
University of Miskolc

FACULTY OF MECHANICAL ENGINEERING AND

INFORMATICS

Utilizing Data-Balancing Techniques to Improve AI-Based Prediction of Software Bugs and

Code Smells

PhD DISSERTATION

AUTHOR:

Nasraldeen Alnor Adam Khleel

MSc in Software Engineering

József Hatvany Doctoral School of

Information Science, Engineering and Technology

HEAD OF DOCTORAL SCHOOL

Prof. Dr. Jenő SZIGETI

ACADEMIC SUPERVISOR

Dr. Károly Nehéz

Miskolc

2023

II

Table of Contents

1 Introduction __ 1

2 Literature Review and Theoretical Background _______________________________ 1

2.1 Software Bugs __ 1

2.2 Code Smells ___ 2

2.3 Software Metrics ___ 3

3 Artificial Intelligence Techniques ___ 3

3.1 Machine Learning (ML) __ 4
3.2 Artificial Neural Networks (ANNs) ___ 5

4 Data Imbalance and Data-Balancing Methods ________________________________ 6

4.1 Data Imbalance ___ 6

4.2 Data-Balancing Methods ___ 6
4.2.1 Data Sampling (Resampling) Methods __ 7

5 Proposed Methodology and Implementation _________________________________ 8

5.1 Experimental Design __ 9
5.1.1 Proposed Approaches ___ 9
5.1.2 The Public Benchmark Datasets Used in This Research __________________________________ 9
5.1.3 Data Pre-processing ___ 10
5.1.4 Features Selection __ 11
5.1.5 Balancing Data sets __ 12
5.1.6 Models Building and Evaluation __ 12

6 Experimental Results and Discussion _______________________________________ 13

6.1 Experimental Results and Discussion of Software Bugs Prediction (SBP) ____________ 13
6.1.1 ML Techniques in SBP __ 13
6.1.2 LSTM and GRU with Undersampling Methods in SBP ___________________________________ 14
6.1.3 Bi-LSTM with Oversampling Methods in Software Defect Prediction (SDP) _________________ 15
6.1.4 CNN and GRU with Hybrid (combined)-Sampling Methods in SDP_________________________ 18

6.2 Experimental Results and Discussion of Code Smells Detection ___________________ 19
6.2.1 ML techniques with Oversampling Methods in Code Smells Detection _____________________ 19
6.2.2 A Convolutional Neural Network (CNN) with Oversampling Methods ______________________ 22
6.2.3 Bi-LSTM and GRU with Under and Oversampling Methods in Code Smells Detection _________ 23

6.3 Summary ___ 25

7 Thesis Summary ___ 26

Author’s Publication __ 28

Publications Related to the Dissertation __ 28

Other Publications Journal Articles and Conference Proceeding _____________________ 29

References ___ 30

1

1 Introduction

In the field of software engineering, ensuring the quality of software systems is of paramount

importance. Software quality assurance is a crucial discipline within software engineering that

focuses on ensuring the high standards, reliability, and functionality of software products

throughout their development life cycle. The primary goal of software quality assurance is to

identify and mitigate defects, errors, code smells and inconsistencies in software, ultimately

leading to the delivery of a high-quality product that meets user requirements and expectations

[1]. Due to the increasing size and complexity of software products and inadequate software

testing, no system or software can claim to be free of software bugs or code smells. Software

bugs and code smells can significantly impact software applications' performance,

maintainability, and user experience [2]. Detecting and predicting these issues early in the

software development life cycle can save substantial time, effort, and resources [3], [4].

Software metrics have essential roles in predicting software bugs and code smells, and most

recent strategies for predicting software bugs and code smells rely on software metrics as

independent variables [5], [6]. Static code analysis is a method of analyzing source code

without its execution to find potential problems like software bugs and code smells that might

arise at runtime. So, static code analysis aims to check the quality of the source code and

address weaknesses[7]. Based on the literature review. Recently, many commercial and open-

source tools evolved for static code analysis to provide an efficient, value-added solution to

many of the problems that software development organizations face. However, numerous false

positives and negative results make these tools hard to use in practice[8]. So, another

methodology or approach for static code analysis must be found, such as artificial intelligence

techniques. Artificial Intelligence (AI) is a wide-ranging branch of computer science concerned

with the simulation of human intelligence in machines that are programmed to think like

humans and mimic their actions. The most popular AI techniques used for the prediction of

software bugs and code smells are Machine Learning (ML) techniques [9]. ML is an area of

research where computer programs can learn and get better at performing specific tasks by

training on massive quantities of historical data. ML techniques, and software metrics have

emerged as powerful tools for automating the prediction of software bugs and code smells[5].

However, one major challenge faced in this domain is the class imbalance problem, where the

distribution of classes in the training dataset is uneven. In other words, one class has

significantly more instances than the others, leading to an imbalanced representation of classes.

The class imbalance issue poses a significant obstacle as it can lead to biased models that fail

to accurately capture the rare occurrences of software bugs or code smells, thus affecting the

overall predictive performance[7]. Therefore, this research aims to explore the role of data-

balancing methods in addressing the class imbalance problem when applying ML techniques

for predicting software bugs and code smells using software metrics. By addressing the class

imbalance problem, the research endeavours to enhance the accuracy and reliability of

predictive models, ultimately assisting in developing more robust and high-quality software

systems[10].

2 Literature Review and Theoretical Background

2.1 Software Bugs

Due to the expansion in the scale of software projects and the increase in complexity, Software

Bug Prediction (SBP) has become the focus of attention to increase software quality. Software

2

bugs can be defined as defects or faults in computer programs that occur during the software

development process which may cause many problems for users and developers aside and may

lead to the failure of the software to meet the desired expectations and reduce customer

satisfaction. Software bugs identify are one of the most common causes of wasted time and

increase maintenance costs during the software lifecycle. Where early prediction of software

bugs in the early stages of software development can improve the quality and reliability of

systems, and reduce development costs, time, rework efforts, etc.[7]. The software bugs are

classified into two classes: intrinsic software bugs refer to bugs that were introduced by one or

more specific changes to the source code and extrinsic software bugs refer to bugs that were

introduced by changes not recorded in the version control system. Developers employ various

techniques like debugging tools, code reviews, unit testing, and system testing to detect and

resolve software bugs before releasing software to users. Predicting software bugs helps in

improving the overall quality and reliability of the software. By identifying potential issues in

advance, developers can implement preventive measures, conduct targeted testing, and ensure

that the software meets the required quality standards. The SBP process depends on three main

components: dependent variables, independent variables, and a model. Dependent variables are

the defect data for the piece of code (defective or non-defective), which can be binary or ordinal

variables. Independent variables (inputs) are the software metrics that score the software code.

The model contains the rules or algorithms which predict the dependent variable from the

independent variables. The studies’ efforts in building SBP models can be categorized into two

approaches: the first approach is to manually design new features or new sets of features to

represent defects, while the second approach involves applying new and improved ML-based

classifiers. Current work in predicting software bugs focuses on the second approach that

includes: estimating the number of defects in software systems, discovering how software

defects relate to software metrics and classifying software defects into two categories of

"defect-prone and non-defect-prone"[11].

2.2 Code Smells

Code smells are design issues or changes to source codes because of activities performed by

developers during emergencies or coding solutions that indicate a violation of software design

rules, e.g.: abstraction or hierarchy encapsulation which can cause serious problems during

systems maintenance and may impact the software quality in the future. Code smells may lead

to future degradation in software projects making software hard to evolve and maintain, and it

can effectively indicate whether source code should be refactored. Code smells are often

associated with potential software bugs or vulnerabilities. They can indicate areas of code that

are more prone to errors, such as complex conditional logic, unhandled exceptions, or

inconsistent naming conventions. Code smell detection is fundamental to improving software

quality and maintainability, reducing the risk of software failure, and it is a primary

requirement to guide the subsequent steps in the refactoring process. Many approaches have

been presented by the authors for uncovering the smells from the software systems[12].

Different detection methodologies differ from manual to visualization-based, semi-automatic

studies, automatic studies, empirical-based evaluation, and metrics-based detection of smells.

Most techniques used to detection of code smells rely on heuristics and discriminate code

artifacts affected (or not) by a particular type of smells through the application of detection

rules which compare the values of metrics extracted from source code against some empirically

3

identified thresholds. Researchers recently adopted ML techniques to detect code smells to

avoid thresholds and decrease the false positive rate in code smell detection tools[13].

2.3 Software Metrics

Software Metrics play the most vital role in building a prediction model to improve software

quality by predicting as many software defects as possible. Software metrics can be used to

collect information regarding the structural properties of a software design, which can be

further statistically analyzed, interpreted, and linked to its quality. Software metrics provide

quantitative data that can be analyzed to identify potential areas of concern, by measuring

various aspects of the codebase, such as complexity, size, or adherence to coding standards.

Software metrics help identify patterns and indicators associated with software bugs or code

smells. By analyzing historical data and correlating software metrics with known issues,

developers can spot recurring patterns or combinations of software metrics that indicate

potential problems. This enables them to proactively address these areas to prevent software

bugs or improve code quality[5]. Software metrics can be classified as static code metrics and

process metrics. Static code metrics can be directly extracted from source code, like Lines of

Code (LOC), and Cyclomatic Complexity Number (CCN). Object-oriented metrics are a

subcategory of static code metrics, like Depth of Inheritance Tree (DIT), Coupling Between

Objects (CBO), Number of Children (NOC), and Response for Class (RFC)[4]. Object-oriented

metrics are often used to assess testability, maintainability, or reusability of source code.

Process metrics can be extracted from the source code management system based on historical

changes in source code over time. These metrics reflect the modifications over time, e.g.,

changes in source code, the number of code changes, developer information, etc. Several

researchers in the primary studies used McCabe and Halstead metrics as independent variables

in the studies of software bug and code smells. The first use of McCabe metrics was to

characterize code features related to software quality. McCabe's has considered four basic

software metrics: cyclomatic complexity, essential complexity, design complexity, and lines

of code. Halstead also considered that the software metrics fall into three groups: base

measures, derived measures, and line of code measures [3], [6].

3 Artificial Intelligence Techniques

The field of Artificial intelligence (AI) is witnessing a recent upsurge in research, tools

development, and deployment of applications. AI is being widely adopted and incorporated

into almost every kind of software application. where software engineers need to have a

thorough grasp of what AI is and understand how to incorporate AI into the software

development lifecycle. AI is a branch of Computer Science that pursues creating computers or

machines as intelligent as human beings. AI is accomplished by studying how the human brain

thinks and how humans learn, decide, and work while trying to solve a problem. AI techniques

such as ML, Neural Networks, fuzzy logic, etc. have been advocated by many researchers and

developers as the way to improve many of the software development activities. AI techniques,

specifically, ML techniques are commonly used for the prediction of software bugs and code

smells compared to other techniques such as manual code inspection or rule-based approaches

because they offer automation, scalability, and a data-driven approach[14].

4

3.1 Machine Learning (ML)

Machine learning (ML) is an area of research where computer programs can learn and get better

at performing specific tasks by training on historical data or study of computer algorithms that

provide systems the ability to automatically learn and improve from experience[10]. It is

generally seen as a sub-field of AI. ML algorithms can be applied to analyze data from different

perspectives to allow developers to obtain useful information. ML algorithms allow the systems

to make decisions autonomously without any external support. Such decisions are made by

finding valuable underlying patterns within complex data. High quantities of data are needed

to develop ML model-based prediction. ML algorithms build models from training examples,

which are then used to make predictions when faced with new examples. ML techniques can

be categorized into supervised, unsupervised, and reinforcement. ML algorithms have received

extensive attention in the field of software engineering for a considerable period. Therefore,

recently ML algorithms have been adopted to enhance research tasks in the prediction of

software bugs and code smells[8].

3.1.1 Supervised learning

Supervised Learning is the ML task of inferring a function from labeled training data which

consists of a set of training examples. Supervised learning is applied when the data is in the

form of input variables and output target values. In supervised learning, the training dataset has

an output variable that needs to be predicted or classified. All algorithms learn some kind of

patterns from the training dataset and apply them to the test dataset for prediction or

classification[9]. It has two known supervised learning tasks (classification, and regression).

Classification concerns building a predictive model for function with discrete range, while

regression concerns continuous range model building. Supervised learning is fairly common in

classification problems because the goal is often to get the computer to learn a classification

system that we have created. The most commonly supervised ML methods include concept

learning, classification, rule learning, instance-based learning, Bayesian learning, linear

regression, neural network, SVM, etc.[8].

3.1.2 Unsupervised learning

Unsupervised Learning is also called learning from observation. Unsupervised learning is

applied when the data is available only in the form of an input and there is no corresponding

output variable. Such algorithms model the underlying patterns in the data in order to learn

more about its characteristics[7]. Unsupervised learning seems much harder: the goal is to have

the computer learn how to do something that we don't tell it how to do. In unsupervised

learning, the system has to explore any patterns based only on the common properties of the

example without knowing how many or even if there are any patterns. The most common

methods in unsupervised learning are association rule mining, sequential pattern mining, and

clustering[10].

3.1.3 Reinforcement learning

Reinforcement learning is somewhere between supervised and unsupervised learning.

Reinforcement learning is applied when the task at hand is to make a sequence of decisions

toward a final reward[10]. Where the algorithm learns a policy of how to act given an

observation of the world. Every action has some impact on the environment, and the

5

environment provides feedback that guides the learning algorithm. During the learning process,

an artificial agent gets either rewards or penalties for the actions it performs. Its goal is to

maximize the total reward. In reinforcement learning, the algorithm gets told when the answer

is wrong but does not get told how to correct it. It has to explore and try out different

possibilities until it works out how to get the answer right. Examples include learning agents

to play computer games or performing robotics tasks with end goals[9].

3.2 Artificial Neural Networks (ANNs)

Artificial neural networks (ANNs) are biologically inspired computer software built to imitate

the way in which the human brain processes information[7]. ANNs are ML models or nonlinear

classifiers used to model complex relationships between inputs and outputs. An ANNs model

contains multiple units (layers) for information processing which are known as neurons. The

layers are typically named the input layer, hidden layer, and output layer. When implementing

a neural network, a set of consistent training values must be available to set up the expected

operation of the network and a set of validation values to validate the training process. ANNs

collect knowledge by detecting the patterns and relationships in data and learning or training

through experience. When neural networks are used for data analysis, it must be important to

distinguish between ANN Models which refer to the network's arrangement, and ANN

Algorithms which refer to computations that eventually produce the network outputs. There

are two approaches to training ANNs: supervised and unsupervised. The most often used ANNs

for prediction and classification tasks is a fully connected and supervised network with a

backpropagation learning rule. During the learning stage, the weights of each neuron are

considered and adjusted according to the requirements. To obtain the final weight for neurons,

each neuron gives input to each preceding layer, and later these inputs are multiplied by their

weight. According to this process, the neuron computes the activation level from this sum, and

the output is sent to the following layer where the final solution is estimated [14].

3.2.1 Deep learning (DL)

Deep learning (DL) algorithms have received extensive attention in the field of software

engineering for a considerable period. DL is one of the AI functions that mimic the workings

of the human brain. It allows and helps to solve complex problems by using a data set that is

very diverse, unstructured, and interconnected [7], [9]. DL is a type of ML that allows

computational models consisting of multiple processing layers to learn data representations

with multiple levels of abstraction. DL architecture has been widely used to solve many

detections, classification, and prediction problems. There are many activation functions used

in DL such as sigmoid, Rectified Linear unit (Relu), and Hyperbolic Tangent (Tanh).

Activation functions are a critical component of DL, serving as the nonlinearities that allow

neural networks to model complex relationships in data. Their importance lies in their ability

to introduce non-linearity, control gradient flow during training, and adapt the network's

behaviour to different problem domains. The right choice of activation function can

significantly impact training speed, model performance, and the ability to capture intricate

patterns in data. Whether it is the efficiency of ReLU, the sigmoid's interpretability, or the

tanh's versatility, selecting the appropriate activation function is a key decision in designing

neural networks. Therefore, activation functions enable the training of the DL model quickly

and accurately [10], [14].

6

3.2.2 Recurrent Neural Networks (RNNs)

Recurrent Neural Networks (RNNs) are a type of ANNs that can process a sequence of inputs

and retain its state while processing the next sequence of inputs and can efficiently acquire the

nonlinear features that are in order. Where the nodes and their connections form a temporally

directed graph along a temporal sequence [9]. RNN is widely used to solve many different

problems, such as pattern recognition, identification, classification, vision, speech, control

systems, etc. Due to the problem of long-term dependencies that arise when the input sequence

is too long, RNN cannot guarantee a long-term nonlinear relationship. This means that there is

a gradient vanishing and gradient explosion phenomenon in the learning sequence. RNNs can

use memory units (internal state) to learn the relationship between the sequence pieces, making

it possible for RNNs to capture contextual features of the sequence. Many optimization theories

and improved algorithms have been introduced to solve this problem such as Long-Short-

Term-Memory (LSTM) networks, Bidirectional LSTM, Gated Recurrent Unit (GRU)

networks, echo state networks, Independent RNN, etc. [7], [10].

4 Data Imbalance and Data-Balancing Methods

4.1 Data Imbalance

The data imbalance problem is a hot topic being investigated recently by ML and data mining

researchers, especially in the context of the prediction of software bugs and code smells. It is

considered one of the current research topics of interest in supervised classification that

frequently appears in several real-world datasets. The main characteristic of the imbalanced

data is class imbalances. The class imbalance can be intrinsic property or due to limitations to

obtaining data such as cost, privacy, and large effort [7]. The class imbalance problem occurs

when, in a dataset, one of the classes has fewer instances, usually called the minority class,

than the other class, usually called the majority class. In bug prediction, this means that the

dataset may have a significantly higher number of non-buggy instances compared to buggy

instances, while in code smells, certain types of code smells may be underrepresented

compared to others. This problem produces a poor classification rate for the minority class,

which is usually the most important. Consequently, it becomes difficult for a classifier to

effectively discriminate between the minority and majority classes, especially if the class

imbalance is extreme, which has aroused the interest of many researchers to solve the problem

of class imbalance[13].

4.2 Data-Balancing Methods

Data imbalance is a common challenge in the prediction of software bugs and code smells

tasks, where certain classes of interest are underrepresented compared to others. Data-

balancing methods are crucial in addressing this issue and improving the performance and

accuracy of the models [7]. By balancing the data, these methods help in achieving improved

model performance, avoiding bias in predictions, enhancing the detection of rare events,

preventing overfitting, and providing valuable insights into software bugs and code smells.

Overall, data-balancing ensures that the models are trained on a more representative

distribution of instances, leading to more accurate and reliable predictions in the prediction of

software bugs and code smells tasks[13]. Several data-balancing techniques have been

developed to overcome the class imbalance problem, these techniques include subset methods,

cost-sensitive learning, algorithm-level implementations, ensemble learning, feature selection

7

methods, sampling methods, etc. These techniques can be grouped into two distinct categories:

external methods that use existing algorithms without modification (corresponds to methods

that operate on the dataset in a preprocessing step preceding classification), and internal

methods that create new algorithms or modify existing algorithms to take into account class

imbalances (modifies the classification algorithm in order to put more emphasis on the minority

class), the two types of methods can be roughly divided into data level and algorithm level.

The most common techniques used in previous work to deal with the class imbalance problem

are external methods which are based on the data sampling technique (Oversampling and

Undersampling methods) [15].

4.2.1 Data Sampling (Resampling) Methods

Data sampling techniques are more prevalent in the studies of the prediction of software bugs

and code smell due to their easy employment and independence (i.e., they can be applied to

any prediction model)[13]. Therefore, data sampling techniques are commonly used to address

the class imbalance problem in ML. These techniques are popular due to their simplicity,

compatibility with various algorithms, computational efficiency, and retention of information.

Data sampling methods are relatively easy to understand and implement, work well with

different learning algorithms, and have minimal computational overhead. There are three main

categories of data sampling techniques that are: Oversampling Methods, Undersampling

Methods, and Hybrid (Combined-Sampling Methods) [7], [15].

4.2.1.1 Undersampling Methods

Undersampling is a non-heuristic method where a subset of the majority class is chosen to

create a balanced class distribution. The advantage of this method is that the elimination of

some examples could significantly reduce the size of the data and therefore decrease the run-

time cost, especially in the case of big data. There are many Undersampling methods such as

Random Undersampling, Near Miss, Tomek links, etc.

• Random Undersampling is an Undersampling method aiming to randomly eliminate

samples of the majority class to obtain a balanced dataset[15]. This algorithm randomly

removes samples of the majority class using either sampling with or without replacement,

despite its simplicity, Random Undersampling is one of the most effective resampling

methods [13], [15].

• Near Miss is an Undersampling method, which aims to balance class distribution by

selecting examples based on the distance of majority class examples to minority class

examples[13].

• Tomek links is a method of Undersampling developed by Tomek (1976) This algorithm

works by deleting negative classes and positive classes further that have similar

characteristics [15].

4.2.1.2 Oversampling Methods

Oversampling is a non-heuristic method used to address data imbalance in ML by increasing

the number of instances in the minority class[15]. These methods aim to provide the model

with more examples of the minority class, making it easier for the model to learn its patterns

and improve its ability to classify it accurately. Oversampling methods are more effective than

Undersampling methods in prediction accuracy [7]. There are many Oversampling methods

8

such as Random Oversampling, Synthetic Minority Oversampling Technique (SMOTE), etc.

[13].

• Random Oversampling is a simple approach where we take samples at random from the

small class and duplicate these instances so that it reaches a size comparable with the

majority class, it is defined as a method developed to increase the size of a training data set

by making multiple copies of some minority classes[15].

• SMOTE is an Oversampling method based on creating synthetic instances for the minority

classes. It is a method in which new samples of minority class are synthesized based on the

feature space similarities among existing minority examples. It is the most widely used and

referenced method among the Oversampling methods. The algorithm takes each minority

class sample and introduces synthetic samples along the line joining the current instance

and some of its k nearest neighbors from the same class. Depending on how much

Oversampling is needed, the algorithm chooses randomly from the k nearest neighbors of

them and forms pairs of vectors that are used to create the synthetic samples. The new

instances create larger and denser decision regions. This helps classifiers learn more from

the minority classes in those decision regions, rather than from the large classes

surrounding those regions[13].

4.2.1.3 Hybrid (Combined-Sampling Methods)

Combined-sampling methods refer to the integration of multiple sampling techniques into a

single approach (such as Oversampling and Undersampling) to improve the effectiveness and

efficiency of the sampling process. These methods aim to leverage the strengths of different

sampling techniques while mitigating their limitations. There are various hybrid sampling

methods, for example SMOTE Tomek method[15].

• SMOTE Tomek is a new technique that was applied using the library from imbalanced

learn, which combines the SMOTE function for Oversampling and the Tomek Link

function for Undersampling[13].

5 Proposed Methodology and Implementation

This section presents our proposed methodology and implementation, which describes the

experiments performed. Several experiments and comparisons are conducted to predict

software bugs and code smells based on ML techniques and data-balancing methods. The

architecture of the methodology followed in the dissertation can be visualized in Figure 1.

Figure 1 The architecture of the methodology followed in the dissertation

9

5.1 Experimental Design

5.1.1 Proposed Approaches

• In relation to software bug prediction, we developed four approaches. The first approach

was developed based on four ML models which are DT, NB, RF, and LR. The second

approach was developed based on combining two RNN models, namely LSTM and GRU,

with an Undersampling method (Near Miss). The third approach was developed by

combining a Bi-LSTM network with Oversampling methods (Random Oversampling and

SMOTE). The fourth approach was developed using a combination method based on CNN

and GRU with a hybrid sampling method (SMOTE Tomek).

• Concerning code smell detection, we developed three approaches. The first approach was

developed based on several ML algorithms which are DT, K-NN, SVM, XGB, and MLP

combined with an Oversampling method (Random Oversampling). The second approach

was developed based on a CNN combined with Oversampling method (SMOTE). The third

approach was developed based on two RNN models (Bi-LSTM and GRU) combined with

two sampling methods (Random Oversampling and Tomek links).

5.1.2 The Public Benchmark Datasets Used in This Research

5.1.2.1 Software Bug Data Sets

We used three different public datasets to perform software bug prediction experiments. The

first group was obtained from the NASA datasets, we selected four NASA public datasets,

these datasets were collected from real software projects by NASA [16]. The second group was

obtained from a public unified bug dataset, the authors considered 5 public datasets and

downloaded the corresponding source code for each system in the datasets and source code

analysis was performed to obtain a standard set of source code metrics. They have produced a

unified bug dataset at the class and file level that is suitable for the building of new bug

prediction models. Furthermore, they have compared the metric definitions and values of the

different bug datasets[17]. The defective instances for the unified bug dataset (Class level

metrics and File level metrics) are 8780 and 10240. While the non-defective instances are

38838 and 33504, respectively. The third group was obtained from the PROMISE repository

datasets. We selected six open-source Java projects from the PROMISE dataset. The source

code and corresponding PROMISE data for all projects are public [18]. These projects cover

applications such as XML parsers, text search engine libraries, and data transport adapters, and

these projects have traditional static metrics for each Java file. To guarantee the generality of

the evaluation results, experimental datasets consist of projects with different sizes and defect

rates (in the six projects, the maximum number of instances is 965, and the minimum number

of instances is 205. In addition, the minimum defect rate is 2.23% and the maximum defect

rate is 92.19%). The defective instances for the PROMISE datasets (ant, camel, ivy, jedit, log4j,

and xerces) are (166, 188, 40, 11, 16, and 151), respectively. While the non-defective instances

are (579, 777, 312, 481, 189, and 437), respectively.

5.1.2.2 Code Smells Data Sets

We used the proposed datasets in Arcelli Fontana et al [4] to perform code smell detection

experiments. The authors selected 74 open-source systems from Qualitas Corpus. The Qualitas

Corpus (QC) systems were collected by Tempero et al. The QC systems comprise 111 systems

10

written in Java belonging to different application domains and characterized by different sizes.

The QC systems datasets consisted of 561 smelly instances and 1119 non-smelly instances.

The first two datasets pertain to code smells at the class level, specifically for the god class

(with 140 smelly cases and 280 non-smelly instances) and data class (with 140 smelly cases

and 280 non-smelly instances). In contrast, the remaining two datasets focus on code smells at

the method level: feature envy (with 140 smelly instances and 280 non-smelly instances) and

long method (with 141 smelly instances and 279 non-smelly instances). The reason for

selecting these datasets is that (i) the QC systems are the largest curated corpus for code

analysis studies, with the current version having 495 code sets, representing 100 unique

systems. The corpus has been successful in that groups outside its original creators are now

using it, and the number and size of code analysis studies have significantly increased since it

became available. (ii) Systems must be able to calculate metric values correctly. Moreover,

these data sets are freely available, and researchers can iterate, compare and evaluate their

studies. The selected metrics in QC systems are at class and method levels; the set of metrics

is standard metrics covering different aspects of the code, i.e., complexity, cohesion, size, and

coupling [4].

5.1.3 Data Pre-processing

Pre-processing the collected data is one of the essential stages before constructing the model.

To generate a good model, data quality needs to be considered. Not all data collected is suitable

for training and model building. Anyhow, the inputs will significantly impact the model's

performance and later affect the output[7]. Data pre-processing is a group of techniques that

are applied to the data to improve the data quality before model building to remove noise and

unwanted outliers from the data set, dealing with missing values, feature type conversion, etc.

Outliers are data points that deviate significantly from most of the data in a dataset. Detecting

and handling outliers is crucial in data analysis and modelling, as they can disproportionately

influence statistical measures and ML algorithms. Outliers can be detected using various

methods, such as visual inspection of the data, statistical measures such as the Z-score or the

interquartile range, or ML techniques. Once outliers are detected, they can be handled in

various ways, such as removing them from the dataset, replacing them with the mean or median

of the data, using outlier detection techniques using ML, or using algorithms less sensitive to

outliers. All outliers in the data sets were treated by replacing them with the mean. All datasets

are pre-processed by dealing with missing content and constant values. Handling missing

values treatment improves performance measures and avoids biased results. Incomplete data

can bias the results of the ML models and/or reduce the model’s accuracy. Datasets used

contain instances from different projects. Considering that, there are three main methods for

handling missing data: deletion, imputation, and modelling. Deletion methods involve

removing the missing values or the cases with missing values from the data set. Imputation

means replacing the missing values with estimated values based on the available data.

Modelling methods require incorporating the missing data mechanism into the analysis model

or using methods that directly handle missing data. Missing values for the datasets used in this

research are handled based on imputation methods, which means replacing them with the mean.

In addition, instances are scaled to reduce the distance between independent variables.

Normalization is necessary to convert the values into scaled values (transforming the features

to be on a similar scale) to increase the model's efficiency. Therefore, the data set was

normalized using Min–Max and Standard scaling. After that, constant, quasi-constant and

11

duplicated features are removed. It is followed by feature selection extracting feature subset

that contributes maximum to the ML algorithms prediction variable[19].

5.1.4 Features Selection

Feature selection is a critical process in ML that involves choosing the most relevant and

informative features from the original set. The objective is to enhance model performance,

mitigate overfitting, and improve interpretability. Feature extraction facilitates the conversion

of pre-processed data into a form that the classification engine can use [7]. Feature selection in

ML encompasses various methods, such as Filter Methods, Wrapper Methods, Embedded

Methods, Dimensionality Reduction Techniques and Hybrid Methods aimed at identifying and

utilizing the most relevant features for model training [19]. Filter methods employ diverse

criteria such as statistical tests, correlation coefficients, or information gain to rank and filter

features based on their intrinsic characteristics, irrespective of the specific ML model. By

efficiently screening out less informative or redundant features early in the process, filter

methods help mitigate the curse of dimensionality and enhance computational efficiency.

Wrapper methods in feature selection are dynamic techniques that assess the relevance of

subsets of features by integrating them into the model training and evaluation process. Unlike

filter methods that evaluate features independently, wrapper methods employ a trial-and-error

approach, testing different combinations of features to identify the most informative subset.

Standard wrapper methods include forward selection, backward elimination, and recursive

feature elimination. Forward selection starts with an empty set and iteratively adds features

based on their impact on model performance. In contrast, backward elimination begins with all

features and progressively removes the least relevant ones. Recursive Feature Elimination

recursively fits the model and eliminates the least significant feature in each iteration. Wrapper

methods, while computationally more intensive than filter methods, are advantageous for

capturing feature interactions and dependencies that contribute to optimal model performance.

However, their increased computational cost may limit their application to high-dimensional

datasets. Embedded methods for feature selection incorporate feature selection as part of the

model training process. Unlike filter methods, which assess features independently of the

learning algorithm, and wrapper methods, which evaluate subsets of features through iterative

model training, embedded methods simultaneously perform feature selection and model

training. These methods aim to identify the most relevant features for prediction and

classification tasks while optimizing the model's performance. One popular embedded method

is Least Absolute Shrinkage and Selection Operator, which introduces a penalty term to the

linear regression cost function, promoting sparsity in the feature coefficients. Tree-based

algorithms like Random Forests and Gradient Boosted Trees also inherently provide feature

importance scores during their training process, allowing for the automatic selection of the

most influential features. Embedded methods are advantageous as they streamline the feature

selection process within the model training, potentially leading to more efficient and

interpretable models. Dimensionality reduction techniques are methods employed in ML to

reduce the number of input features while preserving the essential information within the data.

One widely used technique is Principal Component Analysis, which transforms the original

features into a set of uncorrelated variables called principal components. These components

retain most of the variance in the data, enabling a more compact representation. Hybrid

methods in feature selection represent a fusion of multiple techniques to achieve a more

comprehensive and robust approach. These methods combine aspects of both filter and wrapper

12

methods or leverage various strategies simultaneously. For instance, Boruta integrates the

power of random forest classifiers with a shadow feature mechanism to identify relevant

features, providing a hybrid solution. Genetic Algorithms, another hybrid approach, employs

evolutionary algorithms to search for an optimal subset of features. Hybrid methods strive to

harness the strengths of different feature selection techniques, addressing their limitations and

producing more effective results. By combining diverse strategies, these methods offer a

versatile and adaptable approach to feature selection, suitable for various datasets and ML

tasks. The choice of a hybrid method depends on the specific characteristics of the data and the

goals of the feature selection process. Each type of feature selection caters to specific data

characteristics and model requirements, which is crucial in optimizing performance and

interpretability in ML applications. In this research, we applied the embedded method because

it is faster and less computationally expensive than other methods and is suitable for ML

models [7].

5.1.5 Balancing Data sets

Balancing data sets is an essential step in ML and data analysis when dealing with imbalanced

data, where the number of instances in different classes or categories is significantly

skewed[13]. Balancing the data sets helps ensure that the model's performance is not biased

towards the majority class and can effectively learn from the minority class. In practice, the

datasets of software bugs and code smell often suffer from a common problem which is a class

imbalance problem[14]. The reference datasets are not balance distributed, which shows a lack

in the actual distribution of learning instances (The number of defective or smelly cases is

smaller than non-defective or non-smelly), we manage this problem by modifying the original

datasets to increase the realism of the data. The distribution of the dataset was modified by

applying different data sampling methods such as Near Miss, Tomek links, Random

Oversampling, SMOTE, and SMOTE Tomek.

5.1.6 Models Building and Evaluation

In building and evaluating the proposed prediction models, we adopted a systematic and

methodical methodology which depends on ML techniques in conjunction with data-balancing

methods to predict software bugs and code smells effectively. It's a common practice in the

field to divide data into two sets: a training set used to teach the model and a test set used to

assess its performance [7]. The datasets used to train and test our proposed ML models were

obtained from public benchmark datasets of software bugs and code smells that contain

information for several projects. Datasets are shuffled and split into testing and training sets.

Training is performed with 80% of the dataset (random selection of features), while the

remaining 20% is used for validation and testing. The author utilized the Jupyter editor as a

computing environment to construct models using the Python programming language to

implement the methodology. Moreover, we harnessed a range of libraries and tools to

efficiently handle data, construct models, and create insightful visualizations. Specifically,

Pandas for data manipulation, scikit-learn, Keras, and TensorFlow for data modeling, and

Matplotlib along with Seaborn for data visualization were employed. Moreover, Cross-

validation is a vital technique in ML used to evaluate the performance and generalizability of

predictive models. It involves partitioning a dataset into subsets, typically referred to as folds,

and systematically training and evaluating the model multiple times. Cross-validation helps

mitigate issues like overfitting and provides a more reliable assessment of how well a model

13

will perform on unseen data. It is an essential tool for selecting models, tuning

hyperparameters, and ensuring the model's generalization across different subsets of the

dataset. Cross-validation comes in various forms such as K-Fold Cross-Validation, Stratified

K-Fold Cross-Validation, Leave-One-Out Cross-Validation, Leave-P-Out Cross-Validation,

etc. to suit different data characteristics and modelling objectives. K-Fold Cross-Validation and

Stratified K-Fold Cross-Validation are the most standard methods of Cross-validation. K-Fold

Cross-Validation is a method where the data is divided into k subsets, and the model is trained

on k-1 folds while being tested on the remaining fold. This process is repeated k times, and

performance metrics are averaged to provide a more robust estimate of the model's

effectiveness. Stratified K-Fold Cross-Validation is a variation of the standard K-Fold Cross-

Validation method that maintains the class distribution in each fold, is beneficial for

imbalanced datasets, and is designed to address the potential issue of imbalanced class

distributions in the dataset. Therefore, we applied Stratified K-Fold Cross-Validation method

to evaluate the performance of our proposed predictive models. Each model was developed

separately with different parameters. Once a prediction model is built, its performance must be

evaluated. We evaluated the performance of our proposed models based on a set of standard

performance measures such as the confusion matrix, Matthews Correlation Coefficient (MCC),

the area under a receiver operating characteristic curve (AUC), the area under the precision-

recall curve (AUCPR) and mean square error (MSE) [19].

6 Experimental Results and Discussion

6.1 Experimental Results and Discussion of Software Bugs Prediction (SBP)

6.1.1 ML Techniques in SBP

The goal was to present a comprehensive study on ML techniques successfully used in previous

studies to predict software bugs. The study also presented a method for SBP based on

supervised ML algorithms namely, DT, NB, RF, and LR. The experiments have been

conducted based on benchmark datasets obtained from the NASA datasets (jm1, PC1, KC1 and

KC2). The experimental results were evaluated and compared based on various performance

measures (accuracy, precision, recall, and f-measure). The performance of the prediction

models is reported in Tables 1 to 4.

Tables 1 to 4 show the performance of the proposed models on the four data sets based on all

performance measures. The maximum (best) accuracy value is 99%, which DT and RF models

in JM1, PC1and KC1 datasets achieved. The maximum (best) precision value is 99%, which

DT and RF models in JM1, PC1and KC1 datasets achieved. The maximum (best) recall value

is 100%, which was achieved by DT and RF models in all datasets. The maximum (best) F-

measure value is 99%, achieved by DT and RF models in the PC1 dataset.

Table 1 Performance measures of the proposed models on the jm1 dataset

Proposed models Performance measures

Accuracy Precision Recall F-measure

DT 0.99 0.99 1.00 0.99

NB 0.80 0.81 0.97 0.89

RF 0.99 0.99 1.00 0.99

LR 0.81 0.82 0.99 0.89

14

Table 2 Performance measures of the proposed models on the pc1 dataset

Proposed models Performance measures

Accuracy Precision Recall F-measure

DT 0.99 0.99 1.00 1.00

NB 0.91 0.94 0.96 0.95

RF 0.99 0.99 1.00 1.00

LR 0.93 0.94 0.99 0.96

Table 3 Performance measures of the proposed models on the kc1 dataset

Proposed models Performance measures

Accuracy Precision Recall F-measure

DT 0.99 0.99 1.00 0.99

NB 0.85 0.88 0.96 0.92

RF 0.99 0.99 1.00 0.99

LR 0.85 0.87 0.96 0.92

Table 4 Performance measures of the proposed models on the kc2 dataset

Proposed models Performance measures

Accuracy Precision Recall F-measure

DT 0.98 0.98 1.00 0.99

NB 0.83 0.83 0.98 0.90

RF 0.98 0.98 1.00 0.99

LR 0.84 0.86 0.96 0.91

6.1.2 LSTM and GRU with Undersampling Methods in SBP

The goal was to present a method based on combining two RNN models namely LSTM and

GRU with the Undersampling method (Near Miss) for SBP. The experiments have been

conducted based on benchmark datasets obtained from the public unified bug dataset. The

experimental results were evaluated and compared based on various performance measures

(accuracy, precision, recall, f-measure, MCC, AUC, AUCPR and MSE). The performance of

the prediction models is reported in Tables 5 and 6.

Table 5 shows the results of the LSTM and GRU models based on both the original and

balanced datasets, emphasising class-level measures. Notably, we observed that both the

LSTM and GRU models attained the highest accuracy of 93% on the balanced dataset, while

the GRU model exhibited the lowest accuracy of 82% on the original dataset. In terms of

precision, the LSTM model achieved the highest value of 95% on the balanced dataset, while

the GRU model demonstrated the lowest precision of 58% on the original dataset. As for recall,

both models obtained the highest score of 92% on the balanced dataset, whereas the GRU

model exhibited the lowest recall of 16% on the original dataset. Both models achieved the

highest F-Measure score of 93% on the balanced dataset. However, the GRU model had the

lowest score of 26% on the original dataset. . Both models achieved the highest MCC of 86%

on the balanced dataset, whereas the GRU model had the lowest MCC of 23% on the original

dataset. The LSTM model attained the highest AUC score of 97% on the balanced dataset, and

the GRU model achieved the lowest score of 77% on the original dataset. On the balanced

dataset, both models demonstrated the highest AUCPR score of 97%, while the GRU model

exhibited the lowest AUCPR score of 44% on the original dataset. Additionally, the GRU

model recorded the highest MSE of 0.130 on the original dataset, while the LSTM model

achieved the lowest MSE of 0.051 on the balanced dataset.

15

Table 5 Performance measures for the proposed models over class level metrics dataset

Original Dataset

Proposed Models

Performance Measures

Accuracy Precision Recall F-measure MCC AUC AUCPR MSE

LSTM 0.83 0.60 0.25 0.35 0.30 0.78 0.48 0.125

GRU 0.82 0.58 0.16 0.26 0.23 0.77 0.44 0.130

Averages 0.82 0.59 0.20 0.30 0.26 0.77 0.46 0.130

Balanced Dataset

Proposed Models

Performance Measures

Accuracy Precision Recall F-measure MCC AUC AUCPR MSE

LSTM 0.93 0.95 0.92 0.93 0.86 0.97 0.97 0.051

GRU 0.93 0.94 0.92 0.93 0.86 0.96 0.97 0.063

Averages 0.93 0.94 0.92 0.93 0.86 0.96 0.97 0.057

Table 6 shows the results of LSTM and GRU models based on on the original and balanced

datasets, focusing on file-level metrics. Remarkably, both the LSTM and GRU models

achieved the highest accuracy of 88% on the balanced dataset. In contrast the lowest accuracy

of 78% was observed for both models (LSTM and GRU) on the original dataset. Furthermore,

the balanced dataset yielded the highest precision of 94% for both models (LSTM and GRU),

while the GRU model had the lowest precision of 61% on the original dataset. Regarding recall,

the balanced dataset produced the highest score of 81% for both models. Conversely, when

applied to the original dataset, the LSTM model achieved the lowest recall of 18%. Similarly,

the balanced dataset resulted in the highest f-measure of 87% for both the LSTM and GRU

models. Conversely, the LSTM model exhibited the lowest f-measure of 28% when working

with the original dataset. Furthermore, both models (LSTM and GRU) attained the highest

MCC of 76% on the balanced dataset, while the LSTM model had the lowest MCC of 24% on

the original dataset. Similarly, the balanced dataset yielded the highest AUC of 93% for both

models (LSTM and GRU), while the original dataset yielded the lowest AUC of 75% for both

models (LSTM and GRU). Both models also achieved the highest AUCPR on the balanced

dataset, 95%, and the lowest AUCPR on the original dataset, 49%. In conclusion, both models

(LSTM and GRU) achieved the highest MSE of 0.152 on the original dataset, while the LSTM

model obtained the lowest MSE of 0.090 on the balanced dataset.

Table 6 Performance measures for the proposed models over file level metrics dataset

Original Dataset

Proposed Models

Performance Measures

Accuracy Precision Recall F-measure MCC AUC AUCPR MSE

LSTM 0.78 0.62 0.18 0.28 0.24 0.75 0.49 0.152

GRU 0.78 0.61 0.22 0.33 0.27 0.75 0.49 0.152

Averages 0.78 0.61 0.20 0.30 0.25 0.75 0.49 0.152

Balanced Dataset

Proposed Models

Performance Measures

Accuracy Precision Recall F-measure MCC AUC AUCPR MSE

LSTM 0.88 0.94 0.81 0.87 0.76 0.93 0.95 0.090

GRU 0.88 0.94 0.81 0.87 0.76 0.93 0.95 0.093

Averages 0.88 0.94 0.81 0.87 0.76 0.93 0.95 0.091

6.1.3 Bi-LSTM with Oversampling Methods in Software Defect Prediction (SDP)

The aim was to present a method based on combining a Bi-LSTM network with Oversampling

methods (Random Oversampling and SMOTE) for SDP. The experiments have been conducted

based on benchmark datasets obtained from the PROMISE repository. The experimental results

16

were evaluated and compared based on various performance measures (accuracy, precision,

recall, f-measure, MCC, AUC, AUCPR, and MSE). The performance of the prediction model

is reported in Tables 7 to 9.

According to Table 7: Accuracy for the various original datasets: the highest accuracy was

achieved by the proposed model on the jedit dataset, which is 97%. The lowest accuracy was

achieved by the proposed model on the ant dataset, which is 80%. Precision for the various

original datasets: the highest Precision was achieved by the proposed model on the log4j and

xerces datasets, which is 95%. The proposed model achieved the lowest Precision on the jedit

dataset, 0%. Recall for the various original datasets: the highest Recall was achieved by the

proposed model on the log4j dataset, which is 100%. The lowest Recall was achieved by the

proposed model on the jedit dataset, which is 0%. F-Measure for the various original datasets:

the highest F-Measure was achieved by the proposed model on the log4j dataset, which is 97%.

The lowest F-Measure was achieved by the proposed model on the jedit dataset, which is 0%.

MCC for the various original datasets: the highest MCC was achieved by the proposed model

on the xerces dataset, which is 75%. The lowest MCC was achieved by the proposed model on

the jedit and log4j datasets, which is 0%. AUC for the various original datasets: the highest

AUC was achieved by the proposed model on the xerces dataset, 94%. The lowest AUC was

achieved by the proposed model on the log4j dataset, which is 60%. AUCPR for the various

original datasets: the highest AUCPR was achieved by the proposed model on the xerces

dataset, 98%. The lowest AUCPR was achieved by the proposed model on the jedit dataset,

which is 29%. MSE for the various original datasets: the highest MSE was achieved by the

proposed model on the ant dataset, which is 0.152. The lowest MSE was achieved by the

proposed model on the jedit dataset, which is 0.030.

Table 7 Performance analysis for proposed Bi-LSTM Network - Original Datasets

Datasets

Performance Measures

Accuracy Precision Recall F-Measure MCC AUC AUCPR MSE

ant 0.80 0.50 0.50 0.50 0.37 0.79 0.48 0.152
camel 0.82 0.56 0.28 0.37 0.30 0.69 0.37 0.146

ivy 0.87 0.50 0.22 0.31 0.27 0.72 0.40 0.105
jedit 0.97 0.00 0.00 0.00 0.00 0.85 0.29 0.030
log4j 0.95 0.95 1.00 0.97 0.00 0.60 0.96 0.041

xerces 0.91 0.95 0.92 0.94 0.75 0.94 0.98 0.075

Averages 0.88 0.57 0.48 0.51 0.28 0.76 0.58 0.091

According to Table 8: Accuracy for the various balanced datasets using Random

Oversampling: the highest accuracy was achieved by the proposed model on the jedit and log4j

datasets, which is 99%. The lowest accuracy was achieved by the proposed model on the ivy

dataset, which is 90%. Precision for the various balanced datasets using Random

Oversampling: The highest Precision was achieved by the proposed model on the log4j dataset,

which is 100%. The proposed model on the ivy dataset achieved the lowest Precision, which is

82%. Recall for the various balanced datasets using Random Oversampling: The highest Recall

was achieved by the proposed model on the ivy and jedit datasets, which is 100%. The lowest

Recall was achieved by the proposed model on the xerces dataset, which is 92%. F-Measure

for the various balanced datasets using Random Oversampling: the highest F-Measure was

achieved by the proposed model on the jedit and log4j datasets, which is 99%. The lowest F-

Measure was achieved by the proposed model on the ivy dataset, which is 90%. MCC for the

various the various balanced datasets using Random Oversampling: the highest MCC was

17

achieved by the proposed model on the jedit and log4j datasets, which is 97%. The lowest MCC

was achieved by the proposed model on the camel and ivy datasets, which is 81%. AUC for the

various balanced datasets using Random Oversampling: The highest AUC was achieved by the

proposed model on the jedit and log4j datasets, which is 99%. The lowest AUC was achieved

by the proposed model on the camel and ivy datasets, which is 93%. AUCPR for the various

balanced datasets using Random Oversampling: the highest AUCPR was achieved by the

proposed model on the jedit and log4j datasets, which is 99%. The lowest AUCPR was

achieved by the proposed model on the ivy dataset, which is 86%. MSE for the various balanced

datasets using Random Oversampling: the highest MSE was achieved by the proposed model

on the ivy dataset, which is 0.092. The lowest MSE was achieved by the proposed model on

the jedit dataset, which is 0.009.

Table 8 Performance analysis for proposed Bi-LSTM Network - Balanced Datasets using Random

Oversampling Technique

Datasets

Performance Measures

Accuracy Precision Recall F-Measure MCC AUC AUCPR MSE

ant 0.91 0.89 0.94 0.91 0.82 0.95 0.93 0.073
camel 0.91 0.87 0.98 0.92 0.81 0.93 0.92 0.082

Ivy 0.90 0.82 1.00 0.90 0.81 0.93 0.86 0.092
jedit 0.99 0.98 1.00 0.99 0.97 0.99 0.99 0.009
log4j 0.99 1.00 0.98 0.99 0.97 0.99 0.99 0.012

xerces 0.95 0.98 0.92 0.95 0.89 0.97 0.98 0.049

Averages 0.94 0.92 0.97 0.94 0.87 0.96 0.94 0.052

According to Table 9: Accuracy for the various balanced datasets using SMOTE: the highest

accuracy was achieved by the proposed model on the log4j dataset, which is 100%. The

proposed model achieved the lowest accuracy on the ant dataset, 84%. Precision for the various

balanced datasets using SMOTE: The highest Precision was achieved by the proposed model

on the log4j dataset, which is 100%. The lowest Precision was achieved by the proposed model

on the ant dataset, which is 81%. Recall for the various balanced datasets using SMOTE: the

highest Recall was achieved by the proposed model on the jedit and log4j datasets, which is

100%. The lowest Recall was achieved by the proposed model on the ant and camel datasets,

which is 88%. F-Measure for the various balanced datasets using SMOTE: the highest F-

Measure was achieved by the proposed model on the log4j dataset, which is 100%. The lowest

F-Measure was achieved by the proposed model on the ant dataset, which is 85%. MCC for

the various balanced datasets using SMOTE: the highest MCC was achieved by the proposed

model on the log4j dataset, which is 100%. The lowest MCC was achieved by the proposed

model on the ant dataset, which is 67%. AUC for the various balanced datasets using SMOTE:

the highest AUC was achieved by the proposed model on the log4j dataset, which is 100%.

The lowest AUC was achieved by the proposed model on the ant dataset, which is 90%.

AUCPR for the various balanced datasets using SMOTE: the highest AUCPR was achieved by

the proposed model on the log4j dataset, which is 100%. The lowest AUCPR was achieved by

the proposed model on the ant and camel datasets, which is 91%. MSE for the various balanced

datasets using SMOTE: the highest MSE was achieved by the proposed model on the ant

dataset, which is 0.124. The lowest MSE was achieved by the proposed model on the log4j

dataset, which is 0.001.

18

Table 9 Performance analysis for proposed Bi-LSTM Network - Balanced Datasets using SMOTE Technique

Datasets

Performance Measures

Accuracy Precision Recall F-Measure MCC AUC AUCPR MSE

Ant 0.84 0.81 0.88 0.85 0.67 0.90 0.91 0.124
camel 0.87 0.89 0.88 0.89 0.74 0.91 0.91 0.113

Ivy 0.89 0.83 0.97 0.89 0.78 0.94 0.92 0.101
Jedit 0.99 0.98 1.00 0.99 0.97 0.99 0.99 0.011
log4j 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.001

xerces 0.93 0.93 0.92 0.93 0.85 0.96 0.97 0.067

Averages 0.92 0.90 0.94 0.92 0.83 0.95 0.95 0.069

6.1.4 CNN and GRU with Hybrid (combined)-Sampling Methods in SDP

The target was to propose a novel SDP approach based on CNN and GRU combined with

hybrid sampling method (SMOTE Tomek) for SDP. The experiments were conducted based

on benchmark datasets from the PROMISE repository. The experimental results were

evaluated and compared based on various performance measures (accuracy, precision, recall,

f-measure, MCC, AUC, AUCPR, and MSE). The performance of the prediction models is

reported in Tables 10 to 13.

Table 10 Performance analysis for proposed CNN Model-Original Data sets

Datasets

Performance Measures

Accuracy Precision Recall F-Measure MCC AUC AUCPR MSE

ant 0.83 0.67 0.33 0.44 0.38 0.82 0.57 0.131
camel 0.82 0.62 0.14 0.23 0.23 0.74 0.39 0.136

ivy 0.90 0.67 0.44 0.53 0.49 0.81 0.53 0.086

jedit 0.96 0.00 0.00 0.00 0.01 0.83 0.07 0.037
log4j 0.95 0.95 1.00 0.97 0.00 0.46 0.93 0.048

xerces 0.94 0.94 0.99 0.96 0.83 0.95 0.98 0.049

Averages 0.90 0.64 0.48 0.52 0.32 0.76 0.57 0.081

Table 11 Performance analysis for proposed CNN Model-Balanced Datasets

Datasets

Performance Measures

Accuracy Precision Recall F-Measure MCC AUC AUCPR MSE

ant 0.85 0.87 0.82 0.85 0.69 0.91 0.92 0.117
camel 0.84 0.81 0.90 0.85 0.69 0.90 0.89 0.132

ivy 0.95 0.92 0.98 0.95 0.90 0.98 0.96 0.051
jedit 0.97 0.94 1.00 0.97 0.93 0.96 0.88 0.027
log4j 0.97 0.98 0.98 0.98 0.94 0.99 0.99 0.028

xerces 0.95 0.93 0.98 0.95 0.90 0.98 0.98 0.043

Averages 0.92 0.90 0.94 0.92 0.84 0.95 0.93 0.066

Table 12 Performance analysis for proposed GRU Model-Original Data sets

Datasets

Performance Measures

Accuracy Precision Recall F-Measure MCC AUC AUCPR MSE

ant 0.81 0.52 0.47 0.49 0.37 0.73 0.47 0.152
camel 0.79 0.30 0.08 0.13 0.06 0.70 0.31 0.146

ivy 0.92 0.80 0.44 0.57 0.55 0.71 0.56 0.076
jedit 0.97 0.00 0.00 0.00 0.00 0.93 0.24 0.028
log4j 0.95 0.95 1.00 0.97 0.00 0.29 0.93 0.048

xerces 0.91 0.92 0.96 0.94 0.74 0.89 0.91 0.090

Averages 0.89 0.58 0.49 0.51 0.28 0.70 0.57 0.090

19

Table 13 Performance analysis for proposed GRU Model-Balanced Datasets

Datasets

Performance Measures

Accuracy Precision Recall F-Measure MCC AUC AUCPR MSE

ant 0.83 0.88 0.81 0.85 0.67 0.89 0.89 0.130
camel 0.82 0.82 0.82 0.82 0.63 0.87 0.84 0.144

ivy 0.95 0.95 0.95 0.95 0.90 0.98 0.99 0.055
jedit 0.99 0.98 1.00 0.99 0.97 1.00 1.00 0.026
log4j 0.96 0.98 0.95 0.96 0.91 0.98 0.98 0.073

xerces 0.93 0.92 0.94 0.93 0.85 0.97 0.98 0.064

Averages 0.91 0.92 0.91 0.91 0.82 0.94 0.94 0.082

6.2 Experimental Results and Discussion of Code Smells Detection

6.2.1 ML techniques with Oversampling Methods in Code Smells Detection

The aim was to present a method based on five ML models, namely DT, K-NN, SVM, XGB,

and MLP combined with Oversampling method (Random Oversampling) to detect four code

smells (God class, data class, long method, and feature envy). The experiments have been

conducted based on benchmark datasets obtained from the Qualitas Corpus Systems. The

experimental results were evaluated and compared based on various performance measures

(accuracy, precision, recall, f-measure, MCC, and AUC). The performance of the prediction

models is reported in Tables 14 to 17.

Tables 14 to 17 present model results based on the original and balanced datasets. Based on

the DT model, we observed that accuracy values varied from 0.92 to 0.99 on the original

datasets and from 0.98 to 1.00 on the balanced datasets. In terms of precision, the values ranged

from 0.86 to 1.00 on the original datasets and from 0.97 to 1.00 on the balanced datasets. The

recall values ranged from 0.89 to 0.96 on the original datasets and were 1.00 on the balanced

datasets. In the context of f-measure, the values varied from 0.87 to 0.98 on the original datasets

and from 0.98 to 1.00 on the balanced datasets. Moreover, MCC values ranged from 0.81 to

0.97 on the original datasets and from 0.96 to 1.00 on the balanced datasets, whereas AUC

values ranged from 0.90 to 0.98 on the original datasets and from 0.98 to 1.00 on the balanced

datasets.

The K-NN model demonstrates that the accuracy values vary between 0.86 to 0.92 on the

original datasets and from 0.91 to 0.97 on the balanced datasets. Additionally, the precision

values on the original datasets vary from 0.75 to 0.97 and from 0.88 to 0.97 on the balanced

datasets. The recall values vary from 0.70 to 0.91 on the original datasets and from 0.97 to 0.98

on the balanced datasets. In the context of f-measure, the values range from 0.76 to 0.88 on the

original datasets and from 0.92 to 0.98 on the balanced datasets. Furthermore, the MCC values

range from 0.66 to 0.81 on the original datasets and from 0.82 to 0.94 on the balanced datasets.

Finally, the AUC values range from 0.85 to 0.97 on the original datasets and from 0.93 to 0.98

on the balanced datasets.

Following the SVM model, it can be observed that the accuracy values vary between 0.90 and

0.98 on the original datasets, and from 0.96 to 1.00 on the balanced datasets. On the original

datasets, the precision values vary from 0.85 to 0.96, while on the balanced datasets, the

precision values vary from 0.94 to 1.00. In the context of recall, the values range from 0.85 to

0.96 on the original datasets, and from 0.98 to 1.00 on the balanced datasets. In the context of

f-measure, the values range from 0.85 to 0.96 on the original datasets and from 0.97 to 1.00 on

the balanced datasets. The MCC values range from 0.78 to 0.94 on the original datasets and

20

from 0.92 to 1.00 on the balanced datasets. The AUC values range from 0.96 to 0.99 on the

original datasets and from 0.97 to 1.00 on the balanced datasets.

Based on the XGB model, it can be observed that the accuracy values range between 0.95 to

1.00 for the original datasets and between 0.96 to 1.00 for the balanced datasets. In the context

of precision, the values range between 0.87 to 1.00 for the original datasets and between 0.95

to 1.00 for the balanced datasets. In the context of recall, the values range between 0.97 to 1.00

for the original datasets and between 0.97 to 1.00 for the balanced datasets. In the context of f-

measure, the values range between 0.93 to 1.00 for the original datasets and between 0.96 to

1.00 for the balanced datasets. Additionally, the MCC values range between 0.89 to 1.00 for

the original datasets and between 0.90 to 1.00 for the balanced datasets, whereas the AUC

values range between 0.99 to 1.00 for the original datasets and between 0.98 to 1.00 for the

balanced datasets.

Based on the MLP model, it was observed that the accuracy values ranged from 0.88 to 0.98

on the original datasets and from 0.96 to 0.98 on the balanced datasets. Furthermore, the

precision values ranged from 0.87 to 0.97 on the original datasets and from 0.96 to 0.97 on the

balanced datasets, while the recall values ranged from 0.74 to 1.00 on the original datasets and

from 0.97 to 1.00 on the balanced datasets. In the context of f-measure, the values ranged from

0.80 to 0.96 on the original datasets and from 0.97 to 0.98 on the balanced datasets.

Furthermore, the MCC values range from 0.72 to 0.94 on the original datasets and from 0.92

to 0.96 on the balanced datasets. Finally, the AUC values range from 0.90 to 0.99 on the

original datasets and from 0.98 to 1.00 on the balanced datasets.

Concerning each type of code smell, the top-performing models attain the subsequent results:

DT model scores 100% accuracy on data class and long method (balanced datasets). K-NN

model achieves 97% accuracy on God class (balanced datasets). The SVM model scores 100%

accuracy on the long method (balanced datasets). XGB model achieves 100% accuracy on data

class and long method (original and balanced datasets). MLP model scores 98% accuracy on

data class (original and balanced datasets) and 98% on the long method (balanced datasets).

Table 14 Evaluation Results for the Class-Level Dataset: God class_ original and balanced datasets

Original datasets

ML Models

Performance measurement

Accuracy Precision Recall F- measure MCC AUC

DT 0.95 0.97 0.92 0.94 0.90 0.94

K-NN 0.90 0.97 0.81 0.88 0.81 0.94

SVM 0.92 0.94 0.86 0.90 0.83 0.97

XGB 0.98 0.97 0.97 0.97 0.95 0.99

MLP 0.93 0.97 0.86 0.91 0.85 0.99

Averages 0.93 0.96 0.88 0.92 0.86 0.96

Balanced datasets

ML Models

Performance measurement

Accuracy Precision Recall F- measure MCC AUC

DT 0.98 0.97 1.00 0.98 0.96 0.98

K-NN 0.97 0.97 0.98 0.98 0.94 0.97

SVM 0.96 0.95 0.98 0.97 0.92 0.99

XGB 0.96 0.95 0.97 0.96 0.90 0.98

MLP 0.97 0.97 0.98 0.98 0.94 0.98

Averages 0.96 0.96 0.98 0.97 0.93 0.98

21

Table 15 Evaluation Results for the Class-Level Dataset: Data class_ original and balanced datasets

Original datasets

ML Models

Performance measurement

Accuracy Precision Recall F- measure MCC AUC

DT 0.98 1.00 0.91 0.95 0.94 0.95

K-NN 0.89 0.75 0.91 0.82 0.75 0.97

SVM 0.96 0.92 0.96 0.94 0.91 0.99

XGB 1.00 1.00 1.00 1.00 1.00 1.00

MLP 0.98 0.92 1.00 0.96 0.94 0.99

Averages 0.96 0.91 0.95 0.93 0.90 0.98

Balanced datasets

ML Models

Performance measurement

Accuracy Precision Recall F- measure MCC AUC

DT 1.00 1.00 1.00 1.00 1.00 1.00

K-NN 0.96 0.93 0.98 0.96 0.91 0.98

SVM 0.97 0.95 1.00 0.97 0.94 0.99

XGB 1.00 1.00 1.00 1.00 1.00 1.00

MLP 0.98 0.97 1.00 0.98 0.96 0.99

Averages 0.98 0.97 0.99 0.98 0.96 0.99

Table 16 Evaluation Results for the Method-Level Dataset: Long method_ original and balanced datasets

Original datasets

ML Models

Performance measurement

Accuracy Precision Recall F- measure MCC AUC

DT 0.99 1.00 0.96 0.98 0.97 0.98

K-NN 0.92 0.92 0.81 0.86 0.80 0.94

SVM 0.98 0.96 0.96 0.96 0.94 0.99

XGB 1.00 1.00 1.00 1.00 1.00 1.00

MLP 0.94 0.87 0.96 0.91 0.87 0.98

Averages 0.96 0.95 0.93 0.94 0.91 0.97

Balanced datasets

ML Models

Performance measurement

Accuracy Precision Recall F- measure MCC AUC

DT 1.00 1.00 1.00 1.00 1.00 1.00

K-NN 0.96 0.93 0.98 0.95 0.91 0.97

SVM 1.00 1.00 1.00 1.00 1.00 1.00

XGB 1.00 1.00 1.00 1.00 1.00 1.00

MLP 0.98 0.96 1.00 0.98 0.96 1.00

Averages 0.98 0.97 0.99 0.98 0.97 0.99

Table 17 Evaluation Results for the Method-Level Dataset: Feature envy_ original and balanced datasets

Original datasets

ML Models

Performance measurement

Accuracy Precision Recall F- measure MCC AUC

DT 0.92 0.86 0.89 0.87 0.81 0.90

K-NN 0.86 0.83 0.70 0.76 0.66 0.85

SVM 0.90 0.85 0.85 0.85 0.78 0.96

XGB 0.95 0.87 1.00 0.93 0.89 0.99

MLP 0.88 0.87 0.74 0.80 0.72 0.90

Averages 0.90 0.85 0.83 0.84 0.77 0.92

Balanced datasets

ML Models

Performance measurement

Accuracy Precision Recall F- measure MCC AUC

DT 0.98 0.97 1.00 0.98 0.96 0.98

K-NN 0.91 0.88 0.97 0.92 0.82 0.93

SVM 0.96 0.94 1.00 0.97 0.92 0.97

XGB 0.98 0.97 1.00 0.98 0.96 0.98

22

MLP 0.96 0.97 0.97 0.97 0.92 0.98

Averages 0.95 0.94 0.98 0.96 0.91 0.96

6.2.2 A Convolutional Neural Network (CNN) with Oversampling Methods

In this sub-section, we discuss the findings of the sixth study. The objective was to present a

method based on a CNN with the Oversampling method (SMOTE) to detect four code smells

(God class, data class, feature envy, and long method). The experiments have been conducted

based on benchmark datasets obtained from the Qualitas Corpus Systems. The experimental

results were evaluated and compared based on various performance measures (accuracy,

precision, recall, and f-measure).

Tables 18 and 19 show the performance of the proposed model in the four code smells based

on the original and balanced data sets.

- Accuracy for the four code smell datasets: The proposed model using the balanced datasets

achieves greater accuracy than the proposed model using the original datasets on the Feature

Envy and Long Method datasets, which are 98 % and 100%. The lowest accuracy was achieved

by the proposed model using the original datasets on the Feature Envy dataset by up to 95%.

- Precision for the four code smell datasets: The proposed model using the balanced datasets

achieves greater precision than the proposed model using the original datasets on the Feature

Envy and Long Method datasets, which are 98 % and 100%. The proposed model achieved the

lowest precision using the original datasets on the Feature Envy and Long Method datasets by

up to 93%.

- Recall for the four code smell datasets: The proposed model using the balanced datasets

achieves more excellent recall than the proposed model using the original datasets on the God

Class, Data Class, and Feature Envy datasets, which are 97%, 100 %, and 98%. The lowest

recall was achieved by the proposed model using the original datasets on the Feature Envy

dataset by up to 93%.

- F-Measure for the four code smell datasets: The proposed model using the balanced datasets

achieves greater F-Measure than the proposed model using the original datasets on the God

Class, Feature Envy, and Long Method datasets, which are 97%, 98%, and 100%. The proposed

model achieved the lowest F-Measure using the original datasets on the Feature Envy dataset

by up to 93%.

Table 18 Performance analysis for proposed CNN Model - Original Datasets

Original Datasets
Performance Measures

Accuracy Precision Recall F-Measure

God Class 0.96 0.97 0.94 0.96

Data Class 0.99 1.00 0.96 0.98

Feature Envy 0.95 0.93 0.93 0.93

Long Method 0.98 0.93 1.00 0.96

Averages 0.97 0.95 0.95 0.95

Table 19 Performance analysis for proposed CNN Model - Balanced Datasets

Balanced Datasets

using SMOTE method

Performance Measures

Accuracy Precision Recall F-Measure

God Class 0.96 0.97 0.97 0.97

Data Class 0.98 0.97 1.00 0.98

Feature Envy 0.98 0.98 0.98 0.98

Long Method 1.00 1.00 1.00 1.00

Averages 0.98 0.98 0.98 0.98

23

6.2.3 Bi-LSTM and GRU with Under and Oversampling Methods in Code Smells

Detection

In this sub-section, we discuss the findings of the seventh study, the objective was to present a

method based on RNN models (Bi-LSTM and GRU) with Under and Oversampling methods

(Random Oversampling and Tomek Links) to detect four code smells (God class, data class,

feature envy, and long method). The experiments have been conducted based on benchmark

datasets obtained from the Qualitas Corpus Systems. The experimental results were evaluated

and compared based on various performance measures (accuracy, precision, recall, f-measure,

MCC, AUC, AUCPR, MSE). The performance of the prediction models is reported in Tables

20 to 22.

Table 20 presents the results of Bi-LSTM and GRU models on the original datasets in terms of

accuracy, precision, recall, F-Measure, MCC, AUC, AUCPR and MSE. We notice that the

accuracy values of the Bi-LSTM model range from 0.95 to 0.98, the precision values range

from 0.93 to 1.00, the recall values range from 0.83 to 0.96, the F-Measure values range from

0.90 to 0.96, the MCC values range from 0.88 to 0.94, the AUC values range from 0.97 to 0.99,

the AUCPR values range from 0.95 to 0.99, and the MSE values range from 0.023 to 0.044

across all datasets. The accuracy values of the GRU model range from 0.93 to 0.98, the

precision values range from 0.86 to 0.97, the recall values range from 0.86 to 0.96, the F-

Measure values range from 0.89 to 0.96, the MCC values range from 0.84 to 0.94, the AUC

values range from 0.95 to 0.99, the AUCPR values range from 0.89 to 0.99, and the MSE values

range from 0.020 to 0.065 across all datasets.

Table 20 Evaluation results for the original datasets

Bi-LSTM Model

Datasets

Performance Measures

Accuracy Precision Recall F- measure MCC AUC AUCPR MSE

God Class 0.95 0.97 0.92 0.94 0.90 0.99 0.99 0.035

Data Class 0.95 1.00 0.83 0.90 0.88 0.99 0.99 0.037

Feature envy 0.95 0.93 0.93 0.93 0.89 0.97 0.95 0.044

Long method 0.98 0.96 0.96 0.96 0.94 0.99 0.99 0.023

Averages 0.95 0.96 0.91 0.93 0.90 0.98 0.98 0.034

GRU Model

Datasets

Performance Measures

Accuracy Precision Recall F- measure MCC AUC AUCPR MSE

God Class 0.93 0.97 0.86 0.91 0.85 0.97 0.97 0.063

Data Class 0.96 0.92 0.96 0.94 0.91 0.99 0.99 0.026

Feature envy 0.93 0.86 0.93 0.89 0.84 0.95 0.89 0.065

Long method 0.98 0.96 0.96 0.96 0.94 0.99 0.99 0.020

Averages 0.95 0.92 0.92 0.92 0.88 0.97 0.96 0.043

Table 21 presents the results of Bi-LSTM and GRU Models on the balanced datasets using

Random Oversampling regarding accuracy, precision, recall, F-Measure, MCC, AUC, AUCPR

and MSE. We notice that the accuracy values of the Bi-LSTM model range from 0.96 to 1.00,

the precision values range from 0.94 to 1.00, the recall values range from 0.98 to 1.00, the F-

Measure values range from 0.97 to 1.00, the MCC values range from 0.92 to 1.00, the AUC

values range from 0.97 to 1.00, the AUCPR values range from 0.96 to 1.00, and the MSE values

range from 0.005 to 0.037 across all datasets. The accuracy values of the GRU model range

24

from 0.96 to 1.00, the precision values range from 0.95 to 1.00, the recall value range from

0.98 to 1.00, the F-Measure values range from 0.97 to 1.00, the MCC values range from 0.92

to 1.00, the AUC values range from 0.96 to 1.00, the AUCPR values range from 0.93 to 1.00,

and the MSE values range from 0.002 to 0.033 across all datasets.

Table 21 Evaluation results for the balanced datasets - Random Oversampling

Bi-LSTM Model

Datasets

Performance Measures

Accuracy Precision Recall F- measure MCC AUC AUCPR MSE

God Class 0.96 0.95 0.98 0.97 0.92 0.98 0.98 0.035

Data Class 0.99 0.98 1.00 0.99 0.98 1.00 1.00 0.006

Feature envy 0.96 0.94 1.00 0.97 0.92 0.97 0.96 0.037

Long method 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.005

Averages 0.97 0.96 0.99 0.98 0.95 0.98 0.98 0.020

GRU Model

Datasets

Performance Measures

Accuracy Precision Recall F- measure MCC AUC AUCPR MSE

God Class 0.96 0.95 0.98 0.97 0.92 0.96 0.93 0.033

Data Class 0.98 0.98 0.98 0.98 0.96 0.99 0.99 0.023

Feature envy 0.97 0.95 1.00 0.98 0.94 0.97 0.95 0.032

Long method 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.002

Averages 0.97 0.97 0.99 0.98 0.95 0.98 0.96 0.022

Table 22 presents the results of Bi-LSTM and GRU Models on the balanced datasets using

Tomek links regarding accuracy, precision, recall, F-Measure, MCC, AUC, AUCPR and MSE.

We notice that the accuracy values of the Bi-LSTM model range from 0.95 to 0.99, the

precision values range from 0.85 to 1.00, the recall values range from 0.87 to 1.00, the F-

Measure values range from 0.92 to 0.98, the MCC values range from 0.88 to 0.97, the AUC

values range from 0.97 to 0.99, the AUCPR values range from 0.92 to 0.98, and the MSE values

range from 0.013 to 0.044 across all datasets. The accuracy values of the GRU model range

from 0.96 to 0.99, the precision values range from 0.94 to 1.00, the recall values range from

0.87 to 1.00, the F-Measure values range from 0.93 to 0.98, the MCC values range from 0.90

to 0.97, the AUC values range from 0.98 to 0.99, the AUCPR values range from 0.97 to 0.99,

and the MSE values range from 0.018 to 0.038 across all datasets.

Table 22 Evaluation results for the balanced datasets - Tomek links

Bi-LSTM Model

Datasets

Performance Measures

Accuracy Precision Recall F- measure MCC AUC AUCPR MSE

God Class 0.96 1.00 0.87 0.93 0.90 0.98 0.97 0.037

Data Class 0.95 0.85 1.00 0.92 0.88 0.97 0.92 0.044

Feature envy 0.98 0.97 0.97 0.97 0.94 0.99 0.98 0.020

Long method 0.99 0.97 1.00 0.98 0.97 0.98 0.97 0.013

Averages 0.97 0.94 0.96 0.95 0.92 0.98 0.96 0.028

GRU Model

Datasets

Performance Measures

Accuracy Precision Recall F- measure MCC AUC AUCPR MSE

God Class 0.96 1.00 0.87 0.93 0.90 0.98 0.97 0.038

25

Data Class 0.99 0.96 1.00 0.98 0.97 0.99 0.99 0.018

Feature envy 0.99 0.97 1.00 0.98 0.97 0.99 0.99 0.021

Long method 0.98 0.94 1.00 0.97 0.94 0.99 0.99 0.025

Averages 0.98 0.96 0.96 0.96 0.94 0.98 0.98 0.025

6.3 Summary

The experimental results have been compared and evaluated based on several standard

performance measures. We compared experimental results based on the original and balanced

datasets. We concluded that the combined data-balancing methods with ML techniques

significantly enhance the accuracy of predicting software bugs and code smells. We observe

that the incorporation of appropriate data-balancing methods and ML techniques not only

enhances the model's ability to predict software bugs and code smells accurately but also

mitigates the bias towards the majority class, resulting in a more balanced performance across

different classes of software bugs and code smells. This research has practical implications for

software developers and researchers. It highlights the significance of considering data-

balancing methods when applying ML models for predicting software bugs and code smells.

By employing these methods, developers can enhance their ability to identify and address code

quality issues, thereby improving software maintainability.

26

7 Thesis Summary

The new scientific results of the research presented in this work are as follows:

Thesis I: Investigating standard machine learning (ML) techniques previously used to

predict software bugs and the impact of data-balancing methods (Undersampling methods)

on the accuracy of ML models in software bug prediction (SBP).

I proposed two approaches for SBP: in the first approach, I presented a comprehensive study

investigating standard ML techniques previously used to predict software bugs. In addition, a

method to examine the performance of classical supervised ML algorithms (DT, NB, RF, and

LR) in SBP was proposed. The experiments were conducted based on four public benchmark

datasets obtained from the NASA defect dataset. To investigate the impact of Undersampling

methods in improving the accuracy of RNN models in SBP, a new approach was developed by

combining two RNN models, namely LSTM and GRU, with an Undersampling method (Near

Miss). The experiments were conducted on benchmark datasets which comprise five public

datasets based on both class and file-level metrics. The results of both approaches were

evaluated on many performance measures such as accuracy, precision, recall, f-measure, MCC,

AUC, AUCPR, and MSE. Regarding the evaluation process and the results of the first

approach: I established that the classic supervised ML algorithms can be used effectively for

SBP. Regarding the experimental results of the second approach: the average Recall of the

LSTM and GRU models on the original datasets (class level metrics and file level metrics)

were 20 and 20%, and the average Recall of the models on the balanced datasets (class level

metrics and file level metrics) using Near Miss were 92 and 81%. The results showed that the

LSTM and GRU models on the balanced datasets improved the average Recall by 72 and 61%,

respectively, compared to the original datasets. I established that there are positive effects of

combining RNN with Undersampling methods on the performance of bug prediction regarding

datasets with imbalanced class distributions and the proposed approaches are promising,

competitive and suitable methodologies for SBP [P1 and P2].

Thesis II: Investigating the impact of data-balancing methods (Oversampling and hybrid

sampling methods) on the accuracy of machine learning (ML) models in software defect

prediction (SDP).

I proposed two approaches to investigate the impact of Oversampling and hybrid sampling

methods in improving the accuracy of advanced ML algorithms in SDP. The first approach was

developed based on combining a Bi-LSTM network and Oversampling methods (Random

Oversampling and SMOTE). The second approach was developed based on CNN and GRU

combined with a hybrid sampling method (SMOTE Tomek). The experiments for both

approaches have been conducted on benchmark datasets obtained from the PROMISE

repository. The experimental results have been compared and evaluated in accuracy, precision,

recall, f-measure, MCC, AUC, AUCPR, and MSE. Regarding the evaluation process and the

results of the first approach: The average Recall of the Bi-LSTM model was 48% on the

original datasets, 97% on balanced datasets (using Random Oversampling), and 94% on

balanced datasets (using SMOTE). The results showed that the Bi-LSTM model on the

balanced datasets improves the average Recall by 49 (using Random Oversampling) and 46%

(using SMOTE), compared to the original datasets. Regarding the experimental results of the

second approach: The average Recall of the CNN and GRU models were 48 and 49% on the

original datasets and 94 and 91% on balanced datasets (using SMOTE Tomek), The results

showed that the CNN and GRU models on the balanced datasets improve the average Recall

27

by 46 and 42%, respectively, compared to the original datasets. I established that combining

advanced ML algorithms with Oversampling and hybrid sampling methods has positive effects

on the performance of defect prediction regarding datasets with imbalanced class distributions.

The proposed approaches are suitable methodologies for SDP [P3 and P4].

Thesis III: Investigating the impact of data-balancing methods (Oversampling and

Undersampling methods) on the accuracy of machine learning (ML) models in code smells

detection.

I proposed three approaches to investigate the impact of Oversampling and Undersampling

methods in improving the accuracy of classical and advanced ML algorithms in code smell

detection. The first approach was developed based on five classic ML algorithms, namely DT,

K-NN, SVM, XGB, and MLP combined with the Oversampling method (Random

Oversampling). The second approach was developed based on a CNN combined with the

Oversampling method (SMOTE). The third approach was developed based on two RNN

models (Bi-LSTM and GRU) combined with Oversampling and Undersampling methods

(Random Oversampling and Tomek links). The experiments for all approaches were conducted

on four code smells datasets (God class, Data Class, Feature-envy, and Long-method) that were

extracted from 74 open-source systems. The experimental results have been compared and

evaluated in terms of accuracy, precision, recall, f-measure, MCC, AUC, AUCPR, and MSE.

Regarding the evaluation process and the results of the first approach: The average Recall of

the DT, K-NN, SVM, XGB and MLP models on the original datasets (God class, Data class,

Long method and Feature envy) were 88, 95, 93 and 83%, respectively, and the average Recall

of the models on the balanced datasets (using Random Oversampling) were 98, 99, 99 and

98%, respectively. The results showed that the DT, K-NN, SVM, XGB and MLP models on

the balanced datasets improved the average Recall by 10, 4, 6 and 15%, respectively, compared

to the original datasets. Regarding the evaluation process and the results of the second

approach: the average Recall of the CNN model on the original datasets (God class, Data class,

Feature envy and Long method) was 95%, and the average Recall of the model on the balanced

datasets (using SMOTE) was 98%.The results showed that the CNN model on the balanced

datasets improves the average Recall by 3%, compared to the original datasets. Regarding the

experimental results of the third approach: the average Recall of the Bi-LSTM and GRU

models were 91 and 92% on the original datasets (God class, Data class, Feature envy and

Long method), the average Recall of the models were 99 and 99% on the balanced datasets

using Random Oversampling, and the average Recall of the models were 96 and 96%,

respectively, on the balanced datasets using Tomek links. The results showed that the Bi-LSTM

and GRU models on the balanced datasets using Random Oversampling improved the average

Recall by 8 and 7% and improved the average Recall by 5 and 4% on the balanced datasets

using Tomek links, respectively, compared to the original datasets. I established that combining

classic and advanced ML algorithms with Oversampling and Undersampling methods can

improve the performance of code smell detection regarding datasets with imbalanced class

distributions and the proposed approaches are suitable methodologies for code smell detection

[P5, P6 and P7].

28

Author’s Publication

Publications Related to the Dissertation

(P1) N. A. A. Khleel and K. Nehéz, "Comprehensive Study on Machine Learning Techniques

for Software Bug Prediction", International Journal of Advanced Computer Science and

Applications,Vol.12,No.8,pp.726-735,2021.

http://dx.doi.org/10.14569/IJACSA.2021.0120884. Web of Science (WoS), Scopus (Q3),

Impact Factor (1.16), Journal Article.

(P2) N.A.A.Khleel and K.Nehéz, "Improving the Accuracy of Recurrent Neural Networks

Models in Predicting Software Bug Based on Undersampling Methods", Indonesian Journal of

ElectricalEngineeringandComputerScience.Vol.32,No.1,pp.478-493,2023.

http://doi.org/10.11591/ijeecs.v32.i1.pp478-493. Scopus (Q3), Impact Factor (1.51), Journal

Article.

(P3) N.A.A.Khleel and K.Nehéz, "Software Defect Prediction using a Bidirectional LSTM

Network Combined with Oversampling Techniques", Cluster Computing (2023).

https://doi.org/10.1007/s10586-023-04170-z. Web of Science (WoS), Scopus (Q2), Impact

Factor (4.4), Journal Article.

(P4) N.A.A.Khleel and K.Nehéz, "A novel approach for software defect prediction using CNN

and GRU based on SMOTE Tomek method", Journal of Intelligent Information Systems

(2023). https://doi.org/10.1007/s10844-023-00793-1.Web of Science (WoS), Scopus (Q2),

Impact Factor (3.4), Journal Article.

(P5) N.A.A.Khleel and K.Nehéz, "Detection of Code Smells Using Machine Learning

Techniques Combined with Data-Balancing Methods", International Journal of Advances in

Intelligent Informatics.Vol.9,No.3,pp.402-417,2023. https://doi.org/10.26555/ijain.v9i3.981.

Scopus (Q3), Impact Factor (1.88), Journal Article.

(P6) N.A.A.Khleel and K.Nehéz, "Deep convolutional neural network model for bad code

smells detection based on oversampling method", Indonesian Journal of Electrical Engineering

andComputerScience,Vol.26,No.3,pp.1725-1735,2022.

http://doi.org/10.11591/ijeecs.v26.i3.pp1725-1735. Scopus (Q3), Impact Factor (1.51),

Journal Article.

(P7) N.A.A.Khleel and K.Nehéz, "Improving Accuracy of Code Smells Detection using a Bi-

LSTM and GRU Networks with Data Balancing Techniques", International Journal of Data

Science and Analytics, (under review). Scopus (Q2), Impact Factor (2.52), Journal Article.

(P8) N.A.A.Khleel and K.Nehéz, "A new approach to software defect prediction based on

convolutional neural network and bidirectional long short-term memory", Production Systems

andInformationEngineering,Vol.10,No.3,pp.1-15,2022.

https://doi.org/10.32968/psaie.2022.3.1. Journal Article.

(P9) N.A.A.Khleel and K.Nehéz, Data Balancing Methods in ML-Based Software Bug

Prediction, Doktoranduszok Fóruma , (2022) pp. 59-67. Conference paper.

http://dx.doi.org/10.14569/IJACSA.2021.0120884
http://doi.org/10.11591/ijeecs.v32.i1.pp478-493
https://doi.org/10.1007/s10586-023-04170-z
https://doi.org/10.1007/s10844-023-00793-1
https://doi.org/10.26555/ijain.v9i3.981
http://doi.org/10.11591/ijeecs.v26.i3.pp1725-1735
https://doi.org/10.32968/psaie.2022.3.1

29

(P10) N.A.A.Khleel and K.Nehéz, Overview of modern software bug prediction approaches,

Doktoranduszok Fóruma , (2021) pp. 55-61. Conference paper.

Other Publications Journal Articles and Conference Proceeding

(P11) M.A.A.Mohammed, N.A.A.Khleel, N.P.Szabó et al, "Modeling of groundwater quality

index by using artificial intelligence algorithms in northern Khartoum State, Sudan", Model.

Earth Syst. Environ, 9, 2501–2516 (2023). https://doi.org/10.1007/s40808-022-01638-6. Web

of Science (WoS), Scopus (Q1), Impact Factor (3.90), Journal Article.

(P12) N.A.A.Khleel and K.Nehéz, "Merging problems in modern version control systems ",

MultidisciplinarySciences,Vol.10,No.3,pp.365-376,2020.

https://doi.org/10.35925/j.multi.2020.3.44. Journal Article.

(P13) N.A.A.Khleel and K.Nehéz, "Comparison of version control system tools",

MultidisciplinarySciences,Vol.10,No.3,pp.61-69,2020.

https://doi.org/10.35925/j.multi.2020.3.7. Journal Article.

(P14) N.A.A.Khleel and K.Nehéz, "Tools, processes and factors influencing code review ",

MultidisciplinarySciences,Vol.10,No.3,pp.277-284,2020.

https://doi.org/10.35925/j.multi.2020.3.33. Journal Article.

(P15) N.A.A.Khleel and K.Nehéz, Mining Software Repository: an Overview,

Doktoranduszok Fóruma , (2019) pp. 108-114. Conference paper.

https://doi.org/10.1007/s40808-022-01638-6
https://doi.org/10.35925/j.multi.2020.3.44
https://doi.org/10.35925/j.multi.2020.3.7
https://doi.org/10.35925/j.multi.2020.3.33

30

References

[1] G. Sharma, S. Sharma, and S. Gujral, “A Novel Way of Assessing Software Bug Severity Using

Dictionary of Critical Terms,” in Procedia Computer Science, Elsevier B.V., 2015, pp. 632–639. doi:

10.1016/j.procs.2015.10.059.

[2] H. Bani-Salameh, M. Sallam, and B. Al shboul, “A deep-learning-based bug priority prediction using

RNN-LSTM neural networks,” E-Informatica Software Engineering Journal, vol. 15, no. 1, pp. 29–45,

2021, doi: 10.37190/E-INF210102.

[3] A. Majd, M. Vahidi-Asl, A. Khalilian, P. Poorsarvi-Tehrani, and H. Haghighi, “SLDeep: Statement-level

software defect prediction using deep-learning model on static code features,” Expert Syst Appl, vol. 147,

Jun. 2020, doi: 10.1016/j.eswa.2019.113156.

[4] F. Arcelli Fontana, M. V. Mäntylä, M. Zanoni, and A. Marino, “Comparing and experimenting machine

learning techniques for code smell detection,” Empir Softw Eng, vol. 21, no. 3, pp. 1143–1191, Jun. 2016,

doi: 10.1007/s10664-015-9378-4.

[5] A. Al-Shaaby, H. Aljamaan, and M. Alshayeb, “Bad Smell Detection Using Machine Learning

Techniques: A Systematic Literature Review,” Arabian Journal for Science and Engineering, vol. 45,

no. 4. Springer, pp. 2341–2369, Apr. 01, 2020. doi: 10.1007/s13369-019-04311-w.

[6] P. Kokol, M. K. Semantika, S. Zagoranski, and M. Kokol, “Code smells: A Synthetic Narrative Review

Code smells: A Synthetic Narrative Review Code smells: A Synthetic Narrative Review,” 2020. [Online].

Available: https://digitalcommons.unl.edu/libphilprac

[7] N. A. A. Khleel and K. Nehéz, “A novel approach for software defect prediction using CNN and GRU

based on SMOTE Tomek method,” J Intell Inf Syst, Jun. 2023, doi: 10.1007/s10844-023-00793-1.

[8] Y. Li, S. Wang, T. N. Nguyen, and S. Van Nguyen, “Improving bug detection via context-based code

representation learning and attention-based neural networks,” Proceedings of the ACM on Programming

Languages, vol. 3, no. OOPSLA, Oct. 2019, doi: 10.1145/3360588.

[9] L. Jonsson, M. Borg, D. Broman, K. Sandahl, S. Eldh, and P. Runeson, “Automated bug assignment:

Ensemble-based machine learning in large scale industrial contexts,” Empir Softw Eng, vol. 21, no. 4,

pp. 1533–1578, Aug. 2016, doi: 10.1007/s10664-015-9401-9.

[10] S. Aleem, L. Fernando Capretz, and F. Ahmed, “COMPARATIVE PERFORMANCE ANALYSIS OF

MACHINE LEARNING TECHNIQUES FOR SOFTWARE BUG DETECTION,” pp. 71–79, 2015, doi:

10.5121/csit.2015.50108.

[11] H. Tong, B. Liu, and S. Wang, “Software defect prediction using stacked denoising autoencoders and

two-stage ensemble learning,” Inf Softw Technol, vol. 96, pp. 94–111, Apr. 2018, doi:

10.1016/j.infsof.2017.11.008.

[12] N. Moha, Y. G. Guéhéneuc, L. Duchien, and A. F. Le Meur, “DECOR: A method for the specification

and detection of code and design smells,” IEEE Transactions on Software Engineering, vol. 36, no. 1,

pp. 20–36, 2010, doi: 10.1109/TSE.2009.50.

[13] F. Pecorelli, D. Di Nucci, C. De Roover, and A. De Lucia, “On the role of data balancing for machine

learning-based code smell detection,” in MaLTeSQuE 2019 - Proceedings of the 3rd ACM SIGSOFT

International Workshop on Machine Learning Techniques for Software Quality Evaluation, co-located

with ESEC/FSE 2019, Association for Computing Machinery, Inc, Aug. 2019, pp. 19–24. doi:

10.1145/3340482.3342744.

[14] N. A. A. Khleel and K. Nehéz, “Deep convolutional neural network model for bad code smells detection

based on oversampling method,” Indonesian Journal of Electrical Engineering and Computer Science,

vol. 26, no. 3, pp. 1725–1735, Jun. 2022, doi: 10.11591/ijeecs.v26.i3.pp1725-1735.

31

[15] M. Gao, X. Hong, S. Chen, C. J. Harris, and E. Khalaf, “PDFOS: PDF estimation based over-sampling

for imbalanced two-class problems,” Neurocomputing, vol. 138, pp. 248–259, Aug. 2014, doi:

10.1016/j.neucom.2014.02.006.

[16] V. * Rajkumar and V. Venkatesh, “Hybrid Approach for Fault Prediction in Object-Oriented Systems,”

2017.

[17] R. Ferenc, Z. Tóth, G. Ladányi, I. Siket, and T. Gyimóthy, “A public unified bug dataset for Java,” in

ACM International Conference Proceeding Series, Association for Computing Machinery, Oct. 2018,

pp. 12–21. doi: 10.1145/3273934.3273936.

[18] X. Xia, D. Lo, S. J. Pan, N. Nagappan, and X. Wang, “HYDRA: Massively compositional model for

cross-project defect prediction,” IEEE Transactions on Software Engineering, vol. 42, no. 10, pp. 977–

998, Oct. 2016, doi: 10.1109/TSE.2016.2543218

[19] N. A. A. Khleel and K. Nehéz, “Software defect prediction using a bidirectional LSTM network

combined with oversampling techniques,” Cluster Computing (2023). https://doi.org/10.1007/s10586-

023-04170-z.

[20] N. A. A. Khleel and K. Nehéz, “Comprehensive Study on Machine Learning Techniques for Software

Bug Prediction.” [Online]. Available: www.ijacsa.thesai.org.

http://www.ijacsa.thesai.org/

