.90
CNN with ant, camel, | 0.85,0.84, | 0.87,0.81, | 0.82,0.90, | 0.85,0.85, | 0.69, 0.69, | 0.91, 0.90,
SMOTE Tomek ivy, jedit, 0.95,0.97, | 0.92,0.94, | 0.98,1.00, | 0.95,0.97, | 0.90, 0.93, | 0.98, 0.96,
log4j, xerces | 0.97,0.95 | 0.98,0.93 | 0.98,0.98 | 0.98,0.95 | 0.94,0.90 | 0.99,0.98
GRU with ant, camel, | 0.83,0.82, | 0.88,0.82, | 0.81,0.82, | 0.85,0.82, | 0.67,0.63, | 0.89, 0.87,
SMOTE Tomek ivy, jedit, 0.95,0.99, | 0.95,0.98, | 0.95,1.00, | 0.95,0.99, | 0.90,0.97, | 0.98, 1.00,
log4j, xerces | 0.96,0.93 | 0.98,0.92 | 0.950.94 | 0.96,0.93 | 0.91,0.85 | 0.98,0.97

In summary, this study aimed to propose a novel SDP approach based on CNN and GRU
combined with a hybrid sampling method (SMOTE Tomek) for SDP. We compared the results
obtained by the proposed approach based on the original and balanced datasets to investigate
the impact of hybrid sampling methods on improving the accuracy of ML techniques.
Additionally, the proposed approach's results were compared with those presented in previous
studies. After comparing the results obtained by the proposed models on the original datasets
with results obtained by the proposed models on the balanced datasets, as shown in the Tables
and Figures, we note that the models got good scores on the balanced datasets and the results
improved further due to balancing, which indicated that the combination of CNN and GRU
with hybrid sampling method (SMOTE Tomek) has a positive effect on the performance of
SDP regarding datasets with imbalanced class distributions. Furthermore, data sampling
methods play an essential role in improving the accuracy of the ML models in predicting
software defects. Regarding the evaluation of the results obtained from our proposed approach
and their comparison with some results of other studies, we conclude that our models are
promising in predicting software defects and outperform other models in the previous studies.

6.5 Summary

In this chapter, we presented the experimental results and discussion of software bugs
prediction. The experimental results have been compared and evaluated based on several
standard performance measures. We compared experimental results based on the original and
balanced datasets and compared our results with current state-of-the-art results for the
prediction of software bugs. The results showed that our proposed methods significantly
outperform current state-of-the-art methods for predicting software bugs. We concluded that
the combined data-balancing methods with ML techniques significantly enhance the accuracy
of predicting software bugs. We observe that the incorporation of appropriate data-balancing
methods and ML techniques not only enhances the model's ability to predict software bugs
accurately but also mitigates the bias towards the majority class, resulting in a more balanced
performance across different classes of software bugs. This research has practical implications
for software developers and researchers. It highlights the significance of considering data-
balancing methods when applying ML models for predicting software bugs. By employing
these methods, developers can enhance their ability to identify and address code quality issues,
thereby improving software maintainability.

DOI 10.14750/ME.2024.012 .

Chapter 7 Experimental Results and Discussion of Code Smells Detection

This subsection presents the results obtained from the experiments explained in the previous
section (proposed methodology and implementation) which includes the results of code smells
detection.

7.1 ML techniques with Oversampling Methods in Code Smells Detection

In this sub-section, we discuss the findings of the fifth study. The aim was to present a method
based on five ML models, namely DT, K-NN, SVM, XGB, and MLP combined with
Oversampling method (Random Oversampling) to detect four code smells (God class, data
class, long method, and feature envy). The experiments have been conducted based on
benchmark datasets obtained from the Qualitas Corpus Systems. The experimental results were
evaluated and compared based on various performance measures (accuracy, precision, recall,
f-measure, MCC, and AUC).

The performance of the prediction models is reported in Tables 7.1 to 7.6, and Figures 7.1 to
1.4,

Tables 7.1 to 7.4 present model results based on the original and balanced datasets. Based on
the DT model, we observed that accuracy values varied from 0.92 to 0.99 on the original
datasets and from 0.98 to 1.00 on the balanced datasets. In terms of precision, the values ranged
from 0.86 to 1.00 on the original datasets and from 0.97 to 1.00 on the balanced datasets. The
recall values ranged from 0.89 to 0.96 on the original datasets and were 1.00 on the balanced
datasets. In the context of f-measure, the values varied from 0.87 to 0.98 on the original datasets
and from 0.98 to 1.00 on the balanced datasets. Moreover, MCC values ranged from 0.81 to
0.97 on the original datasets and from 0.96 to 1.00 on the balanced datasets, whereas AUC
values ranged from 0.90 to 0.98 on the original datasets and from 0.98 to 1.00 on the balanced
datasets.

The K-NN model demonstrates that the accuracy values vary between 0.86 to 0.92 on the
original datasets and from 0.91 to 0.97 on the balanced datasets. Additionally, the precision
values on the original datasets vary from 0.75 to 0.97 and from 0.88 to 0.97 on the balanced
datasets. The recall values vary from 0.70 to 0.91 on the original datasets and from 0.97 to 0.98
on the balanced datasets. In the context of f-measure, the values range from 0.76 to 0.88 on the
original datasets and from 0.92 to 0.98 on the balanced datasets. Furthermore, the MCC values
range from 0.66 to 0.81 on the original datasets and from 0.82 to 0.94 on the balanced datasets.
Finally, the AUC values range from 0.85 to 0.97 on the original datasets and from 0.93 to 0.98
on the balanced datasets.

Following the SVM model, it can be observed that the accuracy values vary between 0.90 and
0.98 on the original datasets, and from 0.96 to 1.00 on the balanced datasets. On the original
datasets, the precision values vary from 0.85 to 0.96, while on the balanced datasets, the
precision values vary from 0.94 to 1.00. In the context of recall, the values range from 0.85 to
0.96 on the original datasets, and from 0.98 to 1.00 on the balanced datasets. In the context of
f-measure, the values range from 0.85 to 0.96 on the original datasets and from 0.97 to 1.00 on
the balanced datasets. The MCC values range from 0.78 to 0.94 on the original datasets and
from 0.92 to 1.00 on the balanced datasets. The AUC values range from 0.96 to 0.99 on the
original datasets and from 0.97 to 1.00 on the balanced datasets.

Based on the XGB model, it can be observed that the accuracy values range between 0.95 to
1.00 for the original datasets and between 0.96 to 1.00 for the balanced datasets. In the context
of precision, the values range between 0.87 to 1.00 for the original datasets and between 0.95

DOI 10.14750/ME.2024.012 o

to 1.00 for the balanced datasets. In the context of recall, the values range between 0.97 to 1.00
for the original datasets and between 0.97 to 1.00 for the balanced datasets. In the context of f-
measure, the values range between 0.93 to 1.00 for the original datasets and between 0.96 to
1.00 for the balanced datasets. Additionally, the MCC values range between 0.89 to 1.00 for
the original datasets and between 0.90 to 1.00 for the balanced datasets, whereas the AUC
values range between 0.99 to 1.00 for the original datasets and between 0.98 to 1.00 for the
balanced datasets.

Based on the MLP model, it was observed that the accuracy values ranged from 0.88 to 0.98
on the original datasets and from 0.96 to 0.98 on the balanced datasets. Furthermore, the
precision values ranged from 0.87 to 0.97 on the original datasets and from 0.96 to 0.97 on the
balanced datasets, while the recall values ranged from 0.74 to 1.00 on the original datasets and
from 0.97 to 1.00 on the balanced datasets. In the context of f-measure, the values ranged from
0.80 to 0.96 on the original datasets and from 0.97 to 0.98 on the balanced datasets.
Furthermore, the MCC values range from 0.72 to 0.94 on the original datasets and from 0.92
to 0.96 on the balanced datasets. Finally, the AUC values range from 0.90 to 0.99 on the
original datasets and from 0.98 to 1.00 on the balanced datasets.

Concerning each type of code smell, the top-performing models attain the subsequent results:
DT model scores 100% accuracy on data class and long method (balanced datasets). K-NN
model achieves 97% accuracy on God class (balanced datasets). The SVM model scores 100%
accuracy on the long method (balanced datasets). XGB model achieves 100% accuracy on data
class and long method (original and balanced datasets). MLP model scores 98% accuracy on
data class (original and balanced datasets) and 98% on the long method (balanced datasets).

Table 7.1 Evaluation Results for the Class-Level Dataset: God class original and balanced datasets
Original datasets
Performance measurement

ML Models Accuracy Precision | Recall | F-measure | MCC | AUC
DT 0.95 0.97 0.92 0.94 0.90 0.94
K-NN 0.90 0.97 0.81 0.88 0.81 0.94
SVM 0.92 0.94 0.86 0.90 0.83 0.97
XGB 0.98 0.97 0.97 0.97 0.95 0.99
MLP 0.93 0.97 0.86 0.91 0.85 0.99
Averages 0.93 0.96 0.88 0.92 0.86 0.96

Balanced datasets
Performance measurement

ML Models Accuracy Precision | Recall | F-measure | MCC | AUC
DT 0.98 0.97 1.00 0.98 0.96 0.98
K-NN 0.97 0.97 0.98 0.98 0.94 0.97
SVM 0.96 0.95 0.98 0.97 0.92 0.99
XGB 0.96 0.95 0.97 0.96 0.90 0.98
MLP 0.97 0.97 0.98 0.98 0.94 0.98
Averages 0.96 0.96 0.98 0.97 0.93 0.98

Table 7.2 Evaluation Results for the Class-Level Dataset: Data class_ original and balanced datasets
Original datasets

Performance measurement
ML Models Accuracy Precision | Recall | F-measure | MCC | AUC
DT 0.98 1.00 0.91 0.95 0.94 0.95
K-NN 0.89 0.75 0.91 0.82 0.75 0.97
SVM 0.96 0.92 0.96 0.94 0.91 0.99
XGB 1.00 1.00 1.00 1.00 1.00 1.00
MLP 0.98 0.92 1.00 0.96 0.94 0.99

DOI 10.14750/ME.2024.012 -

Averages | 09 | 091 [095 | 0.93 | 0.90 | 0.98
Balanced datasets

Performance measurement
ML Models Accuracy Precision | Recall | F-measure | MCC | AUC
DT 1.00 1.00 1.00 1.00 1.00 1.00
K-NN 0.96 0.93 0.98 0.96 0.91 0.98
SVM 0.97 0.95 1.00 0.97 0.94 0.99
XGB 1.00 1.00 1.00 1.00 1.00 1.00
MLP 0.98 0.97 1.00 0.98 0.96 0.99
Averages 0.98 0.97 0.99 0.98 0.96 0.99

Table 7.3 Evaluation Results for the Method-Level Dataset: Long method_ original and balanced datasets
Original datasets
Performance measurement

ML Models Accuracy Precision | Recall | F-measure | MCC | AUC
DT 0.99 1.00 0.96 0.98 0.97 0.98
K-NN 0.92 0.92 0.81 0.86 0.80 0.94
SVM 0.98 0.96 0.96 0.96 0.94 0.99
XGB 1.00 1.00 1.00 1.00 1.00 1.00
MLP 0.94 0.87 0.96 0.91 0.87 0.98
Averages 0.96 0.95 0.93 0.94 0.91 0.97

Balanced datasets
Performance measurement

ML Models Accuracy Precision | Recall F- measure | MCC AUC
DT 1.00 1.00 1.00 1.00 1.00 1.00
K-NN 0.96 0.93 0.98 0.95 0.91 0.97
SVM 1.00 1.00 1.00 1.00 1.00 1.00
XGB 1.00 1.00 1.00 1.00 1.00 1.00
MLP 0.98 0.96 1.00 0.98 0.96 1.00
Averages 0.98 0.97 0.99 0.98 0.97 0.99

Table 7.4 Evaluation Results for the Method-Level Dataset: Feature envy _original and balanced datasets
Original datasets
Performance measurement

ML Models Accuracy Precision | Recall | F-measure | MCC | AUC
DT 0.92 0.86 0.89 0.87 0.81 0.90
K-NN 0.86 0.83 0.70 0.76 0.66 0.85
SVM 0.90 0.85 0.85 0.85 0.78 0.96
XGB 0.95 0.87 1.00 0.93 0.89 0.99
MLP 0.88 0.87 0.74 0.80 0.72 0.90
Averages 0.90 0.85 0.83 0.84 0.77 0.92

Balanced datasets
Performance measurement

ML Models Accuracy Precision | Recall | F-measure | MCC | AUC
DT 0.98 0.97 1.00 0.98 0.96 0.98
K-NN 0.91 0.88 0.97 0.92 0.82 0.93
SVM 0.96 0.94 1.00 0.97 0.92 0.97
XGB 0.98 0.97 1.00 0.98 0.96 0.98
MLP 0.96 0.97 0.97 0.97 0.92 0.98
Averages 0.95 0.94 0.98 0.96 0.91 0.96

We used Boxplots to aggregate the achieved results to get a more accurate overview of the
quality of the results. Figure 7.1 exhibits box plots that display the averages of several
performance measures, including accuracy, precision, recall, f-measure, MCC, and AUC based
on the original datasets. The overall average performance of all models is 0.93, 0.96, 0.88, 0.92,
0.86, and 0.96, respectively, for the god class. Similarly, for the data class, the overall average

DOI 10.14750/ME.2024.012 26

performance of all models is 0.96, 0.91, 0.95, 0.93, 0.90, and 0.98, respectively. In the context
of the long method, the overall average of all models is 0.96, 0.95, 0.93, 0.94, 0.91, and 0.97,
respectively. Lastly, for feature envy, the overall average performance of all models is 0.90,
0.85, 0.83, 0.84, 0.77, and 0.92, respectively.

_Original Datasets-God class Original Datasets-Data clm

Cem L H -~
= + ﬁ

0.rs . .

An:uvntyl'votluon ﬂ.«.“ L Mcnqun Mfc M(Jr.rvl'lo&nlon n&é.n wm;-m- M'C(M;(
Parformancs Measures Parformancs Maoasures
Original Datasets-Long method Original Datasets-Feature envy
1,000 . — I -~ 1,00
o.urn E 095
o.ano
b (o -
-
0900 o.6% =
0n7s o.no
O.s%0 ors
0.02% o.70 5l
o.no0 : - — oS
AccurncyPracision Recnll F-Mansura MCoC AcC Mcur-tyl‘v‘ﬂllon Recnil F-Mannura MC(
Parformnnes Maasuves Partormnncs Maanures
Figure 7.1 Box Plots represent the models' performance measures on all considered code smells_ original
datasets

Figure 7.2 exhibits box plots that display the averages of several performance measures,
including accuracy, precision, recall, f-measure, MCC, and AUC based on the balanced
datasets. The overall average performance of all models is 0.96, 0.96, 0.98, 0.97, 0.93, and
0.98, respectively, for the god class. Similarly, for the data class, the overall average
performance of all models is 0.98, 0.97, 0.99, 0.98, 0.96, and 0.99, respectively. In the context
of the long method, the overall average of all models is 0.98, 0.97, 0.99, 0.98, 0.97, and 0.99,
respectively. Lastly, for feature envy, the overall average performance of all models is 0.95,
0.94, 0.98, 0.96, 0.91, and 0.96, respectively.

Balanced Datasets-God class Balanced Datasets-Data :l-ts
100 . 1Loo
.
0.0 o.9n
- g - . . F
pe o.9e
004
0.%a
w2
092
o.o0 . i " ’
Accurncy Pracision Recall P Meaasurs MOC A &c.-r-:y - Mcc
Parformance Maasurss P-mrnl.ncc Munsurwe
aalunc.d Oataswts-Long motnod) Balanced Datasets-Feature anvy
1Lo0 Looo -
o.a7% _ | pm—
ol
? - S
0.9 0wy . °
©.%00
004 o.6rs 9
a.a%o
o902
aen .
Ascun.cvl'mulnn l-c-n r- Muun- Mcc Ascu’o;:viu:;-lon l;;-ll P-H.;-um M&c “;C

Parfarmances Measures Purformances Mansuras

Figure 7.2 Box Plots represent the models' performance measures on all considered code smells_ balanced
datasets

DOI 10.14750/ME.2024.012 .

Figures 7.3 and 7.4 show the ROC curves of the models on the original and balanced datasets.
The vertical axis presents the actual positive rate of the model, and the horizontal axis illustrates
the false positive rate. The AUC is a sign of the performance of the model. The larger AUC is,
the better the model performance will be. Based on the Figures, the values are encouraging and
indicate our proposed model’s efficiency in code smell detection.

Figure 7.3 shows the AUC of the models for all considered code smells on the original datasets;
the highest AUC on the original datasets (God class) is 99%, obtained by XGB and MLP
models. The the lowest AUC is 94%, obtained by DT and K-NN models. The highest AUC on
the original datasets (data class) is 100% obtained by the XGB model, while the lowest AUC
IS 95% obtained by the DT model. The highest AUC on the original datasets (long method) is
100% obtained by the XGB model, while the lowest AUC is 94% obtained by the K-NN model.
The highest AUC on the original datasets (feature envy) is 99%, obtained by the XGB model,
while the lowest AUC is 85%, obtained by the K-NN model.

ROC Curves-god class_original datasets ROC Curves-data class_original datasets
Lo { rey—r— = = —_— - vod py - - - e e -
‘ e |
™ =
o on |] » on
= "
= -
o | oe |
E 0.4 é oa
- DY _mode HAUNRDC « O.948) s - T _ modsi(AUROC « O.857)
g g KNN _modellAUROC » O.940) = KNN _model lAURODC « O.970)
o2 | BVM_modsl (AUROC « 0.979) 0.2 SVM_madsl (AURODC « O.988)
XGB_modellAURDC =« O.295) | XOD_model (BUROC = 1.000)
0.0 — MLP _madei{AUROC =« 0.081) oo — MLE_model(AUROC = 0.096)
LX) 0.2 o4 0 o0 Lo 0.0 o o.a on on Lo
Fuisw Positive Rete Felse Posttive Rato
ROC Curves-long method _original datasets ROC Curves-feature envy original datasets
Lo — Lo - ——— —
; A ——
[1
o 08 . 08 [
] - ot
- -
§ o.e g o8 ‘,‘
£ o & o4 II
“ DT_modet{AUROL = O.081) { DT _madel (AURGE - 0.009)
.g KNN_mode (AUROC « O, %40) é KNN_model(AUROC =« O.85%)
o - SVM_modesl(AUNROC =« O.%0%) a2 - SVM_madel (AUNRDE - O.962)
- XGH _model{AUNROC « 1.000) - RGE_mede (AUROC = 0.897)
6.0 = MLP_modal(AUROC =« O0,800) a0 MLE_mods [AUROE = 0,900)

ot . - . ’ - v ' - ' - .
0.0 0.2 o as on La 0.0 0.2 o4 e o 1.0
False Positive Rate False Pasitive Rate

Figure 7.3 The ROC curves obtained by the models on all considered code smells_ original datasets

Figure 7.4 shows the AUC of the models for all considered code smells on the balanced
datasets, the highest AUC on the balanced datasets (God class) is 99%, obtained by the SVM
model, while the lowest AUC is 97%, and the K-NN model gets. The highest AUC on the
balanced datasets (data class) is 100% obtained by DT and XGB models, while the lowest AUC
is 98% obtained by the K-NN model. The highest AUC on the balanced datasets (long method)
is 100% acquired by DT, SVM, XGB, and MLP models, while the lowest AUC is 97%, which
the K-NN model obtains. The highest AUC on the balanced datasets (feature envy) is 99%,
obtained by DT, XGB, and MLP models, while the lowest AUC is 93% which the K-NN model
gets.

DOI 10.14750/ME.2024.012

ROC Curvas-god class_balanced datasets ROC Curves-data class _balanced datasets
10 — —— - o 3T - - —— -
S on { [i on [
0.6 ' o
£5 0 :
2 oa { | & 04
v DY _madsl lAURDC « O,.%00) - DT_model(AUROC - 1.000)
g } KNN model {AUROC « O.877) é ENN_model AUROC - O.085%)
0.2 : “ BSVM_mods (AURDC = O.98%) oz = BVM_model(AUROC = 0.984)
s XGH_mode (AUROC = 0.004) XGO _model {AUNOC « 1 000)
0.0 i “ MLP mods(AUROC « D.982) .6 MLF model(AUROC - O.993) |
oo 0.2 oa oe on Lo o.0 0.2 o4 0.6 o8 1o
Fatse Poasitive Rate Falue Positive Rate
ROC Curves-long method_balanced datasets ROC Curves-feature anvy _balanced datasets
1LO - p — - - o - —— - . e e - -
s o.n 5 o.n
g oe E o.n
f () § oa
= DT_model(AUROC = 1,000) — OT_model(AUROC =« 0.980)
g KNM_mode (ASROC = 0.8972) g KNM _mode (AUROC = 0.832)
0.2 — BVM_medel(AUROC « 1.000) 0z SVM_model(AUROC =« O.978#)
KGO _model (AURGE - 1,000) — KGB_model(AUROC = 0.983)
oo ML model (AUROC = 1.000) o0 | MLP model (AUROC « 0.005)

0.0 oz 0.4 o% o.e 1.0 0.0
Falne Positive Raute

0.2

o6 on 10

o.a
Falae Positive Rate

Figure 7.4 The ROC curves obtained by the models on all considered code smells_ balanced datasets

Tables 7.5 and 7.6 show the comparison results of our method with some previous studies
based on some performance measures, namely accuracy and AUC. The best values are
indicated in bold, and " - "* denotes the missing performance measures for specific methods in
certain datasets. Overall, our method outperforms the other state-of-the-art methods in most

cases.
Table 7.5 Comparison of the proposed method with other existing methods based on the accuracy
Datasets
Methods God class Data class Long method Feature envy
RF[4] 0.96 0.98 0.99 0.96
NBJ[4] 0.97 0.97 0.97 0.91
DT[27] - - - 0.97
RF[27] - 0.99 0.95 -
K-NN[108] 0.97 0.97 0.97 0.91
NB[108] 0.96 0.84 0.95 0.92
MLP[108] 0.97 0.97 0.96 0.95
DT[108] 0.97 0.98 0.98 0.98
RF[108] 0.97 0.98 0.99 0.97
LR[108] 0.97 0.97 0.99 0.97
NB[118] 0.96 - 0.97 0.91
MLP[118] 0.97 - 0.99 0.92
DT[118] 0.98 - 0.97 0.95
RF[119] 0.76 0.81 0.60 0.66
NB[119] 0.74 0.66 0.74 0.76
SVM[119] 0.66 0.66 0.66 0.60
RF[120] 0.69 0.70 0.68 0.71
NB[120] 0.82 0.75 0.81 0.83
SVM[120] 0.74 0.83 0.81 0.83
K-NN[120] 0.80 0.82 0.81 0.82
Our models (DT, K- 0.95, 0.90, 0.92, | 0.98,0.89,0.96, | 0.99,0.92,0.9 | 0.92,0.86, 0.90,
NN, SVM, XGB, MLP) 0.98,0.93 1.00, 0.98 8, 1.00, 0.94 0.95, 0.88
- Original Datasets
Our models (DT, K- 0.98, 0.97,0.96, | 1.00, 0.96,0.97, | 1.00,0.96,1.0 | 0.98,0.91, 0.96,
NN, SVM, XGB, MLP) 0.96, 0.97 1.00, 0.98 0, 1.00, 0.98 0.98, 0.96
- Balanced Datasets

DOI 10.14750/ME.2024.012 29

Table 7.6 Comparison of the proposed method with other existing methods based on AUC

Datasets
Methods God class Data class Long method Feature envy
RF[120] 0.59 0.65 0.52 0.59
NBJ[120] 0.88 0.85 0.86 0.86
SVM[120] 0.65 0.88 0.66 0.82
K-NN[120] 0.83 0.86 0.86 0.83
Our models (DT, K-NN, | 0.94,0.94,0.97, | 0.95,0.97,0. | 0.98,0.94,0.9 | 0.90, 0.85, 0.96
SVM, XGB, MLP) - 0.99, 0.99 99,1.00,0.99 | 9,1.00,0.98 ,0.99,0.90
Original Datasets
Our models (DT, K-NN, | 0.98,0.97,0.99, | 1.00,0.98,0. | 1.00,0.97,1.0 | 0.98,0.93, 0.97
SVM, XGB, MLP) - 0.98, 0.98 99,1.00,0.99 | 0,1.00,1.00 ,0.98, 0.98
Balanced Datasets

In summary, this study aimed to present a method based on five ML models, namely DT, K-
NN, SVM, XGB, and MLP combined with Oversampling method (Random Oversampling) to
detect code smells. We compared the results obtained by the proposed method based on the
original and balanced datasets to investigate the impact of Oversampling methods on
improving the accuracy of ML techniques. Additionally, the proposed method's results were
compared with those presented in previous studies. After comparing the results obtained by the
proposed models on the original datasets with results obtained by the proposed models on the
balanced datasets, as shown in the Tables and Figures, we note that the models got good scores
on the balanced datasets and the results improved further due to balancing, which indicated
that the combination of DT, K-NN, SVM, XGB, and MLP with Oversampling method
(Random Oversampling) has positive effect on the performance of code smells detection
regarding datasets with imbalanced class distributions. Furthermore, data sampling methods
play an essential role in improving the accuracy of the ML models in code smell detection.
Regarding the evaluation of the results obtained from our proposed method and their
comparison with some results of other studies, we conclude that our models are promising in
code smell detection and outperform other models in the previous studies.

7.2 A Convolutional Neural Network (CNN) with Oversampling Methods

In this sub-section, we discuss the findings of the sixth study. The objective was to present a
method based on a CNN with the Oversampling method (SMOTE) to detect four code smells
(God class, data class, feature envy, and long method). The experiments have been conducted
based on benchmark datasets obtained from the Qualitas Corpus Systems. The experimental
results were evaluated and compared based on various performance measures (accuracy,
precision, recall, and f-measure).

The performance of the prediction models is reported in Tables 7.7, 7.8 and 7.9, and Figures
7.51t07.9.

Tables 7.7 and 7.8 show the performance of the proposed model in the four code smells based
on the original and balanced data sets.

- Accuracy for the four code smell datasets: The proposed model using the balanced datasets
achieves greater accuracy than the proposed model using the original datasets on the Feature
Envy and Long Method datasets, which are 98 % and 100%. The lowest accuracy was achieved
by the proposed model using the original datasets on the Feature Envy dataset by up to 95%.

- Precision for the four code smell datasets: The proposed model using the balanced datasets
achieves greater precision than the proposed model using the original datasets on the Feature
Envy and Long Method datasets, which are 98 % and 100%. The proposed model achieved the

DOI 10.14750/ME.2024.012 %0

lowest precision using the original datasets on the Feature Envy and Long Method datasets by
up to 93%.

- Recall for the four code smell datasets: The proposed model using the balanced datasets
achieves more excellent recall than the proposed model using the original datasets on the God
Class, Data Class, and Feature Envy datasets, which are 97%, 100 %, and 98%. The lowest
recall was achieved by the proposed model using the original datasets on the Feature Envy
dataset by up to 93%.

- F-Measure for the four code smell datasets: The proposed model using the balanced datasets
achieves greater F-Measure than the proposed model using the original datasets on the God
Class, Feature Envy, and Long Method datasets, which are 97%, 98%, and 100%. The proposed
model achieved the lowest F-Measure using the original datasets on the Feature Envy dataset
by up to 93%.

Table 7.7 Performance analysis for proposed CNN Model - Original Datasets

Original Datasets Perform_ance Measures
Accuracy Precision Recall F-Measure
God Class 0.96 0.97 0.94 0.96
Data Class 0.99 1.00 0.96 0.98
Feature Envy 0.95 0.93 0.93 0.93
Long Method 0.98 0.93 1.00 0.96
Averages 0.97 0.95 0.95 0.95
Table 7.8 Performance analysis for proposed CNN Model - Balanced Datasets
Balanced Datasets Performance Measures
using SMOTE method Accuracy Precision Recall F-Measure
God Class 0.96 0.97 0.97 0.97
Data Class 0.98 0.97 1.00 0.98
Feature Envy 0.98 0.98 0.98 0.98
Long Method 1.00 1.00 1.00 1.00
Averages 0.98 0.98 0.98 0.98

We used Boxplots to aggregate the achieved results to get a more accurate overview of the
quality of the results. Figure 7.5 shows the Box plots for the performance measures (Accuracy,
Precision, Recall, and F-measure) on the original and balanced datasets.

Concerning the original datasets, the highest accuracy is 99% on the Data Class dataset and the
lowest accuracy is 95% on the Feature Envy dataset, the highest precision is 100% on the Data
Class dataset and the lowest precision is 93% on the Feature envy and Long Method datasets,
the highest recall is 100% on the Long method dataset and the lowest recall is 93% on the
Feature Envy dataset, the highest f-measure is 98% on the Data Class dataset and the lowest f-
measure is 93% on the Feature envy dataset.

Concerning the balanced datasets, the highest accuracy is 100% on the Long Method dataset
and the lowest accuracy is 96% on the God Class dataset, the highest precision is 100% on the
Long Method dataset and the lowest precision is 97% on the God Class and Data Class datasets,
the highest recall is 100% on the Data Class and Long method datasets and the lowest recall is
97% on the God Class dataset, the highest f-measure is 100% on the Long Method dataset and
the lowest f-measure is 97% on the God Class dataset.

DOI 10.14750/ME.2024.012

81
Original Datasets Balanced Datasets
1.00 1.000 '
0.99 0.995
0.98 st
4 8 0.985
5097 5
§ - § 0,980
6 2 0,975
o
083 0.970
0.94 0.965
0.93 ‘ 0,960
kcu}uy Precision R«'-Il F-Measure Accuracy Pruillon Recall F-Mo'uuu
Performance Measures Performance Measures

Figure 7.5 Boxplots represent performance measures obtained by CNN Model

Figures 7.6 to 7.9 show the training and validation accuracy and training and validation loss of
the model on the original and balanced datasets. Figures 7.6 and 7.7 show the training and
validation accuracy of the model on the original and balanced datasets. The vertical axis
presents the model's accuracy, and the horizontal axis illustrates the number of epochs.
Accuracy is the fraction of predictions that our model predicted right.

Figure 7.6 shows the accuracy values of the model on the original datasets. From the Figure,
the model learned 96% accuracy for the God Class dataset, 99% accuracy for the Data Class
dataset, 95% accuracy for the Feature Envy dataset, and 98% accuracy for the Long Method
dataset at the 100th epoch.

Training and Validation Accuracy-god class Training and Valldation Accuracy-data class

Loo 100

oun a.ne

o.ne ave

a.na .94

0e2 Qs J

o.%0 0.0

o.nn o.nn

- mining e Trmining

o.a8 onn S " Vmliation

s Validation
v e oy

o 20 a0 6o no 100 o 20 a0 "o w0 160
Epochs Epocne

Training and Valldation Accuracy-feature envy Training and Valldation Accuracy-long method
.00

s
& avo

oo

80 = Training o820 - Training

e Vatidation

W Nalsrion

T N - — ¥ — "t
“o ©o no 100 o 20 “o wo no 100
Epocns Epachs

Figure 7.6 Training and Validation Accuracy over original datasets

ol
]

Figure 7.7 shows the accuracy values of the model on the balanced datasets. From the Figure,
the model learned 96% accuracy for the God Class dataset, 98% accuracy for the Data Class
dataset, 98% accuracy for the Feature Envy dataset, and 100% accuracy for the Long Method
dataset at the 100th epoch.

DOI 10.14750/ME.2024.012

Training and Valldation Accuracy-god class Training and Valldation Accuracy-data class
e T '
0.9 a.en
on 0.%0
g g
E 0.7 3 ons
o.e0
% —— Treining e Tramlning
- Vslidetion ~ - Valldation I
° v v -~ 0,8 - . - " J
o 20 40 w0 uo 100 o 20 a0) no 100
Epachn Epovne
Training and Validation Accuracy-feature anvy Training and Validation Accuracy-long method
100 ol - 100
o,.en
A "h M & b
Q.96
a.no
= 0.0a
oan
2 a 0,92
o.n0 2 oo
o.7n o.an
o.70 - Tmining o.n6 ——— TValning
- Villantion o.na - Valictmtban
o 20 a0 "o "o 100 o 20 a0 @0 o 100
Enoe s Epoane

Figure 7.7 Training and Validation Accuracy over balanced datasets

Figures 7.8 and 7.9 show the training and validation loss of the model on the original and
balanced datasets. The vertical axis presents the loss of the model, and the horizontal axis
illustrates the number of epochs. The loss indicates how bad a model prediction was.

Figure 7.8 shows the loss values of the model on the original datasets. From the Figure, the
model loss is 0.036 for the God Class dataset, 0.005 for the Data Class dataset, 0.041 for the
Feature Envy dataset, and 0.021 for the Long Method dataset at the 100th epoch.

aiia Training and Valldation Loss-god class Training and Validation Loss data class
i - raining arrs | Y . Trmining
034 —— ittt - Vmlidwian
oxz | o150
o.a0 | o.2%
£ o.0m | I g 0.£00
~ oos | — o007
o.0n | o.050
ooz | 0.02s
0.00 | o.000
v . v . ’ — xzza— kx e i3
o 20 a0 oo 0o 100 o 20 a0 no 100
Epocthis Epocha
Training and Validation Loss feature anvy Training and Valldation Loss-long method

0140 = Wallation o.ars .Vl arinn

o17% —— Training | 0200 - Tralning
aaso

oxan
o123
0,100
i j o100
a.0rn
Dors
0,0%0 ooso
0024 0.0a%
0,000 ot 2 otk ”, a 0.000 AL : 3 sl
L Eal) a o0 Lot 100 L 20 “o Lo L 100
Fpoatn Epashn

Figure 7.8 Training and validation loss over original datasets

Figure 7.9 shows the loss values of the model on the balanced datasets. From the Figure, the
model loss is 0.033 for the God Class dataset, 0.013 for the Data Class dataset, 0.018 for the
Feature Envy dataset, and 0.000 for the Long Method dataset at the 100th epoch.

As shown in the Figures, the accuracy of training and validation increases and the loss
decreases with increasing epochs. Regarding the high accuracy and low loss obtained by the
proposed model, we note that the model is well-trained and validated.

DOI 10.14750/ME.2024.012

Training and Validation Loss-god class Training and Valldation Loss-data claus
a.a0 —— Tramining 0A7s —— Trmining
- s ban - M thon
0.5 01560
0.42%
020
o100
B oau g
3 0.07%
N0 0.0%0
0.0% 0,028 "
2 P 3 Ha
0.00 0.000 |
o 20 a0 o0 0o 100 o 20 “o w oo 100
Lpochs Epoahs
Training and Validation Loss-faature anvy Training and Validation Loss-long method

ozo -_:_ \‘;‘l::::?nn a7 _:_ \’::I:::::?nn
0.15%0

03225

0. 100 \

o.ors

0.0% n a P“ n ‘ 0.0%0

0.02%

Loss

— .

0.00 0.000
o 0 a0 “n o 100 L
Poadhs Epasne

100

81
3
3
H

Figure 7.9 Training and validation loss over balanced datasets

Table 7.9 shows the comparison results of our method with some previous studies based on
accuracy. The best values are indicated in bold and "-" indicates that the approaches that did
not provide results for performance measures in a particular data set. According to Table, some
of the results in the previous studies are better than ours. However, in most cases, our method
outperforms the other state-of-the-art methods and provides better predictive performance.

Table 7.9 Comparison of the proposed method with other existing methods based on the accuracy

Datasets
Methods God class Data class Feature envy Long method
RF[4] 0.96 0.98 0.96 0.99
NBJ[4] 0.97 0.97 0.91 0.97
DT[27] - - 0.97 -
RF[27] - 0.99 - 0.95
K-NNJ108] 0.97 0.97 0.91 0.97
NB[108] 0.96 0.84 0.92 0.95
MLP[108] 0.97 0.97 0.95 0.96
DT[108] 0.97 0.98 0.98 0.98
RF[108] 0.97 0.98 0.97 0.99
LR[108] 0.97 0.97 0.97 0.99
NB[118] 0.96 - 0.91 0.97
MLP[118] 0.97 - 0.92 0.99
DT[118] 0.98 - 0.95 0.97
RF[119] 0.76 0.81 0.66 0.60
NB[119] 0.74 0.66 0.76 0.74
SVM[119] 0.66 0.66 0.60 0.66
RF[120] 0.69 0.70 0.71 0.68
NBJ[120] 0.82 0.75 0.83 0.81
SVM[120] 0.74 0.83 0.83 0.81
K-NN[120] 0.80 0.82 0.82 0.81
Our model (CNN) - Original 0.96 0.99 0.95 0.98
Datasets
Our model (CNN with 0.96 0.98 0.98 1.00
SMOTE) - Balanced Datasets

DOI 10.14750/ME.2024.012 -

In summary, this study aimed to present a method based on CNN with the Oversampling
method (SMOTE) to detect code smells. We compared the results obtained by the proposed
method based on the original and balanced datasets to investigate the impact of Oversampling
methods on improving the accuracy of ML techniques. Additionally, the proposed method's
results were compared with those presented in previous studies. After comparing the results
obtained by the proposed model on the original datasets with results obtained by the proposed
model on the balanced datasets, as shown in the Tables and Figures, we note that the model got
good scores on the balanced datasets and the results improved further due to balancing, which
indicated that the combination of CNN with the Oversampling method (SMOTE) has a positive
effect on the performance of code smells detection regarding datasets with imbalanced class
distributions. Furthermore, data sampling methods play an essential role in improving the
accuracy of the ML models in code smells detection. Regarding the evaluation of the results
obtained from our proposed method and their comparison with some results of other studies,
we conclude that our model is promising in code smell detection and outperforms other models
in the previous studies.

7.3 Bi-LSTM and GRU with Under and Oversampling Methods in Code Smells Detection

In this sub-section, we discuss the findings of the seventh study, the objective was to present a
method based on RNN models (Bi-LSTM and GRU) with Under and Oversampling methods
(Random Oversampling and Tomek Links) to detect four code smells (God class, data class,
feature envy, and long method). The experiments have been conducted based on benchmark
datasets obtained from the Qualitas Corpus Systems. The experimental results were evaluated
and compared based on various performance measures (accuracy, precision, recall, f-measure,
MCC, AUC, AUCPR, MSE).

The performance of the prediction models is reported in Tables 7.10 to 7.18 and Figures 7.10
to 7.18, appendix 4 (Figures 1 to 12).

Table 7.10 presents the results of Bi-LSTM and GRU models on the original datasets in terms
of accuracy, precision, recall, F-Measure, MCC, AUC, AUCPR and MSE. We notice that the
accuracy values of the Bi-LSTM model range from 0.95 to 0.98, the precision values range
from 0.93 to 1.00, the recall values range from 0.83 to 0.96, the F-Measure values range from
0.90 to 0.96, the MCC values range from 0.88 to 0.94, the AUC values range from 0.97 to 0.99,
the AUCPR values range from 0.95 to 0.99, and the MSE values range from 0.023 to 0.044
across all datasets. The accuracy values of the GRU model range from 0.93 to 0.98, the
precision values range from 0.86 to 0.97, the recall values range from 0.86 to 0.96, the F-
Measure values range from 0.89 to 0.96, the MCC values range from 0.84 to 0.94, the AUC
values range from 0.95 to 0.99, the AUCPR values range from 0.89 to 0.99, and the MSE values
range from 0.020 to 0.065 across all datasets.

Table 7.10 Evaluation results for the original datasets
Bi-LSTM Model

Performance Measures
Datasets Accuracy| Precision| Recall | F-measure | MCC | AUC | AUCPR| MSE

God Class 0.95 0.97 0.92 0.94 0.90 0.99 0.99 0.035
Data Class 0.95 1.00 0.83 0.90 0.88 0.99 0.99 0.037
Feature envy 0.95 0.93 0.93 0.93 0.89 0.97 0.95 0.044
Long method 0.98 0.96 0.96 0.96 0.94 0.99 0.99 0.023

Averages 0.95 0.96 0.91 0.93 0.90 0.98 0.98 | 0.034

DOI 10.14750/ME.2024.012 -

GRU Model
Performance Measures
Datasets Accuracy| Precision| Recall | F-measure | MCC AUC | AUCPR| MSE
God Class 0.93 0.97 0.86 0.91 0.85 0.97 0.97 0.063
Data Class 0.96 0.92 0.96 0.94 0.91 0.99 0.99 | 0.026
Feature envy 0.93 0.86 0.93 0.89 0.84 0.95 0.89 0.065
Long method 0.98 0.96 0.96 0.96 0.94 0.99 0.99 0.020
Averages 0.95 0.92 0.92 0.92 0.88 0.97 0.96 | 0.043

Table 7.11 presents the results of Bi-LSTM and GRU Models on the balanced datasets using
Random Oversampling regarding accuracy, precision, recall, F-Measure, MCC, AUC, AUCPR
and MSE. We notice that the accuracy values of the Bi-LSTM model range from 0.96 to 1.00,
the precision values range from 0.94 to 1.00, the recall values range from 0.98 to 1.00, the F-
Measure values range from 0.97 to 1.00, the MCC values range from 0.92 to 1.00, the AUC
values range from 0.97 to 1.00, the AUCPR values range from 0.96 to 1.00, and the MSE values
range from 0.005 to 0.037 across all datasets. The accuracy values of the GRU model range
from 0.96 to 1.00, the precision values range from 0.95 to 1.00, the recall value range from
0.98 to 1.00, the F-Measure values range from 0.97 to 1.00, the MCC values range from 0.92
to 1.00, the AUC values range from 0.96 to 1.00, the AUCPR values range from 0.93 to 1.00,
and the MSE values range from 0.002 to 0.033 across all datasets.

Table 7.11 Evaluation results for the balanced datasets - Random Oversampling

Bi-LSTM Model
Performance Measures
Datasets Accuracy | Precision| Recall | F-measure| MCC | AUC | AUCPR| MSE
God Class 0.96 0.95 0.98 0.97 0.92 0.98 0.98 0.035
Data Class 0.99 0.98 1.00 0.99 0.98 1.00 1.00 0.006
Feature envy 0.96 0.94 1.00 0.97 0.92 0.97 0.96 0.037
Long method 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.005
Averages 0.97 0.96 0.99 0.98 0.95 0.98 0.98 0.020
GRU Model

Performance Measures

Datasets Accuracy | Precision| Recall | F- measure| MCC | AUC | AUCPR| MSE
God Class 0.96 0.95 0.98 0.97 0.92 0.96 0.93 | 0.033
Data Class 0.98 0.98 0.98 0.98 0.96 0.99 0.99 | 0.023

Feature envy 0.97 0.95 1.00 0.98 0.94 0.97 0.95 0.032
Long method 1.00 1.00 1.00 1.00 1.00 1.00 1.00 | 0.002
Averages 0.97 0.97 0.99 0.98 0.95 0.98 0.96 | 0.022

Table 7.12 presents the results of Bi-LSTM and GRU Models on the balanced datasets using
Tomek links regarding accuracy, precision, recall, F-Measure, MCC, AUC, AUCPR and MSE.
We notice that the accuracy values of the Bi-LSTM model range from 0.95 to 0.99, the
precision values range from 0.85 to 1.00, the recall values range from 0.87 to 1.00, the F-
Measure values range from 0.92 to 0.98, the MCC values range from 0.88 to 0.97, the AUC
values range from 0.97 to 0.99, the AUCPR values range from 0.92 to 0.98, and the MSE values
range from 0.013 to 0.044 across all datasets. The accuracy values of the GRU model range

DOI 10.14750/ME.2024.012 o6

from 0.96 to 0.99, the precision values range from 0.94 to 1.00, the recall values range from
0.87 to 1.00, the F-Measure values range from 0.93 to 0.98, the MCC values range from 0.90
to 0.97, the AUC values range from 0.98 to 0.99, the AUCPR values range from 0.97 to 0.99,
and the MSE values range from 0.018 to 0.038 across all datasets.

Table 7.12 Evaluation results for the balanced datasets - Tomek links

Bi-LSTM Model
Performance Measures
Datasets Accuracy | Precision | Recall| F-measure| MCC | AUC |AUCPR| MSE
God Class 0.96 1.00 0.87 0.93 0.90 0.98 0.97 0.037
Data Class 0.95 0.85 1.00 0.92 0.88 0.97 0.92 0.044
Feature envy 0.98 0.97 0.97 0.97 0.94 0.99 0.98 0.020
Long method 0.99 0.97 1.00 0.98 0.97 0.98 0.97 0.013
Averages 0.97 0.94 0.96 0.95 0.92 0.98 0.96 0.028
GRU Model

Performance Measures

Datasets Accuracy | Precision | Recall| F-measure| MCC | AUC | AUCPR| MSE
God Class 0.96 1.00 0.87 0.93 0.90 0.98 0.97 | 0.038
Data Class 0.99 0.96 1.00 0.98 0.97 0.99 0.99 | 0.018

Feature envy 0.99 0.97 1.00 0.98 0.97 0.99 0.99 0.021
Long method 0.98 0.94 1.00 0.97 0.94 0.99 0.99 | 0.025
Averages 0.98 0.96 0.96 0.96 0.94 0.98 0.98 | 0.025

Figures 7.10 to 7.13 show the training and validation accuracy and training and validation loss
of the models on the original datasets.

Figures 7.10 and 7.11 show the training and validation accuracy of the models on the original
datasets. The vertical axis presents the accuracy of the models, and the horizontal axis
illustrates the number of epochs. Accuracy is the fraction of predictions that our models
predicted right.

Figure 7.10 shows the accuracy values of the Bi-LSTM model. From the Figure, the model
learned 95% accuracy for God Class, 95% accuracy for Data Class, 95% accuracy for Feature
envy and 98% accuracy for Long method at the 100th epoch.

DOI 10.14750/ME.2024.012

87
Training and Validation Accuracy-god class Training and Validation Accuracy-data class
1o0 | ' M ¥] 100 {) % e
a # i "= - < 2 o\ ¥ —TTN TN
P v aes A Y X
LE / | aso
|
| ass
rovo >
$ 2, £ aso
a 3 |
§ o= a3 ors f
annd ‘ o.70
‘ > oes | | — Tabnng
ors | Valutation 050 Validation
° = % “ - 100 o e w0 - = 150
Cpocns Epocts
Training and Validation Accuracy-feature envy Training and Validation Accuracy-long method
LOO ¢ i | AN . =S = 100 | e —) L OTTTTT
e V4 N Ty Y W
aes AL/ g 4" T Y
f oes J !
aso !
Eoso: |/
£ ass g i
v 3 -
¥ om0l | 4 ous (
avs oo |
Waining [s Traieieng
0.70 Vatidntann Vebidation
———— - e — e ———— - - P — - v — - —
o ™ an - o 100 o 1o a0 - = 100
Epochs Epochs

Figure 7.10 Training and Validation Accuracy on the original datasets using Bi-LSTM Model

Figure 7.11 shows the accuracy values of the GRU model. From the Figure, the model learned
93% accuracy for God Class, 96% accuracy for Data Class, 93% accuracy for Feature envy
and 98% accuracy for Long method at the 100th epoch.

Jraining and Validation Accuracy-god class Training and Validation Accuracy-data class

—_— Lo \) y
3 1™ e = ¥ At Y PV A A -
o.e5 A Y / f | YA vy r .
A ,JA' .- \)” \/‘\J ved | y J‘
.90 / . o |
|/ A
§ o.nn Zl
Z oe
g om0 b
ars| | or
o.70 Training i Training
Valicdation o6 f Valhdation
o 20 ab o o 100 o 70 a0 wo wo 190
Epocha Epochs
Training and Valldation Accuracy-feature envy Training and Validation Accuracy-long method
.00 ‘ Temining Y ook i Y =
(ORTEN Validation AL AT T b
L ALK) M ,\r/-' v/ A
090 AT 0.9 Y\l V)
o.ns / { 'Y % ’ | \
o.6o ‘ - i § o.e f[{
X o075) “\r" 3 J‘ - ‘[
a.70 M Favach a-7 {l \ \/
/ h 4 B Vo
0.6 ’_.V\ - }‘ ' | Training
060 s Valicintion
o 20 a0 w0 oo 100 o 20 Y w0 so 100
Epochs Epochs

Figure 7.11 Training and Validation Accuracy on the original datasets using GRU Model

Figures 7.12 and 7.13 show the training and validation loss of the models on the original
datasets. The vertical axis presents the loss of the models, and the horizontal axis illustrates the
number of epochs. The loss indicates how bad a model's prediction was.

Figure 7.12 shows the loss values of the Bi-LSTM model. From the Figure, the model loss is
0.035 for God Class, 0.037 for Data Class, 0.044 for Feature envy and 0.023 for the long
method at the 100th epoch.

0.14
0.2
0.10

® oon
o.0a
0.04

0,02

0.00

0175
0.150
0228
0100
g 00rs
0.0%0

0,025

0.000
el

DOI 10.14750/ME.2024.012

Training and Valldation Loss.god class

Truining
‘ Validation

v v v v
40 o no 100
Epochia

__Training and Valldation Loss-feature envy

Training
Validation

100
Epochin

88
Training and Validation Loss-data class
Training
I Validation
‘.S
’ |
\ .
4"
A Tan lN > A o
' ' v v '
o 20 a0 0 0o 1wo
Epochia

Training and Validation Loss-long method

Taining
ll Valisiation
\
Y
b ! &
WA \
Y\ AV VR
o 0 a0 50 wo 100
Epochs

Figure 7.12 Training and Validation Loss on the original datasets using Bi-LSTM Model

Figure 7.13 shows the loss values of the GRU model. From the Figure, the model loss is 0.063
for God Class, 0.026 for Data Class, 0.065 for Feature envy and 0.020 for the long method at
the 100th epoch. Further in appendix 4, Figures 1 to 8 show both models' training and validation
(accuracy and loss) on the balanced datasets.
As shown in the Figures, the accuracy of training and validation increases, and the loss
decreases with increasing epochs. Regarding the high accuracy and low loss obtained by the
proposed models, we note that both models are well-trained and validated. Additionally, we
note that the models are approximately perfectly fitting, there is no overfitting or underfitting.

o.n
0.7
o6

o.n

Loss

a.a
0.3
0.2

0.1

0.0

g 015
0

A0

0.0n

0.00

Training and Valldation Loss-god class

Taining 025
Valldation
o.20
g 0.15%
\ o0
f\
AN o.on
v ‘ . v » 0.00
o 20 an "o BO 100
Epochs
Training and Validation Loss-feature envy
| o.30
\ ‘\ Trmining
N
') Validation 0.25
) o.20
4 g 0.4
\
Wi N 010
\/
A 0.05
“
0.00
v ' v i .
o 20 ao 50 no 100
Epochs

Training and Validation Loss-data class

Nuining
\ Valldatian

. v ’ vd
A0 Lo L 100
Epochs

’ U
o 20

Training and Valldation Loss-long method

Training

\ J. Validation
-

Ny -y

"{ A I

A |
/ f\
o 70 a0 wo »o 190
Epochs

Figure 7.13 Training and Validation Loss on the original datasets using GRU Model

Figures 7.14 and 7.15 show the ROC curves of the models on the original datasets. The vertical
axis presents the actual positive rate of the models, and the horizontal axis illustrates the false

DOI 10.14750/ME.2024.012

89

positive rate. The AUC is a sign of the performance of the model. The larger AUC is, the better
the model performance will be. Based on the Figures, the values are encouraging and indicate
our proposed models' efficiency in detecting code smells.

Figure 7.14 shows the AUC values of the Bi-LSTM model. From the Figure, the AUC values
are 99% on God Class,99% on Data Class, 95% on Feature envy and 99% on the Long method.

_ROC curva-Original Datasatstond class)

fuptvtt Sy, gy Yr—

Feive FPosttive Rute

— e
o.n
g s
g 0.
k.,

I —— ML mTM Mo [ALNOE - H.Sw) . | —— ST ModeitALKOE = B bE)
ta o4 aa aa an ro) oy aa o an 1o
ralng Mosithve Raga rala® pastive Aaes
ROC curva-Originat Datasetu(feature eanvy) _ROC curve-Criginal Datasetx(long MOJL

Lo
| as
i as
i ta
'E o.x
- H-LETM Madai(ALUROC « O0.97%) aa - BFLETM Modai| ALROC « O.998)
0.0 a2 o as o Lo 0.0 o2 o4 0.8 LY 10

Falve Fosidve Rate

Figure 7.14 ROC curves for the original datasets - Bi-LSTM Model

Figure 7.15 shows the AUC values of the GRU model. From the Figure, the AUC values are
97% on God Class,99% on Data Class, 89% on Feature envy and 99% on the Long method.
Further in appendix 4, Figures 9 to 12 show the ROC curves for both models on the balanced
datasets.

-0

!. oe
i ae

.2

ROC curve-Oripinal Dataseta{god ciane)

—— HRY Mepdal(ALRCE «» C.wP4ay
4 e —- -

3

..... -
L o5 0
Falnm Prodicivie Nate

ROC curve-Originet Dataesta(fenture snvy)

J [—=— GRY Mudel{ALROC = O.08d}
) . -

4 L4 - .
94 oK A »o
Falasa Posivive Rare

ROC curve-Original Dstasetu{dsta clans}

—— GRU ModaRRAUNGOE = .w07)

r T e t =
o0 o7 a4 o.. R %0
Fatew Moaittve Bate

ROC curve-Qriginal Datasets(long method)

‘aq

—1

—— ARW Mod4{{ALROC - D.9v¥A}
-4 v - -t - -4
o2 o= o o -0

Faise Panirive Asse

Figure 7.15 ROC curves for the original datasets - GRU Model

DOI 10.14750/ME.2024.012 %0

We used Boxplots to aggregate the achieved results to get a more accurate overview of the
quality of the results. Figure 7.16 shows the Box plots for the original datasets' performance
measures. For the Bi-LSTM maodel, the highest accuracy is 98% on the Long method dataset
and the lowest accuracy is 95% on the God Class, Data Class and Feature envy datasets, the
highest precision is 100% on the Data Class dataset and the lowest precision is 93% on the
Feature envy dataset, the highest recall is 96% on the Long method dataset and the lowest recall
is 83% on the Data Class dataset, the highest f-measure is 96% on the Long method dataset
and the lowest f-measure is 90% on the Data Class dataset, the highest MCC is 94% on the
Long method dataset and the lowest MCC is 88% on the Data Class dataset, the highest AUC
IS 99% on the God Class, Data Class and Long method datasets and the lowest AUC is 97% on
the Feature envy dataset, the highest AUCPR is 99% on the God Class, Data Class and Long
method datasets and the lowest AUCPR is 95% on the Feature envy dataset.

In contrast, For the GRU model, the highest accuracy is 98% on the Long method dataset and
the lowest accuracy is 93% on the God Class and Feature envy datasets, the highest precision
IS 97% on the God Class dataset and the lowest precision is 86% on the Feature envy dataset,
the highest recall is 96% on the Data Class and Long method datasets and the lowest recall is
86% on the God Class dataset, the highest f-measure is 96% on the Long method dataset and
the lowest f-measure is 89% on the Feature envy dataset, the highest MCC is 94% on the Long
method dataset and the lowest MCC is 84% on the Feature envy dataset, the highest AUC is
99% on the Data Class and Long method datasets and the lowest AUC is 95% on the Feature
envy dataset, the highest AUCPR is 99% on the Data Class and Long method datasets and the
lowest AUCPR is 89% on the Feature envy dataset.

Bi-LSTM Model-Original Datasets GRU Model-Original Datasets

.

100 '*[— |
oen{ ¢ : - i i
otk _:_ il ¢ 0.96 ‘ s
. | | i ¢ 0.94 :
0.94 B
—— ki
0.92 . |
& 090 - 3 090

o0.n8

rcentag

0.08 o.mé —— —
0.34 ‘ 0.8
Accuracyrecision Recall FMeasure MCC AC AUCPR AccurscyPrecirion Recall FMeasure MCC AUC Auén
Performance Measures Performance Measures

Figure 7.16 Boxplots representing performance measures obtained by models on the original datasets

Figure 7.17 shows the Box plots for the performance measures on the balanced datasets using
Random Oversampling. For the Bi-LSTM model with Random Oversampling, the highest
accuracy is 100% on the Long method dataset and the lowest accuracy is 96% on the God Class
and Feature envy datasets, the highest precision is 100% on the Long method dataset and the
lowest precision is 94% on the Feature envy dataset, the highest recall is 100% on the Data
Class, Feature envy and Long method datasets and the lowest recall is 98% on the God Class
dataset, the highest f-measure is 100% on the Long method dataset and the lowest f-measure
is 97% on the God Class and Feature envy datasets, the highest MCC is 100% on the Long
method dataset and the lowest MCC is 92% on the God Class and Feature envy datasets, the
highest AUC is 100% on the Data Class and Long method datasets and the lowest AUC is 97%

DOI 10.14750/ME.2024.012 o1

on the Feature envy dataset, the highest AUCPR is 100% on the Data Class and Long method
datasets and the lowest AUCPR is 96% on the Feature envy dataset.

In contrast, For the GRU model with Random Oversampling, the highest accuracy is 100% on
the Long method dataset and the lowest accuracy is 96% on the God Class dataset, the highest
precision is 100% on the Long method dataset and the lowest precision is 95% on the God
Class and Feature envy datasets, the highest recall is 100% on the Feature envy and Long
method datasets and the lowest recall is 98% on the God Class and Data Class datasets, the
highest f-measure is 100% on the Long method dataset and the lowest f-measure is 97% on the
God Class dataset, the highest MCC is 100% on the Long method dataset and the lowest MCC
IS 92% on the God Class dataset, the highest AUC is 100% on the Long method dataset and
the lowest AUC is 96% on the God Class dataset, the highest AUCPR is 100% on the Long
method dataset and the lowest AUCPR is 93% on the God Class dataset.

Bi-LSTM Model-Random Oversampling GRU Model-Random Oversampling
1
x Ex 100 e — '
l . T il i
099 Fra=
§ 097 _L 8 0.97 -
-
£ on{ € 096
-
g 0.95 | £ 095
ol na
0.94 l
a3 J 093
\
0.92 0,92
z : : =2 = = = - = B
A:cunqﬁuulon Recall FMeasure MCC AC AUCPR AccuracyPrecision Recall FMeasure MCC AUC AUCPR
Performance Measures Performance Measures

Figure 7.17 Boxplots representing performance measures obtained by models on the balanced datasets- Random
Oversampling

Figure 7.18 shows the Box plots for the performance measures on the balanced datasets using
Tomek links. For the Bi-LSTM model with Tomek links, the highest accuracy is 99% on the
Long method dataset and the lowest accuracy is 95% on the Data Class dataset, the highest
precision is 100% on the God Class dataset and the lowest precision is 85% on the Data Class
dataset, the highest recall is 100% on the Data Class and Long method datasets and the lowest
recall is 87% on the God Class dataset, the highest f-measure is 98% on the Long method
dataset and the lowest f-measure is 92% on the Data Class dataset, the highest MCC is 97% on
the Long method dataset and the lowest MCC is 88% on the Data Class dataset, the highest
AUC is 99% on the Feature envy dataset and the lowest AUC is 97% on the Data Class dataset,
the highest AUCPR is 98% on the Feature envy dataset and the lowest AUCPR is 92% on the
Data Class dataset.

In contrast, For the GRU model with Tomek links, the highest accuracy is 99% on the Data
Class and Feature envy datasets and the lowest accuracy is 96% on the God Class dataset, the
highest precision is 100% on the God Class dataset and the lowest precision is 94% on the
Long method dataset, the highest recall is 100% on the Data Class, Feature envy and Long
method datasets and the lowest recall is 87% on the God Class dataset, the highest f-measure
is 98% on the Data Class and Feature envy datasets and the lowest f-measure is 93% on the
God Class dataset, the highest MCC is 97% on the Data Class and Feature envy datasets and
the lowest MCC is 90% on the God Class dataset, the highest AUC is 99% on the Data Class,
Feature envy and Long method datasets and the lowest AUC is 98% on the God Class dataset,

DOI 10.14750/ME.2024.012 9

the highest AUCPR is 99% on the Data Class, Feature envy and Long method datasets and the
lowest AUCPR is 97% on the God Class dataset.

B8i-LSTM Model-Tomek links GRU Model-Tomek links
1.00 100
’ ——
0.98 _— . = 0.98 T . ‘
———] - s r
oo (00 55 - = =] .
0.96 ==
- -
0.54
§ ' £ oo
& 092 bt ‘ s '
¥ § 0.92
£ 090 £
o.n 090
0.86& 0.s8
. '
AccuracyPyrecision Recall FMeasure MCC AUC AUCPR AccuracyPrecision Recall FMeasure MCC ll;(ACPR
Performance Measures Performance Measures

Figure 7.18 Boxplots representing performance measures obtained by models on the balanced datasets- Tomek
links

Table 7.13 presents the statistical analysis results (paired t-test) of proposed models on the
original and balanced datasets (using Random Oversampling) in terms of mean, Standard
Deviation (STD), min, max and P value. We notice that the mean values of the Bi-LSTM model
are 0.95 on the original datasets and 0.97 on the balanced datasets. The mean values of the
GRU model are 0.95 on the original datasets and 0.97 on the balanced datasets. The STD values
of the Bi-LSTM model are 0.01 on the original datasets and 0.02 on the balanced datasets,
while the STD values of the GRU model are 0.02 on the original datasets and 0.01 on the
balanced datasets. The Min values of the Bi-LSTM model are 0.95 on the original datasets and
0.96 on the balanced datasets, while the Min values of the GRU model are 0.93 on the original
datasets and 0.96 on the balanced datasets. The Max values of the Bi-LSTM model are 0.98 on
the original datasets and 1.00 on the balanced datasets, while the Max values of the GRU model
are 0.98 on the original datasets and 1.00 on the balanced datasets. The P value of the Bi-LSTM
model is 0.06 for the original and balanced datasets, while the P value of the GRU model is
0.01 for the original and balanced datasets. Based on the P value of the GRU model on the
original and balanced data sets, we note that the P value is less than 0.05, indicating a difference
between the results of the models on the original and balanced data sets.

Table 7.13 Comparison of the proposed models in terms of accuracy using paired t-test- based on the original
and balanced datasets (using Random Oversampling)

Bi-LSTM Model GRU Model
Paired t-test Oriai —
riginal Datasets | Balanced Datasets | Original Datasets | Balanced Datasets

Mean 0.95 0.97 0.95 0.97

STD 0.01 0.02 0.02 0.01

Min 0.95 0.96 0.93 0.96

Max 0.98 1.00 0.98 1.00
P value 0.06 0.01

Table 7.14 presents the statistical analysis results (paired t-test) of proposed models on the
original and balanced datasets (using Tomek Links) in terms of mean, Standard Deviation
(STD), min, max and P value. We notice that the mean values of the Bi-LSTM model are 0.95
on the original datasets and 0.97 on the balanced datasets. The mean values of the GRU model
are 0.95 on the original datasets and 0.98 on the balanced datasets. The STD values of the Bi-

DOI 10.14750/ME.2024.012 o3

LSTM model are 0.01 on the original datasets and 0.01 on the balanced datasets, while the STD
values of the GRU model are 0.02 on the original datasets and 0.01 on the balanced datasets.
The Min values of the Bi-LSTM model are 0.95 on the original datasets and 0.95 on the
balanced datasets, while the Min values of the GRU model are 0.93 on the original datasets
and 0.96 on the balanced datasets. The Max values of the Bi-LSTM model are 0.98 on the
original datasets and 0.99 on the balanced datasets, while the Max values of the GRU model
are 0.98 on the original datasets and 0.99 on the balanced datasets. The P value of the Bi-LSTM
model is 0.14 for the original and balanced datasets, while the P value of the GRU model is
0.09 for the original and balanced datasets. Based on the P value of both models on the original
and balanced data sets, we note that the P value is greater than 0.05, indicating no difference
between the results of the models on the original and balanced data sets.

Table 7.14 Comparison of the proposed models in terms of accuracy using paired t-test- based on the original
and balanced datasets (using Tomek Links)

Bi-LSTM Model GRU Model
Paired t-test Original Datasets | Balanced Datasets | Original Datasets | Balanced Datasets
Mean 0.95 0.97 0.95 0.98
STD 0.01 0.01 0.02 0.01
Min 0.95 0.95 0.93 0.96
Max 0.98 0.99 0.98 0.99
P value 0.14 0.09

The results presented by our models and previous studies' results are reported in Tables 7.15 to
7.18. Tables 7.15 and 7.16 show the comparison results of our method with some previous
studies based on some performance measures, namely accuracy and AUC. Table 7.15 shows
the results based on accuracy; Table 7.16 shows the results based on AUC. The best values are
indicated in bold in the Tables and "- "indicates that the approaches that did not provide results
for performance measures in a particular data set. According to Tables 7.15 and 7.16, some of
the results in the previous studies are better than ours. However, in most cases, our method
outperforms the other state-of-the-art approaches and provides better predictive performance.

Table 7.15 Comparison of the proposed models with other existing approaches based on the accuracy

Datasets
Approaches God class | Data class | Feature envy | Long method | Averages
RF[4] 0.96 0.98 0.96 0.99 0.97
NBJ[4] 0.97 0.97 0.91 0.97 0.95
DT[27] - - 0.97 - 0.97
RF[27] - 0.99 - 0.95 0.97
K-NNJ108] 0.97 0.97 0.91 0.97 0.95
NB[108] 0.96 0.84 0.92 0.95 0.91
MLP[108] 0.97 0.97 0.95 0.96 0.96
DT[108] 0.97 0.98 0.98 0.98 0.97
RF[108] 0.97 0.98 0.97 0.99 0.97
LR[108] 0.97 0.97 0.97 0.99 0.97
RF[120] 0.69 0.70 0.71 0.68 0.69
NB[120] 0.82 0.75 0.83 0.81 0.80
SVM[120] 0.74 0.83 0.83 0.81 0.80
K-NNJ120] 0.80 0.82 0.82 0.81 0.81
Our Bi-LSTM model_Balanced 0.96 0.99 0.96 1.00 0.97
Datasets (Random Oversampling)
Our GRU model_Balanced Datasets 0.96 0.98 0.97 1.00 0.97
(Random Oversampling)

DOI 10.14750/ME.2024.012

94
Our Bi-LSTM model_Balanced 0.96 0.95 0.98 0.99 0.97
Datasets (Tomek links)
Our GRU model_Balanced Datasets 0.96 0.99 0.99 0.98 0.98
(Tomek links)
Table 7.16 Comparison of the proposed models with other existing approaches based on AUC
Datasets
Approaches God class | Data class | Feature envy | Long method | Averages
DL[29] - - 0.84 0.79 0.81
RF[120] 0.59 0.65 0.59 0.52 0.58
NBJ[120] 0.88 0.85 0.86 0.86 0.86
SVM[120] 0.65 0.88 0.82 0.66 0.75
K-NN[120] 0.83 0.86 0.83 0.86 0.84
Our Bi-LSTM model_Balanced 0.98 1.00 0.97 1.00 0.98
Datasets (Random Oversampling)
Our GRU model_Balanced 0.96 0.99 0.97 1.00 0.98
Datasets (Random Oversampling)
Our Bi-LSTM model_Balanced 0.98 0.97 0.99 0.98 0.98
Datasets (Tomek links)
Our GRU model_Balanced 0.98 0.99 0.99 0.99 0.98
Datasets (Tomek links)

Table 7.17 presents the statistical analysis results (paired t-test) for the proposed models based
on Random Oversampling and existing approaches in terms of mean, Standard Deviation
(STD), min, max and P value. We notice that the mean value of existing approaches is 0.90,
while the mean value of the Bi-LSTM Model is 0.97 and the mean value of the GRU Model is
0.97. The STD value of existing approaches is 0.00, while the STD value of the Bi-LSTM
Model is 0.02 and the STD value of the GRU Model is 0.01. The Min value of existing
approaches is 0.89, while the Min value of the Bi-LSTM Model is 0.96 and the Min value of
the GRU Model is 0.96. The Max value of existing approaches is 0.91, while the Max value of
the Bi-LSTM Model is 1.00 and the Max value of the GRU Model is 0.99. The P value for
existing approaches and Bi-LSTM Model is 0.00, while the P value for existing approaches
and GRU Model is 0.00. Based on the P value of both models based on Random Oversampling
and existing approaches, we note that the P value is less than 0.05, indicating a difference
between the existing approaches' and our proposed models' results.

Table 7.17 Comparison of the proposed models with other existing approaches in terms of accuracy averages
using paired t-test- based on Random Oversampling

Paired t-test | Existing Approaches Bi-LSTM Model Existing Approaches | GRU Model
Mean 0.90 0.97 0.90 0.97
STD 0.00 0.02 0.00 0.01
Min 0.89 0.96 0.89 0.95
Max 0.91 1.00 0.91 0.99

P value 0.00 0.00

Table 7.18 presents the statistical analysis results (paired t-test) for the proposed models based
on Tomek Links and existing approaches in terms of mean, Standard Deviation (STD), min,
max and P value. We notice that the mean value of existing approaches is 0.90, while the mean
value of the Bi-LSTM Model is 0.97 and the mean value of the GRU Model is 0.98. The STD
value of existing approaches is 0.00, while the STD value of the Bi-LSTM Model is 0.01 and
the STD value of the GRU Model is 0.01. The Min value of existing approaches is 0.89, while
the Min value of the Bi-LSTM Model is 0.96 and the Min value of the GRU Model is 0.96.
The Max value of existing approaches is 0.91, while the Max value of the Bi-LSTM Model is

DOI 10.14750/ME.2024.012 o

1.00 and the Max value of the GRU Model is 0.99. The P value for existing approaches and
Bi-LSTM Model is 0.00, while the P value for existing approaches and GRU Model is 0.00.
Based on the P value of both models based on Tomek Links and existing approaches, we note
that the P value is less than 0.05, indicating a difference between the existing approaches' and
our proposed models' results.

Table 7.18 Comparison of the proposed models with other existing approaches in terms of accuracy averages
using paired t-test- based on Tomek Links

Paired t-test | Existing Approaches | Bi-LSTM Model | Existing Approaches | GRU Model
Mean 0.90 0.97 0.90 0.98
STD 0.00 0.01 0.00 0.01
Min 0.89 0.96 0.89 0.96
Max 0.91 1.00 0.91 0.99

P value 0.00 0.00

In summary, this study aimed to present a method based on RNN models (Bi-LSTM and GRU)
with Under and Oversampling methods (Random Oversampling and Tomek Links) to detect
code smells. We compared the results obtained by the proposed method based on the original
and balanced datasets to investigate the impact of Under and Oversampling methods on
improving the accuracy of ML techniques. Additionally, the proposed method's results were
compared with those presented in previous studies. After comparing the results obtained by the
proposed models on the original datasets with results obtained by the proposed models on the
balanced datasets, as shown in the Tables and Figures, we note that the models got good scores
on the balanced datasets and the results improved further due to balancing, which indicated
that the combination of (Bi-LSTM and GRU) with Under and Oversampling methods (Random
Oversampling and Tomek Links) has positive effect on the performance of code smells
detection regarding datasets with imbalanced class distributions. Furthermore, data sampling
methods play an essential role in improving the accuracy of ML models in code smells
detection. Regarding the evaluation of the results obtained from our proposed method and their
comparison with some results of other studies, we conclude that our models are promising in
code smell detection and outperform other models in the previous studies.

7.4 Summary

In this chapter, we presented the experimental results and discussion of code smells detection.
The experimental results have been compared and evaluated based on several standard
performance measures. We compared experimental results based on the original and balanced
datasets and compared our results with current state-of-the-art results for code smells detection.
The results showed that our proposed methods significantly outperform current state-of-the-art
methods for code smells detection. We concluded that the combined data-balancing methods
with ML techniques significantly enhance the accuracy of code smells detection. We observe
that the incorporation of appropriate data-balancing methods and ML techniques not only
enhances the model's ability to detect code smells accurately but also mitigates the bias towards
the majority class, resulting in a more balanced performance across different classes of code
smells. This research has practical implications for software developers and researchers. It
highlights the significance of considering data-balancing methods when applying ML models
for code smells detection. By employing these methods, developers can enhance their ability
to identify and address code quality issues, thereby improving software maintainability.

DOI 10.14750/ME.2024.012 o

Chapter 8 Conclusion

8.1 Contributions

Identifying software bugs and code smells will help software developers distinguish code
constructs that contain defects and assist them in the testing phase of the software development
life cycle, resulting in improved software quality. Our dissertation contributes to software
engineering, especially software bugs and code smell prediction. The main contribution of our
dissertation is the development of different models based on several ML techniques combined
with many data-balancing methods using software metrics to improve the prediction of
software bugs and code smells. The criteria for selecting the ML techniques and data-balancing
methods in this research work are based on the recommendations in the literature review. By
making these contributions, our dissertation advances the understanding and application of
data-balancing methods in the ML-based prediction of software bugs and code smells using
software metrics. It provides valuable insights and practical guidance, aiding in developing
more accurate and reliable prediction models and ultimately contributing to improving software
quality and reliability. In summary, the main contributions of our research work are
summarized as follows:

e Our dissertation makes a significant contribution by thoroughly examining the impact of
the class imbalance problem on predicting software bugs and code smells. Where it
provides insights into how class imbalance affects the performance of ML-based models
and highlights the need for effective solutions to address this challenge.

e In this dissertation, we contribute by conducting a comprehensive evaluation of various
data-balancing methods commonly employed to address the class imbalance problem in
software bugs and code smells prediction.

e Our dissertation contributes to improving the accuracy and reliability of predictive models
for software bugs and code smells by developing a novel prediction methodology based on
ML techniques combined with data-balancing methods.

e Inthis dissertation, we validate our proposed methodology through experiments conducted
on real-world software datasets, to show that the performance of ML algorithms in
predicting software bugs and code smells can be significantly improved when balancing
the data set by applying data-balancing methods. Additionally, this validation provides
evidence of the effectiveness of the proposed methodology in practical settings and
increases their applicability in real software development scenarios.

8.1.1 Theses - New Scientific Results

The dissertation presents results demonstrating the significant impact of class imbalance on the
performance of predictive models. It highlights the challenges posed by class imbalance and
provides empirical evidence of the effectiveness of data-balancing methods in enhancing the
performance of predictive models for software bugs and code smells. The effectiveness of data-
balancing methods in enhancing predictive models’ performance is demonstrated through
empirical evaluation based on Real-world software datasets using several standard
performance measures. Overall, the dissertation presents new scientific results that contribute
to data-balancing in ML-based prediction of software bugs and code smells using software
metrics. The novel findings and evaluation results provide valuable insights and advance the
understanding and application of data-balancing methods in improving the accuracy and

DOI 10.14750/ME.2024.012 o7

reliability of predictive models for software quality assurance. The main new scientific results
of the research presented in this work are summarized in the following theses:

Thesis I: Investigating standard machine learning (ML) techniques previously used to
predict software bugs and the impact of data-balancing methods (Undersampling methods)
on the accuracy of ML models in software bug prediction (SBP).

| proposed two approaches for SBP: in the first approach, | presented a comprehensive study
investigating standard ML techniques previously used to predict software bugs. In addition, a
method to examine the performance of classical supervised ML algorithms (DT, NB, RF, and
LR) in SBP was proposed. The experiments were conducted based on four public benchmark
datasets obtained from the NASA defect dataset. To investigate the impact of Undersampling
methods in improving the accuracy of RNN models in SBP, a new approach was developed by
combining two RNN models, namely LSTM and GRU, with an Undersampling method (Near
Miss). The experiments were conducted on benchmark datasets which comprise five public
datasets based on both class and file-level metrics. The results of both approaches were
evaluated on many performance measures such as accuracy, precision, recall, f-measure, MCC,
AUC, AUCPR, and MSE. Regarding the evaluation process and the results of the first
approach: | established that the classic supervised ML algorithms can be used effectively for
SBP. Regarding the experimental results of the second approach: the average Recall of the
LSTM and GRU models on the original datasets (class level metrics and file level metrics)
were 20 and 20%, and the average Recall of the models on the balanced datasets (class level
metrics and file level metrics) using Near Miss were 92 and 81%. The results showed that the
LSTM and GRU models on the balanced datasets improved the average Recall by 72 and 61%,
respectively, compared to the original datasets. | established that there are positive effects of
combining RNN with Undersampling methods on the performance of bug prediction regarding
datasets with imbalanced class distributions and the proposed approaches are promising,
competitive and suitable methodologies for SBP [P1 and P2].

Thesis I1: Investigating the impact of data-balancing methods (Oversampling and hybrid
sampling methods) on the accuracy of machine learning (ML) models in software defect
prediction (SDP).

| proposed two approaches to investigate the impact of Oversampling and hybrid sampling
methods in improving the accuracy of advanced ML algorithms in SDP. The first approach was
developed based on combining a Bi-LSTM network and Oversampling methods (Random
Oversampling and SMOTE). The second approach was developed based on CNN and GRU
combined with a hybrid sampling method (SMOTE Tomek). The experiments for both
approaches have been conducted on benchmark datasets obtained from the PROMISE
repository. The experimental results have been compared and evaluated in accuracy, precision,
recall, f-measure, MCC, AUC, AUCPR, and MSE. Regarding the evaluation process and the
results of the first approach: The average Recall of the Bi-LSTM model was 48% on the
original datasets, 97% on balanced datasets (using Random Oversampling), and 94% on
balanced datasets (using SMOTE). The results showed that the Bi-LSTM model on the
balanced datasets improves the average Recall by 49 (using Random Oversampling) and 46%
(using SMOTE), compared to the original datasets. Regarding the experimental results of the
second approach: The average Recall of the CNN and GRU models were 48 and 49% on the
original datasets and 94 and 91% on balanced datasets (using SMOTE Tomek), The results
showed that the CNN and GRU models on the balanced datasets improve the average Recall

DOI 10.14750/ME.2024.012 o8

by 46 and 42%, respectively, compared to the original datasets. | established that combining
advanced ML algorithms with Oversampling and hybrid sampling methods has positive effects
on the performance of defect prediction regarding datasets with imbalanced class distributions.
The proposed approaches are suitable methodologies for SDP [P3 and P4].

Thesis I11: Investigating the impact of data-balancing methods (Oversampling and
Undersampling methods) on the accuracy of machine learning (ML) models in code smells
detection.

| proposed three approaches to investigate the impact of Oversampling and Undersampling
methods in improving the accuracy of classical and advanced ML algorithms in code smell
detection. The first approach was developed based on five classic ML algorithms, namely DT,
K-NN, SVM, XGB, and MLP combined with the Oversampling method (Random
Oversampling). The second approach was developed based on a CNN combined with the
Oversampling method (SMOTE). The third approach was developed based on two RNN
models (Bi-LSTM and GRU) combined with Oversampling and Undersampling methods
(Random Oversampling and Tomek links). The experiments for all approaches were conducted
on four code smells datasets (God class, Data Class, Feature-envy, and Long-method) that were
extracted from 74 open-source systems. The experimental results have been compared and
evaluated in terms of accuracy, precision, recall, f-measure, MCC, AUC, AUCPR, and MSE.
Regarding the evaluation process and the results of the first approach: The average Recall of
the DT, K-NN, SVM, XGB and MLP models on the original datasets (God class, Data class,
Long method and Feature envy) were 88, 95, 93 and 83%, respectively, and the average Recall
of the models on the balanced datasets (using Random Oversampling) were 98, 99, 99 and
98%, respectively. The results showed that the DT, K-NN, SVM, XGB and MLP models on
the balanced datasets improved the average Recall by 10, 4, 6 and 15%, respectively, compared
to the original datasets. Regarding the evaluation process and the results of the second
approach: the average Recall of the CNN model on the original datasets (God class, Data class,
Feature envy and Long method) was 95%, and the average Recall of the model on the balanced
datasets (using SMOTE) was 98%.The results showed that the CNN model on the balanced
datasets improves the average Recall by 3%, compared to the original datasets. Regarding the
experimental results of the third approach: the average Recall of the Bi-LSTM and GRU
models were 91 and 92% on the original datasets (God class, Data class, Feature envy and
Long method), the average Recall of the models were 99 and 99% on the balanced datasets
using Random Oversampling, and the average Recall of the models were 96 and 96%,
respectively, on the balanced datasets using Tomek links. The results showed that the Bi-LSTM
and GRU models on the balanced datasets using Random Oversampling improved the average
Recall by 8 and 7% and improved the average Recall by 5 and 4% on the balanced datasets
using Tomek links, respectively, compared to the original datasets. | established that combining
classic and advanced ML algorithms with Oversampling and Undersampling methods can
improve the performance of code smell detection regarding datasets with imbalanced class
distributions and the proposed approaches are suitable methodologies for code smell detection
[P5, P6 and P7].

DOI 10.14750/ME.2024.012 9

8.2 Future Research Direction

In terms of future research directions, our future research directions are summarized as follows:

Investigating advanced data-balancing methods: while this dissertation explores several
commonly used data-balancing methods, future research can delve into more advanced
techniques for addressing class imbalance in software bug and code smell prediction. This
may include exploring ensemble-based methods, cost-sensitive learning approaches, or
adaptive data-balancing techniques specifically tailored to the characteristics of software
metrics.

Hybrid approaches: future research can explore the potential of combining multiple data-
balancing methods to achieve better performance in software bug and code smell
prediction. Hybrid approaches may involve integrating Undersampling and Oversampling
techniques, exploring the combination of synthetic and real data, or incorporating class
weighting methods in conjunction with other data-balancing techniques.

Handling multiclass imbalance: this dissertation primarily focuses on binary class
imbalance, where the majority class dominates over the minority class. However, future
research can explore the challenges and solutions for addressing multiclass imbalance in
the context of software bugs and code smell prediction. This may involve developing new
data-balancing methods or adapting existing techniques to handle multiple imbalanced
classes effectively.

Feature selection and dimensionality reduction: software metrics often encompass many
features, which may lead to high-dimensional datasets. Future research can explore the
impact of feature selection and dimensionality reduction techniques on data-balancing and
predictive model performance. Investigating the effectiveness of different feature selection
algorithms or dimensionality reduction methods in the presence of class imbalance can
provide valuable insights.

As a future target, we also would like to address the limitations of this research and extend our
developed models to be applied in another field in software engineering. By exploring these
future research directions, researchers can further advance the field of data-balancing in ML-
based prediction of software bugs and code smells using software metrics. These investigations
will contribute to developing more sophisticated and effective approaches for addressing class
imbalance, enhancing prediction accuracy, and improving software quality assurance practices.

DOI 10.14750/ME.2024.012 100

Appendices
Appendix 1: LSTM and GRU with Undersampling Methods in SBP

Figures 1 and 2 show the AUCPR scores obtained by the proposed models (LSTM and GRU)
on the original and balanced datasets, respectively. The vertical axis presents the precision of
the model, and the horizontal axis illustrates the recall.

Regarding the original datasets, the best AUCPR obtained by the both models (LSTM and
GRU) which is 49% on the file level metrics dataset. While, the worst AUCPR obtained by
GRU model which is 44% on the class level metrics dataset.

Regarding the balanced datasets, the best AUCPR obtained by the both models (LSTM and
GRU) which is 97% on the class level metrics dataset. While, the worst AUCPR obtained by
the both models (LSTM and GRU) which is 95% on the on the file level metrics dataset.

Aron ,‘A'fd,'.',', Vtrh.chrV-g!llpwl_-:rnlI‘ Survn-gﬂqmql Datanats Aren Ander the Precision-Recall Curve -Original Datasets
0 “ LETM Model(AUC P N = 0.4848) 10 o GRU ModelAUC P R = 0.447)
own
an
g o
o2
L
‘ \ y v ' v
0.0 [oa o os Lo
LT
Arma Andur the Precisi " I Curve-nat nd Datasents Ares Ander the Precision-Recall Curve-Dalanced Datasats
10 10
oe o
g oG o«
z o4 i o4
oz 0.z
oo = ARTM ModelADE & A « 0.077) 9 o0 =GR Medel[AUC P N = 0.812)
————— - — o — — - — -y v . v
0.6 o7 o.n o.e Lo o5 os a7 on e Lo
Racan Macall

Appendix 1: 0.1 Figure 1. lllustrates the AUCPR of the models across all datasets - class-level metrics

Area Ander the Precision-Recall Curve-Original Datasets Aras Ander the Precision-Recall Curve-Original Datasets
Lo - LETM Model(AUC P R« 0.404) Lo ' GRU Modsl|AUC P I « 0.480)
oe o.n
LAY ae
i o4 g o
o 02
0.0 - . 0o - .
0.3 o 0.a os on or o.n o LO o 0.4 0. o.e or ons o Lo

LT L

Area Ander the Pracision-Recall Curve-Balanced Datassts Arss Ander the Precision-Recall Curve-Balanced Datassts

Lo Lo
o.n on
oe ! o.e
g o : o
o2 0.2
0.0 = LATM ModellAULC P N -« 0.05%2) 0.0 = GRU Madel[AUC_F R - D.9%0)
‘ . . v . v v ' \ ’ v v
“s LY or 0w o Lo os LU o7 v we Lo
Racall Racall

Appendix 1: 0.2 Figure 2. lllustrates the AUCPR of the models across all datasets - file-level metrics

Appendix 2: Bi-LSTM with Oversampling Methods in SDP

Figures 1, 2 and 3 show the AUCPR of the Bi-LSTM model on the original and balanced
datasets. The vertical axis presents the precision of the model, and the horizontal axis illustrates

the recall.

According to the Figures, the best AUCPR obtained by the proposed model in the original data
sets is 98% on the xerces data set. The worst AUCPR is 29% on the jedit data set. The best
AUCPR obtained by the proposed model in the balanced data sets (using Random
Oversampling) is 99% on the jedit and log4j data sets, while the worst AUCPR is 86% on the
ivy data set. The best AUCPR obtained by the proposed model in the balanced data sets (using
SMOTE) is 100% on the log4j data set, while the worst AUCPR is 91% on the ant and camel

data sets.

Area Ander the Preusion-Recall Curve-camed-1.6

i

e
>

~
-
T~
Ce—
-
-
-

Frecinion
s
-

=,
a3+ e

———
T - —

Arez Ander the Precsion-Recall Curve-ant-1.7
1 - —— BELSTM ModellAUC ¥ & = G.456)

oo

a7y Ay o4 O3 @f 4y o as 0
Fecan

e § " EELSTM MudeRAUC P 5 = 0371) e
.-
on s
i
€ b - [
5 o8 i g s
i Z i
g ua T soa
02 Vg .2
=
e ———— a0 |
ae w3 aa os oL 10
L =1

DOI 10.14750/ME.2024.012

Area Ander the Precision-Recall cwve—bvy-bq
! —= BLSTM MadelalC P R - 0.801] |
-

-

—_—

as
Recall

na

Area Ander the Precsion-Recall Curve-jedit-4.3 Area Ander the Precision-Recall Curve-dogdj-1.2 Arsa Ander the Precision-Recsll Curve-xerces-1.4

gt | = BELSTM ModeAUC 2 B = 0.298) At | ; 38 S,
f
/
on oe ' o
/
ll.]
gos] §os: 7 Sos ,
z] £}
: i :]
o4 e i Zoa
o |
0z 03] —— 1 a2
{
ao g | T WLSTM ModaAUC P R - 0.962) i aod " TASTM ModeAUC P R = 0.381)
ce a2 o4 o5 es 1o 0% 032 oM O oGm0 254 086 085 030 037 03¢ 096 08 Loo
Recati Recati Recall

Area Ander the Precisicn-Recall Curve-ant-1.7

Appendix 2: 0.1 Figure 1. AUCPR for the original datasets

Arsa Ander the Precision-Recail Curve-camed-1.5

Araa Ander the Precsion-Recall Curve.ivy-2.0

18- o 10 103 B{STM ModeAUC P R = 0863) |
i
ﬁ"‘.—, -~
on L oa o8| -
! 3
~ ! £ < y 2
§ as - H oas § a8 !
z ~+— EI-LSTM Model(80C P 3 = 0.935) = 5 2 ¢]
* . | »)
Zos Zo4 / S04 /
az / a2 // a2 /
-~ 2 e
aid - 1| pg! — WiSTMMudersocp s = sum) l aa ——
as o7 o [T} 10 063 200 275 080 085 250 035 190 (X] o2 o4 os as L
Recal Kecat Recad

Area Ander the Precision-Recall Curve-jedit-4.3

Arsa Ander the Pracision-Racall Curve-logsj-1.2 Area Ander the Precision-Recall Curve-zestes-1.4

e ~— BHLSTM MoselfAUC PR - 0.997] | 107 & 1 18] Sy
<. ! i
on —— os i x| 'I
i
~~ . {
Sas ~ Fos { | S08
= ~ |[= i s
] (B] {13
Sos fos ! foa|
o2 : azry a2
) =
- ' | apd T BASTMMesetC P R - 0.987) ap. — BHSTM ModeRRUC SR = § 483
4330 0992 0984 Q96 QI9E 1308 oss oas

Recad

080 042 0% o o3 100
Recat

Q85 0% 07% &80 &85 030 0N 120
Recad

Appendix 2: 0.2 Figure 2. AUCPR for the balanced datasets - Random Oversampling

DOI 10.14750/ME.2024.012

Area Ander the Precision-Recall Curve-ant-1.7

Area Ander the Precision-Recall Curve-camel-1.6

102

10 10
o (3 3 s
g as § o€ | ; s |
5 § == ELLSTM ModelABC P & = 0.914) §
s
soa M P S04 —
o2 | e2 02!
ao | T BHSTM MadelAUC P X - 2917 as- Qg | T BELSTM MadeSAUC PR - 0.523) |
es s a7 (X a3 L9 o o ot o3 10 076 Q7S 080 €85 @S2 0S5 100
Hecall Hecall Recall

a

os

Pemaisian
P P
- L)

p
L

g

Area Ander the Precision-Recall Curve-jedit-3.3

Area Ander the Precsion-Recall Curve-logdj-1.2

Area Ander the Precision-Recall Curve-xerces-1.4

Z = BI-LSTM Mocei[AC P § « 0.983) s 1o -—b_ﬁ,ﬁ_‘_&“‘
- o as 7
2 I | !
5 s | ; as -
| 2 | 2
v
l\ g aa Lo
0z az
a0 |~ EFLSTH MadexAUC 3 R = 1.000) Qo T BHLSTM ModelfAUC P 3 = 2.971) |
ause asss 0990 noss 1000 nse ass 160 Loz 104 o8 27 a3 o8 Lo
Becall Recall Recsd

Appendix 2: 0.3 Figure 3. AUCPR for the balanced datasets — SMOTE

Appendix 3: CNN and GRU with Hybrid (Combined)-Sampling Methods in SDP

Figures 1 to 4 show the AUCPR of the proposed models (CNN and GRU) on the original and
balanced datasets. The vertical axis presents the precision of the model, and the horizontal axis
illustrates the recall.
Figure 1 shows the AUCPR values of the CNN model on the original data sets. The best
AUCPR obtained is 98% on the xerces data set, while the worst AUCPR is 7% on the jedit data

set.
Area Ander the Precision-Recalil Curve-ant-1.7 Area Ander the Precision-Recall Curve-camel-1.6 Area Ander the Precision-Recall Curve-ivy-2.0
01 L —~— CMN MoSei[A3C.P R = 0.57%) 101 by CNN Model{AUC P R« 8397) 0] ¢ = N Model{AUC P R = 2.530)
os{ £ e o I
= B g
gas LS fos § o8 y: >
: Z i | 5 VS
fae i L fu
S \ e, d
a2 e azf 3 &2 _—~
- \ =
o
| =
a0 o8 T L L]
8) o4 05 06 07 95 OF 10 00 0z as e o 10 0z iy es s 10
Fecall Recall Facak
Area Ander the Precision-Recall Curve-jedit-4.3 Area Ander the Precision-Recall Carve-logdj-1.2 Arza Ander the Precision-Recall Curve-xerces-1.4
10| ! NN NogelLAUC P R = 0.579) 105 CNNMosellAUC PR = 0837 Lo /
| J
a8t f o ; B !
>
f 3 < s {
Fou! Fus / 356
z f H / B
f £
g oAl : .i, Ly & ‘_;‘ E e
az| | 62 -~ €2
——— __’f/
1]
ol wiid P el CHN Model{AUC P & = 9.983)
LY 02 04 os o Ls 075 QE0 O e 035 100 875 o8 085 090 095 1oo
Recal Recall Recal

Appendix 3: 0.1 Figure 1. AUCPR for the original data sets - CNN model

DOI 10.14750/ME.2024.012

103

Figure 2 shows the AUCPR values of the CNN model on the balanced data sets. The best

AUCPR obtained is 99% on the
the jedit data set.

log4j and xerces data sets, while the worst AUCPR is 88% on

Area Ander the Precision-Recali Curve-ant-1.7

Area Ander the Precision-Recall Curve-camel-1.6 Area Ander the Pracsion-fecall Curve-ivy-2.0

il H
o8 N a8
P LR ks goe
3 *ry
i 7 i
fas: / oz
0z LZ‘ ozt 4—1
s CNN MadeiAUC 2 8 ~ 0.595) ! 0~ CHI ModuliAUC B B = 0.963) !

10
LE

os

s

<

fos *
“1]
Qo |~ CHNModelAUC P R = 0.824] |

s oy as a9 10
fecat

Area Ander the Precision-Recall Curve-jedit-4.3

065 O70 075 0%0 035 0% OS5 100

©.500 0.52% G250 3575 0.500 0325 G950 0.973 1000
Rocadt Recas

Area Ander the Precision-Recall Curve-J0g4/-1.2 aArea Ander the Precision-Recall Curve-xerces-1.4

10| CHM ModelaX P 3 = 0.38T] ! 10+ . i wie
s LS l o8 L
3 | 13 = s 3
gu fos ins
= =
H s o
504 Zos Sos|
0z ax: az
{ |
a0+ ap . — CMNMsdeNAUC P R = 0.957) ! ap |~ CHN MossiaUC P E - 0.383]
[a2 0s [as 1e 088 0% 03T O3 036 0% 100 4400 G028 G.550 5575 4900 0.925 4953 A.9T5 1008
Recad Recsd Recall

Appendix 3: 0.2 Figure 2. AUCPR for the balanced data sets - CNN model

Figure 3 shows the AUCPR values of the GRU model on the original data sets. The best
AUCPR obtained is 93% on the log4j data set, while the worst AUCPR is 24% on the jedit data

set.
Area Ander the Precision-Recall Curve-ant-1.7 Area Ander the Precision-Recall Curvecamel-1.6 Area Ander the Precision-Recall Curve-ivy-2.0 \
10 LL = GRYU Nadei(AUC P R = 0.477) 18 — GRA Model[AUC PR = 2.319) 1871 = GRU WodeH{AUC P R= 0.388)
z -
s . e o8 Lo
3 ¢ -
§os- '_'—= §as; % sas; /
£ = £ £ : .
2os: = Lag! ¢ 2oz 7
g > s - []
- £ i
oz e, ez ” a2 t
_—"’/" /; !
- |
a0 3 _‘ 2.0+ — «o il Bl
02 03 o4 05 06 37 Of 0¥ 10 0o oz s us s 10 02 o ok os 10
Fecal Becmt Recalk
Arza Ander the Precision-Recall Curve-jedit-4.3 Area Ander the Precision-Recall Curve-1003j-1.2 graa Ander the Precision-Recall Curve-xerces 1.4
m-_‘ — GEMMogel(AUCP R = 0393 | 301 / u‘ — GRU Model[450 P ¥ = 0.518] |
os! f 0s- 7 4 iwi
\ ——— 7
o8 / $os Y Fos
H ‘ 3 -~ :
£ o4 / & = 4 [P
i Z = 049 o~ F ok
‘ /"—-/ ///”
02~ - oz az!
|~ | |
o s | as| T AU Medeauc PR - 536} { i — ‘
29 02 o3 oS os 10 OB 028 090 Q52 03¢ 49 08 100 as a3 ' as ns 18
Recol Recsll Recall

Appendix 3: 0.3 Figure 3. AUCPR for the original data sets - GRU model

DOI 10.14750/ME.2024.012

104

Figure 4 shows the AUCPR values of the GRU model on the balanced data sets. The best
AUCPR obtained is 100% on the jedit data set, while the worst AUCPR is 84% on the camel

data set.

Area Ander the Frecision Recall Curve ant-L7
| »hH\\
1
4
/”

G Made|(AWC F R = 104

T - — '
s e 18

n
Nwonii

18] - N

— RAY Mede|(ASC P R« 1.200)

e RRE2 BWE BesE A Luwe
LI

Arss Ander the Pracisian-Recall Curye-jedit-a.8

Area Ander the Frecision Necall Turve-cames-1. 8
"

oe

- GAY Ml AC N & - RATI) |

as “s ar ne L5)

Rl

Arwa Ander the F_Nf(llllf?ﬂbl_.(l"' Curve loQQ»l 2

i in

gnc

L)
PP e]

HUSE G ANS BRI LYTS DN EIES GRS 2094 L
hrcaht

| = o

Arwa Ander the Pracision.Aecall Curve-asrces-1.4 |

L B

Arwa Ander the Frecisen Recall Curve-ivy-2.0
Fre—ey

——

| G WA AU PR - LS

SRS NATE 4G AKEE AVME ANTH LA
LIl

——e

e "a.,,
'

1
|
!
in

AU Madel AL R - R

ns L) ne ny

L=

Appendix 3: 0.4 Figure 4. AUCPR for the balanced data sets - GRU model

Appendix 4: Bi-LSTM and GRU with Under and Oversampling Methods

Figures 1 to 8 show the training and validation (accuracy and loss) of the proposed models (Bi-
LSTM and GRU) on the balanced datasets.
Figures 1 to 4 show the training and validation accuracy of the models on the balanced
datasets. The vertical axis presents the accuracy of the models, and the horizontal axis illustrates
the number of epochs. Accuracy is the fraction of predictions that the models predicted right.

Figure 1 shows the accuracy values of the Bi-LSTM model with Random Oversampling
technique. From the Figure, the model learned 96% accuracy for God Class, 99% accuracy for
Data Class, 96% accuracy for Feature envy and 100% accuracy for Long method at the 100th

epoch.
Training and Valldation Accuracy-god class Training and Validation Accuracy -datae class
Lo P 4 oo | ~ L —
o I Y ‘ oy AN
ooen J Vv A o.en | \ V\ped Al 4
AW 4 | \y
o.no y i\ o.e0 | .’, f
a.es I\ ‘ |
A LJ o.en |
ono 1y |
ors ‘\ nno i
oo b1y ars ‘
"aminiog | Baining
LA s Validation oo Valtdstion
o 20 o o 100 o 0 a0 0o 100

Fapronamm

Training and Validation Accuracy-fTeature snvy
1Lo0 Loo |
o J \ owus | // f
'l o0 |
080 i | i
/ E ons |
E o / § *uo
om0 f ars |
ors{ | Wb e
| Vbbbt b oes |
o 20 a0 oo =3 “a00 © 20
Fpachs

Training and Valldation Accuracy-long method

Vo ne

Aoy B
~ Wabrinmg
Validetion
' |
L "o 100
Fpeenhe

Appendix 4: 0.1 Figure 1. Training and Validation Accuracy on the balanced datasets using Bi-LSTM Model-

Random Oversampling

DOI 10.14750/ME.2024.012 105

Figure 2 shows the accuracy values of the Bi-LSTM model with Tomek links technique. From
the Figure, the model learned 96% accuracy for God Class, 95% accuracy for Data Class, 98%
accuracy for Feature envy and 99% accuracy for Long method at the 100th epoch.

Training and Valldation Accuracy-god class Training and Valldation Accuracy-data class
Loa | f Ad [Lo0 A A R V= Y
i, \‘.A " ¥ .\’-.‘«. ¥ o Y . WA r7Y -.‘[. “,, LN\
Sis s _.If‘ ;' O.9% ',./_,_, vl
| | N/ | o.so |
o.n0 /Y
"}J g o.uy
2 ons 0.80
¥ N i
ano | 0.7
| J o.70
0.7% / Training MWaining
N Vatiduvion o.es Vslidmtion
o 20 a0 <o 0o 100 o 20 a0 o 0o 100
Ppochs Epocnn
Training and Validation Accuracy-feature envy Training and validation Accuracy-long-method
1.00 Lo0 -
\ AL Y A V,:*l‘
o.0% sondiihd o A "\
s \4 AV i M
o.wo A T /V‘" ! WY 3 | ..V
\AA NN AN
g ons J y " ' A\ I\Y '
‘,' | ¥y AL aso]
B o.10 { Ny ¥ | \.
« | ! "\
0.7% ‘ | | o8
o.70 1 I
Taining Twining
o-ne Vithitntion o.so ! Villadntion
o 20 an &0 oo 100 o 20 ab w0 oo 160
Epochs Epocthie

Appendix 4: 0.2 Figure 2. Training and Validation Accuracy on the balanced datasets using Bi-LSTM Model-
Tomek links

Figure 3 shows the accuracy values of the GRU model with Random Oversampling technique.
From the Figure, the model learned 96% accuracy for God Class, 98% accuracy for Data Class,
97% accuracy for Feature envy and 100% accuracy for Long method at the 100th epoch.

Training and Validation Accuracy-god class Training and Validation Accuracy-data class
1.00 RN AT Lo N o A
N —— r i)) TN e 7 et o 7 |\ ¥ 4 -~ .
0,06 A ,-\'/' \4 v f \’ ’ /\/. T y v ‘\ [
090 ALY o.e f
Ak ¥
Z onn Yy ! > [
E o.00 E 2y J
a,7n < /
0.7
0.70 N
Taining Tuining
crping Valldgation | o6 Validation
o 20 a0 60 5o 100 o 20 a0 60 80 00
Epochs Epochs
Training and Validation Accuracy-featurs anvy Training and Validation Accuracy-long method
10
Training s e\ N 1.0 ey .\‘ WAL
Validation / » A LAl “~ o
o.e ? I, / o9 /\'v\;'\’v \ f ¥ [‘ \/ v V
A , A |

J os
vV ’ \/
g a7 g‘” I
B 0

! 4l
] 0L Ahl ‘
o6 | | "4;"‘-," \/ !
INY 1Y / 0.6
o.% 1 \ Timining

!
0.5 Vaslidation

o

0.4 —p- ' T T - v
o 20 a0 w0 o 100 o 20 a0 0 00 100
pochs Epochs

Appendix 4: 0.3 Figure 3. Training and Validation Accuracy on the balanced datasets using GRU Model-
Random Oversampling

DOI 10.14750/ME.2024.012 106

Figure 4 shows the accuracy values of the GRU model with Tomek links technique. From the
Figure, the model learned 96% accuracy for God Class, 99% accuracy for Data Class, 99%
accuracy for Feature envy and 98% accuracy for Long method at the 100th epoch.

Training and Valldation Accuracy-god class Training and Validation Accuracy-data class
1Loo A = L) 10 ! A Al e
\ W AT Mty TAN UYL w \/
b i i ‘ W ‘ V
J : o ’-.'
0.%0 |
v - ,J
g o.as on
]
i o.80 1 |
| 0.7 l‘
o0,7% | M //
. Trmining Y4 Maining
a.70 Valtstantion oe /.. Vr Vnlidntion
a 70 ao o o 100 o 20 a0 ‘w0 oo 100
Cpochs Tpachs
Training and Validation Accuracy-Teaturs anvy Training and Validation Accuracy-long method
.0 »aining : e e Lo = V) ca
Vsl atian » 7 A o V
o A | I\ N
,.‘ ! o /
L o8 ,."AN' . o
§ 0.7) YWY 5 oa
X W
0.6 '\
0.7 A
VA
o
o | Thaining
oa | = = : = = o = = = alansian.
o 20 a0 o 0o 100 o 0 J0 “o "»o 100
Epros s Epochs

Appendix 4: 0.4 Figure 4. Training and Validation Accuracy on the balanced datasets using GRU Model-
Tomek links

Figures 5 to 8 show the training and validation loss of the models on the balanced datasets. The
vertical axis presents the loss of the models, and the horizontal axis illustrates the number of
epochs. The loss indicates how bad a model's prediction was.

Figure 5 shows the loss values of the Bi-LSTM model with Random Oversampling technique.
From the Figure, the model loss is 0.035 for God Class, 0.006 for Data Class, 0.037 for Feature
envy and 0.005 for the long method at the 100th epoch.

Training and Valldation Loss-god class Training and Valldation Loss-data class
Training 0.200 Teaining
0,29 } Vallitation Validatian
WAl oars
0.20 \ 0150
J 0.12%
- 018 v "‘. &
13 N 0100 | |
”? { 3 V" f A
o110 \ , L |
M 0.07] :) \
b A . o.0%0 AN AV
o.08 | A A A | TNANY N\ \
X ad T 0025 -~ ,_4’ \/ ._
000 |] 0.000 e ——
o 20 a0 w0 no 100 o 20 ao w0 5O 100
Fpochs Fpochn
Training and Validation Loss-feature envy Training and Validation Loss-long method
0.200 (Trwining | Trwining
CRE \l Valldation o2 Validation
0,150 \ 0.20
0188 \
\ w 0.an
g 0100 ’\
o.ars o.10 \
o0.0on0)
\ [0.0% \] A |
0.02% M A o A "\ P\ AN A AW
0.000 | 4 5 s — gl oot % x5 ~ " it
o 20 a0 60 »o 100 o 20 a0 “o 00 100
Epochs Epochs

Appendix 4: 0.5 Figure 5. Training and Validation Loss on the balanced datasets using Bi-LSTM Model-
Random Oversampling

DOI 10.14750/ME.2024.012 107

Figure 6 shows the loss values of the Bi-LSTM model with Tomek links technique. From the
Figure, the model loss is 0.037 for God Class, 0.044 for Data Class, 0.020 for Feature envy and
0.013 for the long method at the 100th epoch.

Training and valldation Loss-god class Training and Validation Loss-data class
HI00 A Taining 0.25 Training
o1rs \ Validation Validation
0.15%0 I \ , 0.20 {
0.12% \ 1
v o1s
§ ©0.100 [J\ | 3 \
| Mi
0.07% k\‘ 0.10 \
0.050 % M . 0.0% i _. {Jvl A
0.02% VAN B RO . DR | AR A YT 10t VA
0,000 1. - v ‘) = + - == = .00 v > ' v - -
o 20 40 60 BO 100 o 20 a0 oo 5o 100
Epochs Epochs
Training and Valldation Loss-feature envy Training and Valldation Lass-long-method
— Trmintng | Trmining
0.2% " Validation o Validation
0.z0 o.an
| | /x
/
"0 L) A -
g - \' f N, \ .” g oao
\ J AN ‘J
.10 \ "\ AL |
A I\ ; '\ TRUANY 0.05 L ‘l' A
0.0% J '\;‘-.N,rJ‘\ " V\ \y
& ¥ VI
0,00 v) ' ' . ' R, . . ' ' v '
o 20 40 L) L) 100 o 20 a0 w0 80 100
Upochs Cpochs

Appendix 4: 0.6 Figure 6. Training and Validation Loss on the balanced datasets using Bi-LSTM Model-
Tomek links

Figure 7 shows the loss values of the GRU model with Random Oversampling technique. From
the Figure, the model loss is 0.033 for God Class, 0.023 for Data Class, 0.032 for Feature envy
and 0.002 for the long method at the 100th epoch.

___Training and Validation Loss-god class __Training and Validation Loss.data class
O30 Tratning Training
o.28 Vinlldntion 0,25 Vnlidation
020 | | 0.20 ' ~._\
g 0,15 ‘\ g o34 \
oo \ 0.10 \ \
a.08 TRAA A Y ’ "
N - 0.05 — -
) Y f\‘ o e L o }'\-.,.r___J ~-.\\ 7
o.oo M U A - v . v o'oo ¥ ' Yy v v '
o 20 a0 60 0o 100 0 20 a0 0 no 100
Epochs Epochs
ke Training and Validation Loss-feature envy Training and Validation Loss-long method
Training e Teaining
0.20 \ Validation 0.5 \ Validation
0.30
o.2% 4. "
YA 0.25
0.20 =] |
X A\ 0.15 ’\ | I
0.20 VN ‘
\ ‘ e \’- ;A\'/'l'\n / WAL \ /\ A A
0,06 \» A [~ /\ 0,05 - \J e A v,'v}\"- \
A\ L i ~—/ S A
0,00 \ " . . . by ' . . . :
o 20 an &0 no 100 o 20 a0 60 "0 100
Epochs Epochn

Appendix 4: 0.7 Figure 7. Training and Validation Loss on the balanced datasets using GRU Model-Random
Oversampling

DOI 10.14750/ME.2024.012

108

Figure 8 shows the loss values of the GRU model with Tomek links technique. From the Figure,
the model loss is 0.038 for God Class, 0.018 for Data Class, 0.021 for Feature envy and 0.025
for the long method at the 100th epoch.
As shown in the Figures, the accuracy of training and validation increases, and the loss
decreases with increasing epochs. Regarding the high accuracy and low loss obtained by the
proposed models, we note that both models are well-trained and validated. Additionally, we
note that the models are approximately perfectly fitting, there is no overfitting or underfitting.

a.oo

oa0
o2
0.x0
- AN
L L
o.on

o.o00

Training and Validation Loss-god class

‘ Treiniog
Vatidartian

|
)

|\

\

D . o

0o L 100
L L

° 20
Training and Validation Loss-feature envy

walniog
| Vailldntion

©o =o 100
Vasmatre

o o

os0{

|
oas |

|

[T

5 T
|

wio |
w.on |

0.o0

osn |
o.30 |
0.2% |

0.20 |

Lows

o0s |
w10 |
v.on |

.00 ¢

Training and Validation Loss-date class

Training
| Watladmtion

oo 100

Training and Validation Loas-long mathod

Tatnitvg
Valltatian

Wasn
Y

\

A
_o 100
Vpoenhe

o amn no

Appendix 4: 0.8 Figure 8. Training and Validation Loss on the balanced datasets using GRU Model - Tomek
links

Furthermore, Figures 9 to 12 show the ROC curves for both models on the balanced datasets.
The vertical axis presents the actual positive rate of the models, and the horizontal axis
illustrates the false positive rate. The AUC is a sign of the performance of the model. The larger
the AUC is, the better the model performance will be. Figure 9 shows the AUC values of the
Bi-LSTM model with Random Oversampling technique. From the Figure, the AUC values are
98% on God Class,100% on Data Class, 97% on Feature envy and 100% on the Long method.

o2

Lo

iua:
..
£ sl

ROC curve-Balanced Datasets(god class)
; :
R
.

t - BHASTM Model(AUROC « O.B83)
0.0 o.a o.e
Falsm Ponitive Hats

'
0.2 o.n 1o

ROC curve-Balanced Datasets(feature envy)

o
[z
| (Y siniine s S

0.2

- BLEASTM Model lAUROC -« O.87e)

i..]
i..
o)

D.o

_ROC curve-Balanced Datasets(data class)

ROC curve-Balanced Dgt_-scts(lpqg mo_thod)

| |

E

|

DIALSTM Model{AURDC « 1. .000)
oa o
Falzes Posittve Rate

o o.a Lo

- BLASTM Model{AURDC « 1 000)
o3 oa os on 10
Fatas Fositive Rats

Appendix 4: 0.9 Figure 9. ROC curves for the balanced datasets - Bi-LSTM Model-Random Oversampling

DOI 10.14750/ME.2024.012 109

Figure 10 shows the AUC values of the Bi-LSTM model with Tomek links technique. From
the Figure, the AUC values are 0.98% on God Class,97% on Data Class, 99% on Feature envy
and 98% on the Long method.

MOT SUrwe-Aalecng Cantuds(od cCans) __ROC cutve-Aalanced Datusnis(data claee)
1o I Lo -
— |
aw nw -
: 17
s [T
|
i al g B2
on —— EFLETIN MeseNAGROE = O.¥RT) o J —— B LT EaduAUROC = 9,975
ae” &= e as o= ra a5 o o vy a2 ia
Falwa Panihy » Lata ¥ abite Pauwttiva ot
ROC curvs-Kalinced Datiiets{festioce wrivy) RUT curvs-Salshoed Detwsets]lang- method)
ra LD«
i an 3 an J
|
E_, L
g . e HHL.ETH MedasdlAMIRDC - O.YIX} a0 ! = B-LETE MaedaHAUNDOC - D.0EE]
oe [- as ala e oo a3 o “e s e

Pty Poretitets Rars Pivioe Foutittre Raty
Appendix 4: 0.10 Figure 10. ROC curves for the balanced datasets - Bi-LSTM Model- Tomek links

Figure 11 shows the AUC values of the GRU model with Random Oversampling technique.
From the Figure, the AUC values are 96% on God Class,99% on Data Class, 97% on Feature
envy and 100% on the Long method.

AGE curya-Balanced Datasatu(yod class) ROC curva-Salanced Datassts{date class)

1 [

o.2
goa | ¥ —=— ORU Moda|(AURDC —~ 0.9a8) a8 —a— QAU Mosai{AUROLT - C.E88)
0,0 ox aa aa an re aa aa o4 ae ae Lo
Faujas Pouibtye Wara Pales poaitiva Rare
ROC curva-Balanced Datasata{fmatura anvy] ROC curve-Balanced Datazetaf{iong mathod)
*a l 10
Q.a] an

oz
0,0 - GRU ModeitAUROC = 0.974] 0.0 v GRL Mpael(ADNOC & 1.080]
0.0 oz aa as as 1e an ax o as as 1a
Falas Pastitve Rate Falaa Positive Raca

Appendix 4: 0.11 Figure 11. ROC curves for the balanced datasets - GRU Model-Random Oversampling

DOI 10.14750/ME.2024.012

110

Figure 12 shows the AUC values of the GRU model with Tomek links technique. From the
Figure, the AUC values are 98% on God Class,99% on Data Class, 99% on Feature envy and
99% on the Long method.

__ROC curya-Baiancud Datasets{god ciass)

o

—=- GRY O‘.(‘f.lllum - D989}

a ' gt db e
0.z aa o

- PR
. o 1.0
Fainw Posite KRute

ROL cuyrys-Ralwnced Datssetn{foaters snvy)

— GRAU Modal{AUROC - D.B27)

- 4— 4
0.4 0. b -

Frise Fasitive Rete

a2 os

—— GRV ModeIlAURDE - B.B8F)
.. . R — ey
o2 o e o.% 2.0

False Poeitive Rate

ROLC curye-Butanced Datwsetx{liong methed}

o

— GRU Mods|{ALURDOL - D."9E)

a2 o os os Lo

Fiine Fositive Rute

Appendix 4: 0.12 Figure 12. ROC curves for the balanced datasets - GRU Model- Tomek links

DOI 10.14750/ME.2024.012 1

Author’s Publication
Publications Related to the Dissertation

(P1) N. A. A. Khleel and K. Nehéz, "Comprehensive Study on Machine Learning Techniques
for Software Bug Prediction”, International Journal of Advanced Computer Science and
Applications,Vol.12,No.8,pp.726-735,2021.
http://dx.doi.org/10.14569/IJACSA.2021.0120884. Web of Science (WoS), Scopus (Q3),
Impact Factor (1.16), Journal Article.

(P2) N.A.A.Khleel and K.Nehéz, "Improving the Accuracy of Recurrent Neural Networks
Models in Predicting Software Bug Based on Undersampling Methods", Indonesian Journal of
ElectricalEngineeringandComputerScience.Vol.32,No.1,pp.478-493,2023.
http://doi.org/10.11591/ijeecs.v32.i1.pp478-493. Scopus (Q3), Impact Factor (1.51), Journal
Article.

(P3) N.A.A.Khleel and K.Nehéz, "Software Defect Prediction using a Bidirectional LSTM
Network Combined with Oversampling Techniques”, Cluster Computing (2023).
https://doi.org/10.1007/s10586-023-04170-z. Web of Science (WoS), Scopus (Q2), Impact
Factor (4.4), Journal Article.

(P4) N.A.A.Khleel and K.Nehéz, "A novel approach for software defect prediction using CNN
and GRU based on SMOTE Tomek method", Journal of Intelligent Information Systems
(2023). https://doi.org/10.1007/s10844-023-00793-1.Web of Science (WoS), Scopus (Q2),
Impact Factor (3.4), Journal Article.

(P5) N.A.A.Khleel and K.Nehéz, "Detection of Code Smells Using Machine Learning
Techniques Combined with Data-Balancing Methods", International Journal of Advances in
Intelligent Informatics.VVol.9,No.3,pp.402-417,2023. https://doi.org/10.26555/ijain.v9i3.981.
Scopus (Q3), Impact Factor (1.88), Journal Article.

(P6) N.A.A.Khleel and K.Nehéz, "Deep convolutional neural network model for bad code
smells detection based on oversampling method", Indonesian Journal of Electrical Engineering
andComputerScience,VVol.26,No0.3,pp.1725-1735,2022.
http://doi.org/10.11591/ijeecs.v26.i3.pp1725-1735. Scopus (Q3), Impact Factor (1.51),
Journal Article.

(P7) N.A.A Khleel and K.Nehéz, "Improving Accuracy of Code Smells Detection using a Bi-
LSTM and GRU Networks with Data Balancing Techniques", International Journal of Data
Science and Analytics, (under review). Scopus (Q2), Impact Factor (2.52), Journal Article.

(P8) N.A.A.Khleel and K.Nehéz, "A new approach to software defect prediction based on
convolutional neural network and bidirectional long short-term memory", Production Systems
andInformationEngineering,Vol.10,No.3,pp.1-15,2022.
https://doi.org/10.32968/psaie.2022.3.1. Journal Article.

(P9) N.A.A.Khleel and K.Nehéz, Data Balancing Methods in ML-Based Software Bug
Prediction, Doktoranduszok Foruma , (2022) pp. 59-67. Conference paper.

http://dx.doi.org/10.14569/IJACSA.2021.0120884
http://doi.org/10.11591/ijeecs.v32.i1.pp478-493
https://doi.org/10.1007/s10586-023-04170-z
https://doi.org/10.1007/s10844-023-00793-1
https://doi.org/10.26555/ijain.v9i3.981
http://doi.org/10.11591/ijeecs.v26.i3.pp1725-1735
https://doi.org/10.32968/psaie.2022.3.1

DOI 10.14750/ME.2024.012 11

(P10) N.A.A.Khleel and K.Nehéz, Overview of modern software bug prediction approaches,
Doktoranduszok Féruma , (2021) pp. 55-61. Conference paper.

Other Publications Journal Articles and Conference Proceeding

(P11) M.A.A.Mohammed, N.A.A.Khleel, N.P.Szab¢ et al, "Modeling of groundwater quality
index by using artificial intelligence algorithms in northern Khartoum State, Sudan", Model.
Earth Syst. Environ, 9, 2501-2516 (2023). https://doi.org/10.1007/s40808-022-01638-6. Web
of Science (Wo0S), Scopus (Q1), Impact Factor (3.90), Journal Article.

(P12) N.A.A.Khleel and K.Nehéz, "Merging problems in modern version control systems ",
MultidisciplinarySciences,VVol.10,No.3,pp.365-376,2020.
https://doi.org/10.35925/[.multi.2020.3.44. Journal Article.

(P13) N.A.A.Khleel and K.Nehéz, "Comparison of version control system tools",
MultidisciplinarySciences,Vol.10,No.3,pp.61-69,2020.
https://doi.org/10.35925/].multi.2020.3.7. Journal Article.

(P14) N.A.A.Khleel and K.Nehéz, "Tools, processes and factors influencing code review ",
MultidisciplinarySciences,Vol.10,No.3,pp.277-284,2020.
https://doi.org/10.35925/.multi.2020.3.33. Journal Article.

(P15) N.A.A.Khleel and K.Nehéz, Mining Software Repository: an Overview,
Doktoranduszok Foruma , (2019) pp. 108-114. Conference paper.

https://doi.org/10.1007/s40808-022-01638-6
https://doi.org/10.35925/j.multi.2020.3.44
https://doi.org/10.35925/j.multi.2020.3.7
https://doi.org/10.35925/j.multi.2020.3.33

DOI 10.14750/ME.2024.012 113

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

G. Sharma, S. Sharma, and S. Gujral, “A Novel Way of Assessing Software Bug Severity Using
Dictionary of Critical Terms,” in Procedia Computer Science, Elsevier B.V., 2015, pp. 632-639. doi:
10.1016/j.procs.2015.10.059.

H. Bani-Salameh, M. Sallam, and B. Al shboul, “A deep-learning-based bug priority prediction using
RNN-LSTM neural networks,” E-Informatica Software Engineering Journal, vol. 15, no. 1, pp. 29-45,
2021, doi: 10.37190/E-INF210102.

A. Majd, M. Vahidi-Asl, A. Khalilian, P. Poorsarvi-Tehrani, and H. Haghighi, “SLDeep: Statement-level
software defect prediction using deep-learning model on static code features,” Expert Syst Appl, vol. 147,
Jun. 2020, doi: 10.1016/j.eswa.2019.113156.

F. Arcelli Fontana, M. V. Mintyld, M. Zanoni, and A. Marino, “Comparing and experimenting machine
learning techniques for code smell detection,” Empir Softw Eng, vol. 21, no. 3, pp. 1143-1191, Jun. 2016,
doi: 10.1007/s10664-015-9378-4.

A. Al-Shaaby, H. Aljamaan, and M. Alshayeb, “Bad Smell Detection Using Machine Learning
Techniques: A Systematic Literature Review,” Arabian Journal for Science and Engineering, vol. 45,
no. 4. Springer, pp. 2341-2369, Apr. 01, 2020. doi: 10.1007/s13369-019-04311-w.

P. Kokol, M. K. Semantika, S. Zagoranski, and M. Kokol, “Code smells: A Synthetic Narrative Review
Code smells: A Synthetic Narrative Review Code smells: A Synthetic Narrative Review,” 2020. [Online].
Available: https://digitalcommons.unl.edu/libphilprac

N. A. A. Khleel and K. Nehéz, “A novel approach for software defect prediction using CNN and GRU
based on SMOTE Tomek method,” J Intell Inf Syst, Jun. 2023, doi: 10.1007/s10844-023-00793-1.

Y. Li, S. Wang, T. N. Nguyen, and S. Van Nguyen, “Improving bug detection via context-based code
representation learning and attention-based neural networks,” Proceedings of the ACM on Programming
Languages, vol. 3, no. OOPSLA, Oct. 2019, doi: 10.1145/3360588.

L. Jonsson, M. Borg, D. Broman, K. Sandahl, S. Eldh, and P. Runeson, “Automated bug assignment:
Ensemble-based machine learning in large scale industrial contexts,” Empir Softw Eng, vol. 21, no. 4,
pp. 1533-1578, Aug. 2016, doi: 10.1007/s10664-015-9401-9.

S. Aleem, L. Fernando Capretz, and F. Ahmed, “COMPARATIVE PERFORMANCE ANALYSIS OF
MACHINE LEARNING TECHNIQUES FOR SOFTWARE BUG DETECTION,” pp. 71-79, 2015, doi:
10.5121/csit.2015.50108.

H. Tong, B. Liu, and S. Wang, “Software defect prediction using stacked denoising autoencoders and
two-stage ensemble learning,” Inf Softw Technol, vol. 96, pp. 94-111, Apr. 2018, doi:
10.1016/j.infsof.2017.11.008.

N. Moha, Y. G. Guéhéneuc, L. Duchien, and A. F. Le Meur, “DECOR: A method for the specification
and detection of code and design smells,” IEEE Transactions on Software Engineering, vol. 36, no. 1,
pp. 20-36, 2010, doi: 10.1109/TSE.2009.50.

F. Pecorelli, D. Di Nucci, C. De Roover, and A. De Lucia, “On the role of data balancing for machine
learning-based code smell detection,” in MaLTeSQUE 2019 - Proceedings of the 3rd ACM SIGSOFT
International Workshop on Machine Learning Techniques for Software Quality Evaluation, co-located
with ESEC/FSE 2019, Association for Computing Machinery, Inc, Aug. 2019, pp. 19-24. doi:
10.1145/3340482.3342744.

N. A. A. Khleel and K. Nehéz, “Deep convolutional neural network model for bad code smells detection
based on oversampling method,” Indonesian Journal of Electrical Engineering and Computer Science,
vol. 26, no. 3, pp. 1725-1735, Jun. 2022, doi: 10.11591/ijeecs.v26.i3.pp1725-1735.

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

DOI 10.14750/ME.2024.012 114

M. Gao, X. Hong, S. Chen, C. J. Harris, and E. Khalaf, “PDFOS: PDF estimation based over-sampling
for imbalanced two-class problems,” Neurocomputing, vol. 138, pp. 248-259, Aug. 2014, doi:
10.1016/j.neucom.2014.02.006.

U. Alj, S. Aftab, A. Igbal, Z. Nawaz, M. S. Bashir, and M. A. Saeed, “Software defect prediction using
variant based ensemble learning and feature selection techniques,” International Journal of Modern
Education and Computer Science, vol. 12, no. 5, pp. 29-40, 2020, doi: 10.5815/ijmecs.2020.05.03.

N. A. A. Khleel and K. Nehéz, “Software defect prediction using a bidirectional LSTM network
combined with oversampling techniques,” Cluster Computing (2023). https://doi.org/10.1007/s10586-
023-04170-z.

N. A. A. Khleel and K. Nehéz, “Comprehensive Study on Machine Learning Techniques for Software
Bug Prediction.” [Online]. Available: www.ijacsa.thesai.org

I. H. Laradji, M. Alshayeb, and L. Ghouti, “Software defect prediction using ensemble learning on
selected features,” Inf Softw Technol, vol. 58, pp. 388-402, Feb. 2015, doi: 10.1016/j.infsof.2014.07.005.

E. OZTURK, K. U. Birant, and D. Birant, “Yazilim Hata Tahmini i¢in Sirali Siniflandirma Yaklasimi,”
Deu Muhendislik Fakultesi Fen ve Muhendislik, vol. 21, no. 62, pp. 533-544, May 2019, doi:
10.21205/deufmd.2019216218.

A. Hammouri, M. Hammad, M. Alnabhan, and F. Alsarayrah, “Software Bug Prediction using machine
learning approach,” International Journal of Advanced Computer Science and Applications, vol. 9, no.
2, pp. 78-83, 2018, doi: 10.14569/1JACSA.2018.090212.

M. Efendioglu, A. Sen, and Y. Koroglu, “Bug prediction of systemC models using machine learning,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 38, no. 3, pp.
419-429, Mar. 2019, doi: 10.1109/TCAD.2018.2878193.

J. A. Fadhil, K. T. Wei, and K. S. Na, “Artificial Intelligence for Software Engineering: An Initial Review
on Software Bug Detection and Prediction,” Journal of Computer Science, vol. 16, no. 12, pp. 1709-
1717, 2020, doi: 10.3844/jcssp.2020.1709.1717.

M. Shepperd, Q. Song, Z. Sun, and C. Mair, “Data quality: Some comments on the NASA software
defect datasets,” IEEE Transactions on Software Engineering, vol. 39, no. 9, pp. 1208-1215, 2013, doi:
10.1109/TSE.2013.11.

A. Professor, “Overview of Software Defect Prediction using Machine Learning Algorithms.” [Online].
Available: http://lwww.ijpam.eu

M. 1. Azeem, F. Palomba, L. Shi, and Q. Wang, “Machine learning techniques for code smell detection:
A systematic literature review and meta-analysis,” Information and Software Technology, vol. 108.
Elsevier B.V., pp. 115-138, Apr. 01, 2019. doi: 10.1016/j.infsof.2018.12.009.

M. Y. Mhawish and M. Gupta, “Predicting Code Smells and Analysis of Predictions: Using Machine
Learning Techniques and Software Metrics,” J Comput Sci Technol, vol. 35, no. 6, pp. 1428-1445, Nov.
2020, doi: 10.1007/s11390-020-0323-7.

M. Hadj-Kacem and N. Bouassida, “A hybrid approach to detect code smells using deep learning,” in
ENASE 2018 - Proceedings of the 13th International Conference on Evaluation of Novel Approaches to
Software Engineering, SciTePress, 2018, pp. 137-146. doi: 10.5220/0006709801370146.

H. Liu, J. Jin, Z. Xu, Y. Zou, Y. Bu, and L. Zhang, “Deep learning based code smell detection,” IEEE
Transactions on Software Engineering, vol. 47, no. 9, pp. 1811-1837, Sep. 2021, doi:
10.1109/TSE.2019.2936376.

D. Oliveira, W. K. G. Assungdo, L. Souza, W. Oizumi, A. Garcia, and B. Fonseca, “Applying Machine
Learning to Customized Smell Detection: A Multi-Project Study,” in ACM International Conference
Proceeding Series, Association for Computing Machinery, Oct. 2020, pp. 233-242. doi:
10.1145/3422392.3422427.

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

DOI 10.14750/ME.2024.012 115

M. Gradisnik, T. Berani¢, S. Karakati¢, and G. Mausa, “Adapting God Class thresholds for software
defect prediction: A case study.” [Online]. Available: https://projects.eclipse.org/

G. Saranya, H. Khanna Nehemiah, A. Kannan, and V. Nithya, “Model level code smell detection using
EGAPSO based on similarity measures,” Alexandria Engineering Journal, vol. 57, no. 3. Elsevier B.V.,
pp. 1631-1642, Sep. 01, 2018. doi: 10.1016/j.aej.2017.07.006.

U. Mansoor, M. Kessentini, B. R. Maxim, and K. Deb, “Multi-objective code-smells detection using
good and bad design examples,” Software Quality Journal, vol. 25, no. 2, pp. 529-552, Jun. 2017, doi:
10.1007/s11219-016-9309-7.

D. K. Kim, “Finding bad code smells with neural network models,” International Journal of Electrical
and Computer Engineering, vol. 7, no. 6, pp. 3613-3621, Dec. 2017, doi: 10.11591/ijece.v7i6.pp3613-
3621.

F. Caram Luiz, B. Rafael de Oliveira Rodrigues, and F. Silva Parreiras, “Machine learning techniques
for code smells detection: an empirical experiment on a highly imbalanced setup,” 2019, doi:
10.1145/3330204.

F. Arcelli Fontana and M. Zanoni, “Code smell severity classification using machine learning
techniques,” Knowl Based Syst, vol. 128, pp. 43-58, Jul. 2017, doi: 10.1016/j.knosys.2017.04.014.

F.L. Caram, B. R. D. O. Rodrigues, A. S. Campanelli, and F. S. Parreiras, “Machine Learning Techniques
for Code Smells Detection: A Systematic Mapping Study,” International Journal of Software
Engineering and Knowledge Engineering, vol. 29, no. 2, pp. 285-316, Feb. 2019, doi:
10.1142/S021819401950013X.

F. Pecorelli, F. Palomba, D. Di Nucci, and A. De Lucia, “Comparing heuristic and machine learning
approaches for metric-based code smell detection,” in IEEE International Conference on Program
Comprehension, IEEE Computer Society, May 2019, pp. 93-104. doi: 10.1109/ICPC.2019.00023.

N. A. A. Khleel and K. Nehéz, “Detection of code smells using machine learning techniques combined
with data-balancing methods,” International Journal of Advances in Intelligent Informatics, vol. 9, no.
3, pp. 402-417, 2023, doi: https://doi.org/10.26555/ijain.v9i3.981.

N. A. A. Khleel and K. Nehéz, “Improving the accuracy of recurrent neural networks models in predicting
software bug based on undersampling methods,” Indonesian Journal of Electrical Engineering and
Computer Science, vol. 32, no. 1, p. 478, Oct. 2023, doi: 10.11591/ijeecs.v32.il.pp478-493.

S. Puranik, P. Deshpande, and K. Chandrasekaran, “A Novel Machine Learning Approach for Bug
Prediction,” in Procedia Computer Science, Elsevier B.V., 2016, pp. 924-930. doi:
10.1016/j.procs.2016.07.271.

V. Gupta, N. Ganeshan, and T. K. Singhal, “Developing Software Bug Prediction Models Using Various
Software Metrics as the Bug Indicators,” 2015. [Online]. Available: www.ijacsa.thesai.org

S. Karim, H. Leslie Hendric Spits Warnars, F. Lumban Gaol, E. Abdurachman, and B. Soewito,
“Software Metrics for Fault Prediction Using Machine Learning Approaches A Literature Review with
PROMISE Repository Dataset.”

S. N. A. Saharudin, K. T. Wei, and K. S. Na, “Machine Learning Techniques for Software Bug
Prediction: A Systematic Review,” Journal of Computer Science, vol. 16, no. 11, pp. 1558-1569, 2020,
doi: 10.3844/JCSSP.2020.1558.1569.

D. I. G. Amalarethinam, P. H. Maitheen, and S. Hameed, “Analysis of Object Oriented Metrics on a Java
Application,” 2015.

R. Suresh Kumar and B. Satyanarayana, “Adaptive Genetic Algorithm Based Artificial Neural Network
for Software Defect Prediction,” Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc, vol. 15, 2015.

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

DOI 10.14750/ME.2024.012 116

X. Xia, D. Lo, S. J. Pan, N. Nagappan, and X. Wang, “HYDRA: Massively compositional model for
cross-project defect prediction,” IEEE Transactions on Software Engineering, vol. 42, no. 10, pp. 977—
998, Oct. 2016, doi: 10.1109/TSE.2016.2543218.

H. Liang, Y. Yu, L. Jiang, and Z. Xie, “Seml: A Semantic LSTM Model for Software Defect Prediction,”
IEEE Access, vol. 7, pp. 83812-83824, 2019, doi: 10.1109/ACCESS.2019.2925313.

R. Ferenc, P. Gyimesi, G. Gyimesi, Z. Téth, and T. Gyimothy, “An automatically created novel bug
dataset and its validation in bug prediction,” Journal of Systems and Software, vol. 169, Nov. 2020, doi:
10.1016/j.jss.2020.110691.

F. A. Batarseh, A. Kumar, R. Mohod, and J. Bui, “Chapter 10: The Application of Artificial Intelligence
in Software Engineering-A Review Challenging Conventional Wisdom.”

D. R. Prashanta and K. Patra, “LECTURE NOTES ON ARTIFICIAL INTELLIGENCE PREPARED
BY.”

F. Meziane and S. Vadera, “Artificial Intelligence in Software Engineering,” 2010, pp. 278-299. doi:
10.4018/978-1-60566-758-4.ch014.

M. J. Islam, G. Nguyen, R. Pan, and H. Rajan, “A Comprehensive Study on Deep Learning Bug
Characteristics,” Jun. 2019, [Online]. Available: http://arxiv.org/abs/1906.01388

F. Qin, X. Wan, and B. Yin, “An empirical study of factors affecting cross-project aging-related bug
prediction with TLAP,” Software Quality Journal, vol. 28, no. 1, pp. 107-134, Mar. 2020, doi:
10.1007/s11219-019-09460-7.

X. Ye, F. Fang, J. Wu, R. Bunescu, and C. Liu, “Bug Report Classification Using LSTM Architecture
for More Accurate Software Defect Locating,” in Proceedings - 17th IEEE International Conference on
Machine Learning and Applications, ICMLA 2018, Institute of Electrical and Electronics Engineers Inc.,
Jan. 2019, pp. 1438-1445. doi: 10.1109/ICMLA.2018.00234.

S. Sah, “Machine Learning: A Review of Learning Types,” 2020, doi:
10.20944/preprints202007.0230.v1.

B. Mahesh, “Machine Learning Algorithms-A Review Machine Learning Algorithms-A Review View
project Self Flowing Generator View project Batta Mahesh Independent Researcher Machine Learning
Algorithms-A Review,” International Journal of Science and Research, 2018, doi:
10.21275/ART20203995.

T. Oladipupo Ayodele, “X Types of Machine Learning Algorithms.” [Online]. Available:
www.intechopen.com

R. Kumar and S. Singla, “Multiclass Software Bug Severity Classification using Decision Tree, Naive
Bayes and Bagging,” 2021.

A. Kukkar, R. Mohana, A. Nayyar, J. Kim, B. G. Kang, and N. Chilamkurti, “A novel deep-learning-
based bug severity classification technique using convolutional neural networks and random forest with
boosting,” Sensors (Switzerland), vol. 19, no. 13, Jul. 2019, doi: 10.3390/s19132964.

A. Baarah, A. Aloqaily, Z. Salah, M. Zamzeer, and M. Sallam, “Machine Learning Approaches for
Predicting the Severity Level of Software Bug Reports in Closed Source Projects,” 2019. [Online].
Available: www.ijacsa.thesai.org

G. Rodriguez-Pérez, G. Robles, A. Serebrenik, A. Zaidman, D. M. German, and J. M. Gonzalez-
Barahona, “How bugs are born: a model to identify how bugs are introduced in software components,”
Empir Softw Eng, vol. 25, no. 2, pp. 1294-1340, Mar. 2020, doi: 10.1007/s10664-019-09781-y.

S. Jain and A. Saha, “Improving performance with hybrid feature selection and ensemble machine
learning techniques for code smell detection,” Sci Comput Program, vol. 212, Dec. 2021, doi:
10.1016/j.scico0.2021.102713.

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

DOI 10.14750/ME.2024.012 117

S. Sharma and S. Kumar, “Analysis of ensemble models for aging related bug prediction in software
systems,” in ICSOFT 2018 - Proceedings of the 13th International Conference on Software
Technologies, SciTePress, 2019, pp. 256-263. doi: 10.5220/0006847702560263.

A. Abraham, Machine Intelligence Research Labs, M. and C. S. T. C. on S. C. Systems, Annual IEEE
Computer Conference, International Conference on Intelligent Systems Design and Applications 12
2012.11.27-29 Kochi, and ISDA 12 2012.11.27-29 Kochi, 12th International Conference on Intelligent
Systems Design and Applications (ISDA), 2012 27-29 Nov. 2012, Kochi, India.

F. Qin, Z. Zheng, Y. Qiao, and K. S. Trivedi, “Studying Aging-Related Bug Prediction Using Cross-
Project Models,” IEEE Trans Reliab, Sep. 2018, doi: 10.1109/TR.2018.2864960.

A. Abdou, F. Akmel, and E. Birihanu, “A Literature Review Study of Soware Defect Prediction using
Machine Learning Techniques Related papers Early Predict ion of Soft ware Defect using Ensemble
Learning: A Comparat ive St udy A Literature Review Study of Software Defect Prediction using
Machine Learning Techniques,” 2017. [Online]. Available: www.ermt.net

https://www.studocu.com/in/document/adithya-institute-of-technology/computer science/machine-
learningr 17a0534/33563556

S. Moustafa, M.Y. EINainay, N. EI Makky and M.S. Abougabal, "Software bug prediction using
weighted majority voting techniques”, Alexandria engineering journal, VVol. 57, No. 4, pp. 2763-2774,
2018. https://doi.org/10.1016/j.aej.2018.01.003

O. F. Arar and K. Ayan, “Software defect prediction using cost-sensitive neural network,” Applied Soft
Computing Journal, vol. 33, pp. 263-277, Apr. 2015, doi: 10.1016/j.as0c.2015.04.045.

I. F. of E. Christ University (Bangalore and Institute of Electrical and Electronics Engineers, 2019
International Conference on Data Science and Communication (IconDSC) : Faculty of Engineering,
CHRIST (Deemed to be University), Bangalore, 2019-03-01 to 2019-03-02.

S. Gupta and S. Kumar Gupta, “A Systematic Study of Duplicate Bug Report Detection.” [Online].
Available: www.ijacsa.thesai.org

S. Haque, Z. Eberhart, A. Bansal, and C. McMillan, “Semantic Similarity Metrics for Evaluating Source
Code Summarization,” in IEEE International Conference on Program Comprehension, IEEE Computer
Society, 2022, pp. 36—47. doi: 10.1145/nnnnnnn.nnnnnnn.

F. Barchi, E. Parisi, G. Urgese, E. Ficarra, and A. Acquaviva, “Exploration of Convolutional Neural
Network models for source code classification,” Eng Appl Artif Intell, vol. 97, Jan. 2021, doi:
10.1016/j.engappai.2020.104075.

H. Liu, Z. Xu, and Y. Zou, “Deep learning based feature envy detection,” in ASE 2018 - Proceedings of
the 33rd ACM/IEEE International Conference on Automated Software Engineering, Association for
Computing Machinery, Inc, Sep. 2018, pp. 385-396. doi: 10.1145/3238147.3238166.

T. Sharma, V. Efstathiou, P. Louridas, and D. Spinellis, “Code smell detection by deep direct-learning
and transfer-learning,” Journal of Systems and Software, vol. 176, Jun. 2021, doi:
10.1016/j.jss.2021.110936.

L. Qiao, X. Li, Q. Umer, and P. Guo, “Deep learning based software defect prediction,” Neurocomputing,
vol. 385, pp. 100-110, Apr. 2020, doi: 10.1016/j.neucom.2019.11.067.

E. N. Akimova et al., “A survey on software defect prediction using deep learning,” Mathematics, vol.
9, no. 11. MDPI AG, Jun. 01, 2021. doi: 10.3390/math9111180.

M. A. Ramdhani, M. A. Ramdhani, D. S. adillah Maylawati, and T. Mantoro, “Indonesian news
classification using convolutional neural network,” Indonesian Journal of Electrical Engineering and
Computer Science, vol. 19, no. 2, pp. 1000-1009, Aug. 2020, doi: 10.11591/ijeecs.v19.i2.pp1000-1009.

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

DOI 10.14750/ME.2024.012 118

C. Pan, M. Lu, B. Xu, and H. Gao, “An improved CNN model for within-project software defect
prediction,” Applied Sciences (Switzerland), vol. 9, no. 10, May 2019, doi: 10.3390/app9102138.

S. I. Ayon, “Neural Network based Software Defect Prediction using Genetic Algorithm and Particle
Swarm Optimization,” in 1st International Conference on Advances in Science, Engineering and
Robotics Technology 2019, ICASERT 2019, Institute of Electrical and Electronics Engineers Inc., May
2019. doi: 10.1109/ICASERT.2019.8934642.

S. K. Pandey, R. B. Mishra, and A. K. Tripathi, “BPDET: An effective software bug prediction model
using deep representation and ensemble learning techniques,” Expert Syst Appl, vol. 144, Apr. 2020, doi:
10.1016/j.eswa.2019.113085.

Institute of Electrical and Electronics Engineers, 16th ACS/IEEE International Conference on Computer
Systems and Applications AICCSA 2019 : 3 November to 7 November 2019, Al Ain University & Crowne
Plaza, Abu Dhabi, UAE.

G. Fan, X. Diao, H. Yu, K. Yang, and L. Chen, “Software Defect Prediction via Attention-Based
Recurrent Neural Network,” Sci Program, vol. 2019, 2019, doi: 10.1155/2019/6230953.

Z. Yang and H. Qian, “Automated parameter tuning of artificial neural networks for software defect
prediction,” in ACM International Conference Proceeding Series, Association for Computing
Machinery, Jun. 2018, pp. 203-209. doi: 10.1145/3239576.3239622.

M. N. Uddin, B. Li, Z. Ali, P. Kefalas, I. Khan, and 1. Zada, “Software defect prediction employing
BiLSTM and BERT-based semantic feature,” Soft comput, vol. 26, no. 16, pp. 7877-7891, Aug. 2022,
doi: 10.1007/s00500-022-06830-5.

S. Feng, J. Keung, X. Yu, Y. Xiao, and M. Zhang, “Investigation on the stability of SMOTE-based
oversampling techniques in software defect prediction,” Inf Softw Technol, vol. 139, Nov. 2021, doi:
10.1016/j.infsof.2021.106662.

X. Li, J. Li, Y. Qu, and D. He, “Gear pitting fault diagnosis using integrated CNN and GRU network
with both vibration and acoustic emission signals,” Applied Sciences (Switzerland), vol. 9, no. 4, Feb.
2019, doi: 10.3390/app9040768.

X. Bai, H. Zhou, and H. Yang, “An HVSM-based GRU approach to predict cross-version software
defects,” International Journal of Performability Engineering, vol. 16, no. 6, pp. 979-990, Jun. 2020,
doi: 10.23940/ijpe.20.06.p16.979990.

S. M. Abd Elrahman and A. Abraham, “A Review of Class Imbalance Problem,” 2013. [Online].
Available: www.mirlabs.net/jnic/index.html

L. Wang, M. Han, X. Li, N. Zhang, and H. Cheng, “Review of Classification Methods on Unbalanced
Data Sets,” IEEE Access, vol. 9, pp. 64606-64628, 2021, doi: 10.1109/ACCESS.2021.3074243.

F. Rodriguez-Torres, J. F. Martinez-Trinidad, and J. A. Carrasco-Ochoa, “An Oversampling Method for
Class Imbalance Problems on Large Datasets,” Applied Sciences (Switzerland), vol. 12, no. 7, Apr. 2022,
doi: 10.3390/app12073424.

C. Padurariu and M. E. Breaban, “Dealing with data imbalance in text classification,” in Procedia
Computer Science, Elsevier B.V., 2019, pp. 736—745. doi: 10.1016/j.procs.2019.09.229.

F. Pecorelli, D. Di Nucci, C. De Roover, and A. De Lucia, “A large empirical assessment of the role of
data balancing in machine-learning-based code smell detection,” Journal of Systems and Software, vol.
169, Nov. 2020, doi: 10.1016/j.jss.2020.110693.

E. AT, A. M, A-M. F, and S. M, “Classification of Imbalance Data using Tomek Link (T-Link)
Combined with Random Under-sampling (RUS) as a Data Reduction Method,” Global Journal of
Technology and Optimization, vol. 01, no. S1, 2016, doi: 10.4172/2229-8711.51111.

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

DOI 10.14750/ME.2024.012 119

T. T. Khuat and M. H. Le, “Evaluation of Sampling-Based Ensembles of Classifiers on Imbalanced Data
for Software Defect Prediction Problems,” SN Comput Sci, vol. 1, no. 2, Mar. 2020, doi: 10.1007/s42979-
020-0119-4.

N. M. Mqadi, N. Naicker, and T. Adeliyi, “Solving Misclassification of the Credit Card Imbalance
Problem Using near Miss,” Math Probl Eng, vol. 2021, 2021, doi: 10.1155/2021/7194728.

IEEE Communications Society. Indonesia Chapter., Universitas Telkom., and Institute of Electrical and
Electronics Engineers, Proceedings, the 2020 IEEE International Conference on Industry 4.0, Artificial
Intelligence, and Communications Technology : July 7-8, 2020, Bali, Indonesia.

E. F. Swana, W. Doorsamy, and P. Bokoro, “Tomek Link and SMOTE Approaches for Machine Fault
Classification with an Imbalanced Dataset,” Sensors, vol. 22, no. 9, May 2022, doi: 10.3390/5s22093246.

V. * Rajkumar and V. Venkatesh, “Hybrid Approach for Fault Prediction in Object-Oriented Systems,”
2017.

A. Igbal et al., “Performance Analysis of Machine Learning Techniques on Software Defect Prediction
using NASA Datasets,” 2019. [Online]. Available: www.ijacsa.thesai.org

R. Ferenc, Z. Toth, G. Ladanyi, I. Siket, and T. Gyimoéthy, “A public unified bug dataset for Java,” in
ACM International Conference Proceeding Series, Association for Computing Machinery, Oct. 2018,
pp. 12-21. doi: 10.1145/3273934.3273936.

A. B. Farid, E. M. Fathy, A. S. Eldin, and L. A. Abd-Elmegid, “Software defect prediction using hybrid
model (CBIL) of convolutional neural network (CNN) and bidirectional long short-term memory (Bi-
LSTM),” PeerJ Comput Sci, vol. 7, pp. 1-22, 2021, doi: 10.7717/peerj-cs.739.

J. Deng, L. Lu, and S. Qiu, “Software defect prediction via LSTM,” IET Software, vol. 14, no. 4, pp.
443-450, Aug. 2020, doi: 10.1049/iet-sen.2019.0149.

E. Tempero et al., “The Qualitas Corpus: A curated collection of Java code for empirical studies,” in
Proceedings - Asia-Pacific Software Engineering Conference, APSEC, 2010, pp. 336-345. doi:
10.1109/APSEC.2010.46.

D. L. Miholca, G. Czibula, and I. G. Czibula, “A novel approach for software defect prediction through
hybridizing gradual relational association rules with artificial neural networks,” Inf Sci (N Y), vol. 441,
pp. 152-170, May 2018, doi: 10.1016/j.ins.2018.02.027.

L. Zhao, Z. Shang, L. Zhao, T. Zhang, and Y. Y. Tang, “Software defect prediction via cost-sensitive
Siamese parallel fully-connected neural networks,” Neurocomputing, vol. 352, pp. 64-74, Aug. 2019,
doi: 10.1016/j.neucom.2019.03.076.

S. Dewangan, R. S. Rao, A. Mishra, and M. Gupta, “A novel approach for code smell detection: An
empirical study,” IEEE Access, vol. 9, pp. 162869-162883, 2021, doi: 10.1109/ACCESS.2021.3133810.

M. Z. Khan, “Hybrid ensemble learning technique for software defect prediction,” International Journal
of Modern Education and Computer Science, vol. 12, no. 1, pp. 1-10, 2020, doi:
10.5815/ijmecs.2020.01.01.

Z.Li, X. Y. Jing, and X. Zhu, “Progress on approaches to software defect prediction,” IET Software, vol.
12, no. 3. Institution of Engineering and Technology, pp. 161-175, Jun. 01, 2018. doi: 10.1049/iet-
sen.2017.0148.

M. A. Thsan Aquil, “Predicting Software Defects using Machine Learning Techniques,” International
Journal of Advanced Trends in Computer Science and Engineering, vol. 9, no. 4, pp. 6609-6616, Aug.
2020, doi: 10.30534/ijatcse/2020/352942020.

N. A. A. Khleel and K. Nehéz, “A new approach to software defect prediction based on convolutional
neural network and bidirectional long short-term memory,” Production Systems and Information
Engineering, vol. 10, no. 3, pp. 1-15, 2022, doi: 10.32968/psaie.2022.3.1.

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

DOI 10.14750/ME.2024.012 190

K. Boyd, K. H. Eng, and C. David Page, “Area Under the Precision-Recall Curve: Point Estimates and
Confidence Intervals.” [Online]. Available: http://link.springer.com/chapter/10.1007%

S. Singh and A. Professor, “Software Bug Prediction using Machine Learning Approach,” International
Research Journal of Engineering and Technology, p. 4968, 2008, [Online]. Available: www.irjet.net

H. Tong, S. Wang, and G. Li, “Credibility based imbalance boosting method for software defect
proneness prediction,” Applied Sciences (Switzerland), vol. 10, no. 22, pp. 1-29, Nov. 2020, doi:
10.3390/app10228059.

H. S. Munir, S. Ren, M. Mustafa, C. N. Siddique, and S. Qayyum, “Attention based GRU-LSTM for
software defect prediction,” PL0oS One, vol. 16, no. 3 March, Mar. 2021, doi:
10.1371/journal.pone.0247444.

1)

R. Ferenc, D. Ban, T. Grosz, and T. Gyimothy, “Deep learning in static, metric-based bug prediction,’
Array, vol. 6, p. 100021, Jul. 2020, doi: 10.1016/j.array.2020.100021.

D. Cruz, A. Santana, and E. Figueiredo, “Detecting bad smells with machine learning algorithms: An
empirical study,” in Proceedings - 2020 IEEE/ACM International Conference on Technical Debt,
TechDebt 2020, Association for Computing Machinery, Inc, Jun. 2020, pp. 31-40. doi:
10.1145/3387906.3388618.

M. Hozano, N. Antunes, B. Fonseca, and E. Costa, “Evaluating the accuracy of machine learning
algorithms on detecting code smells for different developers,” in ICEIS 2017 - Proceedings of the 19th
International Conference on Enterprise Information Systems, SciTePress, 2017, pp. 474-482. doi:
10.5220/0006338804740482.

S. Jain and A. Saha, “Rank-based univariate feature selection methods on machine learning classifiers
for code smell detection,” Evol Intell, vol. 15, no. 1, pp. 609-638, Mar. 2022, doi: 10.1007/s12065-020-
00536-z.

