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1. INTRODUCTION 

The Titanic was thought to be unsinkable, the dream ship, until it hit a large iceberg on April 14, 

1912, and sunk in less than three hours. The Titanic carried about 2200 passengers and staff on 

her first journey to America. Only 705 people made it out alive.  

The main question following the Titanic disaster was, "What caused this accident ?" Many 

analyses were conducted to provide rational solutions to the world's curiosity about why the 

massive Titanic sank.  

The main reason behind the Titanic sinking was the material failure at low temperatures, the 

material had to behave in ductile mode, but unfortunately, brittle failure took place !!!! 

After this accident, the researchers decided to study the fracture of the materials deeply and give 

more importance to the mechanical phenomenon near the crack tip, which gave birth to the new 

science field of Fracture mechanics [1] 

Fracture mechanics is mainly based on studying the crack initiation and propagation in the steels. 

It is important to study how steel fails and how the Crack behaves in the material; in other words, 

we need to be able to predict its failure, especially in nuclear power plants. 

The leakage problem in the pipelines is one of the critical issues that's might affect the 

performance of the Nuclear Power Plants [2-4], and ferritic steel is the primary type of material 

from which the pipelines usually constructed. The majority of ferritic steels deformed plastically 

before failure [5]. 

Over the last five decades, deep research has been undertaken to explore the ductile failure of 

pipelines using mechanical damage models such as the Gurson Tveegard Needelman model. [6–

12]. 

Even so, there has been no detailed investigation into predicting GTN parameters in the nuclear 

field using optimization models such as artificial neural networks. Most studies have only 

focused on direct methods to predict the GTN parameters.  

As a result, there is a clear gap in the literature for an optimization model based on an artificial 

neural network that accurately determine the GTN parameters which will lead us to predict the 

failure of the pipeline in the nuclear field. In this booklet, I present a summary of the main results 

found during the Ph.D. studies  
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1.1. Aims and scope 

My research interest is focused on the damage to engineering materials and on analysing 

industrial degradation to develop a recommendation for mitigating actions to avoid future 

degradation.  

When researching the damage to engineering materials, one of the most important questions is 

how to extend the component's lifetime while avoiding damage to those components. 

Preventing catastrophes is possible by gaining a deep understanding of material properties, 

degradation processes, and external factors such as temperature and radiation, and by developing 

new methods to extend the lifespan of critical components, particularly in the nuclear energy 

sector 

Ensuring the nuclear safety of nuclear power plants means keeping all the parts working correctly 

and with high performance, the pipeline is one of these parts.  

The leakage problem in the pipes is a critical issue that might affect the performance of the 

nuclear power plant if it is not detected from the beginning. The prediction of the failure of 

pipelines is an important topic because it helps during the design the nuclear power plant parts 

and prevents problems that might occur due to the leakage of the pipelines. 

 The European Union is financing many R and D projects [13] dealing with nuclear safety.  

From my point of view, the prediction of GTN model can be made smart and optimized using 

ANN tools. The concept is based on training a neural network with data found from simulations 

done with MARC MENTAT software [14]. After training the network,  I can quickly get GTN 

parameters for the pipeline, and the model can do the same task with other specimens with 

different geometries.  

The experiments mentioned in this study were done by the project partners, EDF France and 

Framatome Germany.  

The main objectives of this study are to validate the applicability of the GTN model 

and determine the GTN parameters by using ANN for predicting the ductile failure of 

ferritic steel material based on different geometries.  

Various sub-objectives or activities can be identified and conducted to achieve these 

objectives. 

The first sub-objective is to validate the usability of the GTN model: to reach the 

first goal, an experiment and simulations were conducted using the Marc mentat 
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model to determine the GTN parameters required to predict the failure of the 

SENT specimen based on the CT specimen, In addition, the research delved into 

the mysterious phenomena of the convergence of GTN parameters and evaluated 

their sensitivity based on hundreds of simulations. The most sensitive GTN 

parameters were identified through this study, which can help other researchers 

working with the GTN model to determine the correct set of GTN parameters 

with greater precision. 

The second sub-objective is to apply the direct method using GTN parameters to 

predict the failure of a large component, which in this case is the pipeline, and 

analyse the time consumed during the process. 

As a third sub-objective, the study aims to optimize the time consumed when 

determining GTN parameters and include the backpropagation approach to reduce 

it; this study will be based on an NT specimen. 

Lastly, the fourth sub-objective investigates subsidized specimens as an 

alternative to normal-sized specimens and determines the J-R Curves.  

These sub-objectives will be conducted in a way that supports the main objective of 

validating the applicability of the GTN model and the GTN parameters determination 

through ANN for predicting the ductile failure of ferritic steel material for different 

geometries. 

2. METHODOLOGY 

 

To provide an overview of the main topics, in the first chapter of our thesis, I provided a state-of-

the-art review of the GTN model and its significance; additionally, the Artificial neural network 

was included, as it is the primary optimization method used in this work. 

The experimental section described the various experiments conducted as part of the European 

projects ATLAS+ and STYLE. 

In the second part, I define the core of the dissertation by describing the research and innovation 

done during the Ph.D. study period, where the main dissertation target is divided into several 

theses completing each other to achieve the final target, which the elaboration of an optimization 

approach to predict the failure of the pipeline in a short time based on the determination of GTN 

parameters, Or the method of defining the GTN model is divided into two main processes:  
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First Process: Present the direct method of determining GTN parameters which is the 

combination of the experimental data and the results found using finite elements methods, so I 

had to repeat the simulation many times based on different sets of GTN parameters until finding 

the correct set which predicts exactly the experimental data, this process is time-consuming, and 

it needs to be done by choosing values of GTN parameters that have physical meaning and not 

arbitrary numbers. 

Second Process: Presents the introduction of the ANN during the determination of GTN 

parameters, so the advantage of this approach is that the time consumed during the determination 

of GTN parameters is short, and it leads us to find parameters with physical meaning and not just 

arbitrary number, so, in other words, using this approach I build a neural network that could do 

the simulations instead of Marc Mentat software and predict the correct set of GTN parameters. 

As mentioned above, there are two main processes for the determination of GTN parameters, but 

in order to use the model in this work, I had to prove that it could be included, so I started by 

predicting the failure of the SENT specimen (Figure 2) using a direct method based on CT 

specimen (Figure 1) 

 

Figure 1. CT specimen geometry 

 
Figure 2. SENT specimen geometry 
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The results found (Figure 3) from our first study show that the GTN model can be used in this 

work, and I can go further with our study. 

 

 
 

Figure 3. Force-COD curve using the direct method 

 

After demonstrating that the direct method using the GTN model leads to correct predictions, I 

decided to use a combination of ANN and GTN model to predict the failure of the SENT 

specimen. 

The next step is to demonstrate whether the backpropagation approach can be included in the 

process and to be able to compare it with the direct method (Figure 4). 

Figure 5 presents the results. 

To apply the ANN approach, I proceed as below: 

 

• Conduct small-scale experiments (CT, SENT) to collect experimental data.  

• Conduct 3D Numerical Simulations and create a database for neural networks. 

• Using a mix of experimental and FEM data and an Artificial Neural Network, 

estimate the GTN parameters. 

• The software used during the optimization approach is MATLAB 2019  
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Figure 4. Backpropagation algorithm 

 
 

Figure 5. Force-COD curve using the ANN method 

During the analysis of the GTN model, I noticed that the parameters are quite sensitive to small 

changes, so I decided to determine the most sensitive parameters; I ran 120 simulations in total, 

with 20 runs for each parameter. 

 

-  f0 = 0.003 (I made the variation of the parameter by this value ±0.0003) 
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-    fn=0.3 ( I made the variation of the parameter by this value ±0.03) 

-    fc=0.007 (I made the variation of the parameter by this value ±0.0007) 

-   ff =0.35 ( I made the variation of the parameter by this value ±0.035) 

-     SN =0.005 (I made the variation of the parameter by this value ±0.0005) 

-    εn =0.065 ( I made the variation of the parameter by this value ±0.0065) 

I was able to find an interesting result: 

- The main sensitive parameters are f0, ɛn, and Sn 

- The exact value of f0 must be more precise and have physical significance.  

- The difference in the stress-strain curve is quite small for fc, ff and fn,  

- Changing the values of the fc, ff and fn, values has no macroscopical effect on failure 

prediction.  

- When the value of ff is less than the value of fc, no simulation may be started.  

Based on the information mentioned above, I tested the GTN model using both the direct model 

and artificial neural network and identified the most sensitive parameters.  

The subsequent step entails using the obtained results to estimate GTN parameters for the 

pipeline through both the direct method and artificial neural network approach. 

I used the direct method, combining the experiment and finite element results- 

I perform a FEM simulation using the GTN parameters only on the crack propagation area, which 

is the most sensitive part of the model (Figure 6) 

 

Figure 6. mesh near the crack tip 
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Due to the huge number of elements in the model, it took around two days of computing for one 

simulation. 

So, to get the correct set of GTN parameters, I had to do around 15 simulations, which means 

around 30 days of computation (Figure 7) 

 

Figure 7. Force vs. Crack opening displacement using the direct method 

The results lead me to a correct determination of the highest load and crack propagation of the 

pipeline using the direct method, but it is time-consuming; therefore, it is important to reduce the 

time and elaborate an optimization approach to predict the failure of the pipeline in a short time 

using combination between GTN model and backpropagation algorithm (Figure 8)  

The next step is to predict the GTN parameters using ANN for the PIPELINE. 

• Conduct small-scale experiments (NT) (Figure 9) to collect experimental data.  

• Make the Finite Element Simulations of the Notch specimen; the reason behind choosing 

Notch tensile specimens is that the simulation will take just 5 to 10 min and I can simulate 

just a quarter of the specimen due to the axisymmetry 

• Conduct 3D Numerical Simulations and create a database for neural networks. 

Using a mix of experimental and FEM data and an Artificial Neural Network I could estimate the 

GTN parameters. 
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Figure 8. Backpropagation approach for pipeline failure prediction 

 

Figure 9. Notch specimen and simulation 

The introduction of the backpropagation approach led to important results that were not expected; 

I could reduce the time consumed for predicting the GTN parameters from 30 days (direct 

method) to 6 hours (ANN method). 

The results shown below (Figure 10) prove that the prediction of the pipeline's crack propagation 

and load behaviour is possible using a combination between ANN and GTN model. 
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Figure 10. experimental and simulation results 

I decide to run a Statical comparison between the ANN and direct method for the first mockup 

FP1. 

1. Descriptive statistics: The mean, median, standard deviation and range for the load force 

results obtained from the direct method and the artificial neural network method are 

shown in the table below: 

Method Mean Median Standard Deviation Range 

Direct 50.82 51.29 3.01 14.55 

ANN 50.50 50.44 3.19 13.91 

 

2. Normality testing: I performed The Shapiro-Wilk test to check the normality of the data. 

The results indicate that the load force results obtained from both methods are normally 

distributed (p > 0.05). 
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Before doing the Shapiro-Wilk test, I first computed the load force results for the direct and ANN 

techniques.  

The Shapiro-Wilk test was employed in this study to check the normality of the load force data 

produced using the direct technique and the ANN approach. I concluded that the data were 

normally distributed, and I found that the p-value is higher than 0.05. 

In the next step, I decided to study the accuracy of the ANN direct method with the experimental 

data by using MAE, RMSE, and R2. 

- Mean Absolute Error (MAE): The metric assesses the standard deviation between expected and 

observed values. It is derived by averaging the absolute disparities between the values that were 

anticipated and those that occurred. The model performs better in terms of prediction when the 

MAE is lower. 

- Root Mean Squared Error (RMSE): The RMSE is a metric that assesses the average squared 

variation between the expected and actual values. The average of the squared discrepancies 

between the expected and actual values is considered in its calculation. The model performs 

better in terms of prediction, the smaller the RMSE.  

- the R2 value (s) indicates how much of the variance in the dependent variable can be predicted 

by the independent variable. Higher values indicate stronger prediction skill; it ranges from 0 to 

1. The R2 value of 1 indicates that the model perfectly fits the data, while an R2 value of 0 

indicates that the model does not explain any of the variability in the data. 

Ultimately, I found that the Artificial Neural Network (ANN) technique outperformed the Direct 

method in forecasting the GTN results. Compared to the Direct approach, the ANN model had 

significantly lower Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and R-

squared values. Compared to 12.958 and 16.128 for the Direct technique, the MAE and RMSE 

values for the ANN method were 6.853 and 8.195, respectively. With the ANN and Direct 

approaches, the R-squared values were 0.962 and 0.855, respectively. Therefore, the ANN 

method is recommended for future GTN parameter predictions. 

Based on these results, it can be concluded that there is no significant difference between the load 

force results obtained from the direct method and the artificial neural network method. 

To confirm the results that I found, I decided to proceed with the same concept and predict the 

failure of another mock-up FP2 (Figure 12) but with a different crack shape (the Crack 

introduced through-wall FP1, but for the second mock-up, the initial defect was in surface 

fractures, the Crack is introduced in all cases using EDM and fatigue pre-cracking.) ( Figure 11) 
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Figure 11. FP1, FP2 crack defect shapes 

 

 

 

Figure 12 Simulation of the second mock-up 

As I have done for the first mock-up of FP1, I was able to predict the failure of FP2 using the 

backpropagation algorithm; the results are shown in (Figure 13). 
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Figure 13 Load vs. Crack opening displacement of fp2 

It is important to highlight that the initiation and maximum load are well predicted.    

By analysing the curves above (Figures 10 and 13), it is obvious that ANN estimates the correct 

values of GTN parameters used to predict the failure of the SENT specimen. 

It is noticeable that the curve found by ANN is not fully fitting the experimental data, especially 

at the end of the curve; this phenomenon is related to the database used to train the network. 

I cannot control the database used in the neural network, but it is possible to use other geometries 

as a database, such as CT and SENT specimens. Still, this approach will take more time 

compared to the NT specimen.  

REMARKS AND INTERPRETATION :  

 

- The GTN model is a practical tool that can be used in the nuclear industry to improve safety. 

- The backpropagation algorithm was a powerful optimization tool that reduced prediction 

time from 30 days to six hours. 

- Increasing the amount of training data is necessary to address the convergence issue and 

improve the accuracy of predictions. 
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- Due to the critical area from which I obtained the specimens for fracture toughness tests, 

specimen size is a significant obstacle. Subsidized specimens can be used instead of normal-

sized specimens to overcome this issue. 

- One of the main challenges of the GTN model is the number of parameters that must be 

determined, which depend on the type of material and load conditions. It is critical to find the 

correct set of GTN parameters. 

- Predicting the pipeline's maximum load and crack propagation is essential for avoiding 

pipeline failure. 

The main goal of this thesis was to predict pipeline failure using a combination of the ANN 

and GTN models. To open avenues for future research, I provided a general overview of 

subsidized specimens, which could potentially reduce prediction times even further. 

From what was mentioned above, I could reach this thesis's main goal, which was 

predicting the failure of PIPELINE using the combination between the ANN and GTN 

model  

Standardized specimens are currently rather large because they were created primarily to evaluate 

massive structures against brittle failure,  

However, these standard specimens are impractical in many circumstances due to the size 

constraints imposed by the experimental material or the component under consideration.  

As a result, new techniques utilizing much smaller specimens must be developed, and processes 

utilizing smaller specimens must be offered, with their validity limitations and relationship to 

standardly acquired results, to provide a solution for a wide range of applications. 

Mechanical properties, such as fracture toughness for brittle fractures, are determined using 

standard standards (ASTM E1820, E399). These standards state that specimen size restrictions 

are required for testing. The conditions cannot be met in rare circumstances, such as irradiated 

specimens or restricted material sources. 

It is important to highlight that the sub-size specimens do not meet the size criteria of the 

standard ASTM E1820 (2011).  

Employing small-size or even miniature mechanical specimens is becoming increasingly 

common due to the potential to optimize material usage, particularly where material availability 

is a concern or space inside irradiation facilities is restricted. 

On the other hand, the utilization of subsidized specimens raises many obstacles. These 

difficulties are related to adequate consideration for structural parameters and the transferability 
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of tiny specimen data to the actual structures of interest. The most often used sample shape in 

surveillance programs is the Charpy V-notch specimen. 

Any fracture toughness specimen made from the broken standard Charpy specimens may be used 

to evaluate reactor pressure vessels. 

The most frequent specimen shape used in nuclear safety programs is the Charpy V-notch 

specimen.  

The Mini-CT specimen approach has the benefit of having the same cross-section (10x10 mm) as 

a regular Charpy specimen, allowing it to be created from a simple slice of a damaged Charpy 

specimen. 

Further studies must be done to validate the Prediction of the SENT, CT, and PIPELINE based on 

the Subsidized specimen, overcoming many constraints and resolving the transferability issue. 
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NEW SCIENTIFIC RESULTS – THESES 

T1- The validation of the GTN model was crucial to its use in this work. Using the direct method, 

I achieved a perfect fit between the predicted results and experimental data using the GTN model. 

However,  I had to deal with the issue of sensitivity, which required a detailed study of the 

variation in the effect of the parameters to slight changes in their values. To address this, I 

conducted 120 simulations and demonstrated how the parameters behave, which will be valuable 

for future researchers in this field, as a new result based on this study I concluded that the main 

sensitive parameters are f0, ɛn, and Sn [P1] [P2] [P3] [P4]    

 

T2- This study presents a novel optimization approach for determining GTN parameters based on 

backpropagation, which was found to significantly reduce the calculation time from 30 days to 

just 6 hours. The results of this approach provide accurate values of GTN parameters and enable 

accurate predictions of crack behaviour in pipelines, which is of paramount importance for 

improving nuclear safety guidelines in the industry. Overall, our study contributes to the 

development of more efficient and accurate methods for predicting GTN parameters and crack 

behaviour, with potential applications in various industries.[P5] [P6]   

 

T3- The ANN method is found to have outperformed the Direct method with significantly lower 

MAE, RMSE, and higher R-squared values. Therefore, the ANN method is recommended for 

future GTN parameters predictions. 
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