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1 Introduction 

In the field of software engineering, ensuring the quality of software systems is of paramount 

importance. Software quality assurance is a crucial discipline within software engineering that 

focuses on ensuring the high standards, reliability, and functionality of software products 

throughout their development life cycle. The primary goal of software quality assurance is to 

identify and mitigate defects, errors, code smells and inconsistencies in software, ultimately 

leading to the delivery of a high-quality product that meets user requirements and expectations 

[1]. Due to the increasing size and complexity of software products and inadequate software 

testing, no system or software can claim to be free of software bugs or code smells.  Software 

bugs and code smells can significantly impact software applications' performance, 

maintainability, and user experience [2]. Detecting and predicting these issues early in the 

software development life cycle can save substantial time, effort, and resources [3], [4]. 

Software metrics have essential roles in predicting software bugs and code smells, and most 

recent strategies for predicting software bugs and code smells rely on software metrics as 

independent variables [5], [6]. Static code analysis is a method of analyzing source code 

without its execution to find potential problems like software bugs and code smells that might 

arise at runtime. So, static code analysis aims to check the quality of the source code and 

address weaknesses[7]. Based on the literature review. Recently, many commercial and open-

source tools evolved for static code analysis to provide an efficient, value-added solution to 

many of the problems that software development organizations face.  However, numerous false 

positives and negative results make these tools hard to use in practice[8]. So, another 

methodology or approach for static code analysis must be found, such as artificial intelligence 

techniques. Artificial Intelligence (AI) is a wide-ranging branch of computer science concerned 

with the simulation of human intelligence in machines that are programmed to think like 

humans and mimic their actions. The most popular AI techniques used for the prediction of 

software bugs and code smells are Machine Learning (ML) techniques [9]. ML is an area of 

research where computer programs can learn and get better at performing specific tasks by 

training on massive quantities of historical data. ML techniques, and software metrics have 

emerged as powerful tools for automating the prediction of software bugs and code smells[5]. 

However, one major challenge faced in this domain is the class imbalance problem, where the 

distribution of classes in the training dataset is uneven. In other words, one class has 

significantly more instances than the others, leading to an imbalanced representation of classes. 

The class imbalance issue poses a significant obstacle as it can lead to biased models that fail 

to accurately capture the rare occurrences of software bugs or code smells, thus affecting the 

overall predictive performance[7]. Therefore, this research aims to explore the role of data-

balancing methods in addressing the class imbalance problem when applying ML techniques 

for predicting software bugs and code smells using software metrics. By addressing the class 

imbalance problem, the research endeavours to enhance the accuracy and reliability of 

predictive models, ultimately assisting in developing more robust and high-quality software 

systems[10]. 

2 Literature Review and Theoretical Background 

2.1 Software Bugs 

Due to the expansion in the scale of software projects and the increase in complexity, Software 

Bug Prediction (SBP) has become the focus of attention to increase software quality. Software 
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bugs can be defined as defects or faults in computer programs that occur during the software 

development process which may cause many problems for users and developers aside and may 

lead to the failure of the software to meet the desired expectations and reduce customer 

satisfaction. Software bugs identify are one of the most common causes of wasted time and 

increase maintenance costs during the software lifecycle. Where early prediction of software 

bugs in the early stages of software development can improve the quality and reliability of 

systems, and reduce development costs, time, rework efforts, etc.[7]. The software bugs are 

classified into two classes: intrinsic software bugs refer to bugs that were introduced by one or 

more specific changes to the source code and extrinsic software bugs refer to bugs that were 

introduced by changes not recorded in the version control system. Developers employ various 

techniques like debugging tools, code reviews, unit testing, and system testing to detect and 

resolve software bugs before releasing software to users. Predicting software bugs helps in 

improving the overall quality and reliability of the software. By identifying potential issues in 

advance, developers can implement preventive measures, conduct targeted testing, and ensure 

that the software meets the required quality standards. The SBP process depends on three main 

components: dependent variables, independent variables, and a model. Dependent variables are 

the defect data for the piece of code (defective or non-defective), which can be binary or ordinal 

variables. Independent variables (inputs) are the software metrics that score the software code. 

The model contains the rules or algorithms which predict the dependent variable from the 

independent variables. The studies’ efforts in building SBP models can be categorized into two 

approaches: the first approach is to manually design new features or new sets of features to 

represent defects, while the second approach involves applying new and improved ML-based 

classifiers. Current work in predicting software bugs focuses on the second approach that 

includes: estimating the number of defects in software systems, discovering how software 

defects relate to software metrics and classifying software defects into two categories of 

"defect-prone and non-defect-prone"[11]. 

2.2 Code Smells 

Code smells are design issues or changes to source codes because of activities performed by 

developers during emergencies or coding solutions that indicate a violation of software design 

rules, e.g.: abstraction or hierarchy encapsulation which can cause serious problems during 

systems maintenance and may impact the software quality in the future. Code smells may lead 

to future degradation in software projects making software hard to evolve and maintain, and it 

can effectively indicate whether source code should be refactored. Code smells are often 

associated with potential software bugs or vulnerabilities. They can indicate areas of code that 

are more prone to errors, such as complex conditional logic, unhandled exceptions, or 

inconsistent naming conventions. Code smell detection is fundamental to improving software 

quality and maintainability, reducing the risk of software failure, and it is a primary 

requirement to guide the subsequent steps in the refactoring process. Many approaches have 

been presented by the authors for uncovering the smells from the software systems[12]. 

Different detection methodologies differ from manual to visualization-based, semi-automatic 

studies, automatic studies, empirical-based evaluation, and metrics-based detection of smells. 

Most techniques used to detection of code smells rely on heuristics and discriminate code 

artifacts affected (or not) by a particular type of smells through the application of detection 

rules which compare the values of metrics extracted from source code against some empirically 
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identified thresholds. Researchers recently adopted ML techniques to detect code smells to 

avoid thresholds and decrease the false positive rate in code smell detection tools[13]. 

2.3 Software Metrics 

Software Metrics play the most vital role in building a prediction model to improve software 

quality by predicting as many software defects as possible. Software metrics can be used to 

collect information regarding the structural properties of a software design, which can be 

further statistically analyzed, interpreted, and linked to its quality. Software metrics provide 

quantitative data that can be analyzed to identify potential areas of concern, by measuring 

various aspects of the codebase, such as complexity, size, or adherence to coding standards. 

Software metrics help identify patterns and indicators associated with software bugs or code 

smells. By analyzing historical data and correlating software metrics with known issues, 

developers can spot recurring patterns or combinations of software metrics that indicate 

potential problems. This enables them to proactively address these areas to prevent software 

bugs or improve code quality[5]. Software metrics can be classified as static code metrics and 

process metrics. Static code metrics can be directly extracted from source code, like Lines of 

Code (LOC), and Cyclomatic Complexity Number (CCN). Object-oriented metrics are a 

subcategory of static code metrics, like Depth of Inheritance Tree (DIT), Coupling Between 

Objects (CBO), Number of Children (NOC), and Response for Class (RFC)[4]. Object-oriented 

metrics are often used to assess testability, maintainability, or reusability of source code. 

Process metrics can be extracted from the source code management system based on historical 

changes in source code over time. These metrics reflect the modifications over time, e.g., 

changes in source code, the number of code changes, developer information, etc. Several 

researchers in the primary studies used McCabe and Halstead metrics as independent variables 

in the studies of software bug and code smells. The first use of McCabe metrics was to 

characterize code features related to software quality. McCabe's has considered four basic 

software metrics: cyclomatic complexity, essential complexity, design complexity, and lines 

of code. Halstead also considered that the software metrics fall into three groups: base 

measures, derived measures, and line of code measures [3], [6]. 

3 Artificial Intelligence Techniques 

The field of Artificial intelligence (AI) is witnessing a recent upsurge in research, tools 

development, and deployment of applications. AI is being widely adopted and incorporated 

into almost every kind of software application. where software engineers need to have a 

thorough grasp of what AI is and understand how to incorporate AI into the software 

development lifecycle. AI is a branch of Computer Science that pursues creating computers or 

machines as intelligent as human beings. AI is accomplished by studying how the human brain 

thinks and how humans learn, decide, and work while trying to solve a problem. AI techniques 

such as ML, Neural Networks, fuzzy logic, etc. have been advocated by many researchers and 

developers as the way to improve many of the software development activities. AI techniques, 

specifically, ML techniques are commonly used for the prediction of software bugs and code 

smells compared to other techniques such as manual code inspection or rule-based approaches 

because they offer automation, scalability, and a data-driven approach[14]. 
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3.1 Machine Learning (ML) 

Machine learning (ML) is an area of research where computer programs can learn and get better 

at performing specific tasks by training on historical data or study of computer algorithms that 

provide systems the ability to automatically learn and improve from experience[10]. It is 

generally seen as a sub-field of AI. ML algorithms can be applied to analyze data from different 

perspectives to allow developers to obtain useful information. ML algorithms allow the systems 

to make decisions autonomously without any external support. Such decisions are made by 

finding valuable underlying patterns within complex data. High quantities of data are needed 

to develop ML model-based prediction. ML algorithms build models from training examples, 

which are then used to make predictions when faced with new examples. ML techniques can 

be categorized into supervised, unsupervised, and reinforcement. ML algorithms have received 

extensive attention in the field of software engineering for a considerable period. Therefore, 

recently ML algorithms have been adopted to enhance research tasks in the prediction of 

software bugs and code smells[8]. 

3.1.1 Supervised learning  

Supervised Learning is the ML task of inferring a function from labeled training data which 

consists of a set of training examples. Supervised learning is applied when the data is in the 

form of input variables and output target values. In supervised learning, the training dataset has 

an output variable that needs to be predicted or classified. All algorithms learn some kind of 

patterns from the training dataset and apply them to the test dataset for prediction or 

classification[9]. It has two known supervised learning tasks (classification, and regression). 

Classification concerns building a predictive model for function with discrete range, while 

regression concerns continuous range model building. Supervised learning is fairly common in 

classification problems because the goal is often to get the computer to learn a classification 

system that we have created. The most commonly supervised ML methods include concept 

learning, classification, rule learning, instance-based learning, Bayesian learning, linear 

regression, neural network, SVM, etc.[8].  

3.1.2 Unsupervised learning  

Unsupervised Learning is also called learning from observation. Unsupervised learning is 

applied when the data is available only in the form of an input and there is no corresponding 

output variable. Such algorithms model the underlying patterns in the data in order to learn 

more about its characteristics[7]. Unsupervised learning seems much harder: the goal is to have 

the computer learn how to do something that we don't tell it how to do. In unsupervised 

learning, the system has to explore any patterns based only on the common properties of the 

example without knowing how many or even if there are any patterns. The most common 

methods in unsupervised learning are association rule mining, sequential pattern mining, and 

clustering[10]. 

3.1.3 Reinforcement learning 

Reinforcement learning is somewhere between supervised and unsupervised learning. 

Reinforcement learning is applied when the task at hand is to make a sequence of decisions 

toward a final reward[10]. Where the algorithm learns a policy of how to act given an 

observation of the world. Every action has some impact on the environment, and the 
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environment provides feedback that guides the learning algorithm. During the learning process, 

an artificial agent gets either rewards or penalties for the actions it performs. Its goal is to 

maximize the total reward. In reinforcement learning, the algorithm gets told when the answer 

is wrong but does not get told how to correct it. It has to explore and try out different 

possibilities until it works out how to get the answer right. Examples include learning agents 

to play computer games or performing robotics tasks with end goals[9]. 

3.2 Artificial Neural Networks (ANNs) 

Artificial neural networks (ANNs) are biologically inspired computer software built to imitate 

the way in which the human brain processes information[7]. ANNs are ML models or nonlinear 

classifiers used to model complex relationships between inputs and outputs. An ANNs model 

contains multiple units (layers) for information processing which are known as neurons. The 

layers are typically named the input layer, hidden layer, and output layer. When implementing 

a neural network, a set of consistent training values must be available to set up the expected 

operation of the network and a set of validation values to validate the training process. ANNs 

collect knowledge by detecting the patterns and relationships in data and learning or training 

through experience. When neural networks are used for data analysis, it must be important to 

distinguish between ANN Models which refer to the network's arrangement, and ANN 

Algorithms which refer to computations that eventually produce the network outputs. There 

are two approaches to training ANNs: supervised and unsupervised. The most often used ANNs 

for prediction and classification tasks is a fully connected and supervised network with a 

backpropagation learning rule. During the learning stage, the weights of each neuron are 

considered and adjusted according to the requirements. To obtain the final weight for neurons, 

each neuron gives input to each preceding layer, and later these inputs are multiplied by their 

weight. According to this process, the neuron computes the activation level from this sum, and 

the output is sent to the following layer where the final solution is estimated [14].  

3.2.1 Deep learning (DL) 

Deep learning (DL) algorithms have received extensive attention in the field of software 

engineering for a considerable period. DL is one of the AI functions that mimic the workings 

of the human brain. It allows and helps to solve complex problems by using a data set that is 

very diverse, unstructured, and interconnected [7], [9]. DL is a type of ML that allows 

computational models consisting of multiple processing layers to learn data representations 

with multiple levels of abstraction. DL architecture has been widely used to solve many 

detections, classification, and prediction problems. There are many activation functions used 

in DL such as sigmoid, Rectified Linear unit (Relu), and Hyperbolic Tangent (Tanh). 

Activation functions are a critical component of DL, serving as the nonlinearities that allow 

neural networks to model complex relationships in data. Their importance lies in their ability 

to introduce non-linearity, control gradient flow during training, and adapt the network's 

behaviour to different problem domains. The right choice of activation function can 

significantly impact training speed, model performance, and the ability to capture intricate 

patterns in data. Whether it is the efficiency of ReLU, the sigmoid's interpretability, or the 

tanh's versatility, selecting the appropriate activation function is a key decision in designing 

neural networks. Therefore, activation functions enable the training of the DL model quickly 

and accurately [10], [14]. 
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3.2.2 Recurrent Neural Networks (RNNs) 

Recurrent Neural Networks (RNNs) are a type of ANNs that can process a sequence of inputs 

and retain its state while processing the next sequence of inputs and can efficiently acquire the 

nonlinear features that are in order. Where the nodes and their connections form a temporally 

directed graph along a temporal sequence [9]. RNN is widely used to solve many different 

problems, such as pattern recognition, identification, classification, vision, speech, control 

systems, etc. Due to the problem of long-term dependencies that arise when the input sequence 

is too long, RNN cannot guarantee a long-term nonlinear relationship. This means that there is 

a gradient vanishing and gradient explosion phenomenon in the learning sequence. RNNs can 

use memory units (internal state) to learn the relationship between the sequence pieces, making 

it possible for RNNs to capture contextual features of the sequence. Many optimization theories 

and improved algorithms have been introduced to solve this problem such as Long-Short-

Term-Memory (LSTM) networks, Bidirectional LSTM, Gated Recurrent Unit (GRU) 

networks, echo state networks, Independent RNN, etc. [7], [10].  

4 Data Imbalance and Data-Balancing Methods 

4.1 Data Imbalance 

The data imbalance problem is a hot topic being investigated recently by ML and data mining 

researchers, especially in the context of the prediction of software bugs and code smells. It is 

considered one of the current research topics of interest in supervised classification that 

frequently appears in several real-world datasets. The main characteristic of the imbalanced 

data is class imbalances. The class imbalance can be intrinsic property or due to limitations to 

obtaining data such as cost, privacy, and large effort [7]. The class imbalance problem occurs 

when, in a dataset, one of the classes has fewer instances, usually called the minority class, 

than the other class, usually called the majority class. In bug prediction, this means that the 

dataset may have a significantly higher number of non-buggy instances compared to buggy 

instances, while in code smells, certain types of code smells may be underrepresented 

compared to others. This problem produces a poor classification rate for the minority class, 

which is usually the most important. Consequently, it becomes difficult for a classifier to 

effectively discriminate between the minority and majority classes, especially if the class 

imbalance is extreme, which has aroused the interest of many researchers to solve the problem 

of class imbalance[13]. 

4.2 Data-Balancing Methods 

Data imbalance is a common challenge in the prediction of software bugs and code smells 

tasks, where certain classes of interest are underrepresented compared to others. Data-

balancing methods are crucial in addressing this issue and improving the performance and 

accuracy of the models [7]. By balancing the data, these methods help in achieving improved 

model performance, avoiding bias in predictions, enhancing the detection of rare events, 

preventing overfitting, and providing valuable insights into software bugs and code smells. 

Overall, data-balancing ensures that the models are trained on a more representative 

distribution of instances, leading to more accurate and reliable predictions in the prediction of 

software bugs and code smells tasks[13]. Several data-balancing techniques have been 

developed to overcome the class imbalance problem, these techniques include subset methods, 

cost-sensitive learning, algorithm-level implementations, ensemble learning, feature selection 
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methods, sampling methods, etc. These techniques can be grouped into two distinct categories: 

external methods that use existing algorithms without modification (corresponds to methods 

that operate on the dataset in a preprocessing step preceding classification), and internal 

methods that create new algorithms or modify existing algorithms to take into account class 

imbalances (modifies the classification algorithm in order to put more emphasis on the minority 

class), the two types of methods can be roughly divided into data level and algorithm level. 

The most common techniques used in previous work to deal with the class imbalance problem 

are external methods which are based on the data sampling technique (Oversampling and 

Undersampling methods) [15]. 

4.2.1 Data Sampling (Resampling) Methods 

Data sampling techniques are more prevalent in the studies of the prediction of software bugs 

and code smell due to their easy employment and independence (i.e., they can be applied to 

any prediction model)[13]. Therefore, data sampling techniques are commonly used to address 

the class imbalance problem in ML. These techniques are popular due to their simplicity, 

compatibility with various algorithms, computational efficiency, and retention of information. 

Data sampling methods are relatively easy to understand and implement, work well with 

different learning algorithms, and have minimal computational overhead. There are three main 

categories of data sampling techniques that are: Oversampling Methods, Undersampling 

Methods, and Hybrid (Combined-Sampling Methods) [7], [15]. 

4.2.1.1 Undersampling Methods 

Undersampling is a non-heuristic method where a subset of the majority class is chosen to 

create a balanced class distribution. The advantage of this method is that the elimination of 

some examples could significantly reduce the size of the data and therefore decrease the run-

time cost, especially in the case of big data. There are many Undersampling methods such as 

Random Undersampling, Near Miss, Tomek links, etc. 

• Random Undersampling is an Undersampling method aiming to randomly eliminate 

samples of the majority class to obtain a balanced dataset[15]. This algorithm randomly 

removes samples of the majority class using either sampling with or without replacement, 

despite its simplicity, Random Undersampling is one of the most effective resampling 

methods [13], [15]. 

• Near Miss is an Undersampling method, which aims to balance class distribution by 

selecting examples based on the distance of majority class examples to minority class 

examples[13]. 

• Tomek links is a method of Undersampling developed by Tomek (1976) This algorithm 

works by deleting negative classes and positive classes further that have similar 

characteristics [15].  

4.2.1.2 Oversampling Methods 

Oversampling is a non-heuristic method used to address data imbalance in ML by increasing 

the number of instances in the minority class[15]. These methods aim to provide the model 

with more examples of the minority class, making it easier for the model to learn its patterns 

and improve its ability to classify it accurately. Oversampling methods are more effective than 

Undersampling methods in prediction accuracy [7]. There are many Oversampling methods 
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such as Random Oversampling, Synthetic Minority Oversampling Technique (SMOTE), etc. 

[13]. 

• Random Oversampling is a simple approach where we take samples at random from the 

small class and duplicate these instances so that it reaches a size comparable with the 

majority class, it is defined as a method developed to increase the size of a training data set 

by making multiple copies of some minority classes[15]. 

• SMOTE is an Oversampling method based on creating synthetic instances for the minority 

classes. It is a method in which new samples of minority class are synthesized based on the 

feature space similarities among existing minority examples. It is the most widely used and 

referenced method among the Oversampling methods. The algorithm takes each minority 

class sample and introduces synthetic samples along the line joining the current instance 

and some of its k nearest neighbors from the same class. Depending on how much 

Oversampling is needed, the algorithm chooses randomly from the k nearest neighbors of 

them and forms pairs of vectors that are used to create the synthetic samples. The new 

instances create larger and denser decision regions. This helps classifiers learn more from 

the minority classes in those decision regions, rather than from the large classes 

surrounding those regions[13]. 

4.2.1.3 Hybrid (Combined-Sampling Methods) 

Combined-sampling methods refer to the integration of multiple sampling techniques into a 

single approach (such as Oversampling and Undersampling) to improve the effectiveness and 

efficiency of the sampling process. These methods aim to leverage the strengths of different 

sampling techniques while mitigating their limitations. There are various hybrid sampling 

methods, for example SMOTE Tomek method[15].  

• SMOTE Tomek is a new technique that was applied using the library from imbalanced 

learn, which combines the SMOTE function for Oversampling and the Tomek Link 

function for Undersampling[13]. 

5 Proposed Methodology and Implementation 

This section presents our proposed methodology and implementation, which describes the 

experiments performed. Several experiments and comparisons are conducted to predict 

software bugs and code smells based on ML techniques and data-balancing methods. The 

architecture of the methodology followed in the dissertation can be visualized in Figure 1. 

 

Figure 1 The architecture of the methodology followed in the dissertation 
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5.1 Experimental Design 

5.1.1 Proposed Approaches 

• In relation to software bug prediction, we developed four approaches. The first approach 

was developed based on four ML models which are DT, NB, RF, and LR. The second 

approach was developed based on combining two RNN models, namely LSTM and GRU, 

with an Undersampling method (Near Miss). The third approach was developed by 

combining a Bi-LSTM network with Oversampling methods (Random Oversampling and 

SMOTE). The fourth approach was developed using a combination method based on CNN 

and GRU with a hybrid sampling method (SMOTE Tomek). 

• Concerning code smell detection, we developed three approaches. The first approach was 

developed based on several ML algorithms which are DT, K-NN, SVM, XGB, and MLP 

combined with an Oversampling method (Random Oversampling). The second approach 

was developed based on a CNN combined with Oversampling method (SMOTE). The third 

approach was developed based on two RNN models (Bi-LSTM and GRU) combined with 

two sampling methods (Random Oversampling and Tomek links). 

5.1.2 The Public Benchmark Datasets Used in This Research 

5.1.2.1 Software Bug Data Sets 

We used three different public datasets to perform software bug prediction experiments. The 

first group was obtained from the NASA datasets, we selected four NASA public datasets, 

these datasets were collected from real software projects by NASA [16]. The second group was 

obtained from a public unified bug dataset, the authors considered 5 public datasets and 

downloaded the corresponding source code for each system in the datasets and source code 

analysis was performed to obtain a standard set of source code metrics. They have produced a 

unified bug dataset at the class and file level that is suitable for the building of new bug 

prediction models. Furthermore, they have compared the metric definitions and values of the 

different bug datasets[17]. The defective instances for the unified bug dataset (Class level 

metrics and File level metrics) are 8780 and 10240. While the non-defective instances are 

38838 and 33504, respectively. The third group was obtained from the PROMISE repository 

datasets. We selected six open-source Java projects from the PROMISE dataset. The source 

code and corresponding PROMISE data for all projects are public [18]. These projects cover 

applications such as XML parsers, text search engine libraries, and data transport adapters, and 

these projects have traditional static metrics for each Java file. To guarantee the generality of 

the evaluation results, experimental datasets consist of projects with different sizes and defect 

rates (in the six projects, the maximum number of instances is 965, and the minimum number 

of instances is 205. In addition, the minimum defect rate is 2.23% and the maximum defect 

rate is 92.19%). The defective instances for the PROMISE datasets (ant, camel, ivy, jedit, log4j, 

and xerces) are (166, 188, 40, 11, 16, and 151), respectively. While the non-defective instances 

are (579, 777, 312, 481, 189, and 437), respectively. 

5.1.2.2 Code Smells Data Sets 

We used the proposed datasets in Arcelli Fontana et al [4] to perform code smell detection 

experiments. The authors selected 74 open-source systems from Qualitas Corpus. The Qualitas 

Corpus (QC) systems were collected by Tempero et al. The QC systems comprise 111 systems 
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written in Java belonging to different application domains and characterized by different sizes. 

The QC systems datasets consisted of 561 smelly instances and 1119 non-smelly instances. 

The first two datasets pertain to code smells at the class level, specifically for the god class 

(with 140 smelly cases and 280 non-smelly instances) and data class (with 140 smelly cases 

and 280 non-smelly instances). In contrast, the remaining two datasets focus on code smells at 

the method level: feature envy (with 140 smelly instances and 280 non-smelly instances) and 

long method (with 141 smelly instances and 279 non-smelly instances). The reason for 

selecting these datasets is that (i) the QC systems are the largest curated corpus for code 

analysis studies, with the current version having 495 code sets, representing 100 unique 

systems. The corpus has been successful in that groups outside its original creators are now 

using it, and the number and size of code analysis studies have significantly increased since it 

became available. (ii) Systems must be able to calculate metric values correctly.  Moreover, 

these data sets are freely available, and researchers can iterate, compare and evaluate their 

studies. The selected metrics in QC systems are at class and method levels; the set of metrics 

is standard metrics covering different aspects of the code, i.e., complexity, cohesion, size, and 

coupling [4]. 

5.1.3 Data Pre-processing 

Pre-processing the collected data is one of the essential stages before constructing the model. 

To generate a good model, data quality needs to be considered. Not all data collected is suitable 

for training and model building. Anyhow, the inputs will significantly impact the model's 

performance and later affect the output[7]. Data pre-processing is a group of techniques that 

are applied to the data to improve the data quality before model building to remove noise and 

unwanted outliers from the data set, dealing with missing values, feature type conversion, etc. 

Outliers are data points that deviate significantly from most of the data in a dataset. Detecting 

and handling outliers is crucial in data analysis and modelling, as they can disproportionately 

influence statistical measures and ML algorithms. Outliers can be detected using various 

methods, such as visual inspection of the data, statistical measures such as the Z-score or the 

interquartile range, or ML techniques. Once outliers are detected, they can be handled in 

various ways, such as removing them from the dataset, replacing them with the mean or median 

of the data, using outlier detection techniques using ML, or using algorithms less sensitive to 

outliers. All outliers in the data sets were treated by replacing them with the mean. All datasets 

are pre-processed by dealing with missing content and constant values. Handling missing 

values treatment improves performance measures and avoids biased results. Incomplete data 

can bias the results of the ML models and/or reduce the model’s accuracy. Datasets used 

contain instances from different projects. Considering that, there are three main methods for 

handling missing data: deletion, imputation, and modelling. Deletion methods involve 

removing the missing values or the cases with missing values from the data set. Imputation 

means replacing the missing values with estimated values based on the available data. 

Modelling methods require incorporating the missing data mechanism into the analysis model 

or using methods that directly handle missing data. Missing values for the datasets used in this 

research are handled based on imputation methods, which means replacing them with the mean. 

In addition, instances are scaled to reduce the distance between independent variables. 

Normalization is necessary to convert the values into scaled values (transforming the features 

to be on a similar scale) to increase the model's efficiency. Therefore, the data set was 

normalized using Min–Max and Standard scaling. After that, constant, quasi-constant and 
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duplicated features are removed. It is followed by feature selection extracting feature subset 

that contributes maximum to the ML algorithms prediction variable[19]. 

5.1.4 Features Selection 

Feature selection is a critical process in ML that involves choosing the most relevant and 

informative features from the original set. The objective is to enhance model performance, 

mitigate overfitting, and improve interpretability. Feature extraction facilitates the conversion 

of pre-processed data into a form that the classification engine can use [7]. Feature selection in 

ML encompasses various methods, such as Filter Methods, Wrapper Methods, Embedded 

Methods, Dimensionality Reduction Techniques and Hybrid Methods aimed at identifying and 

utilizing the most relevant features for model training [19]. Filter methods employ diverse 

criteria such as statistical tests, correlation coefficients, or information gain to rank and filter 

features based on their intrinsic characteristics, irrespective of the specific ML model. By 

efficiently screening out less informative or redundant features early in the process, filter 

methods help mitigate the curse of dimensionality and enhance computational efficiency. 

Wrapper methods in feature selection are dynamic techniques that assess the relevance of 

subsets of features by integrating them into the model training and evaluation process. Unlike 

filter methods that evaluate features independently, wrapper methods employ a trial-and-error 

approach, testing different combinations of features to identify the most informative subset. 

Standard wrapper methods include forward selection, backward elimination, and recursive 

feature elimination. Forward selection starts with an empty set and iteratively adds features 

based on their impact on model performance. In contrast, backward elimination begins with all 

features and progressively removes the least relevant ones. Recursive Feature Elimination 

recursively fits the model and eliminates the least significant feature in each iteration. Wrapper 

methods, while computationally more intensive than filter methods, are advantageous for 

capturing feature interactions and dependencies that contribute to optimal model performance. 

However, their increased computational cost may limit their application to high-dimensional 

datasets. Embedded methods for feature selection incorporate feature selection as part of the 

model training process. Unlike filter methods, which assess features independently of the 

learning algorithm, and wrapper methods, which evaluate subsets of features through iterative 

model training, embedded methods simultaneously perform feature selection and model 

training. These methods aim to identify the most relevant features for prediction and 

classification tasks while optimizing the model's performance. One popular embedded method 

is Least Absolute Shrinkage and Selection Operator, which introduces a penalty term to the 

linear regression cost function, promoting sparsity in the feature coefficients. Tree-based 

algorithms like Random Forests and Gradient Boosted Trees also inherently provide feature 

importance scores during their training process, allowing for the automatic selection of the 

most influential features. Embedded methods are advantageous as they streamline the feature 

selection process within the model training, potentially leading to more efficient and 

interpretable models. Dimensionality reduction techniques are methods employed in ML to 

reduce the number of input features while preserving the essential information within the data. 

One widely used technique is Principal Component Analysis, which transforms the original 

features into a set of uncorrelated variables called principal components. These components 

retain most of the variance in the data, enabling a more compact representation. Hybrid 

methods in feature selection represent a fusion of multiple techniques to achieve a more 

comprehensive and robust approach. These methods combine aspects of both filter and wrapper 
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methods or leverage various strategies simultaneously. For instance, Boruta integrates the 

power of random forest classifiers with a shadow feature mechanism to identify relevant 

features, providing a hybrid solution. Genetic Algorithms, another hybrid approach, employs 

evolutionary algorithms to search for an optimal subset of features. Hybrid methods strive to 

harness the strengths of different feature selection techniques, addressing their limitations and 

producing more effective results. By combining diverse strategies, these methods offer a 

versatile and adaptable approach to feature selection, suitable for various datasets and ML 

tasks. The choice of a hybrid method depends on the specific characteristics of the data and the 

goals of the feature selection process. Each type of feature selection caters to specific data 

characteristics and model requirements, which is crucial in optimizing performance and 

interpretability in ML applications. In this research, we applied the embedded method because 

it is faster and less computationally expensive than other methods and is suitable for ML 

models [7]. 

5.1.5 Balancing Data sets 

Balancing data sets is an essential step in ML and data analysis when dealing with imbalanced 

data, where the number of instances in different classes or categories is significantly 

skewed[13]. Balancing the data sets helps ensure that the model's performance is not biased 

towards the majority class and can effectively learn from the minority class. In practice, the 

datasets of software bugs and code smell often suffer from a common problem which is a class 

imbalance problem[14]. The reference datasets are not balance distributed, which shows a lack 

in the actual distribution of learning instances (The number of defective or smelly cases is 

smaller than non-defective or non-smelly), we manage this problem by modifying the original 

datasets to increase the realism of the data. The distribution of the dataset was modified by 

applying different data sampling methods such as Near Miss, Tomek links, Random 

Oversampling, SMOTE, and SMOTE Tomek. 

5.1.6 Models Building and Evaluation 

In building and evaluating the proposed prediction models, we adopted a systematic and 

methodical methodology which depends on ML techniques in conjunction with data-balancing 

methods to predict software bugs and code smells effectively. It's a common practice in the 

field to divide data into two sets: a training set used to teach the model and a test set used to 

assess its performance [7]. The datasets used to train and test our proposed ML models were 

obtained from public benchmark datasets of software bugs and code smells that contain 

information for several projects. Datasets are shuffled and split into testing and training sets. 

Training is performed with 80% of the dataset (random selection of features), while the 

remaining 20% is used for validation and testing. The author utilized the Jupyter editor as a 

computing environment to construct models using the Python programming language to 

implement the methodology. Moreover, we harnessed a range of libraries and tools to 

efficiently handle data, construct models, and create insightful visualizations. Specifically, 

Pandas for data manipulation, scikit-learn, Keras, and TensorFlow for data modeling, and 

Matplotlib along with Seaborn for data visualization were employed. Moreover, Cross-

validation is a vital technique in ML used to evaluate the performance and generalizability of 

predictive models. It involves partitioning a dataset into subsets, typically referred to as folds, 

and systematically training and evaluating the model multiple times. Cross-validation helps 

mitigate issues like overfitting and provides a more reliable assessment of how well a model 
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will perform on unseen data. It is an essential tool for selecting models, tuning 

hyperparameters, and ensuring the model's generalization across different subsets of the 

dataset. Cross-validation comes in various forms such as K-Fold Cross-Validation, Stratified 

K-Fold Cross-Validation, Leave-One-Out Cross-Validation, Leave-P-Out Cross-Validation, 

etc. to suit different data characteristics and modelling objectives. K-Fold Cross-Validation and 

Stratified K-Fold Cross-Validation are the most standard methods of Cross-validation. K-Fold 

Cross-Validation is a method where the data is divided into k subsets, and the model is trained 

on k-1 folds while being tested on the remaining fold. This process is repeated k times, and 

performance metrics are averaged to provide a more robust estimate of the model's 

effectiveness. Stratified K-Fold Cross-Validation is a variation of the standard K-Fold Cross-

Validation method that maintains the class distribution in each fold, is beneficial for 

imbalanced datasets, and is designed to address the potential issue of imbalanced class 

distributions in the dataset. Therefore, we applied Stratified K-Fold Cross-Validation method 

to evaluate the performance of our proposed predictive models. Each model was developed 

separately with different parameters. Once a prediction model is built, its performance must be 

evaluated. We evaluated the performance of our proposed models based on a set of standard 

performance measures such as the confusion matrix, Matthews Correlation Coefficient (MCC), 

the area under a receiver operating characteristic curve (AUC), the area under the precision-

recall curve (AUCPR) and mean square error (MSE) [19]. 

6 Experimental Results and Discussion 

6.1 Experimental Results and Discussion of Software Bugs Prediction (SBP) 

6.1.1 ML Techniques in SBP 

The goal was to present a comprehensive study on ML techniques successfully used in previous 

studies to predict software bugs. The study also presented a method for SBP based on 

supervised ML algorithms namely, DT, NB, RF, and LR. The experiments have been 

conducted based on benchmark datasets obtained from the NASA datasets (jm1, PC1, KC1 and 

KC2). The experimental results were evaluated and compared based on various performance 

measures (accuracy, precision, recall, and f-measure). The performance of the prediction 

models is reported in Tables 1 to 4. 

Tables 1 to 4 show the performance of the proposed models on the four data sets based on all 

performance measures. The maximum (best) accuracy value is 99%, which DT and RF models 

in JM1, PC1and KC1 datasets achieved. The maximum (best) precision value is 99%, which 

DT and RF models in JM1, PC1and KC1 datasets achieved. The maximum (best) recall value 

is 100%, which was achieved by DT and RF models in all datasets. The maximum (best) F-

measure value is 99%, achieved by DT and RF models in the PC1 dataset. 

Table 1 Performance measures of the proposed models on the jm1 dataset 

Proposed models Performance measures 

Accuracy Precision Recall F-measure 

DT 0.99 0.99 1.00 0.99 

NB 0.80 0.81 0.97 0.89 

RF 0.99 0.99 1.00 0.99 

LR 0.81 0.82 0.99 0.89 
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Table 2 Performance measures of the proposed models on the pc1 dataset 

Proposed models Performance measures 

Accuracy Precision Recall F-measure 

DT 0.99 0.99 1.00 1.00 

NB 0.91 0.94 0.96 0.95 

RF 0.99 0.99 1.00 1.00 

LR 0.93 0.94 0.99 0.96 

Table 3 Performance measures of the proposed models on the kc1 dataset 

Proposed models Performance measures 

Accuracy Precision Recall F-measure 

DT 0.99 0.99 1.00 0.99 

NB 0.85 0.88 0.96 0.92 

RF 0.99 0.99 1.00 0.99 

LR 0.85 0.87 0.96 0.92 

Table 4 Performance measures of the proposed models on the kc2 dataset 

Proposed models Performance measures 

Accuracy Precision Recall F-measure 

DT 0.98 0.98 1.00 0.99 

NB 0.83 0.83 0.98 0.90 

RF 0.98 0.98 1.00 0.99 

LR 0.84 0.86 0.96 0.91 

6.1.2 LSTM and GRU with Undersampling Methods in SBP 

The goal was to present a method based on combining two RNN models namely LSTM and 

GRU with the Undersampling method (Near Miss) for SBP. The experiments have been 

conducted based on benchmark datasets obtained from the public unified bug dataset. The 

experimental results were evaluated and compared based on various performance measures 

(accuracy, precision, recall, f-measure, MCC, AUC, AUCPR and MSE). The performance of 

the prediction models is reported in Tables 5 and 6. 

Table 5 shows the results of the LSTM and GRU models based on both the original and 

balanced datasets, emphasising class-level measures. Notably, we observed that both the 

LSTM and GRU models attained the highest accuracy of 93% on the balanced dataset, while 

the GRU model exhibited the lowest accuracy of 82% on the original dataset. In terms of 

precision, the LSTM model achieved the highest value of 95% on the balanced dataset, while 

the GRU model demonstrated the lowest precision of 58% on the original dataset. As for recall, 

both models obtained the highest score of 92% on the balanced dataset, whereas the GRU 

model exhibited the lowest recall of 16% on the original dataset. Both models achieved the 

highest F-Measure score of 93% on the balanced dataset. However, the GRU model had the 

lowest score of 26% on the original dataset. . Both models achieved the highest MCC of 86% 

on the balanced dataset, whereas the GRU model had the lowest MCC of 23% on the original 

dataset. The LSTM model attained the highest AUC score of 97% on the balanced dataset, and 

the GRU model achieved the lowest score of 77% on the original dataset. On the balanced 

dataset, both models demonstrated the highest AUCPR score of 97%, while the GRU model 

exhibited the lowest AUCPR score of 44% on the original dataset. Additionally, the GRU 

model recorded the highest MSE of 0.130 on the original dataset, while the LSTM model 

achieved the lowest MSE of 0.051 on the balanced dataset. 
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Table 5 Performance measures for the proposed models over class level metrics dataset 

Original Dataset 

 

Proposed Models 

Performance Measures 

Accuracy Precision Recall F-measure MCC AUC AUCPR MSE 

LSTM 0.83 0.60 0.25 0.35 0.30 0.78 0.48 0.125 

GRU 0.82 0.58 0.16 0.26 0.23 0.77 0.44 0.130 

Averages 0.82 0.59 0.20 0.30 0.26 0.77 0.46 0.130 

Balanced Dataset 

 

Proposed Models 

Performance Measures 

Accuracy Precision Recall F-measure MCC AUC AUCPR MSE 

LSTM 0.93 0.95 0.92 0.93 0.86 0.97 0.97 0.051 

GRU 0.93 0.94 0.92 0.93 0.86 0.96 0.97 0.063 

Averages 0.93 0.94 0.92 0.93 0.86 0.96 0.97 0.057 

 

Table 6 shows the results of LSTM and GRU models based on on the original and balanced 

datasets, focusing on file-level metrics. Remarkably, both the LSTM and GRU models 

achieved the highest accuracy of 88% on the balanced dataset. In contrast the lowest accuracy 

of 78% was observed for both models (LSTM and GRU) on the original dataset. Furthermore, 

the balanced dataset yielded the highest precision of 94% for both models (LSTM and GRU), 

while the GRU model had the lowest precision of 61% on the original dataset. Regarding recall, 

the balanced dataset produced the highest score of 81% for both models. Conversely, when 

applied to the original dataset, the LSTM model achieved the lowest recall of 18%. Similarly, 

the balanced dataset resulted in the highest f-measure of 87% for both the LSTM and GRU 

models. Conversely, the LSTM model exhibited the lowest f-measure of 28% when working 

with the original dataset. Furthermore, both models (LSTM and GRU) attained the highest 

MCC of 76% on the balanced dataset, while the LSTM model had the lowest MCC of 24% on 

the original dataset. Similarly, the balanced dataset yielded the highest AUC of 93% for both 

models (LSTM and GRU), while the original dataset yielded the lowest AUC of 75% for both 

models (LSTM and GRU). Both models also achieved the highest AUCPR on the balanced 

dataset,  95%, and the lowest AUCPR on the original dataset, 49%. In conclusion, both models 

(LSTM and GRU) achieved the highest MSE of 0.152 on the original dataset, while the LSTM 

model obtained the lowest MSE of 0.090 on the balanced dataset.  

Table 6 Performance measures for the proposed models over file level metrics dataset 

Original Dataset 

 

Proposed Models 

Performance Measures 

Accuracy Precision Recall F-measure MCC AUC AUCPR MSE 

LSTM 0.78 0.62 0.18 0.28 0.24 0.75 0.49 0.152 

GRU 0.78 0.61 0.22 0.33 0.27 0.75 0.49 0.152 

Averages 0.78 0.61 0.20 0.30 0.25 0.75 0.49 0.152 

Balanced Dataset 

 

Proposed Models 

Performance Measures 

Accuracy Precision Recall F-measure MCC AUC AUCPR MSE 

LSTM 0.88 0.94 0.81 0.87 0.76 0.93 0.95 0.090 

GRU 0.88 0.94 0.81 0.87 0.76 0.93 0.95 0.093 

Averages 0.88 0.94 0.81 0.87 0.76 0.93 0.95 0.091 

6.1.3 Bi-LSTM with Oversampling Methods in Software Defect Prediction (SDP) 

The aim was to present a method based on combining a Bi-LSTM network with Oversampling 

methods (Random Oversampling and SMOTE) for SDP. The experiments have been conducted 

based on benchmark datasets obtained from the PROMISE repository. The experimental results 
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were evaluated and compared based on various performance measures (accuracy, precision, 

recall, f-measure, MCC, AUC, AUCPR, and MSE). The performance of the prediction model 

is reported in Tables 7 to 9. 

According to Table 7: Accuracy for the various original datasets: the highest accuracy was 

achieved by the proposed model on the jedit dataset, which is 97%. The lowest accuracy was 

achieved by the proposed model on the ant dataset, which is 80%. Precision for the various 

original datasets: the highest Precision was achieved by the proposed model on the log4j and 

xerces datasets, which is 95%. The proposed model achieved the lowest Precision on the jedit 

dataset, 0%. Recall for the various original datasets: the highest Recall was achieved by the 

proposed model on the log4j dataset, which is 100%. The lowest Recall was achieved by the 

proposed model on the jedit dataset, which is 0%. F-Measure for the various original datasets: 

the highest F-Measure was achieved by the proposed model on the log4j dataset, which is 97%. 

The lowest F-Measure was achieved by the proposed model on the jedit dataset, which is 0%. 

MCC for the various original datasets: the highest MCC was achieved by the proposed model 

on the xerces dataset, which is 75%. The lowest MCC was achieved by the proposed model on 

the jedit and log4j datasets, which is 0%. AUC for the various original datasets: the highest 

AUC was achieved by the proposed model on the xerces dataset, 94%. The lowest AUC was 

achieved by the proposed model on the log4j dataset, which is 60%. AUCPR for the various 

original datasets: the highest AUCPR was achieved by the proposed model on the xerces 

dataset, 98%. The lowest AUCPR was achieved by the proposed model on the jedit dataset, 

which is 29%. MSE for the various original datasets: the highest MSE was achieved by the 

proposed model on the ant dataset, which is 0.152. The lowest MSE was achieved by the 

proposed model on the jedit dataset, which is 0.030. 

Table 7 Performance analysis for proposed Bi-LSTM Network - Original Datasets 

 

Datasets 

Performance Measures 

Accuracy Precision Recall F-Measure MCC AUC AUCPR MSE 

ant 0.80  0.50  0.50 0.50 0.37 0.79  0.48 0.152  
camel 0.82  0.56  0.28 0.37  0.30 0.69  0.37 0.146  

ivy 0.87  0.50  0.22 0.31  0.27 0.72  0.40 0.105  
jedit 0.97  0.00  0.00 0.00 0.00 0.85 0.29 0.030  
log4j 0.95 0.95 1.00 0.97 0.00 0.60 0.96 0.041 

xerces 0.91 0.95 0.92 0.94 0.75 0.94 0.98 0.075 

Averages 0.88 0.57 0.48 0.51 0.28 0.76 0.58 0.091 

According to Table 8: Accuracy for the various balanced datasets using Random 

Oversampling: the highest accuracy was achieved by the proposed model on the jedit and log4j 

datasets, which is 99%. The lowest accuracy was achieved by the proposed model on the ivy 

dataset, which is 90%. Precision for the various balanced datasets using Random 

Oversampling: The highest Precision was achieved by the proposed model on the log4j dataset, 

which is 100%. The proposed model on the ivy dataset achieved the lowest Precision, which is 

82%. Recall for the various balanced datasets using Random Oversampling: The highest Recall 

was achieved by the proposed model on the ivy and jedit datasets, which is 100%. The lowest 

Recall was achieved by the proposed model on the xerces dataset, which is 92%. F-Measure 

for the various balanced datasets using Random Oversampling: the highest F-Measure was 

achieved by the proposed model on the jedit and log4j datasets, which is 99%. The lowest F-

Measure was achieved by the proposed model on the ivy dataset, which is 90%. MCC for the 

various the various balanced datasets using Random Oversampling: the highest MCC was 
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achieved by the proposed model on the jedit and log4j datasets, which is 97%. The lowest MCC 

was achieved by the proposed model on the camel and ivy datasets, which is 81%. AUC for the 

various balanced datasets using Random Oversampling: The highest AUC was achieved by the 

proposed model on the jedit and log4j datasets, which is 99%. The lowest AUC was achieved 

by the proposed model on the camel and ivy datasets, which is 93%. AUCPR for the various 

balanced datasets using Random Oversampling: the highest AUCPR was achieved by the 

proposed model on the jedit and log4j datasets, which is 99%. The lowest AUCPR was 

achieved by the proposed model on the ivy dataset, which is 86%. MSE for the various balanced 

datasets using Random Oversampling: the highest MSE was achieved by the proposed model 

on the ivy dataset, which is 0.092. The lowest MSE was achieved by the proposed model on 

the jedit dataset, which is 0.009. 

Table 8 Performance analysis for proposed Bi-LSTM Network - Balanced Datasets using Random 

Oversampling Technique 

 

Datasets 

Performance Measures 

Accuracy Precision Recall F-Measure MCC AUC AUCPR MSE 

ant 0.91  0.89  0.94 0.91  0.82 0.95  0.93 0.073  
camel 0.91  0.87  0.98 0.92  0.81 0.93  0.92 0.082  

Ivy 0.90  0.82  1.00 0.90  0.81 0.93  0.86 0.092  
jedit 0.99  0.98  1.00 0.99  0.97 0.99  0.99 0.009  
log4j 0.99 1.00 0.98 0.99 0.97 0.99 0.99 0.012 

xerces 0.95 0.98 0.92 0.95 0.89 0.97 0.98 0.049 

Averages 0.94 0.92 0.97 0.94 0.87 0.96 0.94 0.052 

According to Table 9: Accuracy for the various balanced datasets using SMOTE: the highest 

accuracy was achieved by the proposed model on the log4j dataset, which is 100%. The 

proposed model achieved the lowest accuracy on the ant dataset, 84%. Precision for the various 

balanced datasets using SMOTE: The highest Precision was achieved by the proposed model 

on the log4j dataset, which is 100%. The lowest Precision was achieved by the proposed model 

on the ant dataset, which is 81%. Recall for the various balanced datasets using SMOTE: the 

highest Recall was achieved by the proposed model on the jedit and log4j datasets, which is 

100%. The lowest Recall was achieved by the proposed model on the ant and camel datasets, 

which is 88%. F-Measure for the various balanced datasets using SMOTE: the highest F-

Measure was achieved by the proposed model on the log4j dataset, which is 100%. The lowest 

F-Measure was achieved by the proposed model on the ant dataset, which is 85%. MCC for 

the various balanced datasets using SMOTE: the highest MCC was achieved by the proposed 

model on the log4j dataset, which is 100%. The lowest MCC was achieved by the proposed 

model on the ant dataset, which is 67%. AUC for the various balanced datasets using SMOTE: 

the highest AUC was achieved by the proposed model on the log4j dataset, which is 100%. 

The lowest AUC was achieved by the proposed model on the ant dataset, which is 90%. 

AUCPR for the various balanced datasets using SMOTE: the highest AUCPR was achieved by 

the proposed model on the log4j dataset, which is 100%. The lowest AUCPR was achieved by 

the proposed model on the ant and camel datasets, which is 91%. MSE for the various balanced 

datasets using SMOTE: the highest MSE was achieved by the proposed model on the ant 

dataset, which is 0.124. The lowest MSE was achieved by the proposed model on the log4j 

dataset, which is 0.001. 
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Table 9 Performance analysis for proposed Bi-LSTM Network - Balanced Datasets using SMOTE Technique 

 

Datasets 

Performance Measures 

Accuracy Precision Recall F-Measure MCC AUC AUCPR MSE 

Ant 0.84  0.81  0.88 0.85  0.67 0.90  0.91 0.124  
camel 0.87  0.89  0.88 0.89  0.74 0.91  0.91 0.113  

Ivy 0.89  0.83  0.97 0.89  0.78 0.94  0.92 0.101  
Jedit 0.99  0.98  1.00 0.99  0.97 0.99  0.99 0.011  
log4j 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.001 

xerces 0.93 0.93 0.92 0.93 0.85 0.96 0.97 0.067 

Averages 0.92 0.90 0.94 0.92 0.83 0.95 0.95 0.069 

6.1.4 CNN and GRU with Hybrid (combined)-Sampling Methods in SDP 

The target was to propose a novel SDP approach based on CNN and GRU combined with 

hybrid sampling method (SMOTE Tomek) for SDP. The experiments were conducted based 

on benchmark datasets from the PROMISE repository. The experimental results were 

evaluated and compared based on various performance measures (accuracy, precision, recall, 

f-measure, MCC, AUC, AUCPR, and MSE). The performance of the prediction models is 

reported in Tables 10 to 13. 

Table 10 Performance analysis for proposed CNN Model-Original Data sets 

 

Datasets 

Performance Measures 

Accuracy Precision Recall F-Measure MCC AUC AUCPR MSE 

ant 0.83  0.67  0.33 0.44 0.38 0.82  0.57 0.131  
camel 0.82  0.62  0.14 0.23  0.23 0.74  0.39 0.136  

ivy 0.90  0.67  0.44 0.53  0.49 0.81  0.53 0.086 

jedit 0.96  0.00  0.00 0.00 0.01 0.83 0.07 0.037  
log4j 0.95 0.95 1.00 0.97 0.00 0.46 0.93 0.048 

xerces 0.94 0.94 0.99 0.96 0.83 0.95 0.98 0.049 

Averages 0.90 0.64 0.48 0.52 0.32 0.76 0.57 0.081 

Table 11 Performance analysis for proposed CNN Model-Balanced Datasets 

 

Datasets 

Performance Measures 

Accuracy Precision Recall F-Measure MCC AUC AUCPR MSE 

ant 0.85  0.87  0.82 0.85 0.69 0.91  0.92 0.117  
camel 0.84  0.81  0.90 0.85  0.69 0.90  0.89 0.132  

ivy 0.95  0.92  0.98 0.95  0.90 0.98  0.96 0.051  
jedit 0.97  0.94  1.00 0.97 0.93 0.96 0.88 0.027  
log4j 0.97 0.98 0.98 0.98 0.94 0.99 0.99 0.028 

xerces 0.95 0.93 0.98 0.95 0.90 0.98 0.98 0.043 

Averages 0.92 0.90 0.94 0.92 0.84 0.95 0.93 0.066 

Table 12 Performance analysis for proposed GRU Model-Original Data sets 

 

Datasets 

Performance Measures 

Accuracy Precision Recall F-Measure MCC AUC AUCPR MSE 

ant 0.81  0.52  0.47 0.49 0.37 0.73  0.47 0.152  
camel 0.79  0.30  0.08 0.13  0.06 0.70  0.31 0.146  

ivy 0.92  0.80  0.44 0.57  0.55 0.71  0.56 0.076  
jedit 0.97  0.00  0.00 0.00 0.00 0.93 0.24 0.028  
log4j 0.95 0.95 1.00 0.97 0.00 0.29 0.93 0.048 

xerces 0.91 0.92 0.96 0.94 0.74 0.89 0.91 0.090 

Averages 0.89 0.58 0.49 0.51 0.28 0.70 0.57 0.090 
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Table 13 Performance analysis for proposed GRU Model-Balanced Datasets 

 

Datasets 

Performance Measures 

Accuracy Precision Recall F-Measure MCC AUC AUCPR MSE 

ant 0.83  0.88  0.81 0.85 0.67 0.89  0.89 0.130  
camel 0.82  0.82  0.82 0.82  0.63 0.87  0.84 0.144  

ivy 0.95 0.95 0.95 0.95 0.90 0.98  0.99 0.055  
jedit 0.99  0.98  1.00 0.99 0.97 1.00 1.00 0.026  
log4j 0.96 0.98 0.95 0.96 0.91 0.98 0.98 0.073 

xerces 0.93 0.92 0.94 0.93 0.85 0.97 0.98 0.064 

Averages 0.91 0.92 0.91 0.91 0.82 0.94 0.94 0.082 

6.2 Experimental Results and Discussion of Code Smells Detection 

6.2.1 ML techniques with Oversampling Methods in Code Smells Detection 

The aim was to present a method based on five ML models, namely DT, K-NN, SVM, XGB, 

and MLP combined with Oversampling method (Random Oversampling) to detect four code 

smells (God class, data class, long method, and feature envy). The experiments have been 

conducted based on benchmark datasets obtained from the Qualitas Corpus Systems. The 

experimental results were evaluated and compared based on various performance measures 

(accuracy, precision, recall, f-measure, MCC, and AUC). The performance of the prediction 

models is reported in Tables 14 to 17. 

Tables 14 to 17 present model results based on the original and balanced datasets. Based on 

the DT model, we observed that accuracy values varied from 0.92 to 0.99 on the original 

datasets and from 0.98 to 1.00 on the balanced datasets. In terms of precision, the values ranged 

from 0.86 to 1.00 on the original datasets and from 0.97 to 1.00 on the balanced datasets. The 

recall values ranged from 0.89 to 0.96 on the original datasets and were 1.00 on the balanced 

datasets. In the context of f-measure, the values varied from 0.87 to 0.98 on the original datasets 

and from 0.98 to 1.00 on the balanced datasets. Moreover, MCC values ranged from 0.81 to 

0.97 on the original datasets and from 0.96 to 1.00 on the balanced datasets, whereas AUC 

values ranged from 0.90 to 0.98 on the original datasets and from 0.98 to 1.00 on the balanced 

datasets. 

The K-NN model demonstrates that the accuracy values vary between 0.86 to 0.92 on the 

original datasets and from 0.91 to 0.97 on the balanced datasets. Additionally, the precision 

values on the original datasets vary from 0.75 to 0.97 and from 0.88 to 0.97 on the balanced 

datasets. The recall values vary from 0.70 to 0.91 on the original datasets and from 0.97 to 0.98 

on the balanced datasets. In the context of f-measure, the values range from 0.76 to 0.88 on the 

original datasets and from 0.92 to 0.98 on the balanced datasets. Furthermore, the MCC values 

range from 0.66 to 0.81 on the original datasets and from 0.82 to 0.94 on the balanced datasets. 

Finally, the AUC values range from 0.85 to 0.97 on the original datasets and from 0.93 to 0.98 

on the balanced datasets. 

Following the SVM model, it can be observed that the accuracy values vary between 0.90 and 

0.98 on the original datasets, and from 0.96 to 1.00 on the balanced datasets. On the original 

datasets, the precision values vary from 0.85 to 0.96, while on the balanced datasets, the 

precision values vary from 0.94 to 1.00. In the context of recall, the values range from 0.85 to 

0.96 on the original datasets, and from 0.98 to 1.00 on the balanced datasets. In the context of 

f-measure, the values range from 0.85 to 0.96 on the original datasets and from 0.97 to 1.00 on 

the balanced datasets. The MCC values range from 0.78 to 0.94 on the original datasets and 
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from 0.92 to 1.00 on the balanced datasets. The AUC values range from 0.96 to 0.99 on the 

original datasets and from 0.97 to 1.00 on the balanced datasets. 

Based on the XGB model, it can be observed that the accuracy values range between 0.95 to 

1.00 for the original datasets and between 0.96 to 1.00 for the balanced datasets. In the context 

of precision, the values range between 0.87 to 1.00 for the original datasets and between 0.95 

to 1.00 for the balanced datasets. In the context of recall, the values range between 0.97 to 1.00 

for the original datasets and between 0.97 to 1.00 for the balanced datasets. In the context of f-

measure, the values range between 0.93 to 1.00 for the original datasets and between 0.96 to 

1.00 for the balanced datasets. Additionally, the MCC values range between 0.89 to 1.00 for 

the original datasets and between 0.90 to 1.00 for the balanced datasets, whereas the AUC 

values range between 0.99 to 1.00 for the original datasets and between 0.98 to 1.00 for the 

balanced datasets. 

Based on the MLP model, it was observed that the accuracy values ranged from 0.88 to 0.98 

on the original datasets and from 0.96 to 0.98 on the balanced datasets. Furthermore, the 

precision values ranged from 0.87 to 0.97 on the original datasets and from 0.96 to 0.97 on the 

balanced datasets, while the recall values ranged from 0.74 to 1.00 on the original datasets and 

from 0.97 to 1.00 on the balanced datasets. In the context of f-measure, the values ranged from 

0.80 to 0.96 on the original datasets and from 0.97 to 0.98 on the balanced datasets. 

Furthermore, the MCC values range from 0.72 to 0.94 on the original datasets and from 0.92 

to 0.96 on the balanced datasets. Finally, the AUC values range from 0.90 to 0.99 on the 

original datasets and from 0.98 to 1.00 on the balanced datasets. 

Concerning each type of code smell, the top-performing models attain the subsequent results: 

DT model scores 100% accuracy on data class and long method (balanced datasets). K-NN 

model achieves 97% accuracy on God class (balanced datasets). The SVM model scores 100% 

accuracy on the long method (balanced datasets). XGB model achieves 100% accuracy on data 

class and long method (original and balanced datasets). MLP model scores 98% accuracy on 

data class (original and balanced datasets) and 98% on the long method (balanced datasets). 

Table 14 Evaluation Results for the Class-Level Dataset: God class_ original and balanced datasets 

Original datasets 

 

ML Models 

Performance measurement 

Accuracy Precision Recall F- measure MCC AUC 

DT 0.95 0.97 0.92 0.94 0.90 0.94 

K-NN 0.90 0.97 0.81 0.88 0.81 0.94 

SVM 0.92 0.94 0.86 0.90 0.83 0.97 

XGB 0.98 0.97 0.97 0.97 0.95 0.99 

MLP 0.93 0.97 0.86 0.91 0.85 0.99 

Averages 0.93 0.96 0.88 0.92 0.86 0.96 

Balanced datasets 

 

ML Models 

Performance measurement 

Accuracy Precision Recall F- measure MCC AUC 

DT 0.98 0.97 1.00 0.98 0.96 0.98 

K-NN 0.97 0.97 0.98 0.98 0.94 0.97 

SVM 0.96 0.95 0.98 0.97 0.92 0.99 

XGB 0.96 0.95 0.97 0.96 0.90 0.98 

MLP 0.97 0.97 0.98 0.98 0.94 0.98 

Averages 0.96 0.96 0.98 0.97 0.93 0.98 
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Table 15 Evaluation Results for the Class-Level Dataset: Data class_ original and balanced datasets 

Original datasets 

 

ML Models 

Performance measurement 

Accuracy Precision Recall F- measure MCC AUC 

DT 0.98 1.00 0.91 0.95 0.94 0.95 

K-NN 0.89 0.75 0.91 0.82 0.75 0.97 

SVM 0.96 0.92 0.96 0.94 0.91 0.99 

XGB 1.00 1.00 1.00 1.00 1.00 1.00 

MLP 0.98 0.92 1.00 0.96 0.94 0.99 

Averages 0.96 0.91 0.95 0.93 0.90 0.98 

Balanced datasets 

 

ML Models 

Performance measurement 

Accuracy Precision Recall F- measure MCC AUC 

DT 1.00 1.00 1.00 1.00 1.00 1.00 

K-NN 0.96 0.93 0.98 0.96 0.91 0.98 

SVM 0.97 0.95 1.00 0.97 0.94 0.99 

XGB 1.00 1.00 1.00 1.00 1.00 1.00 

MLP 0.98 0.97 1.00 0.98 0.96 0.99 

Averages 0.98 0.97 0.99 0.98 0.96 0.99 

Table 16 Evaluation Results for the Method-Level Dataset: Long method_ original and balanced datasets 

Original datasets 

 

ML Models 

Performance measurement 

Accuracy Precision Recall F- measure MCC AUC 

DT 0.99 1.00 0.96 0.98 0.97 0.98 

K-NN 0.92 0.92 0.81 0.86 0.80 0.94 

SVM 0.98 0.96 0.96 0.96 0.94 0.99 

XGB 1.00 1.00 1.00 1.00 1.00 1.00 

MLP 0.94 0.87 0.96 0.91 0.87 0.98 

Averages 0.96 0.95 0.93 0.94 0.91 0.97 

Balanced datasets 

 

ML Models 

Performance measurement 

Accuracy Precision Recall F- measure MCC AUC 

DT 1.00 1.00 1.00 1.00 1.00 1.00 

K-NN 0.96 0.93 0.98 0.95 0.91 0.97 

SVM 1.00 1.00 1.00 1.00 1.00 1.00 

XGB 1.00 1.00 1.00 1.00 1.00 1.00 

MLP 0.98 0.96 1.00 0.98 0.96 1.00 

Averages 0.98 0.97 0.99 0.98 0.97 0.99 

Table 17 Evaluation Results for the Method-Level Dataset: Feature envy_ original and balanced datasets 

Original datasets 

 

ML Models 

Performance measurement 

Accuracy Precision Recall F- measure MCC AUC 

DT 0.92 0.86 0.89 0.87 0.81 0.90 

K-NN 0.86 0.83 0.70 0.76 0.66 0.85 

SVM 0.90 0.85 0.85 0.85 0.78 0.96 

XGB 0.95 0.87 1.00 0.93 0.89 0.99 

MLP 0.88 0.87 0.74 0.80 0.72 0.90 

Averages 0.90 0.85 0.83 0.84 0.77 0.92 

Balanced datasets 

 

ML Models 

Performance measurement 

Accuracy Precision Recall F- measure MCC AUC 

DT 0.98 0.97 1.00 0.98 0.96 0.98 

K-NN 0.91 0.88 0.97 0.92 0.82 0.93 

SVM 0.96 0.94 1.00 0.97 0.92 0.97 

XGB 0.98 0.97 1.00 0.98 0.96 0.98 
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MLP 0.96 0.97 0.97 0.97 0.92 0.98 

Averages 0.95 0.94 0.98 0.96 0.91 0.96 

6.2.2 A Convolutional Neural Network (CNN) with Oversampling Methods 

In this sub-section, we discuss the findings of the sixth study. The objective was to present a 

method based on a CNN with the Oversampling method (SMOTE) to detect four code smells 

(God class, data class, feature envy, and long method). The experiments have been conducted 

based on benchmark datasets obtained from the Qualitas Corpus Systems. The experimental 

results were evaluated and compared based on various performance measures (accuracy, 

precision, recall, and f-measure).  

Tables 18 and 19 show the performance of the proposed model in the four code smells based 

on the original and balanced data sets. 

- Accuracy for the four code smell datasets: The proposed model using the balanced datasets 

achieves greater accuracy than the proposed model using the original datasets on the Feature 

Envy and Long Method datasets, which are 98 % and 100%. The lowest accuracy was achieved 

by the proposed model using the original datasets on the Feature Envy dataset by up to 95%.  

- Precision for the four code smell datasets: The proposed model using the balanced datasets 

achieves greater precision than the proposed model using the original datasets on the Feature 

Envy and Long Method datasets, which are 98 % and 100%. The proposed model achieved the 

lowest precision using the original datasets on the Feature Envy and Long Method datasets by 

up to 93%. 

- Recall for the four code smell datasets: The proposed model using the balanced datasets 

achieves more excellent recall than the proposed model using the original datasets on the God 

Class, Data Class, and Feature Envy datasets, which are 97%, 100 %, and 98%. The lowest 

recall was achieved by the proposed model using the original datasets on the Feature Envy 

dataset by up to 93%. 

- F-Measure for the four code smell datasets: The proposed model using the balanced datasets 

achieves greater F-Measure than the proposed model using the original datasets on the God 

Class, Feature Envy, and Long Method datasets, which are 97%, 98%, and 100%. The proposed 

model achieved the lowest F-Measure using the original datasets on the Feature Envy dataset 

by up to 93%. 

Table 18 Performance analysis for proposed CNN Model - Original Datasets 

Original Datasets 
Performance Measures 

Accuracy Precision Recall F-Measure 

God Class 0.96 0.97 0.94 0.96 

Data Class 0.99 1.00 0.96 0.98 

Feature Envy 0.95 0.93 0.93 0.93 

Long Method 0.98 0.93 1.00 0.96 

Averages 0.97 0.95 0.95 0.95 

Table 19 Performance analysis for proposed CNN Model - Balanced Datasets 

Balanced Datasets 

using SMOTE method 

Performance Measures 

Accuracy Precision Recall F-Measure 

God Class 0.96 0.97 0.97 0.97 

Data Class 0.98 0.97 1.00 0.98 

Feature Envy 0.98 0.98 0.98 0.98 

Long Method 1.00 1.00 1.00 1.00 

Averages 0.98 0.98 0.98 0.98 
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6.2.3 Bi-LSTM and GRU with Under and Oversampling Methods in Code Smells 

Detection 

In this sub-section, we discuss the findings of the seventh study, the objective was to present a 

method based on RNN models (Bi-LSTM and GRU) with Under and Oversampling methods 

(Random Oversampling and Tomek Links) to detect four code smells (God class, data class, 

feature envy, and long method). The experiments have been conducted based on benchmark 

datasets obtained from the Qualitas Corpus Systems. The experimental results were evaluated 

and compared based on various performance measures (accuracy, precision, recall, f-measure, 

MCC, AUC, AUCPR, MSE). The performance of the prediction models is reported in Tables 

20 to 22. 

Table 20 presents the results of Bi-LSTM and GRU models on the original datasets in terms of 

accuracy, precision, recall, F-Measure, MCC, AUC, AUCPR and MSE. We notice that the 

accuracy values of the Bi-LSTM model range from 0.95 to 0.98, the precision values range 

from 0.93 to 1.00, the recall values range from 0.83 to 0.96, the F-Measure values range from 

0.90 to 0.96, the MCC values range from 0.88 to 0.94, the AUC values range from 0.97 to 0.99, 

the AUCPR values range from 0.95 to 0.99, and the MSE values range from 0.023 to 0.044 

across all datasets. The accuracy values of the GRU model range from 0.93 to 0.98, the 

precision values range from 0.86 to 0.97, the recall values range from 0.86 to 0.96, the F-

Measure values range from 0.89 to 0.96, the MCC values range from 0.84 to 0.94, the AUC 

values range from 0.95 to 0.99, the AUCPR values range from 0.89 to 0.99, and the MSE values 

range from 0.020 to 0.065 across all datasets. 

Table 20 Evaluation results for the original datasets 

Bi-LSTM Model 

 

Datasets 

 

Performance Measures 

Accuracy Precision Recall F- measure MCC AUC AUCPR MSE 

God Class 0.95 0.97 0.92 0.94 0.90 0.99 0.99 0.035 

Data Class 0.95 1.00 0.83 0.90 0.88 0.99 0.99 0.037 

Feature envy 0.95 0.93 0.93 0.93 0.89 0.97 0.95 0.044 

Long method 0.98 0.96 0.96 0.96 0.94 0.99 0.99 0.023 

Averages 0.95 0.96 0.91 0.93 0.90 0.98 0.98 0.034 

GRU Model 

 

Datasets 

 

Performance Measures 

Accuracy Precision Recall F- measure MCC AUC AUCPR MSE 

God Class 0.93 0.97 0.86 0.91 0.85 0.97 0.97 0.063 

Data Class 0.96 0.92 0.96 0.94 0.91 0.99 0.99 0.026 

Feature envy 0.93 0.86 0.93 0.89 0.84 0.95 0.89 0.065 

Long method 0.98 0.96 0.96 0.96 0.94 0.99 0.99 0.020 

Averages 0.95 0.92 0.92 0.92 0.88 0.97 0.96 0.043 

Table 21 presents the results of Bi-LSTM and GRU Models on the balanced datasets using 

Random Oversampling regarding accuracy, precision, recall, F-Measure, MCC, AUC, AUCPR 

and MSE. We notice that the accuracy values of the Bi-LSTM model range from 0.96 to 1.00, 

the precision values range from 0.94 to 1.00, the recall values range from 0.98 to 1.00, the F-

Measure values range from 0.97 to 1.00, the MCC values range from 0.92 to 1.00, the AUC 

values range from 0.97 to 1.00, the AUCPR values range from 0.96 to 1.00, and the MSE values 

range from 0.005 to 0.037 across all datasets. The accuracy values of the GRU model range 
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from 0.96 to 1.00, the precision values range from 0.95 to 1.00, the recall value range from 

0.98 to 1.00, the F-Measure values range from 0.97 to 1.00, the MCC values range from 0.92 

to 1.00, the AUC values range from 0.96 to 1.00, the AUCPR values range from 0.93 to 1.00, 

and the MSE values range from 0.002 to 0.033 across all datasets. 

Table 21 Evaluation results for the balanced datasets - Random Oversampling 

Bi-LSTM Model 

 

Datasets 

 

Performance Measures 

Accuracy Precision Recall F- measure MCC AUC AUCPR MSE 

God Class 0.96 0.95 0.98 0.97 0.92 0.98 0.98 0.035 

Data Class 0.99 0.98 1.00 0.99 0.98 1.00 1.00 0.006 

Feature envy 0.96 0.94 1.00 0.97 0.92 0.97 0.96 0.037 

Long method 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.005 

Averages 0.97 0.96 0.99 0.98 0.95 0.98 0.98 0.020 

GRU Model 

 

Datasets 

 

Performance Measures 

Accuracy Precision Recall F- measure MCC AUC AUCPR MSE 

God Class 0.96 0.95 0.98 0.97 0.92 0.96 0.93 0.033 

Data Class 0.98 0.98 0.98 0.98 0.96 0.99 0.99 0.023 

Feature envy 0.97 0.95 1.00 0.98 0.94 0.97 0.95 0.032 

Long method 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.002 

Averages 0.97 0.97 0.99 0.98 0.95 0.98 0.96 0.022 

Table 22 presents the results of Bi-LSTM and GRU Models on the balanced datasets using 

Tomek links regarding accuracy, precision, recall, F-Measure, MCC, AUC, AUCPR and MSE. 

We notice that the accuracy values of the Bi-LSTM model range from 0.95 to 0.99, the 

precision values range from 0.85 to 1.00, the recall values range from 0.87 to 1.00, the F-

Measure values range from 0.92 to 0.98, the MCC values range from 0.88 to 0.97, the AUC 

values range from 0.97 to 0.99, the AUCPR values range from 0.92 to 0.98, and the MSE values 

range from 0.013 to 0.044 across all datasets. The accuracy values of the GRU model range 

from 0.96 to 0.99, the precision values range from 0.94 to 1.00, the recall values range from 

0.87 to 1.00, the F-Measure values range from 0.93 to 0.98, the MCC values range from 0.90 

to 0.97, the AUC values range from 0.98 to 0.99, the AUCPR values range from 0.97 to 0.99, 

and the MSE values range from 0.018 to 0.038 across all datasets. 

Table 22 Evaluation results for the balanced datasets - Tomek links 

Bi-LSTM Model 

 

Datasets 

 

Performance Measures 

Accuracy Precision Recall F- measure MCC AUC AUCPR MSE 

God Class 0.96 1.00 0.87 0.93 0.90 0.98 0.97 0.037 

Data Class 0.95 0.85 1.00 0.92 0.88 0.97 0.92 0.044 

Feature envy 0.98 0.97 0.97 0.97 0.94 0.99 0.98 0.020 

Long method 0.99 0.97 1.00 0.98 0.97 0.98 0.97 0.013 

Averages 0.97 0.94 0.96 0.95 0.92 0.98 0.96 0.028 

GRU Model 

 

Datasets 

 

Performance Measures 

Accuracy Precision Recall F- measure MCC AUC AUCPR MSE 

God Class 0.96 1.00 0.87 0.93 0.90 0.98 0.97 0.038 
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Data Class 0.99 0.96 1.00 0.98 0.97 0.99 0.99 0.018 

Feature envy 0.99 0.97 1.00 0.98 0.97 0.99 0.99 0.021 

Long method 0.98 0.94 1.00 0.97 0.94 0.99 0.99 0.025 

Averages 0.98 0.96 0.96 0.96 0.94 0.98 0.98 0.025 

6.3 Summary 

The experimental results have been compared and evaluated based on several standard 

performance measures. We compared experimental results based on the original and balanced 

datasets. We concluded that the combined data-balancing methods with ML techniques 

significantly enhance the accuracy of predicting software bugs and code smells. We observe 

that the incorporation of appropriate data-balancing methods and ML techniques not only 

enhances the model's ability to predict software bugs and code smells accurately but also 

mitigates the bias towards the majority class, resulting in a more balanced performance across 

different classes of software bugs and code smells. This research has practical implications for 

software developers and researchers. It highlights the significance of considering data-

balancing methods when applying ML models for predicting software bugs and code smells. 

By employing these methods, developers can enhance their ability to identify and address code 

quality issues, thereby improving software maintainability. 
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7 Thesis Summary 

The new scientific results of the research presented in this work are as follows: 

Thesis I: Investigating standard machine learning (ML) techniques previously used to 

predict software bugs and the impact of data-balancing methods (Undersampling methods) 

on the accuracy of ML models in software bug prediction (SBP). 

I proposed two approaches for SBP: in the first approach, I presented a comprehensive study 

investigating standard ML techniques previously used to predict software bugs. In addition, a 

method to examine the performance of classical supervised ML algorithms (DT, NB, RF, and 

LR) in SBP was proposed. The experiments were conducted based on four public benchmark 

datasets obtained from the NASA defect dataset. To investigate the impact of Undersampling 

methods in improving the accuracy of RNN models in SBP, a new approach was developed by 

combining two RNN models, namely LSTM and GRU, with an Undersampling method (Near 

Miss). The experiments were conducted on benchmark datasets which comprise five public 

datasets based on both class and file-level metrics. The results of both approaches were 

evaluated on many performance measures such as accuracy, precision, recall, f-measure, MCC, 

AUC, AUCPR, and MSE. Regarding the evaluation process and the results of the first 

approach: I established that the classic supervised ML algorithms can be used effectively for 

SBP. Regarding the experimental results of the second approach: the average Recall of the 

LSTM and GRU models on the original datasets (class level metrics and file level metrics) 

were 20 and 20%, and the average Recall of the models on the balanced datasets (class level 

metrics and file level metrics) using Near Miss were 92 and 81%. The results showed that the 

LSTM and GRU models on the balanced datasets improved the average Recall by 72 and 61%, 

respectively, compared to the original datasets. I established that there are positive effects of 

combining RNN with Undersampling methods on the performance of bug prediction regarding 

datasets with imbalanced class distributions and the proposed approaches are promising, 

competitive and suitable methodologies for SBP [P1 and P2]. 

Thesis II: Investigating the impact of data-balancing methods (Oversampling and hybrid 

sampling methods) on the accuracy of machine learning (ML) models in software defect 

prediction (SDP). 

I proposed two approaches to investigate the impact of Oversampling and hybrid sampling 

methods in improving the accuracy of advanced ML algorithms in SDP. The first approach was 

developed based on combining a Bi-LSTM network and Oversampling methods (Random 

Oversampling and SMOTE). The second approach was developed based on CNN and GRU 

combined with a hybrid sampling method (SMOTE Tomek). The experiments for both 

approaches have been conducted on benchmark datasets obtained from the PROMISE 

repository. The experimental results have been compared and evaluated in accuracy, precision, 

recall, f-measure, MCC, AUC, AUCPR, and MSE. Regarding the evaluation process and the 

results of the first approach: The average Recall of the Bi-LSTM model was 48% on the 

original datasets, 97% on balanced datasets (using Random Oversampling), and 94% on 

balanced datasets (using SMOTE). The results showed that the Bi-LSTM model on the 

balanced datasets improves the average Recall by 49 (using Random Oversampling) and 46% 

(using SMOTE), compared to the original datasets. Regarding the experimental results of the 

second approach: The average Recall of the CNN and GRU models were 48 and 49% on the 

original datasets and 94 and 91% on balanced datasets (using SMOTE Tomek), The results 

showed that the CNN and GRU models on the balanced datasets improve the average Recall 
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by 46 and 42%, respectively, compared to the original datasets. I established that combining 

advanced ML algorithms with Oversampling and hybrid sampling methods has positive effects 

on the performance of defect prediction regarding datasets with imbalanced class distributions. 

The proposed approaches are suitable methodologies for SDP [P3 and P4]. 

Thesis III: Investigating the impact of data-balancing methods (Oversampling and 

Undersampling methods) on the accuracy of machine learning (ML) models in code smells 

detection. 

I proposed three approaches to investigate the impact of Oversampling and Undersampling 

methods in improving the accuracy of classical and advanced ML algorithms in code smell 

detection. The first approach was developed based on five classic ML algorithms, namely DT, 

K-NN, SVM, XGB, and MLP combined with the Oversampling method (Random 

Oversampling). The second approach was developed based on a CNN combined with the 

Oversampling method (SMOTE). The third approach was developed based on two RNN 

models (Bi-LSTM and GRU) combined with Oversampling and Undersampling methods 

(Random Oversampling and Tomek links). The experiments for all approaches were conducted 

on four code smells datasets (God class, Data Class, Feature-envy, and Long-method) that were 

extracted from 74 open-source systems. The experimental results have been compared and 

evaluated in terms of accuracy, precision, recall, f-measure, MCC, AUC, AUCPR, and MSE. 

Regarding the evaluation process and the results of the first approach: The average Recall of 

the DT, K-NN, SVM, XGB and MLP models on the original datasets (God class, Data class, 

Long method and Feature envy) were 88, 95, 93 and 83%, respectively, and the average Recall 

of the models on the balanced datasets (using Random Oversampling) were 98, 99, 99 and 

98%, respectively. The results showed that the DT, K-NN, SVM, XGB and MLP models on 

the balanced datasets improved the average Recall by 10, 4, 6 and 15%, respectively, compared 

to the original datasets. Regarding the evaluation process and the results of the second 

approach: the average Recall of the CNN model on the original datasets (God class, Data class, 

Feature envy and Long method) was 95%, and the average Recall of the model on the balanced 

datasets (using SMOTE) was 98%.The results showed that the CNN model on the balanced 

datasets improves the average Recall by 3%, compared to the original datasets. Regarding the 

experimental results of the third approach: the average Recall of the Bi-LSTM and GRU 

models were 91 and 92% on the original datasets (God class, Data class, Feature envy and 

Long method), the average Recall of the models were 99 and 99% on the balanced datasets 

using Random Oversampling, and the average Recall of the models were 96 and 96%, 

respectively, on the balanced datasets using Tomek links. The results showed that the Bi-LSTM 

and GRU models on the balanced datasets using Random Oversampling improved the average 

Recall by 8 and 7% and improved the average Recall by 5 and 4% on the balanced datasets 

using Tomek links, respectively, compared to the original datasets. I established that combining 

classic and advanced ML algorithms with Oversampling and Undersampling methods can 

improve the performance of code smell detection regarding datasets with imbalanced class 

distributions and the proposed approaches are suitable methodologies for code smell detection 

[P5, P6 and P7]. 
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