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Chapter 1 Introduction 

In the field of software engineering, ensuring the quality of software systems is of paramount 

importance. Software quality assurance is a crucial discipline within software engineering that 

focuses on ensuring the high standards, reliability, and functionality of software products 

throughout their development life cycle. The primary goal of software quality assurance is to 

identify and mitigate defects, errors, code smells and inconsistencies in software, ultimately 

leading to the delivery of a high-quality product that meets user requirements and expectations 

[1]. Due to the increasing size and complexity of software products and inadequate software 

testing, no system or software can claim to be free of software bugs or code smells.  Software 

bugs and code smells can significantly impact software applications' performance, 

maintainability, and user experience. Detecting and predicting these issues early in the software 

development life cycle can save substantial time, effort, and resources. There are many 

activities related to software testing, such as implementing processes, procedures, and 

standards that must be carried out in a specific sequence to ensure that quality objectives are 

achieved or testing a product for issues such as software bugs and code smells. Software bugs 

are defects or errors in computer programs or systems that cause incorrect or unexpected 

operations that negatively affect software quality, reliability, and maintenance costs [2]. 

Software Bugs Prediction (SBP) is one of the most popular and active research areas in 

software engineering. SBP is a process for classifying fault-prone software modules based on 

some underlying properties of the systems, like software metrics that are extracted and 

collected from real data sets (historical data) during the software development process [3]. 

Code smells are one of the most accepted approaches to identifying design problems in the 

source code, which refers to any symptom or anomaly in the source code that violates design 

or implementation principles. The detection of code smells is a particularly crucial step for 

guiding the subsequent steps in the refactoring process. Early detection of code smells is vital 

to aid software maintainability and improve software quality [4]. Software metrics have 

essential roles in predicting software bugs and code smells, and most recent strategies for 

predicting software bugs and code smells rely on software metrics as independent variables. 

Software metrics are essential aids in measuring and improving software quality, and these 

metrics are used to measure and characterize software engineering products[5]. The critical 

role of software metrics is to estimate and measure some characteristics of systems, such as 

classes, inheritance, encapsulation, etc.[6]. The most popular software metrics are object-

oriented metrics, which have been presented by Abreu, Chidamber and Kemerer, Li and Henry, 

MOOD, Lorenz, and Kidd.  These metrics can be classified into different classes, like metrics 

for source code analysis, software testing, quality assurances, etc.[4]. Static code analysis is a 

method of analyzing source code without its execution to find potential problems like software 

bugs and code smells that might arise at runtime. So, static code analysis aims to check the 

quality of the source code and address weaknesses[7]. Based on the literature review. Recently, 

many commercial and open-source tools evolved for static code analysis to provide an efficient, 

value-added solution to many of the problems that software development organizations face.  

However, numerous false positives and negative results make these tools hard to use in 

practice[8]. So, another methodology or approach for static code analysis must be found, such 

as artificial intelligence techniques. Artificial Intelligence (AI) is a wide-ranging branch of 

computer science concerned with the simulation of human intelligence in machines that are 

programmed to think like humans and mimic their actions. AI handles issues related to 

implementing human behaviour and emotion and software intelligence. The most popular AI 
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techniques used for the prediction of software bugs and code smells are Machine Learning 

(ML) techniques. The ML field is developed from the expanded field of AI, which aims to 

imitate human intelligence abilities by machines. ML is the process of gaining knowledge from 

historical data. ML uses statistical rules to build various mathematical models for creating the 

conclusion from the data sample[9]. ML is an area of research where computer programs can 

learn and get better at performing specific tasks by training on massive quantities of historical 

data. ML algorithms can be applied to analyze data from different perspectives to allow 

developers to obtain helpful information[4]. ML techniques, and software metrics have 

emerged as powerful tools for automating the prediction of software bugs and code smells[5]. 

However, one major challenge faced in this domain is the class imbalance problem, where the 

distribution of classes in the training dataset is uneven. In other words, one class has 

significantly more instances than the others, leading to an imbalanced representation of classes. 

The class imbalance issue poses a significant obstacle as it can lead to biased models that fail 

to accurately capture the rare occurrences of software bugs or code smells, thus affecting the 

overall predictive performance[7]. Therefore, this research aims to explore the role of data-

balancing methods in addressing the class imbalance problem when applying ML techniques 

for predicting software bugs and code smells using software metrics. The research will begin 

with a comprehensive literature review, examining existing studies predicting software bugs 

and code smells using ML techniques. This review will also encompass different data-

balancing methods commonly employed in the field. The research outcomes will provide 

valuable insights and guidelines for software developers and researchers aiming to leverage 

ML-based techniques to accurately predict software bugs and code smells. In conclusion, this 

dissertation aims to contribute to the field of software engineering by investigating the 

application of data-balancing methods in ML-based prediction of software bugs and code 

smells using software metrics. By addressing the class imbalance problem, the research 

endeavours to enhance the accuracy and reliability of predictive models, ultimately assisting in 

developing more robust and high-quality software systems[10]. 

1.1 Motivation 

The software industry plays a critical role in today's technologically advanced world, with 

software systems powering various aspects of our lives. However, software bugs and code 

smells can lead to system failures, security vulnerabilities, and compromised user experiences. 

Identifying software bugs and code smells is usually a challenging task due to the huge code 

base of software projects, and developers spend a significant amount of time locating and fixing 

them, making this an active research area in software engineering. To produce high-quality 

software and gain customer loyalty, the final product should have as few defects as 

possible[11]. Detecting and addressing these issues early in the software development process 

is essential to ensure reliable and high-quality software systems. ML techniques, and software 

metrics have shown promise in automating the prediction of software bugs and code smells. 

However, the class imbalance problem remains a significant challenge in this domain, affecting 

the accuracy and effectiveness of the predictive models[7]. Therefore, the motivation behind 

this dissertation is driven by the need to address the class imbalance problem in the ML-based 

prediction of software bugs and code smells using software metrics and shed light on the 

suitability and effectiveness of various data-balancing methods commonly employed in the 

domain of the prediction of software bugs and code smells. By investigating and evaluating 

data-balancing methods, this research seeks to improve the accuracy and reliability of 
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predictive models, ultimately contributing to developing more robust and high-quality software 

systems. 

1.2 Problem Statement 

Software bugs and code smells can be identified by manual or automated source code analysis. 

The manual recognition of software bugs and code smells on the source code by developers is 

an error-prone, costly, and time-consuming activity since it depends on the developer’s degree 

of experience and perception[12]. Previous work provided several tools for predicting software 

bugs and code smells. These tools rely on prediction rules that compare the values of relevant 

software metrics extracted from source code against empirically identified thresholds to 

discriminate defective source code. The limitations of these tools are that the performance is 

strongly influenced by the thresholds needed to identify defective and non-defective instances. 

To overcome these limitations, researchers recently adopted and developed many automatic 

tools, such as machine-learning techniques, where a classifier is trained on previous source 

code releases by exploiting a set of independent variables (e.g., structural, historical, or textual 

metrics). But recent studies indicate that machine-learning techniques are not always suitable 

for predicting software bugs and code smells due to the problem of imbalanced data[13]. The 

data sets of software bugs and code smells are often imbalanced, which means the defective 

modules are often less than the non-defective ones. Using an imbalanced data set to train 

classification algorithms can lead to misclassification, as the classifier may be biased and not 

correctly classify instances of the minority label. The problem addressed by this dissertation is 

the lack of effective approaches to address the class imbalance problem in the ML-based 

prediction of software bugs and code smells using software metrics. Existing research in this 

area often overlooks the impact of class imbalance on model performance and fails to provide 

comprehensive solutions. As a result, the accuracy and reliability of the predictive models are 

compromised, leading to suboptimal detection of software bugs and code smells in real-world 

software projects. The inadequate handling of class imbalance in software bugs and code smell 

prediction can have severe consequences[14]. Most ML techniques can predict better when the 

number of instances of each class is equal. So, data imbalance is the biggest problem faced by 

ML techniques. This problem severely hinders the efficiency of these techniques and produces 

imbalanced false-positive and false-negative results. False negatives, where actual software 

bugs or code smells are incorrectly classified as non-issues, can result in software systems with 

hidden vulnerabilities or quality issues. False positives, where non-issues are incorrectly 

classified as software bugs or code smells, can lead to wasted development efforts and 

unnecessary maintenance activities. To address this problem, this dissertation aims to 

investigate and evaluate various data-balancing methods in the context of ML-based prediction 

of software bugs and code smells using software metrics. The research seeks to identify and 

employ suitable data-balancing techniques that effectively address the class imbalance 

problem, improve model sensitivity to the minority class, and enhance the accuracy and 

reliability of the predictive models[7], [15]. 

1.3 The objectives of the thesis 

ML techniques and data-balancing methods can provide new and performing ways for software 

bug and code smell prediction, with more flexibility than heuristics approaches, and can also 

help software companies to reduce rework and improve the quality and reliability of software. 

To the best of our knowledge, based on the literature review, no more research is conducted to 
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predict software bugs and code smells using ML techniques combined with data-balancing 

methods. Based on the previous studies, balancing the data by applying data-balancing methods 

can improve the performance of ML models in predicting software bugs and code smells. The 

specific objectives of this thesis are: 

• To investigate the standard machine-learning techniques used for predicting software bugs 

and code smells. 

• To assess the impact of class imbalance on the performance of ML-based prediction 

models for software bugs and code smells. This involves analyzing the biases introduced 

by class imbalance and understanding how they affect the predictive models' accuracy. 

• To evaluate various data-balancing methods to address class imbalance in software bug 

and code smell prediction. 

• To enhance the performance of predictive models for software bugs and code smells by 

developing a novel prediction methodology based on machine-learning techniques 

combined with data-balancing methods. I will apply various machine-learning algorithms 

and data-balancing methods to develop the methodology. 

• To validate the effectiveness of the developed methodology and the impact of data-

balancing methods using real-world software datasets. The validation will involve 

conducting several experiments and comparisons with baseline models, evaluating the 

performance measures, and assessing the statistical significance of the results. 

• To show that the performance of machine-learning techniques in predicting software bugs 

and code smells can be significantly improved when balancing the data set by applying 

data-balancing methods. 

1.4 Dissertation Guide 

The remaining structure of this dissertation is organized as follows. Chapter 2 presents a 

theoretical background, and the literature is addressed based on the software bugs, code smells, 

and software metrics. Chapter 3 provides an overview of artificial intelligence techniques. 

Specifically, it describes the artificial intelligence techniques used in this research work such 

as ML and Artificial Neural Networks (ANNs). Chapter 4 provides a short background of 

imbalanced data and data-balancing methods. Chapter 5 presents the proposed methodology 

and implementation, which describes the experiments performed. Several experiments are 

conducted to predict software bugs and code smells based on ML techniques and data-

balancing methods. Chapter 6 presents the experimental results and discussion of SBP, 

describing the experiment outcome and discussion. Chapter 7 presents the experimental results 

and discussion of code smell detection, which describes the experiments outcome and 

discussion. Chapter 8 presents the conclusion, firstly, contributions involving new scientific 

results are presented, and then the future research direction is presented. 
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Chapter 2 Literature Review and Theoretical Background 

This chapter addresses the theoretical background and literature related to software bugs, code 

smells, and software metrics. This comprehensive exploration delves into the fundamental 

concepts and theories surrounding software defects, identifying code smells, and the software 

metrics used to quantify and assess software quality. By examining the existing body of 

knowledge, this chapter establishes a solid foundation for the subsequent analysis and research 

conducted in this field. Furthermore, this chapter also discusses the public benchmark datasets 

of software bugs and code smells. These datasets, meticulously curated and made accessible to 

researchers and practitioners, serve as valuable resources for evaluating and comparing various 

bug detection and code smell detection techniques. The availability of these standardized 

datasets fosters reproducibility and facilitates advancements in bug detection methodologies, 

ultimately contributing to the ongoing improvement of software reliability and maintainability. 

2.1 Software Bugs 

Due to the expansion in the scale of software projects and the increase in complexity, software 

bug prediction has become the focus of attention to increase software quality[16], [17]. 

Software bugs can be defined as defects or faults in computer programs that occur during the 

software development process which may cause many problems for users and developers aside 

and may lead to the failure of the software to meet the desired expectations, and reduce 

customer satisfaction[18], [19]. Software bugs identify are one of the most common causes of 

wasted time and increase maintenance costs during the software lifecycle. Where early 

prediction of software bugs in the early stages of software development can improve the quality 

and reliability of systems, and reduce development costs, time, rework efforts, etc.[11]. Dealing 

with software bugs during the development process is problematic, as critical software bugs 

lead to potential risks that can lead to project failure. To produce high-quality software, the 

final product delivered should have as limited software bugs as possible[20]. The software bugs 

are classified into two classes: intrinsic software bugs refer to bugs that were introduced by one 

or more specific changes to the source code and extrinsic software bugs refer to bugs that were 

introduced by changes not recorded in the version control system[21]. Developers employ 

various techniques like debugging tools, code reviews, unit testing, and system testing to detect 

and resolve software bugs before releasing software to users. In recent years, the adoption of 

agile development methodologies and continuous integration/continuous deployment (CI/CD) 

practices has helped in catching software bugs early and reducing their impact. Additionally, 

bug bounty programs, where individuals are rewarded for discovering and reporting 

vulnerabilities, have gained popularity in promoting proactive bug detection. Despite 

advancements in bug detection and prevention, software bugs can never be eliminated. The 

complexity of modern software systems and the constant evolution of technology make bug-

free software an elusive goal. However, with vigilant testing, thorough debugging, and 

continuous improvement practices, developers can minimize the occurrence and impact of 

software bugs, resulting in more reliable and secure software products[22]. 

2.1.1 Software Bug Prediction (SBP) 

Predicting software bugs helps in improving the overall quality and reliability of the software. 

By identifying potential issues in advance, developers can implement preventive measures, 

conduct targeted testing, and ensure that the software meets the required quality standards[18]. 
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Moreover, predicting software bugs is not only about preventing immediate issues but also 

about continuously improving the software development process. By analyzing past bug data 

and patterns, developers can identify areas of weakness, improve coding practices, enhance 

testing strategies, and implement measures to prevent similar software bugs in future 

projects[19]. SBP is a mechanism that can be used to trace modules in software and determines 

whether a software module is faulty by considering some characteristics of parameters 

collected from software projects[23]. The process of SBP refers to the techniques or tools that 

use historical defect data to classify defect-prone software modules and build a relationship 

between software metrics and software defects. The SBP process depends on three main 

components: dependent variables, independent variables, and a model. Dependent variables are 

the defect data for the piece of code (defective or non-defective), which can be binary or ordinal 

variables. Independent variables (inputs) are the software metrics that score the software code. 

The model contains the rules or algorithms which predict the dependent variable from the 

independent variables[24]. The studies’ efforts in building SBP models can be categorized into 

two approaches: the first approach is to manually design new features or new sets of features 

to represent defects, while the second approach involves applying new and improved ML-based 

classifiers. Current work in predicting software bugs focuses on the second approach that 

includes: estimating the number of defects in software systems, discovering how software 

defects relate to software metrics and classifying software defects into two categories of 

"defect-prone and non-defect-prone"[16]. 

2.1.2 Software Bug Prediction Approaches 

Based on the type of data and the context of the prediction, SBP can be categorized into 

different types, which are: 

2.1.2.1 With-in Project Defect Prediction (WPDP) 

The With-in Project Defect Prediction (WPDP) approach involves using historical data to 

predict defects within a single project. WPDP approach uses data from the same project to train 

the prediction models, such as source code metrics, bug reports, and code reviews. This 

approach is usually more accurate since it is based on the specific context of the predicted 

project, but it requires a significant amount of historical data from the same project[25]. 

2.1.2.2 Cross Project Defect Prediction (CPDP) for Similar Dataset 

Cross Project Defect Prediction (CPDP) approach for a similar dataset: This approach involves 

predicting defects in a new project using historical data from similar projects. The CPDP 

approach uses data from one or more similar projects to train the prediction models and then 

apply them to the new project. This approach can be useful when there is not enough data for 

WPDP. Still, it assumes that the new project has a similar development context to the projects 

used for training[25]. 

2.1.2.3 Cross Project Defect Prediction (CPDP) for Heterogeneous Dataset 

Cross Project Defect Prediction (CPDP) approach for a heterogeneous dataset: This approach 

involves predicting defects in a new project using historical data from projects that differ in 

their development context or characteristics. The CPDP approach uses data from one or more 

heterogeneous projects to train the prediction models and then apply them to the new project. 
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This approach can be challenging since the development contexts of the projects used for 

training and the new project may differ significantly. Still, it can be useful when there is 

insufficient data for WPDP or CPDP for a similar dataset[25]. 

2.2 Code Smells 

Code smells are design issues or changes to source codes because of activities performed by 

developers during emergencies or coding solutions that indicate a violation of software design 

rules, e.g.: abstraction or hierarchy encapsulation which can cause serious problems during 

systems maintenance and may impact the software quality in the future[26], [27]. Code smells 

may lead to future degradation in software projects making software hard to evolve and 

maintain, and it can  effective indicate  whether source code should be refactored [28], [29] 

Code smells are often associated with potential software bugs or vulnerabilities. They can 

indicate areas of code that are more prone to errors, such as complex conditional logic, 

unhandled exceptions, or inconsistent naming conventions. By detecting code smells, 

developers can proactively address these areas, reducing the likelihood of software bugs and 

improving the overall reliability and robustness of the software[30]. 

2.2.1 Types of Code Smells 

There are many types of code smells but the most common are God class, Data class, Feature 

envy, and Long method. 

2.2.1.1 God class 

God classes refer to large, complex, and non-cohesive modules or classes that violate the 

principle of implementing only one concept per class and dominate a significant part of the 

main system behaviour by implementing almost all the system functionalities[28]. It is 

distinguished by its complexity and encompassing many instance variables and methods [19], 

[31]. 

2.2.1.2 Data class 

Data Class is a class that has only data without functions or any behaviors and does not process 

this data[13], [28], [32].Or it is a class that passively stores data[33]. This class constitutes 

smells that contain something unnecessary whose removal can make code easier to understand, 

effective, and cleaner[34]. 

2.2.1.3 Feature envy 

Feature Envy is a sign of a breach of the rule of grouping behaviour with related data and 

happens when a method is more interested in other properties of the classes than in the ones 

from its class[35]. This kind of smell affects the coupling, cohesion, and encapsulation design 

aspects of the system, representing a problem in the abstract design of the system. It is classified 

as a coupler smell and affects method/property entities. Thus, this method tends to make so 

many calls to use the data of the other classes [28], [34]. 
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2.2.1.4 Long method 

The Long Method code smells refer to the method that is too long and increases the system’s 

compatibility. It is classified as a blotter smell that affects method-level entities[35]. It is 

methods that tend to centralize a class’s functionality and tends to have too much code, to be 

complex, to be difficult to understand, and to use large amounts of data from other classes [4], 

[36]. 

2.2.2 Code Smells Detection 

Code smell detection is fundamental to improving software quality and maintainability, 

reducing the risk of software failure, and it is a primary requirement to guide the subsequent 

steps in the refactoring process. Detecting code smells is not only about fixing immediate issues 

but also about continuous improvement. By regularly monitoring and addressing code smells, 

developers can learn from past mistakes, refine their coding practices, and evolve as software 

engineers. This iterative process fosters a culture of quality and craftsmanship, leading to better 

code quality and more efficient development practices over time[28]. Detection rules of code 

smells are approaches used to detect code smells through a combination of different software 

metrics with predefined threshold values. Most approaches for code smell detection use object-

oriented metrics to determine if a software system contains code smells or not[14]. Most current 

detectors need the specification of thresholds that allow them to distinguish smelly and non-

smelly codes[37]. Many approaches have been presented by the authors for uncovering the 

smells from the software systems.  Different detection methodologies differ from manual to 

visualization-based, semi-automatic studies, automatic studies, empirical-based evaluation, 

and metrics-based detection of smells. Most techniques used to detection of code smells rely 

on heuristics and discriminate code artifacts affected (or not) by a particular type of smells 

through the application of detection rules which compare the values of metrics extracted from 

source code against some empirically identified thresholds. Researchers recently adopted ML 

techniques to detect code smells to avoid thresholds and decrease the false positive rate in code 

smell detection tools [38], [39]. 

2.3 Software Metrics 

Software Metrics play the most vital role in building a prediction model to improve software 

quality by predicting as many software defects as possible. Software metrics are essential aids 

in measuring and improving software quality, which are used to measure and characterize 

software engineering products[34]. Software metrics can be used to collect information 

regarding the structural properties of a software design, which can be further statistically 

analyzed, interpreted, and linked to its quality. Software metrics provide quantitative data that 

can be analyzed to identify potential areas of concern. By measuring various aspects of the 

codebase, such as complexity, size, or adherence to coding standards[40]. Software metrics 

help identify patterns and indicators associated with software bugs or code smells. By 

analyzing historical data and correlating software metrics with known issues, developers can 

spot recurring patterns or combinations of software metrics that indicate potential problems. 

This enables them to proactively address these areas to prevent software bugs or improve code 

quality. Moreover, software metrics support decision-making in bug prevention and code 

quality improvement efforts. By utilizing software metrics, developers can make informed 

decisions regarding code refactoring, architectural changes, or allocation of resources to 
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address code smells and potential bug-prone areas effectively [41], [42]. Software metrics can 

be classified as static code metrics and process metrics. Static code metrics can be directly 

extracted from source code, like Lines of Code (LOC), and Cyclomatic Complexity Number 

(CCN). Object-oriented metrics are a subcategory of static code metrics, like Depth of 

Inheritance Tree (DIT), Coupling Between Objects (CBO), Number of Children (NOC), and 

Response for Class (RFC)[4]. Object-oriented metrics are often used to assess testability, 

maintainability, or reusability of source code[18]. Tables 2.1 and 2.2 show the static code 

metrics. Process metrics can be extracted from the source code management system based on 

historical changes in source code over time. These metrics reflect the modifications over time, 

e.g., changes in source code, the number of code changes, developer information, etc.[43], [44]. 

Several researchers in the primary studies used McCabe and Halstead metrics as independent 

variables in the studies of software bug and code smells. The first use of McCabe metrics was 

to characterize code features related to software quality. McCabe's has considered four basic 

software metrics: cyclomatic complexity, essential complexity, design complexity, and lines 

of code[45]. Halstead also considered that the software metrics fall into three groups: base 

measures, derived measures, and line of code measures [46], [47]. Table 2.3 shows McCabe's 

and Halstead metrics. Metrics can also be classified based on the development phase of the 

software life cycle, into source code level metrics, detailed design level metrics, or test level 

metrics [48], [49].  

Table 2.1 Show the static code metrics 

Size Complexity Cohesion Coupling Encapsulation Inheritance 

Lines of Code 

(LOC) 

McCabe’s 

CYCLOmatic 

complexity (CYCLO) 

Lack of 

Cohesion 

between 

Methods 

(LCOM) 

Class Fan Out 

Complexity 

(CLASS_FAN_OUT) 

Locality of 

Attribute 

Accesses 

(LAA) 

Depth of 

Inheritance 

Tree (DIT) 

Lines of Code 

Excluding 

Accessor and 

Mutator Methods 

(LOCNAMM*) 

Weighted Methods 

per Class (WMC) 

Tight Class 

Cohesion 

(TCC) 

Access To Foreign Data 

(ATFD) 

Number of 

Accessor 

Methods 

(NOAM) 

Response 

for a Class 

(RFC) 

Number of 

Methods (NOM) 

Weighted Methods 

Count of Not 

Accessor or Mutator 

Methods 

(WMCNAMM*) 

 Foreign Data Providers 

(FDP) 

Number of 

Public 

Attributes 

(NOPA) 

Number of 

Children 

(NOC) 

Number of 

Packages 

(NOPK) 

Average Methods 

Weight of Not 

Accessor or Mutator 

Methods 

(AMWNAMM*) 

 Coupling Between 

Objects (CBO) 

 Number of 

Methods 

Overridden 

(NMO) 

Number of 

Classes (NOCS) 

Average Methods 

Weight (AMW) 

 Called Foreign Not 

Accessor or Mutator 

Methods (CFNAMM*) 

 Number of 

Inherited 

Methods 

(NIM) 

Number of 

Methods 

Excluding 

Accessor and 

Mutator Methods 

(NOMNAMM*) 

Maximum Nesting 

Level of Control 

Structures 

(MAXNESTING) 

 Coupling Intensity 

(CINT) 

 Number of 

Implemente

d Interfaces 

(NOII) 
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Number of 

Attributes 

(NOA) 

Weight of Class 

(WOC) 

 Coupling Dispersion 

(CDISP) 

  

 Called Local Not 

Accessor or Mutator 

Methods 

(CLNAMM) 

 Maximum Message 

Chain Length 

(MaMCL§) 

  

 Number of 

Parameters (NOP) 

 Mean Message Chain 

Length (MeMCL§) 

  

 Number of Accessd 

Variables (NOAV) 

 Number of Message 

Chain Statements 

(NMCS§) 

  

 Access To Local 

Data (ATLD*) 

 Control Coupling (CC)   

 Number of Local 

Variable (NOLV) 

 Number of Methods 

Affected by the 

Measured Method (CM) 

  

Metrics having a “*” in the name are customized versions of standard metrics, or slight 

modifications of original metrics. Metrics with a “§” suffix, refer to metrics that have been 

defined specifically for detecting the Message Chain code smell. 

Table 2.2 Description list of 20 traditional static code metrics 

Attribute Description 

dit The maximum distance from a given class to the root of an inheritance tree 

noc Number of children of a given class in an inheritance tree 

cbo Number of classes that are coupled to a given class 

rfc Number of distinct methods invoked by code in a given class 

lcom Number of method pairs in a class that do not share access to any class attributes 

lcom3 Another type of the lcom metric proposed by Henderson–Sellers 

npm Number of public methods in a given class 

loc Number of lines of code in a given class 

dam The ratio of the number of private/protected attributes to the total number of attributes in a given class 

moa Number of attributes in a given class that are of user-defined types 

mfa Number of methods inherited by a given class divided by the total number of methods that can be 

accessed by the member methods of the given class 

cam The ratio of the sum of the number of different parameter types of every method in a given class to the 

product of the number of methods in the given class and the number of different method parameter 

types in the whole class 

ic Number of parent classes that a given class is coupled to 

cbm Total number of new or overwritten methods that all inherited methods in a given class are coupled to 

amc The average size of methods in a given class 

ca Afferent coupling, which measures the number of classes that depend on a given class 

ce Efferent coupling, which measures the number of classes that a given class depends on 

max_cc The maximum McCabe's cyclomatic complexity (CC) 

score of methods in a given class 

avg_cc The arithmetic mean of McCabe's cyclomatic 

complexity (CC) scores of methods in a given class 

Table 2.3 Descriptions of McCabe's and Halstead Metrics 

Metrics Type Description 

Loc McCabe It counts the line of code in software module. 

v(g) McCabe Measure McCabe Cyclomatic Complexity. 

ev (g) McCabe McCabe Essential Complexity. 

iv (g) McCabe McCabe Design Complexity. 

N Derived Halstead Total number of operators and operands. 
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V Derived Halstead Volume. 

L Derived Halstead Program length. 

D Derived Halstead Measure difficulty. 

I Derived Halstead Measure Intelligence. 

E Derived Halstead Measure Effort. 

B Derived Halstead Effort estimate. 

T Derived Halstead Time Estimator. 

Locoed Line Count Number of lines in software module. 

Locomment Line Count Number of comments. 

Loblank Line Count Number of blank lines. 

Locodeandcomment Line Count Number of codes and comments. 

uniq_op Basic Halstead Unique operators. 

uniq_opnd Basic Halstead Unique operands. 

total_op Basic Halstead Total operators. 

total_opnd Basic Halstead Total operands. 

BranchCount Branch Total Number of branch count. 

2.4 Summary 

In this chapter, we have discussed the theoretical background and literature related to the 

fundamental concepts of our dissertation. We discussed the importance of the prediction of 

software bugs and code smells, the strategies and approaches used to predict software bugs and 

code smells, and software metrics used in the prediction of software bugs and code smells. 

While predicting software bugs and code smells have distinct focuses, they share a common 

goal of improving software quality. They both rely on indicators, adopt a proactive approach, 

use software metrics as indicators, and contribute to continuous improvement. By integrating 

the prediction of software bugs and code smells into the development process, developers can 

enhance software quality, prevent software bugs, and create more maintainable code. Overall, 

we realized that predicting software bugs and detecting code smells is crucial for cost-effective 

development, quality assurance, user satisfaction, security, reputation, and compliance.  

Developers can proactively identify and resolve software bugs to deliver higher-quality 

software that meets user expectations and industry standards. Additionally, software metrics 

play a crucial role in software development by providing quantitative data to support decision-

making, track progress, and drive continuous improvement. So, predicting software bugs and 

detecting code smells based on software metrics are essential for developing high-quality, 

reliable, and maintainable software products.  
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Chapter 3 Artificial Intelligence (AI) 

This chapter provides an overview of artificial intelligence techniques. It aims to equip readers 

with a fundamental understanding of the various approaches and methodologies that form the 

backbone of AI applications. Moreover, particular emphasis is placed on the artificial 

intelligence techniques utilized in this research, such as Machine Learning (ML) and Artificial 

Neural Networks (ANNs). 

3.1 Artificial Intelligence Techniques 

The field of Artificial intelligence (AI) is witnessing a recent upsurge in research, tools 

development, and deployment of applications[23]. AI is being widely adopted and incorporated 

into almost every kind of software application. where software engineers need to have a 

thorough grasp of what AI is and understand how to incorporate AI into the software 

development lifecycle[50]. AI is a branch of Computer Science that pursues creating computers 

or machines as intelligent as human beings. AI is accomplished by studying how the human 

brain thinks and how humans learn, decide, and work while trying to solve a problem. AI 

techniques such as ML, Neural Networks, fuzzy logic, etc. have been advocated by many 

researchers and developers as the way to improve many of the software development activities. 

AI techniques, specifically, ML techniques are commonly used for the prediction of software 

bugs and code smells compared to other techniques such as manual code inspection or rule-

based approaches because they offer automation, scalability, and a data-driven approach[51]. 

ML models can handle large codebases, learn from historical data and leverage code metrics 

for data-driven analysis, capturing complex patterns and dependencies that may not be apparent 

through traditional methods, and adapt to new patterns, making them effective in identifying 

software bugs and code smells that may be difficult to detect manually. They provide objective 

and consistent analysis, enable early detection and prevention of issues, allowing developers 

to address issues before they become critical. They optimize resource allocation by prioritizing 

bug fixes based on severity or impact. Overall, ML techniques enhance the accuracy, 

efficiency, and overall quality of the prediction of software bugs and code smells processes, 

making them valuable tools for software development. There are several ML techniques 

commonly used in the prediction of software bugs and code smells[52]. 

3.1.1 Machine Learning (ML) 

Machine learning (ML) is an area of research where computer programs can learn and get better 

at performing specific tasks by training on historical data or study of computer algorithms that 

provide systems the ability to automatically learn and improve from experience[10]. It is 

generally seen as a sub-field of AI. ML algorithms can be applied to analyze data from different 

perspectives to allow developers to obtain useful information [53], [54]. ML algorithms allow 

the systems to make decisions autonomously without any external support. Such decisions are 

made by finding valuable underlying patterns within complex data. High quantities of data are 

needed to develop ML model-based prediction [55], [56]. ML algorithms build models from 

training examples, which are then used to make predictions when faced with new 

examples[30]. ML techniques can be categorized into supervised, unsupervised, and 

reinforcement [35], [37]. ML algorithms have received extensive attention in the field of 

software engineering for a considerable period. Therefore, recently ML algorithms have been 

adopted to enhance research tasks in the prediction of software bugs and code smells[9]. 
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3.1.1.1 Supervised learning  

Supervised Learning is the ML task of inferring a function from labeled training data which 

consists of a set of training examples. Supervised learning is applied when the data is in the 

form of input variables and output target values[56]. In supervised learning, the training dataset 

has an output variable that needs to be predicted or classified. All algorithms learn some kind 

of patterns from the training dataset and apply them to the test dataset for prediction or 

classification[57]. It has two known supervised learning tasks (classification, and regression). 

Classification concerns building a predictive model for function with discrete range, while 

regression concerns continuous range model building. Supervised learning is fairly common in 

classification problems because the goal is often to get the computer to learn a classification 

system that we have created[58]. The most commonly supervised ML methods include concept 

learning, classification, rule learning, instance-based learning, Bayesian learning, linear 

regression, neural network, SVM, etc.[56]. The following subsections describe the supervised 

ML techniques used in our research work. 

3.1.1.1.1 Decision Tree (DT) 

Decision Tree (DT) is a popular supervised machine-learning method used for the purpose of 

regression and classification[4]. It refers to a hierarchal model or a tree with decision nodes 

that have more than one branch and leaf nodes that represent the decision. Each node in a DT 

represents a feature in an instance to be classified, and each branch represents the value 

thresholds the contained nodes can assume. Instances are categorized beginning at the root 

node and sorted based on their attribute values [21], [59]. There are different types of decision 

trees. The classic among them is the ID3 (Iterative Dichotomiser 3), birthing trees by 

recursively choosing the best feature to split the data. C4.5, its successor, added the ability to 

handle continuous attributes and pruning to trim excessive branches. CART (Classification and 

Regression Trees) is another heavyweight, excelling in both classification and regression tasks. 

Chi-Square is one of the oldest tree classification methods. It determines the statistical 

significance of the differences between sub-nodes and parent nodes. It is measured as the sum 

of squares of standardized differences between observed and expected frequencies of the target 

variable. Random Forests brings a dash of unpredictability to the mix, employing an ensemble 

of decision trees for robust performance. On the other hand, Gradient Boosted Trees take a 

sequential approach, refining the mistakes of previous trees to boost accuracy. ID3 is the most 

common type of decision tree. In the ID3 DT, all features are set as a root node. After that, the 

features are divided by finding the Entropy that measures the harmony in the data; the entropy 

values are between 0 and 1[35], [37]. Mathematically, Entropy for one attribute is represented 

as: 

   E(F)  = ∑  c
i=1 −  pi  log2 pi                                                 (1) 

Where C is the number of outputs, 𝑝𝑖 is the probability of occurrences of each output from all 

outputs, and F is a feature with some data. 

3.1.1.1.2 Random Forest (RF) 

Random Forest (RF) is one of the most utilized models due to its effortlessness and the way it 

can be used for characterization and relapse assignments. It is adaptable and simple to utilize 

ML calculation, even without hyper-parameter tuning[35]. RF classifier is a special case of 
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Bagging consisting of a collection of tree-structured classifiers. RF selects random features to 

create bootstrap models using DT. RF algorithm considers K randomly chosen attributes at 

each node to construct a classification tree. In the classification setting, the prediction of the 

RF is the most dominant class among predictions by individual trees[60]. If there are T trees in 

the forest, then the number of votes received by a class m is: 

                                                   Um  = ∑  T
t =1 I(Čt == m)                                                     (2) 

where Č𝑡 is the prediction of the t tree on a particular instance. The indicator function 𝐼(Č𝑡 =
= 𝑚) takes on the value 1 if the condition is met, else it is zero. 

3.1.1.1.3 Naïve Bayes (NB) 

Naïve Bayes (NB) is a supervised learning algorithm and defines as a simple probabilistic 

classifier and efficient based on the Bayes’ theorem with an independence assumption between 

the features, this means that the Naive Bayes classifier is based on estimating the probabilities 

of the unobserved node, based on the observed probabilities [21], [61]. Bayes’ theorem finds 

the probability of an event occurring given the probability of another event that has already 

occurred. Bayes’ theorem is stated mathematically as the following equation: 

                                                         P(A|B) =
P(B|A)P(A)

P(B)
                                                            (3) 

In the above equation, using Bayes’ theorem, we can find the probability of A, given that B 

occurred. A is the hypothesis, and B is the evidence, P(B|A) is the probability of B given that A 

is True, P(A) and P(B) are the independent probabilities of A and B. 

3.1.1.1.4 Support Vector Machine (SVM) 

Support Vector Machine (SVM) is one of the regulated ML models which is, for the most part, 

utilized for classification and relapse investigation. The primary role is to discover a hyper-

plane, which divides the dimensional data completely into two categories [2], [62]. SVMs are 

based on a "margin" on either side of a hyperplane separating two features. Its optimizing 

objective is to increase the margin and create the most significant distance between features in 

the hyperplane. Complexity is not affected by the number of features. So SVM is appropriate 

for learning tasks where the number of features is so much concerning the number of training 

instances. The principal objective of SVM is to outline a model that predicts the dataset's target 

estimation in the testing stage. Subsequently, SVM becomes a decent contender for planning a 

model in anticipating issue-inclined modules[63]. The general type of SVM work is defined 

as: 

                                                     F(x)  =  W ∗  Q(x)  +  b                                                      (4) 

Where w is a weight vector, x is the input vector, b is the intercept and bias term of the 

hyperplane equations. 

3.1.1.1.5 K-Nearest Neighbor (K-NN) 

K-Nearest Neighbor (K-NN) define as a simple supervised classification algorithm in which 

an object is classified by looking at the K nearest objects and by choice of the most frequently 

occurring class[64]. It is also a lazy-learning technique that classifies elements based on their 

position and space in a hyperplane. Since in the K-NN algorithm, we need k nearest points. 
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Thus, the first step is calculating the distance between the input data point and other points in 

our training data[63]. The distance between these two points is: 

                                                   d(x, y) =  √∑ (xi −  yi)2 
p
i=1                                                                (5) 

Suppose x is a point with coordinates (𝑥1,𝑥2,...,𝑥𝑝) and y is a point with coordinates 

(𝑦1,𝑦2,..., 𝑦𝑝). 

3.1.1.1.6 Logistic Regression (LR) 

Logistic Regression (LR) is a popular statistical model used for binary classification problems, 

where the goal is to predict the probability of an instance belonging to a certain class. It models 

the relationship between the input features and the probability of the positive class using a 

logistic function. Logistic regression uses a logistic function called a sigmoid function to map 

predictions and their probabilities. The sigmoid function refers to an S-shaped curve that 

converts any real value to a range between 0 and 1 [61], [64]–[66]. The sigmoid function is 

referred to as an activation function for logistic regression and is defined as: 

                                                          f(x) =
1

1 + e−𝑥                                                                 (6) 

Where f(x) is the predicted probability that the target variable y belongs to the positive class, 

given the feature value x, e is the base of the natural logarithm (approximately 2.71828). In 

many cases, multiple explanatory variables affect the value of the dependent variable. To model 

such input datasets, logistic regression formulas assume a linear relationship between the 

independent variables. The sigmoid function can be modified, and the final output variable 

calculated as: 

                                          y = f (β₀ + β₁ * x₁ + β₂ * x₂ + ... + βₙ * xₙ)                                                        (7) 

Where β₀, β₁, β₂, ..., βₙ are the coefficients (also known as weights or parameters) associated 

with each feature, x₁, x₂, ..., xₙ are the feature values. 

3.1.1.1.7 XGBoost 

XGBoost (XGB) is one of the recently introduced robust ML algorithms. XGB is a powerful 
gradient boosting algorithm that is widely used for supervised learning tasks such as regression 
and classification. It is known for its high predictive performance and efficient computation[63]. 
The formula for the XGB model is given as: 

                                                      ỹi   =  F(xi) = b + n ∑ fk
K
k =1 (xi)                                                         (8) 

where b is the base prediction, n is the learning rate hyperparameter that helps control overfitting 
by reducing the contributions of each booster, and each of the 𝐾 boosters 𝑓𝑘 is a decision tree. 

3.1.1.2 Unsupervised learning  

Unsupervised Learning is also called learning from observation. Unsupervised learning is 

applied when the data is available only in the form of an input and there is no corresponding 

output variable. Such algorithms model the underlying patterns in the data in order to learn 

more about its characteristics[56]. Unsupervised learning seems much harder: the goal is to 

have the computer learn how to do something that we don't tell it how to do[58]. In 
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unsupervised learning, the system has to explore any patterns based only on the common 

properties of the example without knowing how many or even if there are any patterns. The 

most common methods in unsupervised learning are association rule mining, sequential pattern 

mining, and clustering[67]. 

3.1.1.3 Reinforcement learning 

Reinforcement learning is somewhere between supervised and unsupervised learning[68]. 

Reinforcement learning is applied when the task at hand is to make a sequence of decisions 

toward a final reward[56]. Where the algorithm learns a policy of how to act given an 

observation of the world. Every action has some impact on the environment, and the 

environment provides feedback that guides the learning algorithm[58]. During the learning 

process, an artificial agent gets either rewards or penalties for the actions it performs. Its goal 

is to maximize the total reward. In reinforcement learning, the algorithm gets told when the 

answer is wrong but does not get told how to correct it. It has to explore and try out different 

possibilities until it works out how to get the answer right[68]. Examples include learning 

agents to play computer games or performing robotics tasks with end goals[56]. 

3.1.2 Artificial Neural Networks (ANNs) 

Artificial neural networks (ANNs) are biologically inspired computer software built to imitate 

the way in which the human brain processes information[21]. ANNs are ML models or 

nonlinear classifiers used to model complex relationships between inputs and outputs. An 

ANNs model contains multiple units (layers) for information processing which are known as 

neurons. The layers are typically named the input layer, hidden layer, and output layer [69], 

[70]. The typical architecture of ANN is shown in Figure 3.1. When implementing a neural 

network, a set of consistent training values must be available to set up the expected operation 

of the network and a set of validation values to validate the training process[71]. ANNs collect 

knowledge by detecting the patterns and relationships in data and learning or training through 

experience. When neural networks are used for data analysis, it must be important to 

distinguish between ANN Models which refer to the network's arrangement, and ANN 

Algorithms which refer to computations that eventually produce the network outputs. There 

are two approaches to training ANNs: supervised and unsupervised. The most often used ANNs 

for prediction and classification tasks is a fully connected and supervised network with a 

backpropagation learning rule. During the learning stage, the weights of each neuron are 

considered and adjusted according to the requirements. To obtain the final weight for neurons, 

each neuron gives input to each preceding layer, and later these inputs are multiplied by their 

weight. According to this process, the neuron computes the activation level from this sum, and 

the output is sent to the following layer where the final solution is estimated [28], [34]. The 

output of a neuron that is in the layer can be described by the equation below: 

                                               Yi  =  fi ( ∑ wij ∗ xj + bi)
n

j=1
                                               (9) 

where 𝑌𝑖  represents network output, n is the total number of inputs to this neuron, 𝑥𝑗 represents 

network input, 𝑤𝑖𝑗 is the connection weights between input and output nodes, 𝑏𝑖 is the bias and 

𝑓𝑖 is the transfer function. 
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Figure 3.1 The typical ANN architecture[70] 

3.1.2.1 Multi-layer Perceptron (MLP) 

A Multi-layer Perceptron (MLP) network is a particular type of artificial neural network that 

consists of different layers (input layer, hidden layer, and output layer). It was created to solve 

nonlinear classification problems that cannot be solved by a single layer. A multilayer neural 

network consists of many units (neurons) joined together in a pattern of connections[37]. It 

uses nodes with a specified weight to connect the layers. Each node is a neuron that utilizes a 

nonlinear activation function. The backpropagation algorithm is used to train the model in the 

multilayer perceptron network[5]. The formula of the multilayer perceptron network model is 

as follows: 

                                                   f(x)   =  ( ∑ wi ∗ xi ) +  b 
m

i=1
                                                        (10) 

Where m is the number of neurons in the previous layer, 𝑤𝑖is a random weight, 𝑥𝑖  is the input 

value, b is a random bias. 

3.1.2.2 Deep learning (DL) 

Deep learning (DL) algorithms have received extensive attention in the field of software 

engineering for a considerable period. DL is one of the AI functions that mimic the workings 

of the human brain. It allows and helps to solve complex problems by using a data set that is 

very diverse, unstructured, and interconnected[72]. DL is a type of ML that allows 

computational models consisting of multiple processing layers to learn data representations 

with multiple levels of abstraction. DL architecture has been widely used to solve many 

detections, classification, and prediction problems[73]. There are many activation functions 

used in DL such as sigmoid, Rectified Linear unit (Relu), and Hyperbolic Tangent (Tanh). 

Activation functions are a critical component of DL, serving as the nonlinearities that allow 

neural networks to model complex relationships in data. Their importance lies in their ability 

to introduce non-linearity, control gradient flow during training, and adapt the network's 

behaviour to different problem domains. The right choice of activation function can 

significantly impact training speed, model performance, and the ability to capture intricate 

patterns in data. Whether it is the efficiency of ReLU, the sigmoid's interpretability, or the 

tanh's versatility, selecting the appropriate activation function is a key decision in designing 

neural networks. Therefore, activation functions enable the training of the DL model quickly 

and accurately. Relu and sigmoid [74], [75] are the most common activation functions used in 
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DL. So, in our proposed models, we used the Relu activation function for the inputs and hidden 

layers and the Sigmoid activation function for the output layer. The equations to calculate Relu 

and sigmoid are as follows: 

                                         hi
m =  ReLU(Wi

m−1 ×  Vi
m−1 + bm−1)                                                  (11) 

where ℎ𝑖
𝑚

 represents convolutional layer, 𝑊𝑖
𝑚−1 represents the weights of neuron, 𝑉𝑖

𝑚−1 

represents the nodes, and 𝑏𝑚−1 represents the bias layer. 

                                                S(x) =  
1

 1+ e− ∑ Wi+Xi
 
k +b                                                                (12) 

where 𝑋𝑖 represents the input, 𝑊𝑖 is the weight of the input and b is the bias. 

3.1.2.2.1 Convolutional Neural Network (CNN) 

Convolutional Neural Network (CNN) is a special type of deep neural network, or a class of 

convolutional feedforward neural networks used to process data that has a known, grid-like 

topology. It is constructed to mimic the visual perception of biological processes and can be 

used for both supervised learning and unsupervised learning[76]. CNN has been tremendously 

successful in practical applications, including speech recognition, image classification, and 

natural language processing [77], [78]. The CNN model is inspired by the typical CNN 

architecture used in image classification and consists of a feature extraction part and a 

classification part, as shown in Figure 3.2. These parts consist of multiple layers of convolution, 

batch normalization, and maximum merge layers. These layers constitute the hidden layer of 

the architecture. Convolution is a fundamental operation enabling the network to detect and 

learn relevant features within the input data automatically. Convolutional layers employ small 

learnable filters or kernels to slide over the input. Each filter is a small matrix (usually 3x3 or 

5x5) that slides over the input data. These filters capture specific features such as edges, 

textures, or more complex patterns. This process of convolution generates feature maps that 

highlight where these patterns are found in the input, while the maximum pooling layer 

achieves a reduction in the dimension of the feature space. Batch normalization is used to 

mitigate the effect of different input distributions for each training mini batch for the purpose 

of improving training [79], [80]. 

 

Figure 3.2 The typical CNN architecture[80] 
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3.1.2.3 Recurrent Neural Networks (RNNs) 

Recurrent Neural Networks (RNNs) are a type of ANNs that can process a sequence of inputs 

and retain its state while processing the next sequence of inputs and can efficiently acquire the 

nonlinear features that are in order. Where the nodes and their connections form a temporally 

directed graph along a temporal sequence [81], [82]. RNN is widely used to solve many 

different problems, such as pattern recognition, identification, classification, vision, speech, 

control systems, etc.[83]. Due to the problem of long-term dependencies that arise when the 

input sequence is too long, RNN cannot guarantee a long-term nonlinear relationship. This 

means that there is a gradient vanishing and gradient explosion phenomenon in the learning 

sequence. RNNs can use memory units (internal state) to learn the relationship between the 

sequence pieces, making it possible for RNNs to capture contextual features of the 

sequence[84]. Many optimization theories and improved algorithms have been introduced to 

solve this problem such as Long-Short-Term-Memory (LSTM) networks, Bidirectional LSTM, 

Gated Recurrent Unit (GRU) networks, echo state networks, Independent RNN, etc. Standard 

RNNs take sequences as inputs, and each step of the sequence refers to a certain moment[85]. 

For a certain moment t, the output ℎ𝑡 not only depends on the current input 𝑥𝑡 but is also 

influenced by the output from the previous moment  𝑡 − 1. The output of moment (t) can be 

formulated as the following equation: 

                                              ht   =  f( U ×  xt + W × ht−1 + b)                                             (13) 

Where U and W denote the weights of the RNN, b denotes the bias, f is the activation function 

of the neurons.  

3.1.2.3.1 Long-Short-Term-Memory (LSTM) 

Long-Short-Term-Memory (LSTM) networks are a special type of RNN designed to recognize 

patterns in data sequences. LSTM networks were introduced to avoid or handle long-term 

dependency problems without being affected by an unstable gradient[55]. This problem 

frequently occurs in regular RNNs when connecting previous information to new 

information[48]. LSTM networks offer a set of key features that distinguish them in the realm 

of RNNs. Their primary strengths lie in their ability to capture long-term dependencies in 

sequential data, thanks to memory cells and gating mechanisms that control information flow. 

LSTMs incorporate three essential gates: the forget gate, which decides what to discard from 

the previous state; the input gate, responsible for selectively updating the memory cell with 

new information; and the output gate, which regulates the information output as the hidden 

state. Due to the ability of the LSTM network to recognize longer sequences of time-series 

data, LSTM models can provide high predictive performance[84]. Figure 3.3 shows the 

interacting layers of the repeating module in LSTM Networks. The cell state carries the 

information from the previous moments and will flow through the entire LSTM chain, which 

is the key that LSTM can have long-should be filtered from the previous moment, the output 

of the forget gate can be formulated as the following equation: 

                                                  ft   =  σ( Wf .  [ht−1 , xt] + bf)                                                        (14) 

Where σ denotes the activation function, 𝑊𝑓 and 𝑏𝑓 denote the weights and bias of the forget 

gate, respectively. The input gate determines what information should be kept from the current 

moment, and its output can be formulated as the following equation: 
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                                                  it   =  σ( Wi .  [ht−1 , xt] + bi)                                                 (15) 

Where σ denotes the activation function, 𝑊𝑖 and 𝑏𝑖 denote the weights and bias of the input 

gate, respectively. With the information from forget gate and input gate, the cell state 𝐶𝑡−1  is 

updated through the following formula: 

                                               Čt   =  tanh( Wc .  [ht−1 , xt] + bc)                                                      (16) 

                                                    Čt   =  ft  ×  Ct−1 + i × Čt)     

                                                                                            

Č𝑡 is a candidate value that is going to be added into the cell state and 𝐶𝑡 is the current updated 

cell state. Finally, the output gate decides what information should be output according to the 

previous output and current cell state. 

                                                   ot   =  σ( Wo .  [ht−1 , xt + bo]                                                (17) 

                                                           ht   =  ot × tanh(Ct)  

                                                                  

 
 

Figure 3.3 Interacting layers of the repeating module in an LSTM Networks[40] 

3.1.2.3.2 Bidirectional Long-Short-Term-Memory (Bi-LSTM) 

The idea behind Bidirectional Long-Short-Term-Memory (Bi-LSTM) networks is to exploit 

spatial features to capture bidirectional temporal dependencies from historical data to overcome 

the limitations of traditional RNNs [73], [86], [87]. Bi-LSTM networks are a new way to train 

data by expanding the capabilities of LSTM networks[84]; it uses two separate hidden layers 

to train the input data twice in the forward and backward directions, as shown in Figure 3.4. 

With the regular LSTM Networks, the input flows in one direction, either backward or forward. 

Bi-LSTM Networks are the process of making any neural networks have the sequence 

information in both directions (a sequence processing model that consists of two LSTM): one 

taking the input in a forward direction (past to future), and the other in a backward direction 

(future to past) [2].   
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Figure 3.4 Interacting layers of the repeating module in a Bi-LSTM Network[86] 

3.1.2.3.3 Gated Recurrent Unit (GRU) 

Gated Recurrent Unit (GRU) network is one of the optimized structures of the RNN[73]. The 

goal of the GRU network is to solve the long-term dependence and gradient disappearance 

problem of RNN[7]. The GRU is like LSTM in a forget gate but has fewer parameters than 

LSTM and uses an update gate and reset gate as shown in Figure 3.5. The GRU network uses 

the update and reset gates to improve and optimize the learning mechanism[83]. The update 

gate helps the model to determine how much of the past information (from previous time steps) 

needs to be passed along to the future and the reset gate helps the model to decide how much 

of the past information to forget. Due to the ability of the GRU network to recognize longer 

sequences of time-series data, it can provide high predictive performance [84], [88], [89]. The 

update gate model in the GRU network is calculated as shown in the equation below. 

                                         z(t) =  σ(W(z). [h(t − 1), x(t)] + bz)                                            (18) 

the 𝑧(𝑡)represents the update gate, ℎ(𝑡 − 1) represents the output of the previous neuron, 

𝑥(𝑡)represents the input of the current neuron, 𝑊(𝑧)represents the weight of the update gate, 

𝑏𝑧 is the bias for the update gate, and 𝜎 represents the sigmoid function. The reset gate model 

in the GRU neural networks is calculated as shown in equation below. 

                                          r(t) =  σ(W(r). [h(t − 1), x(t)] + br)                                                  (19)   

𝑟(𝑡)represents the reset gate, ℎ(𝑡 − 1) represents the output of the previous neuron, 

𝑥(𝑡)represents the input of the current neuron, 𝑊(𝑟)represents the weight of the reset gate, 𝑏𝑟 

is the bias for the reset gate, and 𝜎 represents the sigmoid function. The output value of the 

GRU hidden layer is shown in equation below. 

 

                                         ȟ(t) = tanh(Wȟ. [rt ∗ h(t − 1), x(t)])                                        (20) 

ȟ(𝑡)represents the output value to be determined in this neuron, ℎ(𝑡 − 1)represents the output 

of the previous neuron, 𝑥(𝑡)represents the input of the current neuron, 𝑊ȟ represents the 

weight of the update gate, and tanh () represents the hyperbolic tangent function. 𝑟𝑡 is used to 

control how much memory needs to be retained. the hidden layer information of the last output 

as shown in equation below. 

                                     h(t) = (1 − z(t)) ∗ h(t − 1) + z(t) ∗  ȟ(t)                                            (21) 
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Figure 3.5 Interacting layers of the repeating module in a GRU Networks[7] 

3.2 Summary 

In this chapter we have provided an overview of artificial intelligence techniques, in particular, 

ML techniques. Specifically, we focused on describing ML techniques that are commonly used 

in the literature for the prediction of software bugs and code smells. We concluded that ML 

techniques have recently gained attention in the literature for the prediction of software bugs 

and code smells due to their ability to recognize patterns, automate processes, handle large-

scale data, adapt to different contexts, continuously improve, and complement static analysis. 

ML models can analyze code metrics, historical bug data, or code smells indicators to identify 

patterns that indicate the presence of software bugs or code quality issues. By automating the 

analysis, ML techniques save time and effort for developers. ML models are scalable, adaptable 

to different coding styles and programming languages, and can continuously learn and improve 

over time. They complement static analysis tools by providing a more comprehensive analysis 

of code quality. While ML techniques are not infallible and require domain expertise for 

interpretation, they offer valuable insights and support in creating more reliable and 

maintainable software. 
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Chapter 4 Data Imbalance and Data-Balancing Methods 

This chapter offers a concise introduction to the concept of data imbalance and data-balancing 

methods, with a special emphasis on data sampling methods. 

4.1 Data Imbalance 

The data imbalance problem is a hot topic being investigated recently by ML and data mining 

researchers, especially in the context of the prediction of software bugs and code smells. It is 

considered one of the current research topics of interest in supervised classification that 

frequently appears in several real-world datasets[90]. The main characteristic of the 

imbalanced data is class imbalances. The class imbalance can be intrinsic property or due to 

limitations to obtaining data such as cost, privacy, and large effort[13]. The class imbalance 

problem occurs when, in a dataset, one of the classes has fewer instances, usually called the 

minority class, than the other class, usually called the majority class[91]. In bug prediction, this 

means that the dataset may have a significantly higher number of non-buggy instances 

compared to buggy instances, while in code smells, certain types of code smells may be 

underrepresented compared to others[92]. This problem produces a poor classification rate for 

the minority class, which is usually the most important. Consequently, it becomes difficult for 

a classifier to effectively discriminate between the minority and majority classes, especially if 

the class imbalance is extreme, which has aroused the interest of many researchers to solve the 

problem of class imbalance[93]. 

4.2 Data-Balancing Methods 

Data imbalance is a common challenge in the prediction of software bugs and code smells 

tasks, where certain classes of interest are underrepresented compared to others. Data-

balancing methods are crucial in addressing this issue and improving the performance and 

accuracy of the models[13]. By balancing the data, these methods help in achieving improved 

model performance, avoiding bias in predictions, enhancing the detection of rare events, 

preventing overfitting, and providing valuable insights into software bugs and code smells. 

Overall, data-balancing ensures that the models are trained on a more representative 

distribution of instances, leading to more accurate and reliable predictions in the prediction of 

software bugs and code smells tasks. Several data-balancing techniques have been developed 

to overcome the class imbalance problem, these techniques include subset methods, cost-

sensitive learning, algorithm-level implementations, ensemble learning, feature selection 

methods, sampling methods, etc.[15]. These techniques can be grouped into two distinct 

categories: external methods that use existing algorithms without modification (corresponds to 

methods that operate on the dataset in a preprocessing step preceding classification), and 

internal methods that create new algorithms or modify existing algorithms to take into account 

class imbalances (modifies the classification algorithm in order to put more emphasis on the 

minority class), the two types of methods can be roughly divided into data level and algorithm 

level [91], [93]. The most common techniques used in previous work to deal with the class 

imbalance problem are external methods which are based on the data sampling technique 

(Oversampling and Undersampling methods) [87], [94]. 
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4.2.1 Data Sampling (Resampling) Methods 

Data sampling techniques are more prevalent in the studies of the prediction of software bugs 

and code smell due to their easy employment and independence (i.e., they can be applied to 

any prediction model)[87]. Therefore, data sampling techniques are commonly used to address 

the class imbalance problem in ML. These techniques are popular due to their simplicity, 

compatibility with various algorithms, computational efficiency, and retention of information. 

Data sampling methods are relatively easy to understand and implement, work well with 

different learning algorithms, and have minimal computational overhead[93]. Additionally, 

models trained on balanced data can provide more interpretable results. Data sampling methods 

tend to adjust the prior distribution of the majority and minority classes in the training data by 

either reducing the majority class instances or increasing the minority class instances to obtain 

a balanced class distribution and reduce the discrepancy among the sizes of the classes. There 

are three main categories of data sampling techniques that are: Oversampling Methods, 

Undersampling Methods, and Hybrid (Combined-Sampling Methods)[95]. Figure 4.1 shows 

how data sampling methods deal with class imbalance. 

4.2.1.1 Undersampling Methods 

Undersampling is a non-heuristic method where a subset of the majority class is chosen to 

create a balanced class distribution. The advantage of this method is that the elimination of 

some examples could significantly reduce the size of the data and therefore decrease the run-

time cost, especially in the case of big data[95]. There are many Undersampling methods such 

as Random Undersampling, Near Miss, Tomek links, etc. 

• Random Undersampling is an Undersampling method aiming to randomly eliminate 

samples of the majority class to obtain a balanced dataset[15]. This algorithm randomly 

removes samples of the majority class using either sampling with or without 

replacement[94], despite its simplicity, Random Undersampling is one of the most effective 

resampling methods [13], [15]. 

• Near Miss is an Undersampling method, which aims to balance class distribution by 

selecting examples based on the distance of majority class examples to minority class 

examples[96]. 

• Tomek links is a method of Undersampling developed by Tomek (1976) This algorithm 

works by deleting negative classes and positive classes further that have similar 

characteristics [95].  

4.2.1.2 Oversampling Methods 

Oversampling is a non-heuristic method used to address data imbalance in ML by increasing 

the number of instances in the minority class[15]. These methods aim to provide the model 

with more examples of the minority class, making it easier for the model to learn its patterns 

and improve its ability to classify it accurately [95], [97]. Oversampling methods are more 

effective than Undersampling methods in prediction accuracy[13]. There are many 

Oversampling methods such as Random Oversampling, Synthetic Minority Oversampling 

Technique (SMOTE), etc. 

• Random Oversampling is a simple approach where we take samples at random from the 

small class and duplicate these instances so that it reaches a size comparable with the 
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majority class, it is defined as a method developed to increase the size of a training data set 

by making multiple copies of some minority classes[93]. 

• SMOTE is an Oversampling method based on creating synthetic instances for the minority 

classes. It is a method in which new samples of minority class are synthesized based on the 

feature space similarities among existing minority examples[87]. It is the most widely used 

and referenced method among the Oversampling methods[92]. The algorithm takes each 

minority class sample and introduces synthetic samples along the line joining the current 

instance and some of its k nearest neighbors from the same class. Depending on how much 

Oversampling is needed, the algorithm chooses randomly from the k nearest neighbors of 

them and forms pairs of vectors that are used to create the synthetic samples. The new 

instances create larger and denser decision regions. This helps classifiers learn more from 

the minority classes in those decision regions, rather than from the large classes 

surrounding those regions[93]. 

4.2.1.3 Hybrid (Combined-Sampling Methods) 

Combined-sampling methods refer to the integration of multiple sampling techniques into a 

single approach (such as Oversampling and Undersampling) to improve the effectiveness and 

efficiency of the sampling process[98]. These methods aim to leverage the strengths of 

different sampling techniques while mitigating their limitations. There are various hybrid 

sampling methods, for example SMOTE Tomek method[95].  

• SMOTE Tomek is a new technique that was applied using the library from imbalanced 

learn, which combines the SMOTE function for Oversampling and the Tomek Link 

function for Undersampling[99]. 

 

Figure 4.1 Shows how data sampling methods deal with class imbalance 

4.3 Summary 

In this chapter we have provided a short background of data imbalance and data-balancing 

methods. Specifically, we focused on describing data-balancing methods that are commonly 

used in the literature to address the problem of data imbalance in datasets of software bug and 

code smells. We concluded that data imbalance can pose challenges for ML models because 

they tend to favor the majority class and may struggle to adequately learn from the minority 

class. This can result in biased or inaccurate predictions, where the model may have high 

accuracy overall but performs poorly on the minority class or rare occurrences. In the context 
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of software bugs and code smells, this means that the model may have difficulties accurately 

identifying and predicting the occurrences of software bugs or specific code smells. Therefore, 

data imbalance should be addressed to ensure that the ML model can effectively learn from 

and make accurate predictions on all classes of interest, including the minority class instances. 

By applying data-balancing methods along with ML techniques in the prediction of software 

bugs and code smells, developers and analysts can build models that are more accurate, reliable, 

and unbiased. These methods help overcome the limitations of imbalanced datasets and ensure 

that the model's predictions are representative of the actual occurrence of software bugs and 

code smells in the software codebase. 
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Chapter 5 Proposed Methodology and Implementation 

This chapter presents our proposed methodology and implementation, which describes the 

experiments performed. Several experiments and comparisons are conducted to predict 

software bugs and code smells based on ML techniques and data-balancing methods. The 

architecture of the methodology followed in the dissertation can be visualized in Figure 5.1. 

 

Figure 5.1 The architecture of the methodology followed in the dissertation 

5.1 Experimental Design 

This subsection presents the process of experimental design for our proposed approaches. We 

also discuss experimental design phases that are used in the experiments, such as proposed ML 

models, the data sets that are used to train and test the models, data pre-processing and features 

selection, data-balancing methods that are used to balance data sets, and performance measures 

that are used to evaluate and compare our proposed approaches with other existing approaches. 

5.1.1 Proposed Approaches 

In relation to software bug prediction, we developed four approaches. The first approach was 

developed based on four ML models which are DT, NB, RF, and LR. The second approach 

was developed based on combining two RNN models, namely LSTM and GRU, with an 

Undersampling method (Near Miss). The third approach was developed by combining a Bi-

LSTM network with Oversampling methods (Random Oversampling and SMOTE). The fourth 

approach was developed using a combination method based on CNN and GRU with a hybrid 

sampling method (SMOTE Tomek). 

Concerning code smell detection, we developed three approaches. The first approach was 

developed based on several ML algorithms which are DT, K-NN, SVM, XGB, and MLP 

combined with an Oversampling method (Random Oversampling). The second approach was 

developed based on a CNN combined with Oversampling method (SMOTE). The third 

approach was developed based on two RNN models (Bi-LSTM and GRU) combined with two 

sampling methods (Random Oversampling and Tomek links). 
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5.1.2 The Public Benchmark Datasets Used in This Research 

When researching software bug prediction and code smell detection or related topics, it is 

essential to utilize appropriate data sets specifically designed for this purpose. To perform the 

experiments of this research and verify the validity of the proposed methods, the used datasets 

were obtained from the public benchmark datasets of software bugs and code smells that 

contain information for several projects. We used a public dataset because this is a 

benchmarking procedure for research on software bugs and code smells. 

5.1.2.1 Software Bug Data Sets 

We used three different public datasets to perform software bug prediction experiments. The 

first group was obtained from the NASA datasets, we selected four NASA public datasets, 

these datasets were collected from real software projects by NASA [100], [101]. Table 5.1 

shows information about the NASA datasets. The second group was obtained from a public 

unified bug dataset, the authors considered 5 public datasets and downloaded the corresponding 

source code for each system in the datasets and source code analysis was performed to obtain 

a standard set of source code metrics. They have produced a unified bug dataset at the class 

and file level that is suitable for the building of new bug prediction models. Furthermore, they 

have compared the metric definitions and values of the different bug datasets[102]. The 

defective instances for the unified bug dataset (Class level metrics and File level metrics) are 

8780 and 10240. While the non-defective instances are 38838 and 33504, respectively. Table 

5.2 shows information about the public unified bug dataset. The third group was obtained from 

the PROMISE repository datasets. We selected six open-source Java projects from the 

PROMISE dataset. The source code and corresponding PROMISE data for all projects are 

public [47], [103], [104]. These projects cover applications such as XML parsers, text search 

engine libraries, and data transport adapters, and these projects have traditional static metrics 

for each Java file. To guarantee the generality of the evaluation results, experimental datasets 

consist of projects with different sizes and defect rates (in the six projects, the maximum 

number of instances is 965, and the minimum number of instances is 205. In addition, the 

minimum defect rate is 2.23% and the maximum defect rate is 92.19%). The defective instances 

for the PROMISE datasets (ant, camel, ivy, jedit, log4j, and xerces) are (166, 188, 40, 11, 16, 

and 151), respectively. While the non-defective instances are (579, 777, 312, 481, 189, and 

437), respectively. Table 5.3 shows the essential information of selected projects, including 

project name, project version, number of instances, and defect rate or the percentage of 

defective instances. 

Table 5.1 Description of the NASA datasets 

Project Name # Modules % Defects Language Description 

JM1 10885 19% C Real-time predictive ground system: Uses 

simulations to generate predictions. 

PC1 1107 6.8% C Flight software for earth orbiting satellite. 

KC1 2107 15.4% C++ Storage management for receiving and 

processing ground data. 

KC2 523 20% C++ Software for science data processing. 
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Table 5.2 Description of the public unified bug dataset 

Dataset Software Lines of code 

PROMISE Ant, Camel, Ckjm, Forrest, Ivy, JEdit, Log4J, Lucene, PBeans, 

Poi, Synapse, Velocity, Xalan, Xerces 

2,805,253 

Eclipse 

Bug Dataset 

Eclipse 3,087,826 

Bug Prediction 

Dataset 

Eclipse JDT Core, Eclipse PDE UI, Equinox Framework, Lucene, 

Mylyn 

1,171,220 

Bug catchers 

Bug Dataset 

Apache Commons, ArgoUML, Eclipse JDT Core 1,833,876 

GitHub 

Bug Dataset 

Android Universal Image Loader, Antlr 4, Broadleaf Commerce, 

Ceylon IDE Eclipse Plugin, Elasticsearch, Hazelcast, JUnit, 

MapDB, mcMMO, MCT, Neo4J, Netty, OrientDB, Oryx, Titan 

1,707,446 

Table 5.3 Description of the PROMISE datasets 

Project Name Project Version # Of Instances Defect Rate % 

ant 1.7 745 22.28% 

camel 1.6 965 19.48% 

ivy 2.0 352 11.36% 

jedit 4.3 492 2.23% 

log4j 1.2 205 92.19% 

xerces 1.4 588 74.31% 

5.1.2.2 Code Smells Data Sets 

We used the proposed datasets in Arcelli Fontana et al [4] to perform code smell detection 

experiments. The authors selected 74 open-source systems from Qualitas Corpus as shown in 

Table 5.4. The Qualitas Corpus (QC) systems were collected by Tempero et al[105]. The QC 

systems comprise 111 systems written in Java belonging to different application domains and 

characterized by different sizes. The QC systems datasets consisted of 561 smelly instances 

and 1119 non-smelly instances. The first two datasets pertain to code smells at the class level, 

specifically for the god class (with 140 smelly cases and 280 non-smelly instances) and data 

class (with 140 smelly cases and 280 non-smelly instances). In contrast, the remaining two 

datasets focus on code smells at the method level: feature envy (with 140 smelly instances and 

280 non-smelly instances) and long method (with 141 smelly instances and 279 non-smelly 

instances). The reason for selecting these datasets is that (i) the QC systems are the largest 

curated corpus for code analysis studies, with the current version having 495 code sets, 

representing 100 unique systems. The corpus has been successful in that groups outside its 

original creators are now using it, and the number and size of code analysis studies have 

significantly increased since it became available. (ii) Systems must be able to calculate metric 

values correctly.  Moreover, these data sets are freely available, and researchers can iterate, 

compare and evaluate their studies. The selected metrics in QC systems are at class and method 

levels; the set of metrics is standard metrics covering different aspects of the code, i.e., 

complexity, cohesion, size, and coupling [4]. 

Table 5.4 Description of the Qualitas Corpus Systems 

Number of systems Lines of code 
 

Number of packages Number of classes 

74 6,785,568 3420 51,826 

5.1.3 Data Pre-processing 

Pre-processing the collected data is one of the essential stages before constructing the model. 

To generate a good model, data quality needs to be considered. Not all data collected is suitable 
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for training and model building. Anyhow, the inputs will significantly impact the model's 

performance and later affect the output[106]. Data pre-processing is a group of techniques that 

are applied to the data to improve the data quality before model building to remove noise and 

unwanted outliers from the data set, dealing with missing values, feature type conversion, etc. 

Outliers are data points that deviate significantly from most of the data in a dataset. Detecting 

and handling outliers is crucial in data analysis and modelling, as they can disproportionately 

influence statistical measures and ML algorithms. Outliers can be detected using various 

methods, such as visual inspection of the data, statistical measures such as the Z-score or the 

interquartile range, or ML techniques. Once outliers are detected, they can be handled in 

various ways, such as removing them from the dataset, replacing them with the mean or median 

of the data, using outlier detection techniques using ML, or using algorithms less sensitive to 

outliers. All outliers in the data sets were treated by replacing them with the mean. All datasets 

are pre-processed by dealing with missing content and constant values. Handling missing 

values treatment improves performance measures and avoids biased results. Incomplete data 

can bias the results of the ML models and/or reduce the model’s accuracy. Datasets used 

contain instances from different projects. Considering that, there are three main methods for 

handling missing data: deletion, imputation, and modelling. Deletion methods involve 

removing the missing values or the cases with missing values from the data set. Imputation 

means replacing the missing values with estimated values based on the available data. 

Modelling methods require incorporating the missing data mechanism into the analysis model 

or using methods that directly handle missing data. Missing values for the datasets used in this 

research are handled based on imputation methods, which means replacing them with the mean. 

In addition, instances are scaled to reduce the distance between independent variables. 

Normalization is necessary to convert the values into scaled values (transforming the features 

to be on a similar scale) to increase the model's efficiency. Therefore, the data set was 

normalized using Min–Max and Standard scaling. The formula for Min-Max scaling is given 

by (22), and the formula for Standard scaling is given by (23). After that, constant, quasi-

constant and duplicated features are removed. It is followed by feature selection extracting 

feature subset that contributes maximum to the ML algorithms prediction variable[107]. 

                                          Xnew  =  (X — Xmin) / (Xmax — Xmin)                                        (22) 

Where X: It is a set of the observed values present in X, X min: It is the minimum values in X 

and X max: It is the maximum values in X. 

                                                           Xscaled  =  X −  μ /  σ                                                  (23) 

Where 𝑋𝑠𝑐𝑎𝑙𝑒𝑑: It is the scaled value, X: It is the original value, 𝜇: It is the mean of the feature 

and σ: It is the standard deviation of the feature. 

5.1.4 Features Selection 

Feature selection is a critical process in ML that involves choosing the most relevant and 

informative features from the original set [108]. The objective is to enhance model 

performance, mitigate overfitting, and improve interpretability. Feature extraction facilitates 

the conversion of pre-processed data into a form that the classification engine can use [109], 

[110]. Feature selection in ML encompasses various methods, such as Filter Methods, Wrapper 

Methods, Embedded Methods, Dimensionality Reduction Techniques and Hybrid Methods 

aimed at identifying and utilizing the most relevant features for model training [111]. Filter 
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methods employ diverse criteria such as statistical tests, correlation coefficients, or information 

gain to rank and filter features based on their intrinsic characteristics, irrespective of the 

specific ML model. By efficiently screening out less informative or redundant features early in 

the process, filter methods help mitigate the curse of dimensionality and enhance computational 

efficiency. Wrapper methods in feature selection are dynamic techniques that assess the 

relevance of subsets of features by integrating them into the model training and evaluation 

process. Unlike filter methods that evaluate features independently, wrapper methods employ 

a trial-and-error approach, testing different combinations of features to identify the most 

informative subset. Standard wrapper methods include forward selection, backward 

elimination, and recursive feature elimination. Forward selection starts with an empty set and 

iteratively adds features based on their impact on model performance. In contrast, backward 

elimination begins with all features and progressively removes the least relevant ones. 

Recursive Feature Elimination recursively fits the model and eliminates the least significant 

feature in each iteration. Wrapper methods, while computationally more intensive than filter 

methods, are advantageous for capturing feature interactions and dependencies that contribute 

to optimal model performance. However, their increased computational cost may limit their 

application to high-dimensional datasets. Embedded methods for feature selection incorporate 

feature selection as part of the model training process. Unlike filter methods, which assess 

features independently of the learning algorithm, and wrapper methods, which evaluate subsets 

of features through iterative model training, embedded methods simultaneously perform 

feature selection and model training. These methods aim to identify the most relevant features 

for prediction and classification tasks while optimizing the model's performance. One popular 

embedded method is Least Absolute Shrinkage and Selection Operator, which introduces a 

penalty term to the linear regression cost function, promoting sparsity in the feature 

coefficients. Tree-based algorithms like Random Forests and Gradient Boosted Trees also 

inherently provide feature importance scores during their training process, allowing for the 

automatic selection of the most influential features. Embedded methods are advantageous as 

they streamline the feature selection process within the model training, potentially leading to 

more efficient and interpretable models. Dimensionality reduction techniques are methods 

employed in ML to reduce the number of input features while preserving the essential 

information within the data. One widely used technique is Principal Component Analysis, 

which transforms the original features into a set of uncorrelated variables called principal 

components. These components retain most of the variance in the data, enabling a more 

compact representation. Hybrid methods in feature selection represent a fusion of multiple 

techniques to achieve a more comprehensive and robust approach. These methods combine 

aspects of both filter and wrapper methods or leverage various strategies simultaneously. For 

instance, Boruta integrates the power of random forest classifiers with a shadow feature 

mechanism to identify relevant features, providing a hybrid solution. Genetic Algorithms, 

another hybrid approach, employs evolutionary algorithms to search for an optimal subset of 

features. Hybrid methods strive to harness the strengths of different feature selection 

techniques, addressing their limitations and producing more effective results. By combining 

diverse strategies, these methods offer a versatile and adaptable approach to feature selection, 

suitable for various datasets and ML tasks. The choice of a hybrid method depends on the 

specific characteristics of the data and the goals of the feature selection process. Each type of 

feature selection caters to specific data characteristics and model requirements, which is crucial 

in optimizing performance and interpretability in ML applications [7], [63]. In this research, 
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we applied the embedded method because it is faster and less computationally expensive than 

other methods and is suitable for ML models. 

5.1.5 Balancing Data sets 

Balancing data sets is an essential step in ML and data analysis when dealing with imbalanced 

data, where the number of instances in different classes or categories is significantly 

skewed[13], [14]. Balancing the data sets helps ensure that the model's performance is not 

biased towards the majority class and can effectively learn from the minority class. In practice, 

the datasets of software bugs and code smell often suffer from a common problem which is a 

class imbalance problem[40]. The reference datasets are not balance distributed, which shows 

a lack in the actual distribution of learning instances (The number of defective or smelly cases 

is smaller than non-defective or non-smelly), we manage this problem by modifying the 

original datasets to increase the realism of the data. The distribution of the dataset was modified 

by applying different data sampling methods such as Near Miss, Tomek links, Random 

Oversampling, SMOTE, and SMOTE Tomek. 

• The process of Near Miss is as follows: 

1- Identify minority class instances: Identify the instances belonging to the minority class. 

2- Near Miss Selection: 

➢ For each instance in the minority class, calculate the distance to its k nearest neighbors in 

the majority class. The instances in the majority class that are closest to the minority class 

form "near misses." 

➢ Select the "near misses" based on a criterion. There are three common types of Near Miss 

methods: 

- Near Miss-1: Keep majority instances whose average distance to k nearest minority 

instances is the smallest. 

- Near Miss-2: Keep majority instances whose average distance to k nearest minority 

instances is the largest. 

- Near Miss-3: Remove majority instances if the average distance to k nearest minority 

instances is smaller than the average distance to k nearest majority instances. 

3- Majority class reduction: Remove the selected majority class instances to balance the class 

distribution. This reduction process aims to create a balanced dataset with fewer instances from 

the majority class. 

4- Balanced dataset: Combine the minority class instances with the selected majority class 

instances to create a balanced dataset. 

• The process of Tomek Links is as follows: 

1- Identify minority class instances: Identify the instances belonging to the minority class 

(fraudulent transactions). 

2- Find Nearest Neighbors:  

➢ Calculate the distance to all other instances for each instance in the dataset. 

➢ For each instance, identify its nearest neighbor from a different class. A Tomek link is 

formed if: 

- Instance A belongs to the minority class. 

- Instance B belongs to the majority class. 

- Instance B is the nearest neighbor of instance A. 

- Instance A is the nearest neighbor of instance B. 
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3- Tomek Link removal: Remove the instances that form Tomek links. This process removes 

instances that are ambiguous or near the decision boundary between classes. 

4- Balanced dataset: Combine the instances after removing Tomek links to create a more 

balanced dataset. 

• The process of Random Oversampling is as follows: 

1- Identify minority class instances: Identify the instances belonging to the minority class. 

2- Random Oversampling: Randomly select instances from the minority class and duplicate 

them until the desired proportion of the minority class is met. 

3- Repeat the process: Repeat step 2 until the class distribution is balanced. The number of 

duplicates needed depends on the degree of imbalance and the desired balance ratio. 

4- Balanced dataset: Combine the original minority class instances with duplicated ones to 

create a more balanced dataset. 

• The process to generate the synthetic samples SMOTE is as follows: 

1- Choose random data from the minority class. 

2- Calculate the Euclidean distance between the random data and its k nearest neighbors. 

3- Multiply the difference with a random number between 0 and 1, then add the result to the 

minority class as a synthetic sample. 

4- Repeat the procedure until the desired proportion of minority class is met. 

• The process of SMOTE-Tomek is as follows: 

1- (Start of SMOTE) Choose random data from the minority class. 

2- Calculate the distance between the random data and its k nearest neighbors. 

3- Multiply the difference with a random number between 0 and 1, then add the result to the 

minority class as a synthetic sample. 

4- Repeat step number 2–3 until the desired proportion of minority class is met. (End of 

SMOTE) 

5- (Start of Tomek Links) Choose random data from the majority class. 

6- If the random data nearest neighbor is the data from the minority class (i.e. create the Tomek 

Link), then remove the Tomek Link. 

Figures 5.2 to 5.7 show the distribution of learning instances over the original and balanced 

data sets. 

• Regarding the unified bug dataset: The distribution of learning defective instances over the 

original data sets (Class level metrics and File level metrics) is (8780 and 10240), 

respectively. At the same time the distribution of learning non-defective instances is (38838 

and 33504), respectively.  

➢ Following the implementation of the Near Miss method, the distribution of learning 

defective instances over the balanced data sets (Class level metrics and File level metrics) 

became (8780 and 10240), respectively. While the distribution of learning non-defective 

instances became (8780 and 10240), respectively. 
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Figure 5.2 Distribution of learning instances over the original and balanced data sets (The public unified bug 

dataset)-by applying the Near Miss method 

• Regarding PROMISE datasets: The distribution of learning defective instances over the 

original data sets (ant, camel, ivy, jedit, log4j, and xerces) is (166, 188, 40, 11, 16, and 

151), respectively. At the same time the distribution of learning non-defective instances is 

(579, 777, 312, 481, 189, and 437), respectively.  

 

➢ Following the implementation of SMOTE Tomek method, the distribution of learning 

defective instances over the balanced data sets (ant, camel, ivy, jedit, log4j, and xerces) 

became (559, 751, 297, 466, 185 and 418), respectively. While the distribution of learning 

non-defective instances became (559, 751, 297, 466, 185 and 418), respectively. 

 

Figure 5.3 Distribution of learning instances over the original and balanced data sets (The PROMISE datasets)-

by applying the SMOTE Tomek method 

➢ Following the implementation of Random Oversampling method, the distribution of 

learning defective instances over the balanced data sets (ant, camel, ivy, jedit, log4j, and 

xerces) became (579, 777, 312, 481, 189 and 437), respectively. At the same time the 

distribution of learning non-defective instances became (579, 777, 312, 481, 189, and 437), 

respectively. 
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➢ Following the implementation of SMOTE method, the distribution of learning defective 

instances over the balanced data sets (ant, camel, ivy, jedit, log4j, and xerces) became (579, 

777, 312, 481, 189 and 437), respectively. While the distribution of learning non-defective 

instances became (579, 777, 312, 481, 189, and 437), respectively.  

 

Figure 5.4 Distribution of learning instances over the original and balanced data sets (The PROMISE datasets)-

by applying the Random Oversampling and SMOTE methods 

• Regarding the QC systems datasets: The distribution of learning smelly instances over the 

original data sets (God Class, Data Class, Feature envy and Long method) is (140, 140, 140 

and 141), respectively. At the same time the distribution of learning non-smelly instances 

is (280, 280, 280 and 279), respectively.  

➢ Following the implementation of SMOTE method, the distribution of learning smelly 

instances over the balanced data sets (God Class, Data Class, Feature envy and Long 

method) became (280, 280, 280 and 279), respectively. While the distribution of learning 

non-smelly instances became (280, 280, 280 and 279), respectively.  

 

Figure 5.5 Distribution of learning instances over the original and balanced data sets (The Qualitas Corpus 

Systems)-by applying the SMOTE method 

➢ Following the implementation of Random Oversampling method, the distribution of 

learning smelly instances over the balanced data sets (God Class, Data Class, Feature envy 
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and Long method) became (280, 280, 280 and 279), respectively. At the same time the 

distribution of learning non-smelly instances became (280, 280, 280 and 279), respectively.  

➢ Following the implementation of Tomek Links method, the distribution of learning smelly 

instances over the balanced data sets (God Class, Data Class, Feature envy and Long 

method) became (140, 140, 140 and 141), respectively. While the distribution of learning 

non-smelly instances became (263, 256, 261and 270), respectively.  

 

Figure 5.6 Distribution of learning instances over the original and balanced data sets (The Qualitas Corpus 

Systems)-by applying the Random Oversampling method 

 

Figure 5.7 Distribution of learning instances over the original and balanced data sets (The Qualitas Corpus 

Systems)-by applying the Random Oversampling and Tomek Links methods 

5.1.6 Models Building and Evaluation 

In building and evaluating the proposed prediction models, we adopted a systematic and 

methodical methodology which depends on ML techniques in conjunction with data-balancing 

methods to predict software bugs and code smells effectively. It's a common practice in the 

field to divide data into two sets: a training set used to teach the model and a test set used to 

assess its performance [112]. The datasets used to train and test our proposed ML models were 

obtained from public benchmark datasets of software bugs and code smells that contain 

information for several projects. Datasets are shuffled and split into testing and training sets. 

Training is performed with 80% of the dataset (random selection of features), while the 
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remaining 20% is used for validation and testing. The author utilized the Jupyter editor as a 

computing environment to construct models using the Python programming language to 

implement the methodology. Moreover, we harnessed a range of libraries and tools to 

efficiently handle data, construct models, and create insightful visualizations. Specifically, 

Pandas for data manipulation, scikit-learn, Keras, and TensorFlow for data modeling, and 

Matplotlib along with Seaborn for data visualization were employed. Moreover, Cross-

validation is a vital technique in ML used to evaluate the performance and generalizability of 

predictive models. It involves partitioning a dataset into subsets, typically referred to as folds, 

and systematically training and evaluating the model multiple times. Cross-validation helps 

mitigate issues like overfitting and provides a more reliable assessment of how well a model 

will perform on unseen data. It is an essential tool for selecting models, tuning 

hyperparameters, and ensuring the model's generalization across different subsets of the 

dataset. Cross-validation comes in various forms such as K-Fold Cross-Validation, Stratified 

K-Fold Cross-Validation, Leave-One-Out Cross-Validation, Leave-P-Out Cross-Validation, 

etc. to suit different data characteristics and modelling objectives. K-Fold Cross-Validation and 

Stratified K-Fold Cross-Validation are the most standard methods of Cross-validation. K-Fold 

Cross-Validation is a method where the data is divided into k subsets, and the model is trained 

on k-1 folds while being tested on the remaining fold. This process is repeated k times, and 

performance metrics are averaged to provide a more robust estimate of the model's 

effectiveness. Stratified K-Fold Cross-Validation is a variation of the standard K-Fold Cross-

Validation method that maintains the class distribution in each fold, is beneficial for 

imbalanced datasets, and is designed to address the potential issue of imbalanced class 

distributions in the dataset. Therefore, we applied Stratified K-Fold Cross-Validation method 

to evaluate the performance of our proposed predictive models. Each model was developed 

separately with different parameters. Once a prediction model is built, its performance must be 

evaluated. We evaluated the performance of our proposed models based on a set of standard 

performance measures such as the confusion matrix, Matthews Correlation Coefficient (MCC), 

the area under a receiver operating characteristic curve (AUC), the area under the precision-

recall curve (AUCPR) and mean square error (MSE) [17], [39]. 

• Parameter settings of the models:  

Hyperparameters encompass a diverse set of configuration settings crucial for shaping the 

behaviour of ML models. For instance, in Support Vector Machines, Kernel Parameters, such 

as those in the Radial Basis Function, significantly influence the model's capacity to handle 

complex relationships in the data. Decision Tree Parameters, including maximum depth and 

minimum samples per split, are pivotal for controlling the tree's complexity and preventing 

overfitting. Random Forests involve hyperparameters like the Number of Trees and Depth, 

determining the ensemble's robustness and individual tree characteristics. In k-Nearest 

Neighbors, the choice of k, or the number of nearest neighbors considered, impacts the model's 

flexibility and sensitivity to noise [39]. Additionally, Neural Networks involve several 

hyperparameters, such as Cell Type, Bidirectional layers, Dropouts, Dense layers, Optimizer, 

Learning Rate, Regularization Strength, Number of Iterations (Epochs), Batch Size, Hidden 

Layers, and Neurons, each playing a role in the network's architecture, convergence, and 

generalization. Learning Rate, a critical hyperparameter, dictates the step size during 

optimization, affecting the convergence speed and potential overshooting of optimal solutions. 

Regularization Strength is pivotal for preventing overfitting by controlling the complexity of 
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the model. The Number of Iterations (Epochs) determines how many times the entire training 

dataset is processed, balancing between underfitting and overfitting. Batch Size influences the 

optimization efficiency, impacting both speed and memory usage. Several Hidden Layers and 

Neurons, pivotal for capturing intricate relationships within data. Activation Functions 

introduce non-linearity, influencing the model's capacity to learn intricate mappings. Practical 

tuning of these hyperparameters is essential for optimizing model performance across diverse 

ML paradigms. Tables 5.5 and 5.6 show the parameter settings of the models [17], [37]. 

Table 5.5 Parameter settings of the models (Classical techniques) 

Models parameters 

NB No passing parameters (default parameters) 

LR Random_state=0 

DT No passing parameters (default parameters) 

RF n_estimators = 100 

K-NN n_neighbors = 7 

SVM probability = True, kernel = 'linear' 

XGB max_depth=3, n_estimators=100, n_jobs=2, objectvie='binary:logistic', 

learning_rate=0.01, subsample=0.7, colsample_bytree=0.8 

MLP hidden_layer_sizes=(10,5), max_iter=1000 

Table 5.6 Parameter settings of the models (Advanced techniques) 

 

Parameters 

Models 

Bi-LSTM LSTM CNN GRU 

Cell type 

(Bidirectional) 

LSTM (64, 32), 

return_sequences

=True 

LSTM (64, 32), 

return_sequences

=True 

 

- 

 

- 

Layers. GRU - - - 100 

Activation function ReLU + sigmoid ReLU + sigmoid ReLU + 

Sigmoid 

Tanh + Sigmoid 

Dropouts 0.2 0.2 0.2 0.2 

Dense 64, 1 64, 1 10, 1 1 

Optimizer Adam Adam Adam Adam 

Learning Rate 0.01 0.01 0.01 0.01 

Loos Function Mean squared 

error (MSE) 

Mean squared 

error (MSE) 

Mean squared 

error (MSE) 

Mean squared 

error (MSE) 

Batch Size 64 64 25 64 

Epochs 100 100 100 100 

Validation Split 0.1 0.1 0.1 0.1 

Verbose 1 1 - 1 

• A confusion matrix is a specific Table used to measure the performance of a model. 

Accuracy, Precision, Recall, and F-measure are the typical performance measurement 

parameters used in the confusion matrix. A confusion matrix summarizes the results of the 

testing algorithm. It presents a report of (i) True Positive Rate (TPR), (ii) False Positive 

Rate (FPR), (iii) True Negative Rate (TNR), and (iv) False Negative Rate (FNR)[18], [112]. 

Table 5.7 shows the confusion matrix. 

Table 5.7 Confusion matrix 

Predicted Values 

 

Actual Values 

Positive (Yes) Negative (No) 

Positive (Yes) TP FP 

Negative (No) FN TN 

- The accuracy is the ratio of true results that are calculated as the sum of true positive and 
true negative instances divided by the sum of true positive, true negative, false positive and 
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false negative. The top (maximum) accuracy is 1, whereas the low (minimum) accuracy is 
0[18]. Accuracy can be computed by using the following formula: 

                                             Accuracy =
(TP + TN)

(TP + TN+ FP + FN)
                                                        (24) 

- Precision is defined as the number of true positive predictions divided by the total number 
of positive predictions or fraction of true positive and predicted yes instances[18]. The top 
(maximum) precision is 1, whereas the low (minimum) is 0 and it can be calculated as: 

                                                  Precision =
TP 

(TP + FP)
                                                                    (25) 

- The recall is the number of positive predictions divided by the total number of positives or 
defined as the fraction between true positive instances and actual yes instances. The top 
(maximum) recall is 1, whereas the low (minimum) is 0[18]. The formula of recall is given 
below: 

                                                        Recall =
TP 

TP + FN
                                                                    (26) 

- The F-Measure is the weighted harmonic mean of precision and recall or defined as the 
fraction between the product of the recall and precision to the summation of recall and 
precision parameter of classification, it is used to combine the recall and precision measures 
in one measure to compare different algorithms[18]. The F-Measure formula is given below: 

                                                F − Measure =
(2∗ Recall ∗ Precision)

 (Recall + Precision)
                                         (27)  

• The Matthews Correlation Coefficient (MCC) is a measure used for model evaluation by 

measuring the difference between the predicted values and actual values [81], [82], 

[101].The MCC formula is given below: 

 

MCC =  TP ∗ TN −  FP ∗ FN / √(TP + FP) ∗ (TP + FN) ∗ (TN +  FP) ∗ (TN + FN)   (28) 

 

• The Area Under the ROC Curve (AUC) is a graph that shows the performance of 

classification models with all classification thresholds and plots based on two parameters, 

actual positive rate (TPR) and false-positive rate (FPR) [61], [112]. The AUC formula is 

given below: 

                                      AUC =   
∑ rank(insi)− 

M(M+1)

2
   

insi ∈ Positive Class

M .  N
                                        (29) 

Where ∑ 𝑟𝑎𝑛𝑘(𝑖𝑛𝑠𝑖)    
𝑖𝑛𝑠𝑖 ∈ 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝐶𝑙𝑎𝑠𝑠 It is the sum of the ranks of all positive samples, and 

M and N are the number of positive and negative examples, respectively. 

• The Area Under the Precision-Recall curve (AUCPR) is a curve that plots the Precision 

versus the Recall or a single number summary of the information in the precision-recall 

curve[113]. The AUCPR formula is given below: 

 

                                    AUCPR  =    ∫ Precision(Recall ) d(Recall)
1

0
                                   (30) 
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• The Mean Square Error (MSE) is a metric that measures the amount of error in the model. 

It assesses the average squared difference between the actual and predicted values [42], 

[112]. The MSE formula is given below: 

 

                                                MSE =   
1

n
∑ (x(i) − y(i))2 

n

i=1
                                                   (31) 

Where n is the number of observations, x(i) is the actual value, y(i) is the observed or predicted 

value for the  𝑖𝑡ℎ observation. 

5.2 Summary 

This chapter presents the proposed methodology and implementation for predicting software 

bugs and code smells. Our proposed methodology was based on various ML techniques and 

data-balancing methods (data sampling methods). Public benchmark datasets of software bugs 

and code smells have been used to ensure the methodology performs well across different types 

of software projects. To check how well our methodology works, we balanced the original data 

sets using different data sampling methods and then conducted extensive Python experiments. 

Additionally, we used various Hyperparameters to set our proposed models and evaluate the 

model’s performance using various performance measures.  
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Chapter 6 Experimental Results and Discussion of Software Bugs Prediction (SBP) 

This subsection presents the results obtained from the experiments explained in the previous 

section (proposed methodology and implementation) which includes the results of SBP. 

6.1 ML Techniques in SBP 

In this sub-section, we discuss the findings of the first study. The goal was to present a 

comprehensive study on ML techniques successfully used in previous studies to predict 

software bugs. The study also presented a method for SBP based on supervised ML algorithms 

namely, DT, NB, RF, and LR. The experiments have been conducted based on benchmark 

datasets obtained from the NASA datasets (jm1, PC1, KC1 and KC2). The experimental results 

were evaluated and compared based on various performance measures (accuracy, precision, 

recall, f-measure, and AUC).  

The performance of the prediction models is reported in Tables 6.1 to 6.6 and Figures 6.1 to 

6.4. 

Tables 6.1 to 6.4 show the performance of the proposed models on the four data sets based on 

all performance measures. The maximum (best) accuracy value is 99%, which DT and RF 

models in JM1, PC1and KC1 datasets achieved. The maximum (best) precision value is 99%, 

which DT and RF models in JM1, PC1and KC1 datasets achieved. The maximum (best) recall 

value is 100%, which was achieved by DT and RF models in all datasets. The maximum (best) 

F-measure value is 99%, achieved by DT and RF models in the PC1 dataset. 

Table 6.1 Performance measures of the proposed models on the jm1 dataset 

Proposed models Performance measures 

Accuracy Precision Recall F-measure 

DT 0.99 0.99 1.00 0.99 

NB 0.80 0.81 0.97 0.89 

RF 0.99 0.99 1.00 0.99 

LR 0.81 0.82 0.99 0.89 

Table 6.2 Performance measures of the proposed models on the pc1 dataset 

Proposed models Performance measures 

Accuracy Precision Recall F-measure 

DT 0.99 0.99 1.00 1.00 

NB 0.91 0.94 0.96 0.95 

RF 0.99 0.99 1.00 1.00 

LR 0.93 0.94 0.99 0.96 

Table 6.3 Performance measures of the proposed models on the kc1 dataset 

Proposed models Performance measures 

Accuracy Precision Recall F-measure 

DT 0.99 0.99 1.00 0.99 

NB 0.85 0.88 0.96 0.92 

RF 0.99 0.99 1.00 0.99 

LR 0.85 0.87 0.96 0.92 

Table 6.4 Performance measures of the proposed models on the kc2 dataset 

Proposed models Performance measures 

Accuracy Precision Recall F-measure 

DT 0.98 0.98 1.00 0.99 

NB 0.83 0.83 0.98 0.90 

RF 0.98 0.98 1.00 0.99 

LR 0.84 0.86 0.96 0.91 
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Figures 6.1 to 6.4 present the Receiver Operating Characteristic (ROC) Curves for the proposed 
models on the four data sets. The vertical axis presents the actual positive rate of the model, 
and the horizontal axis illustrates the false positive rate. The AUC is a sign of the performance 
of the model. The larger AUC is, the better the model performance will be. Based on the 
Figures, the values are encouraging and indicate our proposed model’s efficiency in SBP. 
Regarding the jm1 dataset, the best AUC is 97%, which the DT and RF models obtain. The 
worst AUC is 52% which is obtained by the NB and LR models. Regarding the pc1 dataset, 
the best AUC is 96% which the DT and RF models obtain. The worst AUC is 54%, which the 
NB model obtains. Regarding the kc1 dataset, the best AUC is 96% which the DT and RF 
models obtain. The worst AUC is 59%, which the LR model obtains. Regarding the kc2 dataset, 
the best AUC is 96%, which the DT and RF models obtain. The worst AUC is 60%, which the 
NB model obtains. The results show that DT and RF models have better AUC values than NB 
and LR models. 

 

Figure 6.1 Comparison of ROC curves for Models Across the jm1 Dataset 

 

Figure 6.2 Comparison of ROC curves for Models Across the pc1 Dataset 
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Figure 6.3 Comparison of ROC curves for Models Across the kc1 Dataset 

 

Figure 6.4 Comparison of ROC curves for Models Across the kc2 Dataset 

Tables 6.5 and 6.6 show our study's comparison results with previous studies that used the 

same dataset based on performance measures, namely accuracy, precision, recall and f-

measure. The best values are indicated with bold text and "- "to indicate the approaches that 

did not provide results in a particular data set. According to the Tables, some of the results in 

the previous studies are better than ours. Still, in most cases, our method outperforms the other 

state-of-the-art methods and provides better predictive performance. 

Table 6.5 Comparing the results of our study with the results of studies that used the same dataset and 

algorithms across the jm1 and pc1 dataset 

jm1 dataset 

Performance 

measure 

ML 

models 

Studies 

First study[82] Second study[114] Third study[10] Our study 

 

Accuracy 

DT - - 0.81 0.99 

NB - - 0.81 0.80 

RF - - 0.82 0.99 

 

F-measure 

DT - - 0.90 0.99 

NB 0.75 - 0.89 0.89 

RF 0.76 - 0.90 0.99 
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LR 0.74 - - 0.89 

pc1 dataset 

 

Accuracy 

DT - - 0.93 0.99 

NB - - 0.88 0.91 

RF - - 0.93 0.99 

 

F-measure 

DT - - 0.97 1.00 

NB 0.89 - 0.94 0.95 

RF 0.91 - 0.97 1.00 

LR 0.91 - - 0.96 

Table 6.6 Comparing the results of our study with the results of studies that used the same dataset and 

algorithms across the kc1 and kc2 datasets 

kc1 dataset 

Performance 

measure 

ML 

models 

Studies 

First study[82] Second study[114] Third study[10] Our study 

 

Accuracy 

DT - - 0.84 0.99 

NB - 0.82 0.82 0.85 

RF - - 0.85 0.99 

Precision NB - 0.80 - 0.88 

Recall NB - 0.83 - 0.96 

 

F-measure 

DT - - 0.92 0.99 

NB 0.82 0.81 0.90 0.92 

RF 0.82 - 0.92 0.99 

LR 0.81 - - 0.92 

kc2 dataset 

 

Accuracy 

DT - - 0.82 0.98 

NB - - 0.84 0.83 

RF - - 0.82 0.98 

 

F-measure 

DT - - 0.89 0.99 

NB 0.80 - 0.90 0.90 

RF 0.76 - 0.89 0.99 

LR 0.79 - - 0.91 

In summary, this research aimed to provide a comprehensive study on ML techniques in SBP, 

and propose a method for SBP based on supervised ML algorithms. The results of the proposed 

method were compared with some results presented in previous studies. When conducting the 

literature review, we uncovered many papers delving into the realm of ML models for 

predicting software bugs. Notably, our examination revealed that a predominant portion of 

these studies employed ML techniques such as NB, ANNs and SVM for software bug 

prediction. Additionally, it is worth noting that our review encompasses an array of research 

papers, each contributing unique insights into the application and effectiveness of these ML 

models in the context of bug prediction. Regarding evaluating the results obtained from our 

proposed method and their comparison with the results of other studies, we conclude that the 

DT and RF classifiers achieved commendable scores compared to other classifiers, and our 

method outperforms other methods in predicting software bugs. The evaluation process and 

the study's results unequivocally demonstrate the efficacy of ML algorithms in SBP. 

Furthermore, this research underscores the need for additional investigation into the realm of 

static code analysis, as it can potentially  uncover and predect software bugs more 

comprehensively. In our future work, we will combine ML techniques with data-balancing 

method to improve the accuracy of SBP. By employing ML techniques coupled with advanced 

data-balancing methods, we can not only enhance the accuracy of SBP but also pave the way 

for more robust and reliable software development practices. 
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6.2 LSTM and GRU with Undersampling Methods in SBP 

In this sub-section, we discuss the findings of the second study. The goal was to present a 

method based on combining two RNN models namely LSTM and GRU with the 

Undersampling method (Near Miss) for SBP. The experiments have been conducted based on 

benchmark datasets obtained from the public unified bug dataset. The experimental results 

were evaluated and compared based on various performance measures (accuracy, precision, 

recall, f-measure, MCC, AUC, AUCPR and MSE). 

The performance of the prediction models is reported in Tables 6.7 to 6.9, and Figures 6.5 to 

6.11, appendix 1 (Figures 1 and 2). 

Table 6.7 shows the results of the LSTM and GRU models based on both the original and 

balanced datasets, emphasising class-level measures.. Notably, we observed that both the 

LSTM and GRU models attained the highest accuracy of 93% on the balanced dataset, while 

the GRU model exhibited the lowest accuracy of 82% on the original dataset. In terms of 

precision, the LSTM model achieved the highest value of 95% on the balanced dataset, while 

the GRU model demonstrated the lowest precision of 58% on the original dataset. As for recall, 

both models obtained the highest score of 92% on the balanced dataset, whereas the GRU 

model exhibited the lowest recall of 16% on the original dataset. Both models achieved the 

highest F-Measure score of 93% on the balanced dataset. However, the GRU model had the 

lowest score of 26% on the original dataset. . Both models achieved the highest MCC of 86% 

on the balanced dataset, whereas the GRU model had the lowest MCC of 23% on the original 

dataset. The LSTM model attained the highest AUC score of 97% on the balanced dataset, and 

the GRU model achieved the lowest score of 77% on the original dataset. On the balanced 

dataset, both models demonstrated the highest AUCPR score of 97%, while the GRU model 

exhibited the lowest AUCPR score of 44% on the original dataset. Additionally, the GRU 

model recorded the highest MSE of 0.130 on the original dataset, while the LSTM model 

achieved the lowest MSE of 0.051 on the balanced dataset. 

Table 6.7 Performance measures for the proposed models over class level metrics dataset 

Original Dataset 

 

Proposed Models 

Performance Measures 

Accuracy Precision Recall F-measure MCC AUC AUCPR MSE 

LSTM 0.83 0.60 0.25 0.35 0.30 0.78 0.48 0.125 

GRU 0.82 0.58 0.16 0.26 0.23 0.77 0.44 0.130 

Averages 0.82 0.59 0.20 0.30 0.26 0.77 0.46 0.130 

Balanced Dataset 

 

Proposed Models 

Performance Measures 

Accuracy Precision Recall F-measure MCC AUC AUCPR MSE 

LSTM 0.93 0.95 0.92 0.93 0.86 0.97 0.97 0.051 

GRU 0.93 0.94 0.92 0.93 0.86 0.96 0.97 0.063 

Averages 0.93 0.94 0.92 0.93 0.86 0.96 0.97 0.057 

 

Table 6.8 shows the results of LSTM and GRU models based on on the original and balanced 

datasets, focusing on file-level metrics. Remarkably, both the LSTM and GRU models 

achieved the highest accuracy of 88% on the balanced dataset. In contrast the lowest accuracy 

of 78% was observed for both models (LSTM and GRU) on the original dataset. Furthermore, 

the balanced dataset yielded the highest precision of 94% for both models (LSTM and GRU), 

while the GRU model had the lowest precision of 61% on the original dataset. Regarding recall, 

the balanced dataset produced the highest score of 81% for both models. Conversely, when 

applied to the original dataset, the LSTM model achieved the lowest recall of 18%. Similarly, 
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the balanced dataset resulted in the highest f-measure of 87% for both the LSTM and GRU 

models. Conversely, the LSTM model exhibited the lowest f-measure of 28% when working 

with the original dataset. Furthermore, both models (LSTM and GRU) attained the highest 

MCC of 76% on the balanced dataset, while the LSTM model had the lowest MCC of 24% on 

the original dataset. Similarly, the balanced dataset yielded the highest AUC of 93% for both 

models (LSTM and GRU), while the original dataset yielded the lowest AUC of 75% for both 

models (LSTM and GRU). Both models also achieved the highest AUCPR on the balanced 

dataset,  95%, and the lowest AUCPR on the original dataset, 49%. In conclusion, both models 

(LSTM and GRU) achieved the highest MSE of 0.152 on the original dataset, while the LSTM 

model obtained the lowest MSE of 0.090 on the balanced dataset.  

Table 6.8 Performance measures for the proposed models over file level metrics dataset 

Original Dataset 

 

Proposed Models 

Performance Measures 

Accuracy Precision Recall F-measure MCC AUC AUCPR MSE 

LSTM 0.78 0.62 0.18 0.28 0.24 0.75 0.49 0.152 

GRU 0.78 0.61 0.22 0.33 0.27 0.75 0.49 0.152 

Averages 0.78 0.61 0.20 0.30 0.25 0.75 0.49 0.152 

Balanced Dataset 

 

Proposed Models 

Performance Measures 

Accuracy Precision Recall F-measure MCC AUC AUCPR MSE 

LSTM 0.88 0.94 0.81 0.87 0.76 0.93 0.95 0.090 

GRU 0.88 0.94 0.81 0.87 0.76 0.93 0.95 0.093 

Averages 0.88 0.94 0.81 0.87 0.76 0.93 0.95 0.091 

Boxplots are particularly useful for comparing distributions between group or visualizing 

multiple datasets or subsets within a single dataset. Therefore, we aggregated the achieved 

results to get a more accurate overview of the quality of the results using boxplots. Figure 6.5 

displays Box plots, which effectively depict a ranges of performance measures for all datasets. 

The ranges of performance measures (Accuracy, Precision, Recall, F-measure, MCC, AUC and 

AUCPR) on the original datasets are 78% to 83%, 58% to 62%, 16% to 25%, 26% to 35%, 

23% to 30%, 75% to 78%, 44% to 49%, respectively. While, the ranges of performance 

measures (Accuracy, Precision, Recall, F-measure, MCC, AUC and AUCPR) on the balanced 

datasets are 88% to 93%, 94% to 95%, 81% to 92%, 87% to 93%, 76% to 86%, 93% to 97%, 

95% to 97%, respectively. 

 

Figure 6.5 Showcases the boxplots illustrating the performance measures achieved by the proposed models on 

all datasets, encompassing both class-level and file-level metrics 
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Figures 6.6 to 6.9 show the training and validation accuracy and training and validation loss of 

the models on the original and balanced datasets.  

Figures 6.6 and 6.7 show the training and validation accuracy of the models on the original and 

balanced datasets. The vertical axis presents the accuracy of the model, and the horizontal axis 

illustrates the number of epochs. Accuracy is the fraction of predictions that our model 

predicted right.  

Regarding the original datasets, the LSTM model learned 83% accuracy for the class-level 

metrics dataset and 78% accuracy for the file level metrics dataset dataset at the 100th epoch. 

The GRU model learned 82% accuracy for the class level metrics dataset and 78% accuracy 

for the file-level metrics dataset dataset at the 100th epoch.  

Regarding the balanced datasets, the LSTM model learned 93% accuracy for the class-level 

metrics dataset and 88% accuracy for the file-level metrics dataset dataset at the 100th epoch. 

The GRU model, the model learned 93% accuracy for the class-level metrics dataset and 88% 

accuracy for the file-level metrics dataset at the 100th epoch.  

 

Figure 6.6 Represents the training and validation accuracy of the models across all datasets - class-level metrics 

 

Figure 6.7 Represents the training and validation accuracy of the models across all datasets - file-level metrics 
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Figures 6.8 and 6.9 show the training and validation loss of the models on the original and 

balanced datasets. The vertical axis presents the loss of the model, and the horizontal axis 

illustrates the number of epochs. The loss indicates how bad a model prediction was. Regarding 

the original datasets, the LSTM model loss is 0.125 for the class-level metrics dataset and 0.152 

for the file-level metrics dataset dataset at the 100th epoch. The GRU model loss is 0.130 for 

the class-level metrics dataset and 0.152 for the file-level metrics dataset at the 100th epoch.  

Regarding the balanced datasets, the LSTM model loss is 0.051 for the class level metrics 

dataset and 0.090 for the file level metrics dataset dataset at the 100th epoch. The GRU model, 

the model loss is 0.063 for the class-level metrics dataset and 0.093 for the file-level metrics 

dataset at the 100th epoch. These Figures demonstrate a consistent trend of increasing accuracy 

and decreasing loss as the number of epochs advances. The high accuracy achieved, and the 

low loss obtained serve as evidence of the effective training and validation of the proposed 

models. 

 

Figure 6.8 Represents the training and validation loss of the models across all datasets - class-level metrics 

 

Figure 6.9 Represents the training and validation loss of the models across all datasets - file-level metrics 
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Figures 6.10 and 6.11 show the ROC curves of the model on the original and balanced datasets. 

The vertical axis presents the actual positive rate of the model, and the horizontal axis illustrates 

the false positive rate. The AUC is a sign of the performance of the model. The larger AUC is, 

the better the model performance will be. Based on the Figures, the values are encouraging and 

indicate our proposed models’ efficiency in SBP. Regarding the original datasets, the LSTM 

model obtained the best AUC which is 78% on the class-level metrics data set. The worst AUC 

obtained by both models (LSTM and GRU) which is 75% on the file-level metrics dataset.  

Regarding the balanced datasets, the LSTM model obtained the best AUC which is 97% on the 

class-level metrics data set. The worst AUC obtained by both models (LSTM and GRU) which 

is 93% on the file-level metrics dataset. Further in appendix 1, Figures 1 and 2 display the 

AUCPR scores obtained by the proposed models on the original and balanced datasets. 

 

Figure 6.10 Illustrates the ROC Curves of the models across all datasets - class-level metrics 

 

Figure 6.11 Illustrates the ROC Curves of the models across all datasets - file-level metrics 
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Table 6.9 shows the comparison results of our method with some previous studies based on 

some performance measures namely accuracy and AUC. The best values are indicated with 

bold text and "- "to indicate the approaches that did not provide results in a particular data set. 

The comprehensive findings, presented in Table 6.9, showed that while certain earlier studies 

displayed higher values, our proposed method surpassed other techniques on most datasets. 

This indicates the superior performance of our approach and its potential to outperform existing 

methods in the context of software bug prediction. By conducting this rigorous evaluation and 

providing empirical evidence, our study contributes valuable insights to the field and 

underscores the effectiveness of our novel approach in improving bug prediction accuracy. 

Table 6.9 Comparison of the proposed approach with other existing approaches based on the accuracy and AUC 

Approaches Datasets Accuracy AUC 

LSTM [2] JIRA dataset 0.89 - 

NB[21] software fault datasets (DS1, DS2, 

DS3) 

0.89, 0.95, 0.95 - 

DT[21] software fault datasets (DS1, DS2, 

DS3) 

0.95, 0.97, 0.99 - 

ANNs[21] software fault datasets (DS1, DS2, 

DS3) 

0.93, 0.95, 0.96 - 

LSTM[55] Bug report datasets (Eclipse Platform 

UI, JDT) 

0.67, 0.76 - 

CNN and RF with 

Boosting[60] 

Bug report datasets (Mozilla, Eclipse, 

JBoss, OpenFOAM, Firefox) 

0.94, 0.95, 0.94, 

0.98, 0.97 

 

- 

Defect prediction via 

attention-based RNNs (DP-

ARNN)[84] 

PROMISE datasets (Camel, Lucene, 

Poi, Xerces, Jedit, Xalan, Synapse) 

 

- 

0.79, 0.68, 0.79, 

0.76, 0.82, 0.67, 

0.64 

Credibility-based 

imbalance boosting[115] 

NASA datasets (CM1, KC1, PC1, JM1) - 0.72, 0.67, 0.85, 

0.67 

Defect prediction through 

attention-based 

GRU-LSTM[116] 

Code4Bench for C/C++ code 0.69  

- 

Deep Neural 

Networks[117] 

Unified bug dataset (Bug drediction 

Dataset, PROMISE dataset, GitHub 

bug dataset) 

 

- 

 

0.81 

Our models (LSTM, GRU) Unified Bug Dataset_ Balanced Dataset 

(class-level) 

0.93, 0.93 0.97, 0.96 

Our models (LSTM, GRU) Unified Bug Dataset_ Balanced Dataset 

(file-level) 

0.88, 0.88 0.93, 0.93 

In summary, the primary objective of this study was to present a method based on combining 

two RNN models namely LSTM and GRU with the Undersampling method (Near Miss) for 

SBP. We compared the results obtained by the proposed method based on the original and 

balanced datasets to investigate the impact of Undersampling methods on improving the 

accuracy of ML techniques. Additionally, the proposed method's results were compared with 

those presented in previous studies. After comparing the results obtained by the proposed 

models on the original datasets with results obtained by the proposed models on the balanced 

datasets, as shown in the Tables and Figures, we note that the models got good scores on the 

balanced datasets and the results improved further due to balancing, which indicated that the 

combination of LSTM and GRU with the Undersampling method (Near Miss) positively 

affects bug prediction performance in datasets with imbalanced class distributions. Moreover, 

data sampling methods play an essential role in improving the accuracy of the ML models in 

predicting software bug. Regarding evaluating the results obtained from our proposed method 
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and their comparison with some results of other studies, we conclude that our models are 

promising, competitive and outperform other models in the previous studies. Moving forward, 

our future work aims to evaluate the robustness of the proposed method on a wide range of 

datasets. 

6.3 Bi-LSTM with Oversampling Methods in Software Defect Prediction (SDP) 

In this sub-section, we discuss the findings of the third study, the goal was to present a method 

based on combining a Bi-LSTM network with Oversampling methods (Random Oversampling 

and SMOTE) for SDP. The experiments have been conducted based on benchmark datasets 

obtained from the PROMISE repository. The experimental results were evaluated and 

compared based on various performance measures (accuracy, precision, recall, f-measure, 

MCC, AUC, AUCPR, and MSE). 

The performance of the prediction model is reported in Tables 6.10 to 6.15, and Figures 6.12 

to 6.21, appendix 2 (Figures 1,2,3). 

According to Table 6.10: Accuracy for the various original datasets: the highest accuracy was 

achieved by the proposed model on the jedit dataset, which is 97%. The lowest accuracy was 

achieved by the proposed model on the ant dataset, which is 80%. Precision for the various 

original datasets: the highest Precision was achieved by the proposed model on the log4j and 

xerces datasets, which is 95%. The proposed model achieved the lowest Precision on the jedit 

dataset, 0%. Recall for the various original datasets: the highest Recall was achieved by the 

proposed model on the log4j dataset, which is 100%. The lowest Recall was achieved by the 

proposed model on the jedit dataset, which is 0%. F-Measure for the various original datasets: 

the highest F-Measure was achieved by the proposed model on the log4j dataset, which is 97%. 

The lowest F-Measure was achieved by the proposed model on the jedit dataset, which is 0%. 

MCC for the various original datasets: the highest MCC was achieved by the proposed model 

on the xerces dataset, which is 75%. The lowest MCC was achieved by the proposed model on 

the jedit and log4j datasets, which is 0%. AUC for the various original datasets: the highest 

AUC was achieved by the proposed model on the xerces dataset, 94%. The lowest AUC was 

achieved by the proposed model on the log4j dataset, which is 60%. AUCPR for the various 

original datasets: the highest AUCPR was achieved by the proposed model on the xerces 

dataset, 98%. The lowest AUCPR was achieved by the proposed model on the jedit dataset, 

which is 29%. MSE for the various original datasets: the highest MSE was achieved by the 

proposed model on the ant dataset, which is 0.152. The lowest MSE was achieved by the 

proposed model on the jedit dataset, which is 0.030. 

Table 6.10 Performance analysis for proposed Bi-LSTM Network - Original Datasets 

 

Datasets 

Performance Measures 

Accuracy Precision Recall F-Measure MCC AUC AUCPR MSE 

ant 0.80  0.50  0.50 0.50 0.37 0.79  0.48 0.152  
camel 0.82  0.56  0.28 0.37  0.30 0.69  0.37 0.146  

ivy 0.87  0.50  0.22 0.31  0.27 0.72  0.40 0.105  
jedit 0.97  0.00  0.00 0.00 0.00 0.85 0.29 0.030  
log4j 0.95 0.95 1.00 0.97 0.00 0.60 0.96 0.041 

xerces 0.91 0.95 0.92 0.94 0.75 0.94 0.98 0.075 

Averages 0.88 0.57 0.48 0.51 0.28 0.76 0.58 0.091 

According to Table 6.11: Accuracy for the various balanced datasets using Random 

Oversampling: the highest accuracy was achieved by the proposed model on the jedit and log4j 
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datasets, which is 99%. The lowest accuracy was achieved by the proposed model on the ivy 

dataset, which is 90%. Precision for the various balanced datasets using Random 

Oversampling: The highest Precision was achieved by the proposed model on the log4j dataset, 

which is 100%. The proposed model on the ivy dataset achieved the lowest Precision, which is 

82%. Recall for the various balanced datasets using Random Oversampling: The highest Recall 

was achieved by the proposed model on the ivy and jedit datasets, which is 100%. The lowest 

Recall was achieved by the proposed model on the xerces dataset, which is 92%. F-Measure 

for the various balanced datasets using Random Oversampling: the highest F-Measure was 

achieved by the proposed model on the jedit and log4j datasets, which is 99%. The lowest F-

Measure was achieved by the proposed model on the ivy dataset, which is 90%. MCC for the 

various the various balanced datasets using Random Oversampling: the highest MCC was 

achieved by the proposed model on the jedit and log4j datasets, which is 97%. The lowest MCC 

was achieved by the proposed model on the camel and ivy datasets, which is 81%. AUC for the 

various balanced datasets using Random Oversampling: The highest AUC was achieved by the 

proposed model on the jedit and log4j datasets, which is 99%. The lowest AUC was achieved 

by the proposed model on the camel and ivy datasets, which is 93%. AUCPR for the various 

balanced datasets using Random Oversampling: the highest AUCPR was achieved by the 

proposed model on the jedit and log4j datasets, which is 99%. The lowest AUCPR was 

achieved by the proposed model on the ivy dataset, which is 86%. MSE for the various balanced 

datasets using Random Oversampling: the highest MSE was achieved by the proposed model 

on the ivy dataset, which is 0.092. The lowest MSE was achieved by the proposed model on 

the jedit dataset, which is 0.009. 

Table 6.11 Performance analysis for proposed Bi-LSTM Network - Balanced Datasets using Random 

Oversampling Technique 

 

Datasets 

Performance Measures 

Accuracy Precision Recall F-Measure MCC AUC AUCPR MSE 

ant 0.91  0.89  0.94 0.91  0.82 0.95  0.93 0.073  
camel 0.91  0.87  0.98 0.92  0.81 0.93  0.92 0.082  

Ivy 0.90  0.82  1.00 0.90  0.81 0.93  0.86 0.092  
jedit 0.99  0.98  1.00 0.99  0.97 0.99  0.99 0.009  
log4j 0.99 1.00 0.98 0.99 0.97 0.99 0.99 0.012 

xerces 0.95 0.98 0.92 0.95 0.89 0.97 0.98 0.049 

Averages 0.94 0.92 0.97 0.94 0.87 0.96 0.94 0.052 

According to Table 6.12: Accuracy for the various balanced datasets using SMOTE: the highest 

accuracy was achieved by the proposed model on the log4j dataset, which is 100%. The 

proposed model achieved the lowest accuracy on the ant dataset, 84%. Precision for the various 

balanced datasets using SMOTE: The highest Precision was achieved by the proposed model 

on the log4j dataset, which is 100%. The lowest Precision was achieved by the proposed model 

on the ant dataset, which is 81%. Recall for the various balanced datasets using SMOTE: the 

highest Recall was achieved by the proposed model on the jedit and log4j datasets, which is 

100%. The lowest Recall was achieved by the proposed model on the ant and camel datasets, 

which is 88%. F-Measure for the various balanced datasets using SMOTE: the highest F-

Measure was achieved by the proposed model on the log4j dataset, which is 100%. The lowest 

F-Measure was achieved by the proposed model on the ant dataset, which is 85%. MCC for 

the various balanced datasets using SMOTE: the highest MCC was achieved by the proposed 

model on the log4j dataset, which is 100%. The lowest MCC was achieved by the proposed 

model on the ant dataset, which is 67%. AUC for the various balanced datasets using SMOTE: 
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the highest AUC was achieved by the proposed model on the log4j dataset, which is 100%. 

The lowest AUC was achieved by the proposed model on the ant dataset, which is 90%. 

AUCPR for the various balanced datasets using SMOTE: the highest AUCPR was achieved by 

the proposed model on the log4j dataset, which is 100%. The lowest AUCPR was achieved by 

the proposed model on the ant and camel datasets, which is 91%. MSE for the various balanced 

datasets using SMOTE: the highest MSE was achieved by the proposed model on the ant 

dataset, which is 0.124. The lowest MSE was achieved by the proposed model on the log4j 

dataset, which is 0.001. 

Table 6.12 Performance analysis for proposed Bi-LSTM Network - Balanced Datasets using SMOTE Technique 

 

Datasets 

Performance Measures 

Accuracy Precision Recall F-Measure MCC AUC AUCPR MSE 

Ant 0.84  0.81  0.88 0.85  0.67 0.90  0.91 0.124  
camel 0.87  0.89  0.88 0.89  0.74 0.91  0.91 0.113  

Ivy 0.89  0.83  0.97 0.89  0.78 0.94  0.92 0.101  
Jedit 0.99  0.98  1.00 0.99  0.97 0.99  0.99 0.011  
log4j 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.001 

xerces 0.93 0.93 0.92 0.93 0.85 0.96 0.97 0.067 

Averages 0.92 0.90 0.94 0.92 0.83 0.95 0.95 0.069 

 

Table 6.13 presents the statistical analysis results (paired t-test) of the proposed model on the 

original and balanced datasets (using Random Oversampling and SMOTE) in terms of mean, 

Standard Deviation (STD), min, max, and P value. We notice that the mean values of the Bi-

LSTM model are 0.88 on the original datasets, 0.94 on the balanced datasets using Random 

Oversampling, and 0.92 on the balanced datasets using SMOTE. The STD values of the Bi-

LSTM model are 0.06 on the original datasets, 0.04 on the balanced datasets using Random 

Oversampling, and 0.06 on the balanced datasets using SMOTE. The Min values of the Bi-

LSTM model are 0.80 on the original datasets, 0.90 on the balanced datasets using Random 

Oversampling, and 0.84 on the balanced datasets using SMOTE. The Max values of the Bi-

LSTM model are 0.97 on the original datasets, 0.99 on the balanced datasets using Random 

Oversampling, and 1.00 on the balanced datasets using SMOTE. The P value of the Bi-LSTM 

model is 0.01 on the original and balanced datasets using Random Oversampling and 0.00 on 

the original and balanced datasets using SMOTE. Based on the P value of the model on the 

original and balanced data sets, we note that the P value is less than 0.05, which indicates a 

difference between the results of the model on the original and balanced data sets. 

Table 6.13 Comparison of the results of the proposed Bi-LSTM Model based on the original and balanced 

datasets in terms of accuracy using paired t-test 

Paired t-test  Original 

Datasets 

Balanced Datasets using 

Random Oversampling 

Original 

Datasets 

Balanced Datasets 

using SMOTE 

Mean 0.88 0.94 0.88 0.92 

STD 0.06 0.04 0.06 0.06 

Min 0.80 0.90 0.80 0.84 

Max 0.97 0.99 0.97 1.00 

P value 0.01 0.00 

We used Boxplots to aggregate the achieved results to get a more accurate overview of the 

quality of the results. Figure 6.12 shows the Box plots for the performance measures (Accuracy, 

Precision, Recall, F-measure, MCC, AUC, AUCPR, and MSE) on the original and balanced 

datasets: The averages of (Accuracy, Precision, Recall, F-measure, MCC, AUC, AUCPR, and 
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MSE) on the original datasets are 0.88, 0.57, 0.48, 0.51, 0.28, 0.76, 0.58, and 0.091, 

respectively. The averages of (Accuracy, Precision, Recall, F-measure, MCC, AUC, AUCPR, 

and MSE) on the balanced data sets (using Random Oversampling) are 0.94, 0.92, 0.97, 0.94, 

0.87, 0.96, 0.94, and 0.052, respectively. The averages of (Accuracy, Precision, Recall, F-

measure, MCC, AUC, AUCPR, and MSE) on the balanced data sets (using SMOTE) are 0.92, 

0.90, 0.94, 0.92, 0.83, 0.95, 0.95, and 0.069, respectively. 

 

Figure 6.12 Boxplots represent performance measures obtained by the model on the original and balanced 

datasets 

Figures 6.13 to 6.18 show the training and validation accuracy and training and validation loss 

of the model on the original and balanced datasets.  

Figures 6.13, 6.14, and 6.15 show the training and validation accuracy of the model on the 

original and balanced datasets. The vertical axis presents the accuracy of the model, and the 

horizontal axis illustrates the number of epochs. Accuracy is the fraction of predictions that our 

model predicted right.  

Figure 6.13 shows the accuracy values of the model on the original datasets. From the Figure, 

the model learned 80% accuracy for the ant dataset, 82% accuracy for the camel dataset, 87% 

accuracy for the ivy dataset, 97% accuracy for the jedit dataset, 95% accuracy for the log4j 

dataset, and 91% accuracy for xerces dataset at the 100th epoch. 
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Figure 6.13 Training and validation accuracy for the original datasets 

Figure 6.14 shows the accuracy values of the model on the balanced datasets (using Random 

Oversampling). From the Figure, the model learned 91% accuracy for the ant dataset, 91% 

accuracy for the camel dataset, 90% accuracy for the ivy dataset, 99% accuracy for the jedit 

dataset, 99% accuracy for the log4j dataset, and 95% accuracy for xerces dataset at the 100th 

epoch. 

 

Figure 6.14 Training and validation accuracy for the balanced datasets - Random Oversampling 

Figure 6.15 shows the accuracy values of the model on the balanced datasets (using SMOTE). 

From the Figure, the model learned 84% accuracy for the ant dataset, 87% accuracy for the 

camel dataset, 89% accuracy for the ivy dataset, 99% accuracy for the jedit dataset, 100% 

accuracy for the log4j dataset, and 93% accuracy for xerces dataset at the 100th epoch. 
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Figure 6.15 Training and validation accuracy for the balanced datasets – SMOTE 

Figures 6.16, 6.17, and 6.18 show the training and validation loss of the model on the original 

and balanced datasets. The vertical axis presents the loss of the model, and the horizontal axis 

illustrates the number of epochs. The loss indicates how bad a model prediction was. 

Figure 6.16 shows the loss values of the model on the original datasets. From the Figure, the 

model loss is 0.152 for the ant dataset, 0.146 for the camel dataset, 0.105 for the ivy dataset, 

0.030 for the jedit dataset, 0.041 for the log4j dataset, and 0.075 for the xerces dataset at the 

100th epoch. 

 

Figure 6.16 Training and validation loss for the original datasets 

Figure 6.17 shows the loss values of the model on the balanced datasets (using Random 

Oversampling). From the Figure, the model loss is 0.073 for the ant dataset, 0.082 for the camel 

dataset, 0.092 for the ivy dataset, 0.009 for the jedit dataset, 0.012 for the log4j dataset, and 

0.049 for the xerces dataset at the 100th epoch. 
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Figure 6.17 Training and validation loss for the balanced datasets - Random Oversampling 

Figure 6.18 shows the loss values of the model on the balanced datasets (using SMOTE). From 

the Figure, the model loss is 0.124 for the ant dataset, 0.113 for the camel dataset, 0.101 for 

the ivy dataset, 0.011 for the jedit dataset, 0.001 for the log4j dataset, and 0.067 for the xerces 

dataset at the 100th epoch. As shown in the Figures, the accuracy of training and validation 

increases, and the loss decreases with increasing epochs. Regarding the high accuracy and low 

loss obtained by the proposed model, we note that the model is well-trained and validated. 

 

Figure 6.18 Training and validation loss for the balanced datasets - SMOTE 

Figures 6.19 to 6.21 show the ROC curves of the model on the original and balanced datasets. 

The vertical axis presents the actual positive rate of the model, and the horizontal axis illustrates 

the false positive rate. The AUC is a sign of the performance of the model. The larger AUC is, 

the better the model performance will be. Based on the Figures, the values are encouraging and 

indicate our proposed model efficiency in SDP. The best AUC obtained by the proposed model 

in the original data sets is 94% on the xerces data set. The worst AUC is 60% on the log4j data 
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set. The best AUC obtained by the proposed model in the balanced data sets (using Random 

Oversampling) is 99% on the jedit and log4j data sets, while the worst AUC is 93% on the 

camel and ivy data sets. The best AUC obtained by the proposed model in the balanced data 

sets (using SMOTE) is 100% on the log4j data set, while the worst AUC is 90% on the ant data 

set. Further in appendix 2, Figures 1 to 3 show the AUCPR of the model on the original and 

balanced datasets.  

 

Figure 6.19 ROC curves for the original datasets 

 

Figure 6.20 ROC curves for the balanced datasets- Random Oversampling 
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Figure 6.21 ROC curves for the balanced datasets- SMOTE 

Table 6.14 shows the comparison of the results produced using our models with those obtained 

using the baseline model (RF) based on six performance measures: accuracy precision, recall, 

f-Measure, MCC, and AUC. We also compared the results produced using our model with 

those obtained in previous studies based on six performance measures: accuracy precision, 

recall, f-measure, MCC, and AUC. Table 6.15 compares the values of performance measures 

obtained by our Bi-LSTM network and the performance values in previous studies. The best 

values are indicated with bold text and "- " indicate the approaches that did not provide results 

in a particular data set. According to Table 6.15, some of the results in the previous studies are 

better than ours. Still, in most cases, our model outperforms the other state-of-the-art 

approaches and provides better predictive performance. 

Table 6.14 Performance measures of the baseline model (RF) and Bi-LSTM 

 

Models 

 

Datasets 

Performance Measures 

Accuracy Precision Recall F-Measure MCC AUC 

 

 

 

RF 

ant 0.81 0.53 0.53 0.53 0.41 0.70 

camel 0.81 0.47 0.19 0.27 0.20 0.57 

ivy 0.89 0.57 0.44 0.50 0.44 0.69 

jedit 0.97 0.00 0.00 0.00 0.00 0.50 

log4j 0.98 0.97 1.00 0.99 0.69 0.75 

xerces 0.95 0.96 0.98 0.97 0.86 0.92 

    Averages 0.90 0.58 0.52 0.54 0.43 0.58 

 

 

Bi-LSTM with 

Random 

Oversampling 

Technique 

ant 0.91 0.89 0.94 0.91 0.82 0.95 

camel 0.91 0.87 0.98 0.92 0.81 0.93 

ivy 0.90 0.82 1.00 0.90 0.81 0.93 

jedit 0.99 0.98 1.00 0.99 0.97 0.99 

log4j 0.99 1.00 0.98 0.99 0.97 0.99 

xerces 0.95 0.98 0.92 0.95 0.89 0.97 

  Averages 0.94 0.92 0.97 0.94 0.87 0.96 

 

 

Bi-LSTM with 

SMOTE 

Technique 

ant 0.84 0.81 0.88 0.85 0.67 0.90 

camel 0.87 0.89 0.88 0.89 0.74 0.91 

ivy 0.89 0.83 0.97 0.89 0.78 0.94 

jedit 0.99 0.98 1.00 0.99 0.97 0.99 

log4j 1.00 1.00 1.00 1.00 1.00 1.00 

xerces 0.93 0.93 0.92 0.93 0.85 0.96 

  Averages 0.92 0.90 0.94 0.92 0.83 0.95 
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Table 6.15 Comparison of the proposed Bi-LSTM with other existing approaches 

 

Approaches 

 

Datasets 

Performance Measures 

Accuracy Precision Recall F-

Measure 

MCC AUC 

CNN[7] ant, camel, ivy, 

jedit, log4j, 

xerces 

0.85, 0.84, 

0.95, 0.97, 

0.97, 0.95 

0.87, 0.81, 

0.92, 0.94, 

0.98, 0.93 

0.82, 0.90, 

0.98, 1.00, 

0.98, 0.98 

0.85, 0.85, 

0.95, 0.97, 

0.98, 0.95 

0.69, 0.69, 

0.90, 0.93, 

0.94, 0.90 

0.91, 0.90, 

0.98, 0.96, 

0.99, 0.98 

GRU[7] ant, camel, ivy, 

jedit, log4j, 

xerces 

0.83, 0.82, 

0.95, 0.99, 

0.96, 0.93 

0.88, 0.82, 

0.95, 0.98, 

0.98, 0.92 

0.81, 0.82, 

0.95, 1.00, 

0.95, 0.94 

0.85, 0.82, 

0.95, 0.99, 

0.96, 0.93 

0.67, 0.63, 

0.90, 0.97, 

0.91, 0.85 

0.89, 0.87, 

0.98, 1.00, 

0.98, 0.97 

LSTM[40] Unified bug 

dataset (class-

level, file-level) 

0.93, 0.88 0.95, 0.94 0.92, 0.81 0.93, 0.87 0.86, 0.76 0.97, 0.93 

 

GRU[40] unified bug 

dataset (class-

level, file-level) 

0.93, 0.88 0.94, 0.94 0.92, 0.81 0.93, 0.87 0.86, 0.76 0.96, 0.93 

Hybrid Neural 

Network 

model[46] 

JEdit, IVY, Ant, 

Camel 

0.97, 0.88, 

0.81, 0.81 

1.00, 0.99, 

0.93, 1.00 

1.00, 0.88, 

0.84, 0.81 

0.98, 0.93, 

0.88, 0.89 

- - 

LSTM[48] Camel  0.51 0.41 0.46 - - 

LSTM[55] Bug report 

datasets (Eclipse 

platform UI and 

JDT) 

0.67, 0.76 0.70, 0.76 0.86, 1.00 0.77, 0.86 - - 

CNN[79] ant, camel, ivy, 

jedit, log4j 

 

- 

 

- 

 

- 

0.39, 0.52, 

0.31, 0.00, 

0.97 

0.30, 0.42, 

0.25, 0.00, 

0.00 

 

 

- 

BPDET[81] CM1,  JM1, 

KC1, MC1, 

PC1, MW1 

 

- 

 

- 

 

- 

0.84, 0.76, 

0.83, 0.96, 

0.92, 0.90 

0.42, 0.23, 

0.33, 0.14, 

0.38, 0.33 

0.75, 0.75, 

0.81, 0.85, 

0.88, 0.77 

DP-ARNN[84] Camel, Xerces, 

JEdit 

- - - 0.51, 0.27, 

0.56 

- 0.79, 0.76, 

0.82 

LR[96] Ant, Camel, 

IVY 

- - - 0.52, 0.34, 

0.30 

- - 

K-NN[96] Ant, Camel, 

IVY 

- - - 0.53, 0.37, 

0.30 

- - 

MLP[96] Ant, Camel, 

IVY 

- - - 0.50, 0.38, 

0.25 

- - 

SVM[96] Ant, Camel, 

IVY 

- - - 0.50, 

0.084, 

0.28 

- - 

CBIL[103] Camel, JEdit, 

Xerces 

- - - 0.93, 0.85, 

0.95 

- 0.96, 0.91, 

0.98 

LSTM[104] Camel, Jedit, 

Log4j, Xerces 

- - - 0.37, 0.44, 

0.52, 0.26 

- - 

HyGRAR[106] JEdit, Ant 0.98, 0.96 0.70, 0.98 0.63, 0.85 -  0.81, 0.92 

SPFCNN[107] CM1, JM1, 

KC1, PC1, 

MW1 

 

- 

 

- 

 

- 

 

- 

0.85, 0.74, 

0.78, 0.87, 

0.80 

0.92, 0.87, 

0.88, 0.93, 

0.90 

Our model (Bi-

LSTM with 

Random 

Oversampling 

Technique) 

ant, camel, ivy, 

jedit, log4j, 

xerces 

0.91, 0.91, 

0.90, 0.99, 

0.99, 0.95 

0.89, 0.87, 

0.82, 0.98, 

1.00, 0.98 

0.94, 0.98, 

1.00, 1.00, 

0.98, 0.92 

0.91, 0.92, 

0.90, 0.99, 

0.99, 0.95 

0.82, 0.81, 

0.81, 0.97, 

0.97, 0.89 

0.95, 0.93, 

0.93, 0.99, 

0.99, 0.97 

Our model (Bi-

LSTM with 

SMOTE 

Technique) 

ant, camel, ivy, 

jedit, log4j, 

xerces 

0.84, 0.87, 

0.89, 0.99, 

1.00, 0.93 

0.81, 0.89, 

0.83, 0.98, 

1.00, 0.93 

0.88, 0.88, 

0.97, 1.00, 

1.00, 0.92 

0.85, 0.89, 

0.89, 0.99, 

1.00, 0.93 

0.67, 0.74, 

0.78, 0.97, 

1.00, 0.85 

0.90, 0.91, 

0.94, 0.99, 

1.00, 0.96 
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In summary, this study aimed to present a method based on combining a Bi-LSTM network 

with Oversampling methods (Random Oversampling and SMOTE) for SDP. We compared the 

results obtained by the proposed method based on the original and balanced datasets to 

investigate the impact of Oversampling methods on improving the accuracy of ML techniques. 

Additionally, the proposed method's results were compared with those presented in previous 

studies. After comparing the results obtained by the proposed model on the original datasets 

with results obtained by the proposed model on the balanced datasets, as shown in the Tables 

and Figures, we note that the model got good scores on the balanced datasets and the results 

improved further due to balancing, which indicated that the combination of a Bi-LSTM 

network with Oversampling methods (Random Oversampling and SMOTE) positively affects 

defect prediction performance in datasets with imbalanced class distributions. Moreover, data 

sampling methods play an essential role in improving the accuracy of ML models in SDP. 

Regarding evaluating the results obtained from our proposed method and their comparison with 

some results of other studies, we conclude that our model is promising in predicting software 

defects and outperforms other models in the previous studies. Additionally, this research has 

significant implications for software developers and practitioners who aim to improve software 

quality and reduce the risk of defects in software systems. 

6.4 CNN and GRU with Hybrid (combined)-Sampling Methods in SDP 

In this sub-section, we discuss the findings of the fourth study. The goal was to propose a novel 

SDP approach based on CNN and GRU combined with hybrid sampling method (SMOTE 

Tomek) for SDP. The experiments were conducted based on benchmark datasets from the 

PROMISE repository. The experimental results were evaluated and compared based on various 

performance measures (accuracy, precision, recall, f-measure, MCC, AUC, AUCPR, and 

MSE). 

The performance of the prediction models is reported in Tables 6.16 to 6.25, and Figures 6.22 

to 6.34, appendix 3 (Figures 1 to 4). 

Table 6.16 Performance analysis for proposed CNN Model-Original Data sets 

 

Datasets 

Performance Measures 

Accuracy Precision Recall F-Measure MCC AUC AUCPR MSE 

ant 0.83  0.67  0.33 0.44 0.38 0.82  0.57 0.131  
camel 0.82  0.62  0.14 0.23  0.23 0.74  0.39 0.136  

ivy 0.90  0.67  0.44 0.53  0.49 0.81  0.53 0.086 

jedit 0.96  0.00  0.00 0.00 0.01 0.83 0.07 0.037  
log4j 0.95 0.95 1.00 0.97 0.00 0.46 0.93 0.048 

xerces 0.94 0.94 0.99 0.96 0.83 0.95 0.98 0.049 

Averages 0.90 0.64 0.48 0.52 0.32 0.76 0.57 0.081 

Table 6.17 Performance analysis for proposed CNN Model-Balanced Datasets 

 

Datasets 

Performance Measures 

Accuracy Precision Recall F-Measure MCC AUC AUCPR MSE 

ant 0.85  0.87  0.82 0.85 0.69 0.91  0.92 0.117  
camel 0.84  0.81  0.90 0.85  0.69 0.90  0.89 0.132  

ivy 0.95  0.92  0.98 0.95  0.90 0.98  0.96 0.051  
jedit 0.97  0.94  1.00 0.97 0.93 0.96 0.88 0.027  
log4j 0.97 0.98 0.98 0.98 0.94 0.99 0.99 0.028 

xerces 0.95 0.93 0.98 0.95 0.90 0.98 0.98 0.043 

Averages 0.92 0.90 0.94 0.92 0.84 0.95 0.93 0.066 
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Table 6.18 Performance analysis for proposed GRU Model-Original Data sets 

 

Datasets 

Performance Measures 

Accuracy Precision Recall F-Measure MCC AUC AUCPR MSE 

ant 0.81  0.52  0.47 0.49 0.37 0.73  0.47 0.152  
camel 0.79  0.30  0.08 0.13  0.06 0.70  0.31 0.146  

ivy 0.92  0.80  0.44 0.57  0.55 0.71  0.56 0.076  
jedit 0.97  0.00  0.00 0.00 0.00 0.93 0.24 0.028  
log4j 0.95 0.95 1.00 0.97 0.00 0.29 0.93 0.048 

xerces 0.91 0.92 0.96 0.94 0.74 0.89 0.91 0.090 

Averages 0.89 0.58 0.49 0.51 0.28 0.70 0.57 0.090 

Table 6.19 Performance analysis for proposed GRU Model-Balanced Datasets 

 

Datasets 

Performance Measures 

Accuracy Precision Recall F-Measure MCC AUC AUCPR MSE 

ant 0.83  0.88  0.81 0.85 0.67 0.89  0.89 0.130  
camel 0.82  0.82  0.82 0.82  0.63 0.87  0.84 0.144  

ivy 0.95 0.95 0.95 0.95 0.90 0.98  0.99 0.055  
jedit 0.99  0.98  1.00 0.99 0.97 1.00 1.00 0.026  
log4j 0.96 0.98 0.95 0.96 0.91 0.98 0.98 0.073 

xerces 0.93 0.92 0.94 0.93 0.85 0.97 0.98 0.064 

Averages 0.91 0.92 0.91 0.91 0.82 0.94 0.94 0.082 

Table 6.20 Performance analysis for proposed models based on precision and recall measures - CNN Model 

 

Original Data sets 

                                                Performance Measures                          

                                                     Precision                                                Recall 

Defective 

class 

Non-defective 

class 

Defective 

class 

Non-defective 

class 

ant 0.67 0.85 0.33 0.96 

camel 0.62 0.83 0.14 0.98 

ivy 0.67 0.92 0.44 0.97 

jedit 0.00 0.97 0.00 0.99 

log4j 0.95 0.00 1.00 0.00 

xerces 0.94 0.96 0.99 0.79 

Averages 0.64 0.75 0.48 0.78 

 

 

Balanced Datasets 

Performance Measures 

Precision Recall 

Defective 

class 

Non-defective 

class 

Defective 

class 

Non-defective 

class 

ant 0.87 0.82 0.82 0.87 

camel 0.81 0.89 0.90 0.79 

ivy 0.92 0.98 0.98 0.91 

jedit 0.94 1.00 1.00 0.94 

log4j 0.98 0.97 0.98 0.97 

xerces 0.93 0.98 0.98 0.93 

Averages 0.90 0.94 0.94 0.90 

Table 6.21 Performance analysis for proposed models based on precision and recall measures - GRU Model 

 

Original Data sets 

                                                Performance Measures                          

                                                     Precision                                                Recall 

Defective 

class 

Non-defective 

class 

Defective 

class 

Non-defective 

class 

ant 0.52 0.87 0.47 0.89 

camel 0.30 0.82 0.08 0.96 

ivy 0.80 0.92 0.44 0.98 

jedit 0.00 0.97 0.00 1.00 

log4j 0.95 0.00 1.00 0.00 
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xerces 0.92 0.85 0.96 0.76 

Averages 0.58 0.73 0.49 0.76 

 

 

Balanced Datasets 

Performance Measures 

Precision Recall 

Defective 

class 

Non-defective 

class 

Defective 

class 

Non-defective 

class 

ant 0.88 0.79 0.81 0.86 

camel 0.82 0.82 0.82 0.82 

ivy 0.95 0.95 0.95 0.95 

jedit 0.98 1.00 1.00 0.98 

log4j 0.98 0.94 0.95 0.97 

xerces 0.92 0.94 0.94 0.91 

Averages 0.92 0.90 0.91 0.91 

 

Table 6.22 Summarizes the range of measures values for the proposed models on the original and balanced 

datasets 

Model Accuracy Precision Recall F-measure MCC AUC AUCPR MSE 

CNN model on 

the original 

datasets 

0.82 to 0.96 0.00 to 

0.95 

0.00 to 

1.00 

0.00 to 

0.97 

0.00 to 

0.83 

0.46 to 

0.95 

0.07 to 

0.98 

0.037 to 

0.136 

CNN model on 

the balanced 

datasets 

0.84 to 0.97 0.81 to 

0.98 

0.82 to 

1.00 

0.85 to 

0.98 

0.69 to 

0.94 

0.90 to 

0.99 

0.88 to 

0.99 

0.027 to 

0.132 

GRU model on 

the original 

datasets 

0.79 to 0.97 0.00 to 

0.95 

0.00 to 

1.00 

0.00 to 

0.97 

0.00 to 

0.74 

0.29 to 

0.93 

0.24 to 

0.93 

00.028 

to 0.152 

GRU model on 

the balanced 

datasets 

0.82 to 0.99 0.82 to 

0.98 

0.81 to 

1.00 

0.82 to 

0.99 

0.63 to 

0.97 

0.87 to 

1.00 

0.84 to 

1.00 

0.026 to 

0.144 

Table 6.23 presents the statistical analysis results (paired t-test) of proposed models on the 

original and balanced datasets regarding mean, Standard Deviation (STD), min, max, and P 

value. We notice that the mean values of the CNN model are 0.90 on the original datasets and 

0.92 on the balanced datasets, while the mean values of the GRU model are 0.89 on the original 

datasets and 0.91 on the balanced datasets. The STD values of the CNN model are 0.06 on the 

original datasets and 0.06 on the balanced datasets, while the STD values of the GRU model 

are 0.07 on the original datasets and 0.07 on the balanced datasets. The Min values of the CNN 

model are 0.82 on the original datasets and 0.84 on the balanced datasets, while the Min values 

of the GRU model are 0.79 on the original datasets and 0.82 on the balanced datasets. The Max 

values of the CNN model are 0.96 on the original datasets and 0.97 on the balanced datasets, 

while the Max values of the GRU model are 0.97 on the original datasets and 0.99 on the 

balanced datasets. The P value of the CNN model is 0.015 based on the original and balanced 

datasets, while the P value of the GRU model is 0.000 based on the original and balanced 

datasets. Based on the P value of both models on the original and balanced data sets, we note 

that the P value is less than 0.05, indicating a difference between the results of the models on 

the original and balanced data sets. 
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Table 6.23 Comparison of the proposed models in terms of accuracy using paired t-test 

 

Paired t-test 

 

CNN Model GRU Model 

Original 

Datasets 

Balanced 

Datasets 

Original 

Datasets 

Balanced 

Datasets 

Mean 0.90 0.92 0.89 0.91 

STD 0.06 0.06 0.07 0.07 

Min 0.82 0.84 0.79 0.82 

Max 0.96 0.97 0.97 0.99 

P value 0.015 0.000 

We used Boxplots to aggregate the achieved results to get a more accurate overview of the 

quality of the results. Figure 6.22 shows the Box plots of performance measures for the original 

and balanced datasets (Accuracy, Precision, Recall, F-measure, MCC, AUC, AUCPR, and 

MSE). The CNN model averages on the original datasets (Accuracy, Precision, Recall, F-

measure, MCC, AUC, AUCPR, and MSE) are 0.90, 0.64, 0.48, 0.52, 0.32, 0.76, 0.57, and 

0.081, respectively. The CNN model averages on the balanced data sets (Accuracy, Precision, 

Recall, F-measure, MCC, AUC, AUCPR, and MSE) are 0.92, 0.90, 0.94, 0.92, 0.84, 0.95, 0.93, 

and 0.066, respectively. The GRU model averages on the original datasets (Accuracy, 

Precision, Recall, F-measure, MCC, AUC, AUCPR, and MSE) are 0.89, 0.58, 0.49, 0.51, 0.28, 

0.70, 0.57, and 0.090, respectively. The averages of (Accuracy, Precision, Recall, F-measure, 

MCC, AUC, AUCPR, and MSE) of the GRU model on the balanced data sets are 0.91, 0.92, 

0.91, 0.91, 0.82, 0.94, 0.94, and 0.082, respectively. 

 
Figure 6.22 Boxplots represent performance measures obtained by proposed models on all datasets 

Figures 6.23 to 6.30 show the training and validation accuracy and training and validation loss 

of the models on the original and balanced datasets.  

Figures 6.23 to 6.26 show the training and validation accuracy of the models. The vertical axis 

presents the accuracy of the model, and the horizontal axis illustrates the number of epochs. 

Accuracy is the fraction of predictions that our model predicted right. 

Figure 6.23 shows the accuracy values of the CNN model on the original data sets. The 

accuracy values are 0.83 on the ant data set, 0.82 on the camel data set, 0.90 on the ivy data set, 

0.96 on the jedit data set, 0.95 on the log4j data set, and 0.94 on the xerces data set.  
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Figure 6.23 Training and Validation Accuracy for the original data sets - CNN model 

Figure 6.24 shows the accuracy values of the CNN model on the balanced data sets. The 

accuracy values are 0.85 on the ant data set, 0.84 on the camel data set, 0.95 on the ivy data set, 

0.97 on the jedit data set, 0.97 on the log4j data set, and 0.95 on the xerces data set.  

 
Figure 6.24 Training and Validation Accuracy for the balanced data sets - CNN model 

Figure 6.25 shows the accuracy values of the GRU model on the original data sets. The 

accuracy values are 0.81 on the ant data set, 0.79 on the camel data set, 0.92 on the ivy data 

set, 0.97 on the jedit data set, 0.95 on the log4j data set, and 0.91 on the xerces data set.  
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Figure 6.25 Training and Validation Accuracy for the original data sets - GRU model 

Figure 6.26 shows the accuracy values of the GRU model on the balanced datasets. The 

accuracy values are 0.83 on the ant data set, 0.82 on the camel data set, 0.95 on the ivy data set, 

0.99 on the jedit data set, 0.96 on the log4j data set, and 0.93 on the xerces data set.  

 
Figure 6.26 Training and Validation Accuracy for the balanced data sets - GRU model 

Figures 6.27 to 6.30 show the training and validation loss of the models. The vertical axis 

presents the loss of the model, and the horizontal axis illustrates the number of epochs. The 

loss indicates how bad a model prediction was. 

Figure 6.27 shows the loss values of the CNN model on the original data sets. The loss values 

are 0.131 on the ant data set, 0.136 on the camel data set, 0.086 on the ivy data set, 0.037 on 

the jedit data set, 0.048 on the log4j data set, and 0.049 on the xerces data set. 
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Figure 6.27 Training and Validation Loss for the original data sets - CNN model 

Figure 6.28 shows the loss values of the CNN model on the balanced data sets. The loss values 

are 0.117 on the ant data set, 0.132 on the camel data set, 0.051 on the ivy data set, 0.027 on 

the jedit data set, 0.028 on the log4j data set, and 0.043 on the xerces data set. 

 
Figure 6.28 Training and Validation Loss for the balanced data sets - CNN model 

Figure 6.29 shows the loss values of the GRU model on the original data sets. The loss values 

are 0.152 on the ant data set, 0.146 on the camel data set, 0.076 on the ivy data set, 0.028 on 

the jedit data set, 0.048 on the log4j data set, and 0.090 on the xerces data set.  
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Figure 6.29 Training and Validation Loss for the original data sets - GRU model 

Figure 6.30 shows the loss values of the GRU model on the balanced data sets. The loss values 

are 0.130 on the ant data set, 0.144 on the camel data set, 0.055 on the ivy data set, 0.026 on 

the jedit data set, 0.073 on the log4j data set, and 0.064 on the xerces data set. As shown in the 

Figures, the accuracy of training and validation increases, and the loss decreases with 

increasing epochs. Regarding the high accuracy and low loss obtained by the proposed models, 

we note that the models are well-trained and validated. 

 
Figure 6.30 Training and Validation Loss for the balanced data sets - GRU model 

Figures 6.31 to 6.34 show the ROC curves of the models on the original and balanced datasets. 

The vertical axis presents the actual positive rate of the model, and the horizontal axis illustrates 

the false positive rate. The AUC is a sign of the performance of the model. The larger the AUC 

is, the better the model performance will be. Based on the Figures, the values are encouraging 

and indicate our proposed model’s efficiency in SDP.  

Figure 6.31 shows the AUC values of the CNN model on the original data sets. The best AUC 

obtained is 95% on the xerces data set, while the worst AUC is 46% on the log4j data set. 
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Figure 6.31 ROC curves for the original data sets - CNN model 

Figure 6.32 shows the AUC values of the CNN model on the balanced data sets. The best AUC 

obtained is 99% on the log4j and xerces data sets, while the worst AUC is 90% on the camel 

data set.  

 
Figure 6.32 ROC curves for the balanced data sets - CNN model 

Figure 6.33 shows the AUC values of the GRU model on the original data sets. The best AUC 

obtained is 93% on the jedit data set, while the worst AUC is 29% on the log4j data set. 
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Figure 6.33 ROC curves for the original data sets - GRU model 

Figure 6.34 shows the AUC values of the GRU model on the balanced data sets. The best AUC 

obtained is 100% on the jedit data set, while the worst AUC is 87% on the camel data set. 

Further, in appendix 3, Figures 1 to 4 show the AUCPR of the models on the original and 

balanced datasets.  

 
Figure 6.34 ROC curves for the balanced data sets - GRU model 

Table 6.24 shows the comparison of the results produced using our models with those obtained 

using the baseline model (RF) based on six performance measures: accuracy precision, recall, 

f-Measure, MCC, and AUC. According to Table 6.24, our models outperform the baseline 

model in some datasets. We also compared the results produced using our models with those 

obtained in previous studies based on six performance measures: accuracy precision, recall, f-

Measure, MCC, and AUC. Table 6.25 compares the performance measures obtained by our 

models and the performance values in previous studies. The best values are indicated with bold 
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text and "- "to indicate the approaches that did not provide results in a particular data set. 

According to Table 6.25, some of the results in the previous studies are better than ours. Still, 

in most cases, our models outperform the state-of-the-art approaches and provide better 

predictive performance. 

Table 6.24 Performance measures of the baseline model (RF) and proposed models 

 

Models 

 

Datasets 

 Performance Measures 

Accuracy Precision Recall F-Measure MCC AUC 

 

 

 

RF 

ant 0.83 0.57 0.57 0.57 0.45 0.72 

camel 0.82 0.56 0.28 0.37 0.30 0.61 

ivy 0.90 0.67 0.44 0.53 0.49 0.70 

jedit 0.97 0.00 0.00 0.00 0.00 0.50 

log4j 0.98 0.97 1.00 0.99 0.69 0.75 

xerces 0.95 0.95 0.99 0.97 0.86 0.90 

    Averages 0.90 0.62 0.54 0.57 0.46 0.69 

 

 

CNN with SMOTE 

Tomek 

ant 0.85 0.87 0.82 0.85 0.69 0.91 

camel 0.84 0.81 0.90 0.85 0.69 0.90 

ivy 0.95 0.92 0.98 0.95 0.90 0.98 

jedit 0.97 0.94 1.00 0.97 0.93 0.96 

log4j 0.97 0.98 0.98 0.98 0.94 0.99 

xerces 0.95 0.93 0.98 0.95 0.90 0.98 

    Averages 0.92 0.90 0.94 0.92 0.84 0.95 

 

 

GRU with SMOTE 

Tomek 

ant 0.83 0.88 0.81 0.85 0.67 0.89 

camel 0.82 0.82 0.82 0.82 0.63 0.87 

ivy 0.95 0.95 0.95 0.95 0.90 0.98 

jedit 0.99 0.98 1.00 0.99 0.97 1.00 

log4j 0.96 0.98 0.95 0.96 0.91 0.98 

xerces 0.93 0.92 0.94 0.93 0.85 0.97 

     Averages 0.91 0.92 0.91 0.91 0.82 0.94 

Table 6.25 Comparison of the proposed models with other existing approaches 

 

Approaches 

 

Datasets 

 Performance Measures 

Accuracy Precision Recall F-Measure MCC AUC 

Hybrid Neural 

Network 

model[46] 

JEdit, IVY, 

Ant, Camel 

0.97, 0.88, 

0.81, 0.81 

1.00, 0.99, 

0.93, 1.00 

1.00, 0.88, 

0.84, 0.81 

0.98, 0.93, 

0.88, 0.89 

- - 

LSTM[48] Camel - 0.51 0.41 0.46 - - 

CNN[80] ant, camel, 

ivy, jedit, 

log4j 

 

- 

 

- 

 

- 

0.39, 0.52, 

0.31, 0.00, 

0.97 

0.30, 0.42, 

0.25, 0.00, 

0.00 

 

 

- 

BPDET[82] CM1,  JM1, 

KC1, MC1, 

PC1, MW1 

 

 

- 

 

 

- 

 

 

- 

0.84, 0.76, 

0.83, 0.96, 

0.92, 0.90 

0.42, 0.23, 

0.33, 0.14, 

0.38, 0.33 

0.75, 0.75, 

0.81, 0.85, 

0.88, 0.77 

DP-ARNN[84] Camel, 

Xerces, JEdit 

- - - 0.51, 0.27, 

0.56 

 

- 

0.79, 0.76, 

0.82 

 

RF[87] 

ant, camel, 

ivy, jedit 

 

- 

 

- 

 

- 

 

- 

0.42, 0.20, 

0.24, 0.26 

 

- 

 

DT[87] 

ant, camel, 

ivy, jedit 

 

- 

 

- 

 

- 

 

- 

0.29, 0.18, 

0.20, 0.12 

 

- 

LR[96] Ant, Camel, 

IVY 

- - - 0.52, 0.34, 

0.30 

- - 

K-NN[96] Ant, Camel, 

IVY 

- - - 0.53, 0.37, 

0.30 

- - 

MLP[96] Ant, Camel, 

IVY 

- - - 0.50, 0.38, 

0.25 

- - 
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SVM[96] Ant, Camel, 

IVY 

- - - 0.50, 0.084, 

0.28 

- - 

CBIL[103] Camel, JEdit, 

Xerces 

- - - 0.93, 0.85, 

0.95 

 

- 

0.96, 0.91, 

0.98 

DP-LSTM[104] Camel, Jedit, 

Log4j, Xerces 

- - - 0.37, 0.44, 

0.52, 0.26 

- - 

HyGRAR[106] JEdit, Ant 0.98, 0.96 0.70, 0.98 0.63, 0.85 - - 0.81, 0.92 

SPFCNN[107] CM1, JM1, 

KC1, PC1, 

MW1 

 

 

- 

 

 

- 

 

 

- 

 

 

- 

0.85, 0.74, 

0.78, 0.87, 

0.80 

0.92, 0.87, 

0.88, 0.93, 

0.90 

CNN with 

SMOTE Tomek 

ant, camel, 

ivy, jedit, 

log4j, xerces 

0.85, 0.84, 

0.95, 0.97, 

0.97, 0.95 

0.87, 0.81, 

0.92, 0.94, 

0.98, 0.93 

0.82, 0.90, 

0.98, 1.00, 

0.98, 0.98 

0.85, 0.85, 

0.95, 0.97, 

0.98, 0.95 

0.69, 0.69, 

0.90, 0.93, 

0.94, 0.90 

0.91, 0.90, 

0.98, 0.96, 

0.99, 0.98 

GRU with 

SMOTE Tomek 

ant, camel, 

ivy, jedit, 

log4j, xerces 

0.83, 0.82, 

0.95, 0.99, 

0.96, 0.93 

0.88, 0.82, 

0.95, 0.98, 

0.98, 0.92 

0.81, 0.82, 

0.95, 1.00, 

0.95, 0.94 

0.85, 0.82, 

0.95, 0.99, 

0.96, 0.93 

0.67, 0.63, 

0.90, 0.97, 

0.91, 0.85 

0.89, 0.87, 

0.98, 1.00, 

0.98, 0.97 

In summary, this study aimed to propose a novel SDP approach based on CNN and GRU 

combined with a hybrid sampling method (SMOTE Tomek) for SDP. We compared the results 

obtained by the proposed approach based on the original and balanced datasets to investigate 

the impact of hybrid sampling methods on improving the accuracy of ML techniques. 

Additionally, the proposed approach's results were compared with those presented in previous 

studies. After comparing the results obtained by the proposed models on the original datasets 

with results obtained by the proposed models on the balanced datasets, as shown in the Tables 

and Figures, we note that the models got good scores on the balanced datasets and the results 

improved further due to balancing, which indicated that the combination of CNN and GRU 

with hybrid sampling method (SMOTE Tomek) has a positive effect on the performance of 

SDP regarding datasets with imbalanced class distributions. Furthermore, data sampling 

methods play an essential role in improving the accuracy of the ML models in predicting 

software defects. Regarding the evaluation of the results obtained from our proposed approach 

and their comparison with some results of other studies, we conclude that our models are 

promising in predicting software defects and outperform other models in the previous studies. 

6.5 Summary 

In this chapter, we presented the experimental results and discussion of software bugs 

prediction. The experimental results have been compared and evaluated based on several 

standard performance measures. We compared experimental results based on the original and 

balanced datasets and compared our results with current state-of-the-art results for the 

prediction of software bugs. The results showed that our proposed methods significantly 

outperform current state-of-the-art methods for predicting software bugs. We concluded that 

the combined data-balancing methods with ML techniques significantly enhance the accuracy 

of predicting software bugs. We observe that the incorporation of appropriate data-balancing 

methods and ML techniques not only enhances the model's ability to predict software bugs 

accurately but also mitigates the bias towards the majority class, resulting in a more balanced 

performance across different classes of software bugs. This research has practical implications 

for software developers and researchers. It highlights the significance of considering data-

balancing methods when applying ML models for predicting software bugs. By employing 

these methods, developers can enhance their ability to identify and address code quality issues, 

thereby improving software maintainability.  
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Chapter 7 Experimental Results and Discussion of Code Smells Detection 

This subsection presents the results obtained from the experiments explained in the previous 

section (proposed methodology and implementation) which includes the results of code smells 

detection. 

7.1 ML techniques with Oversampling Methods in Code Smells Detection 

In this sub-section, we discuss the findings of the fifth study. The aim was to present a method 

based on five ML models, namely DT, K-NN, SVM, XGB, and MLP combined with 

Oversampling method (Random Oversampling) to detect four code smells (God class, data 

class, long method, and feature envy). The experiments have been conducted based on 

benchmark datasets obtained from the Qualitas Corpus Systems. The experimental results were 

evaluated and compared based on various performance measures (accuracy, precision, recall, 

f-measure, MCC, and AUC). 

The performance of the prediction models is reported in Tables 7.1 to 7.6, and Figures 7.1 to 

7.4. 

Tables 7.1 to 7.4 present model results based on the original and balanced datasets. Based on 

the DT model, we observed that accuracy values varied from 0.92 to 0.99 on the original 

datasets and from 0.98 to 1.00 on the balanced datasets. In terms of precision, the values ranged 

from 0.86 to 1.00 on the original datasets and from 0.97 to 1.00 on the balanced datasets. The 

recall values ranged from 0.89 to 0.96 on the original datasets and were 1.00 on the balanced 

datasets. In the context of f-measure, the values varied from 0.87 to 0.98 on the original datasets 

and from 0.98 to 1.00 on the balanced datasets. Moreover, MCC values ranged from 0.81 to 

0.97 on the original datasets and from 0.96 to 1.00 on the balanced datasets, whereas AUC 

values ranged from 0.90 to 0.98 on the original datasets and from 0.98 to 1.00 on the balanced 

datasets. 

The K-NN model demonstrates that the accuracy values vary between 0.86 to 0.92 on the 

original datasets and from 0.91 to 0.97 on the balanced datasets. Additionally, the precision 

values on the original datasets vary from 0.75 to 0.97 and from 0.88 to 0.97 on the balanced 

datasets. The recall values vary from 0.70 to 0.91 on the original datasets and from 0.97 to 0.98 

on the balanced datasets. In the context of f-measure, the values range from 0.76 to 0.88 on the 

original datasets and from 0.92 to 0.98 on the balanced datasets. Furthermore, the MCC values 

range from 0.66 to 0.81 on the original datasets and from 0.82 to 0.94 on the balanced datasets. 

Finally, the AUC values range from 0.85 to 0.97 on the original datasets and from 0.93 to 0.98 

on the balanced datasets. 

Following the SVM model, it can be observed that the accuracy values vary between 0.90 and 

0.98 on the original datasets, and from 0.96 to 1.00 on the balanced datasets. On the original 

datasets, the precision values vary from 0.85 to 0.96, while on the balanced datasets, the 

precision values vary from 0.94 to 1.00. In the context of recall, the values range from 0.85 to 

0.96 on the original datasets, and from 0.98 to 1.00 on the balanced datasets. In the context of 

f-measure, the values range from 0.85 to 0.96 on the original datasets and from 0.97 to 1.00 on 

the balanced datasets. The MCC values range from 0.78 to 0.94 on the original datasets and 

from 0.92 to 1.00 on the balanced datasets. The AUC values range from 0.96 to 0.99 on the 

original datasets and from 0.97 to 1.00 on the balanced datasets. 

Based on the XGB model, it can be observed that the accuracy values range between 0.95 to 

1.00 for the original datasets and between 0.96 to 1.00 for the balanced datasets. In the context 

of precision, the values range between 0.87 to 1.00 for the original datasets and between 0.95 
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to 1.00 for the balanced datasets. In the context of recall, the values range between 0.97 to 1.00 

for the original datasets and between 0.97 to 1.00 for the balanced datasets. In the context of f-

measure, the values range between 0.93 to 1.00 for the original datasets and between 0.96 to 

1.00 for the balanced datasets. Additionally, the MCC values range between 0.89 to 1.00 for 

the original datasets and between 0.90 to 1.00 for the balanced datasets, whereas the AUC 

values range between 0.99 to 1.00 for the original datasets and between 0.98 to 1.00 for the 

balanced datasets. 

Based on the MLP model, it was observed that the accuracy values ranged from 0.88 to 0.98 

on the original datasets and from 0.96 to 0.98 on the balanced datasets. Furthermore, the 

precision values ranged from 0.87 to 0.97 on the original datasets and from 0.96 to 0.97 on the 

balanced datasets, while the recall values ranged from 0.74 to 1.00 on the original datasets and 

from 0.97 to 1.00 on the balanced datasets. In the context of f-measure, the values ranged from 

0.80 to 0.96 on the original datasets and from 0.97 to 0.98 on the balanced datasets. 

Furthermore, the MCC values range from 0.72 to 0.94 on the original datasets and from 0.92 

to 0.96 on the balanced datasets. Finally, the AUC values range from 0.90 to 0.99 on the 

original datasets and from 0.98 to 1.00 on the balanced datasets. 

Concerning each type of code smell, the top-performing models attain the subsequent results: 

DT model scores 100% accuracy on data class and long method (balanced datasets). K-NN 

model achieves 97% accuracy on God class (balanced datasets). The SVM model scores 100% 

accuracy on the long method (balanced datasets). XGB model achieves 100% accuracy on data 

class and long method (original and balanced datasets). MLP model scores 98% accuracy on 

data class (original and balanced datasets) and 98% on the long method (balanced datasets). 

Table 7.1 Evaluation Results for the Class-Level Dataset: God class_ original and balanced datasets 

Original datasets 

 

ML Models 

Performance measurement 

Accuracy Precision Recall F- measure MCC AUC 

DT 0.95 0.97 0.92 0.94 0.90 0.94 

K-NN 0.90 0.97 0.81 0.88 0.81 0.94 

SVM 0.92 0.94 0.86 0.90 0.83 0.97 

XGB 0.98 0.97 0.97 0.97 0.95 0.99 

MLP 0.93 0.97 0.86 0.91 0.85 0.99 

Averages 0.93 0.96 0.88 0.92 0.86 0.96 

Balanced datasets 

 

ML Models 

Performance measurement 

Accuracy Precision Recall F- measure MCC AUC 

DT 0.98 0.97 1.00 0.98 0.96 0.98 

K-NN 0.97 0.97 0.98 0.98 0.94 0.97 

SVM 0.96 0.95 0.98 0.97 0.92 0.99 

XGB 0.96 0.95 0.97 0.96 0.90 0.98 

MLP 0.97 0.97 0.98 0.98 0.94 0.98 

Averages 0.96 0.96 0.98 0.97 0.93 0.98 

Table 7.2 Evaluation Results for the Class-Level Dataset: Data class_ original and balanced datasets 

Original datasets 

 

ML Models 

Performance measurement 

Accuracy Precision Recall F- measure MCC AUC 

DT 0.98 1.00 0.91 0.95 0.94 0.95 

K-NN 0.89 0.75 0.91 0.82 0.75 0.97 

SVM 0.96 0.92 0.96 0.94 0.91 0.99 

XGB 1.00 1.00 1.00 1.00 1.00 1.00 

MLP 0.98 0.92 1.00 0.96 0.94 0.99 
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Averages 0.96 0.91 0.95 0.93 0.90 0.98 

Balanced datasets 

 

ML Models 

Performance measurement 

Accuracy Precision Recall F- measure MCC AUC 

DT 1.00 1.00 1.00 1.00 1.00 1.00 

K-NN 0.96 0.93 0.98 0.96 0.91 0.98 

SVM 0.97 0.95 1.00 0.97 0.94 0.99 

XGB 1.00 1.00 1.00 1.00 1.00 1.00 

MLP 0.98 0.97 1.00 0.98 0.96 0.99 

Averages 0.98 0.97 0.99 0.98 0.96 0.99 

Table 7.3 Evaluation Results for the Method-Level Dataset: Long method_ original and balanced datasets 

Original datasets 

 

ML Models 

Performance measurement 

Accuracy Precision Recall F- measure MCC AUC 

DT 0.99 1.00 0.96 0.98 0.97 0.98 

K-NN 0.92 0.92 0.81 0.86 0.80 0.94 

SVM 0.98 0.96 0.96 0.96 0.94 0.99 

XGB 1.00 1.00 1.00 1.00 1.00 1.00 

MLP 0.94 0.87 0.96 0.91 0.87 0.98 

Averages 0.96 0.95 0.93 0.94 0.91 0.97 

Balanced datasets 

 

ML Models 

Performance measurement 

Accuracy Precision Recall F- measure MCC AUC 

DT 1.00 1.00 1.00 1.00 1.00 1.00 

K-NN 0.96 0.93 0.98 0.95 0.91 0.97 

SVM 1.00 1.00 1.00 1.00 1.00 1.00 

XGB 1.00 1.00 1.00 1.00 1.00 1.00 

MLP 0.98 0.96 1.00 0.98 0.96 1.00 

Averages 0.98 0.97 0.99 0.98 0.97 0.99 

Table 7.4 Evaluation Results for the Method-Level Dataset: Feature envy_ original and balanced datasets 

Original datasets 

 

ML Models 

Performance measurement 

Accuracy Precision Recall F- measure MCC AUC 

DT 0.92 0.86 0.89 0.87 0.81 0.90 

K-NN 0.86 0.83 0.70 0.76 0.66 0.85 

SVM 0.90 0.85 0.85 0.85 0.78 0.96 

XGB 0.95 0.87 1.00 0.93 0.89 0.99 

MLP 0.88 0.87 0.74 0.80 0.72 0.90 

Averages 0.90 0.85 0.83 0.84 0.77 0.92 

Balanced datasets 

 

ML Models 

Performance measurement 

Accuracy Precision Recall F- measure MCC AUC 

DT 0.98 0.97 1.00 0.98 0.96 0.98 

K-NN 0.91 0.88 0.97 0.92 0.82 0.93 

SVM 0.96 0.94 1.00 0.97 0.92 0.97 

XGB 0.98 0.97 1.00 0.98 0.96 0.98 

MLP 0.96 0.97 0.97 0.97 0.92 0.98 

Averages 0.95 0.94 0.98 0.96 0.91 0.96 

We used Boxplots to aggregate the achieved results to get a more accurate overview of the 

quality of the results. Figure 7.1 exhibits box plots that display the averages of several 

performance measures, including accuracy, precision, recall, f-measure, MCC, and AUC based 

on the original datasets. The overall average performance of all models is 0.93, 0.96, 0.88, 0.92, 

0.86, and 0.96, respectively, for the god class. Similarly, for the data class, the overall average 
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performance of all models is 0.96, 0.91, 0.95, 0.93, 0.90, and 0.98, respectively. In the context 

of the long method, the overall average of all models is 0.96, 0.95, 0.93, 0.94, 0.91, and 0.97, 

respectively. Lastly, for feature envy, the overall average performance of all models is 0.90, 

0.85, 0.83, 0.84, 0.77, and 0.92, respectively. 

 
Figure 7.1 Box Plots represent the models' performance measures on all considered code smells_ original 

datasets 

Figure 7.2 exhibits box plots that display the averages of several performance measures, 

including accuracy, precision, recall, f-measure, MCC, and AUC based on the balanced 

datasets. The overall average performance of all models is 0.96, 0.96, 0.98, 0.97, 0.93, and 

0.98, respectively, for the god class. Similarly, for the data class, the overall average 

performance of all models is 0.98, 0.97, 0.99, 0.98, 0.96, and 0.99, respectively. In the context 

of the long method, the overall average of all models is 0.98, 0.97, 0.99, 0.98, 0.97, and 0.99, 

respectively. Lastly, for feature envy, the overall average performance of all models is 0.95, 

0.94, 0.98, 0.96, 0.91, and 0.96, respectively. 

 
Figure 7.2 Box Plots represent the models' performance measures on all considered code smells_ balanced 

datasets 
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Figures 7.3 and 7.4 show the ROC curves of the models on the original and balanced datasets. 

The vertical axis presents the actual positive rate of the model, and the horizontal axis illustrates 

the false positive rate. The AUC is a sign of the performance of the model. The larger AUC is, 

the better the model performance will be. Based on the Figures, the values are encouraging and 

indicate our proposed model’s efficiency in code smell detection.  

Figure 7.3 shows the AUC of the models for all considered code smells on the original datasets; 

the highest AUC on the original datasets (God class) is 99%, obtained by XGB and MLP 

models. The the lowest AUC is 94%, obtained by DT and K-NN models. The highest AUC on 

the original datasets (data class) is 100% obtained by the XGB model, while the lowest AUC 

is 95% obtained by the DT model. The highest AUC on the original datasets (long method) is 

100% obtained by the XGB model, while the lowest AUC is 94% obtained by the K-NN model. 

The highest AUC on the original datasets (feature envy) is 99%, obtained by the XGB model, 

while the lowest AUC is 85%, obtained by the K-NN model. 

  

 
Figure 7.3 The ROC curves obtained by the models on all considered code smells_ original datasets 

Figure 7.4 shows the AUC of the models for all considered code smells on the balanced 

datasets, the highest AUC on the balanced datasets (God class) is 99%, obtained by the SVM 

model, while the lowest AUC is 97%, and the K-NN model gets. The highest AUC on the 

balanced datasets (data class) is 100% obtained by DT and XGB models, while the lowest AUC 

is 98% obtained by the K-NN model. The highest AUC on the balanced datasets (long method) 

is 100% acquired by DT, SVM, XGB, and MLP models, while the lowest AUC is 97%, which 

the K-NN model obtains. The highest AUC on the balanced datasets (feature envy) is 99%, 

obtained by DT, XGB, and MLP models, while the lowest AUC is 93% which the K-NN model 

gets. 
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Figure 7.4 The ROC curves obtained by the models on all considered code smells_ balanced datasets 

Tables 7.5 and 7.6 show the comparison results of our method with some previous studies 

based on some performance measures, namely accuracy and AUC. The best values are 

indicated in bold, and " - " denotes the missing performance measures for specific methods in 

certain datasets. Overall, our method outperforms the other state-of-the-art methods in most 

cases. 

Table 7.5 Comparison of the proposed method with other existing methods based on the accuracy 

 

Methods 

Datasets 

God class Data class Long method Feature envy 

RF[4] 0.96 0.98 0.99 0.96 

NB[4] 0.97 0.97 0.97 0.91 

DT[27] - - - 0.97 

RF[27] - 0.99 0.95 - 

K-NN[108] 0.97 0.97 0.97 0.91 

NB[108] 0.96 0.84 0.95 0.92 

MLP[108] 0.97 0.97 0.96 0.95 

DT[108] 0.97 0.98 0.98 0.98 

RF[108] 0.97 0.98 0.99 0.97 

LR[108] 0.97 0.97 0.99 0.97 

NB[118] 0.96 - 0.97 0.91 

MLP[118] 0.97 - 0.99 0.92 

DT[118] 0.98 - 0.97 0.95 

RF[119] 0.76 0.81 0.60 0.66 

NB[119] 0.74 0.66 0.74 0.76 

SVM[119] 0.66 0.66 0.66 0.60 

RF[120] 0.69 0.70 0.68 0.71 

NB[120] 0.82 0.75 0.81 0.83 

SVM[120] 0.74 0.83 0.81 0.83 

K-NN[120] 0.80 0.82 0.81 0.82 

Our models (DT, K-

NN, SVM, XGB, MLP) 

- Original Datasets 

0.95, 0.90, 0.92, 

0.98, 0.93 

0.98, 0.89, 0.96,

1.00, 0.98 

0.99, 0.92, 0.9

8, 1.00, 0.94 

0.92, 0.86, 0.90, 

0.95, 0.88 

Our models (DT, K-

NN, SVM, XGB, MLP) 

- Balanced Datasets 

0.98, 0.97, 0.96, 

0.96, 0.97 

1.00, 0.96, 0.97, 

1.00, 0.98 

1.00, 0.96, 1.0

0, 1.00, 0.98 

0.98, 0.91, 0.96, 

0.98, 0.96 
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Table 7.6 Comparison of the proposed method with other existing methods based on AUC 

 

Methods 

Datasets 

God class Data class Long method Feature envy 

RF[120] 0.59 0.65 0.52 0.59 

NB[120] 0.88 0.85 0.86 0.86 

SVM[120] 0.65 0.88 0.66 0.82 

K-NN[120] 0.83 0.86 0.86 0.83 

Our models (DT, K-NN, 

SVM, XGB, MLP) - 

Original Datasets 

0.94, 0.94, 0.97, 

0.99, 0.99 

0.95, 0.97, 0.

99, 1.00, 0.99 

0.98, 0.94, 0.9

9, 1.00, 0.98 

0.90, 0.85, 0.96

, 0.99, 0.90 

Our models (DT, K-NN, 

SVM, XGB, MLP) - 

Balanced Datasets 

0.98, 0.97, 0.99, 

0.98, 0.98 

1.00, 0.98, 0.

99, 1.00, 0.99 

1.00, 0.97, 1.0

0, 1.00, 1.00 

0.98, 0.93, 0.97

, 0.98, 0.98 

In summary, this study aimed to present a method based on five ML models, namely DT, K-

NN, SVM, XGB, and MLP combined with Oversampling method (Random Oversampling) to 

detect code smells. We compared the results obtained by the proposed method based on the 

original and balanced datasets to investigate the impact of Oversampling methods on 

improving the accuracy of ML techniques. Additionally, the proposed method's results were 

compared with those presented in previous studies. After comparing the results obtained by the 

proposed models on the original datasets with results obtained by the proposed models on the 

balanced datasets, as shown in the Tables and Figures, we note that the models got good scores 

on the balanced datasets and the results improved further due to balancing, which indicated 

that the combination of DT, K-NN, SVM, XGB, and MLP with Oversampling method 

(Random Oversampling) has positive effect on the performance of code smells detection 

regarding datasets with imbalanced class distributions. Furthermore, data sampling methods 

play an essential role in improving the accuracy of the ML models in code smell detection. 

Regarding the evaluation of the results obtained from our proposed method and their 

comparison with some results of other studies, we conclude that our models are promising in 

code smell detection and outperform other models in the previous studies. 

7.2 A Convolutional Neural Network (CNN) with Oversampling Methods 

In this sub-section, we discuss the findings of the sixth study. The objective was to present a 

method based on a CNN with the Oversampling method (SMOTE) to detect four code smells 

(God class, data class, feature envy, and long method). The experiments have been conducted 

based on benchmark datasets obtained from the Qualitas Corpus Systems. The experimental 

results were evaluated and compared based on various performance measures (accuracy, 

precision, recall, and f-measure). 

The performance of the prediction models is reported in Tables 7.7, 7.8 and 7.9, and Figures 

7.5 to 7.9. 

Tables 7.7 and 7.8 show the performance of the proposed model in the four code smells based 

on the original and balanced data sets. 

- Accuracy for the four code smell datasets: The proposed model using the balanced datasets 

achieves greater accuracy than the proposed model using the original datasets on the Feature 

Envy and Long Method datasets, which are 98 % and 100%. The lowest accuracy was achieved 

by the proposed model using the original datasets on the Feature Envy dataset by up to 95%.  

- Precision for the four code smell datasets: The proposed model using the balanced datasets 

achieves greater precision than the proposed model using the original datasets on the Feature 

Envy and Long Method datasets, which are 98 % and 100%. The proposed model achieved the 
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lowest precision using the original datasets on the Feature Envy and Long Method datasets by 

up to 93%. 

- Recall for the four code smell datasets: The proposed model using the balanced datasets 

achieves more excellent recall than the proposed model using the original datasets on the God 

Class, Data Class, and Feature Envy datasets, which are 97%, 100 %, and 98%. The lowest 

recall was achieved by the proposed model using the original datasets on the Feature Envy 

dataset by up to 93%. 

- F-Measure for the four code smell datasets: The proposed model using the balanced datasets 

achieves greater F-Measure than the proposed model using the original datasets on the God 

Class, Feature Envy, and Long Method datasets, which are 97%, 98%, and 100%. The proposed 

model achieved the lowest F-Measure using the original datasets on the Feature Envy dataset 

by up to 93%. 

Table 7.7 Performance analysis for proposed CNN Model - Original Datasets 

Original Datasets 
Performance Measures 

Accuracy Precision Recall F-Measure 

God Class 0.96 0.97 0.94 0.96 

Data Class 0.99 1.00 0.96 0.98 

Feature Envy 0.95 0.93 0.93 0.93 

Long Method 0.98 0.93 1.00 0.96 

Averages 0.97 0.95 0.95 0.95 

Table 7.8 Performance analysis for proposed CNN Model - Balanced Datasets 

Balanced Datasets 

using SMOTE method 

Performance Measures 

Accuracy Precision Recall F-Measure 

God Class 0.96 0.97 0.97 0.97 

Data Class 0.98 0.97 1.00 0.98 

Feature Envy 0.98 0.98 0.98 0.98 

Long Method 1.00 1.00 1.00 1.00 

Averages 0.98 0.98 0.98 0.98 

We used Boxplots to aggregate the achieved results to get a more accurate overview of the 

quality of the results. Figure 7.5 shows the Box plots for the performance measures (Accuracy, 

Precision, Recall, and F-measure) on the original and balanced datasets. 

Concerning the original datasets, the highest accuracy is 99% on the Data Class dataset and the 

lowest accuracy is 95% on the Feature Envy dataset, the highest precision is 100% on the Data 

Class dataset and the lowest precision is 93% on the Feature envy and Long Method datasets, 

the highest recall is 100% on the Long method dataset and the lowest recall is 93% on the 

Feature Envy dataset, the highest f-measure is 98% on the Data Class dataset and the lowest f-

measure is 93% on the Feature envy dataset.  

Concerning the balanced datasets, the highest accuracy is 100% on the Long Method dataset 

and the lowest accuracy is 96% on the God Class dataset, the highest precision is 100% on the 

Long Method dataset and the lowest precision is 97% on the God Class and Data Class datasets, 

the highest recall is 100% on the Data Class and Long method datasets and the lowest recall is 

97% on the God Class dataset, the highest f-measure is 100% on the Long Method dataset and 

the lowest f-measure is 97% on the God Class dataset. 
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Figure 7.5 Boxplots represent performance measures obtained by CNN Model 

Figures 7.6 to 7.9 show the training and validation accuracy and training and validation loss of 

the model on the original and balanced datasets. Figures 7.6 and 7.7 show the training and 

validation accuracy of the model on the original and balanced datasets. The vertical axis 

presents the model's accuracy, and the horizontal axis illustrates the number of epochs. 

Accuracy is the fraction of predictions that our model predicted right.  

Figure 7.6 shows the accuracy values of the model on the original datasets. From the Figure, 

the model learned 96% accuracy for the God Class dataset, 99% accuracy for the Data Class 

dataset, 95% accuracy for the Feature Envy dataset, and 98% accuracy for the Long Method 

dataset at the 100th epoch. 

 

 
Figure 7.6 Training and Validation Accuracy over original datasets 

Figure 7.7 shows the accuracy values of the model on the balanced datasets. From the Figure, 

the model learned 96% accuracy for the God Class dataset, 98% accuracy for the Data Class 

dataset, 98% accuracy for the Feature Envy dataset, and 100% accuracy for the Long Method 

dataset at the 100th epoch. 

DOI 10.14750/ME.2024.012



82 
 

 

Figure 7.7 Training and Validation Accuracy over balanced datasets 

Figures 7.8 and 7.9 show the training and validation loss of the model on the original and 

balanced datasets. The vertical axis presents the loss of the model, and the horizontal axis 

illustrates the number of epochs. The loss indicates how bad a model prediction was. 

Figure 7.8 shows the loss values of the model on the original datasets. From the Figure, the 

model loss is 0.036 for the God Class dataset, 0.005 for the Data Class dataset, 0.041 for the 

Feature Envy dataset, and 0.021 for the Long Method dataset at the 100th epoch. 

 

Figure 7.8 Training and validation loss over original datasets 

Figure 7.9 shows the loss values of the model on the balanced datasets. From the Figure, the 

model loss is 0.033 for the God Class dataset, 0.013 for the Data Class dataset, 0.018 for the 

Feature Envy dataset, and 0.000 for the Long Method dataset at the 100th epoch. 

As shown in the Figures, the accuracy of training and validation increases and the loss 

decreases with increasing epochs. Regarding the high accuracy and low loss obtained by the 

proposed model, we note that the model is well-trained and validated. 
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Figure 7.9 Training and validation loss over balanced datasets 

Table 7.9 shows the comparison results of our method with some previous studies based on 

accuracy. The best values are indicated in bold and "-" indicates that the approaches that did 

not provide results for performance measures in a particular data set. According to Table, some 

of the results in the previous studies are better than ours. However, in most cases, our method 

outperforms the other state-of-the-art methods and provides better predictive performance. 

Table 7.9 Comparison of the proposed method with other existing methods based on the accuracy 

 

Methods 

Datasets 

God class Data class Feature envy Long method 

RF[4] 0.96 0.98 0.96 0.99 

NB[4] 0.97 0.97 0.91 0.97 

DT[27] - - 0.97 - 

RF[27] - 0.99 - 0.95 

K-NN[108] 0.97 0.97 0.91 0.97 

NB[108] 0.96 0.84 0.92 0.95 

MLP[108] 0.97 0.97 0.95 0.96 

DT[108] 0.97 0.98 0.98 0.98 

RF[108] 0.97 0.98 0.97 0.99 

LR[108] 0.97 0.97 0.97 0.99 

NB[118] 0.96 - 0.91 0.97 

MLP[118] 0.97 - 0.92 0.99 

DT[118] 0.98 - 0.95 0.97 

RF[119] 0.76 0.81 0.66 0.60 

NB[119] 0.74 0.66 0.76 0.74 

SVM[119] 0.66 0.66 0.60 0.66 

RF[120] 0.69 0.70 0.71 0.68 

NB[120] 0.82 0.75 0.83 0.81 

SVM[120] 0.74 0.83 0.83 0.81 

K-NN[120] 0.80 0.82 0.82 0.81 

Our model (CNN) - Original 

Datasets 

0.96 0.99 0.95 0.98 

Our model (CNN with 

SMOTE) - Balanced Datasets 

0.96 0.98 0.98 1.00 
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In summary, this study aimed to present a method based on CNN with the Oversampling 

method (SMOTE) to detect code smells. We compared the results obtained by the proposed 

method based on the original and balanced datasets to investigate the impact of Oversampling 

methods on improving the accuracy of ML techniques. Additionally, the proposed method's 

results were compared with those presented in previous studies. After comparing the results 

obtained by the proposed model on the original datasets with results obtained by the proposed 

model on the balanced datasets, as shown in the Tables and Figures, we note that the model got 

good scores on the balanced datasets and the results improved further due to balancing, which 

indicated that the combination of CNN with the Oversampling method (SMOTE) has a positive 

effect on the performance of code smells detection regarding datasets with imbalanced class 

distributions. Furthermore, data sampling methods play an essential role in improving the 

accuracy of the ML models in code smells detection. Regarding the evaluation of the results 

obtained from our proposed method and their comparison with some results of other studies, 

we conclude that our model is promising in code smell detection and outperforms other models 

in the previous studies. 

7.3 Bi-LSTM and GRU with Under and Oversampling Methods in Code Smells Detection 

In this sub-section, we discuss the findings of the seventh study, the objective was to present a 

method based on RNN models (Bi-LSTM and GRU) with Under and Oversampling methods 

(Random Oversampling and Tomek Links) to detect four code smells (God class, data class, 

feature envy, and long method). The experiments have been conducted based on benchmark 

datasets obtained from the Qualitas Corpus Systems. The experimental results were evaluated 

and compared based on various performance measures (accuracy, precision, recall, f-measure, 

MCC, AUC, AUCPR, MSE). 

The performance of the prediction models is reported in Tables 7.10 to 7.18 and Figures 7.10 

to 7.18, appendix 4 (Figures 1 to 12). 

Table 7.10 presents the results of Bi-LSTM and GRU models on the original datasets in terms 

of accuracy, precision, recall, F-Measure, MCC, AUC, AUCPR and MSE. We notice that the 

accuracy values of the Bi-LSTM model range from 0.95 to 0.98, the precision values range 

from 0.93 to 1.00, the recall values range from 0.83 to 0.96, the F-Measure values range from 

0.90 to 0.96, the MCC values range from 0.88 to 0.94, the AUC values range from 0.97 to 0.99, 

the AUCPR values range from 0.95 to 0.99, and the MSE values range from 0.023 to 0.044 

across all datasets. The accuracy values of the GRU model range from 0.93 to 0.98, the 

precision values range from 0.86 to 0.97, the recall values range from 0.86 to 0.96, the F-

Measure values range from 0.89 to 0.96, the MCC values range from 0.84 to 0.94, the AUC 

values range from 0.95 to 0.99, the AUCPR values range from 0.89 to 0.99, and the MSE values 

range from 0.020 to 0.065 across all datasets. 

Table 7.10 Evaluation results for the original datasets 

Bi-LSTM Model 

 

Datasets 

 

Performance Measures 

Accuracy Precision Recall F- measure MCC AUC AUCPR MSE 

God Class 0.95 0.97 0.92 0.94 0.90 0.99 0.99 0.035 

Data Class 0.95 1.00 0.83 0.90 0.88 0.99 0.99 0.037 

Feature envy 0.95 0.93 0.93 0.93 0.89 0.97 0.95 0.044 

Long method 0.98 0.96 0.96 0.96 0.94 0.99 0.99 0.023 

Averages 0.95 0.96 0.91 0.93 0.90 0.98 0.98 0.034 
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GRU Model 

 

Datasets 

 

Performance Measures 

Accuracy Precision Recall F- measure MCC AUC AUCPR MSE 

God Class 0.93 0.97 0.86 0.91 0.85 0.97 0.97 0.063 

Data Class 0.96 0.92 0.96 0.94 0.91 0.99 0.99 0.026 

Feature envy 0.93 0.86 0.93 0.89 0.84 0.95 0.89 0.065 

Long method 0.98 0.96 0.96 0.96 0.94 0.99 0.99 0.020 

Averages 0.95 0.92 0.92 0.92 0.88 0.97 0.96 0.043 

Table 7.11 presents the results of Bi-LSTM and GRU Models on the balanced datasets using 

Random Oversampling regarding accuracy, precision, recall, F-Measure, MCC, AUC, AUCPR 

and MSE. We notice that the accuracy values of the Bi-LSTM model range from 0.96 to 1.00, 

the precision values range from 0.94 to 1.00, the recall values range from 0.98 to 1.00, the F-

Measure values range from 0.97 to 1.00, the MCC values range from 0.92 to 1.00, the AUC 

values range from 0.97 to 1.00, the AUCPR values range from 0.96 to 1.00, and the MSE values 

range from 0.005 to 0.037 across all datasets. The accuracy values of the GRU model range 

from 0.96 to 1.00, the precision values range from 0.95 to 1.00, the recall value range from 

0.98 to 1.00, the F-Measure values range from 0.97 to 1.00, the MCC values range from 0.92 

to 1.00, the AUC values range from 0.96 to 1.00, the AUCPR values range from 0.93 to 1.00, 

and the MSE values range from 0.002 to 0.033 across all datasets. 

Table 7.11 Evaluation results for the balanced datasets - Random Oversampling 

 

Bi-LSTM Model 

 

Datasets 

 

Performance Measures 

Accuracy Precision Recall F- measure MCC AUC AUCPR MSE 

God Class 0.96 0.95 0.98 0.97 0.92 0.98 0.98 0.035 

Data Class 0.99 0.98 1.00 0.99 0.98 1.00 1.00 0.006 

Feature envy 0.96 0.94 1.00 0.97 0.92 0.97 0.96 0.037 

Long method 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.005 

Averages 0.97 0.96 0.99 0.98 0.95 0.98 0.98 0.020 

 

GRU Model 

 

Datasets 

 

Performance Measures 

Accuracy Precision Recall F- measure MCC AUC AUCPR MSE 

God Class 0.96 0.95 0.98 0.97 0.92 0.96 0.93 0.033 

Data Class 0.98 0.98 0.98 0.98 0.96 0.99 0.99 0.023 

Feature envy 0.97 0.95 1.00 0.98 0.94 0.97 0.95 0.032 

Long method 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.002 

Averages 0.97 0.97 0.99 0.98 0.95 0.98 0.96 0.022 

Table 7.12 presents the results of Bi-LSTM and GRU Models on the balanced datasets using 

Tomek links regarding accuracy, precision, recall, F-Measure, MCC, AUC, AUCPR and MSE. 

We notice that the accuracy values of the Bi-LSTM model range from 0.95 to 0.99, the 

precision values range from 0.85 to 1.00, the recall values range from 0.87 to 1.00, the F-

Measure values range from 0.92 to 0.98, the MCC values range from 0.88 to 0.97, the AUC 

values range from 0.97 to 0.99, the AUCPR values range from 0.92 to 0.98, and the MSE values 

range from 0.013 to 0.044 across all datasets. The accuracy values of the GRU model range 
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from 0.96 to 0.99, the precision values range from 0.94 to 1.00, the recall values range from 

0.87 to 1.00, the F-Measure values range from 0.93 to 0.98, the MCC values range from 0.90 

to 0.97, the AUC values range from 0.98 to 0.99, the AUCPR values range from 0.97 to 0.99, 

and the MSE values range from 0.018 to 0.038 across all datasets. 

Table 7.12 Evaluation results for the balanced datasets - Tomek links 

 

Bi-LSTM Model 

 

Datasets 

 

Performance Measures 

Accuracy Precision Recall F- measure MCC AUC AUCPR MSE 

God Class 0.96 1.00 0.87 0.93 0.90 0.98 0.97 0.037 

Data Class 0.95 0.85 1.00 0.92 0.88 0.97 0.92 0.044 

Feature envy 0.98 0.97 0.97 0.97 0.94 0.99 0.98 0.020 

Long method 0.99 0.97 1.00 0.98 0.97 0.98 0.97 0.013 

Averages 0.97 0.94 0.96 0.95 0.92 0.98 0.96 0.028 

 

GRU Model 

 

Datasets 

 

Performance Measures 

Accuracy Precision Recall F- measure MCC AUC AUCPR MSE 

God Class 0.96 1.00 0.87 0.93 0.90 0.98 0.97 0.038 

Data Class 0.99 0.96 1.00 0.98 0.97 0.99 0.99 0.018 

Feature envy 0.99 0.97 1.00 0.98 0.97 0.99 0.99 0.021 

Long method 0.98 0.94 1.00 0.97 0.94 0.99 0.99 0.025 

Averages 0.98 0.96 0.96 0.96 0.94 0.98 0.98 0.025 

Figures 7.10 to 7.13 show the training and validation accuracy and training and validation loss 

of the models on the original datasets.  

Figures 7.10 and 7.11 show the training and validation accuracy of the models on the original 

datasets. The vertical axis presents the accuracy of the models, and the horizontal axis 

illustrates the number of epochs. Accuracy is the fraction of predictions that our models 

predicted right.  

Figure 7.10 shows the accuracy values of the Bi-LSTM model. From the Figure, the model 

learned 95% accuracy for God Class, 95% accuracy for Data Class, 95% accuracy for Feature 

envy and 98% accuracy for Long method at the 100th epoch. 
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Figure 7.10 Training and Validation Accuracy on the original datasets using Bi-LSTM Model 

Figure 7.11 shows the accuracy values of the GRU model. From the Figure, the model learned 

93% accuracy for God Class, 96% accuracy for Data Class, 93% accuracy for Feature envy 

and 98% accuracy for Long method at the 100th epoch. 

 

Figure 7.11 Training and Validation Accuracy on the original datasets using GRU Model 

Figures 7.12 and 7.13 show the training and validation loss of the models on the original 

datasets. The vertical axis presents the loss of the models, and the horizontal axis illustrates the 

number of epochs. The loss indicates how bad a model's prediction was.  

Figure 7.12 shows the loss values of the Bi-LSTM model. From the Figure, the model loss is 

0.035 for God Class, 0.037 for Data Class, 0.044 for Feature envy and 0.023 for the long 

method at the 100th epoch. 
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Figure 7.12 Training and Validation Loss on the original datasets using Bi-LSTM Model 

Figure 7.13 shows the loss values of the GRU model. From the Figure, the model loss is 0.063 

for God Class, 0.026 for Data Class, 0.065 for Feature envy and 0.020 for the long method at 

the 100th epoch. Further in appendix 4, Figures 1 to 8 show both models' training and validation 

(accuracy and loss) on the balanced datasets.  

As shown in the Figures, the accuracy of training and validation increases, and the loss 

decreases with increasing epochs. Regarding the high accuracy and low loss obtained by the 

proposed models, we note that both models are well-trained and validated. Additionally, we 

note that the models are approximately perfectly fitting, there is no overfitting or underfitting. 

 

Figure 7.13 Training and Validation Loss on the original datasets using GRU Model 

Figures 7.14 and 7.15 show the ROC curves of the models on the original datasets. The vertical 

axis presents the actual positive rate of the models, and the horizontal axis illustrates the false 
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positive rate. The AUC is a sign of the performance of the model. The larger AUC is, the better 

the model performance will be. Based on the Figures, the values are encouraging and indicate 

our proposed models' efficiency in detecting code smells.  

Figure 7.14 shows the AUC values of the Bi-LSTM model. From the Figure, the AUC values 

are 99% on God Class,99% on Data Class, 95% on Feature envy and 99% on the Long method.  

 

Figure 7.14 ROC curves for the original datasets - Bi-LSTM Model 

Figure 7.15 shows the AUC values of the GRU model. From the Figure, the AUC values are 

97% on God Class,99% on Data Class, 89% on Feature envy and 99% on the Long method. 

Further in appendix 4, Figures 9 to 12 show the ROC curves for both models on the balanced 

datasets. 

 

Figure 7.15 ROC curves for the original datasets - GRU Model 
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We used Boxplots to aggregate the achieved results to get a more accurate overview of the 

quality of the results. Figure 7.16 shows the Box plots for the original datasets' performance 

measures. For the Bi-LSTM model, the highest accuracy is 98% on the Long method dataset 

and the lowest accuracy is 95% on the God Class, Data Class and Feature envy datasets, the 

highest precision is 100% on the Data Class dataset and the lowest precision is 93% on the 

Feature envy dataset, the highest recall is 96% on the Long method dataset and the lowest recall 

is 83% on the Data Class dataset, the highest f-measure is 96% on the Long method dataset 

and the lowest f-measure is 90% on the Data Class dataset, the highest MCC is 94% on the 

Long method dataset and the lowest MCC is 88% on the Data Class dataset, the highest AUC 

is 99% on the God Class, Data Class and Long method datasets and the lowest AUC is 97% on 

the Feature envy dataset, the highest AUCPR is 99% on the God Class, Data Class and Long 

method datasets and the lowest AUCPR is 95% on the Feature envy dataset.  

In contrast, For the GRU model, the highest accuracy is 98% on the Long method dataset and 

the lowest accuracy is 93% on the God Class and Feature envy datasets, the highest precision 

is 97% on the God Class dataset and the lowest precision is 86% on the Feature envy dataset, 

the highest recall is 96% on the Data Class and Long method datasets and the lowest recall is 

86% on the God Class dataset, the highest f-measure is 96% on the Long method dataset and 

the lowest f-measure is 89% on the Feature envy dataset, the highest MCC is 94% on the Long 

method dataset and the lowest MCC is 84% on the Feature envy dataset, the highest AUC is 

99% on the Data Class and Long method datasets and the lowest AUC is 95% on the Feature 

envy dataset, the highest AUCPR is 99% on the Data Class and Long method datasets and the 

lowest AUCPR is 89% on the Feature envy dataset. 

 

Figure 7.16 Boxplots representing performance measures obtained by models on the original datasets 

Figure 7.17 shows the Box plots for the performance measures on the balanced datasets using 

Random Oversampling. For the Bi-LSTM model with Random Oversampling, the highest 

accuracy is 100% on the Long method dataset and the lowest accuracy is 96% on the God Class 

and Feature envy datasets, the highest precision is 100% on the Long method dataset and the 

lowest precision is 94% on the Feature envy dataset, the highest recall is 100% on the Data 

Class, Feature envy and Long method datasets and the lowest recall is 98% on the God Class 

dataset, the highest f-measure is 100% on the Long method dataset and the lowest f-measure 

is 97% on the God Class and Feature envy datasets, the highest MCC is 100% on the Long 

method dataset and the lowest MCC is 92% on the God Class and Feature envy datasets, the 

highest AUC is 100% on the Data Class and Long method datasets and the lowest AUC is 97% 
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on the Feature envy dataset, the highest AUCPR is 100% on the Data Class and Long method 

datasets and the lowest AUCPR is 96% on the Feature envy dataset. 

In contrast, For the GRU model with Random Oversampling, the highest accuracy is 100% on 

the Long method dataset and the lowest accuracy is 96% on the God Class dataset, the highest 

precision is 100% on the Long method dataset and the lowest precision is 95% on the God 

Class and Feature envy datasets, the highest recall is 100% on the Feature envy and Long 

method datasets and the lowest recall is 98% on the God Class and Data Class datasets, the 

highest f-measure is 100% on the Long method dataset and the lowest f-measure is 97% on the 

God Class dataset, the highest MCC is 100% on the Long method dataset and the lowest MCC 

is 92% on the God Class dataset, the highest AUC is 100% on the Long method dataset and 

the lowest AUC is 96% on the God Class dataset, the highest AUCPR is 100% on the Long 

method dataset and the lowest AUCPR is 93% on the God Class dataset. 

 

Figure 7.17 Boxplots representing performance measures obtained by models on the balanced datasets- Random 

Oversampling 

Figure 7.18 shows the Box plots for the performance measures on the balanced datasets using 

Tomek links. For the Bi-LSTM model with Tomek links, the highest accuracy is 99% on the 

Long method dataset and the lowest accuracy is 95% on the Data Class dataset, the highest 

precision is 100% on the God Class dataset and the lowest precision is 85% on the Data Class 

dataset, the highest recall is 100% on the Data Class and Long method datasets and the lowest 

recall is 87% on the God Class dataset, the highest f-measure is 98% on the Long method 

dataset and the lowest f-measure is 92% on the Data Class dataset, the highest MCC is 97% on 

the Long method dataset and the lowest MCC is 88% on the Data Class dataset, the highest 

AUC is 99% on the Feature envy dataset and the lowest AUC is 97% on the Data Class dataset, 

the highest AUCPR is 98% on the Feature envy dataset and the lowest AUCPR is 92% on the 

Data Class dataset. 

In contrast, For the GRU model with Tomek links, the highest accuracy is 99% on the Data 

Class and Feature envy datasets and the lowest accuracy is 96% on the God Class dataset, the 

highest precision is 100% on the God Class dataset and the lowest precision is 94% on the 

Long method dataset, the highest recall is 100% on the Data Class, Feature envy and Long 

method datasets and the lowest recall is 87% on the God Class dataset, the highest f-measure 

is 98% on the Data Class and Feature envy datasets and the lowest f-measure is 93% on the 

God Class dataset, the highest MCC is 97% on the Data Class and Feature envy datasets and 

the lowest MCC is 90% on the God Class dataset, the highest AUC is 99% on the Data Class, 

Feature envy and Long method datasets and the lowest AUC is 98% on the God Class dataset, 
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the highest AUCPR is 99% on the Data Class, Feature envy and Long method datasets and the 

lowest AUCPR is 97% on the God Class dataset. 

 

Figure 7.18 Boxplots representing performance measures obtained by models on the balanced datasets- Tomek 

links 

Table 7.13 presents the statistical analysis results (paired t-test) of proposed models on the 

original and balanced datasets (using Random Oversampling) in terms of mean, Standard 

Deviation (STD), min, max and P value. We notice that the mean values of the Bi-LSTM model 

are 0.95 on the original datasets and 0.97 on the balanced datasets. The mean values of the 

GRU model are 0.95 on the original datasets and 0.97 on the balanced datasets. The STD values 

of the Bi-LSTM model are 0.01 on the original datasets and 0.02 on the balanced datasets, 

while the STD values of the GRU model are 0.02 on the original datasets and 0.01 on the 

balanced datasets. The Min values of the Bi-LSTM model are 0.95 on the original datasets and 

0.96 on the balanced datasets, while the Min values of the GRU model are 0.93 on the original 

datasets and 0.96 on the balanced datasets. The Max values of the Bi-LSTM model are 0.98 on 

the original datasets and 1.00 on the balanced datasets, while the Max values of the GRU model 

are 0.98 on the original datasets and 1.00 on the balanced datasets. The P value of the Bi-LSTM 

model is 0.06 for the original and balanced datasets, while the P value of the GRU model is 

0.01 for the original and balanced datasets. Based on the P value of the GRU model on the 

original and balanced data sets, we note that the P value is less than 0.05, indicating a difference 

between the results of the models on the original and balanced data sets. 

Table 7.13 Comparison of the proposed models in terms of accuracy using paired t-test- based on the original 

and balanced datasets (using Random Oversampling) 

 

Paired t-test 

 

Bi-LSTM Model GRU Model 

Original Datasets Balanced Datasets Original Datasets Balanced Datasets 

Mean 0.95 0.97 0.95 0.97 

STD 0.01 0.02 0.02 0.01 

Min 0.95 0.96 0.93 0.96 

Max 0.98 1.00 0.98 1.00 

P value 0.06 0.01 

Table 7.14 presents the statistical analysis results (paired t-test) of proposed models on the 

original and balanced datasets (using Tomek Links) in terms of mean, Standard Deviation 

(STD), min, max and P value. We notice that the mean values of the Bi-LSTM model are 0.95 

on the original datasets and 0.97 on the balanced datasets. The mean values of the GRU model 

are 0.95 on the original datasets and 0.98 on the balanced datasets. The STD values of the Bi-
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LSTM model are 0.01 on the original datasets and 0.01 on the balanced datasets, while the STD 

values of the GRU model are 0.02 on the original datasets and 0.01 on the balanced datasets. 

The Min values of the Bi-LSTM model are 0.95 on the original datasets and 0.95 on the 

balanced datasets, while the Min values of the GRU model are 0.93 on the original datasets 

and 0.96 on the balanced datasets. The Max values of the Bi-LSTM model are 0.98 on the 

original datasets and 0.99 on the balanced datasets, while the Max values of the GRU model 

are 0.98 on the original datasets and 0.99 on the balanced datasets. The P value of the Bi-LSTM 

model is 0.14 for the original and balanced datasets, while the P value of the GRU model is 

0.09 for the original and balanced datasets. Based on the P value of both models on the original 

and balanced data sets, we note that the P value is greater than 0.05, indicating no difference 

between the results of the models on the original and balanced data sets. 

Table 7.14 Comparison of the proposed models in terms of accuracy using paired t-test- based on the original 

and balanced datasets (using Tomek Links) 

 

Paired t-test 

Bi-LSTM Model GRU Model 

Original Datasets Balanced Datasets Original Datasets Balanced Datasets 

Mean 0.95 0.97 0.95 0.98 

STD 0.01 0.01 0.02 0.01 

Min 0.95 0.95 0.93 0.96 

Max 0.98 0.99 0.98 0.99 

P value 0.14 0.09 

The results presented by our models and previous studies' results are reported in Tables 7.15 to 

7.18. Tables 7.15 and 7.16 show the comparison results of our method with some previous 

studies based on some performance measures, namely accuracy and AUC. Table 7.15 shows 

the results based on accuracy; Table 7.16 shows the results based on AUC. The best values are 

indicated in bold in the Tables and "- "indicates that the approaches that did not provide results 

for performance measures in a particular data set. According to Tables 7.15 and 7.16, some of 

the results in the previous studies are better than ours. However, in most cases, our method 

outperforms the other state-of-the-art approaches and provides better predictive performance. 

Table 7.15 Comparison of the proposed models with other existing approaches based on the accuracy 

 

Approaches 

Datasets  

Averages God class Data class Feature envy Long method 

RF[4] 0.96 0.98 0.96 0.99 0.97 

NB[4] 0.97 0.97 0.91 0.97 0.95 

DT[27] - - 0.97 - 0.97 

RF[27] - 0.99 - 0.95 0.97 

K-NN[108] 0.97 0.97 0.91 0.97 0.95 

NB[108] 0.96 0.84 0.92 0.95 0.91 

MLP[108] 0.97 0.97 0.95 0.96 0.96 

DT[108] 0.97 0.98 0.98 0.98 0.97 

RF[108] 0.97 0.98 0.97 0.99 0.97 

LR[108] 0.97 0.97 0.97 0.99 0.97 

RF[120] 0.69 0.70 0.71 0.68 0.69 

NB[120] 0.82 0.75 0.83 0.81 0.80 

SVM[120] 0.74 0.83 0.83 0.81 0.80 

K-NN[120] 0.80 0.82 0.82 0.81 0.81 

Our Bi-LSTM model_Balanced 

Datasets (Random Oversampling) 

0.96 0.99 0.96 1.00 0.97 

Our GRU model_Balanced Datasets 

(Random Oversampling) 

0.96 0.98 0.97 1.00 0.97 
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Our Bi-LSTM model_Balanced 

Datasets (Tomek links) 

0.96 0.95 0.98 0.99 0.97 

Our GRU model_Balanced Datasets 

(Tomek links) 

0.96 0.99 0.99 0.98 0.98 

Table 7.16 Comparison of the proposed models with other existing approaches based on AUC 

 

Approaches 

Datasets  

Averages God class Data class Feature envy Long method 

DL[29] - - 0.84 0.79 0.81 

RF[120] 0.59 0.65 0.59 0.52 0.58 

NB[120] 0.88 0.85 0.86 0.86 0.86 

SVM[120] 0.65 0.88 0.82 0.66 0.75 

K-NN[120] 0.83 0.86 0.83 0.86 0.84 

Our Bi-LSTM model_Balanced 

Datasets (Random Oversampling) 

0.98 1.00 0.97 1.00 0.98 

Our GRU model_Balanced 

Datasets (Random Oversampling) 

0.96 0.99 0.97 1.00 0.98 

Our Bi-LSTM model_Balanced 

Datasets (Tomek links) 

0.98 0.97 0.99 0.98 0.98 

Our GRU model_Balanced 

Datasets (Tomek links) 

0.98 0.99 0.99 0.99 0.98 

Table 7.17 presents the statistical analysis results (paired t-test) for the proposed models based 

on Random Oversampling and existing approaches in terms of mean, Standard Deviation 

(STD), min, max and P value. We notice that the mean value of existing approaches is 0.90, 

while the mean value of the Bi-LSTM Model is 0.97 and the mean value of the GRU Model is 

0.97. The STD value of existing approaches is 0.00, while the STD value of the Bi-LSTM 

Model is 0.02 and the STD value of the GRU Model is 0.01. The Min value of existing 

approaches is 0.89, while the Min value of the Bi-LSTM Model is 0.96 and the Min value of 

the GRU Model is 0.96. The Max value of existing approaches is 0.91, while the Max value of 

the Bi-LSTM Model is 1.00 and the Max value of the GRU Model is 0.99. The P value for 

existing approaches and Bi-LSTM Model is 0.00, while the P value for existing approaches 

and GRU Model is 0.00. Based on the P value of both models based on Random Oversampling 

and existing approaches, we note that the P value is less than 0.05, indicating a difference 

between the existing approaches' and our proposed models' results. 

Table 7.17 Comparison of the proposed models with other existing approaches in terms of accuracy averages 

using paired t-test- based on Random Oversampling 

Paired t-test  Existing Approaches Bi-LSTM Model Existing Approaches GRU Model 

Mean 0.90 0.97 0.90 0.97 

STD 0.00 0.02 0.00 0.01 

Min 0.89 0.96 0.89 0.95 

Max 0.91 1.00 0.91 0.99 

P value 0.00 0.00 

Table 7.18 presents the statistical analysis results (paired t-test) for the proposed models based 

on Tomek Links and existing approaches in terms of mean, Standard Deviation (STD), min, 

max and P value. We notice that the mean value of existing approaches is 0.90, while the mean 

value of the Bi-LSTM Model is 0.97 and the mean value of the GRU Model is 0.98. The STD 

value of existing approaches is 0.00, while the STD value of the Bi-LSTM Model is 0.01 and 

the STD value of the GRU Model is 0.01. The Min value of existing approaches is 0.89, while 

the Min value of the Bi-LSTM Model is 0.96 and the Min value of the GRU Model is 0.96. 

The Max value of existing approaches is 0.91, while the Max value of the Bi-LSTM Model is 
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1.00 and the Max value of the GRU Model is 0.99. The P value for existing approaches and 

Bi-LSTM Model is 0.00, while the P value for existing approaches and GRU Model is 0.00. 

Based on the P value of both models based on Tomek Links and existing approaches, we note 

that the P value is less than 0.05, indicating a difference between the existing approaches' and 

our proposed models' results. 

Table 7.18 Comparison of the proposed models with other existing approaches in terms of accuracy averages 

using paired t-test- based on Tomek Links 

Paired t-test  Existing Approaches Bi-LSTM Model Existing Approaches GRU Model 

Mean 0.90 0.97 0.90 0.98 

STD 0.00 0.01 0.00 0.01 

Min 0.89 0.96 0.89 0.96 

Max 0.91 1.00 0.91 0.99 

P value 0.00 0.00 

In summary, this study aimed to present a method based on RNN models (Bi-LSTM and GRU) 

with Under and Oversampling methods (Random Oversampling and Tomek Links) to detect 

code smells. We compared the results obtained by the proposed method based on the original 

and balanced datasets to investigate the impact of Under and Oversampling methods on 

improving the accuracy of ML techniques. Additionally, the proposed method's results were 

compared with those presented in previous studies. After comparing the results obtained by the 

proposed models on the original datasets with results obtained by the proposed models on the 

balanced datasets, as shown in the Tables and Figures, we note that the models got good scores 

on the balanced datasets and the results improved further due to balancing, which indicated 

that the combination of (Bi-LSTM and GRU) with Under and Oversampling methods (Random 

Oversampling and Tomek Links) has positive effect on the performance of code smells 

detection regarding datasets with imbalanced class distributions. Furthermore, data sampling 

methods play an essential role in improving the accuracy of ML models in code smells 

detection. Regarding the evaluation of the results obtained from our proposed method and their 

comparison with some results of other studies, we conclude that our models are promising in 

code smell detection and outperform other models in the previous studies. 

7.4 Summary 

In this chapter, we presented the experimental results and discussion of code smells detection. 

The experimental results have been compared and evaluated based on several standard 

performance measures. We compared experimental results based on the original and balanced 

datasets and compared our results with current state-of-the-art results for code smells detection. 

The results showed that our proposed methods significantly outperform current state-of-the-art 

methods for code smells detection. We concluded that the combined data-balancing methods 

with ML techniques significantly enhance the accuracy of code smells detection. We observe 

that the incorporation of appropriate data-balancing methods and ML techniques not only 

enhances the model's ability to detect code smells accurately but also mitigates the bias towards 

the majority class, resulting in a more balanced performance across different classes of code 

smells. This research has practical implications for software developers and researchers. It 

highlights the significance of considering data-balancing methods when applying ML models 

for code smells detection. By employing these methods, developers can enhance their ability 

to identify and address code quality issues, thereby improving software maintainability.  
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Chapter 8 Conclusion 

8.1 Contributions 

Identifying software bugs and code smells will help software developers distinguish code 

constructs that contain defects and assist them in the testing phase of the software development 

life cycle, resulting in improved software quality. Our dissertation contributes to software 

engineering, especially software bugs and code smell prediction. The main contribution of our 

dissertation is the development of different models based on several ML techniques combined 

with many data-balancing methods using software metrics to improve the prediction of 

software bugs and code smells. The criteria for selecting the ML techniques and data-balancing 

methods in this research work are based on the recommendations in the literature review. By 

making these contributions, our dissertation advances the understanding and application of 

data-balancing methods in the ML-based prediction of software bugs and code smells using 

software metrics. It provides valuable insights and practical guidance, aiding in developing 

more accurate and reliable prediction models and ultimately contributing to improving software 

quality and reliability. In summary, the main contributions of our research work are 

summarized as follows: 

• Our dissertation makes a significant contribution by thoroughly examining the impact of 

the class imbalance problem on predicting software bugs and code smells. Where it 

provides insights into how class imbalance affects the performance of ML-based models 

and highlights the need for effective solutions to address this challenge.  

• In this dissertation, we contribute by conducting a comprehensive evaluation of various 

data-balancing methods commonly employed to address the class imbalance problem in 

software bugs and code smells prediction.  

• Our dissertation contributes to improving the accuracy and reliability of predictive models 

for software bugs and code smells by developing a novel prediction methodology based on 

ML techniques combined with data-balancing methods.  

• In this dissertation, we validate our proposed methodology through experiments conducted 

on real-world software datasets, to show that the performance of ML algorithms in 

predicting software bugs and code smells can be significantly improved when balancing 

the data set by applying data-balancing methods. Additionally, this validation provides 

evidence of the effectiveness of the proposed methodology in practical settings and 

increases their applicability in real software development scenarios. 

8.1.1 Theses - New Scientific Results 

The dissertation presents results demonstrating the significant impact of class imbalance on the 

performance of predictive models. It highlights the challenges posed by class imbalance and 

provides empirical evidence of the effectiveness of data-balancing methods in enhancing the 

performance of predictive models for software bugs and code smells. The effectiveness of data-

balancing methods in enhancing predictive models’ performance is demonstrated through 

empirical evaluation based on Real-world software datasets using several standard 

performance measures. Overall, the dissertation presents new scientific results that contribute 

to data-balancing in ML-based prediction of software bugs and code smells using software 

metrics. The novel findings and evaluation results provide valuable insights and advance the 

understanding and application of data-balancing methods in improving the accuracy and 
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reliability of predictive models for software quality assurance. The main new scientific results 

of the research presented in this work are summarized in the following theses: 

Thesis I: Investigating standard machine learning (ML) techniques previously used to 

predict software bugs and the impact of data-balancing methods (Undersampling methods) 

on the accuracy of ML models in software bug prediction (SBP). 

I proposed two approaches for SBP: in the first approach, I presented a comprehensive study 

investigating standard ML techniques previously used to predict software bugs. In addition, a 

method to examine the performance of classical supervised ML algorithms (DT, NB, RF, and 

LR) in SBP was proposed. The experiments were conducted based on four public benchmark 

datasets obtained from the NASA defect dataset. To investigate the impact of Undersampling 

methods in improving the accuracy of RNN models in SBP, a new approach was developed by 

combining two RNN models, namely LSTM and GRU, with an Undersampling method (Near 

Miss). The experiments were conducted on benchmark datasets which comprise five public 

datasets based on both class and file-level metrics. The results of both approaches were 

evaluated on many performance measures such as accuracy, precision, recall, f-measure, MCC, 

AUC, AUCPR, and MSE. Regarding the evaluation process and the results of the first 

approach: I established that the classic supervised ML algorithms can be used effectively for 

SBP. Regarding the experimental results of the second approach: the average Recall of the 

LSTM and GRU models on the original datasets (class level metrics and file level metrics) 

were 20 and 20%, and the average Recall of the models on the balanced datasets (class level 

metrics and file level metrics) using Near Miss were 92 and 81%. The results showed that the 

LSTM and GRU models on the balanced datasets improved the average Recall by 72 and 61%, 

respectively, compared to the original datasets. I established that there are positive effects of 

combining RNN with Undersampling methods on the performance of bug prediction regarding 

datasets with imbalanced class distributions and the proposed approaches are promising, 

competitive and suitable methodologies for SBP [P1 and P2]. 

Thesis II: Investigating the impact of data-balancing methods (Oversampling and hybrid 

sampling methods) on the accuracy of machine learning (ML) models in software defect 

prediction (SDP). 

I proposed two approaches to investigate the impact of Oversampling and hybrid sampling 

methods in improving the accuracy of advanced ML algorithms in SDP. The first approach was 

developed based on combining a Bi-LSTM network and Oversampling methods (Random 

Oversampling and SMOTE). The second approach was developed based on CNN and GRU 

combined with a hybrid sampling method (SMOTE Tomek). The experiments for both 

approaches have been conducted on benchmark datasets obtained from the PROMISE 

repository. The experimental results have been compared and evaluated in accuracy, precision, 

recall, f-measure, MCC, AUC, AUCPR, and MSE. Regarding the evaluation process and the 

results of the first approach: The average Recall of the Bi-LSTM model was 48% on the 

original datasets, 97% on balanced datasets (using Random Oversampling), and 94% on 

balanced datasets (using SMOTE). The results showed that the Bi-LSTM model on the 

balanced datasets improves the average Recall by 49 (using Random Oversampling) and 46% 

(using SMOTE), compared to the original datasets. Regarding the experimental results of the 

second approach: The average Recall of the CNN and GRU models were 48 and 49% on the 

original datasets and 94 and 91% on balanced datasets (using SMOTE Tomek), The results 

showed that the CNN and GRU models on the balanced datasets improve the average Recall 
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by 46 and 42%, respectively, compared to the original datasets. I established that combining 

advanced ML algorithms with Oversampling and hybrid sampling methods has positive effects 

on the performance of defect prediction regarding datasets with imbalanced class distributions. 

The proposed approaches are suitable methodologies for SDP [P3 and P4]. 

Thesis III: Investigating the impact of data-balancing methods (Oversampling and 

Undersampling methods) on the accuracy of machine learning (ML) models in code smells 

detection. 

I proposed three approaches to investigate the impact of Oversampling and Undersampling 

methods in improving the accuracy of classical and advanced ML algorithms in code smell 

detection. The first approach was developed based on five classic ML algorithms, namely DT, 

K-NN, SVM, XGB, and MLP combined with the Oversampling method (Random 

Oversampling). The second approach was developed based on a CNN combined with the 

Oversampling method (SMOTE). The third approach was developed based on two RNN 

models (Bi-LSTM and GRU) combined with Oversampling and Undersampling methods 

(Random Oversampling and Tomek links). The experiments for all approaches were conducted 

on four code smells datasets (God class, Data Class, Feature-envy, and Long-method) that were 

extracted from 74 open-source systems. The experimental results have been compared and 

evaluated in terms of accuracy, precision, recall, f-measure, MCC, AUC, AUCPR, and MSE. 

Regarding the evaluation process and the results of the first approach: The average Recall of 

the DT, K-NN, SVM, XGB and MLP models on the original datasets (God class, Data class, 

Long method and Feature envy) were 88, 95, 93 and 83%, respectively, and the average Recall 

of the models on the balanced datasets (using Random Oversampling) were 98, 99, 99 and 

98%, respectively. The results showed that the DT, K-NN, SVM, XGB and MLP models on 

the balanced datasets improved the average Recall by 10, 4, 6 and 15%, respectively, compared 

to the original datasets. Regarding the evaluation process and the results of the second 

approach: the average Recall of the CNN model on the original datasets (God class, Data class, 

Feature envy and Long method) was 95%, and the average Recall of the model on the balanced 

datasets (using SMOTE) was 98%.The results showed that the CNN model on the balanced 

datasets improves the average Recall by 3%, compared to the original datasets. Regarding the 

experimental results of the third approach: the average Recall of the Bi-LSTM and GRU 

models were 91 and 92% on the original datasets (God class, Data class, Feature envy and 

Long method), the average Recall of the models were 99 and 99% on the balanced datasets 

using Random Oversampling, and the average Recall of the models were 96 and 96%, 

respectively, on the balanced datasets using Tomek links. The results showed that the Bi-LSTM 

and GRU models on the balanced datasets using Random Oversampling improved the average 

Recall by 8 and 7% and improved the average Recall by 5 and 4% on the balanced datasets 

using Tomek links, respectively, compared to the original datasets. I established that combining 

classic and advanced ML algorithms with Oversampling and Undersampling methods can 

improve the performance of code smell detection regarding datasets with imbalanced class 

distributions and the proposed approaches are suitable methodologies for code smell detection 

[P5, P6 and P7]. 
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8.2 Future Research Direction 

In terms of future research directions, our future research directions are summarized as follows: 

• Investigating advanced data-balancing methods: while this dissertation explores several 

commonly used data-balancing methods, future research can delve into more advanced 

techniques for addressing class imbalance in software bug and code smell prediction. This 

may include exploring ensemble-based methods, cost-sensitive learning approaches, or 

adaptive data-balancing techniques specifically tailored to the characteristics of software 

metrics. 

• Hybrid approaches: future research can explore the potential of combining multiple data-

balancing methods to achieve better performance in software bug and code smell 

prediction. Hybrid approaches may involve integrating Undersampling and Oversampling 

techniques, exploring the combination of synthetic and real data, or incorporating class 

weighting methods in conjunction with other data-balancing techniques. 

• Handling multiclass imbalance: this dissertation primarily focuses on binary class 

imbalance, where the majority class dominates over the minority class. However, future 

research can explore the challenges and solutions for addressing multiclass imbalance in 

the context of software bugs and code smell prediction. This may involve developing new 

data-balancing methods or adapting existing techniques to handle multiple imbalanced 

classes effectively. 

• Feature selection and dimensionality reduction: software metrics often encompass many 

features, which may lead to high-dimensional datasets. Future research can explore the 

impact of feature selection and dimensionality reduction techniques on data-balancing and 

predictive model performance. Investigating the effectiveness of different feature selection 

algorithms or dimensionality reduction methods in the presence of class imbalance can 

provide valuable insights. 

As a future target, we also would like to address the limitations of this research and extend our 

developed models to be applied in another field in software engineering. By exploring these 

future research directions, researchers can further advance the field of data-balancing in ML-

based prediction of software bugs and code smells using software metrics. These investigations 

will contribute to developing more sophisticated and effective approaches for addressing class 

imbalance, enhancing prediction accuracy, and improving software quality assurance practices. 
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Appendices 

Appendix 1: LSTM and GRU with Undersampling Methods in SBP 

Figures 1 and  2 show the AUCPR scores obtained by the proposed models (LSTM and GRU) 

on the original and balanced datasets, respectively. The vertical axis presents the precision of 

the model, and the horizontal axis illustrates the recall.  

Regarding the original datasets, the best AUCPR obtained by the both models (LSTM and 

GRU) which is 49% on the file level metrics dataset. While, the worst AUCPR obtained by 

GRU model which is 44% on the class level metrics dataset.  

Regarding the balanced datasets, the best AUCPR obtained by the both models (LSTM and 

GRU) which is 97% on the class level metrics dataset. While, the worst AUCPR obtained by 

the both models (LSTM and GRU) which is 95% on the on the file level metrics dataset. 

 

Appendix 1: 0.1 Figure 1. Illustrates the AUCPR of the models across all datasets - class-level metrics 

 

Appendix 1: 0.2 Figure 2. Illustrates the AUCPR of the models across all datasets - file-level metrics 
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Appendix 2: Bi-LSTM with Oversampling Methods in SDP 

Figures 1, 2 and 3 show the AUCPR of the Bi-LSTM model on the original and balanced 

datasets.The vertical axis presents the precision of the model, and the horizontal axis illustrates 

the recall.  

According to the Figures, the best AUCPR obtained by the proposed model in the original data 

sets is 98% on the xerces data set. The worst AUCPR is 29% on the jedit data set. The best 

AUCPR obtained by the proposed model in the balanced data sets (using Random 

Oversampling) is 99% on the jedit and log4j data sets, while the worst AUCPR is 86% on the 

ivy data set. The best AUCPR obtained by the proposed model in the balanced data sets (using 

SMOTE) is 100% on the log4j data set, while the worst AUCPR is 91% on the ant and camel 

data sets. 

 
Appendix 2: 0.1 Figure 1. AUCPR for the original datasets 

 
Appendix 2: 0.2 Figure 2. AUCPR for the balanced datasets - Random Oversampling 
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Appendix 2: 0.3 Figure 3. AUCPR for the balanced datasets – SMOTE 

Appendix 3: CNN and GRU with Hybrid (Combined)-Sampling Methods in SDP 

Figures 1 to 4 show the AUCPR of the proposed models (CNN and GRU) on the original and 

balanced datasets. The vertical axis presents the precision of the model, and the horizontal axis 

illustrates the recall.  

Figure 1 shows the AUCPR values of the CNN model on the original data sets. The best 

AUCPR obtained is 98% on the xerces data set, while the worst AUCPR is 7% on the jedit data 

set.  

 
Appendix 3: 0.1 Figure 1. AUCPR for the original data sets - CNN model 
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Figure 2 shows the AUCPR values of the CNN model on the balanced data sets. The best 

AUCPR obtained is 99% on the log4j and xerces data sets, while the worst AUCPR is 88% on 

the jedit data set.  

 
Appendix 3: 0.2 Figure 2. AUCPR for the balanced data sets - CNN model 

Figure 3 shows the AUCPR values of the GRU model on the original data sets. The best 

AUCPR obtained is 93% on the log4j data set, while the worst AUCPR is 24% on the jedit data 

set.  

 
Appendix 3: 0.3 Figure 3. AUCPR for the original data sets - GRU model 
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Figure 4 shows the AUCPR values of the GRU model on the balanced data sets. The best 

AUCPR obtained is 100% on the jedit data set, while the worst AUCPR is 84% on the camel 

data set. 

 
Appendix 3: 0.4 Figure 4. AUCPR for the balanced data sets - GRU model 

Appendix 4: Bi-LSTM and GRU with Under and Oversampling Methods 

Figures 1 to 8 show the training and validation (accuracy and loss) of the proposed models (Bi-

LSTM and GRU) on the balanced datasets.   

Figures 1 to 4 show the training and validation accuracy of the models on the balanced 

datasets.The vertical axis presents the accuracy of the models, and the horizontal axis illustrates 

the number of epochs. Accuracy is the fraction of predictions that the models predicted right. 

Figure 1 shows the accuracy values of the Bi-LSTM model with Random Oversampling 

technique. From the Figure, the model learned 96% accuracy for God Class, 99% accuracy for 

Data Class, 96% accuracy for Feature envy and 100% accuracy for Long method at the 100th 

epoch. 

 

Appendix 4: 0.1 Figure 1. Training and Validation Accuracy on the balanced datasets using Bi-LSTM Model-

Random Oversampling 
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Figure 2 shows the accuracy values of the Bi-LSTM model with Tomek links technique. From 

the Figure, the model learned 96% accuracy for God Class, 95% accuracy for Data Class, 98% 

accuracy for Feature envy and 99% accuracy for Long method at the 100th epoch. 

 

Appendix 4: 0.2 Figure 2. Training and Validation Accuracy on the balanced datasets using Bi-LSTM Model- 

Tomek links 

Figure 3 shows the accuracy values of the GRU model with Random Oversampling technique. 

From the Figure, the model learned 96% accuracy for God Class, 98% accuracy for Data Class, 

97% accuracy for Feature envy and 100% accuracy for Long method at the 100th epoch. 

 

Appendix 4: 0.3 Figure 3. Training and Validation Accuracy on the balanced datasets using GRU Model-

Random Oversampling 
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Figure 4 shows the accuracy values of the GRU model with Tomek links technique. From the 

Figure, the model learned 96% accuracy for God Class, 99% accuracy for Data Class, 99% 

accuracy for Feature envy and 98% accuracy for Long method at the 100th epoch. 

 

Appendix 4: 0.4 Figure 4. Training and Validation Accuracy on the balanced datasets using GRU Model- 

Tomek links 

Figures 5 to 8 show the training and validation loss of the models on the balanced datasets. The 

vertical axis presents the loss of the models, and the horizontal axis illustrates the number of 

epochs. The loss indicates how bad a model's prediction was.  

Figure 5 shows the loss values of the Bi-LSTM model with Random Oversampling technique. 

From the Figure, the model loss is 0.035 for God Class, 0.006 for Data Class, 0.037 for Feature 

envy and 0.005 for the long method at the 100th epoch. 

 

Appendix 4: 0.5 Figure 5. Training and Validation Loss on the balanced datasets using Bi-LSTM Model-

Random Oversampling 
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Figure 6 shows the loss values of the Bi-LSTM model with Tomek links technique. From the 

Figure, the model loss is 0.037 for God Class, 0.044 for Data Class, 0.020 for Feature envy and 

0.013 for the long method at the 100th epoch. 

 

Appendix 4: 0.6 Figure 6. Training and Validation Loss on the balanced datasets using Bi-LSTM Model- 

Tomek links 

Figure 7 shows the loss values of the GRU model with Random Oversampling technique. From 

the Figure, the model loss is 0.033 for God Class, 0.023 for Data Class, 0.032 for Feature envy 

and 0.002 for the long method at the 100th epoch. 

 

Appendix 4: 0.7 Figure 7. Training and Validation Loss on the balanced datasets using GRU Model-Random 

Oversampling 
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Figure 8 shows the loss values of the GRU model with Tomek links technique. From the Figure, 

the model loss is 0.038 for God Class, 0.018 for Data Class, 0.021 for Feature envy and 0.025 

for the long method at the 100th epoch.  

As shown in the Figures, the accuracy of training and validation increases, and the loss 

decreases with increasing epochs. Regarding the high accuracy and low loss obtained by the 

proposed models, we note that both models are well-trained and validated. Additionally, we 

note that the models are approximately perfectly fitting, there is no overfitting or underfitting. 

 

Appendix 4: 0.8 Figure 8. Training and Validation Loss on the balanced datasets using GRU Model - Tomek 

links 

Furthermore, Figures 9 to 12 show the ROC curves for both models on the balanced datasets. 

The vertical axis presents the actual positive rate of the models, and the horizontal axis 

illustrates the false positive rate. The AUC is a sign of the performance of the model. The larger 

the AUC is, the better the model performance will be. Figure 9 shows the AUC values of the 

Bi-LSTM model with Random Oversampling technique. From the Figure, the AUC values are 

98% on God Class,100% on Data Class, 97% on Feature envy and 100% on the Long method. 

 

Appendix 4: 0.9 Figure 9. ROC curves for the balanced datasets - Bi-LSTM Model-Random Oversampling 
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Figure 10 shows the AUC values of the Bi-LSTM model with Tomek links technique. From 

the Figure, the AUC values are 0.98% on God Class,97% on Data Class, 99% on Feature envy 

and 98% on the Long method. 

 

Appendix 4: 0.10 Figure 10. ROC curves for the balanced datasets - Bi-LSTM Model- Tomek links 

Figure 11 shows the AUC values of the GRU model with Random Oversampling technique. 

From the Figure, the AUC values are 96% on God Class,99% on Data Class, 97% on Feature 

envy and 100% on the Long method. 

 

Appendix 4: 0.11 Figure 11. ROC curves for the balanced datasets - GRU Model-Random Oversampling 
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Figure 12 shows the AUC values of the GRU model with Tomek links technique. From the 

Figure, the AUC values are 98% on God Class,99% on Data Class, 99% on Feature envy and 

99% on the Long method. 

 

Appendix 4: 0.12 Figure 12. ROC curves for the balanced datasets - GRU Model- Tomek links 
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