
University of Miskolc

FACULTY OF MECHANICAL ENGINEERING AND

INFORMATICS

Utilizing Data-Balancing Techniques to Improve AI-Based Prediction of Software Bugs and

Code Smells

PhD DISSERTATION

AUTHOR:

Nasraldeen Alnor Adam Khleel

MSc in Software Engineering

József Hatvany Doctoral School of

Information Science, Engineering and Technology

HEAD OF DOCTORAL SCHOOL

Prof. Dr. Jenő SZIGETI

ACADEMIC SUPERVISOR

Dr. Károly Nehéz

Miskolc

2023

DOI 10.14750/ME.2024.012

http://dx.doi.org/10.14750/ME.2024.012

I

Declaration of Authorship

The author hereby declares that this dissertation has not been submitted, either in the same or

in a different form, to this or to any other university for obtaining a PhD degree. The author

confirms that the submitted work is his own and the appropriate credit has been given where

reference has been addressed to the work of others.

Author's declaration

I, the undersigned, Nasraldeen Alnor Adam Khleel, declare that I have prepared this doctoral

dissertation and have used only the sources provided.

All parts that I have taken from another source, either directly or in the same content but

paraphrased, are clearly marked with the source.

November 20, 2023.

 Nasraldeen Alnor Adam Khleel

DOI 10.14750/ME.2024.012

http://dx.doi.org/10.14750/ME.2024.012

II

Acknowledgments

First and foremost, I would like to praise and thank God, Allah, almighty, who has granted me

countless blessings, knowledge, inspiration, and opportunity to me so that I was able to

accomplish my dissertation.

I would also like to thank the University of Miskolc, Faculty of Mechanical Engineering and

Informatics for the opportunity given to me to study for a PhD in Information Technology.

Apart from my efforts to harvest the fruits of this work, the success of this thesis depends on

the encouragement and guidelines of many others. This dissertation became a reality because

of the help and support of people around me; it was also a result of a lot of effort and hard work

during the past four years.

Above all, I would like to thank my supervisor, Dr. Károly Nehéz, for his continued to support,

direction, and encouragement over the past years; this dissertation would not have been

possible without him, I would also like to thank everyone in the computer science department.

Furthermore, I am grateful to many of my colleagues in our department for their help and

support in organizing the events associated with the doctorate. I also express my thankful

feelings to my colleagues for their help. Lastly but not least, I owe my loving thanks and deep

sense of gratitude to my siblings and my parents for their support and encouragement.

Nasraldeen Alnor Adam Khleel

DOI 10.14750/ME.2024.012

http://dx.doi.org/10.14750/ME.2024.012

III

Table of Contents

Declaration of Authorship __ I

Author's declaration ___ I

Acknowledgments __ II

List of Abbreviations __ VI

List of Figures __ VIII

List of Tables __ XI

Chapter 1 Introduction ___ 1

1.1 Motivation __ 2

1.2 Problem Statement ___ 3

1.3 The objectives of the thesis ___ 3

1.4 Dissertation Guide __ 4

Chapter 2 Literature Review and Theoretical Background ___________________________ 5

2.1 Software Bugs __ 5
2.1.1 Software Bug Prediction (SBP) __ 5
2.1.2 Software Bug Prediction Approaches __ 6

2.1.2.1 With-in Project Defect Prediction (WPDP) __ 6
2.1.2.2 Cross Project Defect Prediction (CPDP) for Similar Dataset ___________________________ 6
2.1.2.3 Cross Project Defect Prediction (CPDP) for Heterogeneous Dataset ____________________ 6

2.2 Code Smells ___ 7
2.2.1 Types of Code Smells ___ 7

2.2.1.1 God class __ 7
2.2.1.2 Data class __ 7
2.2.1.3 Feature envy ___ 7
2.2.1.4 Long method ___ 8

2.2.2 Code Smells Detection __ 8

2.3 Software Metrics ___ 8

2.4 Summary ___ 11

Chapter 3 Artificial Intelligence (AI) ___ 12

3.1 Artificial Intelligence Techniques __ 12
3.1.1 Machine Learning (ML) ___ 12

3.1.1.1 Supervised learning ___ 13
3.1.1.2 Unsupervised learning ___ 15
3.1.1.3 Reinforcement learning __ 16

3.1.2 Artificial Neural Networks (ANNs) __ 16
3.1.2.1 Multi-layer Perceptron (MLP) ___ 17
3.1.2.2 Deep learning (DL) __ 17
3.1.2.3 Recurrent Neural Networks (RNNs) __ 19

3.2 Summary ___ 22

Chapter 4 Data Imbalance and Data-Balancing Methods __________________________ 23

DOI 10.14750/ME.2024.012

http://dx.doi.org/10.14750/ME.2024.012

IV

4.1 Data Imbalance __ 23

4.2 Data-Balancing Methods __ 23
4.2.1 Data Sampling (Resampling) Methods ___ 24

4.2.1.1 Undersampling Methods ___ 24
4.2.1.2 Oversampling Methods __ 24
4.2.1.3 Hybrid (Combined-Sampling Methods) ___ 25

4.3 Summary ___ 25

Chapter 5 Proposed Methodology and Implementation ___________________________ 27

5.1 Experimental Design ___ 27
5.1.1 Proposed Approaches __ 27
5.1.2 The Public Benchmark Datasets Used in This Research _________________________________ 28

5.1.2.1 Software Bug Data Sets __ 28
5.1.2.2 Code Smells Data Sets ___ 29

5.1.3 Data Pre-processing ___ 29
5.1.4 Features Selection __ 30
5.1.5 Balancing Data sets __ 32
5.1.6 Models Building and Evaluation __ 36

5.2 Summary ___ 40

Chapter 6 Experimental Results and Discussion of Software Bugs Prediction (SBP) ______ 41

6.1 ML Techniques in SBP __ 41
6.2 LSTM and GRU with Undersampling Methods in SBP ___________________________________ 45
6.3 Bi-LSTM with Oversampling Methods in Software Defect Prediction (SDP) _________________ 51
6.4 CNN and GRU with Hybrid (combined)-Sampling Methods in SDP_________________________ 61
6.5 Summary __ 72

Chapter 7 Experimental Results and Discussion of Code Smells Detection _____________ 73

7.1 ML techniques with Oversampling Methods in Code Smells Detection _____________________ 73
7.2 A Convolutional Neural Network (CNN) with Oversampling Methods ______________________ 79
7.3 Bi-LSTM and GRU with Under and Oversampling Methods in Code Smells Detection _________ 84
7.4 Summary __ 95

Chapter 8 Conclusion ___ 96

8.1 Contributions ___ 96
8.1.1 Theses - New Scientific Results __ 96

8.2 Future Research Direction ___ 99

Appendices __ 100

Appendix 1: LSTM and GRU with Undersampling Methods in SBP __________________ 100

Appendix 2: Bi-LSTM with Oversampling Methods in SDP _________________________ 101

Appendix 3: CNN and GRU with Hybrid (Combined)-Sampling Methods in SDP ________ 102

Appendix 4: Bi-LSTM and GRU with Under and Oversampling Methods _____________ 104

Author’s Publication ___ 111

Publications Related to the Dissertation _______________________________________ 111

Other Publications Journal Articles and Conference Proceeding ____________________ 112

DOI 10.14750/ME.2024.012

http://dx.doi.org/10.14750/ME.2024.012

V

References __ 113

DOI 10.14750/ME.2024.012

http://dx.doi.org/10.14750/ME.2024.012

VI

List of Abbreviations

(SBP) Software Bugs Prediction

(AI) Artificial Intelligence

(ML) Machine Learning

(ANNs) Artificial Neural Networks

(CI) Continuous Integration

(CD) Continuous Deployment

(WPDP) With-in Project Defect Prediction

(CPDP) Cross Project Defect Prediction

(LOC) Lines of Code

(CCN) Cyclomatic Complexity Number

(DIT) Depth of Inheritance Tree

(CBO) Coupling Between Objects

(NOC) Number of Children

(RFC) Response for a Class

(CYCLO) McCabe’s CYCLOmatic complexity

(LCOM) Lack of Cohesion between Methods

(CLASS_FAN_OUT) Class Fan Out Complexity

(LAA) Locality of Attribute Accesses

(LOCNAMM*) Lines of Code Excluding Accessor and Mutator Methods

(WMC) Weighted Methods per Class

(TCC) Tight Class Cohesion

(ATFD) Access To Foreign Data

(NOAM) Number of Accessor Methods

(NOM) Number of Methods

(WMCNAMM*) Weighted Methods Count of Not Accessor or Mutator Methods

(FDP) Foreign Data Providers

(NOPA) Number of Public Attributes

(NOPK) Number of Packages

(AMWNAMM*) Average Methods Weight of Not Accessor or Mutator Methods

(NMO) Number of Methods Overridden

(NOCS) Number of Classes

(AMW) Average Methods Weight

(CFNAMM*) Called Foreign Not Accessor or Mutator Methods

(NIM) Number of Inherited Methods

(NOMNAMM*) Number of Methods Excluding Accessor and Mutator Methods

(MAXNESTING) Maximum Nesting Level of Control Structures

(CINT) Coupling Intensity

(NOII) Number of Implemented Interfaces

(NOA) Number of Attributes

(WOC) Weight of Class

(CDISP) Coupling Dispersion

(CLNAMM) Called Local Not Accessor or Mutator Methods

(MaMCL§) Maximum Message Chain Length

(NOP) Number of Parameters

(MeMCL§) Mean Message Chain Length

(NOAV) Number of Accessd Variables

(NMCS§) Number of Message Chain Statements

(ATLD*) Access To Local Data

DOI 10.14750/ME.2024.012

http://dx.doi.org/10.14750/ME.2024.012

VII

(CC) Control Coupling

(NOLV) Number of Local Variable

(CM) Number of Methods Affected by the Measured Method

(DT) Decision Tree

(ID3) Iterative Dichotomiser 3

(CART) Classification and Regression Trees

(RF) Random Forest

(NB) Naïve Bayes

(SVM) Support Vector Machine

(KNN) K-Nearest Neighbor

(LR) Logistic Regression

(XGB) XGBoost

(MLP) Multi-layer Perceptron

(DL) Deep Learning

(Relu) Rectified Linear unit

(Tanh) Hyperbolic Tangent

(CNN) Convolutional Neural Network

(RNNs) Recurrent Neural Networks

(LSTM) Long-Short-Term-Memory

(Bi-LSTM) Bidirectional Long-Short-Term-Memory

(GRU) Gated Recurrent Unit

(SMOTE) Synthetic Minority Oversampling Technique

(QC) Qualitas Corpus

(MCC) Matthews Correlation Coefficient

(ROC) Receiver Operating Characteristic

(AUC) Area Under the ROC Curve

(AUCPR) The Area Under the Precision-Recall Curve

(MSE) Mean Square Error

(TPR) True Positive Rate

(FPR) False Positive Rate

(TNR) True Negative Rate

(FNR) False Negative Rate

(SDP) Software Defect Prediction

DOI 10.14750/ME.2024.012

http://dx.doi.org/10.14750/ME.2024.012

VIII

List of Figures

Figure 3.1 The typical ANN architecture[70] ... 17

Figure 3.2 The typical CNN architecture[80] ... 18

Figure 3.3 Interacting layers of the repeating module in an LSTM Networks[40] 20

Figure 3.4 Interacting layers of the repeating module in a Bi-LSTM Network[86] 21

Figure 3.5 Interacting layers of the repeating module in a GRU Networks[7] 22

Figure 4.1 Shows how data sampling methods deal with class imbalance ... 25

Figure 5.1 The architecture of the methodology followed in the dissertation 27

Figure 5.2 Distribution of learning instances over the original and balanced data sets (The public

unified bug dataset)-by applying the Near Miss method .. 34

Figure 5.3 Distribution of learning instances over the original and balanced data sets (The PROMISE

datasets)-by applying the SMOTE Tomek method ... 34

Figure 5.4 Distribution of learning instances over the original and balanced data sets (The PROMISE

datasets)-by applying the Random Oversampling and SMOTE methods... 35

Figure 5.5 Distribution of learning instances over the original and balanced data sets (The Qualitas

Corpus Systems)-by applying the SMOTE method .. 35

Figure 5.6 Distribution of learning instances over the original and balanced data sets (The Qualitas

Corpus Systems)-by applying the Random Oversampling method .. 36

Figure 5.7 Distribution of learning instances over the original and balanced data sets (The Qualitas

Corpus Systems)-by applying the Random Oversampling and Tomek Links methods 36

Figure 6.1 Comparison of ROC curves for Models Across the jm1 Dataset .. 42

Figure 6.2 Comparison of ROC curves for Models Across the pc1 Dataset .. 42

Figure 6.3 Comparison of ROC curves for Models Across the kc1 Dataset .. 43

Figure 6.4 Comparison of ROC curves for Models Across the kc2 Dataset .. 43

Figure 6.5 Showcases the boxplots illustrating the performance measures achieved by the proposed

models on all datasets, encompassing both class-level and file-level metrics 46

Figure 6.6 Represents the training and validation accuracy of the models across all datasets - class-

level metrics .. 47

Figure 6.7 Represents the training and validation accuracy of the models across all datasets - file-level

metrics ... 47

Figure 6.8 Represents the training and validation loss of the models across all datasets - class-level

metrics ... 48

Figure 6.9 Represents the training and validation loss of the models across all datasets - file-level

metrics ... 48

Figure 6.10 Illustrates the ROC Curves of the models across all datasets - class-level metrics 49

Figure 6.11 Illustrates the ROC Curves of the models across all datasets - file-level metrics 49

Figure 6.12 Boxplots represent performance measures obtained by the model on the original and

balanced datasets ... 54

Figure 6.13 Training and validation accuracy for the original datasets .. 55

Figure 6.14 Training and validation accuracy for the balanced datasets - Random Oversampling 55

Figure 6.15 Training and validation accuracy for the balanced datasets – SMOTE 56

Figure 6.16 Training and validation loss for the original datasets .. 56

Figure 6.17 Training and validation loss for the balanced datasets - Random Oversampling 57

Figure 6.18 Training and validation loss for the balanced datasets - SMOTE 57

Figure 6.19 ROC curves for the original datasets ... 58

Figure 6.20 ROC curves for the balanced datasets- Random Oversampling .. 58

Figure 6.21 ROC curves for the balanced datasets- SMOTE ... 59

Figure 6.22 Boxplots represent performance measures obtained by proposed models on all datasets . 64

DOI 10.14750/ME.2024.012

http://dx.doi.org/10.14750/ME.2024.012

IX

Figure 6.23 Training and Validation Accuracy for the original data sets - CNN model 65

Figure 6.24 Training and Validation Accuracy for the balanced data sets - CNN model..................... 65

Figure 6.25 Training and Validation Accuracy for the original data sets - GRU model 66

Figure 6.26 Training and Validation Accuracy for the balanced data sets - GRU model..................... 66

Figure 6.27 Training and Validation Loss for the original data sets - CNN model 67

Figure 6.28 Training and Validation Loss for the balanced data sets - CNN model 67

Figure 6.29 Training and Validation Loss for the original data sets - GRU model 68

Figure 6.30 Training and Validation Loss for the balanced data sets - GRU model 68

Figure 6.31 ROC curves for the original data sets - CNN model ... 69

Figure 6.32 ROC curves for the balanced data sets - CNN model ... 69

Figure 6.33 ROC curves for the original data sets - GRU model ... 70

Figure 6.34 ROC curves for the balanced data sets - GRU model ... 70

Figure 7.1 Box Plots represent the models' performance measures on all considered code smells_

original datasets .. 76

Figure 7.2 Box Plots represent the models' performance measures on all considered code smells_

balanced datasets ... 76

Figure 7.3 The ROC curves obtained by the models on all considered code smells_ original datasets 77

Figure 7.4 The ROC curves obtained by the models on all considered code smells_ balanced datasets

 .. 78

Figure 7.5 Boxplots represent performance measures obtained by CNN Model 81

Figure 7.6 Training and Validation Accuracy over original datasets ... 81

Figure 7.7 Training and Validation Accuracy over balanced datasets .. 82

Figure 7.8 Training and validation loss over original datasets ... 82

Figure 7.9 Training and validation loss over balanced datasets .. 83

Figure 7.10 Training and Validation Accuracy on the original datasets using Bi-LSTM Model 87

Figure 7.11 Training and Validation Accuracy on the original datasets using GRU Model 87

Figure 7.12 Training and Validation Loss on the original datasets using Bi-LSTM Model 88

Figure 7.13 Training and Validation Loss on the original datasets using GRU Model 88

Figure 7.14 ROC curves for the original datasets - Bi-LSTM Model .. 89

Figure 7.15 ROC curves for the original datasets - GRU Model .. 89

Figure 7.16 Boxplots representing performance measures obtained by models on the original datasets

 .. 90

Figure 7.17 Boxplots representing performance measures obtained by models on the balanced

datasets- Random Oversampling .. 91

Figure 7.18 Boxplots representing performance measures obtained by models on the balanced

datasets- Tomek links ... 92

Appendix 1: 0.1 Figure 1. Illustrates the AUCPR of the models across all datasets - class-level metrics

 .. 100

Appendix 1: 0.2 Figure 2. Illustrates the AUCPR of the models across all datasets - file-level metrics

 .. 100

Appendix 2: 0.1 Figure 1. AUCPR for the original datasets .. 101

Appendix 2: 0.2 Figure 2. AUCPR for the balanced datasets - Random Oversampling 101

Appendix 2: 0.3 Figure 3. AUCPR for the balanced datasets – SMOTE ... 102

Appendix 3: 0.1 Figure 1. AUCPR for the original data sets - CNN model 102

Appendix 3: 0.2 Figure 2. AUCPR for the balanced data sets - CNN model 103

DOI 10.14750/ME.2024.012

http://dx.doi.org/10.14750/ME.2024.012

X

Appendix 3: 0.3 Figure 3. AUCPR for the original data sets - GRU model 103

Appendix 3: 0.4 Figure 4. AUCPR for the balanced data sets - GRU model 104

Appendix 4: 0.1 Figure 1. Training and Validation Accuracy on the balanced datasets using

Bi-LSTM Model-Random Oversampling .. 104

Appendix 4: 0.2 Figure 2. Training and Validation Accuracy on the balanced datasets using

Bi-LSTM Model- Tomek links .. 105

Appendix 4: 0.3 Figure 3. Training and Validation Accuracy on the balanced datasets using

GRU Model-Random Oversampling ... 105

Appendix 4: 0.4 Figure 4. Training and Validation Accuracy on the balanced datasets using

GRU Model- Tomek links ... 106

Appendix 4: 0.5 Figure 5. Training and Validation Loss on the balanced datasets using Bi-

LSTM Model-Random Oversampling ... 106

Appendix 4: 0.6 Figure 6. Training and Validation Loss on the balanced datasets using Bi-

LSTM Model- Tomek links ... 107

Appendix 4: 0.7 Figure 7. Training and Validation Loss on the balanced datasets using GRU

Model-Random Oversampling... 107

Appendix 4: 0.8 Figure 8. Training and Validation Loss on the balanced datasets using GRU

Model - Tomek links .. 108

Appendix 4: 0.9 Figure 9. ROC curves for the balanced datasets - Bi-LSTM Model-Random

Oversampling ... 108

Appendix 4: 0.10 Figure 10. ROC curves for the balanced datasets - Bi-LSTM Model- Tomek

links .. 109

Appendix 4: 0.11 Figure 11. ROC curves for the balanced datasets - GRU Model-Random

Oversampling ... 109

Appendix 4: 0.12 Figure 12. ROC curves for the balanced datasets - GRU Model- Tomek links

.. 110

DOI 10.14750/ME.2024.012

http://dx.doi.org/10.14750/ME.2024.012

XI

List of Tables

Table 2.1 Show the static code metrics .. 9

Table 2.2 Description list of 20 traditional static code metrics ... 10

Table 2.3 Descriptions of McCabe's and Halstead Metrics ... 10

Table 5.1 Description of the NASA datasets ... 28

Table 5.2 Description of the public unified bug dataset .. 29

Table 5.3 Description of the PROMISE datasets... 29

Table 5.4 Description of the Qualitas Corpus Systems ... 29

Table 5.5 Parameter settings of the models (Classical techniques) ... 38

Table 5.6 Parameter settings of the models (Advanced techniques) 38

Table 5.7 Confusion matrix ... 38

Table 6.1 Performance measures of the proposed models on the jm1 dataset 41

Table 6.2 Performance measures of the proposed models on the pc1 dataset 41

Table 6.3 Performance measures of the proposed models on the kc1 dataset 41

Table 6.4 Performance measures of the proposed models on the kc2 dataset 41

Table 6.5 Comparing the results of our study with the results of studies that used the same

dataset and algorithms across the jm1 and pc1 dataset .. 43

Table 6.6 Comparing the results of our study with the results of studies that used the same

dataset and algorithms across the kc1 and kc2 datasets ... 44

Table 6.7 Performance measures for the proposed models over class level metrics dataset ... 45

Table 6.8 Performance measures for the proposed models over file level metrics dataset 46

Table 6.9 Comparison of the proposed approach with other existing approaches based on the

accuracy and AUC ... 50

Table 6.10 Performance analysis for proposed Bi-LSTM Network - Original Datasets 51

Table 6.11 Performance analysis for proposed Bi-LSTM Network - Balanced Datasets using

Random Oversampling Technique .. 52

Table 6.12 Performance analysis for proposed Bi-LSTM Network - Balanced Datasets using

SMOTE Technique .. 53

Table 6.13 Comparison of the results of the proposed Bi-LSTM Model based on the original

and balanced datasets in terms of accuracy using paired t-test .. 53

Table 6.14 Performance measures of the baseline model (RF) and Bi-LSTM 59

Table 6.15 Comparison of the proposed Bi-LSTM with other existing approaches 60

Table 6.16 Performance analysis for proposed CNN Model-Original Data sets 61

Table 6.17 Performance analysis for proposed CNN Model-Balanced Datasets 61

Table 6.18 Performance analysis for proposed GRU Model-Original Data sets 62

Table 6.19 Performance analysis for proposed GRU Model-Balanced Datasets 62

Table 6.20 Performance analysis for proposed models based on precision and recall measures

- CNN Model ... 62

Table 6.21 Performance analysis for proposed models based on precision and recall measures

- GRU Model ... 62

Table 6.22 Summarizes the range of measures values for the proposed models on the original

and balanced datasets ... 63

Table 6.23 Comparison of the proposed models in terms of accuracy using paired t-test 64

Table 6.24 Performance measures of the baseline model (RF) and proposed models 71

Table 6.25 Comparison of the proposed models with other existing approaches 71

DOI 10.14750/ME.2024.012

http://dx.doi.org/10.14750/ME.2024.012

XII

Table 7.1 Evaluation Results for the Class-Level Dataset: God class_ original and balanced

datasets ... 74

Table 7.2 Evaluation Results for the Class-Level Dataset: Data class_ original and balanced

datasets ... 74

Table 7.3 Evaluation Results for the Method-Level Dataset: Long method_ original and

balanced datasets .. 75

Table 7.4 Evaluation Results for the Method-Level Dataset: Feature envy_ original and

balanced datasets .. 75

Table 7.5 Comparison of the proposed method with other existing methods based on the

accuracy ... 78

Table 7.6 Comparison of the proposed method with other existing methods based on AUC . 79

Table 7.7 Performance analysis for proposed CNN Model - Original Datasets 80

Table 7.8 Performance analysis for proposed CNN Model - Balanced Datasets 80

Table 7.9 Comparison of the proposed method with other existing methods based on the

accuracy ... 83

Table 7.10 Evaluation results for the original datasets .. 84

Table 7.11 Evaluation results for the balanced datasets - Random Oversampling 85

Table 7.12 Evaluation results for the balanced datasets - Tomek links 86

Table 7.13 Comparison of the proposed models in terms of accuracy using paired t-test- based

on the original and balanced datasets (using Random Oversampling) 92

Table 7.14 Comparison of the proposed models in terms of accuracy using paired t-test- based

on the original and balanced datasets (using Tomek Links) .. 93

Table 7.15 Comparison of the proposed models with other existing approaches based on the

accuracy ... 93

Table 7.16 Comparison of the proposed models with other existing approaches based on AUC

.. 94

Table 7.17 Comparison of the proposed models with other existing approaches in terms of

accuracy averages using paired t-test- based on Random Oversampling 94

Table 7.18 Comparison of the proposed models with other existing approaches in terms of

accuracy averages using paired t-test- based on Tomek Links .. 95

DOI 10.14750/ME.2024.012

http://dx.doi.org/10.14750/ME.2024.012

1

Chapter 1 Introduction

In the field of software engineering, ensuring the quality of software systems is of paramount

importance. Software quality assurance is a crucial discipline within software engineering that

focuses on ensuring the high standards, reliability, and functionality of software products

throughout their development life cycle. The primary goal of software quality assurance is to

identify and mitigate defects, errors, code smells and inconsistencies in software, ultimately

leading to the delivery of a high-quality product that meets user requirements and expectations

[1]. Due to the increasing size and complexity of software products and inadequate software

testing, no system or software can claim to be free of software bugs or code smells. Software

bugs and code smells can significantly impact software applications' performance,

maintainability, and user experience. Detecting and predicting these issues early in the software

development life cycle can save substantial time, effort, and resources. There are many

activities related to software testing, such as implementing processes, procedures, and

standards that must be carried out in a specific sequence to ensure that quality objectives are

achieved or testing a product for issues such as software bugs and code smells. Software bugs

are defects or errors in computer programs or systems that cause incorrect or unexpected

operations that negatively affect software quality, reliability, and maintenance costs [2].

Software Bugs Prediction (SBP) is one of the most popular and active research areas in

software engineering. SBP is a process for classifying fault-prone software modules based on

some underlying properties of the systems, like software metrics that are extracted and

collected from real data sets (historical data) during the software development process [3].

Code smells are one of the most accepted approaches to identifying design problems in the

source code, which refers to any symptom or anomaly in the source code that violates design

or implementation principles. The detection of code smells is a particularly crucial step for

guiding the subsequent steps in the refactoring process. Early detection of code smells is vital

to aid software maintainability and improve software quality [4]. Software metrics have

essential roles in predicting software bugs and code smells, and most recent strategies for

predicting software bugs and code smells rely on software metrics as independent variables.

Software metrics are essential aids in measuring and improving software quality, and these

metrics are used to measure and characterize software engineering products[5]. The critical

role of software metrics is to estimate and measure some characteristics of systems, such as

classes, inheritance, encapsulation, etc.[6]. The most popular software metrics are object-

oriented metrics, which have been presented by Abreu, Chidamber and Kemerer, Li and Henry,

MOOD, Lorenz, and Kidd. These metrics can be classified into different classes, like metrics

for source code analysis, software testing, quality assurances, etc.[4]. Static code analysis is a

method of analyzing source code without its execution to find potential problems like software

bugs and code smells that might arise at runtime. So, static code analysis aims to check the

quality of the source code and address weaknesses[7]. Based on the literature review. Recently,

many commercial and open-source tools evolved for static code analysis to provide an efficient,

value-added solution to many of the problems that software development organizations face.

However, numerous false positives and negative results make these tools hard to use in

practice[8]. So, another methodology or approach for static code analysis must be found, such

as artificial intelligence techniques. Artificial Intelligence (AI) is a wide-ranging branch of

computer science concerned with the simulation of human intelligence in machines that are

programmed to think like humans and mimic their actions. AI handles issues related to

implementing human behaviour and emotion and software intelligence. The most popular AI

DOI 10.14750/ME.2024.012

http://dx.doi.org/10.14750/ME.2024.012

2

techniques used for the prediction of software bugs and code smells are Machine Learning

(ML) techniques. The ML field is developed from the expanded field of AI, which aims to

imitate human intelligence abilities by machines. ML is the process of gaining knowledge from

historical data. ML uses statistical rules to build various mathematical models for creating the

conclusion from the data sample[9]. ML is an area of research where computer programs can

learn and get better at performing specific tasks by training on massive quantities of historical

data. ML algorithms can be applied to analyze data from different perspectives to allow

developers to obtain helpful information[4]. ML techniques, and software metrics have

emerged as powerful tools for automating the prediction of software bugs and code smells[5].

However, one major challenge faced in this domain is the class imbalance problem, where the

distribution of classes in the training dataset is uneven. In other words, one class has

significantly more instances than the others, leading to an imbalanced representation of classes.

The class imbalance issue poses a significant obstacle as it can lead to biased models that fail

to accurately capture the rare occurrences of software bugs or code smells, thus affecting the

overall predictive performance[7]. Therefore, this research aims to explore the role of data-

balancing methods in addressing the class imbalance problem when applying ML techniques

for predicting software bugs and code smells using software metrics. The research will begin

with a comprehensive literature review, examining existing studies predicting software bugs

and code smells using ML techniques. This review will also encompass different data-

balancing methods commonly employed in the field. The research outcomes will provide

valuable insights and guidelines for software developers and researchers aiming to leverage

ML-based techniques to accurately predict software bugs and code smells. In conclusion, this

dissertation aims to contribute to the field of software engineering by investigating the

application of data-balancing methods in ML-based prediction of software bugs and code

smells using software metrics. By addressing the class imbalance problem, the research

endeavours to enhance the accuracy and reliability of predictive models, ultimately assisting in

developing more robust and high-quality software systems[10].

1.1 Motivation

The software industry plays a critical role in today's technologically advanced world, with

software systems powering various aspects of our lives. However, software bugs and code

smells can lead to system failures, security vulnerabilities, and compromised user experiences.

Identifying software bugs and code smells is usually a challenging task due to the huge code

base of software projects, and developers spend a significant amount of time locating and fixing

them, making this an active research area in software engineering. To produce high-quality

software and gain customer loyalty, the final product should have as few defects as

possible[11]. Detecting and addressing these issues early in the software development process

is essential to ensure reliable and high-quality software systems. ML techniques, and software

metrics have shown promise in automating the prediction of software bugs and code smells.

However, the class imbalance problem remains a significant challenge in this domain, affecting

the accuracy and effectiveness of the predictive models[7]. Therefore, the motivation behind

this dissertation is driven by the need to address the class imbalance problem in the ML-based

prediction of software bugs and code smells using software metrics and shed light on the

suitability and effectiveness of various data-balancing methods commonly employed in the

domain of the prediction of software bugs and code smells. By investigating and evaluating

data-balancing methods, this research seeks to improve the accuracy and reliability of

DOI 10.14750/ME.2024.012

http://dx.doi.org/10.14750/ME.2024.012

3

predictive models, ultimately contributing to developing more robust and high-quality software

systems.

1.2 Problem Statement

Software bugs and code smells can be identified by manual or automated source code analysis.

The manual recognition of software bugs and code smells on the source code by developers is

an error-prone, costly, and time-consuming activity since it depends on the developer’s degree

of experience and perception[12]. Previous work provided several tools for predicting software

bugs and code smells. These tools rely on prediction rules that compare the values of relevant

software metrics extracted from source code against empirically identified thresholds to

discriminate defective source code. The limitations of these tools are that the performance is

strongly influenced by the thresholds needed to identify defective and non-defective instances.

To overcome these limitations, researchers recently adopted and developed many automatic

tools, such as machine-learning techniques, where a classifier is trained on previous source

code releases by exploiting a set of independent variables (e.g., structural, historical, or textual

metrics). But recent studies indicate that machine-learning techniques are not always suitable

for predicting software bugs and code smells due to the problem of imbalanced data[13]. The

data sets of software bugs and code smells are often imbalanced, which means the defective

modules are often less than the non-defective ones. Using an imbalanced data set to train

classification algorithms can lead to misclassification, as the classifier may be biased and not

correctly classify instances of the minority label. The problem addressed by this dissertation is

the lack of effective approaches to address the class imbalance problem in the ML-based

prediction of software bugs and code smells using software metrics. Existing research in this

area often overlooks the impact of class imbalance on model performance and fails to provide

comprehensive solutions. As a result, the accuracy and reliability of the predictive models are

compromised, leading to suboptimal detection of software bugs and code smells in real-world

software projects. The inadequate handling of class imbalance in software bugs and code smell

prediction can have severe consequences[14]. Most ML techniques can predict better when the

number of instances of each class is equal. So, data imbalance is the biggest problem faced by

ML techniques. This problem severely hinders the efficiency of these techniques and produces

imbalanced false-positive and false-negative results. False negatives, where actual software

bugs or code smells are incorrectly classified as non-issues, can result in software systems with

hidden vulnerabilities or quality issues. False positives, where non-issues are incorrectly

classified as software bugs or code smells, can lead to wasted development efforts and

unnecessary maintenance activities. To address this problem, this dissertation aims to

investigate and evaluate various data-balancing methods in the context of ML-based prediction

of software bugs and code smells using software metrics. The research seeks to identify and

employ suitable data-balancing techniques that effectively address the class imbalance

problem, improve model sensitivity to the minority class, and enhance the accuracy and

reliability of the predictive models[7], [15].

1.3 The objectives of the thesis

ML techniques and data-balancing methods can provide new and performing ways for software

bug and code smell prediction, with more flexibility than heuristics approaches, and can also

help software companies to reduce rework and improve the quality and reliability of software.

To the best of our knowledge, based on the literature review, no more research is conducted to

DOI 10.14750/ME.2024.012

4

predict software bugs and code smells using ML techniques combined with data-balancing

methods. Based on the previous studies, balancing the data by applying data-balancing methods

can improve the performance of ML models in predicting software bugs and code smells. The

specific objectives of this thesis are:

• To investigate the standard machine-learning techniques used for predicting software bugs

and code smells.

• To assess the impact of class imbalance on the performance of ML-based prediction

models for software bugs and code smells. This involves analyzing the biases introduced

by class imbalance and understanding how they affect the predictive models' accuracy.

• To evaluate various data-balancing methods to address class imbalance in software bug

and code smell prediction.

• To enhance the performance of predictive models for software bugs and code smells by

developing a novel prediction methodology based on machine-learning techniques

combined with data-balancing methods. I will apply various machine-learning algorithms

and data-balancing methods to develop the methodology.

• To validate the effectiveness of the developed methodology and the impact of data-

balancing methods using real-world software datasets. The validation will involve

conducting several experiments and comparisons with baseline models, evaluating the

performance measures, and assessing the statistical significance of the results.

• To show that the performance of machine-learning techniques in predicting software bugs

and code smells can be significantly improved when balancing the data set by applying

data-balancing methods.

1.4 Dissertation Guide

The remaining structure of this dissertation is organized as follows. Chapter 2 presents a

theoretical background, and the literature is addressed based on the software bugs, code smells,

and software metrics. Chapter 3 provides an overview of artificial intelligence techniques.

Specifically, it describes the artificial intelligence techniques used in this research work such

as ML and Artificial Neural Networks (ANNs). Chapter 4 provides a short background of

imbalanced data and data-balancing methods. Chapter 5 presents the proposed methodology

and implementation, which describes the experiments performed. Several experiments are

conducted to predict software bugs and code smells based on ML techniques and data-

balancing methods. Chapter 6 presents the experimental results and discussion of SBP,

describing the experiment outcome and discussion. Chapter 7 presents the experimental results

and discussion of code smell detection, which describes the experiments outcome and

discussion. Chapter 8 presents the conclusion, firstly, contributions involving new scientific

results are presented, and then the future research direction is presented.

DOI 10.14750/ME.2024.012

5

Chapter 2 Literature Review and Theoretical Background

This chapter addresses the theoretical background and literature related to software bugs, code

smells, and software metrics. This comprehensive exploration delves into the fundamental

concepts and theories surrounding software defects, identifying code smells, and the software

metrics used to quantify and assess software quality. By examining the existing body of

knowledge, this chapter establishes a solid foundation for the subsequent analysis and research

conducted in this field. Furthermore, this chapter also discusses the public benchmark datasets

of software bugs and code smells. These datasets, meticulously curated and made accessible to

researchers and practitioners, serve as valuable resources for evaluating and comparing various

bug detection and code smell detection techniques. The availability of these standardized

datasets fosters reproducibility and facilitates advancements in bug detection methodologies,

ultimately contributing to the ongoing improvement of software reliability and maintainability.

2.1 Software Bugs

Due to the expansion in the scale of software projects and the increase in complexity, software

bug prediction has become the focus of attention to increase software quality[16], [17].

Software bugs can be defined as defects or faults in computer programs that occur during the

software development process which may cause many problems for users and developers aside

and may lead to the failure of the software to meet the desired expectations, and reduce

customer satisfaction[18], [19]. Software bugs identify are one of the most common causes of

wasted time and increase maintenance costs during the software lifecycle. Where early

prediction of software bugs in the early stages of software development can improve the quality

and reliability of systems, and reduce development costs, time, rework efforts, etc.[11]. Dealing

with software bugs during the development process is problematic, as critical software bugs

lead to potential risks that can lead to project failure. To produce high-quality software, the

final product delivered should have as limited software bugs as possible[20]. The software bugs

are classified into two classes: intrinsic software bugs refer to bugs that were introduced by one

or more specific changes to the source code and extrinsic software bugs refer to bugs that were

introduced by changes not recorded in the version control system[21]. Developers employ

various techniques like debugging tools, code reviews, unit testing, and system testing to detect

and resolve software bugs before releasing software to users. In recent years, the adoption of

agile development methodologies and continuous integration/continuous deployment (CI/CD)

practices has helped in catching software bugs early and reducing their impact. Additionally,

bug bounty programs, where individuals are rewarded for discovering and reporting

vulnerabilities, have gained popularity in promoting proactive bug detection. Despite

advancements in bug detection and prevention, software bugs can never be eliminated. The

complexity of modern software systems and the constant evolution of technology make bug-

free software an elusive goal. However, with vigilant testing, thorough debugging, and

continuous improvement practices, developers can minimize the occurrence and impact of

software bugs, resulting in more reliable and secure software products[22].

2.1.1 Software Bug Prediction (SBP)

Predicting software bugs helps in improving the overall quality and reliability of the software.

By identifying potential issues in advance, developers can implement preventive measures,

conduct targeted testing, and ensure that the software meets the required quality standards[18].

DOI 10.14750/ME.2024.012

6

Moreover, predicting software bugs is not only about preventing immediate issues but also

about continuously improving the software development process. By analyzing past bug data

and patterns, developers can identify areas of weakness, improve coding practices, enhance

testing strategies, and implement measures to prevent similar software bugs in future

projects[19]. SBP is a mechanism that can be used to trace modules in software and determines

whether a software module is faulty by considering some characteristics of parameters

collected from software projects[23]. The process of SBP refers to the techniques or tools that

use historical defect data to classify defect-prone software modules and build a relationship

between software metrics and software defects. The SBP process depends on three main

components: dependent variables, independent variables, and a model. Dependent variables are

the defect data for the piece of code (defective or non-defective), which can be binary or ordinal

variables. Independent variables (inputs) are the software metrics that score the software code.

The model contains the rules or algorithms which predict the dependent variable from the

independent variables[24]. The studies’ efforts in building SBP models can be categorized into

two approaches: the first approach is to manually design new features or new sets of features

to represent defects, while the second approach involves applying new and improved ML-based

classifiers. Current work in predicting software bugs focuses on the second approach that

includes: estimating the number of defects in software systems, discovering how software

defects relate to software metrics and classifying software defects into two categories of

"defect-prone and non-defect-prone"[16].

2.1.2 Software Bug Prediction Approaches

Based on the type of data and the context of the prediction, SBP can be categorized into

different types, which are:

2.1.2.1 With-in Project Defect Prediction (WPDP)

The With-in Project Defect Prediction (WPDP) approach involves using historical data to

predict defects within a single project. WPDP approach uses data from the same project to train

the prediction models, such as source code metrics, bug reports, and code reviews. This

approach is usually more accurate since it is based on the specific context of the predicted

project, but it requires a significant amount of historical data from the same project[25].

2.1.2.2 Cross Project Defect Prediction (CPDP) for Similar Dataset

Cross Project Defect Prediction (CPDP) approach for a similar dataset: This approach involves

predicting defects in a new project using historical data from similar projects. The CPDP

approach uses data from one or more similar projects to train the prediction models and then

apply them to the new project. This approach can be useful when there is not enough data for

WPDP. Still, it assumes that the new project has a similar development context to the projects

used for training[25].

2.1.2.3 Cross Project Defect Prediction (CPDP) for Heterogeneous Dataset

Cross Project Defect Prediction (CPDP) approach for a heterogeneous dataset: This approach

involves predicting defects in a new project using historical data from projects that differ in

their development context or characteristics. The CPDP approach uses data from one or more

heterogeneous projects to train the prediction models and then apply them to the new project.

DOI 10.14750/ME.2024.012

7

This approach can be challenging since the development contexts of the projects used for

training and the new project may differ significantly. Still, it can be useful when there is

insufficient data for WPDP or CPDP for a similar dataset[25].

2.2 Code Smells

Code smells are design issues or changes to source codes because of activities performed by

developers during emergencies or coding solutions that indicate a violation of software design

rules, e.g.: abstraction or hierarchy encapsulation which can cause serious problems during

systems maintenance and may impact the software quality in the future[26], [27]. Code smells

may lead to future degradation in software projects making software hard to evolve and

maintain, and it can effective indicate whether source code should be refactored [28], [29]

Code smells are often associated with potential software bugs or vulnerabilities. They can

indicate areas of code that are more prone to errors, such as complex conditional logic,

unhandled exceptions, or inconsistent naming conventions. By detecting code smells,

developers can proactively address these areas, reducing the likelihood of software bugs and

improving the overall reliability and robustness of the software[30].

2.2.1 Types of Code Smells

There are many types of code smells but the most common are God class, Data class, Feature

envy, and Long method.

2.2.1.1 God class

God classes refer to large, complex, and non-cohesive modules or classes that violate the

principle of implementing only one concept per class and dominate a significant part of the

main system behaviour by implementing almost all the system functionalities[28]. It is

distinguished by its complexity and encompassing many instance variables and methods [19],

[31].

2.2.1.2 Data class

Data Class is a class that has only data without functions or any behaviors and does not process

this data[13], [28], [32].Or it is a class that passively stores data[33]. This class constitutes

smells that contain something unnecessary whose removal can make code easier to understand,

effective, and cleaner[34].

2.2.1.3 Feature envy

Feature Envy is a sign of a breach of the rule of grouping behaviour with related data and

happens when a method is more interested in other properties of the classes than in the ones

from its class[35]. This kind of smell affects the coupling, cohesion, and encapsulation design

aspects of the system, representing a problem in the abstract design of the system. It is classified

as a coupler smell and affects method/property entities. Thus, this method tends to make so

many calls to use the data of the other classes [28], [34].

DOI 10.14750/ME.2024.012

8

2.2.1.4 Long method

The Long Method code smells refer to the method that is too long and increases the system’s

compatibility. It is classified as a blotter smell that affects method-level entities[35]. It is

methods that tend to centralize a class’s functionality and tends to have too much code, to be

complex, to be difficult to understand, and to use large amounts of data from other classes [4],

[36].

2.2.2 Code Smells Detection

Code smell detection is fundamental to improving software quality and maintainability,

reducing the risk of software failure, and it is a primary requirement to guide the subsequent

steps in the refactoring process. Detecting code smells is not only about fixing immediate issues

but also about continuous improvement. By regularly monitoring and addressing code smells,

developers can learn from past mistakes, refine their coding practices, and evolve as software

engineers. This iterative process fosters a culture of quality and craftsmanship, leading to better

code quality and more efficient development practices over time[28]. Detection rules of code

smells are approaches used to detect code smells through a combination of different software

metrics with predefined threshold values. Most approaches for code smell detection use object-

oriented metrics to determine if a software system contains code smells or not[14]. Most current

detectors need the specification of thresholds that allow them to distinguish smelly and non-

smelly codes[37]. Many approaches have been presented by the authors for uncovering the

smells from the software systems. Different detection methodologies differ from manual to

visualization-based, semi-automatic studies, automatic studies, empirical-based evaluation,

and metrics-based detection of smells. Most techniques used to detection of code smells rely

on heuristics and discriminate code artifacts affected (or not) by a particular type of smells

through the application of detection rules which compare the values of metrics extracted from

source code against some empirically identified thresholds. Researchers recently adopted ML

techniques to detect code smells to avoid thresholds and decrease the false positive rate in code

smell detection tools [38], [39].

2.3 Software Metrics

Software Metrics play the most vital role in building a prediction model to improve software

quality by predicting as many software defects as possible. Software metrics are essential aids

in measuring and improving software quality, which are used to measure and characterize

software engineering products[34]. Software metrics can be used to collect information

regarding the structural properties of a software design, which can be further statistically

analyzed, interpreted, and linked to its quality. Software metrics provide quantitative data that

can be analyzed to identify potential areas of concern. By measuring various aspects of the

codebase, such as complexity, size, or adherence to coding standards[40]. Software metrics

help identify patterns and indicators associated with software bugs or code smells. By

analyzing historical data and correlating software metrics with known issues, developers can

spot recurring patterns or combinations of software metrics that indicate potential problems.

This enables them to proactively address these areas to prevent software bugs or improve code

quality. Moreover, software metrics support decision-making in bug prevention and code

quality improvement efforts. By utilizing software metrics, developers can make informed

decisions regarding code refactoring, architectural changes, or allocation of resources to

DOI 10.14750/ME.2024.012

9

address code smells and potential bug-prone areas effectively [41], [42]. Software metrics can

be classified as static code metrics and process metrics. Static code metrics can be directly

extracted from source code, like Lines of Code (LOC), and Cyclomatic Complexity Number

(CCN). Object-oriented metrics are a subcategory of static code metrics, like Depth of

Inheritance Tree (DIT), Coupling Between Objects (CBO), Number of Children (NOC), and

Response for Class (RFC)[4]. Object-oriented metrics are often used to assess testability,

maintainability, or reusability of source code[18]. Tables 2.1 and 2.2 show the static code

metrics. Process metrics can be extracted from the source code management system based on

historical changes in source code over time. These metrics reflect the modifications over time,

e.g., changes in source code, the number of code changes, developer information, etc.[43], [44].

Several researchers in the primary studies used McCabe and Halstead metrics as independent

variables in the studies of software bug and code smells. The first use of McCabe metrics was

to characterize code features related to software quality. McCabe's has considered four basic

software metrics: cyclomatic complexity, essential complexity, design complexity, and lines

of code[45]. Halstead also considered that the software metrics fall into three groups: base

measures, derived measures, and line of code measures [46], [47]. Table 2.3 shows McCabe's

and Halstead metrics. Metrics can also be classified based on the development phase of the

software life cycle, into source code level metrics, detailed design level metrics, or test level

metrics [48], [49].

Table 2.1 Show the static code metrics

Size Complexity Cohesion Coupling Encapsulation Inheritance

Lines of Code

(LOC)

McCabe’s

CYCLOmatic

complexity (CYCLO)

Lack of

Cohesion

between

Methods

(LCOM)

Class Fan Out

Complexity

(CLASS_FAN_OUT)

Locality of

Attribute

Accesses

(LAA)

Depth of

Inheritance

Tree (DIT)

Lines of Code

Excluding

Accessor and

Mutator Methods

(LOCNAMM*)

Weighted Methods

per Class (WMC)

Tight Class

Cohesion

(TCC)

Access To Foreign Data

(ATFD)

Number of

Accessor

Methods

(NOAM)

Response

for a Class

(RFC)

Number of

Methods (NOM)

Weighted Methods

Count of Not

Accessor or Mutator

Methods

(WMCNAMM*)

 Foreign Data Providers

(FDP)

Number of

Public

Attributes

(NOPA)

Number of

Children

(NOC)

Number of

Packages

(NOPK)

Average Methods

Weight of Not

Accessor or Mutator

Methods

(AMWNAMM*)

 Coupling Between

Objects (CBO)

 Number of

Methods

Overridden

(NMO)

Number of

Classes (NOCS)

Average Methods

Weight (AMW)

 Called Foreign Not

Accessor or Mutator

Methods (CFNAMM*)

 Number of

Inherited

Methods

(NIM)

Number of

Methods

Excluding

Accessor and

Mutator Methods

(NOMNAMM*)

Maximum Nesting

Level of Control

Structures

(MAXNESTING)

 Coupling Intensity

(CINT)

 Number of

Implemente

d Interfaces

(NOII)

DOI 10.14750/ME.2024.012

10

Number of

Attributes

(NOA)

Weight of Class

(WOC)

 Coupling Dispersion

(CDISP)

 Called Local Not

Accessor or Mutator

Methods

(CLNAMM)

 Maximum Message

Chain Length

(MaMCL§)

 Number of

Parameters (NOP)

 Mean Message Chain

Length (MeMCL§)

 Number of Accessd

Variables (NOAV)

 Number of Message

Chain Statements

(NMCS§)

 Access To Local

Data (ATLD*)

 Control Coupling (CC)

 Number of Local

Variable (NOLV)

 Number of Methods

Affected by the

Measured Method (CM)

Metrics having a “*” in the name are customized versions of standard metrics, or slight

modifications of original metrics. Metrics with a “§” suffix, refer to metrics that have been

defined specifically for detecting the Message Chain code smell.

Table 2.2 Description list of 20 traditional static code metrics

Attribute Description

dit The maximum distance from a given class to the root of an inheritance tree

noc Number of children of a given class in an inheritance tree

cbo Number of classes that are coupled to a given class

rfc Number of distinct methods invoked by code in a given class

lcom Number of method pairs in a class that do not share access to any class attributes

lcom3 Another type of the lcom metric proposed by Henderson–Sellers

npm Number of public methods in a given class

loc Number of lines of code in a given class

dam The ratio of the number of private/protected attributes to the total number of attributes in a given class

moa Number of attributes in a given class that are of user-defined types

mfa Number of methods inherited by a given class divided by the total number of methods that can be

accessed by the member methods of the given class

cam The ratio of the sum of the number of different parameter types of every method in a given class to the

product of the number of methods in the given class and the number of different method parameter

types in the whole class

ic Number of parent classes that a given class is coupled to

cbm Total number of new or overwritten methods that all inherited methods in a given class are coupled to

amc The average size of methods in a given class

ca Afferent coupling, which measures the number of classes that depend on a given class

ce Efferent coupling, which measures the number of classes that a given class depends on

max_cc The maximum McCabe's cyclomatic complexity (CC)

score of methods in a given class

avg_cc The arithmetic mean of McCabe's cyclomatic

complexity (CC) scores of methods in a given class

Table 2.3 Descriptions of McCabe's and Halstead Metrics

Metrics Type Description

Loc McCabe It counts the line of code in software module.

v(g) McCabe Measure McCabe Cyclomatic Complexity.

ev (g) McCabe McCabe Essential Complexity.

iv (g) McCabe McCabe Design Complexity.

N Derived Halstead Total number of operators and operands.

DOI 10.14750/ME.2024.012

11

V Derived Halstead Volume.

L Derived Halstead Program length.

D Derived Halstead Measure difficulty.

I Derived Halstead Measure Intelligence.

E Derived Halstead Measure Effort.

B Derived Halstead Effort estimate.

T Derived Halstead Time Estimator.

Locoed Line Count Number of lines in software module.

Locomment Line Count Number of comments.

Loblank Line Count Number of blank lines.

Locodeandcomment Line Count Number of codes and comments.

uniq_op Basic Halstead Unique operators.

uniq_opnd Basic Halstead Unique operands.

total_op Basic Halstead Total operators.

total_opnd Basic Halstead Total operands.

BranchCount Branch Total Number of branch count.

2.4 Summary

In this chapter, we have discussed the theoretical background and literature related to the

fundamental concepts of our dissertation. We discussed the importance of the prediction of

software bugs and code smells, the strategies and approaches used to predict software bugs and

code smells, and software metrics used in the prediction of software bugs and code smells.

While predicting software bugs and code smells have distinct focuses, they share a common

goal of improving software quality. They both rely on indicators, adopt a proactive approach,

use software metrics as indicators, and contribute to continuous improvement. By integrating

the prediction of software bugs and code smells into the development process, developers can

enhance software quality, prevent software bugs, and create more maintainable code. Overall,

we realized that predicting software bugs and detecting code smells is crucial for cost-effective

development, quality assurance, user satisfaction, security, reputation, and compliance.

Developers can proactively identify and resolve software bugs to deliver higher-quality

software that meets user expectations and industry standards. Additionally, software metrics

play a crucial role in software development by providing quantitative data to support decision-

making, track progress, and drive continuous improvement. So, predicting software bugs and

detecting code smells based on software metrics are essential for developing high-quality,

reliable, and maintainable software products.

DOI 10.14750/ME.2024.012

12

Chapter 3 Artificial Intelligence (AI)

This chapter provides an overview of artificial intelligence techniques. It aims to equip readers

with a fundamental understanding of the various approaches and methodologies that form the

backbone of AI applications. Moreover, particular emphasis is placed on the artificial

intelligence techniques utilized in this research, such as Machine Learning (ML) and Artificial

Neural Networks (ANNs).

3.1 Artificial Intelligence Techniques

The field of Artificial intelligence (AI) is witnessing a recent upsurge in research, tools

development, and deployment of applications[23]. AI is being widely adopted and incorporated

into almost every kind of software application. where software engineers need to have a

thorough grasp of what AI is and understand how to incorporate AI into the software

development lifecycle[50]. AI is a branch of Computer Science that pursues creating computers

or machines as intelligent as human beings. AI is accomplished by studying how the human

brain thinks and how humans learn, decide, and work while trying to solve a problem. AI

techniques such as ML, Neural Networks, fuzzy logic, etc. have been advocated by many

researchers and developers as the way to improve many of the software development activities.

AI techniques, specifically, ML techniques are commonly used for the prediction of software

bugs and code smells compared to other techniques such as manual code inspection or rule-

based approaches because they offer automation, scalability, and a data-driven approach[51].

ML models can handle large codebases, learn from historical data and leverage code metrics

for data-driven analysis, capturing complex patterns and dependencies that may not be apparent

through traditional methods, and adapt to new patterns, making them effective in identifying

software bugs and code smells that may be difficult to detect manually. They provide objective

and consistent analysis, enable early detection and prevention of issues, allowing developers

to address issues before they become critical. They optimize resource allocation by prioritizing

bug fixes based on severity or impact. Overall, ML techniques enhance the accuracy,

efficiency, and overall quality of the prediction of software bugs and code smells processes,

making them valuable tools for software development. There are several ML techniques

commonly used in the prediction of software bugs and code smells[52].

3.1.1 Machine Learning (ML)

Machine learning (ML) is an area of research where computer programs can learn and get better

at performing specific tasks by training on historical data or study of computer algorithms that

provide systems the ability to automatically learn and improve from experience[10]. It is

generally seen as a sub-field of AI. ML algorithms can be applied to analyze data from different

perspectives to allow developers to obtain useful information [53], [54]. ML algorithms allow

the systems to make decisions autonomously without any external support. Such decisions are

made by finding valuable underlying patterns within complex data. High quantities of data are

needed to develop ML model-based prediction [55], [56]. ML algorithms build models from

training examples, which are then used to make predictions when faced with new

examples[30]. ML techniques can be categorized into supervised, unsupervised, and

reinforcement [35], [37]. ML algorithms have received extensive attention in the field of

software engineering for a considerable period. Therefore, recently ML algorithms have been

adopted to enhance research tasks in the prediction of software bugs and code smells[9].

DOI 10.14750/ME.2024.012

13

3.1.1.1 Supervised learning

Supervised Learning is the ML task of inferring a function from labeled training data which

consists of a set of training examples. Supervised learning is applied when the data is in the

form of input variables and output target values[56]. In supervised learning, the training dataset

has an output variable that needs to be predicted or classified. All algorithms learn some kind

of patterns from the training dataset and apply them to the test dataset for prediction or

classification[57]. It has two known supervised learning tasks (classification, and regression).

Classification concerns building a predictive model for function with discrete range, while

regression concerns continuous range model building. Supervised learning is fairly common in

classification problems because the goal is often to get the computer to learn a classification

system that we have created[58]. The most commonly supervised ML methods include concept

learning, classification, rule learning, instance-based learning, Bayesian learning, linear

regression, neural network, SVM, etc.[56]. The following subsections describe the supervised

ML techniques used in our research work.

3.1.1.1.1 Decision Tree (DT)

Decision Tree (DT) is a popular supervised machine-learning method used for the purpose of

regression and classification[4]. It refers to a hierarchal model or a tree with decision nodes

that have more than one branch and leaf nodes that represent the decision. Each node in a DT

represents a feature in an instance to be classified, and each branch represents the value

thresholds the contained nodes can assume. Instances are categorized beginning at the root

node and sorted based on their attribute values [21], [59]. There are different types of decision

trees. The classic among them is the ID3 (Iterative Dichotomiser 3), birthing trees by

recursively choosing the best feature to split the data. C4.5, its successor, added the ability to

handle continuous attributes and pruning to trim excessive branches. CART (Classification and

Regression Trees) is another heavyweight, excelling in both classification and regression tasks.

Chi-Square is one of the oldest tree classification methods. It determines the statistical

significance of the differences between sub-nodes and parent nodes. It is measured as the sum

of squares of standardized differences between observed and expected frequencies of the target

variable. Random Forests brings a dash of unpredictability to the mix, employing an ensemble

of decision trees for robust performance. On the other hand, Gradient Boosted Trees take a

sequential approach, refining the mistakes of previous trees to boost accuracy. ID3 is the most

common type of decision tree. In the ID3 DT, all features are set as a root node. After that, the

features are divided by finding the Entropy that measures the harmony in the data; the entropy

values are between 0 and 1[35], [37]. Mathematically, Entropy for one attribute is represented

as:

 E(F) = ∑ c
i=1 − pi log2 pi (1)

Where C is the number of outputs, 𝑝𝑖 is the probability of occurrences of each output from all

outputs, and F is a feature with some data.

3.1.1.1.2 Random Forest (RF)

Random Forest (RF) is one of the most utilized models due to its effortlessness and the way it

can be used for characterization and relapse assignments. It is adaptable and simple to utilize

ML calculation, even without hyper-parameter tuning[35]. RF classifier is a special case of

DOI 10.14750/ME.2024.012

14

Bagging consisting of a collection of tree-structured classifiers. RF selects random features to

create bootstrap models using DT. RF algorithm considers K randomly chosen attributes at

each node to construct a classification tree. In the classification setting, the prediction of the

RF is the most dominant class among predictions by individual trees[60]. If there are T trees in

the forest, then the number of votes received by a class m is:

 Um = ∑ T
t =1 I(Čt == m) (2)

where Č𝑡 is the prediction of the t tree on a particular instance. The indicator function 𝐼(Č𝑡 =
= 𝑚) takes on the value 1 if the condition is met, else it is zero.

3.1.1.1.3 Naïve Bayes (NB)

Naïve Bayes (NB) is a supervised learning algorithm and defines as a simple probabilistic

classifier and efficient based on the Bayes’ theorem with an independence assumption between

the features, this means that the Naive Bayes classifier is based on estimating the probabilities

of the unobserved node, based on the observed probabilities [21], [61]. Bayes’ theorem finds

the probability of an event occurring given the probability of another event that has already

occurred. Bayes’ theorem is stated mathematically as the following equation:

 P(A|B) =
P(B|A)P(A)

P(B)
 (3)

In the above equation, using Bayes’ theorem, we can find the probability of A, given that B

occurred. A is the hypothesis, and B is the evidence, P(B|A) is the probability of B given that A

is True, P(A) and P(B) are the independent probabilities of A and B.

3.1.1.1.4 Support Vector Machine (SVM)

Support Vector Machine (SVM) is one of the regulated ML models which is, for the most part,

utilized for classification and relapse investigation. The primary role is to discover a hyper-

plane, which divides the dimensional data completely into two categories [2], [62]. SVMs are

based on a "margin" on either side of a hyperplane separating two features. Its optimizing

objective is to increase the margin and create the most significant distance between features in

the hyperplane. Complexity is not affected by the number of features. So SVM is appropriate

for learning tasks where the number of features is so much concerning the number of training

instances. The principal objective of SVM is to outline a model that predicts the dataset's target

estimation in the testing stage. Subsequently, SVM becomes a decent contender for planning a

model in anticipating issue-inclined modules[63]. The general type of SVM work is defined

as:

 F(x) = W ∗ Q(x) + b (4)

Where w is a weight vector, x is the input vector, b is the intercept and bias term of the

hyperplane equations.

3.1.1.1.5 K-Nearest Neighbor (K-NN)

K-Nearest Neighbor (K-NN) define as a simple supervised classification algorithm in which

an object is classified by looking at the K nearest objects and by choice of the most frequently

occurring class[64]. It is also a lazy-learning technique that classifies elements based on their

position and space in a hyperplane. Since in the K-NN algorithm, we need k nearest points.

DOI 10.14750/ME.2024.012

15

Thus, the first step is calculating the distance between the input data point and other points in

our training data[63]. The distance between these two points is:

 d(x, y) = √∑ (xi − yi)2
p
i=1 (5)

Suppose x is a point with coordinates (𝑥1,𝑥2,...,𝑥𝑝) and y is a point with coordinates

(𝑦1,𝑦2,..., 𝑦𝑝).

3.1.1.1.6 Logistic Regression (LR)

Logistic Regression (LR) is a popular statistical model used for binary classification problems,

where the goal is to predict the probability of an instance belonging to a certain class. It models

the relationship between the input features and the probability of the positive class using a

logistic function. Logistic regression uses a logistic function called a sigmoid function to map

predictions and their probabilities. The sigmoid function refers to an S-shaped curve that

converts any real value to a range between 0 and 1 [61], [64]–[66]. The sigmoid function is

referred to as an activation function for logistic regression and is defined as:

 f(x) =
1

1 + e−𝑥 (6)

Where f(x) is the predicted probability that the target variable y belongs to the positive class,

given the feature value x, e is the base of the natural logarithm (approximately 2.71828). In

many cases, multiple explanatory variables affect the value of the dependent variable. To model

such input datasets, logistic regression formulas assume a linear relationship between the

independent variables. The sigmoid function can be modified, and the final output variable

calculated as:

 y = f (β₀ + β₁ * x₁ + β₂ * x₂ + ... + βₙ * xₙ) (7)

Where β₀, β₁, β₂, ..., βₙ are the coefficients (also known as weights or parameters) associated

with each feature, x₁, x₂, ..., xₙ are the feature values.

3.1.1.1.7 XGBoost

XGBoost (XGB) is one of the recently introduced robust ML algorithms. XGB is a powerful
gradient boosting algorithm that is widely used for supervised learning tasks such as regression
and classification. It is known for its high predictive performance and efficient computation[63].
The formula for the XGB model is given as:

 ỹi = F(xi) = b + n ∑ fk
K
k =1 (xi) (8)

where b is the base prediction, n is the learning rate hyperparameter that helps control overfitting
by reducing the contributions of each booster, and each of the 𝐾 boosters 𝑓𝑘 is a decision tree.

3.1.1.2 Unsupervised learning

Unsupervised Learning is also called learning from observation. Unsupervised learning is

applied when the data is available only in the form of an input and there is no corresponding

output variable. Such algorithms model the underlying patterns in the data in order to learn

more about its characteristics[56]. Unsupervised learning seems much harder: the goal is to

have the computer learn how to do something that we don't tell it how to do[58]. In

DOI 10.14750/ME.2024.012

16

unsupervised learning, the system has to explore any patterns based only on the common

properties of the example without knowing how many or even if there are any patterns. The

most common methods in unsupervised learning are association rule mining, sequential pattern

mining, and clustering[67].

3.1.1.3 Reinforcement learning

Reinforcement learning is somewhere between supervised and unsupervised learning[68].

Reinforcement learning is applied when the task at hand is to make a sequence of decisions

toward a final reward[56]. Where the algorithm learns a policy of how to act given an

observation of the world. Every action has some impact on the environment, and the

environment provides feedback that guides the learning algorithm[58]. During the learning

process, an artificial agent gets either rewards or penalties for the actions it performs. Its goal

is to maximize the total reward. In reinforcement learning, the algorithm gets told when the

answer is wrong but does not get told how to correct it. It has to explore and try out different

possibilities until it works out how to get the answer right[68]. Examples include learning

agents to play computer games or performing robotics tasks with end goals[56].

3.1.2 Artificial Neural Networks (ANNs)

Artificial neural networks (ANNs) are biologically inspired computer software built to imitate

the way in which the human brain processes information[21]. ANNs are ML models or

nonlinear classifiers used to model complex relationships between inputs and outputs. An

ANNs model contains multiple units (layers) for information processing which are known as

neurons. The layers are typically named the input layer, hidden layer, and output layer [69],

[70]. The typical architecture of ANN is shown in Figure 3.1. When implementing a neural

network, a set of consistent training values must be available to set up the expected operation

of the network and a set of validation values to validate the training process[71]. ANNs collect

knowledge by detecting the patterns and relationships in data and learning or training through

experience. When neural networks are used for data analysis, it must be important to

distinguish between ANN Models which refer to the network's arrangement, and ANN

Algorithms which refer to computations that eventually produce the network outputs. There

are two approaches to training ANNs: supervised and unsupervised. The most often used ANNs

for prediction and classification tasks is a fully connected and supervised network with a

backpropagation learning rule. During the learning stage, the weights of each neuron are

considered and adjusted according to the requirements. To obtain the final weight for neurons,

each neuron gives input to each preceding layer, and later these inputs are multiplied by their

weight. According to this process, the neuron computes the activation level from this sum, and

the output is sent to the following layer where the final solution is estimated [28], [34]. The

output of a neuron that is in the layer can be described by the equation below:

 Yi = fi (∑ wij ∗ xj + bi)
n

j=1
 (9)

where 𝑌𝑖 represents network output, n is the total number of inputs to this neuron, 𝑥𝑗 represents

network input, 𝑤𝑖𝑗 is the connection weights between input and output nodes, 𝑏𝑖 is the bias and

𝑓𝑖 is the transfer function.

DOI 10.14750/ME.2024.012

17

Figure 3.1 The typical ANN architecture[70]

3.1.2.1 Multi-layer Perceptron (MLP)

A Multi-layer Perceptron (MLP) network is a particular type of artificial neural network that

consists of different layers (input layer, hidden layer, and output layer). It was created to solve

nonlinear classification problems that cannot be solved by a single layer. A multilayer neural

network consists of many units (neurons) joined together in a pattern of connections[37]. It

uses nodes with a specified weight to connect the layers. Each node is a neuron that utilizes a

nonlinear activation function. The backpropagation algorithm is used to train the model in the

multilayer perceptron network[5]. The formula of the multilayer perceptron network model is

as follows:

 f(x) = (∑ wi ∗ xi) + b
m

i=1
 (10)

Where m is the number of neurons in the previous layer, 𝑤𝑖is a random weight, 𝑥𝑖 is the input

value, b is a random bias.

3.1.2.2 Deep learning (DL)

Deep learning (DL) algorithms have received extensive attention in the field of software

engineering for a considerable period. DL is one of the AI functions that mimic the workings

of the human brain. It allows and helps to solve complex problems by using a data set that is

very diverse, unstructured, and interconnected[72]. DL is a type of ML that allows

computational models consisting of multiple processing layers to learn data representations

with multiple levels of abstraction. DL architecture has been widely used to solve many

detections, classification, and prediction problems[73]. There are many activation functions

used in DL such as sigmoid, Rectified Linear unit (Relu), and Hyperbolic Tangent (Tanh).

Activation functions are a critical component of DL, serving as the nonlinearities that allow

neural networks to model complex relationships in data. Their importance lies in their ability

to introduce non-linearity, control gradient flow during training, and adapt the network's

behaviour to different problem domains. The right choice of activation function can

significantly impact training speed, model performance, and the ability to capture intricate

patterns in data. Whether it is the efficiency of ReLU, the sigmoid's interpretability, or the

tanh's versatility, selecting the appropriate activation function is a key decision in designing

neural networks. Therefore, activation functions enable the training of the DL model quickly

and accurately. Relu and sigmoid [74], [75] are the most common activation functions used in

DOI 10.14750/ME.2024.012

18

DL. So, in our proposed models, we used the Relu activation function for the inputs and hidden

layers and the Sigmoid activation function for the output layer. The equations to calculate Relu

and sigmoid are as follows:

 hi
m = ReLU(Wi

m−1 × Vi
m−1 + bm−1) (11)

where ℎ𝑖
𝑚

 represents convolutional layer, 𝑊𝑖
𝑚−1 represents the weights of neuron, 𝑉𝑖

𝑚−1

represents the nodes, and 𝑏𝑚−1 represents the bias layer.

 S(x) =
1

 1+ e− ∑ Wi+Xi

k +b (12)

where 𝑋𝑖 represents the input, 𝑊𝑖 is the weight of the input and b is the bias.

3.1.2.2.1 Convolutional Neural Network (CNN)

Convolutional Neural Network (CNN) is a special type of deep neural network, or a class of

convolutional feedforward neural networks used to process data that has a known, grid-like

topology. It is constructed to mimic the visual perception of biological processes and can be

used for both supervised learning and unsupervised learning[76]. CNN has been tremendously

successful in practical applications, including speech recognition, image classification, and

natural language processing [77], [78]. The CNN model is inspired by the typical CNN

architecture used in image classification and consists of a feature extraction part and a

classification part, as shown in Figure 3.2. These parts consist of multiple layers of convolution,

batch normalization, and maximum merge layers. These layers constitute the hidden layer of

the architecture. Convolution is a fundamental operation enabling the network to detect and

learn relevant features within the input data automatically. Convolutional layers employ small

learnable filters or kernels to slide over the input. Each filter is a small matrix (usually 3x3 or

5x5) that slides over the input data. These filters capture specific features such as edges,

textures, or more complex patterns. This process of convolution generates feature maps that

highlight where these patterns are found in the input, while the maximum pooling layer

achieves a reduction in the dimension of the feature space. Batch normalization is used to

mitigate the effect of different input distributions for each training mini batch for the purpose

of improving training [79], [80].

Figure 3.2 The typical CNN architecture[80]

DOI 10.14750/ME.2024.012

19

3.1.2.3 Recurrent Neural Networks (RNNs)

Recurrent Neural Networks (RNNs) are a type of ANNs that can process a sequence of inputs

and retain its state while processing the next sequence of inputs and can efficiently acquire the

nonlinear features that are in order. Where the nodes and their connections form a temporally

directed graph along a temporal sequence [81], [82]. RNN is widely used to solve many

different problems, such as pattern recognition, identification, classification, vision, speech,

control systems, etc.[83]. Due to the problem of long-term dependencies that arise when the

input sequence is too long, RNN cannot guarantee a long-term nonlinear relationship. This

means that there is a gradient vanishing and gradient explosion phenomenon in the learning

sequence. RNNs can use memory units (internal state) to learn the relationship between the

sequence pieces, making it possible for RNNs to capture contextual features of the

sequence[84]. Many optimization theories and improved algorithms have been introduced to

solve this problem such as Long-Short-Term-Memory (LSTM) networks, Bidirectional LSTM,

Gated Recurrent Unit (GRU) networks, echo state networks, Independent RNN, etc. Standard

RNNs take sequences as inputs, and each step of the sequence refers to a certain moment[85].

For a certain moment t, the output ℎ𝑡 not only depends on the current input 𝑥𝑡 but is also

influenced by the output from the previous moment 𝑡 − 1. The output of moment (t) can be

formulated as the following equation:

 ht = f(U × xt + W × ht−1 + b) (13)

Where U and W denote the weights of the RNN, b denotes the bias, f is the activation function

of the neurons.

3.1.2.3.1 Long-Short-Term-Memory (LSTM)

Long-Short-Term-Memory (LSTM) networks are a special type of RNN designed to recognize

patterns in data sequences. LSTM networks were introduced to avoid or handle long-term

dependency problems without being affected by an unstable gradient[55]. This problem

frequently occurs in regular RNNs when connecting previous information to new

information[48]. LSTM networks offer a set of key features that distinguish them in the realm

of RNNs. Their primary strengths lie in their ability to capture long-term dependencies in

sequential data, thanks to memory cells and gating mechanisms that control information flow.

LSTMs incorporate three essential gates: the forget gate, which decides what to discard from

the previous state; the input gate, responsible for selectively updating the memory cell with

new information; and the output gate, which regulates the information output as the hidden

state. Due to the ability of the LSTM network to recognize longer sequences of time-series

data, LSTM models can provide high predictive performance[84]. Figure 3.3 shows the

interacting layers of the repeating module in LSTM Networks. The cell state carries the

information from the previous moments and will flow through the entire LSTM chain, which

is the key that LSTM can have long-should be filtered from the previous moment, the output

of the forget gate can be formulated as the following equation:

 ft = σ(Wf . [ht−1 , xt] + bf) (14)

Where σ denotes the activation function, 𝑊𝑓 and 𝑏𝑓 denote the weights and bias of the forget

gate, respectively. The input gate determines what information should be kept from the current

moment, and its output can be formulated as the following equation:

DOI 10.14750/ME.2024.012

20

 it = σ(Wi . [ht−1 , xt] + bi) (15)

Where σ denotes the activation function, 𝑊𝑖 and 𝑏𝑖 denote the weights and bias of the input

gate, respectively. With the information from forget gate and input gate, the cell state 𝐶𝑡−1 is

updated through the following formula:

 Čt = tanh(Wc . [ht−1 , xt] + bc) (16)

 Čt = ft × Ct−1 + i × Čt)

Č𝑡 is a candidate value that is going to be added into the cell state and 𝐶𝑡 is the current updated

cell state. Finally, the output gate decides what information should be output according to the

previous output and current cell state.

 ot = σ(Wo . [ht−1 , xt + bo] (17)

 ht = ot × tanh(Ct)

Figure 3.3 Interacting layers of the repeating module in an LSTM Networks[40]

3.1.2.3.2 Bidirectional Long-Short-Term-Memory (Bi-LSTM)

The idea behind Bidirectional Long-Short-Term-Memory (Bi-LSTM) networks is to exploit

spatial features to capture bidirectional temporal dependencies from historical data to overcome

the limitations of traditional RNNs [73], [86], [87]. Bi-LSTM networks are a new way to train

data by expanding the capabilities of LSTM networks[84]; it uses two separate hidden layers

to train the input data twice in the forward and backward directions, as shown in Figure 3.4.

With the regular LSTM Networks, the input flows in one direction, either backward or forward.

Bi-LSTM Networks are the process of making any neural networks have the sequence

information in both directions (a sequence processing model that consists of two LSTM): one

taking the input in a forward direction (past to future), and the other in a backward direction

(future to past) [2].

DOI 10.14750/ME.2024.012

21

Figure 3.4 Interacting layers of the repeating module in a Bi-LSTM Network[86]

3.1.2.3.3 Gated Recurrent Unit (GRU)

Gated Recurrent Unit (GRU) network is one of the optimized structures of the RNN[73]. The

goal of the GRU network is to solve the long-term dependence and gradient disappearance

problem of RNN[7]. The GRU is like LSTM in a forget gate but has fewer parameters than

LSTM and uses an update gate and reset gate as shown in Figure 3.5. The GRU network uses

the update and reset gates to improve and optimize the learning mechanism[83]. The update

gate helps the model to determine how much of the past information (from previous time steps)

needs to be passed along to the future and the reset gate helps the model to decide how much

of the past information to forget. Due to the ability of the GRU network to recognize longer

sequences of time-series data, it can provide high predictive performance [84], [88], [89]. The

update gate model in the GRU network is calculated as shown in the equation below.

 z(t) = σ(W(z). [h(t − 1), x(t)] + bz) (18)

the 𝑧(𝑡)represents the update gate, ℎ(𝑡 − 1) represents the output of the previous neuron,

𝑥(𝑡)represents the input of the current neuron, 𝑊(𝑧)represents the weight of the update gate,

𝑏𝑧 is the bias for the update gate, and 𝜎 represents the sigmoid function. The reset gate model

in the GRU neural networks is calculated as shown in equation below.

 r(t) = σ(W(r). [h(t − 1), x(t)] + br) (19)

𝑟(𝑡)represents the reset gate, ℎ(𝑡 − 1) represents the output of the previous neuron,

𝑥(𝑡)represents the input of the current neuron, 𝑊(𝑟)represents the weight of the reset gate, 𝑏𝑟

is the bias for the reset gate, and 𝜎 represents the sigmoid function. The output value of the

GRU hidden layer is shown in equation below.

 ȟ(t) = tanh(Wȟ. [rt ∗ h(t − 1), x(t)]) (20)

ȟ(𝑡)represents the output value to be determined in this neuron, ℎ(𝑡 − 1)represents the output

of the previous neuron, 𝑥(𝑡)represents the input of the current neuron, 𝑊ȟ represents the

weight of the update gate, and tanh () represents the hyperbolic tangent function. 𝑟𝑡 is used to

control how much memory needs to be retained. the hidden layer information of the last output

as shown in equation below.

 h(t) = (1 − z(t)) ∗ h(t − 1) + z(t) ∗ ȟ(t) (21)

DOI 10.14750/ME.2024.012

22

Figure 3.5 Interacting layers of the repeating module in a GRU Networks[7]

3.2 Summary

In this chapter we have provided an overview of artificial intelligence techniques, in particular,

ML techniques. Specifically, we focused on describing ML techniques that are commonly used

in the literature for the prediction of software bugs and code smells. We concluded that ML

techniques have recently gained attention in the literature for the prediction of software bugs

and code smells due to their ability to recognize patterns, automate processes, handle large-

scale data, adapt to different contexts, continuously improve, and complement static analysis.

ML models can analyze code metrics, historical bug data, or code smells indicators to identify

patterns that indicate the presence of software bugs or code quality issues. By automating the

analysis, ML techniques save time and effort for developers. ML models are scalable, adaptable

to different coding styles and programming languages, and can continuously learn and improve

over time. They complement static analysis tools by providing a more comprehensive analysis

of code quality. While ML techniques are not infallible and require domain expertise for

interpretation, they offer valuable insights and support in creating more reliable and

maintainable software.

DOI 10.14750/ME.2024.012

23

Chapter 4 Data Imbalance and Data-Balancing Methods

This chapter offers a concise introduction to the concept of data imbalance and data-balancing

methods, with a special emphasis on data sampling methods.

4.1 Data Imbalance

The data imbalance problem is a hot topic being investigated recently by ML and data mining

researchers, especially in the context of the prediction of software bugs and code smells. It is

considered one of the current research topics of interest in supervised classification that

frequently appears in several real-world datasets[90]. The main characteristic of the

imbalanced data is class imbalances. The class imbalance can be intrinsic property or due to

limitations to obtaining data such as cost, privacy, and large effort[13]. The class imbalance

problem occurs when, in a dataset, one of the classes has fewer instances, usually called the

minority class, than the other class, usually called the majority class[91]. In bug prediction, this

means that the dataset may have a significantly higher number of non-buggy instances

compared to buggy instances, while in code smells, certain types of code smells may be

underrepresented compared to others[92]. This problem produces a poor classification rate for

the minority class, which is usually the most important. Consequently, it becomes difficult for

a classifier to effectively discriminate between the minority and majority classes, especially if

the class imbalance is extreme, which has aroused the interest of many researchers to solve the

problem of class imbalance[93].

4.2 Data-Balancing Methods

Data imbalance is a common challenge in the prediction of software bugs and code smells

tasks, where certain classes of interest are underrepresented compared to others. Data-

balancing methods are crucial in addressing this issue and improving the performance and

accuracy of the models[13]. By balancing the data, these methods help in achieving improved

model performance, avoiding bias in predictions, enhancing the detection of rare events,

preventing overfitting, and providing valuable insights into software bugs and code smells.

Overall, data-balancing ensures that the models are trained on a more representative

distribution of instances, leading to more accurate and reliable predictions in the prediction of

software bugs and code smells tasks. Several data-balancing techniques have been developed

to overcome the class imbalance problem, these techniques include subset methods, cost-

sensitive learning, algorithm-level implementations, ensemble learning, feature selection

methods, sampling methods, etc.[15]. These techniques can be grouped into two distinct

categories: external methods that use existing algorithms without modification (corresponds to

methods that operate on the dataset in a preprocessing step preceding classification), and

internal methods that create new algorithms or modify existing algorithms to take into account

class imbalances (modifies the classification algorithm in order to put more emphasis on the

minority class), the two types of methods can be roughly divided into data level and algorithm

level [91], [93]. The most common techniques used in previous work to deal with the class

imbalance problem are external methods which are based on the data sampling technique

(Oversampling and Undersampling methods) [87], [94].

DOI 10.14750/ME.2024.012

24

4.2.1 Data Sampling (Resampling) Methods

Data sampling techniques are more prevalent in the studies of the prediction of software bugs

and code smell due to their easy employment and independence (i.e., they can be applied to

any prediction model)[87]. Therefore, data sampling techniques are commonly used to address

the class imbalance problem in ML. These techniques are popular due to their simplicity,

compatibility with various algorithms, computational efficiency, and retention of information.

Data sampling methods are relatively easy to understand and implement, work well with

different learning algorithms, and have minimal computational overhead[93]. Additionally,

models trained on balanced data can provide more interpretable results. Data sampling methods

tend to adjust the prior distribution of the majority and minority classes in the training data by

either reducing the majority class instances or increasing the minority class instances to obtain

a balanced class distribution and reduce the discrepancy among the sizes of the classes. There

are three main categories of data sampling techniques that are: Oversampling Methods,

Undersampling Methods, and Hybrid (Combined-Sampling Methods)[95]. Figure 4.1 shows

how data sampling methods deal with class imbalance.

4.2.1.1 Undersampling Methods

Undersampling is a non-heuristic method where a subset of the majority class is chosen to

create a balanced class distribution. The advantage of this method is that the elimination of

some examples could significantly reduce the size of the data and therefore decrease the run-

time cost, especially in the case of big data[95]. There are many Undersampling methods such

as Random Undersampling, Near Miss, Tomek links, etc.

• Random Undersampling is an Undersampling method aiming to randomly eliminate

samples of the majority class to obtain a balanced dataset[15]. This algorithm randomly

removes samples of the majority class using either sampling with or without

replacement[94], despite its simplicity, Random Undersampling is one of the most effective

resampling methods [13], [15].

• Near Miss is an Undersampling method, which aims to balance class distribution by

selecting examples based on the distance of majority class examples to minority class

examples[96].

• Tomek links is a method of Undersampling developed by Tomek (1976) This algorithm

works by deleting negative classes and positive classes further that have similar

characteristics [95].

4.2.1.2 Oversampling Methods

Oversampling is a non-heuristic method used to address data imbalance in ML by increasing

the number of instances in the minority class[15]. These methods aim to provide the model

with more examples of the minority class, making it easier for the model to learn its patterns

and improve its ability to classify it accurately [95], [97]. Oversampling methods are more

effective than Undersampling methods in prediction accuracy[13]. There are many

Oversampling methods such as Random Oversampling, Synthetic Minority Oversampling

Technique (SMOTE), etc.

• Random Oversampling is a simple approach where we take samples at random from the

small class and duplicate these instances so that it reaches a size comparable with the

DOI 10.14750/ME.2024.012

25

majority class, it is defined as a method developed to increase the size of a training data set

by making multiple copies of some minority classes[93].

• SMOTE is an Oversampling method based on creating synthetic instances for the minority

classes. It is a method in which new samples of minority class are synthesized based on the

feature space similarities among existing minority examples[87]. It is the most widely used

and referenced method among the Oversampling methods[92]. The algorithm takes each

minority class sample and introduces synthetic samples along the line joining the current

instance and some of its k nearest neighbors from the same class. Depending on how much

Oversampling is needed, the algorithm chooses randomly from the k nearest neighbors of

them and forms pairs of vectors that are used to create the synthetic samples. The new

instances create larger and denser decision regions. This helps classifiers learn more from

the minority classes in those decision regions, rather than from the large classes

surrounding those regions[93].

4.2.1.3 Hybrid (Combined-Sampling Methods)

Combined-sampling methods refer to the integration of multiple sampling techniques into a

single approach (such as Oversampling and Undersampling) to improve the effectiveness and

efficiency of the sampling process[98]. These methods aim to leverage the strengths of

different sampling techniques while mitigating their limitations. There are various hybrid

sampling methods, for example SMOTE Tomek method[95].

• SMOTE Tomek is a new technique that was applied using the library from imbalanced

learn, which combines the SMOTE function for Oversampling and the Tomek Link

function for Undersampling[99].

Figure 4.1 Shows how data sampling methods deal with class imbalance

4.3 Summary

In this chapter we have provided a short background of data imbalance and data-balancing

methods. Specifically, we focused on describing data-balancing methods that are commonly

used in the literature to address the problem of data imbalance in datasets of software bug and

code smells. We concluded that data imbalance can pose challenges for ML models because

they tend to favor the majority class and may struggle to adequately learn from the minority

class. This can result in biased or inaccurate predictions, where the model may have high

accuracy overall but performs poorly on the minority class or rare occurrences. In the context

DOI 10.14750/ME.2024.012

26

of software bugs and code smells, this means that the model may have difficulties accurately

identifying and predicting the occurrences of software bugs or specific code smells. Therefore,

data imbalance should be addressed to ensure that the ML model can effectively learn from

and make accurate predictions on all classes of interest, including the minority class instances.

By applying data-balancing methods along with ML techniques in the prediction of software

bugs and code smells, developers and analysts can build models that are more accurate, reliable,

and unbiased. These methods help overcome the limitations of imbalanced datasets and ensure

that the model's predictions are representative of the actual occurrence of software bugs and

code smells in the software codebase.

DOI 10.14750/ME.2024.012

27

Chapter 5 Proposed Methodology and Implementation

This chapter presents our proposed methodology and implementation, which describes the

experiments performed. Several experiments and comparisons are conducted to predict

software bugs and code smells based on ML techniques and data-balancing methods. The

architecture of the methodology followed in the dissertation can be visualized in Figure 5.1.

Figure 5.1 The architecture of the methodology followed in the dissertation

5.1 Experimental Design

This subsection presents the process of experimental design for our proposed approaches. We

also discuss experimental design phases that are used in the experiments, such as proposed ML

models, the data sets that are used to train and test the models, data pre-processing and features

selection, data-balancing methods that are used to balance data sets, and performance measures

that are used to evaluate and compare our proposed approaches with other existing approaches.

5.1.1 Proposed Approaches

In relation to software bug prediction, we developed four approaches. The first approach was

developed based on four ML models which are DT, NB, RF, and LR. The second approach

was developed based on combining two RNN models, namely LSTM and GRU, with an

Undersampling method (Near Miss). The third approach was developed by combining a Bi-

LSTM network with Oversampling methods (Random Oversampling and SMOTE). The fourth

approach was developed using a combination method based on CNN and GRU with a hybrid

sampling method (SMOTE Tomek).

Concerning code smell detection, we developed three approaches. The first approach was

developed based on several ML algorithms which are DT, K-NN, SVM, XGB, and MLP

combined with an Oversampling method (Random Oversampling). The second approach was

developed based on a CNN combined with Oversampling method (SMOTE). The third

approach was developed based on two RNN models (Bi-LSTM and GRU) combined with two

sampling methods (Random Oversampling and Tomek links).

DOI 10.14750/ME.2024.012

28

5.1.2 The Public Benchmark Datasets Used in This Research

When researching software bug prediction and code smell detection or related topics, it is

essential to utilize appropriate data sets specifically designed for this purpose. To perform the

experiments of this research and verify the validity of the proposed methods, the used datasets

were obtained from the public benchmark datasets of software bugs and code smells that

contain information for several projects. We used a public dataset because this is a

benchmarking procedure for research on software bugs and code smells.

5.1.2.1 Software Bug Data Sets

We used three different public datasets to perform software bug prediction experiments. The

first group was obtained from the NASA datasets, we selected four NASA public datasets,

these datasets were collected from real software projects by NASA [100], [101]. Table 5.1

shows information about the NASA datasets. The second group was obtained from a public

unified bug dataset, the authors considered 5 public datasets and downloaded the corresponding

source code for each system in the datasets and source code analysis was performed to obtain

a standard set of source code metrics. They have produced a unified bug dataset at the class

and file level that is suitable for the building of new bug prediction models. Furthermore, they

have compared the metric definitions and values of the different bug datasets[102]. The

defective instances for the unified bug dataset (Class level metrics and File level metrics) are

8780 and 10240. While the non-defective instances are 38838 and 33504, respectively. Table

5.2 shows information about the public unified bug dataset. The third group was obtained from

the PROMISE repository datasets. We selected six open-source Java projects from the

PROMISE dataset. The source code and corresponding PROMISE data for all projects are

public [47], [103], [104]. These projects cover applications such as XML parsers, text search

engine libraries, and data transport adapters, and these projects have traditional static metrics

for each Java file. To guarantee the generality of the evaluation results, experimental datasets

consist of projects with different sizes and defect rates (in the six projects, the maximum

number of instances is 965, and the minimum number of instances is 205. In addition, the

minimum defect rate is 2.23% and the maximum defect rate is 92.19%). The defective instances

for the PROMISE datasets (ant, camel, ivy, jedit, log4j, and xerces) are (166, 188, 40, 11, 16,

and 151), respectively. While the non-defective instances are (579, 777, 312, 481, 189, and

437), respectively. Table 5.3 shows the essential information of selected projects, including

project name, project version, number of instances, and defect rate or the percentage of

defective instances.

Table 5.1 Description of the NASA datasets

Project Name # Modules % Defects Language Description

JM1 10885 19% C Real-time predictive ground system: Uses

simulations to generate predictions.

PC1 1107 6.8% C Flight software for earth orbiting satellite.

KC1 2107 15.4% C++ Storage management for receiving and

processing ground data.

KC2 523 20% C++ Software for science data processing.

DOI 10.14750/ME.2024.012

29

Table 5.2 Description of the public unified bug dataset

Dataset Software Lines of code

PROMISE Ant, Camel, Ckjm, Forrest, Ivy, JEdit, Log4J, Lucene, PBeans,

Poi, Synapse, Velocity, Xalan, Xerces

2,805,253

Eclipse

Bug Dataset

Eclipse 3,087,826

Bug Prediction

Dataset

Eclipse JDT Core, Eclipse PDE UI, Equinox Framework, Lucene,

Mylyn

1,171,220

Bug catchers

Bug Dataset

Apache Commons, ArgoUML, Eclipse JDT Core 1,833,876

GitHub

Bug Dataset

Android Universal Image Loader, Antlr 4, Broadleaf Commerce,

Ceylon IDE Eclipse Plugin, Elasticsearch, Hazelcast, JUnit,

MapDB, mcMMO, MCT, Neo4J, Netty, OrientDB, Oryx, Titan

1,707,446

Table 5.3 Description of the PROMISE datasets

Project Name Project Version # Of Instances Defect Rate %

ant 1.7 745 22.28%

camel 1.6 965 19.48%

ivy 2.0 352 11.36%

jedit 4.3 492 2.23%

log4j 1.2 205 92.19%

xerces 1.4 588 74.31%

5.1.2.2 Code Smells Data Sets

We used the proposed datasets in Arcelli Fontana et al [4] to perform code smell detection

experiments. The authors selected 74 open-source systems from Qualitas Corpus as shown in

Table 5.4. The Qualitas Corpus (QC) systems were collected by Tempero et al[105]. The QC

systems comprise 111 systems written in Java belonging to different application domains and

characterized by different sizes. The QC systems datasets consisted of 561 smelly instances

and 1119 non-smelly instances. The first two datasets pertain to code smells at the class level,

specifically for the god class (with 140 smelly cases and 280 non-smelly instances) and data

class (with 140 smelly cases and 280 non-smelly instances). In contrast, the remaining two

datasets focus on code smells at the method level: feature envy (with 140 smelly instances and

280 non-smelly instances) and long method (with 141 smelly instances and 279 non-smelly

instances). The reason for selecting these datasets is that (i) the QC systems are the largest

curated corpus for code analysis studies, with the current version having 495 code sets,

representing 100 unique systems. The corpus has been successful in that groups outside its

original creators are now using it, and the number and size of code analysis studies have

significantly increased since it became available. (ii) Systems must be able to calculate metric

values correctly. Moreover, these data sets are freely available, and researchers can iterate,

compare and evaluate their studies. The selected metrics in QC systems are at class and method

levels; the set of metrics is standard metrics covering different aspects of the code, i.e.,

complexity, cohesion, size, and coupling [4].

Table 5.4 Description of the Qualitas Corpus Systems

Number of systems Lines of code

Number of packages Number of classes

74 6,785,568 3420 51,826

5.1.3 Data Pre-processing

Pre-processing the collected data is one of the essential stages before constructing the model.

To generate a good model, data quality needs to be considered. Not all data collected is suitable

DOI 10.14750/ME.2024.012

30

for training and model building. Anyhow, the inputs will significantly impact the model's

performance and later affect the output[106]. Data pre-processing is a group of techniques that

are applied to the data to improve the data quality before model building to remove noise and

unwanted outliers from the data set, dealing with missing values, feature type conversion, etc.

Outliers are data points that deviate significantly from most of the data in a dataset. Detecting

and handling outliers is crucial in data analysis and modelling, as they can disproportionately

influence statistical measures and ML algorithms. Outliers can be detected using various

methods, such as visual inspection of the data, statistical measures such as the Z-score or the

interquartile range, or ML techniques. Once outliers are detected, they can be handled in

various ways, such as removing them from the dataset, replacing them with the mean or median

of the data, using outlier detection techniques using ML, or using algorithms less sensitive to

outliers. All outliers in the data sets were treated by replacing them with the mean. All datasets

are pre-processed by dealing with missing content and constant values. Handling missing

values treatment improves performance measures and avoids biased results. Incomplete data

can bias the results of the ML models and/or reduce the model’s accuracy. Datasets used

contain instances from different projects. Considering that, there are three main methods for

handling missing data: deletion, imputation, and modelling. Deletion methods involve

removing the missing values or the cases with missing values from the data set. Imputation

means replacing the missing values with estimated values based on the available data.

Modelling methods require incorporating the missing data mechanism into the analysis model

or using methods that directly handle missing data. Missing values for the datasets used in this

research are handled based on imputation methods, which means replacing them with the mean.

In addition, instances are scaled to reduce the distance between independent variables.

Normalization is necessary to convert the values into scaled values (transforming the features

to be on a similar scale) to increase the model's efficiency. Therefore, the data set was

normalized using Min–Max and Standard scaling. The formula for Min-Max scaling is given

by (22), and the formula for Standard scaling is given by (23). After that, constant, quasi-

constant and duplicated features are removed. It is followed by feature selection extracting

feature subset that contributes maximum to the ML algorithms prediction variable[107].

 Xnew = (X — Xmin) / (Xmax — Xmin) (22)

Where X: It is a set of the observed values present in X, X min: It is the minimum values in X

and X max: It is the maximum values in X.

 Xscaled = X − μ / σ (23)

Where 𝑋𝑠𝑐𝑎𝑙𝑒𝑑: It is the scaled value, X: It is the original value, 𝜇: It is the mean of the feature

and σ: It is the standard deviation of the feature.

5.1.4 Features Selection

Feature selection is a critical process in ML that involves choosing the most relevant and

informative features from the original set [108]. The objective is to enhance model

performance, mitigate overfitting, and improve interpretability. Feature extraction facilitates

the conversion of pre-processed data into a form that the classification engine can use [109],

[110]. Feature selection in ML encompasses various methods, such as Filter Methods, Wrapper

Methods, Embedded Methods, Dimensionality Reduction Techniques and Hybrid Methods

aimed at identifying and utilizing the most relevant features for model training [111]. Filter

DOI 10.14750/ME.2024.012

31

methods employ diverse criteria such as statistical tests, correlation coefficients, or information

gain to rank and filter features based on their intrinsic characteristics, irrespective of the

specific ML model. By efficiently screening out less informative or redundant features early in

the process, filter methods help mitigate the curse of dimensionality and enhance computational

efficiency. Wrapper methods in feature selection are dynamic techniques that assess the

relevance of subsets of features by integrating them into the model training and evaluation

process. Unlike filter methods that evaluate features independently, wrapper methods employ

a trial-and-error approach, testing different combinations of features to identify the most

informative subset. Standard wrapper methods include forward selection, backward

elimination, and recursive feature elimination. Forward selection starts with an empty set and

iteratively adds features based on their impact on model performance. In contrast, backward

elimination begins with all features and progressively removes the least relevant ones.

Recursive Feature Elimination recursively fits the model and eliminates the least significant

feature in each iteration. Wrapper methods, while computationally more intensive than filter

methods, are advantageous for capturing feature interactions and dependencies that contribute

to optimal model performance. However, their increased computational cost may limit their

application to high-dimensional datasets. Embedded methods for feature selection incorporate

feature selection as part of the model training process. Unlike filter methods, which assess

features independently of the learning algorithm, and wrapper methods, which evaluate subsets

of features through iterative model training, embedded methods simultaneously perform

feature selection and model training. These methods aim to identify the most relevant features

for prediction and classification tasks while optimizing the model's performance. One popular

embedded method is Least Absolute Shrinkage and Selection Operator, which introduces a

penalty term to the linear regression cost function, promoting sparsity in the feature

coefficients. Tree-based algorithms like Random Forests and Gradient Boosted Trees also

inherently provide feature importance scores during their training process, allowing for the

automatic selection of the most influential features. Embedded methods are advantageous as

they streamline the feature selection process within the model training, potentially leading to

more efficient and interpretable models. Dimensionality reduction techniques are methods

employed in ML to reduce the number of input features while preserving the essential

information within the data. One widely used technique is Principal Component Analysis,

which transforms the original features into a set of uncorrelated variables called principal

components. These components retain most of the variance in the data, enabling a more

compact representation. Hybrid methods in feature selection represent a fusion of multiple

techniques to achieve a more comprehensive and robust approach. These methods combine

aspects of both filter and wrapper methods or leverage various strategies simultaneously. For

instance, Boruta integrates the power of random forest classifiers with a shadow feature

mechanism to identify relevant features, providing a hybrid solution. Genetic Algorithms,

another hybrid approach, employs evolutionary algorithms to search for an optimal subset of

features. Hybrid methods strive to harness the strengths of different feature selection

techniques, addressing their limitations and producing more effective results. By combining

diverse strategies, these methods offer a versatile and adaptable approach to feature selection,

suitable for various datasets and ML tasks. The choice of a hybrid method depends on the

specific characteristics of the data and the goals of the feature selection process. Each type of

feature selection caters to specific data characteristics and model requirements, which is crucial

in optimizing performance and interpretability in ML applications [7], [63]. In this research,

DOI 10.14750/ME.2024.012

32

we applied the embedded method because it is faster and less computationally expensive than

other methods and is suitable for ML models.

5.1.5 Balancing Data sets

Balancing data sets is an essential step in ML and data analysis when dealing with imbalanced

data, where the number of instances in different classes or categories is significantly

skewed[13], [14]. Balancing the data sets helps ensure that the model's performance is not

biased towards the majority class and can effectively learn from the minority class. In practice,

the datasets of software bugs and code smell often suffer from a common problem which is a

class imbalance problem[40]. The reference datasets are not balance distributed, which shows

a lack in the actual distribution of learning instances (The number of defective or smelly cases

is smaller than non-defective or non-smelly), we manage this problem by modifying the

original datasets to increase the realism of the data. The distribution of the dataset was modified

by applying different data sampling methods such as Near Miss, Tomek links, Random

Oversampling, SMOTE, and SMOTE Tomek.

• The process of Near Miss is as follows:

1- Identify minority class instances: Identify the instances belonging to the minority class.

2- Near Miss Selection:

➢ For each instance in the minority class, calculate the distance to its k nearest neighbors in

the majority class. The instances in the majority class that are closest to the minority class

form "near misses."

➢ Select the "near misses" based on a criterion. There are three common types of Near Miss

methods:

- Near Miss-1: Keep majority instances whose average distance to k nearest minority

instances is the smallest.

- Near Miss-2: Keep majority instances whose average distance to k nearest minority

instances is the largest.

- Near Miss-3: Remove majority instances if the average distance to k nearest minority

instances is smaller than the average distance to k nearest majority instances.

3- Majority class reduction: Remove the selected majority class instances to balance the class

distribution. This reduction process aims to create a balanced dataset with fewer instances from

the majority class.

4- Balanced dataset: Combine the minority class instances with the selected majority class

instances to create a balanced dataset.

• The process of Tomek Links is as follows:

1- Identify minority class instances: Identify the instances belonging to the minority class

(fraudulent transactions).

2- Find Nearest Neighbors:

➢ Calculate the distance to all other instances for each instance in the dataset.

➢ For each instance, identify its nearest neighbor from a different class. A Tomek link is

formed if:

- Instance A belongs to the minority class.

- Instance B belongs to the majority class.

- Instance B is the nearest neighbor of instance A.

- Instance A is the nearest neighbor of instance B.

DOI 10.14750/ME.2024.012

33

3- Tomek Link removal: Remove the instances that form Tomek links. This process removes

instances that are ambiguous or near the decision boundary between classes.

4- Balanced dataset: Combine the instances after removing Tomek links to create a more

balanced dataset.

• The process of Random Oversampling is as follows:

1- Identify minority class instances: Identify the instances belonging to the minority class.

2- Random Oversampling: Randomly select instances from the minority class and duplicate

them until the desired proportion of the minority class is met.

3- Repeat the process: Repeat step 2 until the class distribution is balanced. The number of

duplicates needed depends on the degree of imbalance and the desired balance ratio.

4- Balanced dataset: Combine the original minority class instances with duplicated ones to

create a more balanced dataset.

• The process to generate the synthetic samples SMOTE is as follows:

1- Choose random data from the minority class.

2- Calculate the Euclidean distance between the random data and its k nearest neighbors.

3- Multiply the difference with a random number between 0 and 1, then add the result to the

minority class as a synthetic sample.

4- Repeat the procedure until the desired proportion of minority class is met.

• The process of SMOTE-Tomek is as follows:

1- (Start of SMOTE) Choose random data from the minority class.

2- Calculate the distance between the random data and its k nearest neighbors.

3- Multiply the difference with a random number between 0 and 1, then add the result to the

minority class as a synthetic sample.

4- Repeat step number 2–3 until the desired proportion of minority class is met. (End of

SMOTE)

5- (Start of Tomek Links) Choose random data from the majority class.

6- If the random data nearest neighbor is the data from the minority class (i.e. create the Tomek

Link), then remove the Tomek Link.

Figures 5.2 to 5.7 show the distribution of learning instances over the original and balanced

data sets.

• Regarding the unified bug dataset: The distribution of learning defective instances over the

original data sets (Class level metrics and File level metrics) is (8780 and 10240),

respectively. At the same time the distribution of learning non-defective instances is (38838

and 33504), respectively.

➢ Following the implementation of the Near Miss method, the distribution of learning

defective instances over the balanced data sets (Class level metrics and File level metrics)

became (8780 and 10240), respectively. While the distribution of learning non-defective

instances became (8780 and 10240), respectively.

DOI 10.14750/ME.2024.012

34

Figure 5.2 Distribution of learning instances over the original and balanced data sets (The public unified bug

dataset)-by applying the Near Miss method

• Regarding PROMISE datasets: The distribution of learning defective instances over the

original data sets (ant, camel, ivy, jedit, log4j, and xerces) is (166, 188, 40, 11, 16, and

151), respectively. At the same time the distribution of learning non-defective instances is

(579, 777, 312, 481, 189, and 437), respectively.

➢ Following the implementation of SMOTE Tomek method, the distribution of learning

defective instances over the balanced data sets (ant, camel, ivy, jedit, log4j, and xerces)

became (559, 751, 297, 466, 185 and 418), respectively. While the distribution of learning

non-defective instances became (559, 751, 297, 466, 185 and 418), respectively.

Figure 5.3 Distribution of learning instances over the original and balanced data sets (The PROMISE datasets)-

by applying the SMOTE Tomek method

➢ Following the implementation of Random Oversampling method, the distribution of

learning defective instances over the balanced data sets (ant, camel, ivy, jedit, log4j, and

xerces) became (579, 777, 312, 481, 189 and 437), respectively. At the same time the

distribution of learning non-defective instances became (579, 777, 312, 481, 189, and 437),

respectively.

DOI 10.14750/ME.2024.012

35

➢ Following the implementation of SMOTE method, the distribution of learning defective

instances over the balanced data sets (ant, camel, ivy, jedit, log4j, and xerces) became (579,

777, 312, 481, 189 and 437), respectively. While the distribution of learning non-defective

instances became (579, 777, 312, 481, 189, and 437), respectively.

Figure 5.4 Distribution of learning instances over the original and balanced data sets (The PROMISE datasets)-

by applying the Random Oversampling and SMOTE methods

• Regarding the QC systems datasets: The distribution of learning smelly instances over the

original data sets (God Class, Data Class, Feature envy and Long method) is (140, 140, 140

and 141), respectively. At the same time the distribution of learning non-smelly instances

is (280, 280, 280 and 279), respectively.

➢ Following the implementation of SMOTE method, the distribution of learning smelly

instances over the balanced data sets (God Class, Data Class, Feature envy and Long

method) became (280, 280, 280 and 279), respectively. While the distribution of learning

non-smelly instances became (280, 280, 280 and 279), respectively.

Figure 5.5 Distribution of learning instances over the original and balanced data sets (The Qualitas Corpus

Systems)-by applying the SMOTE method

➢ Following the implementation of Random Oversampling method, the distribution of

learning smelly instances over the balanced data sets (God Class, Data Class, Feature envy

DOI 10.14750/ME.2024.012

36

and Long method) became (280, 280, 280 and 279), respectively. At the same time the

distribution of learning non-smelly instances became (280, 280, 280 and 279), respectively.

➢ Following the implementation of Tomek Links method, the distribution of learning smelly

instances over the balanced data sets (God Class, Data Class, Feature envy and Long

method) became (140, 140, 140 and 141), respectively. While the distribution of learning

non-smelly instances became (263, 256, 261and 270), respectively.

Figure 5.6 Distribution of learning instances over the original and balanced data sets (The Qualitas Corpus

Systems)-by applying the Random Oversampling method

Figure 5.7 Distribution of learning instances over the original and balanced data sets (The Qualitas Corpus

Systems)-by applying the Random Oversampling and Tomek Links methods

5.1.6 Models Building and Evaluation

In building and evaluating the proposed prediction models, we adopted a systematic and

methodical methodology which depends on ML techniques in conjunction with data-balancing

methods to predict software bugs and code smells effectively. It's a common practice in the

field to divide data into two sets: a training set used to teach the model and a test set used to

assess its performance [112]. The datasets used to train and test our proposed ML models were

obtained from public benchmark datasets of software bugs and code smells that contain

information for several projects. Datasets are shuffled and split into testing and training sets.

Training is performed with 80% of the dataset (random selection of features), while the

DOI 10.14750/ME.2024.012

37

remaining 20% is used for validation and testing. The author utilized the Jupyter editor as a

computing environment to construct models using the Python programming language to

implement the methodology. Moreover, we harnessed a range of libraries and tools to

efficiently handle data, construct models, and create insightful visualizations. Specifically,

Pandas for data manipulation, scikit-learn, Keras, and TensorFlow for data modeling, and

Matplotlib along with Seaborn for data visualization were employed. Moreover, Cross-

validation is a vital technique in ML used to evaluate the performance and generalizability of

predictive models. It involves partitioning a dataset into subsets, typically referred to as folds,

and systematically training and evaluating the model multiple times. Cross-validation helps

mitigate issues like overfitting and provides a more reliable assessment of how well a model

will perform on unseen data. It is an essential tool for selecting models, tuning

hyperparameters, and ensuring the model's generalization across different subsets of the

dataset. Cross-validation comes in various forms such as K-Fold Cross-Validation, Stratified

K-Fold Cross-Validation, Leave-One-Out Cross-Validation, Leave-P-Out Cross-Validation,

etc. to suit different data characteristics and modelling objectives. K-Fold Cross-Validation and

Stratified K-Fold Cross-Validation are the most standard methods of Cross-validation. K-Fold

Cross-Validation is a method where the data is divided into k subsets, and the model is trained

on k-1 folds while being tested on the remaining fold. This process is repeated k times, and

performance metrics are averaged to provide a more robust estimate of the model's

effectiveness. Stratified K-Fold Cross-Validation is a variation of the standard K-Fold Cross-

Validation method that maintains the class distribution in each fold, is beneficial for

imbalanced datasets, and is designed to address the potential issue of imbalanced class

distributions in the dataset. Therefore, we applied Stratified K-Fold Cross-Validation method

to evaluate the performance of our proposed predictive models. Each model was developed

separately with different parameters. Once a prediction model is built, its performance must be

evaluated. We evaluated the performance of our proposed models based on a set of standard

performance measures such as the confusion matrix, Matthews Correlation Coefficient (MCC),

the area under a receiver operating characteristic curve (AUC), the area under the precision-

recall curve (AUCPR) and mean square error (MSE) [17], [39].

• Parameter settings of the models:

Hyperparameters encompass a diverse set of configuration settings crucial for shaping the

behaviour of ML models. For instance, in Support Vector Machines, Kernel Parameters, such

as those in the Radial Basis Function, significantly influence the model's capacity to handle

complex relationships in the data. Decision Tree Parameters, including maximum depth and

minimum samples per split, are pivotal for controlling the tree's complexity and preventing

overfitting. Random Forests involve hyperparameters like the Number of Trees and Depth,

determining the ensemble's robustness and individual tree characteristics. In k-Nearest

Neighbors, the choice of k, or the number of nearest neighbors considered, impacts the model's

flexibility and sensitivity to noise [39]. Additionally, Neural Networks involve several

hyperparameters, such as Cell Type, Bidirectional layers, Dropouts, Dense layers, Optimizer,

Learning Rate, Regularization Strength, Number of Iterations (Epochs), Batch Size, Hidden

Layers, and Neurons, each playing a role in the network's architecture, convergence, and

generalization. Learning Rate, a critical hyperparameter, dictates the step size during

optimization, affecting the convergence speed and potential overshooting of optimal solutions.

Regularization Strength is pivotal for preventing overfitting by controlling the complexity of

DOI 10.14750/ME.2024.012

38

the model. The Number of Iterations (Epochs) determines how many times the entire training

dataset is processed, balancing between underfitting and overfitting. Batch Size influences the

optimization efficiency, impacting both speed and memory usage. Several Hidden Layers and

Neurons, pivotal for capturing intricate relationships within data. Activation Functions

introduce non-linearity, influencing the model's capacity to learn intricate mappings. Practical

tuning of these hyperparameters is essential for optimizing model performance across diverse

ML paradigms. Tables 5.5 and 5.6 show the parameter settings of the models [17], [37].

Table 5.5 Parameter settings of the models (Classical techniques)

Models parameters

NB No passing parameters (default parameters)

LR Random_state=0

DT No passing parameters (default parameters)

RF n_estimators = 100

K-NN n_neighbors = 7

SVM probability = True, kernel = 'linear'

XGB max_depth=3, n_estimators=100, n_jobs=2, objectvie='binary:logistic',

learning_rate=0.01, subsample=0.7, colsample_bytree=0.8

MLP hidden_layer_sizes=(10,5), max_iter=1000

Table 5.6 Parameter settings of the models (Advanced techniques)

Parameters

Models

Bi-LSTM LSTM CNN GRU

Cell type

(Bidirectional)

LSTM (64, 32),

return_sequences

=True

LSTM (64, 32),

return_sequences

=True

-

-

Layers. GRU - - - 100

Activation function ReLU + sigmoid ReLU + sigmoid ReLU +

Sigmoid

Tanh + Sigmoid

Dropouts 0.2 0.2 0.2 0.2

Dense 64, 1 64, 1 10, 1 1

Optimizer Adam Adam Adam Adam

Learning Rate 0.01 0.01 0.01 0.01

Loos Function Mean squared

error (MSE)

Mean squared

error (MSE)

Mean squared

error (MSE)

Mean squared

error (MSE)

Batch Size 64 64 25 64

Epochs 100 100 100 100

Validation Split 0.1 0.1 0.1 0.1

Verbose 1 1 - 1

• A confusion matrix is a specific Table used to measure the performance of a model.

Accuracy, Precision, Recall, and F-measure are the typical performance measurement

parameters used in the confusion matrix. A confusion matrix summarizes the results of the

testing algorithm. It presents a report of (i) True Positive Rate (TPR), (ii) False Positive

Rate (FPR), (iii) True Negative Rate (TNR), and (iv) False Negative Rate (FNR)[18], [112].

Table 5.7 shows the confusion matrix.

Table 5.7 Confusion matrix

Predicted Values

Actual Values

Positive (Yes) Negative (No)

Positive (Yes) TP FP

Negative (No) FN TN

- The accuracy is the ratio of true results that are calculated as the sum of true positive and
true negative instances divided by the sum of true positive, true negative, false positive and

DOI 10.14750/ME.2024.012

39

false negative. The top (maximum) accuracy is 1, whereas the low (minimum) accuracy is
0[18]. Accuracy can be computed by using the following formula:

 Accuracy =
(TP + TN)

(TP + TN+ FP + FN)
 (24)

- Precision is defined as the number of true positive predictions divided by the total number
of positive predictions or fraction of true positive and predicted yes instances[18]. The top
(maximum) precision is 1, whereas the low (minimum) is 0 and it can be calculated as:

 Precision =
TP

(TP + FP)
 (25)

- The recall is the number of positive predictions divided by the total number of positives or
defined as the fraction between true positive instances and actual yes instances. The top
(maximum) recall is 1, whereas the low (minimum) is 0[18]. The formula of recall is given
below:

 Recall =
TP

TP + FN
 (26)

- The F-Measure is the weighted harmonic mean of precision and recall or defined as the
fraction between the product of the recall and precision to the summation of recall and
precision parameter of classification, it is used to combine the recall and precision measures
in one measure to compare different algorithms[18]. The F-Measure formula is given below:

 F − Measure =
(2∗ Recall ∗ Precision)

 (Recall + Precision)
 (27)

• The Matthews Correlation Coefficient (MCC) is a measure used for model evaluation by

measuring the difference between the predicted values and actual values [81], [82],

[101].The MCC formula is given below:

MCC = TP ∗ TN − FP ∗ FN / √(TP + FP) ∗ (TP + FN) ∗ (TN + FP) ∗ (TN + FN) (28)

• The Area Under the ROC Curve (AUC) is a graph that shows the performance of

classification models with all classification thresholds and plots based on two parameters,

actual positive rate (TPR) and false-positive rate (FPR) [61], [112]. The AUC formula is

given below:

 AUC =
∑ rank(insi)−

M(M+1)

2

insi ∈ Positive Class

M . N
 (29)

Where ∑ 𝑟𝑎𝑛𝑘(𝑖𝑛𝑠𝑖)
𝑖𝑛𝑠𝑖 ∈ 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝐶𝑙𝑎𝑠𝑠 It is the sum of the ranks of all positive samples, and

M and N are the number of positive and negative examples, respectively.

• The Area Under the Precision-Recall curve (AUCPR) is a curve that plots the Precision

versus the Recall or a single number summary of the information in the precision-recall

curve[113]. The AUCPR formula is given below:

 AUCPR = ∫ Precision(Recall) d(Recall)
1

0
 (30)

DOI 10.14750/ME.2024.012

40

• The Mean Square Error (MSE) is a metric that measures the amount of error in the model.

It assesses the average squared difference between the actual and predicted values [42],

[112]. The MSE formula is given below:

 MSE =
1

n
∑ (x(i) − y(i))2

n

i=1
 (31)

Where n is the number of observations, x(i) is the actual value, y(i) is the observed or predicted

value for the 𝑖𝑡ℎ observation.

5.2 Summary

This chapter presents the proposed methodology and implementation for predicting software

bugs and code smells. Our proposed methodology was based on various ML techniques and

data-balancing methods (data sampling methods). Public benchmark datasets of software bugs

and code smells have been used to ensure the methodology performs well across different types

of software projects. To check how well our methodology works, we balanced the original data

sets using different data sampling methods and then conducted extensive Python experiments.

Additionally, we used various Hyperparameters to set our proposed models and evaluate the

model’s performance using various performance measures.

DOI 10.14750/ME.2024.012

41

Chapter 6 Experimental Results and Discussion of Software Bugs Prediction (SBP)

This subsection presents the results obtained from the experiments explained in the previous

section (proposed methodology and implementation) which includes the results of SBP.

6.1 ML Techniques in SBP

In this sub-section, we discuss the findings of the first study. The goal was to present a

comprehensive study on ML techniques successfully used in previous studies to predict

software bugs. The study also presented a method for SBP based on supervised ML algorithms

namely, DT, NB, RF, and LR. The experiments have been conducted based on benchmark

datasets obtained from the NASA datasets (jm1, PC1, KC1 and KC2). The experimental results

were evaluated and compared based on various performance measures (accuracy, precision,

recall, f-measure, and AUC).

The performance of the prediction models is reported in Tables 6.1 to 6.6 and Figures 6.1 to

6.4.

Tables 6.1 to 6.4 show the performance of the proposed models on the four data sets based on

all performance measures. The maximum (best) accuracy value is 99%, which DT and RF

models in JM1, PC1and KC1 datasets achieved. The maximum (best) precision value is 99%,

which DT and RF models in JM1, PC1and KC1 datasets achieved. The maximum (best) recall

value is 100%, which was achieved by DT and RF models in all datasets. The maximum (best)

F-measure value is 99%, achieved by DT and RF models in the PC1 dataset.

Table 6.1 Performance measures of the proposed models on the jm1 dataset

Proposed models Performance measures

Accuracy Precision Recall F-measure

DT 0.99 0.99 1.00 0.99

NB 0.80 0.81 0.97 0.89

RF 0.99 0.99 1.00 0.99

LR 0.81 0.82 0.99 0.89

Table 6.2 Performance measures of the proposed models on the pc1 dataset

Proposed models Performance measures

Accuracy Precision Recall F-measure

DT 0.99 0.99 1.00 1.00

NB 0.91 0.94 0.96 0.95

RF 0.99 0.99 1.00 1.00

LR 0.93 0.94 0.99 0.96

Table 6.3 Performance measures of the proposed models on the kc1 dataset

Proposed models Performance measures

Accuracy Precision Recall F-measure

DT 0.99 0.99 1.00 0.99

NB 0.85 0.88 0.96 0.92

RF 0.99 0.99 1.00 0.99

LR 0.85 0.87 0.96 0.92

Table 6.4 Performance measures of the proposed models on the kc2 dataset

Proposed models Performance measures

Accuracy Precision Recall F-measure

DT 0.98 0.98 1.00 0.99

NB 0.83 0.83 0.98 0.90

RF 0.98 0.98 1.00 0.99

LR 0.84 0.86 0.96 0.91

DOI 10.14750/ME.2024.012

42

Figures 6.1 to 6.4 present the Receiver Operating Characteristic (ROC) Curves for the proposed
models on the four data sets. The vertical axis presents the actual positive rate of the model,
and the horizontal axis illustrates the false positive rate. The AUC is a sign of the performance
of the model. The larger AUC is, the better the model performance will be. Based on the
Figures, the values are encouraging and indicate our proposed model’s efficiency in SBP.
Regarding the jm1 dataset, the best AUC is 97%, which the DT and RF models obtain. The
worst AUC is 52% which is obtained by the NB and LR models. Regarding the pc1 dataset,
the best AUC is 96% which the DT and RF models obtain. The worst AUC is 54%, which the
NB model obtains. Regarding the kc1 dataset, the best AUC is 96% which the DT and RF
models obtain. The worst AUC is 59%, which the LR model obtains. Regarding the kc2 dataset,
the best AUC is 96%, which the DT and RF models obtain. The worst AUC is 60%, which the
NB model obtains. The results show that DT and RF models have better AUC values than NB
and LR models.

Figure 6.1 Comparison of ROC curves for Models Across the jm1 Dataset

Figure 6.2 Comparison of ROC curves for Models Across the pc1 Dataset

DOI 10.14750/ME.2024.012

43

Figure 6.3 Comparison of ROC curves for Models Across the kc1 Dataset

Figure 6.4 Comparison of ROC curves for Models Across the kc2 Dataset

Tables 6.5 and 6.6 show our study's comparison results with previous studies that used the

same dataset based on performance measures, namely accuracy, precision, recall and f-

measure. The best values are indicated with bold text and "- "to indicate the approaches that

did not provide results in a particular data set. According to the Tables, some of the results in

the previous studies are better than ours. Still, in most cases, our method outperforms the other

state-of-the-art methods and provides better predictive performance.

Table 6.5 Comparing the results of our study with the results of studies that used the same dataset and

algorithms across the jm1 and pc1 dataset

jm1 dataset

Performance

measure

ML

models

Studies

First study[82] Second study[114] Third study[10] Our study

Accuracy

DT - - 0.81 0.99

NB - - 0.81 0.80

RF - - 0.82 0.99

F-measure

DT - - 0.90 0.99

NB 0.75 - 0.89 0.89

RF 0.76 - 0.90 0.99

DOI 10.14750/ME.2024.012

44

LR 0.74 - - 0.89

pc1 dataset

Accuracy

DT - - 0.93 0.99

NB - - 0.88 0.91

RF - - 0.93 0.99

F-measure

DT - - 0.97 1.00

NB 0.89 - 0.94 0.95

RF 0.91 - 0.97 1.00

LR 0.91 - - 0.96

Table 6.6 Comparing the results of our study with the results of studies that used the same dataset and

algorithms across the kc1 and kc2 datasets

kc1 dataset

Performance

measure

ML

models

Studies

First study[82] Second study[114] Third study[10] Our study

Accuracy

DT - - 0.84 0.99

NB - 0.82 0.82 0.85

RF - - 0.85 0.99

Precision NB - 0.80 - 0.88

Recall NB - 0.83 - 0.96

F-measure

DT - - 0.92 0.99

NB 0.82 0.81 0.90 0.92

RF 0.82 - 0.92 0.99

LR 0.81 - - 0.92

kc2 dataset

Accuracy

DT - - 0.82 0.98

NB - - 0.84 0.83

RF - - 0.82 0.98

F-measure

DT - - 0.89 0.99

NB 0.80 - 0.90 0.90

RF 0.76 - 0.89 0.99

LR 0.79 - - 0.91

In summary, this research aimed to provide a comprehensive study on ML techniques in SBP,

and propose a method for SBP based on supervised ML algorithms. The results of the proposed

method were compared with some results presented in previous studies. When conducting the

literature review, we uncovered many papers delving into the realm of ML models for

predicting software bugs. Notably, our examination revealed that a predominant portion of

these studies employed ML techniques such as NB, ANNs and SVM for software bug

prediction. Additionally, it is worth noting that our review encompasses an array of research

papers, each contributing unique insights into the application and effectiveness of these ML

models in the context of bug prediction. Regarding evaluating the results obtained from our

proposed method and their comparison with the results of other studies, we conclude that the

DT and RF classifiers achieved commendable scores compared to other classifiers, and our

method outperforms other methods in predicting software bugs. The evaluation process and

the study's results unequivocally demonstrate the efficacy of ML algorithms in SBP.

Furthermore, this research underscores the need for additional investigation into the realm of

static code analysis, as it can potentially uncover and predect software bugs more

comprehensively. In our future work, we will combine ML techniques with data-balancing

method to improve the accuracy of SBP. By employing ML techniques coupled with advanced

data-balancing methods, we can not only enhance the accuracy of SBP but also pave the way

for more robust and reliable software development practices.

DOI 10.14750/ME.2024.012

45

6.2 LSTM and GRU with Undersampling Methods in SBP

In this sub-section, we discuss the findings of the second study. The goal was to present a

method based on combining two RNN models namely LSTM and GRU with the

Undersampling method (Near Miss) for SBP. The experiments have been conducted based on

benchmark datasets obtained from the public unified bug dataset. The experimental results

were evaluated and compared based on various performance measures (accuracy, precision,

recall, f-measure, MCC, AUC, AUCPR and MSE).

The performance of the prediction models is reported in Tables 6.7 to 6.9, and Figures 6.5 to

6.11, appendix 1 (Figures 1 and 2).

Table 6.7 shows the results of the LSTM and GRU models based on both the original and

balanced datasets, emphasising class-level measures.. Notably, we observed that both the

LSTM and GRU models attained the highest accuracy of 93% on the balanced dataset, while

the GRU model exhibited the lowest accuracy of 82% on the original dataset. In terms of

precision, the LSTM model achieved the highest value of 95% on the balanced dataset, while

the GRU model demonstrated the lowest precision of 58% on the original dataset. As for recall,

both models obtained the highest score of 92% on the balanced dataset, whereas the GRU

model exhibited the lowest recall of 16% on the original dataset. Both models achieved the

highest F-Measure score of 93% on the balanced dataset. However, the GRU model had the

lowest score of 26% on the original dataset. . Both models achieved the highest MCC of 86%

on the balanced dataset, whereas the GRU model had the lowest MCC of 23% on the original

dataset. The LSTM model attained the highest AUC score of 97% on the balanced dataset, and

the GRU model achieved the lowest score of 77% on the original dataset. On the balanced

dataset, both models demonstrated the highest AUCPR score of 97%, while the GRU model

exhibited the lowest AUCPR score of 44% on the original dataset. Additionally, the GRU

model recorded the highest MSE of 0.130 on the original dataset, while the LSTM model

achieved the lowest MSE of 0.051 on the balanced dataset.

Table 6.7 Performance measures for the proposed models over class level metrics dataset

Original Dataset

Proposed Models

Performance Measures

Accuracy Precision Recall F-measure MCC AUC AUCPR MSE

LSTM 0.83 0.60 0.25 0.35 0.30 0.78 0.48 0.125

GRU 0.82 0.58 0.16 0.26 0.23 0.77 0.44 0.130

Averages 0.82 0.59 0.20 0.30 0.26 0.77 0.46 0.130

Balanced Dataset

Proposed Models

Performance Measures

Accuracy Precision Recall F-measure MCC AUC AUCPR MSE

LSTM 0.93 0.95 0.92 0.93 0.86 0.97 0.97 0.051

GRU 0.93 0.94 0.92 0.93 0.86 0.96 0.97 0.063

Averages 0.93 0.94 0.92 0.93 0.86 0.96 0.97 0.057

Table 6.8 shows the results of LSTM and GRU models based on on the original and balanced

datasets, focusing on file-level metrics. Remarkably, both the LSTM and GRU models

achieved the highest accuracy of 88% on the balanced dataset. In contrast the lowest accuracy

of 78% was observed for both models (LSTM and GRU) on the original dataset. Furthermore,

the balanced dataset yielded the highest precision of 94% for both models (LSTM and GRU),

while the GRU model had the lowest precision of 61% on the original dataset. Regarding recall,

the balanced dataset produced the highest score of 81% for both models. Conversely, when

applied to the original dataset, the LSTM model achieved the lowest recall of 18%. Similarly,

DOI 10.14750/ME.2024.012

46

the balanced dataset resulted in the highest f-measure of 87% for both the LSTM and GRU

models. Conversely, the LSTM model exhibited the lowest f-measure of 28% when working

with the original dataset. Furthermore, both models (LSTM and GRU) attained the highest

MCC of 76% on the balanced dataset, while the LSTM model had the lowest MCC of 24% on

the original dataset. Similarly, the balanced dataset yielded the highest AUC of 93% for both

models (LSTM and GRU), while the original dataset yielded the lowest AUC of 75% for both

models (LSTM and GRU). Both models also achieved the highest AUCPR on the balanced

dataset, 95%, and the lowest AUCPR on the original dataset, 49%. In conclusion, both models

(LSTM and GRU) achieved the highest MSE of 0.152 on the original dataset, while the LSTM

model obtained the lowest MSE of 0.090 on the balanced dataset.

Table 6.8 Performance measures for the proposed models over file level metrics dataset

Original Dataset

Proposed Models

Performance Measures

Accuracy Precision Recall F-measure MCC AUC AUCPR MSE

LSTM 0.78 0.62 0.18 0.28 0.24 0.75 0.49 0.152

GRU 0.78 0.61 0.22 0.33 0.27 0.75 0.49 0.152

Averages 0.78 0.61 0.20 0.30 0.25 0.75 0.49 0.152

Balanced Dataset

Proposed Models

Performance Measures

Accuracy Precision Recall F-measure MCC AUC AUCPR MSE

LSTM 0.88 0.94 0.81 0.87 0.76 0.93 0.95 0.090

GRU 0.88 0.94 0.81 0.87 0.76 0.93 0.95 0.093

Averages 0.88 0.94 0.81 0.87 0.76 0.93 0.95 0.091

Boxplots are particularly useful for comparing distributions between group or visualizing

multiple datasets or subsets within a single dataset. Therefore, we aggregated the achieved

results to get a more accurate overview of the quality of the results using boxplots. Figure 6.5

displays Box plots, which effectively depict a ranges of performance measures for all datasets.

The ranges of performance measures (Accuracy, Precision, Recall, F-measure, MCC, AUC and

AUCPR) on the original datasets are 78% to 83%, 58% to 62%, 16% to 25%, 26% to 35%,

23% to 30%, 75% to 78%, 44% to 49%, respectively. While, the ranges of performance

measures (Accuracy, Precision, Recall, F-measure, MCC, AUC and AUCPR) on the balanced

datasets are 88% to 93%, 94% to 95%, 81% to 92%, 87% to 93%, 76% to 86%, 93% to 97%,

95% to 97%, respectively.

Figure 6.5 Showcases the boxplots illustrating the performance measures achieved by the proposed models on

all datasets, encompassing both class-level and file-level metrics

DOI 10.14750/ME.2024.012

47

Figures 6.6 to 6.9 show the training and validation accuracy and training and validation loss of

the models on the original and balanced datasets.

Figures 6.6 and 6.7 show the training and validation accuracy of the models on the original and

balanced datasets. The vertical axis presents the accuracy of the model, and the horizontal axis

illustrates the number of epochs. Accuracy is the fraction of predictions that our model

predicted right.

Regarding the original datasets, the LSTM model learned 83% accuracy for the class-level

metrics dataset and 78% accuracy for the file level metrics dataset dataset at the 100th epoch.

The GRU model learned 82% accuracy for the class level metrics dataset and 78% accuracy

for the file-level metrics dataset dataset at the 100th epoch.

Regarding the balanced datasets, the LSTM model learned 93% accuracy for the class-level

metrics dataset and 88% accuracy for the file-level metrics dataset dataset at the 100th epoch.

The GRU model, the model learned 93% accuracy for the class-level metrics dataset and 88%

accuracy for the file-level metrics dataset at the 100th epoch.

Figure 6.6 Represents the training and validation accuracy of the models across all datasets - class-level metrics

Figure 6.7 Represents the training and validation accuracy of the models across all datasets - file-level metrics

DOI 10.14750/ME.2024.012

48

Figures 6.8 and 6.9 show the training and validation loss of the models on the original and

balanced datasets. The vertical axis presents the loss of the model, and the horizontal axis

illustrates the number of epochs. The loss indicates how bad a model prediction was. Regarding

the original datasets, the LSTM model loss is 0.125 for the class-level metrics dataset and 0.152

for the file-level metrics dataset dataset at the 100th epoch. The GRU model loss is 0.130 for

the class-level metrics dataset and 0.152 for the file-level metrics dataset at the 100th epoch.

Regarding the balanced datasets, the LSTM model loss is 0.051 for the class level metrics

dataset and 0.090 for the file level metrics dataset dataset at the 100th epoch. The GRU model,

the model loss is 0.063 for the class-level metrics dataset and 0.093 for the file-level metrics

dataset at the 100th epoch. These Figures demonstrate a consistent trend of increasing accuracy

and decreasing loss as the number of epochs advances. The high accuracy achieved, and the

low loss obtained serve as evidence of the effective training and validation of the proposed

models.

Figure 6.8 Represents the training and validation loss of the models across all datasets - class-level metrics

Figure 6.9 Represents the training and validation loss of the models across all datasets - file-level metrics

DOI 10.14750/ME.2024.012

49

Figures 6.10 and 6.11 show the ROC curves of the model on the original and balanced datasets.

The vertical axis presents the actual positive rate of the model, and the horizontal axis illustrates

the false positive rate. The AUC is a sign of the performance of the model. The larger AUC is,

the better the model performance will be. Based on the Figures, the values are encouraging and

indicate our proposed models’ efficiency in SBP. Regarding the original datasets, the LSTM

model obtained the best AUC which is 78% on the class-level metrics data set. The worst AUC

obtained by both models (LSTM and GRU) which is 75% on the file-level metrics dataset.

Regarding the balanced datasets, the LSTM model obtained the best AUC which is 97% on the

class-level metrics data set. The worst AUC obtained by both models (LSTM and GRU) which

is 93% on the file-level metrics dataset. Further in appendix 1, Figures 1 and 2 display the

AUCPR scores obtained by the proposed models on the original and balanced datasets.

Figure 6.10 Illustrates the ROC Curves of the models across all datasets - class-level metrics

Figure 6.11 Illustrates the ROC Curves of the models across all datasets - file-level metrics

DOI 10.14750/ME.2024.012

50

Table 6.9 shows the comparison results of our method with some previous studies based on

some performance measures namely accuracy and AUC. The best values are indicated with

bold text and "- "to indicate the approaches that did not provide results in a particular data set.

The comprehensive findings, presented in Table 6.9, showed that while certain earlier studies

displayed higher values, our proposed method surpassed other techniques on most datasets.

This indicates the superior performance of our approach and its potential to outperform existing

methods in the context of software bug prediction. By conducting this rigorous evaluation and

providing empirical evidence, our study contributes valuable insights to the field and

underscores the effectiveness of our novel approach in improving bug prediction accuracy.

Table 6.9 Comparison of the proposed approach with other existing approaches based on the accuracy and AUC

Approaches Datasets Accuracy AUC

LSTM [2] JIRA dataset 0.89 -

NB[21] software fault datasets (DS1, DS2,

DS3)

0.89, 0.95, 0.95 -

DT[21] software fault datasets (DS1, DS2,

DS3)

0.95, 0.97, 0.99 -

ANNs[21] software fault datasets (DS1, DS2,

DS3)

0.93, 0.95, 0.96 -

LSTM[55] Bug report datasets (Eclipse Platform

UI, JDT)

0.67, 0.76 -

CNN and RF with

Boosting[60]

Bug report datasets (Mozilla, Eclipse,

JBoss, OpenFOAM, Firefox)

0.94, 0.95, 0.94,

0.98, 0.97

-

Defect prediction via

attention-based RNNs (DP-

ARNN)[84]

PROMISE datasets (Camel, Lucene,

Poi, Xerces, Jedit, Xalan, Synapse)

-

0.79, 0.68, 0.79,

0.76, 0.82, 0.67,

0.64

Credibility-based

imbalance boosting[115]

NASA datasets (CM1, KC1, PC1, JM1) - 0.72, 0.67, 0.85,

0.67

Defect prediction through

attention-based

GRU-LSTM[116]

Code4Bench for C/C++ code 0.69

-

Deep Neural

Networks[117]

Unified bug dataset (Bug drediction

Dataset, PROMISE dataset, GitHub

bug dataset)

-

0.81

Our models (LSTM, GRU) Unified Bug Dataset_ Balanced Dataset

(class-level)

0.93, 0.93 0.97, 0.96

Our models (LSTM, GRU) Unified Bug Dataset_ Balanced Dataset

(file-level)

0.88, 0.88 0.93, 0.93

In summary, the primary objective of this study was to present a method based on combining

two RNN models namely LSTM and GRU with the Undersampling method (Near Miss) for

SBP. We compared the results obtained by the proposed method based on the original and

balanced datasets to investigate the impact of Undersampling methods on improving the

accuracy of ML techniques. Additionally, the proposed method's results were compared with

those presented in previous studies. After comparing the results obtained by the proposed

models on the original datasets with results obtained by the proposed models on the balanced

datasets, as shown in the Tables and Figures, we note that the models got good scores on the

balanced datasets and the results improved further due to balancing, which indicated that the

combination of LSTM and GRU with the Undersampling method (Near Miss) positively

affects bug prediction performance in datasets with imbalanced class distributions. Moreover,

data sampling methods play an essential role in improving the accuracy of the ML models in

predicting software bug. Regarding evaluating the results obtained from our proposed method

DOI 10.14750/ME.2024.012

51

and their comparison with some results of other studies, we conclude that our models are

promising, competitive and outperform other models in the previous studies. Moving forward,

our future work aims to evaluate the robustness of the proposed method on a wide range of

datasets.

6.3 Bi-LSTM with Oversampling Methods in Software Defect Prediction (SDP)

In this sub-section, we discuss the findings of the third study, the goal was to present a method

based on combining a Bi-LSTM network with Oversampling methods (Random Oversampling

and SMOTE) for SDP. The experiments have been conducted based on benchmark datasets

obtained from the PROMISE repository. The experimental results were evaluated and

compared based on various performance measures (accuracy, precision, recall, f-measure,

MCC, AUC, AUCPR, and MSE).

The performance of the prediction model is reported in Tables 6.10 to 6.15, and Figures 6.12

to 6.21, appendix 2 (Figures 1,2,3).

According to Table 6.10: Accuracy for the various original datasets: the highest accuracy was

achieved by the proposed model on the jedit dataset, which is 97%. The lowest accuracy was

achieved by the proposed model on the ant dataset, which is 80%. Precision for the various

original datasets: the highest Precision was achieved by the proposed model on the log4j and

xerces datasets, which is 95%. The proposed model achieved the lowest Precision on the jedit

dataset, 0%. Recall for the various original datasets: the highest Recall was achieved by the

proposed model on the log4j dataset, which is 100%. The lowest Recall was achieved by the

proposed model on the jedit dataset, which is 0%. F-Measure for the various original datasets:

the highest F-Measure was achieved by the proposed model on the log4j dataset, which is 97%.

The lowest F-Measure was achieved by the proposed model on the jedit dataset, which is 0%.

MCC for the various original datasets: the highest MCC was achieved by the proposed model

on the xerces dataset, which is 75%. The lowest MCC was achieved by the proposed model on

the jedit and log4j datasets, which is 0%. AUC for the various original datasets: the highest

AUC was achieved by the proposed model on the xerces dataset, 94%. The lowest AUC was

achieved by the proposed model on the log4j dataset, which is 60%. AUCPR for the various

original datasets: the highest AUCPR was achieved by the proposed model on the xerces

dataset, 98%. The lowest AUCPR was achieved by the proposed model on the jedit dataset,

which is 29%. MSE for the various original datasets: the highest MSE was achieved by the

proposed model on the ant dataset, which is 0.152. The lowest MSE was achieved by the

proposed model on the jedit dataset, which is 0.030.

Table 6.10 Performance analysis for proposed Bi-LSTM Network - Original Datasets

Datasets

Performance Measures

Accuracy Precision Recall F-Measure MCC AUC AUCPR MSE

ant 0.80 0.50 0.50 0.50 0.37 0.79 0.48 0.152
camel 0.82 0.56 0.28 0.37 0.30 0.69 0.37 0.146

ivy 0.87 0.50 0.22 0.31 0.27 0.72 0.40 0.105
jedit 0.97 0.00 0.00 0.00 0.00 0.85 0.29 0.030
log4j 0.95 0.95 1.00 0.97 0.00 0.60 0.96 0.041

xerces 0.91 0.95 0.92 0.94 0.75 0.94 0.98 0.075

Averages 0.88 0.57 0.48 0.51 0.28 0.76 0.58 0.091

According to Table 6.11: Accuracy for the various balanced datasets using Random

Oversampling: the highest accuracy was achieved by the proposed model on the jedit and log4j

DOI 10.14750/ME.2024.012

52

datasets, which is 99%. The lowest accuracy was achieved by the proposed model on the ivy

dataset, which is 90%. Precision for the various balanced datasets using Random

Oversampling: The highest Precision was achieved by the proposed model on the log4j dataset,

which is 100%. The proposed model on the ivy dataset achieved the lowest Precision, which is

82%. Recall for the various balanced datasets using Random Oversampling: The highest Recall

was achieved by the proposed model on the ivy and jedit datasets, which is 100%. The lowest

Recall was achieved by the proposed model on the xerces dataset, which is 92%. F-Measure

for the various balanced datasets using Random Oversampling: the highest F-Measure was

achieved by the proposed model on the jedit and log4j datasets, which is 99%. The lowest F-

Measure was achieved by the proposed model on the ivy dataset, which is 90%. MCC for the

various the various balanced datasets using Random Oversampling: the highest MCC was

achieved by the proposed model on the jedit and log4j datasets, which is 97%. The lowest MCC

was achieved by the proposed model on the camel and ivy datasets, which is 81%. AUC for the

various balanced datasets using Random Oversampling: The highest AUC was achieved by the

proposed model on the jedit and log4j datasets, which is 99%. The lowest AUC was achieved

by the proposed model on the camel and ivy datasets, which is 93%. AUCPR for the various

balanced datasets using Random Oversampling: the highest AUCPR was achieved by the

proposed model on the jedit and log4j datasets, which is 99%. The lowest AUCPR was

achieved by the proposed model on the ivy dataset, which is 86%. MSE for the various balanced

datasets using Random Oversampling: the highest MSE was achieved by the proposed model

on the ivy dataset, which is 0.092. The lowest MSE was achieved by the proposed model on

the jedit dataset, which is 0.009.

Table 6.11 Performance analysis for proposed Bi-LSTM Network - Balanced Datasets using Random

Oversampling Technique

Datasets

Performance Measures

Accuracy Precision Recall F-Measure MCC AUC AUCPR MSE

ant 0.91 0.89 0.94 0.91 0.82 0.95 0.93 0.073
camel 0.91 0.87 0.98 0.92 0.81 0.93 0.92 0.082

Ivy 0.90 0.82 1.00 0.90 0.81 0.93 0.86 0.092
jedit 0.99 0.98 1.00 0.99 0.97 0.99 0.99 0.009
log4j 0.99 1.00 0.98 0.99 0.97 0.99 0.99 0.012

xerces 0.95 0.98 0.92 0.95 0.89 0.97 0.98 0.049

Averages 0.94 0.92 0.97 0.94 0.87 0.96 0.94 0.052

According to Table 6.12: Accuracy for the various balanced datasets using SMOTE: the highest

accuracy was achieved by the proposed model on the log4j dataset, which is 100%. The

proposed model achieved the lowest accuracy on the ant dataset, 84%. Precision for the various

balanced datasets using SMOTE: The highest Precision was achieved by the proposed model

on the log4j dataset, which is 100%. The lowest Precision was achieved by the proposed model

on the ant dataset, which is 81%. Recall for the various balanced datasets using SMOTE: the

highest Recall was achieved by the proposed model on the jedit and log4j datasets, which is

100%. The lowest Recall was achieved by the proposed model on the ant and camel datasets,

which is 88%. F-Measure for the various balanced datasets using SMOTE: the highest F-

Measure was achieved by the proposed model on the log4j dataset, which is 100%. The lowest

F-Measure was achieved by the proposed model on the ant dataset, which is 85%. MCC for

the various balanced datasets using SMOTE: the highest MCC was achieved by the proposed

model on the log4j dataset, which is 100%. The lowest MCC was achieved by the proposed

model on the ant dataset, which is 67%. AUC for the various balanced datasets using SMOTE:

DOI 10.14750/ME.2024.012

53

the highest AUC was achieved by the proposed model on the log4j dataset, which is 100%.

The lowest AUC was achieved by the proposed model on the ant dataset, which is 90%.

AUCPR for the various balanced datasets using SMOTE: the highest AUCPR was achieved by

the proposed model on the log4j dataset, which is 100%. The lowest AUCPR was achieved by

the proposed model on the ant and camel datasets, which is 91%. MSE for the various balanced

datasets using SMOTE: the highest MSE was achieved by the proposed model on the ant

dataset, which is 0.124. The lowest MSE was achieved by the proposed model on the log4j

dataset, which is 0.001.

Table 6.12 Performance analysis for proposed Bi-LSTM Network - Balanced Datasets using SMOTE Technique

Datasets

Performance Measures

Accuracy Precision Recall F-Measure MCC AUC AUCPR MSE

Ant 0.84 0.81 0.88 0.85 0.67 0.90 0.91 0.124
camel 0.87 0.89 0.88 0.89 0.74 0.91 0.91 0.113

Ivy 0.89 0.83 0.97 0.89 0.78 0.94 0.92 0.101
Jedit 0.99 0.98 1.00 0.99 0.97 0.99 0.99 0.011
log4j 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.001

xerces 0.93 0.93 0.92 0.93 0.85 0.96 0.97 0.067

Averages 0.92 0.90 0.94 0.92 0.83 0.95 0.95 0.069

Table 6.13 presents the statistical analysis results (paired t-test) of the proposed model on the

original and balanced datasets (using Random Oversampling and SMOTE) in terms of mean,

Standard Deviation (STD), min, max, and P value. We notice that the mean values of the Bi-

LSTM model are 0.88 on the original datasets, 0.94 on the balanced datasets using Random

Oversampling, and 0.92 on the balanced datasets using SMOTE. The STD values of the Bi-

LSTM model are 0.06 on the original datasets, 0.04 on the balanced datasets using Random

Oversampling, and 0.06 on the balanced datasets using SMOTE. The Min values of the Bi-

LSTM model are 0.80 on the original datasets, 0.90 on the balanced datasets using Random

Oversampling, and 0.84 on the balanced datasets using SMOTE. The Max values of the Bi-

LSTM model are 0.97 on the original datasets, 0.99 on the balanced datasets using Random

Oversampling, and 1.00 on the balanced datasets using SMOTE. The P value of the Bi-LSTM

model is 0.01 on the original and balanced datasets using Random Oversampling and 0.00 on

the original and balanced datasets using SMOTE. Based on the P value of the model on the

original and balanced data sets, we note that the P value is less than 0.05, which indicates a

difference between the results of the model on the original and balanced data sets.

Table 6.13 Comparison of the results of the proposed Bi-LSTM Model based on the original and balanced

datasets in terms of accuracy using paired t-test

Paired t-test Original

Datasets

Balanced Datasets using

Random Oversampling

Original

Datasets

Balanced Datasets

using SMOTE

Mean 0.88 0.94 0.88 0.92

STD 0.06 0.04 0.06 0.06

Min 0.80 0.90 0.80 0.84

Max 0.97 0.99 0.97 1.00

P value 0.01 0.00

We used Boxplots to aggregate the achieved results to get a more accurate overview of the

quality of the results. Figure 6.12 shows the Box plots for the performance measures (Accuracy,

Precision, Recall, F-measure, MCC, AUC, AUCPR, and MSE) on the original and balanced

datasets: The averages of (Accuracy, Precision, Recall, F-measure, MCC, AUC, AUCPR, and

DOI 10.14750/ME.2024.012

54

MSE) on the original datasets are 0.88, 0.57, 0.48, 0.51, 0.28, 0.76, 0.58, and 0.091,

respectively. The averages of (Accuracy, Precision, Recall, F-measure, MCC, AUC, AUCPR,

and MSE) on the balanced data sets (using Random Oversampling) are 0.94, 0.92, 0.97, 0.94,

0.87, 0.96, 0.94, and 0.052, respectively. The averages of (Accuracy, Precision, Recall, F-

measure, MCC, AUC, AUCPR, and MSE) on the balanced data sets (using SMOTE) are 0.92,

0.90, 0.94, 0.92, 0.83, 0.95, 0.95, and 0.069, respectively.

Figure 6.12 Boxplots represent performance measures obtained by the model on the original and balanced

datasets

Figures 6.13 to 6.18 show the training and validation accuracy and training and validation loss

of the model on the original and balanced datasets.

Figures 6.13, 6.14, and 6.15 show the training and validation accuracy of the model on the

original and balanced datasets. The vertical axis presents the accuracy of the model, and the

horizontal axis illustrates the number of epochs. Accuracy is the fraction of predictions that our

model predicted right.

Figure 6.13 shows the accuracy values of the model on the original datasets. From the Figure,

the model learned 80% accuracy for the ant dataset, 82% accuracy for the camel dataset, 87%

accuracy for the ivy dataset, 97% accuracy for the jedit dataset, 95% accuracy for the log4j

dataset, and 91% accuracy for xerces dataset at the 100th epoch.

DOI 10.14750/ME.2024.012

55

Figure 6.13 Training and validation accuracy for the original datasets

Figure 6.14 shows the accuracy values of the model on the balanced datasets (using Random

Oversampling). From the Figure, the model learned 91% accuracy for the ant dataset, 91%

accuracy for the camel dataset, 90% accuracy for the ivy dataset, 99% accuracy for the jedit

dataset, 99% accuracy for the log4j dataset, and 95% accuracy for xerces dataset at the 100th

epoch.

Figure 6.14 Training and validation accuracy for the balanced datasets - Random Oversampling

Figure 6.15 shows the accuracy values of the model on the balanced datasets (using SMOTE).

From the Figure, the model learned 84% accuracy for the ant dataset, 87% accuracy for the

camel dataset, 89% accuracy for the ivy dataset, 99% accuracy for the jedit dataset, 100%

accuracy for the log4j dataset, and 93% accuracy for xerces dataset at the 100th epoch.

DOI 10.14750/ME.2024.012

56

Figure 6.15 Training and validation accuracy for the balanced datasets – SMOTE

Figures 6.16, 6.17, and 6.18 show the training and validation loss of the model on the original

and balanced datasets. The vertical axis presents the loss of the model, and the horizontal axis

illustrates the number of epochs. The loss indicates how bad a model prediction was.

Figure 6.16 shows the loss values of the model on the original datasets. From the Figure, the

model loss is 0.152 for the ant dataset, 0.146 for the camel dataset, 0.105 for the ivy dataset,

0.030 for the jedit dataset, 0.041 for the log4j dataset, and 0.075 for the xerces dataset at the

100th epoch.

Figure 6.16 Training and validation loss for the original datasets

Figure 6.17 shows the loss values of the model on the balanced datasets (using Random

Oversampling). From the Figure, the model loss is 0.073 for the ant dataset, 0.082 for the camel

dataset, 0.092 for the ivy dataset, 0.009 for the jedit dataset, 0.012 for the log4j dataset, and

0.049 for the xerces dataset at the 100th epoch.

DOI 10.14750/ME.2024.012

57

Figure 6.17 Training and validation loss for the balanced datasets - Random Oversampling

Figure 6.18 shows the loss values of the model on the balanced datasets (using SMOTE). From

the Figure, the model loss is 0.124 for the ant dataset, 0.113 for the camel dataset, 0.101 for

the ivy dataset, 0.011 for the jedit dataset, 0.001 for the log4j dataset, and 0.067 for the xerces

dataset at the 100th epoch. As shown in the Figures, the accuracy of training and validation

increases, and the loss decreases with increasing epochs. Regarding the high accuracy and low

loss obtained by the proposed model, we note that the model is well-trained and validated.

Figure 6.18 Training and validation loss for the balanced datasets - SMOTE

Figures 6.19 to 6.21 show the ROC curves of the model on the original and balanced datasets.

The vertical axis presents the actual positive rate of the model, and the horizontal axis illustrates

the false positive rate. The AUC is a sign of the performance of the model. The larger AUC is,

the better the model performance will be. Based on the Figures, the values are encouraging and

indicate our proposed model efficiency in SDP. The best AUC obtained by the proposed model

in the original data sets is 94% on the xerces data set. The worst AUC is 60% on the log4j data

DOI 10.14750/ME.2024.012

58

set. The best AUC obtained by the proposed model in the balanced data sets (using Random

Oversampling) is 99% on the jedit and log4j data sets, while the worst AUC is 93% on the

camel and ivy data sets. The best AUC obtained by the proposed model in the balanced data

sets (using SMOTE) is 100% on the log4j data set, while the worst AUC is 90% on the ant data

set. Further in appendix 2, Figures 1 to 3 show the AUCPR of the model on the original and

balanced datasets.

Figure 6.19 ROC curves for the original datasets

Figure 6.20 ROC curves for the balanced datasets- Random Oversampling

DOI 10.14750/ME.2024.012

59

Figure 6.21 ROC curves for the balanced datasets- SMOTE

Table 6.14 shows the comparison of the results produced using our models with those obtained

using the baseline model (RF) based on six performance measures: accuracy precision, recall,

f-Measure, MCC, and AUC. We also compared the results produced using our model with

those obtained in previous studies based on six performance measures: accuracy precision,

recall, f-measure, MCC, and AUC. Table 6.15 compares the values of performance measures

obtained by our Bi-LSTM network and the performance values in previous studies. The best

values are indicated with bold text and "- " indicate the approaches that did not provide results

in a particular data set. According to Table 6.15, some of the results in the previous studies are

better than ours. Still, in most cases, our model outperforms the other state-of-the-art

approaches and provides better predictive performance.

Table 6.14 Performance measures of the baseline model (RF) and Bi-LSTM

Models

Datasets

Performance Measures

Accuracy Precision Recall F-Measure MCC AUC

RF

ant 0.81 0.53 0.53 0.53 0.41 0.70

camel 0.81 0.47 0.19 0.27 0.20 0.57

ivy 0.89 0.57 0.44 0.50 0.44 0.69

jedit 0.97 0.00 0.00 0.00 0.00 0.50

log4j 0.98 0.97 1.00 0.99 0.69 0.75

xerces 0.95 0.96 0.98 0.97 0.86 0.92

 Averages 0.90 0.58 0.52 0.54 0.43 0.58

Bi-LSTM with

Random

Oversampling

Technique

ant 0.91 0.89 0.94 0.91 0.82 0.95

camel 0.91 0.87 0.98 0.92 0.81 0.93

ivy 0.90 0.82 1.00 0.90 0.81 0.93

jedit 0.99 0.98 1.00 0.99 0.97 0.99

log4j 0.99 1.00 0.98 0.99 0.97 0.99

xerces 0.95 0.98 0.92 0.95 0.89 0.97

 Averages 0.94 0.92 0.97 0.94 0.87 0.96

Bi-LSTM with

SMOTE

Technique

ant 0.84 0.81 0.88 0.85 0.67 0.90

camel 0.87 0.89 0.88 0.89 0.74 0.91

ivy 0.89 0.83 0.97 0.89 0.78 0.94

jedit 0.99 0.98 1.00 0.99 0.97 0.99

log4j 1.00 1.00 1.00 1.00 1.00 1.00

xerces 0.93 0.93 0.92 0.93 0.85 0.96

 Averages 0.92 0.90 0.94 0.92 0.83 0.95

DOI 10.14750/ME.2024.012

60

Table 6.15 Comparison of the proposed Bi-LSTM with other existing approaches

Approaches

Datasets

Performance Measures

Accuracy Precision Recall F-

Measure

MCC AUC

CNN[7] ant, camel, ivy,

jedit, log4j,

xerces

0.85, 0.84,

0.95, 0.97,

0.97, 0.95

0.87, 0.81,

0.92, 0.94,

0.98, 0.93

0.82, 0.90,

0.98, 1.00,

0.98, 0.98

0.85, 0.85,

0.95, 0.97,

0.98, 0.95

0.69, 0.69,

0.90, 0.93,

0.94, 0.90

0.91, 0.90,

0.98, 0.96,

0.99, 0.98

GRU[7] ant, camel, ivy,

jedit, log4j,

xerces

0.83, 0.82,

0.95, 0.99,

0.96, 0.93

0.88, 0.82,

0.95, 0.98,

0.98, 0.92

0.81, 0.82,

0.95, 1.00,

0.95, 0.94

0.85, 0.82,

0.95, 0.99,

0.96, 0.93

0.67, 0.63,

0.90, 0.97,

0.91, 0.85

0.89, 0.87,

0.98, 1.00,

0.98, 0.97

LSTM[40] Unified bug

dataset (class-

level, file-level)

0.93, 0.88 0.95, 0.94 0.92, 0.81 0.93, 0.87 0.86, 0.76 0.97, 0.93

GRU[40] unified bug

dataset (class-

level, file-level)

0.93, 0.88 0.94, 0.94 0.92, 0.81 0.93, 0.87 0.86, 0.76 0.96, 0.93

Hybrid Neural

Network

model[46]

JEdit, IVY, Ant,

Camel

0.97, 0.88,

0.81, 0.81

1.00, 0.99,

0.93, 1.00

1.00, 0.88,

0.84, 0.81

0.98, 0.93,

0.88, 0.89

- -

LSTM[48] Camel 0.51 0.41 0.46 - -

LSTM[55] Bug report

datasets (Eclipse

platform UI and

JDT)

0.67, 0.76 0.70, 0.76 0.86, 1.00 0.77, 0.86 - -

CNN[79] ant, camel, ivy,

jedit, log4j

-

-

-

0.39, 0.52,

0.31, 0.00,

0.97

0.30, 0.42,

0.25, 0.00,

0.00

-

BPDET[81] CM1, JM1,

KC1, MC1,

PC1, MW1

-

-

-

0.84, 0.76,

0.83, 0.96,

0.92, 0.90

0.42, 0.23,

0.33, 0.14,

0.38, 0.33

0.75, 0.75,

0.81, 0.85,

0.88, 0.77

DP-ARNN[84] Camel, Xerces,

JEdit

- - - 0.51, 0.27,

0.56

- 0.79, 0.76,

0.82

LR[96] Ant, Camel,

IVY

- - - 0.52, 0.34,

0.30

- -

K-NN[96] Ant, Camel,

IVY

- - - 0.53, 0.37,

0.30

- -

MLP[96] Ant, Camel,

IVY

- - - 0.50, 0.38,

0.25

- -

SVM[96] Ant, Camel,

IVY

- - - 0.50,

0.084,

0.28

- -

CBIL[103] Camel, JEdit,

Xerces

- - - 0.93, 0.85,

0.95

- 0.96, 0.91,

0.98

LSTM[104] Camel, Jedit,

Log4j, Xerces

- - - 0.37, 0.44,

0.52, 0.26

- -

HyGRAR[106] JEdit, Ant 0.98, 0.96 0.70, 0.98 0.63, 0.85 - 0.81, 0.92

SPFCNN[107] CM1, JM1,

KC1, PC1,

MW1

-

-

-

-

0.85, 0.74,

0.78, 0.87,

0.80

0.92, 0.87,

0.88, 0.93,

0.90

Our model (Bi-

LSTM with

Random

Oversampling

Technique)

ant, camel, ivy,

jedit, log4j,

xerces

0.91, 0.91,

0.90, 0.99,

0.99, 0.95

0.89, 0.87,

0.82, 0.98,

1.00, 0.98

0.94, 0.98,

1.00, 1.00,

0.98, 0.92

0.91, 0.92,

0.90, 0.99,

0.99, 0.95

0.82, 0.81,

0.81, 0.97,

0.97, 0.89

0.95, 0.93,

0.93, 0.99,

0.99, 0.97

Our model (Bi-

LSTM with

SMOTE

Technique)

ant, camel, ivy,

jedit, log4j,

xerces

0.84, 0.87,

0.89, 0.99,

1.00, 0.93

0.81, 0.89,

0.83, 0.98,

1.00, 0.93

0.88, 0.88,

0.97, 1.00,

1.00, 0.92

0.85, 0.89,

0.89, 0.99,

1.00, 0.93

0.67, 0.74,

0.78, 0.97,

1.00, 0.85

0.90, 0.91,

0.94, 0.99,

1.00, 0.96

DOI 10.14750/ME.2024.012

61

In summary, this study aimed to present a method based on combining a Bi-LSTM network

with Oversampling methods (Random Oversampling and SMOTE) for SDP. We compared the

results obtained by the proposed method based on the original and balanced datasets to

investigate the impact of Oversampling methods on improving the accuracy of ML techniques.

Additionally, the proposed method's results were compared with those presented in previous

studies. After comparing the results obtained by the proposed model on the original datasets

with results obtained by the proposed model on the balanced datasets, as shown in the Tables

and Figures, we note that the model got good scores on the balanced datasets and the results

improved further due to balancing, which indicated that the combination of a Bi-LSTM

network with Oversampling methods (Random Oversampling and SMOTE) positively affects

defect prediction performance in datasets with imbalanced class distributions. Moreover, data

sampling methods play an essential role in improving the accuracy of ML models in SDP.

Regarding evaluating the results obtained from our proposed method and their comparison with

some results of other studies, we conclude that our model is promising in predicting software

defects and outperforms other models in the previous studies. Additionally, this research has

significant implications for software developers and practitioners who aim to improve software

quality and reduce the risk of defects in software systems.

6.4 CNN and GRU with Hybrid (combined)-Sampling Methods in SDP

In this sub-section, we discuss the findings of the fourth study. The goal was to propose a novel

SDP approach based on CNN and GRU combined with hybrid sampling method (SMOTE

Tomek) for SDP. The experiments were conducted based on benchmark datasets from the

PROMISE repository. The experimental results were evaluated and compared based on various

performance measures (accuracy, precision, recall, f-measure, MCC, AUC, AUCPR, and

MSE).

The performance of the prediction models is reported in Tables 6.16 to 6.25, and Figures 6.22

to 6.34, appendix 3 (Figures 1 to 4).

Table 6.16 Performance analysis for proposed CNN Model-Original Data sets

Datasets

Performance Measures

Accuracy Precision Recall F-Measure MCC AUC AUCPR MSE

ant 0.83 0.67 0.33 0.44 0.38 0.82 0.57 0.131
camel 0.82 0.62 0.14 0.23 0.23 0.74 0.39 0.136

ivy 0.90 0.67 0.44 0.53 0.49 0.81 0.53 0.086

jedit 0.96 0.00 0.00 0.00 0.01 0.83 0.07 0.037
log4j 0.95 0.95 1.00 0.97 0.00 0.46 0.93 0.048

xerces 0.94 0.94 0.99 0.96 0.83 0.95 0.98 0.049

Averages 0.90 0.64 0.48 0.52 0.32 0.76 0.57 0.081

Table 6.17 Performance analysis for proposed CNN Model-Balanced Datasets

Datasets

Performance Measures

Accuracy Precision Recall F-Measure MCC AUC AUCPR MSE

ant 0.85 0.87 0.82 0.85 0.69 0.91 0.92 0.117
camel 0.84 0.81 0.90 0.85 0.69 0.90 0.89 0.132

ivy 0.95 0.92 0.98 0.95 0.90 0.98 0.96 0.051
jedit 0.97 0.94 1.00 0.97 0.93 0.96 0.88 0.027
log4j 0.97 0.98 0.98 0.98 0.94 0.99 0.99 0.028

xerces 0.95 0.93 0.98 0.95 0.90 0.98 0.98 0.043

Averages 0.92 0.90 0.94 0.92 0.84 0.95 0.93 0.066

DOI 10.14750/ME.2024.012

62

Table 6.18 Performance analysis for proposed GRU Model-Original Data sets

Datasets

Performance Measures

Accuracy Precision Recall F-Measure MCC AUC AUCPR MSE

ant 0.81 0.52 0.47 0.49 0.37 0.73 0.47 0.152
camel 0.79 0.30 0.08 0.13 0.06 0.70 0.31 0.146

ivy 0.92 0.80 0.44 0.57 0.55 0.71 0.56 0.076
jedit 0.97 0.00 0.00 0.00 0.00 0.93 0.24 0.028
log4j 0.95 0.95 1.00 0.97 0.00 0.29 0.93 0.048

xerces 0.91 0.92 0.96 0.94 0.74 0.89 0.91 0.090

Averages 0.89 0.58 0.49 0.51 0.28 0.70 0.57 0.090

Table 6.19 Performance analysis for proposed GRU Model-Balanced Datasets

Datasets

Performance Measures

Accuracy Precision Recall F-Measure MCC AUC AUCPR MSE

ant 0.83 0.88 0.81 0.85 0.67 0.89 0.89 0.130
camel 0.82 0.82 0.82 0.82 0.63 0.87 0.84 0.144

ivy 0.95 0.95 0.95 0.95 0.90 0.98 0.99 0.055
jedit 0.99 0.98 1.00 0.99 0.97 1.00 1.00 0.026
log4j 0.96 0.98 0.95 0.96 0.91 0.98 0.98 0.073

xerces 0.93 0.92 0.94 0.93 0.85 0.97 0.98 0.064

Averages 0.91 0.92 0.91 0.91 0.82 0.94 0.94 0.082

Table 6.20 Performance analysis for proposed models based on precision and recall measures - CNN Model

Original Data sets

 Performance Measures

 Precision Recall

Defective

class

Non-defective

class

Defective

class

Non-defective

class

ant 0.67 0.85 0.33 0.96

camel 0.62 0.83 0.14 0.98

ivy 0.67 0.92 0.44 0.97

jedit 0.00 0.97 0.00 0.99

log4j 0.95 0.00 1.00 0.00

xerces 0.94 0.96 0.99 0.79

Averages 0.64 0.75 0.48 0.78

Balanced Datasets

Performance Measures

Precision Recall

Defective

class

Non-defective

class

Defective

class

Non-defective

class

ant 0.87 0.82 0.82 0.87

camel 0.81 0.89 0.90 0.79

ivy 0.92 0.98 0.98 0.91

jedit 0.94 1.00 1.00 0.94

log4j 0.98 0.97 0.98 0.97

xerces 0.93 0.98 0.98 0.93

Averages 0.90 0.94 0.94 0.90

Table 6.21 Performance analysis for proposed models based on precision and recall measures - GRU Model

Original Data sets

 Performance Measures

 Precision Recall

Defective

class

Non-defective

class

Defective

class

Non-defective

class

ant 0.52 0.87 0.47 0.89

camel 0.30 0.82 0.08 0.96

ivy 0.80 0.92 0.44 0.98

jedit 0.00 0.97 0.00 1.00

log4j 0.95 0.00 1.00 0.00

DOI 10.14750/ME.2024.012

63

xerces 0.92 0.85 0.96 0.76

Averages 0.58 0.73 0.49 0.76

Balanced Datasets

Performance Measures

Precision Recall

Defective

class

Non-defective

class

Defective

class

Non-defective

class

ant 0.88 0.79 0.81 0.86

camel 0.82 0.82 0.82 0.82

ivy 0.95 0.95 0.95 0.95

jedit 0.98 1.00 1.00 0.98

log4j 0.98 0.94 0.95 0.97

xerces 0.92 0.94 0.94 0.91

Averages 0.92 0.90 0.91 0.91

Table 6.22 Summarizes the range of measures values for the proposed models on the original and balanced

datasets

Model Accuracy Precision Recall F-measure MCC AUC AUCPR MSE

CNN model on

the original

datasets

0.82 to 0.96 0.00 to

0.95

0.00 to

1.00

0.00 to

0.97

0.00 to

0.83

0.46 to

0.95

0.07 to

0.98

0.037 to

0.136

CNN model on

the balanced

datasets

0.84 to 0.97 0.81 to

0.98

0.82 to

1.00

0.85 to

0.98

0.69 to

0.94

0.90 to

0.99

0.88 to

0.99

0.027 to

0.132

GRU model on

the original

datasets

0.79 to 0.97 0.00 to

0.95

0.00 to

1.00

0.00 to

0.97

0.00 to

0.74

0.29 to

0.93

0.24 to

0.93

00.028

to 0.152

GRU model on

the balanced

datasets

0.82 to 0.99 0.82 to

0.98

0.81 to

1.00

0.82 to

0.99

0.63 to

0.97

0.87 to

1.00

0.84 to

1.00

0.026 to

0.144

Table 6.23 presents the statistical analysis results (paired t-test) of proposed models on the

original and balanced datasets regarding mean, Standard Deviation (STD), min, max, and P

value. We notice that the mean values of the CNN model are 0.90 on the original datasets and

0.92 on the balanced datasets, while the mean values of the GRU model are 0.89 on the original

datasets and 0.91 on the balanced datasets. The STD values of the CNN model are 0.06 on the

original datasets and 0.06 on the balanced datasets, while the STD values of the GRU model

are 0.07 on the original datasets and 0.07 on the balanced datasets. The Min values of the CNN

model are 0.82 on the original datasets and 0.84 on the balanced datasets, while the Min values

of the GRU model are 0.79 on the original datasets and 0.82 on the balanced datasets. The Max

values of the CNN model are 0.96 on the original datasets and 0.97 on the balanced datasets,

while the Max values of the GRU model are 0.97 on the original datasets and 0.99 on the

balanced datasets. The P value of the CNN model is 0.015 based on the original and balanced

datasets, while the P value of the GRU model is 0.000 based on the original and balanced

datasets. Based on the P value of both models on the original and balanced data sets, we note

that the P value is less than 0.05, indicating a difference between the results of the models on

the original and balanced data sets.

DOI 10.14750/ME.2024.012

64

Table 6.23 Comparison of the proposed models in terms of accuracy using paired t-test

Paired t-test

CNN Model GRU Model

Original

Datasets

Balanced

Datasets

Original

Datasets

Balanced

Datasets

Mean 0.90 0.92 0.89 0.91

STD 0.06 0.06 0.07 0.07

Min 0.82 0.84 0.79 0.82

Max 0.96 0.97 0.97 0.99

P value 0.015 0.000

We used Boxplots to aggregate the achieved results to get a more accurate overview of the

quality of the results. Figure 6.22 shows the Box plots of performance measures for the original

and balanced datasets (Accuracy, Precision, Recall, F-measure, MCC, AUC, AUCPR, and

MSE). The CNN model averages on the original datasets (Accuracy, Precision, Recall, F-

measure, MCC, AUC, AUCPR, and MSE) are 0.90, 0.64, 0.48, 0.52, 0.32, 0.76, 0.57, and

0.081, respectively. The CNN model averages on the balanced data sets (Accuracy, Precision,

Recall, F-measure, MCC, AUC, AUCPR, and MSE) are 0.92, 0.90, 0.94, 0.92, 0.84, 0.95, 0.93,

and 0.066, respectively. The GRU model averages on the original datasets (Accuracy,

Precision, Recall, F-measure, MCC, AUC, AUCPR, and MSE) are 0.89, 0.58, 0.49, 0.51, 0.28,

0.70, 0.57, and 0.090, respectively. The averages of (Accuracy, Precision, Recall, F-measure,

MCC, AUC, AUCPR, and MSE) of the GRU model on the balanced data sets are 0.91, 0.92,

0.91, 0.91, 0.82, 0.94, 0.94, and 0.082, respectively.

Figure 6.22 Boxplots represent performance measures obtained by proposed models on all datasets

Figures 6.23 to 6.30 show the training and validation accuracy and training and validation loss

of the models on the original and balanced datasets.

Figures 6.23 to 6.26 show the training and validation accuracy of the models. The vertical axis

presents the accuracy of the model, and the horizontal axis illustrates the number of epochs.

Accuracy is the fraction of predictions that our model predicted right.

Figure 6.23 shows the accuracy values of the CNN model on the original data sets. The

accuracy values are 0.83 on the ant data set, 0.82 on the camel data set, 0.90 on the ivy data set,

0.96 on the jedit data set, 0.95 on the log4j data set, and 0.94 on the xerces data set.

DOI 10.14750/ME.2024.012

65

Figure 6.23 Training and Validation Accuracy for the original data sets - CNN model

Figure 6.24 shows the accuracy values of the CNN model on the balanced data sets. The

accuracy values are 0.85 on the ant data set, 0.84 on the camel data set, 0.95 on the ivy data set,

0.97 on the jedit data set, 0.97 on the log4j data set, and 0.95 on the xerces data set.

Figure 6.24 Training and Validation Accuracy for the balanced data sets - CNN model

Figure 6.25 shows the accuracy values of the GRU model on the original data sets. The

accuracy values are 0.81 on the ant data set, 0.79 on the camel data set, 0.92 on the ivy data

set, 0.97 on the jedit data set, 0.95 on the log4j data set, and 0.91 on the xerces data set.

DOI 10.14750/ME.2024.012

66

Figure 6.25 Training and Validation Accuracy for the original data sets - GRU model

Figure 6.26 shows the accuracy values of the GRU model on the balanced datasets. The

accuracy values are 0.83 on the ant data set, 0.82 on the camel data set, 0.95 on the ivy data set,

0.99 on the jedit data set, 0.96 on the log4j data set, and 0.93 on the xerces data set.

Figure 6.26 Training and Validation Accuracy for the balanced data sets - GRU model

Figures 6.27 to 6.30 show the training and validation loss of the models. The vertical axis

presents the loss of the model, and the horizontal axis illustrates the number of epochs. The

loss indicates how bad a model prediction was.

Figure 6.27 shows the loss values of the CNN model on the original data sets. The loss values

are 0.131 on the ant data set, 0.136 on the camel data set, 0.086 on the ivy data set, 0.037 on

the jedit data set, 0.048 on the log4j data set, and 0.049 on the xerces data set.

DOI 10.14750/ME.2024.012

67

Figure 6.27 Training and Validation Loss for the original data sets - CNN model

Figure 6.28 shows the loss values of the CNN model on the balanced data sets. The loss values

are 0.117 on the ant data set, 0.132 on the camel data set, 0.051 on the ivy data set, 0.027 on

the jedit data set, 0.028 on the log4j data set, and 0.043 on the xerces data set.

Figure 6.28 Training and Validation Loss for the balanced data sets - CNN model

Figure 6.29 shows the loss values of the GRU model on the original data sets. The loss values

are 0.152 on the ant data set, 0.146 on the camel data set, 0.076 on the ivy data set, 0.028 on

the jedit data set, 0.048 on the log4j data set, and 0.090 on the xerces data set.

DOI 10.14750/ME.2024.012

68

Figure 6.29 Training and Validation Loss for the original data sets - GRU model

Figure 6.30 shows the loss values of the GRU model on the balanced data sets. The loss values

are 0.130 on the ant data set, 0.144 on the camel data set, 0.055 on the ivy data set, 0.026 on

the jedit data set, 0.073 on the log4j data set, and 0.064 on the xerces data set. As shown in the

Figures, the accuracy of training and validation increases, and the loss decreases with

increasing epochs. Regarding the high accuracy and low loss obtained by the proposed models,

we note that the models are well-trained and validated.

Figure 6.30 Training and Validation Loss for the balanced data sets - GRU model

Figures 6.31 to 6.34 show the ROC curves of the models on the original and balanced datasets.

The vertical axis presents the actual positive rate of the model, and the horizontal axis illustrates

the false positive rate. The AUC is a sign of the performance of the model. The larger the AUC

is, the better the model performance will be. Based on the Figures, the values are encouraging

and indicate our proposed model’s efficiency in SDP.

Figure 6.31 shows the AUC values of the CNN model on the original data sets. The best AUC

obtained is 95% on the xerces data set, while the worst AUC is 46% on the log4j data set.

DOI 10.14750/ME.2024.012

69

Figure 6.31 ROC curves for the original data sets - CNN model

Figure 6.32 shows the AUC values of the CNN model on the balanced data sets. The best AUC

obtained is 99% on the log4j and xerces data sets, while the worst AUC is 90% on the camel

data set.

Figure 6.32 ROC curves for the balanced data sets - CNN model

Figure 6.33 shows the AUC values of the GRU model on the original data sets. The best AUC

obtained is 93% on the jedit data set, while the worst AUC is 29% on the log4j data set.

DOI 10.14750/ME.2024.012

70

Figure 6.33 ROC curves for the original data sets - GRU model

Figure 6.34 shows the AUC values of the GRU model on the balanced data sets. The best AUC

obtained is 100% on the jedit data set, while the worst AUC is 87% on the camel data set.

Further, in appendix 3, Figures 1 to 4 show the AUCPR of the models on the original and

balanced datasets.

Figure 6.34 ROC curves for the balanced data sets - GRU model

Table 6.24 shows the comparison of the results produced using our models with those obtained

using the baseline model (RF) based on six performance measures: accuracy precision, recall,

f-Measure, MCC, and AUC. According to Table 6.24, our models outperform the baseline

model in some datasets. We also compared the results produced using our models with those

obtained in previous studies based on six performance measures: accuracy precision, recall, f-

Measure, MCC, and AUC. Table 6.25 compares the performance measures obtained by our

models and the performance values in previous studies. The best values are indicated with bold

DOI 10.14750/ME.2024.012

71

text and "- "to indicate the approaches that did not provide results in a particular data set.

According to Table 6.25, some of the results in the previous studies are better than ours. Still,

in most cases, our models outperform the state-of-the-art approaches and provide better

predictive performance.

Table 6.24 Performance measures of the baseline model (RF) and proposed models

Models

Datasets

 Performance Measures

Accuracy Precision Recall F-Measure MCC AUC

RF

ant 0.83 0.57 0.57 0.57 0.45 0.72

camel 0.82 0.56 0.28 0.37 0.30 0.61

ivy 0.90 0.67 0.44 0.53 0.49 0.70

jedit 0.97 0.00 0.00 0.00 0.00 0.50

log4j 0.98 0.97 1.00 0.99 0.69 0.75

xerces 0.95 0.95 0.99 0.97 0.86 0.90

 Averages 0.90 0.62 0.54 0.57 0.46 0.69

CNN with SMOTE

Tomek

ant 0.85 0.87 0.82 0.85 0.69 0.91

camel 0.84 0.81 0.90 0.85 0.69 0.90

ivy 0.95 0.92 0.98 0.95 0.90 0.98

jedit 0.97 0.94 1.00 0.97 0.93 0.96

log4j 0.97 0.98 0.98 0.98 0.94 0.99

xerces 0.95 0.93 0.98 0.95 0.90 0.98

 Averages 0.92 0.90 0.94 0.92 0.84 0.95

GRU with SMOTE

Tomek

ant 0.83 0.88 0.81 0.85 0.67 0.89

camel 0.82 0.82 0.82 0.82 0.63 0.87

ivy 0.95 0.95 0.95 0.95 0.90 0.98

jedit 0.99 0.98 1.00 0.99 0.97 1.00

log4j 0.96 0.98 0.95 0.96 0.91 0.98

xerces 0.93 0.92 0.94 0.93 0.85 0.97

 Averages 0.91 0.92 0.91 0.91 0.82 0.94

Table 6.25 Comparison of the proposed models with other existing approaches

Approaches

Datasets

 Performance Measures

Accuracy Precision Recall F-Measure MCC AUC

Hybrid Neural

Network

model[46]

JEdit, IVY,

Ant, Camel

0.97, 0.88,

0.81, 0.81

1.00, 0.99,

0.93, 1.00

1.00, 0.88,

0.84, 0.81

0.98, 0.93,

0.88, 0.89

- -

LSTM[48] Camel - 0.51 0.41 0.46 - -

CNN[80] ant, camel,

ivy, jedit,

log4j

-

-

-

0.39, 0.52,

0.31, 0.00,

0.97

0.30, 0.42,

0.25, 0.00,

0.00

-

BPDET[82] CM1, JM1,

KC1, MC1,

PC1, MW1

-

-

-

0.84, 0.76,

0.83, 0.96,

0.92, 0.90

0.42, 0.23,

0.33, 0.14,

0.38, 0.33

0.75, 0.75,

0.81, 0.85,

0.88, 0.77

DP-ARNN[84] Camel,

Xerces, JEdit

- - - 0.51, 0.27,

0.56

-

0.79, 0.76,

0.82

RF[87]

ant, camel,

ivy, jedit

-

-

-

-

0.42, 0.20,

0.24, 0.26

-

DT[87]

ant, camel,

ivy, jedit

-

-

-

-

0.29, 0.18,

0.20, 0.12

-

LR[96] Ant, Camel,

IVY

- - - 0.52, 0.34,

0.30

- -

K-NN[96] Ant, Camel,

IVY

- - - 0.53, 0.37,

0.30

- -

MLP[96] Ant, Camel,

IVY

- - - 0.50, 0.38,

0.25

- -

DOI 10.14750/ME.2024.012

72

SVM[96] Ant, Camel,

IVY

- - - 0.50, 0.084,

0.28

- -

CBIL[103] Camel, JEdit,

Xerces

- - - 0.93, 0.85,

0.95

-

0.96, 0.91,

0.98

DP-LSTM[104] Camel, Jedit,

Log4j, Xerces

- - - 0.37, 0.44,

0.52, 0.26

- -

HyGRAR[106] JEdit, Ant 0.98, 0.96 0.70, 0.98 0.63, 0.85 - - 0.81, 0.92

SPFCNN[107] CM1, JM1,

KC1, PC1,

MW1

-

-

-

-

0.85, 0.74,

0.78, 0.87,

0.80

0.92, 0.87,

0.88, 0.93,

0.90

CNN with

SMOTE Tomek

ant, camel,

ivy, jedit,

log4j, xerces

0.85, 0.84,

0.95, 0.97,

0.97, 0.95

0.87, 0.81,

0.92, 0.94,

0.98, 0.93

0.82, 0.90,

0.98, 1.00,

0.98, 0.98

0.85, 0.85,

0.95, 0.97,

0.98, 0.95

0.69, 0.69,

0.90, 0.93,

0.94, 0.90

0.91, 0.90,

0.98, 0.96,

0.99, 0.98

GRU with

SMOTE Tomek

ant, camel,

ivy, jedit,

log4j, xerces

0.83, 0.82,

0.95, 0.99,

0.96, 0.93

0.88, 0.82,

0.95, 0.98,

0.98, 0.92

0.81, 0.82,

0.95, 1.00,

0.95, 0.94

0.85, 0.82,

0.95, 0.99,

0.96, 0.93

0.67, 0.63,

0.90, 0.97,

0.91, 0.85

0.89, 0.87,

0.98, 1.00,

0.98, 0.97

In summary, this study aimed to propose a novel SDP approach based on CNN and GRU

combined with a hybrid sampling method (SMOTE Tomek) for SDP. We compared the results

obtained by the proposed approach based on the original and balanced datasets to investigate

the impact of hybrid sampling methods on improving the accuracy of ML techniques.

Additionally, the proposed approach's results were compared with those presented in previous

studies. After comparing the results obtained by the proposed models on the original datasets

with results obtained by the proposed models on the balanced datasets, as shown in the Tables

and Figures, we note that the models got good scores on the balanced datasets and the results

improved further due to balancing, which indicated that the combination of CNN and GRU

with hybrid sampling method (SMOTE Tomek) has a positive effect on the performance of

SDP regarding datasets with imbalanced class distributions. Furthermore, data sampling

methods play an essential role in improving the accuracy of the ML models in predicting

software defects. Regarding the evaluation of the results obtained from our proposed approach

and their comparison with some results of other studies, we conclude that our models are

promising in predicting software defects and outperform other models in the previous studies.

6.5 Summary

In this chapter, we presented the experimental results and discussion of software bugs

prediction. The experimental results have been compared and evaluated based on several

standard performance measures. We compared experimental results based on the original and

balanced datasets and compared our results with current state-of-the-art results for the

prediction of software bugs. The results showed that our proposed methods significantly

outperform current state-of-the-art methods for predicting software bugs. We concluded that

the combined data-balancing methods with ML techniques significantly enhance the accuracy

of predicting software bugs. We observe that the incorporation of appropriate data-balancing

methods and ML techniques not only enhances the model's ability to predict software bugs

accurately but also mitigates the bias towards the majority class, resulting in a more balanced

performance across different classes of software bugs. This research has practical implications

for software developers and researchers. It highlights the significance of considering data-

balancing methods when applying ML models for predicting software bugs. By employing

these methods, developers can enhance their ability to identify and address code quality issues,

thereby improving software maintainability.

DOI 10.14750/ME.2024.012

73

Chapter 7 Experimental Results and Discussion of Code Smells Detection

This subsection presents the results obtained from the experiments explained in the previous

section (proposed methodology and implementation) which includes the results of code smells

detection.

7.1 ML techniques with Oversampling Methods in Code Smells Detection

In this sub-section, we discuss the findings of the fifth study. The aim was to present a method

based on five ML models, namely DT, K-NN, SVM, XGB, and MLP combined with

Oversampling method (Random Oversampling) to detect four code smells (God class, data

class, long method, and feature envy). The experiments have been conducted based on

benchmark datasets obtained from the Qualitas Corpus Systems. The experimental results were

evaluated and compared based on various performance measures (accuracy, precision, recall,

f-measure, MCC, and AUC).

The performance of the prediction models is reported in Tables 7.1 to 7.6, and Figures 7.1 to

7.4.

Tables 7.1 to 7.4 present model results based on the original and balanced datasets. Based on

the DT model, we observed that accuracy values varied from 0.92 to 0.99 on the original

datasets and from 0.98 to 1.00 on the balanced datasets. In terms of precision, the values ranged

from 0.86 to 1.00 on the original datasets and from 0.97 to 1.00 on the balanced datasets. The

recall values ranged from 0.89 to 0.96 on the original datasets and were 1.00 on the balanced

datasets. In the context of f-measure, the values varied from 0.87 to 0.98 on the original datasets

and from 0.98 to 1.00 on the balanced datasets. Moreover, MCC values ranged from 0.81 to

0.97 on the original datasets and from 0.96 to 1.00 on the balanced datasets, whereas AUC

values ranged from 0.90 to 0.98 on the original datasets and from 0.98 to 1.00 on the balanced

datasets.

The K-NN model demonstrates that the accuracy values vary between 0.86 to 0.92 on the

original datasets and from 0.91 to 0.97 on the balanced datasets. Additionally, the precision

values on the original datasets vary from 0.75 to 0.97 and from 0.88 to 0.97 on the balanced

datasets. The recall values vary from 0.70 to 0.91 on the original datasets and from 0.97 to 0.98

on the balanced datasets. In the context of f-measure, the values range from 0.76 to 0.88 on the

original datasets and from 0.92 to 0.98 on the balanced datasets. Furthermore, the MCC values

range from 0.66 to 0.81 on the original datasets and from 0.82 to 0.94 on the balanced datasets.

Finally, the AUC values range from 0.85 to 0.97 on the original datasets and from 0.93 to 0.98

on the balanced datasets.

Following the SVM model, it can be observed that the accuracy values vary between 0.90 and

0.98 on the original datasets, and from 0.96 to 1.00 on the balanced datasets. On the original

datasets, the precision values vary from 0.85 to 0.96, while on the balanced datasets, the

precision values vary from 0.94 to 1.00. In the context of recall, the values range from 0.85 to

0.96 on the original datasets, and from 0.98 to 1.00 on the balanced datasets. In the context of

f-measure, the values range from 0.85 to 0.96 on the original datasets and from 0.97 to 1.00 on

the balanced datasets. The MCC values range from 0.78 to 0.94 on the original datasets and

from 0.92 to 1.00 on the balanced datasets. The AUC values range from 0.96 to 0.99 on the

original datasets and from 0.97 to 1.00 on the balanced datasets.

Based on the XGB model, it can be observed that the accuracy values range between 0.95 to

1.00 for the original datasets and between 0.96 to 1.00 for the balanced datasets. In the context

of precision, the values range between 0.87 to 1.00 for the original datasets and between 0.95

DOI 10.14750/ME.2024.012

74

to 1.00 for the balanced datasets. In the context of recall, the values range between 0.97 to 1.00

for the original datasets and between 0.97 to 1.00 for the balanced datasets. In the context of f-

measure, the values range between 0.93 to 1.00 for the original datasets and between 0.96 to

1.00 for the balanced datasets. Additionally, the MCC values range between 0.89 to 1.00 for

the original datasets and between 0.90 to 1.00 for the balanced datasets, whereas the AUC

values range between 0.99 to 1.00 for the original datasets and between 0.98 to 1.00 for the

balanced datasets.

Based on the MLP model, it was observed that the accuracy values ranged from 0.88 to 0.98

on the original datasets and from 0.96 to 0.98 on the balanced datasets. Furthermore, the

precision values ranged from 0.87 to 0.97 on the original datasets and from 0.96 to 0.97 on the

balanced datasets, while the recall values ranged from 0.74 to 1.00 on the original datasets and

from 0.97 to 1.00 on the balanced datasets. In the context of f-measure, the values ranged from

0.80 to 0.96 on the original datasets and from 0.97 to 0.98 on the balanced datasets.

Furthermore, the MCC values range from 0.72 to 0.94 on the original datasets and from 0.92

to 0.96 on the balanced datasets. Finally, the AUC values range from 0.90 to 0.99 on the

original datasets and from 0.98 to 1.00 on the balanced datasets.

Concerning each type of code smell, the top-performing models attain the subsequent results:

DT model scores 100% accuracy on data class and long method (balanced datasets). K-NN

model achieves 97% accuracy on God class (balanced datasets). The SVM model scores 100%

accuracy on the long method (balanced datasets). XGB model achieves 100% accuracy on data

class and long method (original and balanced datasets). MLP model scores 98% accuracy on

data class (original and balanced datasets) and 98% on the long method (balanced datasets).

Table 7.1 Evaluation Results for the Class-Level Dataset: God class_ original and balanced datasets

Original datasets

ML Models

Performance measurement

Accuracy Precision Recall F- measure MCC AUC

DT 0.95 0.97 0.92 0.94 0.90 0.94

K-NN 0.90 0.97 0.81 0.88 0.81 0.94

SVM 0.92 0.94 0.86 0.90 0.83 0.97

XGB 0.98 0.97 0.97 0.97 0.95 0.99

MLP 0.93 0.97 0.86 0.91 0.85 0.99

Averages 0.93 0.96 0.88 0.92 0.86 0.96

Balanced datasets

ML Models

Performance measurement

Accuracy Precision Recall F- measure MCC AUC

DT 0.98 0.97 1.00 0.98 0.96 0.98

K-NN 0.97 0.97 0.98 0.98 0.94 0.97

SVM 0.96 0.95 0.98 0.97 0.92 0.99

XGB 0.96 0.95 0.97 0.96 0.90 0.98

MLP 0.97 0.97 0.98 0.98 0.94 0.98

Averages 0.96 0.96 0.98 0.97 0.93 0.98

Table 7.2 Evaluation Results for the Class-Level Dataset: Data class_ original and balanced datasets

Original datasets

ML Models

Performance measurement

Accuracy Precision Recall F- measure MCC AUC

DT 0.98 1.00 0.91 0.95 0.94 0.95

K-NN 0.89 0.75 0.91 0.82 0.75 0.97

SVM 0.96 0.92 0.96 0.94 0.91 0.99

XGB 1.00 1.00 1.00 1.00 1.00 1.00

MLP 0.98 0.92 1.00 0.96 0.94 0.99

DOI 10.14750/ME.2024.012

75

Averages 0.96 0.91 0.95 0.93 0.90 0.98

Balanced datasets

ML Models

Performance measurement

Accuracy Precision Recall F- measure MCC AUC

DT 1.00 1.00 1.00 1.00 1.00 1.00

K-NN 0.96 0.93 0.98 0.96 0.91 0.98

SVM 0.97 0.95 1.00 0.97 0.94 0.99

XGB 1.00 1.00 1.00 1.00 1.00 1.00

MLP 0.98 0.97 1.00 0.98 0.96 0.99

Averages 0.98 0.97 0.99 0.98 0.96 0.99

Table 7.3 Evaluation Results for the Method-Level Dataset: Long method_ original and balanced datasets

Original datasets

ML Models

Performance measurement

Accuracy Precision Recall F- measure MCC AUC

DT 0.99 1.00 0.96 0.98 0.97 0.98

K-NN 0.92 0.92 0.81 0.86 0.80 0.94

SVM 0.98 0.96 0.96 0.96 0.94 0.99

XGB 1.00 1.00 1.00 1.00 1.00 1.00

MLP 0.94 0.87 0.96 0.91 0.87 0.98

Averages 0.96 0.95 0.93 0.94 0.91 0.97

Balanced datasets

ML Models

Performance measurement

Accuracy Precision Recall F- measure MCC AUC

DT 1.00 1.00 1.00 1.00 1.00 1.00

K-NN 0.96 0.93 0.98 0.95 0.91 0.97

SVM 1.00 1.00 1.00 1.00 1.00 1.00

XGB 1.00 1.00 1.00 1.00 1.00 1.00

MLP 0.98 0.96 1.00 0.98 0.96 1.00

Averages 0.98 0.97 0.99 0.98 0.97 0.99

Table 7.4 Evaluation Results for the Method-Level Dataset: Feature envy_ original and balanced datasets

Original datasets

ML Models

Performance measurement

Accuracy Precision Recall F- measure MCC AUC

DT 0.92 0.86 0.89 0.87 0.81 0.90

K-NN 0.86 0.83 0.70 0.76 0.66 0.85

SVM 0.90 0.85 0.85 0.85 0.78 0.96

XGB 0.95 0.87 1.00 0.93 0.89 0.99

MLP 0.88 0.87 0.74 0.80 0.72 0.90

Averages 0.90 0.85 0.83 0.84 0.77 0.92

Balanced datasets

ML Models

Performance measurement

Accuracy Precision Recall F- measure MCC AUC

DT 0.98 0.97 1.00 0.98 0.96 0.98

K-NN 0.91 0.88 0.97 0.92 0.82 0.93

SVM 0.96 0.94 1.00 0.97 0.92 0.97

XGB 0.98 0.97 1.00 0.98 0.96 0.98

MLP 0.96 0.97 0.97 0.97 0.92 0.98

Averages 0.95 0.94 0.98 0.96 0.91 0.96

We used Boxplots to aggregate the achieved results to get a more accurate overview of the

quality of the results. Figure 7.1 exhibits box plots that display the averages of several

performance measures, including accuracy, precision, recall, f-measure, MCC, and AUC based

on the original datasets. The overall average performance of all models is 0.93, 0.96, 0.88, 0.92,

0.86, and 0.96, respectively, for the god class. Similarly, for the data class, the overall average

DOI 10.14750/ME.2024.012

76

performance of all models is 0.96, 0.91, 0.95, 0.93, 0.90, and 0.98, respectively. In the context

of the long method, the overall average of all models is 0.96, 0.95, 0.93, 0.94, 0.91, and 0.97,

respectively. Lastly, for feature envy, the overall average performance of all models is 0.90,

0.85, 0.83, 0.84, 0.77, and 0.92, respectively.

Figure 7.1 Box Plots represent the models' performance measures on all considered code smells_ original

datasets

Figure 7.2 exhibits box plots that display the averages of several performance measures,

including accuracy, precision, recall, f-measure, MCC, and AUC based on the balanced

datasets. The overall average performance of all models is 0.96, 0.96, 0.98, 0.97, 0.93, and

0.98, respectively, for the god class. Similarly, for the data class, the overall average

performance of all models is 0.98, 0.97, 0.99, 0.98, 0.96, and 0.99, respectively. In the context

of the long method, the overall average of all models is 0.98, 0.97, 0.99, 0.98, 0.97, and 0.99,

respectively. Lastly, for feature envy, the overall average performance of all models is 0.95,

0.94, 0.98, 0.96, 0.91, and 0.96, respectively.

Figure 7.2 Box Plots represent the models' performance measures on all considered code smells_ balanced

datasets

DOI 10.14750/ME.2024.012

77

Figures 7.3 and 7.4 show the ROC curves of the models on the original and balanced datasets.

The vertical axis presents the actual positive rate of the model, and the horizontal axis illustrates

the false positive rate. The AUC is a sign of the performance of the model. The larger AUC is,

the better the model performance will be. Based on the Figures, the values are encouraging and

indicate our proposed model’s efficiency in code smell detection.

Figure 7.3 shows the AUC of the models for all considered code smells on the original datasets;

the highest AUC on the original datasets (God class) is 99%, obtained by XGB and MLP

models. The the lowest AUC is 94%, obtained by DT and K-NN models. The highest AUC on

the original datasets (data class) is 100% obtained by the XGB model, while the lowest AUC

is 95% obtained by the DT model. The highest AUC on the original datasets (long method) is

100% obtained by the XGB model, while the lowest AUC is 94% obtained by the K-NN model.

The highest AUC on the original datasets (feature envy) is 99%, obtained by the XGB model,

while the lowest AUC is 85%, obtained by the K-NN model.

Figure 7.3 The ROC curves obtained by the models on all considered code smells_ original datasets

Figure 7.4 shows the AUC of the models for all considered code smells on the balanced

datasets, the highest AUC on the balanced datasets (God class) is 99%, obtained by the SVM

model, while the lowest AUC is 97%, and the K-NN model gets. The highest AUC on the

balanced datasets (data class) is 100% obtained by DT and XGB models, while the lowest AUC

is 98% obtained by the K-NN model. The highest AUC on the balanced datasets (long method)

is 100% acquired by DT, SVM, XGB, and MLP models, while the lowest AUC is 97%, which

the K-NN model obtains. The highest AUC on the balanced datasets (feature envy) is 99%,

obtained by DT, XGB, and MLP models, while the lowest AUC is 93% which the K-NN model

gets.

DOI 10.14750/ME.2024.012

78

Figure 7.4 The ROC curves obtained by the models on all considered code smells_ balanced datasets

Tables 7.5 and 7.6 show the comparison results of our method with some previous studies

based on some performance measures, namely accuracy and AUC. The best values are

indicated in bold, and " - " denotes the missing performance measures for specific methods in

certain datasets. Overall, our method outperforms the other state-of-the-art methods in most

cases.

Table 7.5 Comparison of the proposed method with other existing methods based on the accuracy

Methods

Datasets

God class Data class Long method Feature envy

RF[4] 0.96 0.98 0.99 0.96

NB[4] 0.97 0.97 0.97 0.91

DT[27] - - - 0.97

RF[27] - 0.99 0.95 -

K-NN[108] 0.97 0.97 0.97 0.91

NB[108] 0.96 0.84 0.95 0.92

MLP[108] 0.97 0.97 0.96 0.95

DT[108] 0.97 0.98 0.98 0.98

RF[108] 0.97 0.98 0.99 0.97

LR[108] 0.97 0.97 0.99 0.97

NB[118] 0.96 - 0.97 0.91

MLP[118] 0.97 - 0.99 0.92

DT[118] 0.98 - 0.97 0.95

RF[119] 0.76 0.81 0.60 0.66

NB[119] 0.74 0.66 0.74 0.76

SVM[119] 0.66 0.66 0.66 0.60

RF[120] 0.69 0.70 0.68 0.71

NB[120] 0.82 0.75 0.81 0.83

SVM[120] 0.74 0.83 0.81 0.83

K-NN[120] 0.80 0.82 0.81 0.82

Our models (DT, K-

NN, SVM, XGB, MLP)

- Original Datasets

0.95, 0.90, 0.92,

0.98, 0.93

0.98, 0.89, 0.96,

1.00, 0.98

0.99, 0.92, 0.9

8, 1.00, 0.94

0.92, 0.86, 0.90,

0.95, 0.88

Our models (DT, K-

NN, SVM, XGB, MLP)

- Balanced Datasets

0.98, 0.97, 0.96,

0.96, 0.97

1.00, 0.96, 0.97,

1.00, 0.98

1.00, 0.96, 1.0

0, 1.00, 0.98

0.98, 0.91, 0.96,

0.98, 0.96

DOI 10.14750/ME.2024.012

79

Table 7.6 Comparison of the proposed method with other existing methods based on AUC

Methods

Datasets

God class Data class Long method Feature envy

RF[120] 0.59 0.65 0.52 0.59

NB[120] 0.88 0.85 0.86 0.86

SVM[120] 0.65 0.88 0.66 0.82

K-NN[120] 0.83 0.86 0.86 0.83

Our models (DT, K-NN,

SVM, XGB, MLP) -

Original Datasets

0.94, 0.94, 0.97,

0.99, 0.99

0.95, 0.97, 0.

99, 1.00, 0.99

0.98, 0.94, 0.9

9, 1.00, 0.98

0.90, 0.85, 0.96

, 0.99, 0.90

Our models (DT, K-NN,

SVM, XGB, MLP) -

Balanced Datasets

0.98, 0.97, 0.99,

0.98, 0.98

1.00, 0.98, 0.

99, 1.00, 0.99

1.00, 0.97, 1.0

0, 1.00, 1.00

0.98, 0.93, 0.97

, 0.98, 0.98

In summary, this study aimed to present a method based on five ML models, namely DT, K-

NN, SVM, XGB, and MLP combined with Oversampling method (Random Oversampling) to

detect code smells. We compared the results obtained by the proposed method based on the

original and balanced datasets to investigate the impact of Oversampling methods on

improving the accuracy of ML techniques. Additionally, the proposed method's results were

compared with those presented in previous studies. After comparing the results obtained by the

proposed models on the original datasets with results obtained by the proposed models on the

balanced datasets, as shown in the Tables and Figures, we note that the models got good scores

on the balanced datasets and the results improved further due to balancing, which indicated

that the combination of DT, K-NN, SVM, XGB, and MLP with Oversampling method

(Random Oversampling) has positive effect on the performance of code smells detection

regarding datasets with imbalanced class distributions. Furthermore, data sampling methods

play an essential role in improving the accuracy of the ML models in code smell detection.

Regarding the evaluation of the results obtained from our proposed method and their

comparison with some results of other studies, we conclude that our models are promising in

code smell detection and outperform other models in the previous studies.

7.2 A Convolutional Neural Network (CNN) with Oversampling Methods

In this sub-section, we discuss the findings of the sixth study. The objective was to present a

method based on a CNN with the Oversampling method (SMOTE) to detect four code smells

(God class, data class, feature envy, and long method). The experiments have been conducted

based on benchmark datasets obtained from the Qualitas Corpus Systems. The experimental

results were evaluated and compared based on various performance measures (accuracy,

precision, recall, and f-measure).

The performance of the prediction models is reported in Tables 7.7, 7.8 and 7.9, and Figures

7.5 to 7.9.

Tables 7.7 and 7.8 show the performance of the proposed model in the four code smells based

on the original and balanced data sets.

- Accuracy for the four code smell datasets: The proposed model using the balanced datasets

achieves greater accuracy than the proposed model using the original datasets on the Feature

Envy and Long Method datasets, which are 98 % and 100%. The lowest accuracy was achieved

by the proposed model using the original datasets on the Feature Envy dataset by up to 95%.

- Precision for the four code smell datasets: The proposed model using the balanced datasets

achieves greater precision than the proposed model using the original datasets on the Feature

Envy and Long Method datasets, which are 98 % and 100%. The proposed model achieved the

DOI 10.14750/ME.2024.012

80

lowest precision using the original datasets on the Feature Envy and Long Method datasets by

up to 93%.

- Recall for the four code smell datasets: The proposed model using the balanced datasets

achieves more excellent recall than the proposed model using the original datasets on the God

Class, Data Class, and Feature Envy datasets, which are 97%, 100 %, and 98%. The lowest

recall was achieved by the proposed model using the original datasets on the Feature Envy

dataset by up to 93%.

- F-Measure for the four code smell datasets: The proposed model using the balanced datasets

achieves greater F-Measure than the proposed model using the original datasets on the God

Class, Feature Envy, and Long Method datasets, which are 97%, 98%, and 100%. The proposed

model achieved the lowest F-Measure using the original datasets on the Feature Envy dataset

by up to 93%.

Table 7.7 Performance analysis for proposed CNN Model - Original Datasets

Original Datasets
Performance Measures

Accuracy Precision Recall F-Measure

God Class 0.96 0.97 0.94 0.96

Data Class 0.99 1.00 0.96 0.98

Feature Envy 0.95 0.93 0.93 0.93

Long Method 0.98 0.93 1.00 0.96

Averages 0.97 0.95 0.95 0.95

Table 7.8 Performance analysis for proposed CNN Model - Balanced Datasets

Balanced Datasets

using SMOTE method

Performance Measures

Accuracy Precision Recall F-Measure

God Class 0.96 0.97 0.97 0.97

Data Class 0.98 0.97 1.00 0.98

Feature Envy 0.98 0.98 0.98 0.98

Long Method 1.00 1.00 1.00 1.00

Averages 0.98 0.98 0.98 0.98

We used Boxplots to aggregate the achieved results to get a more accurate overview of the

quality of the results. Figure 7.5 shows the Box plots for the performance measures (Accuracy,

Precision, Recall, and F-measure) on the original and balanced datasets.

Concerning the original datasets, the highest accuracy is 99% on the Data Class dataset and the

lowest accuracy is 95% on the Feature Envy dataset, the highest precision is 100% on the Data

Class dataset and the lowest precision is 93% on the Feature envy and Long Method datasets,

the highest recall is 100% on the Long method dataset and the lowest recall is 93% on the

Feature Envy dataset, the highest f-measure is 98% on the Data Class dataset and the lowest f-

measure is 93% on the Feature envy dataset.

Concerning the balanced datasets, the highest accuracy is 100% on the Long Method dataset

and the lowest accuracy is 96% on the God Class dataset, the highest precision is 100% on the

Long Method dataset and the lowest precision is 97% on the God Class and Data Class datasets,

the highest recall is 100% on the Data Class and Long method datasets and the lowest recall is

97% on the God Class dataset, the highest f-measure is 100% on the Long Method dataset and

the lowest f-measure is 97% on the God Class dataset.

DOI 10.14750/ME.2024.012

81

Figure 7.5 Boxplots represent performance measures obtained by CNN Model

Figures 7.6 to 7.9 show the training and validation accuracy and training and validation loss of

the model on the original and balanced datasets. Figures 7.6 and 7.7 show the training and

validation accuracy of the model on the original and balanced datasets. The vertical axis

presents the model's accuracy, and the horizontal axis illustrates the number of epochs.

Accuracy is the fraction of predictions that our model predicted right.

Figure 7.6 shows the accuracy values of the model on the original datasets. From the Figure,

the model learned 96% accuracy for the God Class dataset, 99% accuracy for the Data Class

dataset, 95% accuracy for the Feature Envy dataset, and 98% accuracy for the Long Method

dataset at the 100th epoch.

Figure 7.6 Training and Validation Accuracy over original datasets

Figure 7.7 shows the accuracy values of the model on the balanced datasets. From the Figure,

the model learned 96% accuracy for the God Class dataset, 98% accuracy for the Data Class

dataset, 98% accuracy for the Feature Envy dataset, and 100% accuracy for the Long Method

dataset at the 100th epoch.

DOI 10.14750/ME.2024.012

82

Figure 7.7 Training and Validation Accuracy over balanced datasets

Figures 7.8 and 7.9 show the training and validation loss of the model on the original and

balanced datasets. The vertical axis presents the loss of the model, and the horizontal axis

illustrates the number of epochs. The loss indicates how bad a model prediction was.

Figure 7.8 shows the loss values of the model on the original datasets. From the Figure, the

model loss is 0.036 for the God Class dataset, 0.005 for the Data Class dataset, 0.041 for the

Feature Envy dataset, and 0.021 for the Long Method dataset at the 100th epoch.

Figure 7.8 Training and validation loss over original datasets

Figure 7.9 shows the loss values of the model on the balanced datasets. From the Figure, the

model loss is 0.033 for the God Class dataset, 0.013 for the Data Class dataset, 0.018 for the

Feature Envy dataset, and 0.000 for the Long Method dataset at the 100th epoch.

As shown in the Figures, the accuracy of training and validation increases and the loss

decreases with increasing epochs. Regarding the high accuracy and low loss obtained by the

proposed model, we note that the model is well-trained and validated.

DOI 10.14750/ME.2024.012

83

Figure 7.9 Training and validation loss over balanced datasets

Table 7.9 shows the comparison results of our method with some previous studies based on

accuracy. The best values are indicated in bold and "-" indicates that the approaches that did

not provide results for performance measures in a particular data set. According to Table, some

of the results in the previous studies are better than ours. However, in most cases, our method

outperforms the other state-of-the-art methods and provides better predictive performance.

Table 7.9 Comparison of the proposed method with other existing methods based on the accuracy

Methods

Datasets

God class Data class Feature envy Long method

RF[4] 0.96 0.98 0.96 0.99

NB[4] 0.97 0.97 0.91 0.97

DT[27] - - 0.97 -

RF[27] - 0.99 - 0.95

K-NN[108] 0.97 0.97 0.91 0.97

NB[108] 0.96 0.84 0.92 0.95

MLP[108] 0.97 0.97 0.95 0.96

DT[108] 0.97 0.98 0.98 0.98

RF[108] 0.97 0.98 0.97 0.99

LR[108] 0.97 0.97 0.97 0.99

NB[118] 0.96 - 0.91 0.97

MLP[118] 0.97 - 0.92 0.99

DT[118] 0.98 - 0.95 0.97

RF[119] 0.76 0.81 0.66 0.60

NB[119] 0.74 0.66 0.76 0.74

SVM[119] 0.66 0.66 0.60 0.66

RF[120] 0.69 0.70 0.71 0.68

NB[120] 0.82 0.75 0.83 0.81

SVM[120] 0.74 0.83 0.83 0.81

K-NN[120] 0.80 0.82 0.82 0.81

Our model (CNN) - Original

Datasets

0.96 0.99 0.95 0.98

Our model (CNN with

SMOTE) - Balanced Datasets

0.96 0.98 0.98 1.00

DOI 10.14750/ME.2024.012

84

In summary, this study aimed to present a method based on CNN with the Oversampling

method (SMOTE) to detect code smells. We compared the results obtained by the proposed

method based on the original and balanced datasets to investigate the impact of Oversampling

methods on improving the accuracy of ML techniques. Additionally, the proposed method's

results were compared with those presented in previous studies. After comparing the results

obtained by the proposed model on the original datasets with results obtained by the proposed

model on the balanced datasets, as shown in the Tables and Figures, we note that the model got

good scores on the balanced datasets and the results improved further due to balancing, which

indicated that the combination of CNN with the Oversampling method (SMOTE) has a positive

effect on the performance of code smells detection regarding datasets with imbalanced class

distributions. Furthermore, data sampling methods play an essential role in improving the

accuracy of the ML models in code smells detection. Regarding the evaluation of the results

obtained from our proposed method and their comparison with some results of other studies,

we conclude that our model is promising in code smell detection and outperforms other models

in the previous studies.

7.3 Bi-LSTM and GRU with Under and Oversampling Methods in Code Smells Detection

In this sub-section, we discuss the findings of the seventh study, the objective was to present a

method based on RNN models (Bi-LSTM and GRU) with Under and Oversampling methods

(Random Oversampling and Tomek Links) to detect four code smells (God class, data class,

feature envy, and long method). The experiments have been conducted based on benchmark

datasets obtained from the Qualitas Corpus Systems. The experimental results were evaluated

and compared based on various performance measures (accuracy, precision, recall, f-measure,

MCC, AUC, AUCPR, MSE).

The performance of the prediction models is reported in Tables 7.10 to 7.18 and Figures 7.10

to 7.18, appendix 4 (Figures 1 to 12).

Table 7.10 presents the results of Bi-LSTM and GRU models on the original datasets in terms

of accuracy, precision, recall, F-Measure, MCC, AUC, AUCPR and MSE. We notice that the

accuracy values of the Bi-LSTM model range from 0.95 to 0.98, the precision values range

from 0.93 to 1.00, the recall values range from 0.83 to 0.96, the F-Measure values range from

0.90 to 0.96, the MCC values range from 0.88 to 0.94, the AUC values range from 0.97 to 0.99,

the AUCPR values range from 0.95 to 0.99, and the MSE values range from 0.023 to 0.044

across all datasets. The accuracy values of the GRU model range from 0.93 to 0.98, the

precision values range from 0.86 to 0.97, the recall values range from 0.86 to 0.96, the F-

Measure values range from 0.89 to 0.96, the MCC values range from 0.84 to 0.94, the AUC

values range from 0.95 to 0.99, the AUCPR values range from 0.89 to 0.99, and the MSE values

range from 0.020 to 0.065 across all datasets.

Table 7.10 Evaluation results for the original datasets

Bi-LSTM Model

Datasets

Performance Measures

Accuracy Precision Recall F- measure MCC AUC AUCPR MSE

God Class 0.95 0.97 0.92 0.94 0.90 0.99 0.99 0.035

Data Class 0.95 1.00 0.83 0.90 0.88 0.99 0.99 0.037

Feature envy 0.95 0.93 0.93 0.93 0.89 0.97 0.95 0.044

Long method 0.98 0.96 0.96 0.96 0.94 0.99 0.99 0.023

Averages 0.95 0.96 0.91 0.93 0.90 0.98 0.98 0.034

DOI 10.14750/ME.2024.012

85

GRU Model

Datasets

Performance Measures

Accuracy Precision Recall F- measure MCC AUC AUCPR MSE

God Class 0.93 0.97 0.86 0.91 0.85 0.97 0.97 0.063

Data Class 0.96 0.92 0.96 0.94 0.91 0.99 0.99 0.026

Feature envy 0.93 0.86 0.93 0.89 0.84 0.95 0.89 0.065

Long method 0.98 0.96 0.96 0.96 0.94 0.99 0.99 0.020

Averages 0.95 0.92 0.92 0.92 0.88 0.97 0.96 0.043

Table 7.11 presents the results of Bi-LSTM and GRU Models on the balanced datasets using

Random Oversampling regarding accuracy, precision, recall, F-Measure, MCC, AUC, AUCPR

and MSE. We notice that the accuracy values of the Bi-LSTM model range from 0.96 to 1.00,

the precision values range from 0.94 to 1.00, the recall values range from 0.98 to 1.00, the F-

Measure values range from 0.97 to 1.00, the MCC values range from 0.92 to 1.00, the AUC

values range from 0.97 to 1.00, the AUCPR values range from 0.96 to 1.00, and the MSE values

range from 0.005 to 0.037 across all datasets. The accuracy values of the GRU model range

from 0.96 to 1.00, the precision values range from 0.95 to 1.00, the recall value range from

0.98 to 1.00, the F-Measure values range from 0.97 to 1.00, the MCC values range from 0.92

to 1.00, the AUC values range from 0.96 to 1.00, the AUCPR values range from 0.93 to 1.00,

and the MSE values range from 0.002 to 0.033 across all datasets.

Table 7.11 Evaluation results for the balanced datasets - Random Oversampling

Bi-LSTM Model

Datasets

Performance Measures

Accuracy Precision Recall F- measure MCC AUC AUCPR MSE

God Class 0.96 0.95 0.98 0.97 0.92 0.98 0.98 0.035

Data Class 0.99 0.98 1.00 0.99 0.98 1.00 1.00 0.006

Feature envy 0.96 0.94 1.00 0.97 0.92 0.97 0.96 0.037

Long method 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.005

Averages 0.97 0.96 0.99 0.98 0.95 0.98 0.98 0.020

GRU Model

Datasets

Performance Measures

Accuracy Precision Recall F- measure MCC AUC AUCPR MSE

God Class 0.96 0.95 0.98 0.97 0.92 0.96 0.93 0.033

Data Class 0.98 0.98 0.98 0.98 0.96 0.99 0.99 0.023

Feature envy 0.97 0.95 1.00 0.98 0.94 0.97 0.95 0.032

Long method 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.002

Averages 0.97 0.97 0.99 0.98 0.95 0.98 0.96 0.022

Table 7.12 presents the results of Bi-LSTM and GRU Models on the balanced datasets using

Tomek links regarding accuracy, precision, recall, F-Measure, MCC, AUC, AUCPR and MSE.

We notice that the accuracy values of the Bi-LSTM model range from 0.95 to 0.99, the

precision values range from 0.85 to 1.00, the recall values range from 0.87 to 1.00, the F-

Measure values range from 0.92 to 0.98, the MCC values range from 0.88 to 0.97, the AUC

values range from 0.97 to 0.99, the AUCPR values range from 0.92 to 0.98, and the MSE values

range from 0.013 to 0.044 across all datasets. The accuracy values of the GRU model range

DOI 10.14750/ME.2024.012

86

from 0.96 to 0.99, the precision values range from 0.94 to 1.00, the recall values range from

0.87 to 1.00, the F-Measure values range from 0.93 to 0.98, the MCC values range from 0.90

to 0.97, the AUC values range from 0.98 to 0.99, the AUCPR values range from 0.97 to 0.99,

and the MSE values range from 0.018 to 0.038 across all datasets.

Table 7.12 Evaluation results for the balanced datasets - Tomek links

Bi-LSTM Model

Datasets

Performance Measures

Accuracy Precision Recall F- measure MCC AUC AUCPR MSE

God Class 0.96 1.00 0.87 0.93 0.90 0.98 0.97 0.037

Data Class 0.95 0.85 1.00 0.92 0.88 0.97 0.92 0.044

Feature envy 0.98 0.97 0.97 0.97 0.94 0.99 0.98 0.020

Long method 0.99 0.97 1.00 0.98 0.97 0.98 0.97 0.013

Averages 0.97 0.94 0.96 0.95 0.92 0.98 0.96 0.028

GRU Model

Datasets

Performance Measures

Accuracy Precision Recall F- measure MCC AUC AUCPR MSE

God Class 0.96 1.00 0.87 0.93 0.90 0.98 0.97 0.038

Data Class 0.99 0.96 1.00 0.98 0.97 0.99 0.99 0.018

Feature envy 0.99 0.97 1.00 0.98 0.97 0.99 0.99 0.021

Long method 0.98 0.94 1.00 0.97 0.94 0.99 0.99 0.025

Averages 0.98 0.96 0.96 0.96 0.94 0.98 0.98 0.025

Figures 7.10 to 7.13 show the training and validation accuracy and training and validation loss

of the models on the original datasets.

Figures 7.10 and 7.11 show the training and validation accuracy of the models on the original

datasets. The vertical axis presents the accuracy of the models, and the horizontal axis

illustrates the number of epochs. Accuracy is the fraction of predictions that our models

predicted right.

Figure 7.10 shows the accuracy values of the Bi-LSTM model. From the Figure, the model

learned 95% accuracy for God Class, 95% accuracy for Data Class, 95% accuracy for Feature

envy and 98% accuracy for Long method at the 100th epoch.

DOI 10.14750/ME.2024.012

87

Figure 7.10 Training and Validation Accuracy on the original datasets using Bi-LSTM Model

Figure 7.11 shows the accuracy values of the GRU model. From the Figure, the model learned

93% accuracy for God Class, 96% accuracy for Data Class, 93% accuracy for Feature envy

and 98% accuracy for Long method at the 100th epoch.

Figure 7.11 Training and Validation Accuracy on the original datasets using GRU Model

Figures 7.12 and 7.13 show the training and validation loss of the models on the original

datasets. The vertical axis presents the loss of the models, and the horizontal axis illustrates the

number of epochs. The loss indicates how bad a model's prediction was.

Figure 7.12 shows the loss values of the Bi-LSTM model. From the Figure, the model loss is

0.035 for God Class, 0.037 for Data Class, 0.044 for Feature envy and 0.023 for the long

method at the 100th epoch.

DOI 10.14750/ME.2024.012

88

Figure 7.12 Training and Validation Loss on the original datasets using Bi-LSTM Model

Figure 7.13 shows the loss values of the GRU model. From the Figure, the model loss is 0.063

for God Class, 0.026 for Data Class, 0.065 for Feature envy and 0.020 for the long method at

the 100th epoch. Further in appendix 4, Figures 1 to 8 show both models' training and validation

(accuracy and loss) on the balanced datasets.

As shown in the Figures, the accuracy of training and validation increases, and the loss

decreases with increasing epochs. Regarding the high accuracy and low loss obtained by the

proposed models, we note that both models are well-trained and validated. Additionally, we

note that the models are approximately perfectly fitting, there is no overfitting or underfitting.

Figure 7.13 Training and Validation Loss on the original datasets using GRU Model

Figures 7.14 and 7.15 show the ROC curves of the models on the original datasets. The vertical

axis presents the actual positive rate of the models, and the horizontal axis illustrates the false

DOI 10.14750/ME.2024.012

89

positive rate. The AUC is a sign of the performance of the model. The larger AUC is, the better

the model performance will be. Based on the Figures, the values are encouraging and indicate

our proposed models' efficiency in detecting code smells.

Figure 7.14 shows the AUC values of the Bi-LSTM model. From the Figure, the AUC values

are 99% on God Class,99% on Data Class, 95% on Feature envy and 99% on the Long method.

Figure 7.14 ROC curves for the original datasets - Bi-LSTM Model

Figure 7.15 shows the AUC values of the GRU model. From the Figure, the AUC values are

97% on God Class,99% on Data Class, 89% on Feature envy and 99% on the Long method.

Further in appendix 4, Figures 9 to 12 show the ROC curves for both models on the balanced

datasets.

Figure 7.15 ROC curves for the original datasets - GRU Model

DOI 10.14750/ME.2024.012

90

We used Boxplots to aggregate the achieved results to get a more accurate overview of the

quality of the results. Figure 7.16 shows the Box plots for the original datasets' performance

measures. For the Bi-LSTM model, the highest accuracy is 98% on the Long method dataset

and the lowest accuracy is 95% on the God Class, Data Class and Feature envy datasets, the

highest precision is 100% on the Data Class dataset and the lowest precision is 93% on the

Feature envy dataset, the highest recall is 96% on the Long method dataset and the lowest recall

is 83% on the Data Class dataset, the highest f-measure is 96% on the Long method dataset

and the lowest f-measure is 90% on the Data Class dataset, the highest MCC is 94% on the

Long method dataset and the lowest MCC is 88% on the Data Class dataset, the highest AUC

is 99% on the God Class, Data Class and Long method datasets and the lowest AUC is 97% on

the Feature envy dataset, the highest AUCPR is 99% on the God Class, Data Class and Long

method datasets and the lowest AUCPR is 95% on the Feature envy dataset.

In contrast, For the GRU model, the highest accuracy is 98% on the Long method dataset and

the lowest accuracy is 93% on the God Class and Feature envy datasets, the highest precision

is 97% on the God Class dataset and the lowest precision is 86% on the Feature envy dataset,

the highest recall is 96% on the Data Class and Long method datasets and the lowest recall is

86% on the God Class dataset, the highest f-measure is 96% on the Long method dataset and

the lowest f-measure is 89% on the Feature envy dataset, the highest MCC is 94% on the Long

method dataset and the lowest MCC is 84% on the Feature envy dataset, the highest AUC is

99% on the Data Class and Long method datasets and the lowest AUC is 95% on the Feature

envy dataset, the highest AUCPR is 99% on the Data Class and Long method datasets and the

lowest AUCPR is 89% on the Feature envy dataset.

Figure 7.16 Boxplots representing performance measures obtained by models on the original datasets

Figure 7.17 shows the Box plots for the performance measures on the balanced datasets using

Random Oversampling. For the Bi-LSTM model with Random Oversampling, the highest

accuracy is 100% on the Long method dataset and the lowest accuracy is 96% on the God Class

and Feature envy datasets, the highest precision is 100% on the Long method dataset and the

lowest precision is 94% on the Feature envy dataset, the highest recall is 100% on the Data

Class, Feature envy and Long method datasets and the lowest recall is 98% on the God Class

dataset, the highest f-measure is 100% on the Long method dataset and the lowest f-measure

is 97% on the God Class and Feature envy datasets, the highest MCC is 100% on the Long

method dataset and the lowest MCC is 92% on the God Class and Feature envy datasets, the

highest AUC is 100% on the Data Class and Long method datasets and the lowest AUC is 97%

DOI 10.14750/ME.2024.012

91

on the Feature envy dataset, the highest AUCPR is 100% on the Data Class and Long method

datasets and the lowest AUCPR is 96% on the Feature envy dataset.

In contrast, For the GRU model with Random Oversampling, the highest accuracy is 100% on

the Long method dataset and the lowest accuracy is 96% on the God Class dataset, the highest

precision is 100% on the Long method dataset and the lowest precision is 95% on the God

Class and Feature envy datasets, the highest recall is 100% on the Feature envy and Long

method datasets and the lowest recall is 98% on the God Class and Data Class datasets, the

highest f-measure is 100% on the Long method dataset and the lowest f-measure is 97% on the

God Class dataset, the highest MCC is 100% on the Long method dataset and the lowest MCC

is 92% on the God Class dataset, the highest AUC is 100% on the Long method dataset and

the lowest AUC is 96% on the God Class dataset, the highest AUCPR is 100% on the Long

method dataset and the lowest AUCPR is 93% on the God Class dataset.

Figure 7.17 Boxplots representing performance measures obtained by models on the balanced datasets- Random

Oversampling

Figure 7.18 shows the Box plots for the performance measures on the balanced datasets using

Tomek links. For the Bi-LSTM model with Tomek links, the highest accuracy is 99% on the

Long method dataset and the lowest accuracy is 95% on the Data Class dataset, the highest

precision is 100% on the God Class dataset and the lowest precision is 85% on the Data Class

dataset, the highest recall is 100% on the Data Class and Long method datasets and the lowest

recall is 87% on the God Class dataset, the highest f-measure is 98% on the Long method

dataset and the lowest f-measure is 92% on the Data Class dataset, the highest MCC is 97% on

the Long method dataset and the lowest MCC is 88% on the Data Class dataset, the highest

AUC is 99% on the Feature envy dataset and the lowest AUC is 97% on the Data Class dataset,

the highest AUCPR is 98% on the Feature envy dataset and the lowest AUCPR is 92% on the

Data Class dataset.

In contrast, For the GRU model with Tomek links, the highest accuracy is 99% on the Data

Class and Feature envy datasets and the lowest accuracy is 96% on the God Class dataset, the

highest precision is 100% on the God Class dataset and the lowest precision is 94% on the

Long method dataset, the highest recall is 100% on the Data Class, Feature envy and Long

method datasets and the lowest recall is 87% on the God Class dataset, the highest f-measure

is 98% on the Data Class and Feature envy datasets and the lowest f-measure is 93% on the

God Class dataset, the highest MCC is 97% on the Data Class and Feature envy datasets and

the lowest MCC is 90% on the God Class dataset, the highest AUC is 99% on the Data Class,

Feature envy and Long method datasets and the lowest AUC is 98% on the God Class dataset,

DOI 10.14750/ME.2024.012

92

the highest AUCPR is 99% on the Data Class, Feature envy and Long method datasets and the

lowest AUCPR is 97% on the God Class dataset.

Figure 7.18 Boxplots representing performance measures obtained by models on the balanced datasets- Tomek

links

Table 7.13 presents the statistical analysis results (paired t-test) of proposed models on the

original and balanced datasets (using Random Oversampling) in terms of mean, Standard

Deviation (STD), min, max and P value. We notice that the mean values of the Bi-LSTM model

are 0.95 on the original datasets and 0.97 on the balanced datasets. The mean values of the

GRU model are 0.95 on the original datasets and 0.97 on the balanced datasets. The STD values

of the Bi-LSTM model are 0.01 on the original datasets and 0.02 on the balanced datasets,

while the STD values of the GRU model are 0.02 on the original datasets and 0.01 on the

balanced datasets. The Min values of the Bi-LSTM model are 0.95 on the original datasets and

0.96 on the balanced datasets, while the Min values of the GRU model are 0.93 on the original

datasets and 0.96 on the balanced datasets. The Max values of the Bi-LSTM model are 0.98 on

the original datasets and 1.00 on the balanced datasets, while the Max values of the GRU model

are 0.98 on the original datasets and 1.00 on the balanced datasets. The P value of the Bi-LSTM

model is 0.06 for the original and balanced datasets, while the P value of the GRU model is

0.01 for the original and balanced datasets. Based on the P value of the GRU model on the

original and balanced data sets, we note that the P value is less than 0.05, indicating a difference

between the results of the models on the original and balanced data sets.

Table 7.13 Comparison of the proposed models in terms of accuracy using paired t-test- based on the original

and balanced datasets (using Random Oversampling)

Paired t-test

Bi-LSTM Model GRU Model

Original Datasets Balanced Datasets Original Datasets Balanced Datasets

Mean 0.95 0.97 0.95 0.97

STD 0.01 0.02 0.02 0.01

Min 0.95 0.96 0.93 0.96

Max 0.98 1.00 0.98 1.00

P value 0.06 0.01

Table 7.14 presents the statistical analysis results (paired t-test) of proposed models on the

original and balanced datasets (using Tomek Links) in terms of mean, Standard Deviation

(STD), min, max and P value. We notice that the mean values of the Bi-LSTM model are 0.95

on the original datasets and 0.97 on the balanced datasets. The mean values of the GRU model

are 0.95 on the original datasets and 0.98 on the balanced datasets. The STD values of the Bi-

DOI 10.14750/ME.2024.012

93

LSTM model are 0.01 on the original datasets and 0.01 on the balanced datasets, while the STD

values of the GRU model are 0.02 on the original datasets and 0.01 on the balanced datasets.

The Min values of the Bi-LSTM model are 0.95 on the original datasets and 0.95 on the

balanced datasets, while the Min values of the GRU model are 0.93 on the original datasets

and 0.96 on the balanced datasets. The Max values of the Bi-LSTM model are 0.98 on the

original datasets and 0.99 on the balanced datasets, while the Max values of the GRU model

are 0.98 on the original datasets and 0.99 on the balanced datasets. The P value of the Bi-LSTM

model is 0.14 for the original and balanced datasets, while the P value of the GRU model is

0.09 for the original and balanced datasets. Based on the P value of both models on the original

and balanced data sets, we note that the P value is greater than 0.05, indicating no difference

between the results of the models on the original and balanced data sets.

Table 7.14 Comparison of the proposed models in terms of accuracy using paired t-test- based on the original

and balanced datasets (using Tomek Links)

Paired t-test

Bi-LSTM Model GRU Model

Original Datasets Balanced Datasets Original Datasets Balanced Datasets

Mean 0.95 0.97 0.95 0.98

STD 0.01 0.01 0.02 0.01

Min 0.95 0.95 0.93 0.96

Max 0.98 0.99 0.98 0.99

P value 0.14 0.09

The results presented by our models and previous studies' results are reported in Tables 7.15 to

7.18. Tables 7.15 and 7.16 show the comparison results of our method with some previous

studies based on some performance measures, namely accuracy and AUC. Table 7.15 shows

the results based on accuracy; Table 7.16 shows the results based on AUC. The best values are

indicated in bold in the Tables and "- "indicates that the approaches that did not provide results

for performance measures in a particular data set. According to Tables 7.15 and 7.16, some of

the results in the previous studies are better than ours. However, in most cases, our method

outperforms the other state-of-the-art approaches and provides better predictive performance.

Table 7.15 Comparison of the proposed models with other existing approaches based on the accuracy

Approaches

Datasets

Averages God class Data class Feature envy Long method

RF[4] 0.96 0.98 0.96 0.99 0.97

NB[4] 0.97 0.97 0.91 0.97 0.95

DT[27] - - 0.97 - 0.97

RF[27] - 0.99 - 0.95 0.97

K-NN[108] 0.97 0.97 0.91 0.97 0.95

NB[108] 0.96 0.84 0.92 0.95 0.91

MLP[108] 0.97 0.97 0.95 0.96 0.96

DT[108] 0.97 0.98 0.98 0.98 0.97

RF[108] 0.97 0.98 0.97 0.99 0.97

LR[108] 0.97 0.97 0.97 0.99 0.97

RF[120] 0.69 0.70 0.71 0.68 0.69

NB[120] 0.82 0.75 0.83 0.81 0.80

SVM[120] 0.74 0.83 0.83 0.81 0.80

K-NN[120] 0.80 0.82 0.82 0.81 0.81

Our Bi-LSTM model_Balanced

Datasets (Random Oversampling)

0.96 0.99 0.96 1.00 0.97

Our GRU model_Balanced Datasets

(Random Oversampling)

0.96 0.98 0.97 1.00 0.97

DOI 10.14750/ME.2024.012

94

Our Bi-LSTM model_Balanced

Datasets (Tomek links)

0.96 0.95 0.98 0.99 0.97

Our GRU model_Balanced Datasets

(Tomek links)

0.96 0.99 0.99 0.98 0.98

Table 7.16 Comparison of the proposed models with other existing approaches based on AUC

Approaches

Datasets

Averages God class Data class Feature envy Long method

DL[29] - - 0.84 0.79 0.81

RF[120] 0.59 0.65 0.59 0.52 0.58

NB[120] 0.88 0.85 0.86 0.86 0.86

SVM[120] 0.65 0.88 0.82 0.66 0.75

K-NN[120] 0.83 0.86 0.83 0.86 0.84

Our Bi-LSTM model_Balanced

Datasets (Random Oversampling)

0.98 1.00 0.97 1.00 0.98

Our GRU model_Balanced

Datasets (Random Oversampling)

0.96 0.99 0.97 1.00 0.98

Our Bi-LSTM model_Balanced

Datasets (Tomek links)

0.98 0.97 0.99 0.98 0.98

Our GRU model_Balanced

Datasets (Tomek links)

0.98 0.99 0.99 0.99 0.98

Table 7.17 presents the statistical analysis results (paired t-test) for the proposed models based

on Random Oversampling and existing approaches in terms of mean, Standard Deviation

(STD), min, max and P value. We notice that the mean value of existing approaches is 0.90,

while the mean value of the Bi-LSTM Model is 0.97 and the mean value of the GRU Model is

0.97. The STD value of existing approaches is 0.00, while the STD value of the Bi-LSTM

Model is 0.02 and the STD value of the GRU Model is 0.01. The Min value of existing

approaches is 0.89, while the Min value of the Bi-LSTM Model is 0.96 and the Min value of

the GRU Model is 0.96. The Max value of existing approaches is 0.91, while the Max value of

the Bi-LSTM Model is 1.00 and the Max value of the GRU Model is 0.99. The P value for

existing approaches and Bi-LSTM Model is 0.00, while the P value for existing approaches

and GRU Model is 0.00. Based on the P value of both models based on Random Oversampling

and existing approaches, we note that the P value is less than 0.05, indicating a difference

between the existing approaches' and our proposed models' results.

Table 7.17 Comparison of the proposed models with other existing approaches in terms of accuracy averages

using paired t-test- based on Random Oversampling

Paired t-test Existing Approaches Bi-LSTM Model Existing Approaches GRU Model

Mean 0.90 0.97 0.90 0.97

STD 0.00 0.02 0.00 0.01

Min 0.89 0.96 0.89 0.95

Max 0.91 1.00 0.91 0.99

P value 0.00 0.00

Table 7.18 presents the statistical analysis results (paired t-test) for the proposed models based

on Tomek Links and existing approaches in terms of mean, Standard Deviation (STD), min,

max and P value. We notice that the mean value of existing approaches is 0.90, while the mean

value of the Bi-LSTM Model is 0.97 and the mean value of the GRU Model is 0.98. The STD

value of existing approaches is 0.00, while the STD value of the Bi-LSTM Model is 0.01 and

the STD value of the GRU Model is 0.01. The Min value of existing approaches is 0.89, while

the Min value of the Bi-LSTM Model is 0.96 and the Min value of the GRU Model is 0.96.

The Max value of existing approaches is 0.91, while the Max value of the Bi-LSTM Model is

DOI 10.14750/ME.2024.012

95

1.00 and the Max value of the GRU Model is 0.99. The P value for existing approaches and

Bi-LSTM Model is 0.00, while the P value for existing approaches and GRU Model is 0.00.

Based on the P value of both models based on Tomek Links and existing approaches, we note

that the P value is less than 0.05, indicating a difference between the existing approaches' and

our proposed models' results.

Table 7.18 Comparison of the proposed models with other existing approaches in terms of accuracy averages

using paired t-test- based on Tomek Links

Paired t-test Existing Approaches Bi-LSTM Model Existing Approaches GRU Model

Mean 0.90 0.97 0.90 0.98

STD 0.00 0.01 0.00 0.01

Min 0.89 0.96 0.89 0.96

Max 0.91 1.00 0.91 0.99

P value 0.00 0.00

In summary, this study aimed to present a method based on RNN models (Bi-LSTM and GRU)

with Under and Oversampling methods (Random Oversampling and Tomek Links) to detect

code smells. We compared the results obtained by the proposed method based on the original

and balanced datasets to investigate the impact of Under and Oversampling methods on

improving the accuracy of ML techniques. Additionally, the proposed method's results were

compared with those presented in previous studies. After comparing the results obtained by the

proposed models on the original datasets with results obtained by the proposed models on the

balanced datasets, as shown in the Tables and Figures, we note that the models got good scores

on the balanced datasets and the results improved further due to balancing, which indicated

that the combination of (Bi-LSTM and GRU) with Under and Oversampling methods (Random

Oversampling and Tomek Links) has positive effect on the performance of code smells

detection regarding datasets with imbalanced class distributions. Furthermore, data sampling

methods play an essential role in improving the accuracy of ML models in code smells

detection. Regarding the evaluation of the results obtained from our proposed method and their

comparison with some results of other studies, we conclude that our models are promising in

code smell detection and outperform other models in the previous studies.

7.4 Summary

In this chapter, we presented the experimental results and discussion of code smells detection.

The experimental results have been compared and evaluated based on several standard

performance measures. We compared experimental results based on the original and balanced

datasets and compared our results with current state-of-the-art results for code smells detection.

The results showed that our proposed methods significantly outperform current state-of-the-art

methods for code smells detection. We concluded that the combined data-balancing methods

with ML techniques significantly enhance the accuracy of code smells detection. We observe

that the incorporation of appropriate data-balancing methods and ML techniques not only

enhances the model's ability to detect code smells accurately but also mitigates the bias towards

the majority class, resulting in a more balanced performance across different classes of code

smells. This research has practical implications for software developers and researchers. It

highlights the significance of considering data-balancing methods when applying ML models

for code smells detection. By employing these methods, developers can enhance their ability

to identify and address code quality issues, thereby improving software maintainability.

DOI 10.14750/ME.2024.012

96

Chapter 8 Conclusion

8.1 Contributions

Identifying software bugs and code smells will help software developers distinguish code

constructs that contain defects and assist them in the testing phase of the software development

life cycle, resulting in improved software quality. Our dissertation contributes to software

engineering, especially software bugs and code smell prediction. The main contribution of our

dissertation is the development of different models based on several ML techniques combined

with many data-balancing methods using software metrics to improve the prediction of

software bugs and code smells. The criteria for selecting the ML techniques and data-balancing

methods in this research work are based on the recommendations in the literature review. By

making these contributions, our dissertation advances the understanding and application of

data-balancing methods in the ML-based prediction of software bugs and code smells using

software metrics. It provides valuable insights and practical guidance, aiding in developing

more accurate and reliable prediction models and ultimately contributing to improving software

quality and reliability. In summary, the main contributions of our research work are

summarized as follows:

• Our dissertation makes a significant contribution by thoroughly examining the impact of

the class imbalance problem on predicting software bugs and code smells. Where it

provides insights into how class imbalance affects the performance of ML-based models

and highlights the need for effective solutions to address this challenge.

• In this dissertation, we contribute by conducting a comprehensive evaluation of various

data-balancing methods commonly employed to address the class imbalance problem in

software bugs and code smells prediction.

• Our dissertation contributes to improving the accuracy and reliability of predictive models

for software bugs and code smells by developing a novel prediction methodology based on

ML techniques combined with data-balancing methods.

• In this dissertation, we validate our proposed methodology through experiments conducted

on real-world software datasets, to show that the performance of ML algorithms in

predicting software bugs and code smells can be significantly improved when balancing

the data set by applying data-balancing methods. Additionally, this validation provides

evidence of the effectiveness of the proposed methodology in practical settings and

increases their applicability in real software development scenarios.

8.1.1 Theses - New Scientific Results

The dissertation presents results demonstrating the significant impact of class imbalance on the

performance of predictive models. It highlights the challenges posed by class imbalance and

provides empirical evidence of the effectiveness of data-balancing methods in enhancing the

performance of predictive models for software bugs and code smells. The effectiveness of data-

balancing methods in enhancing predictive models’ performance is demonstrated through

empirical evaluation based on Real-world software datasets using several standard

performance measures. Overall, the dissertation presents new scientific results that contribute

to data-balancing in ML-based prediction of software bugs and code smells using software

metrics. The novel findings and evaluation results provide valuable insights and advance the

understanding and application of data-balancing methods in improving the accuracy and

DOI 10.14750/ME.2024.012

97

reliability of predictive models for software quality assurance. The main new scientific results

of the research presented in this work are summarized in the following theses:

Thesis I: Investigating standard machine learning (ML) techniques previously used to

predict software bugs and the impact of data-balancing methods (Undersampling methods)

on the accuracy of ML models in software bug prediction (SBP).

I proposed two approaches for SBP: in the first approach, I presented a comprehensive study

investigating standard ML techniques previously used to predict software bugs. In addition, a

method to examine the performance of classical supervised ML algorithms (DT, NB, RF, and

LR) in SBP was proposed. The experiments were conducted based on four public benchmark

datasets obtained from the NASA defect dataset. To investigate the impact of Undersampling

methods in improving the accuracy of RNN models in SBP, a new approach was developed by

combining two RNN models, namely LSTM and GRU, with an Undersampling method (Near

Miss). The experiments were conducted on benchmark datasets which comprise five public

datasets based on both class and file-level metrics. The results of both approaches were

evaluated on many performance measures such as accuracy, precision, recall, f-measure, MCC,

AUC, AUCPR, and MSE. Regarding the evaluation process and the results of the first

approach: I established that the classic supervised ML algorithms can be used effectively for

SBP. Regarding the experimental results of the second approach: the average Recall of the

LSTM and GRU models on the original datasets (class level metrics and file level metrics)

were 20 and 20%, and the average Recall of the models on the balanced datasets (class level

metrics and file level metrics) using Near Miss were 92 and 81%. The results showed that the

LSTM and GRU models on the balanced datasets improved the average Recall by 72 and 61%,

respectively, compared to the original datasets. I established that there are positive effects of

combining RNN with Undersampling methods on the performance of bug prediction regarding

datasets with imbalanced class distributions and the proposed approaches are promising,

competitive and suitable methodologies for SBP [P1 and P2].

Thesis II: Investigating the impact of data-balancing methods (Oversampling and hybrid

sampling methods) on the accuracy of machine learning (ML) models in software defect

prediction (SDP).

I proposed two approaches to investigate the impact of Oversampling and hybrid sampling

methods in improving the accuracy of advanced ML algorithms in SDP. The first approach was

developed based on combining a Bi-LSTM network and Oversampling methods (Random

Oversampling and SMOTE). The second approach was developed based on CNN and GRU

combined with a hybrid sampling method (SMOTE Tomek). The experiments for both

approaches have been conducted on benchmark datasets obtained from the PROMISE

repository. The experimental results have been compared and evaluated in accuracy, precision,

recall, f-measure, MCC, AUC, AUCPR, and MSE. Regarding the evaluation process and the

results of the first approach: The average Recall of the Bi-LSTM model was 48% on the

original datasets, 97% on balanced datasets (using Random Oversampling), and 94% on

balanced datasets (using SMOTE). The results showed that the Bi-LSTM model on the

balanced datasets improves the average Recall by 49 (using Random Oversampling) and 46%

(using SMOTE), compared to the original datasets. Regarding the experimental results of the

second approach: The average Recall of the CNN and GRU models were 48 and 49% on the

original datasets and 94 and 91% on balanced datasets (using SMOTE Tomek), The results

showed that the CNN and GRU models on the balanced datasets improve the average Recall

DOI 10.14750/ME.2024.012

98

by 46 and 42%, respectively, compared to the original datasets. I established that combining

advanced ML algorithms with Oversampling and hybrid sampling methods has positive effects

on the performance of defect prediction regarding datasets with imbalanced class distributions.

The proposed approaches are suitable methodologies for SDP [P3 and P4].

Thesis III: Investigating the impact of data-balancing methods (Oversampling and

Undersampling methods) on the accuracy of machine learning (ML) models in code smells

detection.

I proposed three approaches to investigate the impact of Oversampling and Undersampling

methods in improving the accuracy of classical and advanced ML algorithms in code smell

detection. The first approach was developed based on five classic ML algorithms, namely DT,

K-NN, SVM, XGB, and MLP combined with the Oversampling method (Random

Oversampling). The second approach was developed based on a CNN combined with the

Oversampling method (SMOTE). The third approach was developed based on two RNN

models (Bi-LSTM and GRU) combined with Oversampling and Undersampling methods

(Random Oversampling and Tomek links). The experiments for all approaches were conducted

on four code smells datasets (God class, Data Class, Feature-envy, and Long-method) that were

extracted from 74 open-source systems. The experimental results have been compared and

evaluated in terms of accuracy, precision, recall, f-measure, MCC, AUC, AUCPR, and MSE.

Regarding the evaluation process and the results of the first approach: The average Recall of

the DT, K-NN, SVM, XGB and MLP models on the original datasets (God class, Data class,

Long method and Feature envy) were 88, 95, 93 and 83%, respectively, and the average Recall

of the models on the balanced datasets (using Random Oversampling) were 98, 99, 99 and

98%, respectively. The results showed that the DT, K-NN, SVM, XGB and MLP models on

the balanced datasets improved the average Recall by 10, 4, 6 and 15%, respectively, compared

to the original datasets. Regarding the evaluation process and the results of the second

approach: the average Recall of the CNN model on the original datasets (God class, Data class,

Feature envy and Long method) was 95%, and the average Recall of the model on the balanced

datasets (using SMOTE) was 98%.The results showed that the CNN model on the balanced

datasets improves the average Recall by 3%, compared to the original datasets. Regarding the

experimental results of the third approach: the average Recall of the Bi-LSTM and GRU

models were 91 and 92% on the original datasets (God class, Data class, Feature envy and

Long method), the average Recall of the models were 99 and 99% on the balanced datasets

using Random Oversampling, and the average Recall of the models were 96 and 96%,

respectively, on the balanced datasets using Tomek links. The results showed that the Bi-LSTM

and GRU models on the balanced datasets using Random Oversampling improved the average

Recall by 8 and 7% and improved the average Recall by 5 and 4% on the balanced datasets

using Tomek links, respectively, compared to the original datasets. I established that combining

classic and advanced ML algorithms with Oversampling and Undersampling methods can

improve the performance of code smell detection regarding datasets with imbalanced class

distributions and the proposed approaches are suitable methodologies for code smell detection

[P5, P6 and P7].

DOI 10.14750/ME.2024.012

99

8.2 Future Research Direction

In terms of future research directions, our future research directions are summarized as follows:

• Investigating advanced data-balancing methods: while this dissertation explores several

commonly used data-balancing methods, future research can delve into more advanced

techniques for addressing class imbalance in software bug and code smell prediction. This

may include exploring ensemble-based methods, cost-sensitive learning approaches, or

adaptive data-balancing techniques specifically tailored to the characteristics of software

metrics.

• Hybrid approaches: future research can explore the potential of combining multiple data-

balancing methods to achieve better performance in software bug and code smell

prediction. Hybrid approaches may involve integrating Undersampling and Oversampling

techniques, exploring the combination of synthetic and real data, or incorporating class

weighting methods in conjunction with other data-balancing techniques.

• Handling multiclass imbalance: this dissertation primarily focuses on binary class

imbalance, where the majority class dominates over the minority class. However, future

research can explore the challenges and solutions for addressing multiclass imbalance in

the context of software bugs and code smell prediction. This may involve developing new

data-balancing methods or adapting existing techniques to handle multiple imbalanced

classes effectively.

• Feature selection and dimensionality reduction: software metrics often encompass many

features, which may lead to high-dimensional datasets. Future research can explore the

impact of feature selection and dimensionality reduction techniques on data-balancing and

predictive model performance. Investigating the effectiveness of different feature selection

algorithms or dimensionality reduction methods in the presence of class imbalance can

provide valuable insights.

As a future target, we also would like to address the limitations of this research and extend our

developed models to be applied in another field in software engineering. By exploring these

future research directions, researchers can further advance the field of data-balancing in ML-

based prediction of software bugs and code smells using software metrics. These investigations

will contribute to developing more sophisticated and effective approaches for addressing class

imbalance, enhancing prediction accuracy, and improving software quality assurance practices.

DOI 10.14750/ME.2024.012

100

Appendices

Appendix 1: LSTM and GRU with Undersampling Methods in SBP

Figures 1 and 2 show the AUCPR scores obtained by the proposed models (LSTM and GRU)

on the original and balanced datasets, respectively. The vertical axis presents the precision of

the model, and the horizontal axis illustrates the recall.

Regarding the original datasets, the best AUCPR obtained by the both models (LSTM and

GRU) which is 49% on the file level metrics dataset. While, the worst AUCPR obtained by

GRU model which is 44% on the class level metrics dataset.

Regarding the balanced datasets, the best AUCPR obtained by the both models (LSTM and

GRU) which is 97% on the class level metrics dataset. While, the worst AUCPR obtained by

the both models (LSTM and GRU) which is 95% on the on the file level metrics dataset.

Appendix 1: 0.1 Figure 1. Illustrates the AUCPR of the models across all datasets - class-level metrics

Appendix 1: 0.2 Figure 2. Illustrates the AUCPR of the models across all datasets - file-level metrics

DOI 10.14750/ME.2024.012

101

Appendix 2: Bi-LSTM with Oversampling Methods in SDP

Figures 1, 2 and 3 show the AUCPR of the Bi-LSTM model on the original and balanced

datasets.The vertical axis presents the precision of the model, and the horizontal axis illustrates

the recall.

According to the Figures, the best AUCPR obtained by the proposed model in the original data

sets is 98% on the xerces data set. The worst AUCPR is 29% on the jedit data set. The best

AUCPR obtained by the proposed model in the balanced data sets (using Random

Oversampling) is 99% on the jedit and log4j data sets, while the worst AUCPR is 86% on the

ivy data set. The best AUCPR obtained by the proposed model in the balanced data sets (using

SMOTE) is 100% on the log4j data set, while the worst AUCPR is 91% on the ant and camel

data sets.

Appendix 2: 0.1 Figure 1. AUCPR for the original datasets

Appendix 2: 0.2 Figure 2. AUCPR for the balanced datasets - Random Oversampling

DOI 10.14750/ME.2024.012

102

Appendix 2: 0.3 Figure 3. AUCPR for the balanced datasets – SMOTE

Appendix 3: CNN and GRU with Hybrid (Combined)-Sampling Methods in SDP

Figures 1 to 4 show the AUCPR of the proposed models (CNN and GRU) on the original and

balanced datasets. The vertical axis presents the precision of the model, and the horizontal axis

illustrates the recall.

Figure 1 shows the AUCPR values of the CNN model on the original data sets. The best

AUCPR obtained is 98% on the xerces data set, while the worst AUCPR is 7% on the jedit data

set.

Appendix 3: 0.1 Figure 1. AUCPR for the original data sets - CNN model

DOI 10.14750/ME.2024.012

103

Figure 2 shows the AUCPR values of the CNN model on the balanced data sets. The best

AUCPR obtained is 99% on the log4j and xerces data sets, while the worst AUCPR is 88% on

the jedit data set.

Appendix 3: 0.2 Figure 2. AUCPR for the balanced data sets - CNN model

Figure 3 shows the AUCPR values of the GRU model on the original data sets. The best

AUCPR obtained is 93% on the log4j data set, while the worst AUCPR is 24% on the jedit data

set.

Appendix 3: 0.3 Figure 3. AUCPR for the original data sets - GRU model

DOI 10.14750/ME.2024.012

104

Figure 4 shows the AUCPR values of the GRU model on the balanced data sets. The best

AUCPR obtained is 100% on the jedit data set, while the worst AUCPR is 84% on the camel

data set.

Appendix 3: 0.4 Figure 4. AUCPR for the balanced data sets - GRU model

Appendix 4: Bi-LSTM and GRU with Under and Oversampling Methods

Figures 1 to 8 show the training and validation (accuracy and loss) of the proposed models (Bi-

LSTM and GRU) on the balanced datasets.

Figures 1 to 4 show the training and validation accuracy of the models on the balanced

datasets.The vertical axis presents the accuracy of the models, and the horizontal axis illustrates

the number of epochs. Accuracy is the fraction of predictions that the models predicted right.

Figure 1 shows the accuracy values of the Bi-LSTM model with Random Oversampling

technique. From the Figure, the model learned 96% accuracy for God Class, 99% accuracy for

Data Class, 96% accuracy for Feature envy and 100% accuracy for Long method at the 100th

epoch.

Appendix 4: 0.1 Figure 1. Training and Validation Accuracy on the balanced datasets using Bi-LSTM Model-

Random Oversampling

DOI 10.14750/ME.2024.012

105

Figure 2 shows the accuracy values of the Bi-LSTM model with Tomek links technique. From

the Figure, the model learned 96% accuracy for God Class, 95% accuracy for Data Class, 98%

accuracy for Feature envy and 99% accuracy for Long method at the 100th epoch.

Appendix 4: 0.2 Figure 2. Training and Validation Accuracy on the balanced datasets using Bi-LSTM Model-

Tomek links

Figure 3 shows the accuracy values of the GRU model with Random Oversampling technique.

From the Figure, the model learned 96% accuracy for God Class, 98% accuracy for Data Class,

97% accuracy for Feature envy and 100% accuracy for Long method at the 100th epoch.

Appendix 4: 0.3 Figure 3. Training and Validation Accuracy on the balanced datasets using GRU Model-

Random Oversampling

DOI 10.14750/ME.2024.012

106

Figure 4 shows the accuracy values of the GRU model with Tomek links technique. From the

Figure, the model learned 96% accuracy for God Class, 99% accuracy for Data Class, 99%

accuracy for Feature envy and 98% accuracy for Long method at the 100th epoch.

Appendix 4: 0.4 Figure 4. Training and Validation Accuracy on the balanced datasets using GRU Model-

Tomek links

Figures 5 to 8 show the training and validation loss of the models on the balanced datasets. The

vertical axis presents the loss of the models, and the horizontal axis illustrates the number of

epochs. The loss indicates how bad a model's prediction was.

Figure 5 shows the loss values of the Bi-LSTM model with Random Oversampling technique.

From the Figure, the model loss is 0.035 for God Class, 0.006 for Data Class, 0.037 for Feature

envy and 0.005 for the long method at the 100th epoch.

Appendix 4: 0.5 Figure 5. Training and Validation Loss on the balanced datasets using Bi-LSTM Model-

Random Oversampling

DOI 10.14750/ME.2024.012

107

Figure 6 shows the loss values of the Bi-LSTM model with Tomek links technique. From the

Figure, the model loss is 0.037 for God Class, 0.044 for Data Class, 0.020 for Feature envy and

0.013 for the long method at the 100th epoch.

Appendix 4: 0.6 Figure 6. Training and Validation Loss on the balanced datasets using Bi-LSTM Model-

Tomek links

Figure 7 shows the loss values of the GRU model with Random Oversampling technique. From

the Figure, the model loss is 0.033 for God Class, 0.023 for Data Class, 0.032 for Feature envy

and 0.002 for the long method at the 100th epoch.

Appendix 4: 0.7 Figure 7. Training and Validation Loss on the balanced datasets using GRU Model-Random

Oversampling

DOI 10.14750/ME.2024.012

108

Figure 8 shows the loss values of the GRU model with Tomek links technique. From the Figure,

the model loss is 0.038 for God Class, 0.018 for Data Class, 0.021 for Feature envy and 0.025

for the long method at the 100th epoch.

As shown in the Figures, the accuracy of training and validation increases, and the loss

decreases with increasing epochs. Regarding the high accuracy and low loss obtained by the

proposed models, we note that both models are well-trained and validated. Additionally, we

note that the models are approximately perfectly fitting, there is no overfitting or underfitting.

Appendix 4: 0.8 Figure 8. Training and Validation Loss on the balanced datasets using GRU Model - Tomek

links

Furthermore, Figures 9 to 12 show the ROC curves for both models on the balanced datasets.

The vertical axis presents the actual positive rate of the models, and the horizontal axis

illustrates the false positive rate. The AUC is a sign of the performance of the model. The larger

the AUC is, the better the model performance will be. Figure 9 shows the AUC values of the

Bi-LSTM model with Random Oversampling technique. From the Figure, the AUC values are

98% on God Class,100% on Data Class, 97% on Feature envy and 100% on the Long method.

Appendix 4: 0.9 Figure 9. ROC curves for the balanced datasets - Bi-LSTM Model-Random Oversampling

DOI 10.14750/ME.2024.012

109

Figure 10 shows the AUC values of the Bi-LSTM model with Tomek links technique. From

the Figure, the AUC values are 0.98% on God Class,97% on Data Class, 99% on Feature envy

and 98% on the Long method.

Appendix 4: 0.10 Figure 10. ROC curves for the balanced datasets - Bi-LSTM Model- Tomek links

Figure 11 shows the AUC values of the GRU model with Random Oversampling technique.

From the Figure, the AUC values are 96% on God Class,99% on Data Class, 97% on Feature

envy and 100% on the Long method.

Appendix 4: 0.11 Figure 11. ROC curves for the balanced datasets - GRU Model-Random Oversampling

DOI 10.14750/ME.2024.012

110

Figure 12 shows the AUC values of the GRU model with Tomek links technique. From the

Figure, the AUC values are 98% on God Class,99% on Data Class, 99% on Feature envy and

99% on the Long method.

Appendix 4: 0.12 Figure 12. ROC curves for the balanced datasets - GRU Model- Tomek links

DOI 10.14750/ME.2024.012

111

Author’s Publication

Publications Related to the Dissertation

(P1) N. A. A. Khleel and K. Nehéz, "Comprehensive Study on Machine Learning Techniques

for Software Bug Prediction", International Journal of Advanced Computer Science and

Applications,Vol.12,No.8,pp.726-735,2021.

http://dx.doi.org/10.14569/IJACSA.2021.0120884. Web of Science (WoS), Scopus (Q3),

Impact Factor (1.16), Journal Article.

(P2) N.A.A.Khleel and K.Nehéz, "Improving the Accuracy of Recurrent Neural Networks

Models in Predicting Software Bug Based on Undersampling Methods", Indonesian Journal of

ElectricalEngineeringandComputerScience.Vol.32,No.1,pp.478-493,2023.

http://doi.org/10.11591/ijeecs.v32.i1.pp478-493. Scopus (Q3), Impact Factor (1.51), Journal

Article.

(P3) N.A.A.Khleel and K.Nehéz, "Software Defect Prediction using a Bidirectional LSTM

Network Combined with Oversampling Techniques", Cluster Computing (2023).

https://doi.org/10.1007/s10586-023-04170-z. Web of Science (WoS), Scopus (Q2), Impact

Factor (4.4), Journal Article.

(P4) N.A.A.Khleel and K.Nehéz, "A novel approach for software defect prediction using CNN

and GRU based on SMOTE Tomek method", Journal of Intelligent Information Systems

(2023). https://doi.org/10.1007/s10844-023-00793-1.Web of Science (WoS), Scopus (Q2),

Impact Factor (3.4), Journal Article.

(P5) N.A.A.Khleel and K.Nehéz, "Detection of Code Smells Using Machine Learning

Techniques Combined with Data-Balancing Methods", International Journal of Advances in

Intelligent Informatics.Vol.9,No.3,pp.402-417,2023. https://doi.org/10.26555/ijain.v9i3.981.

Scopus (Q3), Impact Factor (1.88), Journal Article.

(P6) N.A.A.Khleel and K.Nehéz, "Deep convolutional neural network model for bad code

smells detection based on oversampling method", Indonesian Journal of Electrical Engineering

andComputerScience,Vol.26,No.3,pp.1725-1735,2022.

http://doi.org/10.11591/ijeecs.v26.i3.pp1725-1735. Scopus (Q3), Impact Factor (1.51),

Journal Article.

(P7) N.A.A.Khleel and K.Nehéz, "Improving Accuracy of Code Smells Detection using a Bi-

LSTM and GRU Networks with Data Balancing Techniques", International Journal of Data

Science and Analytics, (under review). Scopus (Q2), Impact Factor (2.52), Journal Article.

(P8) N.A.A.Khleel and K.Nehéz, "A new approach to software defect prediction based on

convolutional neural network and bidirectional long short-term memory", Production Systems

andInformationEngineering,Vol.10,No.3,pp.1-15,2022.

https://doi.org/10.32968/psaie.2022.3.1. Journal Article.

(P9) N.A.A.Khleel and K.Nehéz, Data Balancing Methods in ML-Based Software Bug

Prediction, Doktoranduszok Fóruma , (2022) pp. 59-67. Conference paper.

DOI 10.14750/ME.2024.012

http://dx.doi.org/10.14569/IJACSA.2021.0120884
http://doi.org/10.11591/ijeecs.v32.i1.pp478-493
https://doi.org/10.1007/s10586-023-04170-z
https://doi.org/10.1007/s10844-023-00793-1
https://doi.org/10.26555/ijain.v9i3.981
http://doi.org/10.11591/ijeecs.v26.i3.pp1725-1735
https://doi.org/10.32968/psaie.2022.3.1

112

(P10) N.A.A.Khleel and K.Nehéz, Overview of modern software bug prediction approaches,

Doktoranduszok Fóruma , (2021) pp. 55-61. Conference paper.

Other Publications Journal Articles and Conference Proceeding

(P11) M.A.A.Mohammed, N.A.A.Khleel, N.P.Szabó et al, "Modeling of groundwater quality

index by using artificial intelligence algorithms in northern Khartoum State, Sudan", Model.

Earth Syst. Environ, 9, 2501–2516 (2023). https://doi.org/10.1007/s40808-022-01638-6. Web

of Science (WoS), Scopus (Q1), Impact Factor (3.90), Journal Article.

(P12) N.A.A.Khleel and K.Nehéz, "Merging problems in modern version control systems ",

MultidisciplinarySciences,Vol.10,No.3,pp.365-376,2020.

https://doi.org/10.35925/j.multi.2020.3.44. Journal Article.

(P13) N.A.A.Khleel and K.Nehéz, "Comparison of version control system tools",

MultidisciplinarySciences,Vol.10,No.3,pp.61-69,2020.

https://doi.org/10.35925/j.multi.2020.3.7. Journal Article.

(P14) N.A.A.Khleel and K.Nehéz, "Tools, processes and factors influencing code review ",

MultidisciplinarySciences,Vol.10,No.3,pp.277-284,2020.

https://doi.org/10.35925/j.multi.2020.3.33. Journal Article.

(P15) N.A.A.Khleel and K.Nehéz, Mining Software Repository: an Overview,

Doktoranduszok Fóruma , (2019) pp. 108-114. Conference paper.

DOI 10.14750/ME.2024.012

https://doi.org/10.1007/s40808-022-01638-6
https://doi.org/10.35925/j.multi.2020.3.44
https://doi.org/10.35925/j.multi.2020.3.7
https://doi.org/10.35925/j.multi.2020.3.33

113

References

[1] G. Sharma, S. Sharma, and S. Gujral, “A Novel Way of Assessing Software Bug Severity Using

Dictionary of Critical Terms,” in Procedia Computer Science, Elsevier B.V., 2015, pp. 632–639. doi:

10.1016/j.procs.2015.10.059.

[2] H. Bani-Salameh, M. Sallam, and B. Al shboul, “A deep-learning-based bug priority prediction using

RNN-LSTM neural networks,” E-Informatica Software Engineering Journal, vol. 15, no. 1, pp. 29–45,

2021, doi: 10.37190/E-INF210102.

[3] A. Majd, M. Vahidi-Asl, A. Khalilian, P. Poorsarvi-Tehrani, and H. Haghighi, “SLDeep: Statement-level

software defect prediction using deep-learning model on static code features,” Expert Syst Appl, vol. 147,

Jun. 2020, doi: 10.1016/j.eswa.2019.113156.

[4] F. Arcelli Fontana, M. V. Mäntylä, M. Zanoni, and A. Marino, “Comparing and experimenting machine

learning techniques for code smell detection,” Empir Softw Eng, vol. 21, no. 3, pp. 1143–1191, Jun. 2016,

doi: 10.1007/s10664-015-9378-4.

[5] A. Al-Shaaby, H. Aljamaan, and M. Alshayeb, “Bad Smell Detection Using Machine Learning

Techniques: A Systematic Literature Review,” Arabian Journal for Science and Engineering, vol. 45,

no. 4. Springer, pp. 2341–2369, Apr. 01, 2020. doi: 10.1007/s13369-019-04311-w.

[6] P. Kokol, M. K. Semantika, S. Zagoranski, and M. Kokol, “Code smells: A Synthetic Narrative Review

Code smells: A Synthetic Narrative Review Code smells: A Synthetic Narrative Review,” 2020. [Online].

Available: https://digitalcommons.unl.edu/libphilprac

[7] N. A. A. Khleel and K. Nehéz, “A novel approach for software defect prediction using CNN and GRU

based on SMOTE Tomek method,” J Intell Inf Syst, Jun. 2023, doi: 10.1007/s10844-023-00793-1.

[8] Y. Li, S. Wang, T. N. Nguyen, and S. Van Nguyen, “Improving bug detection via context-based code

representation learning and attention-based neural networks,” Proceedings of the ACM on Programming

Languages, vol. 3, no. OOPSLA, Oct. 2019, doi: 10.1145/3360588.

[9] L. Jonsson, M. Borg, D. Broman, K. Sandahl, S. Eldh, and P. Runeson, “Automated bug assignment:

Ensemble-based machine learning in large scale industrial contexts,” Empir Softw Eng, vol. 21, no. 4,

pp. 1533–1578, Aug. 2016, doi: 10.1007/s10664-015-9401-9.

[10] S. Aleem, L. Fernando Capretz, and F. Ahmed, “COMPARATIVE PERFORMANCE ANALYSIS OF

MACHINE LEARNING TECHNIQUES FOR SOFTWARE BUG DETECTION,” pp. 71–79, 2015, doi:

10.5121/csit.2015.50108.

[11] H. Tong, B. Liu, and S. Wang, “Software defect prediction using stacked denoising autoencoders and

two-stage ensemble learning,” Inf Softw Technol, vol. 96, pp. 94–111, Apr. 2018, doi:

10.1016/j.infsof.2017.11.008.

[12] N. Moha, Y. G. Guéhéneuc, L. Duchien, and A. F. Le Meur, “DECOR: A method for the specification

and detection of code and design smells,” IEEE Transactions on Software Engineering, vol. 36, no. 1,

pp. 20–36, 2010, doi: 10.1109/TSE.2009.50.

[13] F. Pecorelli, D. Di Nucci, C. De Roover, and A. De Lucia, “On the role of data balancing for machine

learning-based code smell detection,” in MaLTeSQuE 2019 - Proceedings of the 3rd ACM SIGSOFT

International Workshop on Machine Learning Techniques for Software Quality Evaluation, co-located

with ESEC/FSE 2019, Association for Computing Machinery, Inc, Aug. 2019, pp. 19–24. doi:

10.1145/3340482.3342744.

[14] N. A. A. Khleel and K. Nehéz, “Deep convolutional neural network model for bad code smells detection

based on oversampling method,” Indonesian Journal of Electrical Engineering and Computer Science,

vol. 26, no. 3, pp. 1725–1735, Jun. 2022, doi: 10.11591/ijeecs.v26.i3.pp1725-1735.

DOI 10.14750/ME.2024.012

114

[15] M. Gao, X. Hong, S. Chen, C. J. Harris, and E. Khalaf, “PDFOS: PDF estimation based over-sampling

for imbalanced two-class problems,” Neurocomputing, vol. 138, pp. 248–259, Aug. 2014, doi:

10.1016/j.neucom.2014.02.006.

[16] U. Ali, S. Aftab, A. Iqbal, Z. Nawaz, M. S. Bashir, and M. A. Saeed, “Software defect prediction using

variant based ensemble learning and feature selection techniques,” International Journal of Modern

Education and Computer Science, vol. 12, no. 5, pp. 29–40, 2020, doi: 10.5815/ijmecs.2020.05.03.

[17] N. A. A. Khleel and K. Nehéz, “Software defect prediction using a bidirectional LSTM network

combined with oversampling techniques,” Cluster Computing (2023). https://doi.org/10.1007/s10586-

023-04170-z.

[18] N. A. A. Khleel and K. Nehéz, “Comprehensive Study on Machine Learning Techniques for Software

Bug Prediction.” [Online]. Available: www.ijacsa.thesai.org

[19] I. H. Laradji, M. Alshayeb, and L. Ghouti, “Software defect prediction using ensemble learning on

selected features,” Inf Softw Technol, vol. 58, pp. 388–402, Feb. 2015, doi: 10.1016/j.infsof.2014.07.005.

[20] E. ÖZTÜRK, K. U. Birant, and D. Birant, “Yazılım Hata Tahmini için Sıralı Sınıflandırma Yaklaşımı,”

Deu Muhendislik Fakultesi Fen ve Muhendislik, vol. 21, no. 62, pp. 533–544, May 2019, doi:

10.21205/deufmd.2019216218.

[21] A. Hammouri, M. Hammad, M. Alnabhan, and F. Alsarayrah, “Software Bug Prediction using machine

learning approach,” International Journal of Advanced Computer Science and Applications, vol. 9, no.

2, pp. 78–83, 2018, doi: 10.14569/IJACSA.2018.090212.

[22] M. Efendioglu, A. Sen, and Y. Koroglu, “Bug prediction of systemC models using machine learning,”

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 38, no. 3, pp.

419–429, Mar. 2019, doi: 10.1109/TCAD.2018.2878193.

[23] J. A. Fadhil, K. T. Wei, and K. S. Na, “Artificial Intelligence for Software Engineering: An Initial Review

on Software Bug Detection and Prediction,” Journal of Computer Science, vol. 16, no. 12, pp. 1709–

1717, 2020, doi: 10.3844/jcssp.2020.1709.1717.

[24] M. Shepperd, Q. Song, Z. Sun, and C. Mair, “Data quality: Some comments on the NASA software

defect datasets,” IEEE Transactions on Software Engineering, vol. 39, no. 9, pp. 1208–1215, 2013, doi:

10.1109/TSE.2013.11.

[25] A. Professor, “Overview of Software Defect Prediction using Machine Learning Algorithms.” [Online].

Available: http://www.ijpam.eu

[26] M. I. Azeem, F. Palomba, L. Shi, and Q. Wang, “Machine learning techniques for code smell detection:

A systematic literature review and meta-analysis,” Information and Software Technology, vol. 108.

Elsevier B.V., pp. 115–138, Apr. 01, 2019. doi: 10.1016/j.infsof.2018.12.009.

[27] M. Y. Mhawish and M. Gupta, “Predicting Code Smells and Analysis of Predictions: Using Machine

Learning Techniques and Software Metrics,” J Comput Sci Technol, vol. 35, no. 6, pp. 1428–1445, Nov.

2020, doi: 10.1007/s11390-020-0323-7.

[28] M. Hadj-Kacem and N. Bouassida, “A hybrid approach to detect code smells using deep learning,” in

ENASE 2018 - Proceedings of the 13th International Conference on Evaluation of Novel Approaches to

Software Engineering, SciTePress, 2018, pp. 137–146. doi: 10.5220/0006709801370146.

[29] H. Liu, J. Jin, Z. Xu, Y. Zou, Y. Bu, and L. Zhang, “Deep learning based code smell detection,” IEEE

Transactions on Software Engineering, vol. 47, no. 9, pp. 1811–1837, Sep. 2021, doi:

10.1109/TSE.2019.2936376.

[30] D. Oliveira, W. K. G. Assunção, L. Souza, W. Oizumi, A. Garcia, and B. Fonseca, “Applying Machine

Learning to Customized Smell Detection: A Multi-Project Study,” in ACM International Conference

Proceeding Series, Association for Computing Machinery, Oct. 2020, pp. 233–242. doi:

10.1145/3422392.3422427.

DOI 10.14750/ME.2024.012

115

[31] M. Gradišnik, T. Beranič, S. Karakatič, and G. Mauša, “Adapting God Class thresholds for software

defect prediction: A case study.” [Online]. Available: https://projects.eclipse.org/

[32] G. Saranya, H. Khanna Nehemiah, A. Kannan, and V. Nithya, “Model level code smell detection using

EGAPSO based on similarity measures,” Alexandria Engineering Journal, vol. 57, no. 3. Elsevier B.V.,

pp. 1631–1642, Sep. 01, 2018. doi: 10.1016/j.aej.2017.07.006.

[33] U. Mansoor, M. Kessentini, B. R. Maxim, and K. Deb, “Multi-objective code-smells detection using

good and bad design examples,” Software Quality Journal, vol. 25, no. 2, pp. 529–552, Jun. 2017, doi:

10.1007/s11219-016-9309-7.

[34] D. K. Kim, “Finding bad code smells with neural network models,” International Journal of Electrical

and Computer Engineering, vol. 7, no. 6, pp. 3613–3621, Dec. 2017, doi: 10.11591/ijece.v7i6.pp3613-

3621.

[35] F. Caram Luiz, B. Rafael de Oliveira Rodrigues, and F. Silva Parreiras, “Machine learning techniques

for code smells detection: an empirical experiment on a highly imbalanced setup,” 2019, doi:

10.1145/3330204.

[36] F. Arcelli Fontana and M. Zanoni, “Code smell severity classification using machine learning

techniques,” Knowl Based Syst, vol. 128, pp. 43–58, Jul. 2017, doi: 10.1016/j.knosys.2017.04.014.

[37] F. L. Caram, B. R. D. O. Rodrigues, A. S. Campanelli, and F. S. Parreiras, “Machine Learning Techniques

for Code Smells Detection: A Systematic Mapping Study,” International Journal of Software

Engineering and Knowledge Engineering, vol. 29, no. 2, pp. 285–316, Feb. 2019, doi:

10.1142/S021819401950013X.

[38] F. Pecorelli, F. Palomba, D. Di Nucci, and A. De Lucia, “Comparing heuristic and machine learning

approaches for metric-based code smell detection,” in IEEE International Conference on Program

Comprehension, IEEE Computer Society, May 2019, pp. 93–104. doi: 10.1109/ICPC.2019.00023.

[39] N. A. A. Khleel and K. Nehéz, “Detection of code smells using machine learning techniques combined

with data-balancing methods,” International Journal of Advances in Intelligent Informatics, vol. 9, no.

3, pp. 402-417, 2023, doi: https://doi.org/10.26555/ijain.v9i3.981.

[40] N. A. A. Khleel and K. Nehéz, “Improving the accuracy of recurrent neural networks models in predicting

software bug based on undersampling methods,” Indonesian Journal of Electrical Engineering and

Computer Science, vol. 32, no. 1, p. 478, Oct. 2023, doi: 10.11591/ijeecs.v32.i1.pp478-493.

[41] S. Puranik, P. Deshpande, and K. Chandrasekaran, “A Novel Machine Learning Approach for Bug

Prediction,” in Procedia Computer Science, Elsevier B.V., 2016, pp. 924–930. doi:

10.1016/j.procs.2016.07.271.

[42] V. Gupta, N. Ganeshan, and T. K. Singhal, “Developing Software Bug Prediction Models Using Various

Software Metrics as the Bug Indicators,” 2015. [Online]. Available: www.ijacsa.thesai.org

[43] S. Karim, H. Leslie Hendric Spits Warnars, F. Lumban Gaol, E. Abdurachman, and B. Soewito,

“Software Metrics for Fault Prediction Using Machine Learning Approaches A Literature Review with

PROMISE Repository Dataset.”

[44] S. N. A. Saharudin, K. T. Wei, and K. S. Na, “Machine Learning Techniques for Software Bug

Prediction: A Systematic Review,” Journal of Computer Science, vol. 16, no. 11, pp. 1558–1569, 2020,

doi: 10.3844/JCSSP.2020.1558.1569.

[45] D. I. G. Amalarethinam, P. H. Maitheen, and S. Hameed, “Analysis of Object Oriented Metrics on a Java

Application,” 2015.

[46] R. Suresh Kumar and B. Satyanarayana, “Adaptive Genetic Algorithm Based Artificial Neural Network

for Software Defect Prediction,” Type: Double Blind Peer Reviewed International Research Journal

Publisher: Global Journals Inc, vol. 15, 2015.

DOI 10.14750/ME.2024.012

116

[47] X. Xia, D. Lo, S. J. Pan, N. Nagappan, and X. Wang, “HYDRA: Massively compositional model for

cross-project defect prediction,” IEEE Transactions on Software Engineering, vol. 42, no. 10, pp. 977–

998, Oct. 2016, doi: 10.1109/TSE.2016.2543218.

[48] H. Liang, Y. Yu, L. Jiang, and Z. Xie, “Seml: A Semantic LSTM Model for Software Defect Prediction,”

IEEE Access, vol. 7, pp. 83812–83824, 2019, doi: 10.1109/ACCESS.2019.2925313.

[49] R. Ferenc, P. Gyimesi, G. Gyimesi, Z. Tóth, and T. Gyimóthy, “An automatically created novel bug

dataset and its validation in bug prediction,” Journal of Systems and Software, vol. 169, Nov. 2020, doi:

10.1016/j.jss.2020.110691.

[50] F. A. Batarseh, A. Kumar, R. Mohod, and J. Bui, “Chapter 10: The Application of Artificial Intelligence

in Software Engineering-A Review Challenging Conventional Wisdom.”

[51] D. R. Prashanta and K. Patra, “LECTURE NOTES ON ARTIFICIAL INTELLIGENCE PREPARED

BY.”

[52] F. Meziane and S. Vadera, “Artificial Intelligence in Software Engineering,” 2010, pp. 278–299. doi:

10.4018/978-1-60566-758-4.ch014.

[53] M. J. Islam, G. Nguyen, R. Pan, and H. Rajan, “A Comprehensive Study on Deep Learning Bug

Characteristics,” Jun. 2019, [Online]. Available: http://arxiv.org/abs/1906.01388

[54] F. Qin, X. Wan, and B. Yin, “An empirical study of factors affecting cross-project aging-related bug

prediction with TLAP,” Software Quality Journal, vol. 28, no. 1, pp. 107–134, Mar. 2020, doi:

10.1007/s11219-019-09460-7.

[55] X. Ye, F. Fang, J. Wu, R. Bunescu, and C. Liu, “Bug Report Classification Using LSTM Architecture

for More Accurate Software Defect Locating,” in Proceedings - 17th IEEE International Conference on

Machine Learning and Applications, ICMLA 2018, Institute of Electrical and Electronics Engineers Inc.,

Jan. 2019, pp. 1438–1445. doi: 10.1109/ICMLA.2018.00234.

[56] S. Sah, “Machine Learning: A Review of Learning Types,” 2020, doi:

10.20944/preprints202007.0230.v1.

[57] B. Mahesh, “Machine Learning Algorithms-A Review Machine Learning Algorithms-A Review View

project Self Flowing Generator View project Batta Mahesh Independent Researcher Machine Learning

Algorithms-A Review,” International Journal of Science and Research, 2018, doi:

10.21275/ART20203995.

[58] T. Oladipupo Ayodele, “X Types of Machine Learning Algorithms.” [Online]. Available:

www.intechopen.com

[59] R. Kumar and S. Singla, “Multiclass Software Bug Severity Classification using Decision Tree, Naive

Bayes and Bagging,” 2021.

[60] A. Kukkar, R. Mohana, A. Nayyar, J. Kim, B. G. Kang, and N. Chilamkurti, “A novel deep-learning-

based bug severity classification technique using convolutional neural networks and random forest with

boosting,” Sensors (Switzerland), vol. 19, no. 13, Jul. 2019, doi: 10.3390/s19132964.

[61] A. Baarah, A. Aloqaily, Z. Salah, M. Zamzeer, and M. Sallam, “Machine Learning Approaches for

Predicting the Severity Level of Software Bug Reports in Closed Source Projects,” 2019. [Online].

Available: www.ijacsa.thesai.org

[62] G. Rodríguez-Pérez, G. Robles, A. Serebrenik, A. Zaidman, D. M. Germán, and J. M. Gonzalez-

Barahona, “How bugs are born: a model to identify how bugs are introduced in software components,”

Empir Softw Eng, vol. 25, no. 2, pp. 1294–1340, Mar. 2020, doi: 10.1007/s10664-019-09781-y.

[63] S. Jain and A. Saha, “Improving performance with hybrid feature selection and ensemble machine

learning techniques for code smell detection,” Sci Comput Program, vol. 212, Dec. 2021, doi:

10.1016/j.scico.2021.102713.

DOI 10.14750/ME.2024.012

117

[64] S. Sharma and S. Kumar, “Analysis of ensemble models for aging related bug prediction in software

systems,” in ICSOFT 2018 - Proceedings of the 13th International Conference on Software

Technologies, SciTePress, 2019, pp. 256–263. doi: 10.5220/0006847702560263.

[65] A. Abraham, Machine Intelligence Research Labs, M. and C. S. T. C. on S. C. Systems, Annual IEEE

Computer Conference, International Conference on Intelligent Systems Design and Applications 12

2012.11.27-29 Kochi, and ISDA 12 2012.11.27-29 Kochi, 12th International Conference on Intelligent

Systems Design and Applications (ISDA), 2012 27-29 Nov. 2012, Kochi, India.

[66] F. Qin, Z. Zheng, Y. Qiao, and K. S. Trivedi, “Studying Aging-Related Bug Prediction Using Cross-

Project Models,” IEEE Trans Reliab, Sep. 2018, doi: 10.1109/TR.2018.2864960.

[67] A. Abdou, F. Akmel, and E. Birihanu, “A Literature Review Study of Soware Defect Prediction using

Machine Learning Techniques Related papers Early Predict ion of Soft ware Defect using Ensemble

Learning: A Comparat ive St udy A Literature Review Study of Software Defect Prediction using

Machine Learning Techniques,” 2017. [Online]. Available: www.ermt.net

[68] https://www.studocu.com/in/document/adithya-institute-of-technology/computer science/machine-

learningr 17a0534/33563556

[69] S. Moustafa, M.Y. ElNainay, N. El Makky and M.S. Abougabal, "Software bug prediction using

weighted majority voting techniques", Alexandria engineering journal, Vol. 57, No. 4, pp. 2763-2774,

2018. https://doi.org/10.1016/j.aej.2018.01.003

[70] Ö. F. Arar and K. Ayan, “Software defect prediction using cost-sensitive neural network,” Applied Soft

Computing Journal, vol. 33, pp. 263–277, Apr. 2015, doi: 10.1016/j.asoc.2015.04.045.

[71] I. F. of E. Christ University (Bangalore and Institute of Electrical and Electronics Engineers, 2019

International Conference on Data Science and Communication (IconDSC) : Faculty of Engineering,

CHRIST (Deemed to be University), Bangalore, 2019-03-01 to 2019-03-02.

[72] S. Gupta and S. Kumar Gupta, “A Systematic Study of Duplicate Bug Report Detection.” [Online].

Available: www.ijacsa.thesai.org

[73] S. Haque, Z. Eberhart, A. Bansal, and C. McMillan, “Semantic Similarity Metrics for Evaluating Source

Code Summarization,” in IEEE International Conference on Program Comprehension, IEEE Computer

Society, 2022, pp. 36–47. doi: 10.1145/nnnnnnn.nnnnnnn.

[74] F. Barchi, E. Parisi, G. Urgese, E. Ficarra, and A. Acquaviva, “Exploration of Convolutional Neural

Network models for source code classification,” Eng Appl Artif Intell, vol. 97, Jan. 2021, doi:

10.1016/j.engappai.2020.104075.

[75] H. Liu, Z. Xu, and Y. Zou, “Deep learning based feature envy detection,” in ASE 2018 - Proceedings of

the 33rd ACM/IEEE International Conference on Automated Software Engineering, Association for

Computing Machinery, Inc, Sep. 2018, pp. 385–396. doi: 10.1145/3238147.3238166.

[76] T. Sharma, V. Efstathiou, P. Louridas, and D. Spinellis, “Code smell detection by deep direct-learning

and transfer-learning,” Journal of Systems and Software, vol. 176, Jun. 2021, doi:

10.1016/j.jss.2021.110936.

[77] L. Qiao, X. Li, Q. Umer, and P. Guo, “Deep learning based software defect prediction,” Neurocomputing,

vol. 385, pp. 100–110, Apr. 2020, doi: 10.1016/j.neucom.2019.11.067.

[78] E. N. Akimova et al., “A survey on software defect prediction using deep learning,” Mathematics, vol.

9, no. 11. MDPI AG, Jun. 01, 2021. doi: 10.3390/math9111180.

[79] M. A. Ramdhani, M. A. Ramdhani, D. S. adillah Maylawati, and T. Mantoro, “Indonesian news

classification using convolutional neural network,” Indonesian Journal of Electrical Engineering and

Computer Science, vol. 19, no. 2, pp. 1000–1009, Aug. 2020, doi: 10.11591/ijeecs.v19.i2.pp1000-1009.

DOI 10.14750/ME.2024.012

118

[80] C. Pan, M. Lu, B. Xu, and H. Gao, “An improved CNN model for within-project software defect

prediction,” Applied Sciences (Switzerland), vol. 9, no. 10, May 2019, doi: 10.3390/app9102138.

[81] S. I. Ayon, “Neural Network based Software Defect Prediction using Genetic Algorithm and Particle

Swarm Optimization,” in 1st International Conference on Advances in Science, Engineering and

Robotics Technology 2019, ICASERT 2019, Institute of Electrical and Electronics Engineers Inc., May

2019. doi: 10.1109/ICASERT.2019.8934642.

[82] S. K. Pandey, R. B. Mishra, and A. K. Tripathi, “BPDET: An effective software bug prediction model

using deep representation and ensemble learning techniques,” Expert Syst Appl, vol. 144, Apr. 2020, doi:

10.1016/j.eswa.2019.113085.

[83] Institute of Electrical and Electronics Engineers, 16th ACS/IEEE International Conference on Computer

Systems and Applications AICCSA 2019 : 3 November to 7 November 2019, Al Ain University & Crowne

Plaza, Abu Dhabi, UAE.

[84] G. Fan, X. Diao, H. Yu, K. Yang, and L. Chen, “Software Defect Prediction via Attention-Based

Recurrent Neural Network,” Sci Program, vol. 2019, 2019, doi: 10.1155/2019/6230953.

[85] Z. Yang and H. Qian, “Automated parameter tuning of artificial neural networks for software defect

prediction,” in ACM International Conference Proceeding Series, Association for Computing

Machinery, Jun. 2018, pp. 203–209. doi: 10.1145/3239576.3239622.

[86] M. N. Uddin, B. Li, Z. Ali, P. Kefalas, I. Khan, and I. Zada, “Software defect prediction employing

BiLSTM and BERT-based semantic feature,” Soft comput, vol. 26, no. 16, pp. 7877–7891, Aug. 2022,

doi: 10.1007/s00500-022-06830-5.

[87] S. Feng, J. Keung, X. Yu, Y. Xiao, and M. Zhang, “Investigation on the stability of SMOTE-based

oversampling techniques in software defect prediction,” Inf Softw Technol, vol. 139, Nov. 2021, doi:

10.1016/j.infsof.2021.106662.

[88] X. Li, J. Li, Y. Qu, and D. He, “Gear pitting fault diagnosis using integrated CNN and GRU network

with both vibration and acoustic emission signals,” Applied Sciences (Switzerland), vol. 9, no. 4, Feb.

2019, doi: 10.3390/app9040768.

[89] X. Bai, H. Zhou, and H. Yang, “An HVSM-based GRU approach to predict cross-version software

defects,” International Journal of Performability Engineering, vol. 16, no. 6, pp. 979–990, Jun. 2020,

doi: 10.23940/ijpe.20.06.p16.979990.

[90] S. M. Abd Elrahman and A. Abraham, “A Review of Class Imbalance Problem,” 2013. [Online].

Available: www.mirlabs.net/jnic/index.html

[91] L. Wang, M. Han, X. Li, N. Zhang, and H. Cheng, “Review of Classification Methods on Unbalanced

Data Sets,” IEEE Access, vol. 9, pp. 64606–64628, 2021, doi: 10.1109/ACCESS.2021.3074243.

[92] F. Rodríguez-Torres, J. F. Martínez-Trinidad, and J. A. Carrasco-Ochoa, “An Oversampling Method for

Class Imbalance Problems on Large Datasets,” Applied Sciences (Switzerland), vol. 12, no. 7, Apr. 2022,

doi: 10.3390/app12073424.

[93] C. Padurariu and M. E. Breaban, “Dealing with data imbalance in text classification,” in Procedia

Computer Science, Elsevier B.V., 2019, pp. 736–745. doi: 10.1016/j.procs.2019.09.229.

[94] F. Pecorelli, D. Di Nucci, C. De Roover, and A. De Lucia, “A large empirical assessment of the role of

data balancing in machine-learning-based code smell detection,” Journal of Systems and Software, vol.

169, Nov. 2020, doi: 10.1016/j.jss.2020.110693.

[95] E. AT, A. M, A.-M. F, and S. M, “Classification of Imbalance Data using Tomek Link (T-Link)

Combined with Random Under-sampling (RUS) as a Data Reduction Method,” Global Journal of

Technology and Optimization, vol. 01, no. S1, 2016, doi: 10.4172/2229-8711.s1111.

DOI 10.14750/ME.2024.012

119

[96] T. T. Khuat and M. H. Le, “Evaluation of Sampling-Based Ensembles of Classifiers on Imbalanced Data

for Software Defect Prediction Problems,” SN Comput Sci, vol. 1, no. 2, Mar. 2020, doi: 10.1007/s42979-

020-0119-4.

[97] N. M. Mqadi, N. Naicker, and T. Adeliyi, “Solving Misclassification of the Credit Card Imbalance

Problem Using near Miss,” Math Probl Eng, vol. 2021, 2021, doi: 10.1155/2021/7194728.

[98] IEEE Communications Society. Indonesia Chapter., Universitas Telkom., and Institute of Electrical and

Electronics Engineers, Proceedings, the 2020 IEEE International Conference on Industry 4.0, Artificial

Intelligence, and Communications Technology : July 7-8, 2020, Bali, Indonesia.

[99] E. F. Swana, W. Doorsamy, and P. Bokoro, “Tomek Link and SMOTE Approaches for Machine Fault

Classification with an Imbalanced Dataset,” Sensors, vol. 22, no. 9, May 2022, doi: 10.3390/s22093246.

[100] V. * Rajkumar and V. Venkatesh, “Hybrid Approach for Fault Prediction in Object-Oriented Systems,”

2017.

[101] A. Iqbal et al., “Performance Analysis of Machine Learning Techniques on Software Defect Prediction

using NASA Datasets,” 2019. [Online]. Available: www.ijacsa.thesai.org

[102] R. Ferenc, Z. Tóth, G. Ladányi, I. Siket, and T. Gyimóthy, “A public unified bug dataset for Java,” in

ACM International Conference Proceeding Series, Association for Computing Machinery, Oct. 2018,

pp. 12–21. doi: 10.1145/3273934.3273936.

[103] A. B. Farid, E. M. Fathy, A. S. Eldin, and L. A. Abd-Elmegid, “Software defect prediction using hybrid

model (CBIL) of convolutional neural network (CNN) and bidirectional long short-term memory (Bi-

LSTM),” PeerJ Comput Sci, vol. 7, pp. 1–22, 2021, doi: 10.7717/peerj-cs.739.

[104] J. Deng, L. Lu, and S. Qiu, “Software defect prediction via LSTM,” IET Software, vol. 14, no. 4, pp.

443–450, Aug. 2020, doi: 10.1049/iet-sen.2019.0149.

[105] E. Tempero et al., “The Qualitas Corpus: A curated collection of Java code for empirical studies,” in

Proceedings - Asia-Pacific Software Engineering Conference, APSEC, 2010, pp. 336–345. doi:

10.1109/APSEC.2010.46.

[106] D. L. Miholca, G. Czibula, and I. G. Czibula, “A novel approach for software defect prediction through

hybridizing gradual relational association rules with artificial neural networks,” Inf Sci (N Y), vol. 441,

pp. 152–170, May 2018, doi: 10.1016/j.ins.2018.02.027.

[107] L. Zhao, Z. Shang, L. Zhao, T. Zhang, and Y. Y. Tang, “Software defect prediction via cost-sensitive

Siamese parallel fully-connected neural networks,” Neurocomputing, vol. 352, pp. 64–74, Aug. 2019,

doi: 10.1016/j.neucom.2019.03.076.

[108] S. Dewangan, R. S. Rao, A. Mishra, and M. Gupta, “A novel approach for code smell detection: An

empirical study,” IEEE Access, vol. 9, pp. 162869–162883, 2021, doi: 10.1109/ACCESS.2021.3133810.

[109] M. Z. Khan, “Hybrid ensemble learning technique for software defect prediction,” International Journal

of Modern Education and Computer Science, vol. 12, no. 1, pp. 1–10, 2020, doi:

10.5815/ijmecs.2020.01.01.

[110] Z. Li, X. Y. Jing, and X. Zhu, “Progress on approaches to software defect prediction,” IET Software, vol.

12, no. 3. Institution of Engineering and Technology, pp. 161–175, Jun. 01, 2018. doi: 10.1049/iet-

sen.2017.0148.

[111] M. A. Ihsan Aquil, “Predicting Software Defects using Machine Learning Techniques,” International

Journal of Advanced Trends in Computer Science and Engineering, vol. 9, no. 4, pp. 6609–6616, Aug.

2020, doi: 10.30534/ijatcse/2020/352942020.

[112] N. A. A. Khleel and K. Nehéz, “A new approach to software defect prediction based on convolutional

neural network and bidirectional long short-term memory,” Production Systems and Information

Engineering, vol. 10, no. 3, pp. 1–15, 2022, doi: 10.32968/psaie.2022.3.1.

DOI 10.14750/ME.2024.012

120

[113] K. Boyd, K. H. Eng, and C. David Page, “Area Under the Precision-Recall Curve: Point Estimates and

Confidence Intervals.” [Online]. Available: http://link.springer.com/chapter/10.1007%

[114] S. Singh and A. Professor, “Software Bug Prediction using Machine Learning Approach,” International

Research Journal of Engineering and Technology, p. 4968, 2008, [Online]. Available: www.irjet.net

[115] H. Tong, S. Wang, and G. Li, “Credibility based imbalance boosting method for software defect

proneness prediction,” Applied Sciences (Switzerland), vol. 10, no. 22, pp. 1–29, Nov. 2020, doi:

10.3390/app10228059.

[116] H. S. Munir, S. Ren, M. Mustafa, C. N. Siddique, and S. Qayyum, “Attention based GRU-LSTM for

software defect prediction,” PLoS One, vol. 16, no. 3 March, Mar. 2021, doi:

10.1371/journal.pone.0247444.

[117] R. Ferenc, D. Bán, T. Grósz, and T. Gyimóthy, “Deep learning in static, metric-based bug prediction,”

Array, vol. 6, p. 100021, Jul. 2020, doi: 10.1016/j.array.2020.100021.

[118] D. Cruz, A. Santana, and E. Figueiredo, “Detecting bad smells with machine learning algorithms: An

empirical study,” in Proceedings - 2020 IEEE/ACM International Conference on Technical Debt,

TechDebt 2020, Association for Computing Machinery, Inc, Jun. 2020, pp. 31–40. doi:

10.1145/3387906.3388618.

[119] M. Hozano, N. Antunes, B. Fonseca, and E. Costa, “Evaluating the accuracy of machine learning

algorithms on detecting code smells for different developers,” in ICEIS 2017 - Proceedings of the 19th

International Conference on Enterprise Information Systems, SciTePress, 2017, pp. 474–482. doi:

10.5220/0006338804740482.

[120] S. Jain and A. Saha, “Rank-based univariate feature selection methods on machine learning classifiers

for code smell detection,” Evol Intell, vol. 15, no. 1, pp. 609–638, Mar. 2022, doi: 10.1007/s12065-020-

00536-z.

DOI 10.14750/ME.2024.012

