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1. INTRODUCTION 

The Titanic was thought to be unsinkable, the dream ship, until it hit a large iceberg on April 14, 

1912, and sunk in less than three hours. The Titanic carried about 2200 passengers and staff on 

her first journey to America. Only 705 people made it out alive.  

The main question following the Titanic disaster was, "What caused this accident ?" Many 

analyses were conducted to provide rational solutions to the world's curiosity about why the 

massive Titanic sank.  

Many speculations and theories circulated among people regarding the exact cause of the 

catastrophe; some said that the ship's captain was to blame; others claimed that it was a political 

matter and that Germany was to blame, but the material scientists found the logical answer.  

The main reason behind the titanic sink was the material failure at low temperatures, the material 

had to behave in ductile mode, but unfortunately, brittle failure took place !!!! 

After this accident, the researchers decided to study the fracture of the materials deeply and give 

more importance to the mechanical phenomenon near the crack tip, which gave birth to the new 

science field of Fracture mechanics [1] 

Fracture mechanics is mainly based on studying the crack initiation and propagation in the steels. 

The material has two modes of failure ductile or brittle mode. 

Steel is failed in the ductile mode; this material is used in the industry in most fields because of 

its mechanical properties, so it is important to study how the steel fails and how the crack behave 

in the material; in other words, it is needed to be able to predict its failure, especially in the 

nuclear field, and for example, the pipeline used in the nuclear power plants. 

The pipeline leakage problem is one of the main critical issues that might affect the performance 

of Nuclear Power Plants [2-4]. Austenitic steel is the primary material from which pipelines are 

usually constructed. The majority of austenitic steels deformed plastically before failure [5]. 

Over the last five decades, deep research has been undertaken to explore the ductile failure of 

pipelines using mechanical damage models such as the Gurson Tveegard Needelman model. [63

12]. 

Even so, there has been no detailed investigation into predicting GTN parameters for failure of 

pipelines in the nuclear field using optimization models such as artificial neural networks. Most 

studies have only focused on direct methods to find the GTN parameters to predict the failure of 
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pipelines. However, little attention has been given to combining the GTN model with other 

optimization features, such as artificial neural networks or hybrid swarm optimization [13319]. 

As a result, there is a clear gap in the literature for an optimization model based on an artificial 

neural network that accurately predicts the GTN parameters. In this dissertation, I present an 

approach to predicting GTN parameters using an artificial neural network, where the dissertation 

starts with a general overview of the GTN model and goes deeply into the following topics: The 

backpropagation approach to studying the sensitivity of GTN parameters, the use of an 

optimization approach for SENT (single edge notch tension) and PIPELINE; the study of the 

failure of SENT specimens based on subsidized specimens; 

1.1. Motivation 

My research interest is focused on the damage to engineering materials and analyzing industrial 

degradation to develop a recommendation for mitigating actions to avoid future degradation.  

When researching the damage to engineering materials, one of the most important questions is 

extending the component's lifetime while avoiding damage to those components. 

It is possible to prevent catastrophes by deeply understanding material properties, degradation 

processes, and external effects like temperature and radiation. 

Ensuring the nuclear safety of nuclear power plants means keeping all the parts working 

correctly and with high performance. The pipeline is one of these parts. The leakage problem in 

the pipes is a critical issue that might affect the performance of the nuclear power plant if it is not 

detected from the beginning. The Prediction of the failure of pipelines is an important topic 

because it helps design the nuclear power plant parts and prevents problems that might occur due 

to the leakage of the pipelines. 

 The European Union is financing many R and D projects dealing with nuclear safety4

furthermore, issues related to pipelines leaking. Furthermore, failure prediction is based on local 

approaches such as the GTN model [20].  

From my point of view, the Prediction of a pipeline's failure can be made smart and optimized 

using a combination between the GTN model and ANN tool. The concept is based on training a 

neural network with data found from simulations done with MARC MENTAT software [21]. 

After training the network, I can quickly get GTN parameters for the material of the pipelines. 

The model can do the same task with other specimens with different geometries.  



Introduction 

12 

The experiments mentioned in this study were done by the project partners, EDF France and 

Framatome Germany. A general overview of the experiment will be explained in the next 

sections. 

1.2. Aims and Scope. 

The main objectives of this study are to validate the applicability of the GTN model and 

determine the GTN parameters by using ANN for predicting the ductile failure of ferritic steel 

material based on different geometries.  

Various sub-objectives or activities can be identified and conducted to achieve these 

objectives. 

" The first sub-objective is to validate the usability of the GTN model: to reach the first 

goal, an experiment and simulations were conducted using the Marc mentat model to 

determine the GTN parameters required to predict the failure of the SENT specimen 

based on the CT specimen, In addition, the research delved into the mysterious 

phenomena of the convergence of GTN parameters and evaluated their sensitivity based 

on hundreds of simulations. The most sensitive GTN parameters were identified 

through this study, which can help other researchers working with the GTN model to 

determine the correct set of GTN parameters with greater precision. 

" The second sub-objective is to apply the direct method using GTN parameters to predict 

the failure of a large component, which in this case is the pipeline, and analyze the time 

consumed during the process. 

" As a third sub-objective, the study aims to optimize the time consumed when 

determining GTN parameters and include the backpropagation approach to reduce it; 

this study will be based on an NT specimen. 

" Lastly, the fourth sub-objective investigates subsidized specimens as an alternative to 

normal-sized specimens and determines the J-R Curves.  

" These sub-objectives will be conducted in a way that supports the main objective of 

validating the applicability of the GTN model and the GTN parameters determination 

through ANN for predicting the ductile failure of material for different geometries. 
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2. LITERATURE REVIEW 

Ensuring the safety of nuclear power plants is the main goal of each country's authorities and the 

public; employees must follow strict guidelines and approaches to avoid reactor shutdowns and 

accidents. 

The development in fracture mechanics during the last few years has been impressive, especially 

with powerful computers with high data processing speeds and simulation.   

This part of the dissertation describes the literature review and is divided into four main 

subchapters. It starts with an overview of the local approach and its definition and presents the 

main models based on this approach. The following parts describe the GTN model, its 

parameters, and their sensitivity. The next section deals with artificial neural networks and 

optimization methods. Finally, the last part presents a developed optimization approach based on 

backpropagation analysis, which will be employed in this work.  

Conclusions and remarks in the literature have mostly focused on predicting a pipeline’s failure 

using different micromechanical models. Therefore, this work aims to fill this gap and provide 

an accurate way to understand how the ANN can determine accurate GTN parameters, which 

will lead to the main goal of predicting the failure of pipelines based on the GTN model. 

2.1. Local approach for ductile failure 

To answer the question, why did the Titanic sink? Thirty-three different hypotheses and 

assumptions were given, but the mechanical engineers could find the main reason behind this big 

accident: the brittle failure of the steel used in the ship's body, as the temperature was very low. 

The failure happened on the lower rather than the upper shelf without warming. After the Liberty 

ship accident, a new field of mechanics came on board: fracture mechanics.  

The assumptions and investigation of fracture mechanics [22-23] began with a macroscopic 

approach directly applying basic continuum mechanics. No material is perfect; voids and cracks 

are always present and crack initiation and propagation can lead to failure.Current structural 

integrity studies concentrate on pre-existing cracks in structural and mechanical models that 

estimate crack initiation and propagation path. 

The theory and analysis of fracture mechanics started with a global approach as a direct 

application of classical continuum mechanics. Then they switched to the concept of cracks and 

voids. The global approach to fracture is widely used to evaluate the structural integrity of 
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mechanical components. This approach is based on linear elastic fracture mechanics (LEFM) and 

nonlinear fracture mechanics (NLFM). 

This approach is practical because, based on it, it is possible to get the main mechanical 

properties of the material, such as fracture resistance. Unfortunately, the global approach has 

many limitations, mainly the large-scale yielding and the transferability issue of the small-scale 

specimen to large-scale equipment. To deal with some limitations so the global approach can be 

overcome, The local approach was initially developed by McClintock [24-25] 

The main concept of the local approach is to estimate the stress and strain near the crack tip, 

which could be done using the finite element method analysis.  

Compared to the global approach, the local approach could deal with complex geometries and 

situations found in welds; for example, with the local approach, it is possible to describe and 

analyze the brittle fracture and the three main steps of the ductile fracture mechanism: micro 

void nucleation, growth, and coalescence, in this thesis I will focus on the application of the local 

approach for a ductile material. 

During the last century, two researchers built the basics of the local approach (Rice and Tracey) 

[26], during which the single void was analyzed. After a few years, a well-known scientist in 

applied mechanics (Gurson) [27] developed the first micro-mechanical model based on 

microvoid nucleation. However, the Gurson model did not consider the three stages of ductile 

failure.  

This limitation was overcome by Tvergaard and Needleman [28], which led to the development 

of the most used model in the industry and scientific research (GTN model). 

The GTN model was applied to metals, including microvoids. Based on a local approach, 

another scientist, Rousselier [29], developed a model which also led to describing the crack 

initiation and propagation. Next, in section 2.2, the GTN model will be described in detail, as it 

will be the main model used in this work. 

As a summary of the above paragraph in the Rice-Tracey model, void formation is highly 

dependent on stress-field multiaxiality. Rice and Tracey investigated the formation of an isolated 

vacuum in a distant uniform stress field. The model neither considers interactions between voids 

nor predicts ultimate failure.  

The Gurson model describes progressive material degradation by introducing the void volume 

fraction, f, which was then modified to GTN and the Complete GTN model (Zhiliang Zhang) 

[30] 
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2.2. Rousselier model 

This part is dedicated to giving a general overview of the Rousselier model because it is one of 

the main models based on a local approach. 

Rousselier model is a micromechanical model. Describing the three stages of ductile mechanism 

void nucleation, growth, and coalescence [29]. 

The last step of ductile mechanics is the most critical part in which the voids are large enough to 

coalesce. They form microcracks which lead to crack initiation and propagation and, in the end, 

to macroscopic failure; for this reason, it is really important to be able to predict the crack 

initiation and propagation to avoid the failure of the material, and this is why Rousselier's model 

is useful. 

In other words, the Rousselier model describes the damage induced by the plastic expansion of 

cavities in a metal. It makes it possible to model cracking and ductile fracture. The behavior 

model is elastoplastic or viscoplastic with isotropic hardening. It allows plastic volume changes 

and takes into consideration the small deformations 

The yield function presents Rousselier's model as follows [29]. 

( ) ( ) 0
1 1

k eq

k

q p
D fexp R

f p
ö  õ


ö ö−

= + − =÷ ÷÷ ÷− −ø ø
                                                                                          Equation 1  

The parameters of the equation are defined below: 

D and  are constant parameters, and p is defined as the von Mises equivalent stress. In addition 

to this, q is the von Mises equivalent. 

f is the void volume fraction, depending on the loading status; the void volume fraction starts 

with the initial void volume fraction f0. By increasing the load, the void volume parameters reach 

its critical value fc, where the voids coalesce with each other until reaching the final void volume 

fraction ff; when the value of f = 0,  it presents the  defect-free material or f =1 refers to material 

that has been damaged, for the last parameter  is presented as material's true stress3true 

plastic strain curve/ 

Unfortunately, Rousselier model is more rarely implemented in industrial computer codes than 

the GTN model, which slows down its development. 

Many authors made their studies based on an enhanced, modified Rousselier model; for example, 

(M. K. Samal. 2013) [31] used the Rousselier model to find the mechanical properties of 
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Zircaloy Fuel Pin Specimens; also (S. D. Zhao et al. 2014) [32] could analyze the failure 

behavior of clinched joint based on Rousselier model. 

The next section will describe in detail the GTN model 

2.3. GTN model 

2.3.1. Introduction 

The Gurson3Tvergaard3Needleman (GTN) model was frequently used to assess ductile damage 

and fracture processes. One of the most extensively utilized ductile damage models is GTN.  

In 1975, Gurson developed a fundamental model that permits the Prediction of crack initiation 

and propagation using finite element calculations.  

As the majority of materials fail in the ductile regime, the development of a model was needed to 

study the mechanical behavior of the material locally.  

The GTN model was chosen in this research for its simplicity and recognition in the industry 

field. Many studies prove that the model successfully describes the ductile deformation behavior 

of materials with accurate results.  

The GTN model is already implemented in MSC MARC Mentat software and allows 

determining GTN parameters without considering the void nucleation parameters. 

However, no literature was found on the issue related to the time consumed to implement the 

GTN model and predict the failure of materials. The GTN model predicts the frictional effects, 

stress states, and displacements.  

Implementing the GTN model requires determining different material parameters, and simulation 

procedures are required.  

The successful implementation of the GTN model during the design phase would be beneficial to 

the nuclear industry in getting more specific and accurate data about material behavior during its 

service life and the conditions that might lead to material failure, which for instance, helps to 

boost the final product quality and ensure long-term service operation without failure. 

In 1970, Gurson was one of the earliest researchers to study and develop a micromechanical 

model for ductile metal deformation, including micro voids. 
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2.3.2. Presentation of GTN model 

As already mentioned, the idea of Gurson is based on the model of Rice and Tracy. Gurson [27] 

suggested a micromechanical model based on a fracture mechanics perspective, such as the 

critical evolution of voids.  

Gurson developed an approximate yield criterion for ductile materials by proposing a continuum 

theory for ductile failure based on void nucleation and void growth and by showing the 

important role of hydrostatic stress in plastic yield and void growth. The yield criterion 

developed by Gurson took the idealization of the material matrix as being perfectly rigid and 

obeying the Von Mises yield criterion. 

Gurson examined the approximate limit of a hollow sphere (elementary representative volume 

characteristic of a medium porous) plastic (Fig.1)[20], obeying the von Mises criterion and 

exposed to any loading inspired by the Rice and Tracey model. 

 

Figure 1. Hollow sphere with a spherical void 

The Gurson model allows the fraction of cavities to range from 0 to 1, unlike the Rice and 

Tracey model's zero porosity.  

Gurson presented a threshold function that links plastic hardening with the new variable, 

porosity f, which represents the fraction of cavities in the matter.  

For hard, completely plastic materials, the estimated yield requirement was first proposed as 

follows: 
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                                                                                                                        Equation 2 

In which the parameters of the function are defined below 

0  is the equivalent flow stress, 
e the effective stress is the hydrostatic stress, and f is the 

void  volume fraction 

The von Mises equivalent stress 
e  is defined according to the stress tensor below : 

2 2 2

1 2 2 3 3 1( ) ( ) ( )e      = − + − + −                                                                                                            Equation 3 

Alternatively, the main parameters in the Gurson model, which is the void fraction volume, are 

defined as :  

0

1
( )( )t

t

f V V
V

= −                                                                                                                                                                       Equation 4 

The parameter 0V  is the volume of the matrix without counting the voids and tV  is the global 

material volume. 

By pretending in equation 2, 22 (1 ) 0f fö = − + = 0e =  0h =  we will find the following 

equation : 

22 (1 ) 0f fö = − + =                                                                                                                                                              Equation 5 

After a quick analysis of the above equation, it is obvious that the failure of the material will 

occur when the value of f is changed. In this case, the material is fully voided. The Prediction 

will not be correct because, originally, the material had to go through three steps for the ductile 

failure, as already mentioned. It cannot be described as a fully voided material.  

As already mentioned, more modifications will be needed to modify the Gurson model, and it 

can be a great and powerful tool to predict ductile failure, which means it covers the three steps 

(nucleation, propagation, and coalescence) 

 To cover the limitations of the Gurson model, the first modification was made by Tveegard 

(1981), in which they introduced new material constants q1, q2, and q3. The introduction of the 

new constants improved the Prediction of the Gurson model, and the following equation gives 

the new modified model: 
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                                                                                                          Equation 6 
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The Gurson model only depicts the growth stage of material failure; it has to be expanded to 

include the nucleation and coalescence stages. As a result, in 1986 [28], Tveegard and Needlman 

were able to make several modifications to the Gurson model and introduce new parameters, as 

shown in the modified model of the Gurson model that gave birth to the GTN model, with the 

definition of the new parameters defined in this section: 

The model is defined as follows: 

( )
2

2 2

1 12
2 cosh 1

2

e

M M

tr
q f q f

 ö
 

ú úù ù
= + − +ú ú

û û
                                                                                                                          Equation 7  

In which q1 is the material constant, trÃ is the sum of principal stresses, ÃM is the equivalent flow 

stress, and f* is the ratio of effective void volume to the material volume ratio defined as 

follows:  

( ) cf f fú =   If 
cf f                                                                                                                                                              Equation 8 
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cf f                                                                                                          Equation 9 

Where f is the voids volume ratio, fc is the void volume ratio at the beginning of nucleation, ff is 

the void volume ratio when a fracture occurs, or ÃM is the equivalent flow stress. 

The void growth rate is the sum of existing void growth fg and the new void nucleation fn, and 

the following equation presents it: 

 

. . .

n gf f f= +                                                                                                                                                                                   Equation 10 

Where the components are further formulated as follows: 
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                                                                                                                      Equation 13 

In pltrõ  the volume plastic strain rate, SN is the voids nucleation mean quantity, fn is the volume 

ratio of the second phase particles (responsible for the voids nucleation), and ꜪN is the mean 

strain at the time of voids nucleation.    

  So eight parameters have to be defined: 

1 2 0( , , , , , , , )c n f N Nq q f f f f Sö ö õ=  
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The values of q1 and q2 are almost constant based on several studies on determining GTN 

parameters for different parameters, as shown in the table below. 

                                                           q1=1, q2=1.5. 

Table 1 GTN parameters for different materials 

References q1 q2 EN SN f0 fc fn ff Material 

 

Bauvineau et al. 

(1996) [33] 

 

1.5 

 

1 

 

- 

 

- 

 

0.002 

 

0.004 

 

- 

 

- 

 

CMn Steel 

Decamp et al. (1997) 

[34] 

1.5 1 - - 0.0023 0.004 - 0.225 CMn Steel 

Schmitt et al. (1997) 

[35] 

1.5 1 0.3 0.1 0 0.06 0.002 0.212 Ferritic 

base Steel 

Skallerud and 

Zhang. (1997) [36] 

1.25 1 0.3 0.1 0.0003 0.026 0.006 0.15 CMn Steel 

Benseddiq and 

Imad. (2008) [37] 

1.5 1 0.3 0.1 0 0.004-

0.06 

0.002-

0.02 

~0.2  

Not only did Tveegard and Needleman try to modify the Gurson model, but various researchers 

have also tried to develop an extended GTN model to be useful in different complicated 

situations in the last two decades. Its popularity and success are based on experimental evidence.  

In 2008, Nahshon and Hutchinson [38] developed an extended version of the GTN model that 

deals with shear-induced damage.  

In 2014, Zhou et al. [39] introduced new shear damage-related parameters to the GTN model 

based on experimental results. In 2000, Z.L. Zhang et al. developed a complete Gurson model 

approach for ductile fracture [40]. 

2.4. Presentation of some extended GTN models 

A significant shortcoming of models based on the Gurson technique is the absence of shear 

effects in the formulation. This result eliminates the possibility of forecasting the site of shear 

and failure under low-stress triaxiality circumstances. Under dominant shear stress, the distortion 

of the cavities and ligaments between the cavities is critical in the progression of the material's 
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internal deterioration. Thus, to enhance the predictive power of the GTN model at low levels of 

constraint triaxiality, L. Xue [41], Nahshon, and Hutchinson [38] proposed including a shear 

mechanism in the law of cavity evolution. 

I will start first by giving a general overview of the extension done by L. Xue 

The process is based on geometric considerations involving a unit cell construction with a 

circular vacuum at its center subjected to simple shear stress. According to the author, the 

progression of shear damage (fshear) depends on the porosity, the corresponding plastic strain, and 

the Lode angle. This mechanism's rate of change may be mathematically represented as: 

   
5

.

4 0

q p

shearf q f g õ õ=                                                                                                                                                          Equation 14 

4q , 5q reflect the material's component parameters.  

 

For issues with two dimensions, 4 1.69q =  et 
5 0.5q = , and three-dimensions 4 1.86q = , and 

5 0.33q =  

The variable f, which denotes porosity, is the equivalent strain and is the parameter that 

introduces the shear mechanism's reliance on the Lode angle. If it is greater than zero, the shear 

mechanism is considered. If, on the other hand, it is zero, the shear mechanism does not 

influence the damage evolution, and only the nucleation and growth mechanisms are active.  

The Lode angle function is defined as follows: 

 

                                                                                                                                                           Equation 15                              

Where is ñ  the Lode angle given, and where ñ is the normalized Lode 

angle, the load angle is given by the equation below  
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                                                                                                                                  Equation 16 

1 2 3, ,s s s are the tensor components of deviatoric stresses in the primary plane. 

The shear process provided by L. Xue [41] is compatible with the GTN model, which already 

includes micro-void nucleation and growth mechanisms. Thus, the development of porosity is 

reinterpreted as follows: 

c n shearf f f f= + +  

Damage that accumulates in a material reduces all of its elastic qualities. However, this effect is 

minor compared to the effect of damage on plastic behavior. As a result, the evolution rule of 

0

6
1 1g

ñ
ñ

ð
= − = −
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shearing damage does not account for the term total strain. It is characterized solely in terms of 

cumulative plastic strain and the pace at which it accumulates. 

         
5

.

4 0

q p

shearf q f g õ õ=                                                                                                                                                    Equation 17 

In the next section, I will briefly introduce the extension done by K. Nahshon and J. Hutchinson. 

 

The two scientists, K. Nahshon and J. Hutchinson provided an extra word  
shearf  to characterize 

the shear mechanism in addition to the one established by L. Xue. 

 

.
0 ( ) : p

shear w
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f k S
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 õ=                                                                                                                                                     Equation 18  

where 
0( )w   is a function of the third normalized invariant's stress state  . The parameter wk  is 

a component parameter of the material used in this procedure. The following is the syntax for the 

parameter. 

2

0( ) ( ) 1 ( )w w  = = −                                                                                                                                                      Equation 19 

It is critical to note that ( )w  it does not allow for exact differentiation of some stress levels, 

such as the two axisymmetric states represented by: 

a) equal tension between two minor principal stresses (uniaxial tension with 1 = −  

b)  equal tension between two principal stresses (biaxial tension  1 =  

Ultimately, K. Nahshon and J. Hutchinson's alteration is phenomenological. f can be 

interpreted as either an effective volume fraction of the cavities or a basic damage 

measure. 

2.5. Complete Gurson Model 

With the assumption that all voids remain spherical as external loading increases, and by 

applying Thomason's void coalescence criterion based on the plastic limit load model, this 

resulted in the so-called Complete Gurson Model (CGM). 

The critical void volume fraction (fc) is a material constant in the GTN model. Still, the 

complete Gurson model is the material's reaction to coalescence.  



Literature review 

23 

According to Zhang et al. [40]., the value of fc decreases as the stress triaxiality ratio T rises 

(Fig. 2). Additionally, Zhang et al. have demonstrated that the initial void volume fraction f0 

strongly influences the value of fc. 

Stress triaxiality measures the stress in a material at the tip of a crack. It is described as the 

relationship between the equivalent plastic strain, which reflects the material's plastic 

deformation, and the hydrostatic stress, which indicates the material's average stress. 

Because it can influence the possibility of crack propagation and fracture, stress triaxiality is 

crucial to understanding fracture mechanics. A ductile fracture, in which the material 

experiences extensive plastic deformation before failing, can be encouraged by high levels of 

stress triaxiality. 

While brittle fracture, in which the material fails with little to no plastic deformation, can be 

promoted by low levels of stress triaxiality, which is the opposite, is a possibility. 

The GTN model's critical void fraction is crucial because it controls when metals, including 

microvoids, switch from ductile to brittle failure modes. The material can bend plastically and 

exhibit ductile behavior when the volume percentage of voids in the material is smaller than the 

critical void fraction. Yet, the material becomes more brittle and prone to fracture when the 

volume proportion of voids exceeds the critical void fraction. 

The critical void fraction for a given material is normally determined experimentally since it 

relies on several variables, including the composition of the material, the loading circumstances, 

and the size and form of the voids.  

The critical void fraction in the Gurson-Tvergaard-Needleman (GTN) model is a dimensionless 

quantity, as it is defined as the ratio of the volume of voids or pores to the total volume of the 

material. 

The complete Gurson model is precise for both non-hardening and hardening materials 
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Figure 2.  Critical void volume fractions versus stress triaxiality [40] 

As explained, the CGM considers the value of the critical void volume fraction as non-constant, 

or for the GTN model, the value of fc is a material constant in which the failure occurs when 

cf f  (Please see the paragraph regarding the GTN model for more details) 

Following this condition, in the GCM model, the value of fc is defined by Thomason's plastic 

limit-load criterion, as shown below [40], which forecasts the beginning of coalescence.  

cf f  

The parameters of the above condition are defined as follows : 

α = 0.1 

β = 1.2  

For the values of (α and β) were fitted by Thomason, the parameter m  is defined as the 

maximum principal stress 

Furthermore, the value of r is defined as the void space ratio, and it is given by the equation 

below : 
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                                                                                           Equation 20 

Regarding the parameters  ·1, ·2, and ·3, they represent the principal strains 

As mentioned in this thesis, the full focus was given to the GTN model. However, it will be 

important in further studies or similar studies to use the complete Gurson model. 

fc 

Stress Triaxiality 
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After the detailed presentation of the GTN model, in the next section, the focus will be given to 

the artificial neural network as the optimization approach used in this thesis 

2.6. Artificial intelligence and optimization methods 

2.6.1. Introduction 

In recent years, the computer technology used in nuclear reactors has expanded.  

The research area of artificial neural networks is attracting researchers and investors in the 

industry, which leads to providing funding to universities and research institutes to develop ANN 

applications in many areas [42-44] 

Many studies show that the ANN has a very strong ability to learn the input-output relationship 

of a nonlinear system through training with sufficient data [45-46] 

As mentioned in the section related to the GTN model, it is necessary to determine the eight 

parameters that should have physical meaning.  

Respecting the literature, the relationships between the eight parameters create a nonlinear 

system, so using ANN in determining those parameters might lead to developing an appropriate 

approach to finding the GTN parameters.  

This thesis aims to use the artificial neural network to determine the GTN parameters set for CT, 

SENT, and pipeline.  

Therefore, the next section will be more focused on the basics of ANN, its architecture, and the 

learning algorithms used for training the network 

So as a short conclusion, it is not easy to determine GTN parameters, so it is quite important to 

find a solution for such an issue by implementing the artificial neural network in determining 

GTN parameters by paying more attention to the most sensitive GTN parameters. The next 

section will mainly focus on the literature review on artificial neural networks. 

2.6.2. General overview of Artificial neural network 

An Artificial Brain Network (ANN) is a mathematical model that simulates biological neural 

networks in terms of computing [47-49]. It comprises interconnected artificial neurons that use a 

connectionist approach to interpret data.  

The ANN can respond to changes in external or internal data that flow through the network 

during the learning process. ANN's main rules are assisting machines in completing tasks and 
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developing self-learning. Artificial neural networks (ANNs) are a key component of machine 

learning and are used to identify patterns in data. As a result, ANNs are the best answer for data 

classification, grouping, and Prediction. 

In the field of mechanical engineering, the ANN can be used in different fields, as shown below : 

- Autonomous Systems: ANNs can be used for autonomous systems, such as self-driving; 

the neural network can learn from sensor data and make real-time decisions, allowing the 

system to operate autonomously.  

- Manufacturing: ANNs can be implemented in this field in order to perform 

manufacturing optimization, such as predicting defects in parts or optimizing production 

processes for improved efficiency.  

- Robotics: ANNs can be used in this field to learn a robot arm's movement patterns or 

predict the outcomes of different control strategies. Energy Systems: ANNs can be used 

for energy systems, such as predicting energy consumption or optimizing the 

performance of renewable energy.  

- Overall, ANNs offer a powerful tool for mechanical engineers to analyze data, optimize 

systems, and improve performance across various applications. 

There are not many activities that an artificial neural network cannot complete once trained. An 

artificial neuron was created to simulate the biological function of a neuron in the human brain. 

A biological neuron is made up of dendrites (inputs), soma (cell body), and axons (outputs), as 

described in Fig.3[50] 

 

Figure 3.  Neuron network and the human brain 



Literature review 

27 

The structure of the human brain is reproduced in a very basic fashion while building artificial 

neural networks. As a result, the mathematical model of an artificial neuron and the structure of a 

real neuron have certain similarities.  

However, important distinctions in the working principles of biological and artificial neurons are 

beyond this article's scope. Of course, the human brain's structure is not known.  

An artificial neural network is a collection of basic neural processors. 

2.6.3. Simple mathematical model of a neuron 

Through its synaptic connections, the neuron is activated with n inputs, as shown in Fig. 4 [51] 

 

Figure 4. Single neuron description 

Each synaptic connection has a weight, a positive or negative value indicating the connection's 

strength. 

To get the induced local field vj, each input is multiplied by the synaptic connection's weight. 

The weighted inputs are added along with an externally supplied bias.  

On a directed graph, bias is represented by a synaptic weight with a constant input of +1. Then, 

on the local induced field of the neuron, an activation or squashing function  
j  is applied to vj 

of the neuron, which leads to the output yj of neuron j.  

The activation function reduces the output range to a certain interval.  

These parameters shown in Fig. 4 are defined mathematically as follows :  

n is the number of input data 
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The input vector xi : 
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                                                                                                                              Equation 21 

The weight vector : 

1,.....ji j jnw w wù ù= û û                                                                                                                                      Equation 22 

The induced local field vj : 

                                                                                                                               Equation 23 

 

 

The bias bj: 

0 0j jb w x=                                                                                                                                                      Equation 24 

The output parameter is defined as yj : 

( )j jy v=                                                                                                                                                     Equation 25 

2.6.4. Learning Styles 

There are two main learning models. 

" Supervised Learning  

A training example consisting of an input and the desired output is provided to the network in 

supervised learning. The network's synaptic weights are then changed to minimize the 

discrepancy between the actual network output and the intended output. [52] 

Supervised learning is distinguished by how it trains computers to classify data accurately or 

predict outcomes using labeled datasets. The model modifies its weights as input data is fed into 

it until the model has been properly fitted, which takes place as part of the cross-validation 

process. Such as classifying spam in a different folder from the email; supervised learning assists 

enterprises in finding scalable solutions to several real-world issues. 

" General overview of the process of supervised learning 

A training set is used in supervised learning to instruct models to produce the desired results. 

This training dataset has the right inputs and outputs, enabling the model to develop over time. 

The loss function verifies the algorithm's correctness, and iterations are made until the error is 

sufficiently reduced. 

n

j ji i

j

v w x=õ
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When using data mining, supervised learning may be divided into two issues: regression and 

classification. 

In order to accurately classify test data into different categories, the classification uses an 

algorithm. It identifies particular entities in the dataset and tries to determine how those things 

should be defined or labeled.  

Regression is used To comprehend the relationship between dependent and independent 

variables; It is frequently used to produce estimates for a company's sales revenue.  

The most known regression algorithms include linear, logistic, and polynomial regression. 

" Different algorithms for Supervised learning 

Various computing methods and algorithms are applied during supervised machine-learning 

operations.  

The most popular learning techniques are briefly explained below [53], often calculated using 

software like R, Python, or MATLAB : 

✓ Simple Bayes: A classification method known as Naive Bayes adopts the idea of Class 

Conditional Independence from the Bayes Theorem. This means that each predictor has 

an equal impact on the outcome and that the existence of one feature does not affect the 

presence of another in the probability of a certain result. Multinomial Nave Bayes, 

Bernoulli Nave Bayes, and Gaussian Nave Bayes are the three varieties of Nave Bayes 

classifiers.  

✓ Linear regressive: To predict future outcomes, linear regression is frequently employed to 

determine the relationship between a dependent variable and one or more independent 

variables. Simple linear regression is used when there is only one independent variable 

and one dependent variable. It is called multiple linear regression as the number of 

independent variables rises. It attempts to plot a line of best fit for each type of linear 

regression, which is determined using the least squares method. When shown on a graph, 

this line is straight in contrast to other regression models. 

✓ Rational regression: While logistical regression is used when the dependent variable is 

categorical or has binary outputs, such as "true" and "false" or "yes" and "no," linear 

regression is used when the dependent variable is continuous. Even though both 

regression models aim to identify the relationships between the data inputs, logistic 

regression is mostly employed to address binary classification issues, such as spam 

identification. 
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✓ Narrowest-neighbor first: The KNN algorithm, also called K-nearest neighbor, is a non-

parametric algorithm that groups data points according to their proximity and correlation 

with other accessible information. This approach assumes that related data points can be 

discovered closely. It then assigns a category based on the most general category or 

average after attempting to determine the distance between data points, typically by 

Euclidean distance. Data scientists favor it because of how simple it is and how quickly 

calculations are completed. However, as test datasets get larger, the processing times are 

longer, which makes them less desirable for classification jobs. KNN is frequently 

employed in image recognition and recommendation systems. 

" Unsupervised Learning   

There is no intended outcome in this scenario. The network's synaptic weights are adjusted until 

the network's output is a suitable representation of the input data. [52] 

In addition, unsupervised learning analyzes and groups unlabeled datasets using machine 

learning algorithms. These algorithms identify hidden patterns or data clusters without the 

assistance of a human. It is the best option for exploratory data analysis, cross-selling tactics, 

consumer segmentation, and picture identification because of its capacity to find similarities and 

differences in information. 

" The three most effective methods for neural networks  

✓ Neural network for classification 

A neural network can classify a pattern or dataset into a preset class. By employing the 

Feedforward Networks  

✓ Neuronal Prediction Network 

A neural network can be taught to generate predicted results from a given input4for instance, 

stock market forecasting. 

✓ Neural Association Network 

Train the Neural Network to remember the particular pattern. The network links the noise pattern 

with the memory's nearby one or discards it when offered. For instance, Hopfield Networks does 

grouping, classification, and other tasks. 
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2.6.5. Main ANN algorithms 

The arrangement of neurons in layers and the pattern of synaptic connections between them 

inside and between layers are referred to as "architecture" in neural networks. 

A layered network has an input layer of source nodes, an output layer of computational nodes 

and neurons, and one or more hidden layers of neurons between the input and output levels. 

Depending on the nature of connections between neurons, there are two primary groups of neural 

network designs. 

➢ Feed-Forward Neural Networks  

Feed-forward neural networks were chosen as an example of an artificial neural network since 

they are the most common and are utilized in a wide range of applications. 

As the name suggests, artificial neural networks are modeled after their biological counterparts, 

the brain and the nervous system. A biological brain's structure and information processing 

methods are completely distinct from those of a traditional digital computer. The biological brain 

is significantly more sophisticated and superior to traditional computers in many aspects, with 

the human brain serving as an ideal example. 

The ability of a biological brain to perform the adaptative learning that a traditional computer 

lacks is its most important point of differentiation. Conventional computers execute 

predetermined tasks based on the "programs" or "software" installed. A "neuron" is the 

fundamental unit of a neural network. One may think of a neuron as a processing element. 

Neurons in a neural network are linked by "synaptic weights," or "weights" for short. Each 

neuron in a network receives "weighted" information from the neurons to which it is connected 

via these synaptic connections and creates an output by processing the weighted sum of these 

input signals (which can be either external inputs from the environment or other neurons' 

outputs) through an "activation function." The network is referred to as a "feed-forward neural 

network" if there is no "feedback" from the outputs of the neurons towards the inputs throughout 

the network. Otherwise, Neural networks are typically organized into "layers." Feed-forward 

neural networks can be divided into "single-layer" or "multi-layer" categories depending on how 

many layers there are. 

Fig. 5 [54] shows a fully linked single-layer feed-forward neural network. There are two layers 

in this structure, counting the input layer. However, it is not counted because there is no 

calculation in the input layer. 
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The output layer receives input signals via the weights, and the neurons compute the output 

signals. 

 

Figure 5.  Singe layer network 

Regarding the multi-layer feed-forward neural network, there is (at least) one layer of "hidden 

neurons" between the input and output layers as opposed to a single layer in a single-layer 

network.  

The role of hidden neurons is to make a meaningful relation between the network output and 

external input. The network can retrieve higher-order statistics thanks to one or more hidden 

layers.  

Because there are three input neurons, three hidden neurons, and two output neurons in the 

example network shown in Fig. 6 [54], there is only one hidden layer. The network is known as a 

3-3-2 network. Because every neuron in each layer is coupled to every other neuron  

 

Figure 6 multi-layers network 
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➢ Recurrent Neural Networks  

the network is regarded as a "recurrent neural network" if there is feedback or a synaptic link 

from the outputs to the inputs (either their inputs or the inputs of other neurons). 

In other words, an artificial neural network that employs sequential or time series data is known 

as a recurrent neural network (RNN). Well-known programs like Siri, voice search, and Google 

Translate include these deep learning algorithms. They are frequently employed for ordinal or 

temporal issues, such as language translation and speech recognition. \ 

Recurrent neural networks (RNNs) use training data to learn like feed-forward.  

They stand out due to their "memory," which allows them to affect the current input and output 

using data from previous inputs.  

Recurrent neural networks' outputs depend on the previous parts in the sequence, unlike typical 

deep neural networks, which presume that inputs and outputs are independent. Unidirectional 

recurrent neural networks cannot account for future events in their forecasts, even though they 

would be useful in deciding the output of a particular sequence. [55] 

The RNN has a "memory" that retains all calculations-related data based on what was already 

mentioned. It executes the same action on all the inputs or hidden layers to produce the output, 

using the same settings for each input. Contrary to other neural networks, this decreases the 

complexity of the parameter set. 

" Difference between FNN and RNN 

The way that RNNs and feed-forward neural networks channel information gives them their 

names.  

Information only flows in one direction in a feed-forward neural network4from the input layer 

to the output layer via the hidden layers. The network receives the information without any 

delays. Feed-forward neural networks are poor at making predictions because they do not recall 

the information they receive.  

A feed-forward network has no concept of time order because it considers the current input. It 

cannot recall anything from the past outside its schooling.  

The information in RNN loops back on itself. 

 It takes into account both the current input and the lessons it has learned from prior inputs when 

making a decision.  

The Figures below [55] will show how the data flow between FNN and RNN, 
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Figure 7. RNN vs. FNN 

In this next section, I will focus on the Main training methods used for feed-forwards networks 

because it related to the main optimization method (backpropagation algorithm) used in this 

thesis 

2.7. Main training methods used for feed-forwards networks 

2.7.1. Gradient Descent Algorithm 

Finding a local minimum or maximum of a given function is done using the iterative first-order 

optimization process known as gradient descent. 

The gradient descent algorithm technique is frequently used in machine learning.  

This algorithm is typically taught at the start of almost all machine learning courses because of 

its significance and simplicity of implementation, and it is frequently utilized in a variety of 

fields, including management engineering (robotics, chemical, mechanical) 

The gradient descent algorithm aims to reduce the supplied function (say, cost function).  

The Cost Function is a function that evaluates how well a model performs given a set of data. 

The Cost Function quantifies and displays the mistake as a single real number between the 

predicted and expected values. 

The cost function increases and improves machine learning efficiency by allowing it to discover 

the local or global minimum and minimize error. Until the cost function approaches zero Fig. 8 

[56-57], it continues to iterate in the negative gradient direction. The model will stop learning 

after reaching this point of the sharpest drop. Even while the cost and loss functions are often 

assumed to be the same, there is a slight distinction between the two. A cost function determines 



Literature review 

35 

the average error over the entire training set. In contrast, a loss function refers to the error of a 

single training sample. This small distinction between the two functions concerns the error that 

occurs during the training of machine learning models. 

 

Figure 8.  Gradient descen funcion 

2.7.2. Back propagation algorithm 

The backpropagation algorithm was developed by Bryson and Ho [58] and modified by Werbos 

[59]. Much research has made modifications to make the algorithm more understandable. In 

1986, three researchers published two papers [60] and [61] (Ronald Williams, David Rumelhart, 

and Geoffrey Hinton) related to the backpropagation algorithm.  

That research discusses various neural networks in which Backpropagation works far quicker 

than prior ways of learning, allowing neural nets to tackle previously unsolvable problems. 

The backpropagation method is now the backbone of neural network learning. 

 It is important to highlight that the backpropagation algorithm is a quick, basic, and 

straightforward programming method.  

It is a typical approach that works well in most cases. In addition, it does not need any particular 

statement of the functions to be taught. 

➢ The architecture of the Backpropagation algorithm 

The network's synaptic weights are initially assigned random values during training. After that, 

the network is given a training example at each iteration. An input and its corresponding target 

form the basis of a training example. Simulation data is used to generate training examples.  
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The network generates an output and compares it to the target by processing the input. The 

difference between the target and the output determines the error. The training algorithm adjusts 

the network's synaptic weights proportionally to the error. The training process aims to reduce 

the error below a predetermined value iteratively and necessitates a training set consisting of 

many training examples. [62-64]. 

In other words, the main goal of Backpropagation is to minimize the error between the output 

and the target by optimizing the weights.  

The analysis of Fig. 9 [65] and Fig. 10[55] will better understand the backpropagation algorithm 

and help us summarize the back propagation's main steps 

" Calculate the error; what is the difference between the model's output and the real output?  

" Minimum error4Determine whether or not the gap has been minimized.  

" Update the parameters: If the gap is significant, the parameters should be updated 

(weights and biases). 

" Check the error once again after that. Repeat the procedure until the mistake is reduced to 

a bare minimum. The model is ready to provide a prediction. 

 

Figure 9. Backpropagation algorithm 
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Figure 10.  Backpropagation vs. Feed-forward propagation 

Every input to the network is multiplied by the weights on the connections between neurons, 

then summed before using an active function to generate an output. 

The backpropagation technique reduces the error between the output and the goal by propagating 

the error back into the network. 

According to the amount of the initial error, the weights on each of the connections between the 

neurons are altered. 

After that, the input data is sent forward again, resulting in new output and error. 

The method is repeated until the error is reduced to an acceptable level. 

Each neuron has a sigmoid function and is completely linked to the following layer's neuron, or 

the sigmoid function is defined as 
1

1 ij
ij x
F

e
−=

+
 in which is the output of a neuron I was given an 

input pattern j, and xij is the total input to the ANN, the backpropagation method requires the 

derivative of the output function to the total input to update the weights. As a result,  

(1 )
ij

ij

ij ijx

F
F F

ö
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ö
                                                                                                                                                                Equation 26 

The training is stopped once the error reaches an acceptable level. 

A backpropagation neural network has a simple design that consists of H layers of processing 

neurons for the coming inputs, which are the outputs of the preceding layer. The result of each 

processing neuron on the nth layer is fed into every neuron on the n+1th layer. The last layer 
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generates estimated outputs, and the layers between the input and output are the hidden layers (f 

The main part of the Backpropagation is the calculation of the mean squared error (E), which is 

presented as follows: 

1

1/ ( )
n

ij

j

E n F Rij
=

= −õ
                                                                                                                                Equation 27 

n is the number of predictions, Fij is the output data (predicted result), Rij is the target value, and 

the Backpropagation aims to minimize the E value. 

In the next chapter, I will be proceeding with the main part of the thesis, which is the 

experimental part 
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RESEARCH AND RESULTS 

This section details my study and findings on determining GTN parameters, and it is divided into 

numerous theses. I used many tools and procedures in each thesis previously mentioned in the 

research methodology and literature review background parts. 
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3. Experimental, Simulation, ANN, and Results. 

3.1. Introduction 

Before dealing with the experimental process presentation, I will present the different steps of 

the work in the flowchart below : 

 

Figure 11: Flowchart presents the main steps of the thesis 

" The thesis' journey is shown in the flowchart, Fig. 11. 

" First Step: Proving the validity of the GTN model in our project ( Using CT and SENT 

specimens) 

" Second step: Study the sensitivity of GTN parameters because the same set of parameters 

could lead to the same results ( Using NT specimen) 

" Third Step: After finding that the GTN model can be implemented in the thesis, I 

introduce the ANN approach to see it’s applicability, which was done using the SENT 

specimen. ( Using CT and SENT specimens) 

" Fourth Step: After proving the validity of the GTN model and ANN in this thesis, it was 

necessary to move to the next step, which is the prediction of the failure of the pipeline 

using the direct method ( Using the Mockup FP1) 

" Fifth Step: The introduction of the ANN model to optimize the time consumed during the 

determination of GTN parameters for the pipeline  (Using NT, Mockup FP1 and FP2) 
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3.2. Presentation of the experimental data. 

First of all, it is really important to mention that the material used during this study is ferritic 

steel 15NiCuMoNb5; the detailed component of the material was provided by EDF (Electricite 

du France) France [67]. 

Table 2 Material components 

 C Si Mn P S Cr Mo Ni Al Sn Cu N Nb O 

EDF 0.140 0.310 0.940 0.009 0.020 0.400 0.350 1.140 0.015 0.013 0.620 0.013 0.030 0.003 

Tensile tests were conducted at 20°C on cylindrical tensile test samples to assess the material's 

stress-strain constitutive law (Appendix 1). 

At 20°C, notched tensile (NT) specimens were also fracture tested; the radius of the tensile 

specimen in this work is 2 mm, as shown in the Figure below: 

 

Figure 12.  Experimental data of the NT sample 



Experimental, simulation, ann, and results 

42 

Then, at 20°C, a tearing test was conducted on a side-grooved CT 18881 sample (Appendix 2),  

The single-edge notched tension (SENT) fracture toughness test specimen experiments results  

are presented in (Appendix 3) 

The CT and SENT specimens' geometries are demonstrated in Fig. 13 and 14.  

The specimen's fatigue-crack length was 27.8 mm.  

 
 

Figure 13 Geometry of SENT specimen Figure 14 Geometry of the CT specimen 

Regarding the four-point bending test on pipes, two large-scale experiments, FP1 and FP2, were 

planned on mock-ups consisting of ferritic pipes on the EDF 4-point bending test facility 

developed during the former STYLE project [66] Fig.15 and Table 2 

 

Figure 15 4PB frame for testing mock-ups for ferritic steel 
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Table 3 Geometries of the two mock-ups [66] 

   FP1 FP2 

Thickness(mm)   30 30 

Crack depth(mm)   - 0.5 

Crack angle(⁰)   30 30 

Crack shape   Through-wall crack Inner surface crack 

inner(mm)   318 318 

outer(mm)   378 318 

All tests shall be undertaken at room temperature unless the material has strong ductile tearing 

development in the radial and (or) circumferential directions. 

Each mock-up is instrumented appropriately to give the relevant data for analysis and validation: 

load, displacement, crack opening, pipe deflection, etc.  

Several significant objectives include detecting the commencement of ductile crack formation 

and quantifying fracture growth during the trials. 

Framatome GmbH supplied a representative pipe segment constructed of 15NiCuMoNb5 steel 

from which three component-scale mock-ups will be produced and tested Fig. 17. 

However, in this study, I will focus on the mock-up FP1 as the primary objective is to shorten 

the time required for GTN parameters prediction using an artificial neural network, but I will 

also use the mock-up FP2 to confirm the optimization approach used in the mock-up FP1 

Fig. 16 [66] presents the initial crack shape for the mock-up FP1. 

 

Figure 16  Initial flaw shapes of mock-ups FP1 
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The four-point bending test is detailed in [67]  

 

Figure 17  Geometry of the mock-up FP1 [66] 

 

Figure 18 Design of the experimental set-up of the nozzle mock-up [66] 

 

Figure 19 Four bending tests in reality [66] 

Fig. 19 shows the real picture of the mock-up FP1 during the experiment 
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Figure 20 The mock-up FP1 during the experiment [66] 

Fig. 20 shows the experimental results that show the pipeline's failure. 

Comparing the experimental and simulation results will ensure that my approach is correct 

during the pipeline protection. 

I will highlight the values of the maximum load and COD (crack opening displacement) and 

compare them to the simulation. 

 

 

Figure 21 Measurement of the main experiments 
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Figure 22  Load vs. COD for FP1 

Nevertheless, before starting the prediction process and the main calculation, I noticed in the 

literature review that many researchers tried to modify the GTN model and give initial values of 

the GTN parameters. As already mentioned, the values of the GTN parameters are not fixed, and 

it is quite hard to determine them. For this reason and others, it is wise first to study the 

sensitivity of the GTN parameters and determine the most sensitive parameter. The results will 

help us focus more on determining GTN parameters and not choosing random values. 

4. The study of the sensitivity of GTN parameters  

Before calculating GTN parameters, it is important to determine the most sensitive parameters 

because they will influence the upcoming work. As already mentioned, it is necessary to 

determine eight GTN parameters, which is crucial to use the GTN model. It is hard to find one 

set of parameters as long as they depend on each other. 

To answer this question regarding sensitivity, Yassine and Szavai [68] and Zhang et al. [40] did 

a detailed study to check the most sensitive GTN parameters. However, Yassine and Szavai used 

different geometries to study the GTN parameter sensitivity. 

The next section will mainly focus on the sensitivity of GTN parameters based on two CT and 

NT specimens. 
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I will take the following steps to investigate the sensitivity of GTN parameters and how changing 

each one affects the results: 

" Conduct a small-scale test on Notch tensile specimens (diameter 10 cm) to get 

experimental data (Appendix 1 

" ) and the stress-strain curve.  

" Perform the Finite Element Simulations of the Notch specimen. The reason for choosing 

Notch tensile specimens is that the simulation will take 5 to 10 minutes. I can simulate 

just a quarter of the specimen due to the axisymmetry.  

" Run simulations to investigate the effect of each parameter.  

" Conduct a small-scale test on CT specimens to provide experimental (Appendix 2) data 

and obtain the stress-strain curve. Carry out the CT Specimen Finite Element 

Simulations.  

" Check if the most sensitive parameters will be similar between the NT and the CT 

specimens, leading us to infer the sensitivity change between different geometries. 

4.1.1. NT and CT specimens presentation 

To determine the most sensitive GTN parameters in the results, I used the Notch tensile 

specimens and Compact tension specimen data. The main goal is to see the most sensitive 

parameters with the geometry change. 

According to the literature (Table 1) (Bauvineau et al. (1996); Decamp et al. (1997); Schmitt et 

al. (1997); Skallerud and Zhang (1997); Benseddiq and Imad (2008)), I got the initial values of 

GTN  

The identification of the GTN parameters that I had intended to explore was accomplished by 

repeating the simulation numerous times until the simulation results suited the experimental data.   

f0 =Initial void volume fraction= 0.003  

fn=the new voids nucleation = 0.3  

fc=the voids volume ratio at the beginning of nucleation = 0.007  

ff =is the voids volume ratio when a fracture occurs = 0.35  

SN =the voids nucleation mean quantity = 0.005  

·n =strain at the time of voids nucleation = 0.065 
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I took advantage of the symmetry and created a 2D FEM model for just a quarter of the Notch 

and CT specimens, as illustrated in Fig. 23 and 24. 

 

Figure 23  Notch Specimen simulation 

 

Figure 24 CT Specimen Simulation 

4.1.2.  Study of the sensitivity of GTN parameters. 

I started with the notched specimen to see how the GTN parameters impact the findings. I ran 20 

simulations for each parameter, changing one parameter's value while keeping the others 

constant.  

After identifying the parameters sensitive to tiny modifications, I will see if the most sensitive 

parameters in the notched specimen have the same impact on the CT specimen.  

As previously stated, I decided to deal with six parameters because the values of q1 and q2 are 

nearly set, as in Table 1. 

I ran 120 simulations in total, with 20 runs for each parameter. The results of Force vs. Crack 

Opening Displacement (COD) for notch specimens are displayed in the Figures below. 
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   f0 = 0.003 (I made the variation of the parameter by this value ±0.0003) 

   fn=0.3 ( I made the variation of the parameter by this value ±0.03) 

   fc=0.007 (I made the variation of the parameter by this value ±0.0007) 

   ff =0.35 ( I made the variation of the parameter by this value ±0.035) 

   SN =0.005 (I made the variation of the parameter by this value ±0.0005) 

 ·n =0.065 ( I made the variation of the parameter by this value ±0.0065) 

The curves shown in the Figures below, from Fig. 25 to Fig. 34, display the force versus crack 

opening displacement (COD) for different variations of the GTN model parameter.  

Each curve (color) represents a specific behavior of the material to changes in the GTN 

parameter. 

 

 
 

Figure 25 The variation of the Initial void volume 
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Figure 26 The new voids nucleation 

 

 

Figure 27 The variation of the voids volume ratio at the beginning of nucleation fc 
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Figure 28 The change of voids volume ratio when the fracture occurs 

 

Figure 29 Strain at the time of voids nucleation ɛn 
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Figure 30  The voids nucleation mean quantity Sn 

  

Figure 31  New voids nucleation fn 

As can be seen in the findings, the initial void volume fraction f0 is the most sensitive parameter 

to a slight change in its values for NT and CT Specimens. 

I may deduce that the exact value of f0 must be determined with more precision. It must have 

physical significance and respect the values listed in Table 1.  

The difference in the stress-strain curve is quite small for fc, ff, fn, and Sn.  
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It appears that changing the values of the fc, ff, fn, and Sn values has no macroscopical effect on 

failure prediction for NT  

When the value of ff is less than the value of fc, no simulation may be started.  

As I have done for the NT specimen, I will determine the sensitive parameters for the CT 

specimen. I performed ten simulations for each parameter, each taking six hours.  

The figures below will present just the three sensitive parameters (f0, ɛn, and Sn) for the CT 

specimen; no influence was recorded for the rest of the parameters. So no added value will be 

added to analyze them. ( f0, fn, and fc) 

The Force vs. Crack Opening Displacement (COD) results for CT specimens for the most 

sensitive parameters are shown in the graphs. 

 

Figure 32.  Initial void volume fraction f0 

 

Figure 33. The voids nucleation means the quantity 
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Figure 34. Strain at the time of void nucleation 

By examining the curves, it is clear that changing the parameter f0 impacts the findings, 

especially when compared to those obtained with the notched specimen. It is obvious now that 

the parameter f0 becomes more sensitive to tiny changes in the case of CT specimens.  

As a first conclusion, it is clear that the sensitivity of strain at the time of void nucleation and the 

voids nucleation means the quantity becomes noticeable due to the geometry and the change in 

the applied load; for the NT specimen, the change of the two parameters does not show a huge 

variation. 

More studies must be done to check the variation of parameters compared to other geometries. A 

microscopic study should check the variation of the most sensitive parameters. 

The Gurson parameters, as shown in Table 1, are not set in stone and change depending on the 

type of material. I may also find a new set of parameters that work like the experience. However, 

they differ in fracture initiation and propagation at the microscopic level. 

According to the findings of this investigation, the most sensitive metrics are f0, ɛn, and Sn. 

Based on the results found after analyzing the sensitivity of GTN parameters, I will proceed with 

the Prediction of GTN parameters based on the direct method. 

After determining the most sensitive parameters that will be included in future studies that will 

help us to determine the GTN parameters in a precise manner, the next step is to start the 

application of GTN parameters and predict the failure of the pipeline. 
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However, before reaching the Prediction of the failure of the pipe, it is important to check the 

validity of the GTN model on the material used in this work and how the model will be efficient. 

For this reason, I decided to predict the failure of the single-edge notched tension (SENT) 

specimen to test the model's validity. 

4.2. Application of GTN model to predict the failure of SENT 

The Gurson3Tvergaard3Needleman (GTN) model commonly forecasts material breakdown 

using laboratory specimens.  

It is difficult and time-consuming to identify the GTN parameters directly.  

The GTN model is based on ductile fracture micro-mechanical behavior, which includes void 

nucleation, growth, and coalescence.  

The most common method for determining GTN parameters combines experimental and Finite 

element modeling results. However, it is time-consuming because I must repeat the simulations 

until the simulation data fits the experimental data at the specimen level (axisymmetric tensile 

bar and CT specimens). 

 However, other methods for determining GTN parameters, such as artificial neural networks and 

swarm particle optimization, aim to determine the parameters quickly.  

Based on the fracture toughness test of the CT specimen, I derive the GTN parameters for the 

SENT specimen in this section. 

The SENT specimen was chosen because it may represent the pipe under both uniaxial and 

biaxial stress situations. Clement Soret and colleagues (2015) [69]. 

4.2.1. Determination of GTN parameters from CT specimen test result.  

To anticipate the SENT specimen's ductile failure, I must first establish the GTN parameters, 

which may be done by following these steps: 

" Use Finite Element Simulations to conduct a 3D examination 

" Use Finite Element Simulations to conduct a 3D examination 

" The GTN parameters are determined by combining the experimental and FEM results. 
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Fracture toughness test modeling 

 

Figure 35  CT speicmen geometrie 

The fracture toughness test data is being used to calculate the GTN parameters for the SENT 

specimen. These experiments used compact tension (CT) specimens Fig. 35. 

Based on the literature, I obtained starting values of GTN parameters for steels, as in Table 1. 

I took advantage of the symmetry and created a 3D FEM model for half of the CT specimen, as 

shown in Fig. 36. The FEM model has 58,103 nodes and 51,512 elements. 

Because the gradient of strain and stress is intense near the crack tip, because the upper part of 

the specimen is not, I will proceed to mesh refining near the crack tip, which saves more 

computing time. The mesh size in front of the pre-crack tip is 0.125 mm by 0.0625 mm, and the 

mesh is composed of axisymmetric quadratic elements with eight nodes. Fig. 37 shows that the 

fracture has moved inside the specimen and a contour plot of the void volume fraction. 

The measured force (kN) vs. Crack opening displacement (mm) measurement and the FEM 

simulations are presented in Fig. 38. The starting crack of a0/W = 0.61 was employed in the 

simulations. As a result, COD measurements were taken on the CT specimens' knife-edge 

characteristics in the mouth. Different sets of GTN settings were used in the simulations. 

With the exception of simulation 2, practically all of the simulated force-COD curves are in 

acceptable agreement with the experimental data up to the peak load. As can be seen from the 

curves, the best match in the post-peak stage may be found in simulations 1 and 8 Fig. 39. 

Furthermore, as shown in Fig. 37, the GTN model predicts fracture start and propagation for the 

CT specimen well. 
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Figure 36  FEM of CT specimen 

 
 

Figure 37  (a) The contour plot of the void volume fraction of the deformed specimen ; (b) 

The crack Propagation of the CT specimen 

 

Figure 38  Force-COD curves of 10 simulations 

 

 b 

a b 
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Figure 39  Force-COD curves of simulations 1 and 8 

Table 4 presents the summary of GTN parameters found during the different simulations. 

Table 4 Table of GTN parameters for different Simulations 

 Initial Void 

Volume 

Fraction 

Critical Void 

Volume 

Fraction 

Failure Void 

Volume 

Fraction 

Mean Strain 

for Nucleation 

Standard 

Deviation 

Volume Fraction 

for Void 

Nucleation 

Simulation 1 0.003 0.07 0.35 0.65 0.005 0.3 

Simulation 2 0.003 0.2 0.3 0.3 0.05 0.06 

Simulation 3 0.0032 0.22 0.35 0.3 0.05 0.05 

Simulation 4 0.0015 0.12 0.35 0.3 0.05 0.08 

Simulation 5 0.001 0.15 0.3 0.22 0.05 0.05 

Simulation 6 0.001 0.17 0.32 0.25 0.05 0.05 

Simulation 7 0.001 0.1 0.33 0.17 0.05 0.024 

Simulation 8 0 0.045 0.27 0.2 0. 45 0.05 

Simulation 9 0.001 0.1 0.33 0.165 0.05 0.025 

Simulation 10 0.001 0.1 0.33 0.2 0.05 0.025 

       

By comparing the actual and simulated fracture propagation in Fig. 37. I can remark that the 

crack propagation is similar between the experiment and the simulation. I can predict fracture 

propagation using the GTN parameters used in simulations 1 and 8. 
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By examining the GTN parameters used in simulations 1 and 8, I found that the values used in 

simulation 8 are the ones that are closest to the literature data in Table 1, which means that I will 

predict the failure of the SENT specimen based on the GTN parameters that I got in the 

simulation 8. 

4.2.2. Prediction of Crack propagation for SENT specimen 

I will use the SENT specimen to test the validity of the GTN parameters that I discovered from 

CT simulations. (The experimental data of the SENT specimen will be mentioned in appendix 3) 

The dimensions of the SENT specimen are shown in Fig. 38, and I employ axisymmetry, as I did 

for the CT simulation, and create a 3D model just for the 1/4 of the specimen.  

The FEM model has 75,461 nodes and 68,160 elements in total.  

To eliminate the influence of the mesh's sensitivity on the findings, the mesh size in front of the 

pre-crack tip Fig. 41 is the same as the CT specimen (0.125 mm x 0.0625 mm). The mesh is 

made up of axisymmetric quadratic elements with eight nodes. 

 In Fig. 41, the fracture has progressed inside the specimen, and the contour plot of the void 

volume fraction of the deformed specimen is displayed. 

I perform a FEM simulation using the GTN parameters obtained in simulation 8. The results 

reveal that the simulation curve matches and agrees well (Fig. 43. 

Furthermore, as shown in Fig. 42b, the GTN model accurately predicts fracture start and 

propagation, demonstrating the model's validity once more. 

 

 

Figure 40. Dimension of SENT specimen 
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Figure 41 The 3D FEM of the SENT specimen 

  

Figure 42 (a) the contour plot of the void volume fraction of the deformed specimen ; (b) 

The crack propagation in the SENT specimen 

 

 

 

Figure 43 Force-COD curve 

a b 
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In the next part, I will present the Prediction of the failure of a SENT sample, but this time by 

using an artificial neural network.  

This study checks the validity of the chosen approach, which will be used in the Prediction of the 

pipeline's failure. 

4.2.3. Prediction of failure of SENT specimen based on Artificial Neural 

Network 

Traditionally, the backpropagation approach entails determining the parameters that minimize 

the difference between a finite element method-predicted force and the experimental response. 

The biggest disadvantage of this strategy is that it takes excessive time, especially when several 

tests are utilized.  

I use the ANN model instead of FEM simulations during the optimization loop to overcome this 

limitation. Only the finite element simulations of the experimental tests under consideration are 

employed in training the ANN models. Because the ANN model's projected reaction is virtually 

instantaneous, several tests may be run simultaneously to find the material parameters.  

The optimization strategy aims to reduce the time needed to identify the GTN parameters, which 

normally involve illogical attempts. To do this, I intend to create an optimization model that uses 

the GTN parameters as the input layer and the force (load) as the output layer. I intend to 

accelerate and improve the predictability of the process by building a neural network that 

predicts the GTN parameters. 

I aim to minimize errors when using uploaded data to train a neural network and construct a 

connection between the input and output layers. Then by using experimental data as the output 

data, I will utilize the backpropagation algorithm to forecast input parameters (GTN parameters). 

The network topology, transfer function, and learning method influence the design of a neural 

network.  

Back propagation-trained multilayer perception is one of the most common and adaptable types 

of neural networks. It can handle non-linear models with excellent accuracy. The architecture of 

the ANN model is shown in Fig. 44. It has three layers: the input layer, the concealed layer, and 

the output layer. Each neuron in the hidden layer receives the following total outputs from all of 

the neurons in the input layer: 

n

j ij i j

i

V W x b= +õ                                                                                                                                      Equation 28 
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where 

Vj presents the input to the jth neuron in the hidden layer,  

n refers to the total number of neurons in the input layer,  

Wij is the weight from the ith neuron in the input layer to the jth neuron in the hidden layer, 

 xi is the input to the ith neuron in the input layer,  

and bj is the threshold value of the jth neuron in the hidden layer.  

The output of a neuron in the hidden layer is calculated by applying the potential input to a 

transfer function.  

The sigmoid function shown in (11) is the transfer function between the input and hidden layers. 

1
( )

1 j
i j V
y F V

e
−= =

+
                                                                                                                               Equation 29 

 For the output layer, the output Ãk of the neuron k is given by the relation below: 
m

k jk j k

j

W y b = +õ                                                                                                                                      Equation 30 

Where 

m number of neurons in the hidden layer,  

Wjk is the connection weight from the ith neuron in the hidden layer to the kth neuron in the 

output layer, yj is the output from the jth neuron in the hidden layer, and hk is the threshold value 

of the kth neuron in the output layer. Hamdi & Haykel (2010) [70]] 

 

Figure 44 Multilayer perceptron 
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4.2.4. Methodology and results 

I decided to predict just three GTN parameters to study the validity of GTN parameters and use 

the same optimization approach with the six parameters. 

To estimate the SENT specimen's ductile behavior, I must first establish the GTN parameters, 

which may be done by following these steps: 

" Conduct small-scale experiments (CT, SENT) to collect experimental data.  

" Conduct 3D Numerical Simulations and create a database for neural networks. 

" Using a mix of experimental and FEM data and an Artificial Neural Network, estimate 

the GTN parameters. 

" The software used during the optimization approach is MATLAB 2019 [71] 

CT Specimen modelling 

The fracture toughness test data is used to generate the GTN values for the SENT specimen. 

These tests were carried out on compact tension (CT) specimens, as illustrated in Fig. 35, with 

their dimension also shown. 

I made the model using symmetry and created a 3D FEM model for only half of the CT sample. 

Fig. 45 The Finite element model has 58,103 nodes and 51,512 elements. 

So because fracture propagates and the stress is very strong around the crack tip, unlike the upper 

part of the specimen, I would proceed to mesh optimizing near the crack tip, saving more 

computing time. 

The mesh size in front of the pre-crack tip is 0.125 mm 0.0625 mm, and the mesh is composed of 

axisymmetric quadratic elements with eight nodes. 

In Fig. 46, the crack has spread inside the specimen, and the contour plot of the void volume 

ratio of the deformed sample is displayed. 

 

Figure 45 FEM of CT Specimen 
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Figure 46 Contour plot of the void volume fraction of the deformed specimen 

4.2.4.1. ANN and the creation of the database 

Twenty simulations for CT specimens were performed to generate the database essential to train 

the ANN; for each simulation, I used a different set of GTN parameters, 

The trained ANN model for the CT test has 48 input neurons, 60 hidden neurons, and three 

output neurons (48-60-3).  

The input layer's neurons represent the response force F, and the output layer represents the GTN 

parameters (f0, fc, and ff); these data are generated from the simulations. 

After training the neural network, I could predict the three GTN parameters by applying the 

backpropagation approach; in other words, the trained neural network will predict the GTN 

parameters based on the experimental data of the SENT specimen. 

f0=0.001, fc=0.0052, and ff=0.2027 are the GTN parameters determined by utilizing the ANN. 

The script shown in appendix 5 presents the algorithm of the backpropagation approach used to 

predict the GTN parameters. 

4.2.4.2. Prediction of Crack propagation for SENT specimen 

I will examine the SENT specimen to verify the correctness of the GTN parameters determined 

using CT Simulations. 

The dimensions of the SENT specimen are presented in Fig. 47. Like the CT simulation, I will 

apply axisymmetry and create a 3D model of just 1/4 of the specimen; the FEM model comprises 

75,461 nodes and 68,160 elements. To eliminate the influence of the mesh's sensitivity on the 

findings, the mesh size in front of the pre-crack tip is the same as the CT specimen (0.125 mm 

0.0625 mm). The mesh is built of axisymmetric quadratic elements with eight nodes. The 

contour map of the deformed specimen's void volume percentage in Fig. 48 illustrates how the 

fracture has propagated into the specimen. 
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I do a FEM simulation using the GTN parameters obtained by the ANN; the results indicate that 

the simulation curve closely matches the actual curve and that they agree well (Fig. 49). 

Additionally, as seen in Fig. 48, the GTN model accurately predicts crack extension, 

demonstrating the model's validity once again. 

 

Figure 47 Dimensions of SENT specimen 

  

Figure 48 (a) the contour plot of the void volume fraction of the deformed specimen ; (b) 

The crack propagation in the SENT specimen 

 

Figure 49 Force-COD curve 

a b 
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By analyzing the curve above, it is obvious that ANN estimates the correct values of GTN 

parameters used to predict the failure of the SENT specimen. 

By comparing the experimental and simulation results, I can conclude from the curve analysis 

that the onset of ductile tearing is correctly predicted: 115 kN (simulation) versus 118 kN 

reported in the experimental data. The maximum projected load is 138 kN, and the experiment's 

highest force is 136,7 kN, 

In other words, I was able to approve the validity of the backpropagation approach in this study, 

and I will be able to use it in the prediction of the failure of the pipeline. 

4.2.5. Prediction of Failure of Ferritic pipeline using direct Method. 

The pipe's four-point bending test was reproduced with a through-wall fracture defect Fig. 50 

 

Figure 50  through wall fracture 

Only a quarter of the pipe was meshed to reduce the computation time required due to the high 

number of elements Fig. 51. 

 

 

 

Figure 51  FEM of the quarter of the pipeline 
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The GTN model is only considered in a condensed region for time consumption Fig. 52. 

 

Figure 52 mesh near the crack tip 

The dimensions of the Mockup FP1 are already mentioned in Table 3; to reduce the computation 

time, I decided to model just half of the mockup, thanks to the axisymmetry.  

The FEM model has 104193 nodes and 248038 elements in total. (The experimental data of the 

FP1 are mentioned in Appendix 4). 

To eliminate the influence of the mesh's sensitivity on the findings, the mesh size in front of the 

pre-crack tip is the same as the CT specimen and the SENT, as already mentioned previously 

(0.125 mm 0.0625 mm). The mesh is made up of axisymmetric quadratic elements with eight 

nodes. 

I perform a FEM simulation using the GTN parameters only on the crack propagation area, 

which is the most sensitive part of the model. 

To determine the correct set of GTN parameters, I had to repeat the simulations with a different 

set of GTN parameters and compare the simulation results with the experiment; the correct set of 

GTN parameters is the set of parameters that leads to a correct prediction of the experimental 

results. 

Due to the huge amount of elements in the model, it took around two days of computing for one 

simulation. 

So to get the correct set of GTN parameters, I had to do around 15 simulations; with basic math 

calculation, it took around 30 days of computation, 

The set of GTN parameters was almost the same as the one found for the SENT specimen, which 

approves the assumption that the SENT specimen is a good representative of the pipeline. After 
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15 Simulations, the set of GTN parameters that lead to the correct assumption of experimental 

results is presented below : 

• f0 =0, fc =0.0045,  ff =0.26, fn = 0.06, Sn = 0,44 and ·n = 0.2  

The ferritic mock-up is modelled to have an elastic behaviour (E=203 GPa). 

In Fig. 53 (Force vs. Crack opening displacement) below, I see that the GTN model predicts the 

pipeline's failure very well. It leads us to the right prediction of the crack propagation; in 

addition, the initiation and maximum load are also well predicted. 

 

Figure 53  Force vs. Crack opening displacement 

I can conclude from the curve analysis that the onset of ductile tearing is correctly predicted: 

2255 kN (simulation) versus 2240 kN reported in the experimental data. The maximum projected 

load is 2741.624 kN, which will occur at a CMOD of 22 mm. The experiment's highest force is 

2808 kN, which occurs at a CMOD of 23.42 mm. 

After using the direct method, I noticed that the GTN model was a strong and practical tool. 

However, it took us 30 days to find the right set of parameters, hence the need to find an 

alternative, complementary way to predict the GTN parameters quickly. For this reason, I have 

integrated artificial intelligence into the simulation process and reduced the duration of the 30 

days to 6 hours. 

The next section will describe in detail the work done and the optimization process used to 

determine the GTN parameters that will be used to predict the failure of the pipe in a short time. 
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4.2.6. Prediction of failure of the pipeline using the ANN approach 

As mentioned in the literature review, ANN was used in many fields to improve productivity and 

quality. 

The purpose of using the artificial neural network is to optimize the time consumed during the 

prediction of failure of GTN parameters. 

In the last section, I was able to approve that the GTN tool is a useful tool to predict the failure 

of the pipeline, but it took 30 days; it is important to highlight that in the last section, I used just 

the quarter of the specimen to reduce the computing time, so I can conclude that for complicated 

and sophisticated equipment the simulation period will be much longer than three days. Hence, 

finding another alternative to cover the gap and reduce the time consumed in predicting the GTN 

parameters was necessary.  

4.2.6.1. Simulation and application of ANN work. 

I will use the backpropagation approach in this part, as in section 3.3.4. 

" To estimate the PIPELINE ductile behavior, I must first establish the GTN parameters, 

which may be done by following these steps: 

" Conduct small-scale experiments (NT) to collect experimental data.  

    Make the Finite Element Simulations of the Notch specimen; the reason behind choosing 

Notch tensile specimens is that the simulation will take just 5 to 10 min and I can simulate just a 

quarter of the specimen due to the axisymmetry 

" Conduct 3D Numerical Simulations and create a database for neural networks. 

" Using a mix of experimental and FEM data and an Artificial Neural Network, 

estimate the GTN parameters. 

The illustration below gives a general overview of the prediction process of GTN parameters. 
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Figure 54. Prediction of the failure of the PIPELINE 

Creating accurate GTN parameters for pipeline failure simulations involves multiple steps. 

The approach begins with generalizing the neural network database based on NT specimen 

simulation. This entails gathering information from NT specimens, which gauge a material's 

ability to withstand fracture and applying it to create a generalized neural network database.  

The process's succeeding phases will be built upon this database. 

The next step is to run the backpropagation process.  

Backpropagation is a widely used optimization algorithm in machine learning that involves 

updating the weights of a neural network to minimize the error between the predicted output and 

the actual output.  

In this case, I use the backpropagation process to predict the GTN parameters (material 

properties related to ductile fracture) based on the experimental data of the pipeline that I 

implemented into the output layer of the neural network.  
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During the training phase, the backpropagation process propagates the error signals from the 

output layer to the neural network's input layer. 

Once I have obtained the GTN parameters, I must verify their accuracy in predicting pipeline 

failure. I use the MARC Mentat software to simulate the pipeline's failure based on the GTN 

parameters I obtained to achieve this.  

This simulation shows whether the GTN parameters I obtained are sufficient for accurately 

predicting pipeline failure. 

Overall, the process involves using data from NT specimens to train a neural network, using the 

backpropagation algorithm to predict GTN parameters based on experimental data of the 

pipeline, and verifying the accuracy of the GTN parameters by simulating pipeline failure using 

MARC Mentat software. 

4.2.6.2.  NT Specimen modeling 

The simulation and geometry of the NT specimen are indicated in Fig. 55; the reason behind 

choosing the NT specimen is the short time of computation, which leads us to generate a 

significant database to train the neural network. 

To find the GTN parameters using ANN, I made 60 simulations of the NT specimen. 

The database was generated in 300 minutes, and each simulation took around 5 minutes. 

The simulations were done with a different set of GTN parameters based on the data in Table 1. 

 

Figure 55. notch specimen and simulation 
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The mesh size in front of the pre-crack tip is 0.125 mm 0.0625 mm, and the mesh is composed of 

axisymmetric quadratic elements with eight nodes. 

4.2.6.3. ANN and the creation of the database  

As mentioned, sixty simulations for NT specimens with different GTN parameters were 

performed to generate the database essential to train the ANN. 

The trained ANN model for the CT test has 200 input neurons, 75 hidden neurons, and six output 

neurons (200-75-6). The displacements of a reference point chosen in the specimen's border 

corresponding to the provided values of the response force F are represented by the neurons of 

the input layer, and the GTN parameters to be identified are represented by the neurons of the 

output layer (f0, fc,ff, fn, Sn and ·n). 

I estimated the GTN parameters after training the Neural Network based on the NT simulation 

data until I reached the point that the neural network proceeded as a simulation tool, which led to 

the GTN parameters prediction. 

The next step is to enter the experimental data of the pipeline, and the neural network will do the 

job and predict the GTN parameters corresponding to the pipeline in a few minutes. 

f0=0, fc=0.0045,  ff=0.25, fn= 0.05, Sn = 0,45 and ·n = 0.2 are the GTN parameters determined 

using the ANN. 

In appendix 6, I do present the script behind the ANN model. 

4.2.6.4. Prediction of Crack propagation for pipeline specimen 

 The main step now is to predict the pipeline's failure based on the GTN parameters in the last 

paragraph. 

The dimensions of the Mockup FP1 are already mentioned in experiment part 6; to reduce the 

computation time, I decided to model just half of the mockup; *I used axisymmetry.  

The FEM model has 104193 nodes and 248038 elements in total.  

To eliminate the influence of the mesh's sensitivity on the findings, the mesh size in front of the 

pre-crack tip is the same as the CT specimen and the NT as already mentioned previously (0.125 

mm 0.0625 mm), and the mesh is made up of axisymmetric quadratic elements with eight nodes. 

I do a FEM simulation using the GTN parameters obtained by the ANN; the results indicate that 

the simulation curve closely matches the actual curve and that they agree well Fig. 56 

. 
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Figure 56. experimental and simulation results 

By analyzing the curve above, it is obvious that ANN estimates the correct values of GTN 

parameters used to predict the failure of the SENT specimen. 

It is noticeable that the curve found by ANN is not fully fitting the experimental data, especially 

at the end of the curve; this phenomenon is related to the database used to train the network. 

I decide to run a Statical comparison between the ANN and direct method for FP1. 

1. Descriptive statistics: The mean, median, standard deviation, and range for the load force 

results obtained from the direct method and the artificial neural network method are 

shown in the table below: 

Method Mean Median Standard Deviation Range 

Direct 50.82 51.29 3.01 14.55 

ANN 50.50 50.44 3.19 13.91 
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2. Normality testing: I performed The Shapiro-Wilk test to check the normality of the data. 

The results indicate that the load force results obtained from both methods are normally 

distributed (p > 0.05). 

I first computed the load force results for the direct and ANN techniques before doing the 

Shapiro-Wilk test.  

The Shapiro-Wilk test was employed in this study to check the normality of the load force data 

produced using the direct technique and the ANN approach. I concluded that the data were 

normally distributed and I found that the p-value is higher than 0. 05. 

In the next step I decided to study the accuracy of the ANN, direct method with the experimental 

data by using MAE, RMSE and the R2. 

- Mean Absolute Error (MAE): The MAE is a metric that assesses the standard deviation 

between expected and observed values. It is derived by averaging the absolute disparities 

between the values that were anticipated and those that occurred. The model performs better in 

terms of prediction when the MAE is lower. 

- Root Mean Squared Error (RMSE): The RMSE is a metric that assesses the average squared 

variation between the expected and actual values. The average of the squared discrepancies 

between the expected and actual values is considered in its calculation. The model performs 

better in terms of prediction the smaller the RMSE.  

- the R2 value (s) is an indicator of how much of the variance in the dependent variable can be 

predicted by the independent variable. Higher values indicate stronger prediction skill; it ranges 

from 0 to 1. The R2 value of 1 indicates that the model perfectly fits the data, while an R2 value 

of 0 indicates that the model does not explain any of the variability in the data. 

At the end I found that the Artificial Neural Network (ANN) technique outperformed the Direct 

method in forecasting the GTN results. In comparison to the Direct approach, the ANN model 

had significantly lower Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and R-

squared values. In comparison to 12.958 and 16.128 for the Direct technique, the MAE and 

RMSE values for the ANN method were 6.853 and 8.195, respectively. With the ANN and 

Direct approaches, the R-squared values were 0.962 and 0.855, respectively. Therefore, the ANN 

method is recommended for future GTN parameters predictions. 

Based on these results, it can be concluded that there is no significant difference between the 

load force results obtained from the direct method and the artificial neural network method. 

To confirm the validity of GTN parameters found in the previous study, I decided to predict the 

failure of another mockup  
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The second Mock-up will have the same geometry and loading as the first mockup, which I 

already mentioned previously but will have irregularly shaped initial flaws for the first mockup, 

the crack introduced through-wall FP1, but for the second mockup, the initial defect was in 

surface fractures FP2  Fig. 57 The crack is introduced in all cases using EDM and fatigue pre-

cracking.  

 

Figure 57  initial crack defect FP2 

The geometry of the second mockup is presented in table 2. 

The ferritic mockup is modeled in Fig. 58 to have an elastic behavior (E=203 GPa).  

 

Figure 58 Simulation of the second mockup 

Based on what I found in the previous section regarding the FP1 mockup, I will use the same 

trained model to determine the GTN parameters that will be used to predict the failure of the 

second pipeline FP2. I will need to use the corresponding experimental data for FP2. 
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In Fig. 60 (Force vs. Crack opening displacement) below, the GTN model predicts the pipeline's 

failure very well. It leads us to the right prediction of the crack propagation, especially at the 

cleavage initiation. 

The crack initiation for the mockup FP2 is presented in the Figure below  

\  

Figure 59 crack initiation 

It is important to highlight that the initiation and maximum load are well predicted.    

I can conclude from the curve analysis that the onset of ductile tearing is correctly predicted: 

2660 kN (simulation) versus 2705 kN reported in the experimental data. The maximum projected 

load is 2840 kN, and the experiment's highest force is 2840 kN, 

 

 

Figure 60 Load vs. Crack opening displacement of fp2 
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Remarks and Interpretation :  

- The GTN model is a practical tool that can be used in the nuclear industry to improve the 

realibility of the failure prediction of real components that is essentially needed in nuclear 

industry to improve its safety without over conservatism. 

- The backpropagation algorithm was a robust optimization tool that reduced prediction 

time from 30 days to six hours. This improvement can be attributed to the developed 

optimization approach. While the direct method is a standard approach for determining 

GTN parameters, this method can involve arbitrary numbers and require multiple 

simulations to obtain a suitable set of parameters. In contrast, the developed optimization 

approach enabled us to derive a precise set of GTN parameters from a single pipeline 

simulation, thereby saving significant time and computational resources. Specifically, 

when dealing with unsymmetric geometries with intricate dimensions, the direct method 

can be highly inefficient, requiring several months to derive the correct set of parameters. 

The optimization approach overcomes this limitation by enabling GTN parameter 

prediction for complex geometries solely based on simulating NT specimens made of the 

same material 

- An increase in the training data will be needed to face the convergence issue and find 

more precise predictions. 

- Due to the critical area from which I take the specimen for fracture toughness tests, the 

specimen size is a critical obstacle. The subsidized specimens can be used instead of 

normal-sized specimens to overcome such issues. 

- One of the critical issues of the GTN model is the number of parameters that we need to 

find. They depend on the type of the material and the load conditions, making it critical to 

find the exact set of GTN parameters. 

- Predicting the pipeline's maximum load and crack propagation was crucial, which is the 

main purpose of avoiding pipeline failure. 

- Lately, the tendency is toward applying the complete GTN model, which was not the 

purpose of this thesis, but the same calculation can be done using the complete GTN 

model. 

In the next chapter, I will give a general overview of the subsidized specimen and determine 

the J-R curves; further studies will be done to predict the failure of the pipeline using the 

subsidized specimen. 
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5. General overview of the subsidized specimen and determination of J-R 

curves 

5.1. Introduction 

Nowadays, fracture mechanics has been employed for decades, and procedures for standard-

sized specimens are well established.  

Because it was created primarily to evaluate massive structures against brittle failure, 

standardized specimens are currently rather large. 

However, these standard specimens are impractical in many circumstances due to the size 

constraints imposed by the experimental material or the component under consideration.  

These examples include determining local qualities and evaluating the mechanical properties of 

newly produced materials under laboratory circumstances.  

As a result, new techniques utilizing much smaller specimens must be developed. Processes 

utilizing smaller specimens must be offered, with their validity limitations and relationship to 

standardly acquired results, to provide a solution for a wide range of applications. 

Mechanical properties, such as fracture toughness for brittle fractures, are determined using 

standard standards (ASTM E1820, E399). These standards state that specimen size restrictions 

are required for testing. The conditions cannot be met in rare circumstances, such as with 

irradiated specimens or restricted material sources. 

It is important to highlight that the sub-size specimens do not meet the size criteria of the 

standard ASTM E1820 (2011).  

Employing small-size or even miniature mechanical specimens is becoming increasingly 

common due to the potential to optimize material usage, particularly where material availability 

is a concern or space inside irradiation facilities is restricted. 

The purpose of this section is to test non-standard specimen sizes and explain the fracture 

mechanism using the finite 3 element and the GTN model; in addition, it will be possible to 

ensure that the size will not affect the prediction process, which might lead to further studies to 

predict the failure of PIPELINE using small scale specimen. 

This section of the Ph.D. studies is part of a European project called FRACTESUS (Fracture 

mechanics testing of irradiated RPV steels using sub-sized specimens); FRACTESUS is 

approved as a project in the EURATOM Work Programme 2019-2020 in the section NFRP-04: 

Innovation for Generation II and III reactors. The project frames the overall H2020 program to 
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improve nuclear safety continually, security, and radiation protection, notably contributing to the 

long-term decarbonization of the energy system in a safe, efficient, and secure way. 

FRACTESUS also adheres to the three H2020 priorities: Excellent science, Industrial leadership, 

and Societal challenges [72]. 

Small-scale specimens are crucial in examining the characteristics of irradiated materials. The 

use of tiny specimens has several advantages. Across most cases, just a tiny amount of material 

may be irradiated in a reactor under ideal temperature, neutron flux, and dosage. A tiny amount 

of irradiated material may also make specimen handling simple. Smaller specimens contain less 

radioactive material, reducing worker exposure and trash disposal. 

On the other hand, the utilization of tiny specimens raises many obstacles. These difficulties are 

related to adequate consideration for structural parameters and the transferability of tiny 

specimen data to the actual structures of interest. The most often used sample shape in 

surveillance programs is the Charpy V-notch specimen. 

Any fracture toughness specimen made from the broken standard Charpy specimens may be used 

to evaluate reactor pressure vessels. 

The most frequent specimen shape used in nuclear safety programs is the Charpy V-notch 

specimen.  

The Mini-CT specimen approach has the benefit of having the same cross-section (10x10 mm) 

as a regular Charpy specimen, allowing it to be created from a simple slice of a damaged Charpy 

specimen. 

5.2. Geometries and simulation 

Materials from both eastern and western-type reactor pressure vessels are included in the test 

matrix. Included are plates, forgings, and weld metals. Low-alloy steels that have been 

purposefully enriched in copper, phosphorus, nickel, and manganese have chemical 

compositions that range from fairly pure.  

Steels that have been irradiated, annealed, and re-irradiated are included, albeit most of the 

materials are unirradiated. According to earlier tests, the reference temperature T0 for 

unirradiated materials ranges from -134°C to +8°C, while the irradiated materials have even 

higher T0 values. 

The chemical properties of the material used in the project are presented in the Table below. 
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Table 5 List of materials to be used in FRACTESUS [72]. 

Material Type Cu [wt%] P [wt%] Ni [wt%] Mn [wt%] Fluence [E19 n/cm²] T0 [°C] 

15Kh2MFAA BM 0.05 0.01 0.1 0.49 0 -104 

15Kh2MFAA BM 0.05 0.01 0.1 0.49 
I1 = 20 (E > 0.5MeV) 

(at 270°C) TBD 

15Kh2MFAA BM 0.05 0.01 0.1 0.49 I1A (Annealed at 470°C) TBD 

15Kh2MFAA BM 0.05 0.01 0.1 0.49 
I1A I2 = 20 (E > 0.5MeV) 

(at 270°C) TBD 

A533B (JRQ) BM 0.14 0.018 0.83 1.39 0 -71 

A533B LUS (JSPS) BM 0.24 0.028 0.43 1.52 0 +8 

ANP-4 BM 0.05 0.006 0.84 0.85 4 (at 280°C-286°C) -78 

SA 533 B1 (MVE) BM 0.041 0.005 0.632 1.42 0 -119 

SA508 Cl.3 BM 0.04 0.008 0.93 1.37 0 -43 

10KhMFT WM 0.11 0.047 0.14 1.16 IA -11.6 

10KhMFT WM 0.11 0.047 0.14 1.16 1.6 (I) (at 270°C) 74.4 

73W WM 0.31 0.005 0.6 1.55 0 -64 

73W WM 0.31 0.005 0.6 1.55 1.5 (E>1MeV) (at ~288°C) 34 

ANP-5 WM 0.22 0.015 1.11 1.14 0 -38 

 

The geometry of the mini CT specimen (W=8, a0/W=0.5, B=4 mm) is presented in Fig. 61. 

 

Figure 61 Mini CT specimen 
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As long as the local approach will be used in this study, the refinement of the mesh size near the 

crack tip will be crucial, as shown in the Figure below. 

A refined zone size is chosen before the crack tip; the number of elements in this refined zone is 

50 along the X-axis. Each element in this refined zone contains 12 radial elements along the 

quarter circle of radius five μm that describes the crack tip.  

 

 

Figure 62 mini CT specimen 

 

 

Figure 63 meshing near the crack tip 

The type of material used in this work is RPV steel. 

The simulations were carried out in MSC marc software utilizing an elastic-plastic material 

model with multi-linear hardening and viscous stabilization for all continuum elements. The 

mesh is composed of axisymmetric quadratic elements with eight nodes. 

Because of the axisymmetry, I created a 3D FEM model for half of the MCT specimen, as shown  
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in Fig. 63, The FEM model has 18078 nodes and 14,952 elements. 

The geometry of the Large specimen (1T-CT) is presented conforming to ASTM E1921 standard 

{73], specimen geometry is as follows: W=50.8 mm, a0/W=0.5, B=0.5, W=25.4 mm. 

The  Isotropic elasticity parameters of the large and mini CT specimens data can be found in 

Appendix 7. 

The geometry of the large specimen is presented in the Figure below. 

 

Figure 64 Large-scale specimen 

To avoid the mesh sensitivity, the same parameters of the mesh size near the crack tip were also 

used for the large specimen like the subsidized specimen, 

 

Figure 65 Large CT specimen 
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5.3. Determination of J-R curves for the mini CT and large CT specimen. 

The crack length at the appropriate loading level must be known to determine the J-R curve.  

There are essentially two methods: single-specimen and multiple-specimen.  

The multiple specimen test method involves loading many "similar" specimens to varying levels 

and visually measuring the achieved crack lengths at the fracture surface. In the instance of the 

single-specimen approach, three commonly used single-specimen test procedures were created 

with fracture lengths monitored during the test to acquire a complete range of crack lengths for J-

R curve determination from a single specimen. 

 The elastic unloading compliance method is the most frequently employed among the single-

specimen approaches. Another approach is the electrical potential drop, the normalization 

method in ASTM 1820 [74]. 

As it is difficult to determine the J-R curve experimentally, new options for doing so are being 

investigated. A numerical simulation is one of these options.  

A suitable model representing the material's actual behavior after damage (the crack 

propagation) is required to produce a trustworthy J-R curve.  

The GTN model allows for the numerical simulation of crack formation, the calculation of crack 

length increment, and the simulation of load-line displacement, which makes it possible to 

determine the J integral.  

The GTN model was implemented as a subroutine in the finite element method program Marc 

Mentat. 

The next step is to use MARC Mentat to determine and compare the J-R curve with the 

experimental data for the mini CT and large specimen. 

The following parameters got applied: Poisson’s ratio = 0.3 and E= 202563 MPa Young’s 

modulus. 

The curves below show that results found using the simulation fit the experiments very well, 

except in the case of the Mini CT specimen, a slight difference is shown at the simulation. 
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Figure 66 J-R curves for small-scale and large-scale specimens 

Remarks : 

As already mentioned, this thesis will not focus on the small-scale specimen. However, it will 

open the doors for further studies on this topic and how to implement the artificial neural 

network in determining GTN parameters based on small-scale specimen. 

As already shown before, the time consumed by using large NT species was 6 hours. With the 

scale specimen, the duration will be shorter. The general overview related to the small-scale 

specimen was to show the importance of the specimen size in a critical area such nuclear field. 
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6. Main conclusions and future work : 

➢ The GTN model is a great and strong tool that can be used in the field of nuclear safety to 

predict the ductile failure of the pipelines used in the nuclear power plants 

➢ To show the validity of the GTN model in my studies, I decided to start by predicting the 

failure of the SENT specimen, and the results show the possibility of using the model in 

this research. 

➢ To be able to use the GTN model, it is important to determine eights parameters; based 

on the previous studies, the values of two parameters are almost fixed ( q1 and q2); the 

problem is with the determination of the other six parameters, which basically should not 

be random values. Still, they should respect the values found in the literature review ( 

TABLE 1); during this thesis, I studied the sensitivity of GTN parameters to find the 

most sensitive parameters, which could affect the determination process of GTN 

parameters. 

➢ Finding the parameters that are the most sensitive would be advantageous since it would 

enable us to avoid big changes in their values and prevent their significant influence on 

the results. 

➢ The direct method of determining GTN parameters is the combination of the 

experimental and finite element results; this method was used to predict the failure of the 

SENT specimen and pipeline; after analyzing the results, I got two main conclusions:  

" The first one is the efficiency of the GTN model; I could predict the failure of the 

SENT specimen and the pipeline. 

" The second conclusion is the time consumed during the determination of GTN 

parameters, and it was a huge disadvantage because I needed 30 days to predict 

GTN parameters, which is a long time because of a simple reason that during the 

simulation, We used just the quarter of the sample, so for more sophisticated 

equipment where it is not possible to apply the axisymmetric, the time consumed 

will take months instead of days or hours 

➢ Based on the two conclusions mentioned above, it was necessary to find a solution for the 

time consumed during the determination of GTN parameters; that is why I decided to 

include the artificial neural network in the process, the results that I found show that the 
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backpropagation approach was a magical solution, to determine GTN parameters in 6 

hours instead of 30 days. 

➢ More studies must be done with other geometries to study the backpropagation approach 

and confirm its validity. 

➢ Based on the backpropagation approach, I would suggest a detailed study with different 

specimens to predict GTN parameters and determine pipeline failure and other 

sophisticated equipment. 
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NEW SCIENTIFIC RESULTS – THESES 

T1- The validation of the GTN model was crucial to its use in this work. Using the direct method, I 

achieved a perfect fit between the predicted results and experimental data using the GTN model. 

However,  I had to deal with the issue of sensitivity, which required a detailed study of the variation in 

the effect of the parameters to slight changes in their values. To address this, I conducted 120 

simulations and demonstrated how the parameters behave, which will be valuable for future 

researchers in this field, as a new result based on this study I concluded that the main sensitive 

parameters are f0, ɛn, and Sn [P1] [P2] [P3] [P4]    

 

T2- This study presents a novel optimization approach for determining GTN parameters based on 

backpropagation, which was found to significantly reduce the calculation time from 30 days to just 6 

hours. The results of this approach provide accurate values of GTN parameters and enable accurate 

predictions of crack behaviour in pipelines, which is of paramount importance for improving nuclear 

safety guidelines in the industry. Overall, our study contributes to the development of more efficient 

and accurate methods for predicting GTN parameters and crack behaviour, with potential applications in 

various industries.[P5] [P6]   

 

T3- The ANN method is found to have outperformed the Direct method with significantly lower MAE, 

RMSE, and higher R-squared values. Therefore, the ANN method is recommended for future GTN 

parameters predictions. 
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Appendix 1 : Experimental data of the notch specimen 

Delta d F  

[mm] [kN] 

0 0 

0.01 34.83534 

0.02 45.18026 

0.04 47.24188 

0.06 48.61351 

0.08 49.78671 

0.1 50.86936 

0.15 53.10072 

0.2 54.75775 

0.25 56.0959 

0.3 57.12562 

0.4 58.46837 

0.5 59.24279 

0.6 59.60572 

0.7 59.68639 

0.8 59.5714 

1 58.95754 

1.2 58.06949 

1.4 56.94097 

1.8 54.33155 

2.2 51.3945 

2.6 48.26352 

2.92 45.17356 
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Appendix 2 : Experimental data for the CT 1881 Speicmen  

CMOD Force 
        

    
        

[mm] [kN] 
        

0 0 
        

0.03841 4.29404 0.629462 41.482 0.915826 43.8268 1.203236 44.5434 1.491388 44.032 

0.076844 8.54808 0.640438 41.6352 0.926864 43.8816 1.21427 44.6422 1.502426 44.1632 

0.11532 12.69356 0.65142 41.7804 0.937892 43.9608 1.225388 44.5082 1.513582 43.9436 

0.153853 16.67794 0.662406 41.9174 0.948934 44.01 1.236418 44.6284 1.524614 44.095 

0.192457 20.469 0.673396 42.0476 0.959962 44.0884 1.247534 44.5012 1.535772 43.8806 

0.231142 24.0362 0.68439 42.1712 0.971014 44.1146 1.258574 44.5928 1.546808 44.0212 

0.269912 27.3104 0.695388 42.2828 0.982054 44.1676 1.269684 44.4864 1.55795 43.8568 

0.308752 30.219 0.706438 42.2894 0.993112 44.185 1.280714 44.6106 1.568996 43.9754 

0.347706 32.688 0.71746 42.3558 1.004164 44.2102 1.291848 44.4384 1.580146 43.7838 

0.386828 34.7616 0.728476 42.4322 1.015202 44.2744 1.302872 44.5812 1.591194 43.8996 

0.426108 36.4976 0.739494 42.5122 1.02626 44.2908 1.313998 44.4324 1.602354 43.684 

0.465524 37.9748 0.750516 42.5788 1.037296 44.357 1.325026 44.568 1.613402 43.7994 

0.47646 38.1768 0.761534 42.6606 1.048354 44.3744 1.336162 44.3878 1.624546 43.6344 

0.487346 38.487 0.772544 42.7582 1.059394 44.4374 1.347184 44.5452 1.6356 43.7404 

0.49823 38.8044 0.783554 42.8572 1.07046 44.441 1.358326 44.3548 1.646744 43.5744 

0.509126 39.1038 0.79457 42.9462 1.081494 44.5174 1.36935 44.5054 1.657802 43.67 

0.520028 39.3872 0.805584 43.0406 1.092584 44.45 1.3805 44.293 1.668956 43.4788 

0.530938 39.6552 0.816604 43.1226 1.103626 44.5184 1.391524 44.4526 1.680016 43.5702 

0.541858 39.9072 0.827622 43.213 1.114706 44.495 1.402674 44.2382 1.69116 43.418 

0.552786 40.144 0.838646 43.2884 1.125754 44.539 1.413704 44.385 1.702222 43.5028 

0.563722 40.367 0.849664 43.3796 1.136834 44.515 1.424848 44.195 1.713386 43.2932 

0.574664 40.5786 0.86069 43.4512 1.147876 44.582 1.435878 44.341 1.724438 43.4116 

0.585612 40.779 0.871712 43.5374 1.158968 44.5306 1.447034 44.1142 1.735596 43.2192 

0.596566 40.9692 0.882742 43.605 1.170006 44.5986 1.45806 44.2742 1.746648 43.3458 

0.607526 41.1494 0.893766 43.6872 1.181098 44.539 1.469202 44.0988 1.757828 43.0874 

0.618492 41.32 0.904798 43.7512 1.19214 44.615 1.48024 44.2252 1.768876 43.2246 
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Appendix 3 : Experimental data of SENT specimen 

COD Force 
        

[mm] [kN] 
        

0 0 0.262684 109.1806 0.597472 130.6268 0.920082 139.797 1.235874 145.6538 

0.006731 5.33322 0.274792 110.6884 0.609166 131.0536 0.931456 140.0478 1.24706 145.8262 

0.01345 10.66976 0.286924 112.0684 0.620848 131.4702 0.942822 140.295 1.25824 145.9964 

0.020188 15.99726 0.299056 113.348 0.632514 131.8778 0.95418 140.5384 1.269414 146.1644 

0.026999 21.2976 0.311192 114.5328 0.644162 132.2758 0.965532 140.7784 1.280582 146.3304 

0.033896 26.5648 0.323328 115.6402 0.655794 132.6648 0.976876 141.0152 1.291744 146.4946 

0.040911 31.7862 0.335452 116.6762 0.667412 133.0454 0.988216 141.2486 1.3029 146.6568 

0.04808 36.947 0.347564 117.653 0.679018 133.4176 0.999548 141.4788 1.314052 146.8174 

0.055439 42.0326 0.359658 118.5734 0.690608 133.7812 1.010872 141.7056 1.325196 146.976 

0.063021 47.0274 0.371736 119.4412 0.702186 134.1374 1.022186 141.9294 1.336336 147.133 

0.070833 51.9242 0.383796 120.2634 0.71375 134.486 1.033494 142.1498 1.34747 147.288 

0.078968 56.677 0.395838 121.0442 0.725302 134.828 1.044792 142.367 1.358596 147.4412 

0.087455 61.2672 0.407864 121.7878 0.736844 135.1638 1.056082 142.5808 1.369718 147.5928 

0.09632 65.6736 0.41987 122.501 0.748374 135.4936 1.067366 142.792 1.380834 147.7428 

0.105567 69.8822 0.431858 123.1844 0.759892 135.8172 1.078644 143.0004 1.391944 147.891 

0.115161 73.9038 0.44382 123.8382 0.771402 136.1348 1.089916 143.206 1.40305 148.0372 

0.125142 77.7074 0.45576 124.4674 0.782902 136.4472 1.101182 143.4088 1.41415 148.1818 

0.135435 81.3282 0.46768 125.0728 0.79439 136.7536 1.11244 143.6088 1.425246 148.3248 

0.146035 84.7612 0.47958 125.6566 0.805866 137.0544 1.123694 143.8066 1.436334 148.4662 

0.156913 88.0162 0.491458 126.222 0.81733 137.3498 1.134944 144.002 1.447416 148.6062 

0.168038 91.1 0.503316 126.7708 0.828786 137.64 1.146184 144.1948 1.458492 148.7446 

0.179391 94.0186 0.515154 127.3032 0.84023 137.9252 1.157416 144.3852 1.469564 148.8816 

0.190954 96.7664 0.52697 127.8202 0.851666 138.2058 1.168646 144.5732 1.48063 149.0168 

0.20269 99.3196 0.538764 128.3214 0.863092 138.4818 1.179866 144.7588 1.49169 149.1506 

0.214548 101.6804 0.55054 128.8082 0.874508 138.7536 1.19108 144.9424 1.502746 149.2828 

0.2265 103.8248 0.5623 129.2822 0.885916 139.0208 1.202286 145.1234 1.513798 149.4134 

0.238526 105.7656 0.57404 129.7424 0.89731 139.2836 1.213486 145.3022 1.524844 149.5424 
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0.250594 107.5388 0.585764 130.1898 0.908698 139.5422 1.224682 145.4792 1.535884 149.67 

Appendix 4 : Experimental of the mockup FP1 

COD Force 
        

[mm] [kN] 
        

0 0 0.839178 1860.764 1.837056 2301.228 2.3236 2402.812 2.84936 2482.424 

0.039129 155.9668 0.860478 1877.22 1.846654 2303.708 2.33388 2404.688 2.86078 2483.88 

0.078561 311.6304 0.882066 1893.388 1.856208 2306.184 2.34496 2406.436 2.87202 2485.36 

0.118744 467.048 0.903956 1909.112 1.865918 2308.62 2.3553 2408.304 2.88342 2486.816 

0.160501 622.864 0.926156 1924.604 1.87567 2311.04 2.36604 2410.108 2.89482 2488.26 

0.204956 779.216 0.948664 1939.764 1.885794 2313.392 2.37666 2411.984 2.90626 2489.696 

0.25366 936.468 0.97149 1954.592 1.895656 2315.776 2.38738 2413.756 2.91772 2491.12 

0.261164 961.608 0.99465 1969.12 1.905766 2318.108 2.3983 2415.492 2.92958 2492.484 

0.269414 986.684 1.01817 1983.34 1.915568 2320.476 2.40872 2417.292 2.94062 2493.964 

0.277876 1011.66 1.042066 1997.188 1.92556 2322.804 2.41974 2419.004 2.95256 2495.312 

0.286538 1036.46 1.066274 2010.88 1.935236 2325.164 2.43006 2420.828 2.96386 2496.744 

0.295392 1061.32 1.090818 2024.264 1.945158 2327.524 2.44084 2422.632 2.9759 2498.068 

0.304464 1086.068 1.115686 2037.432 1.954722 2329.872 2.45128 2424.416 2.98704 2499.508 

0.313738 1110.804 1.140852 2050.352 1.964622 2332.156 2.46208 2426.12 2.99906 2500.832 

0.323244 1135.424 1.166288 2063.02 1.974324 2334.46 2.47296 2427.812 3.0106 2502.208 

0.332986 1159.988 1.191944 2075.432 1.98428 2336.712 2.4837 2429.592 3.02254 2503.532 

0.34298 1184.484 1.21783 2087.588 1.994216 2338.976 2.49468 2431.26 3.03398 2504.916 

0.353236 1208.932 1.243984 2099.456 2.00438 2341.196 2.50536 2432.968 3.04558 2506.28 

0.363772 1233.232 1.270368 2111.096 2.01444 2343.42 2.51628 2434.7 3.05772 2507.568 

0.374586 1257.484 1.296954 2122.492 2.02456 2345.624 2.52698 2436.38 3.069 2508.964 

0.38578 1281.664 1.323674 2133.696 2.03458 2347.832 2.53772 2438.064 3.0812 2510.236 

0.39725 1305.692 1.350574 2144.688 2.0446 2350.032 2.54854 2439.784 3.09224 2511.656 

0.409038 1329.576 1.377684 2155.492 2.05442 2352.256 2.55934 2441.496 3.1051 2512.836 

0.421176 1353.272 1.405008 2166.1 2.06478 2354.384 2.57056 2443.076 3.11624 2514.24 

0.43366 1376.776 1.432496 2176.604 2.0746 2356.584 2.5816 2444.732 3.12854 2515.484 

0.44649 1400.036 1.460198 2186.96 2.08492 2358.756 2.59252 2446.456 3.13972 2516.876 

0.459674 1423.06 1.488158 2197.18 2.09472 2360.928 2.60372 2448.068 3.15196 2518.112 

0.47322 1445.84 1.51639 2207.188 2.10488 2363.036 2.61456 2449.752 3.16348 2519.44 
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0.487128 1468.372 1.545046 2216.96 2.1147 2365.188 2.62582 2451.272 3.1756 2520.688 

0.501402 1490.672 1.573536 2226.58 2.12488 2367.268 2.6367 2452.808 3.18738 2521.976 

0.516068 1512.748 1.602298 2235.988 2.13472 2369.408 2.6478 2454.448 3.1992 2523.256 

0.531108 1534.564 1.631596 2245.144 2.14502 2371.476 2.65844 2456.14 3.21114 2524.516 

0.546504 1556.12 1.660366 2254.256 2.155 2373.58 2.67038 2457.652 3.22298 2525.784 

0.562226 1577.4 1.689366 2263.172 2.1655 2375.6 2.68104 2459.328 3.2354 2526.968 

0.578258 1598.392 1.700306 2265.64 2.1754 2377.692 2.69262 2460.876 3.24664 2528.312 

0.594592 1619.088 1.712002 2267.956 2.18624 2379.632 2.70326 2462.536 3.25934 2529.46 

0.611218 1639.464 1.721496 2270.616 2.1963 2381.66 2.71448 2464.116 3.2707 2530.772 

0.628164 1659.54 1.732016 2273.096 2.20704 2383.62 2.7253 2465.744 3.2831 2531.948 

0.645464 1679.348 1.741452 2275.736 2.21694 2385.628 2.73654 2467.308 3.29438 2533.264 

0.663132 1698.908 1.751464 2278.272 2.22776 2387.504 2.74786 2468.84 3.30712 2534.388 

0.681196 1718.14 1.760982 2280.872 2.23778 2389.468 2.75896 2470.396 3.31836 2535.724 

0.699624 1737.052 1.770876 2283.448 2.24868 2391.308 2.7704 2471.9 3.33124 2536.808 

0.718422 1755.672 1.780312 2286.024 2.25866 2393.28 2.78136 2473.464 3.34286 2538.052 

0.737626 1773.964 1.789836 2288.572 2.26934 2395.14 2.79322 2474.9 3.35528 2539.212 

0.75721 1791.932 1.799246 2291.124 2.28146 2395.288 2.80388 2476.492 3.36716 2540.432 

0.77718 1809.576 1.808664 2293.664 2.2918 2397.2 2.81566 2477.924 3.37912 2541.644 

0.797504 1826.912 1.818054 2296.204 2.30248 2399.12 2.82656 2479.476 3.39152 2542.792 

0.818174 1844.008 1.827548 2298.724 2.31276 2401.02 2.83822 2480.916 3.40312 2544.036 

 

 

3.4155 2545.18 4.00996 2594.432 4.63592 2631.504 5.29062 2660.732 5.98494 2683.216 

3.42728 2546.396 4.02302 2595.256 4.64938 2632.172 5.30488 2661.24 6.00192 2683.428 

3.43948 2547.552 4.03538 2596.164 4.6627 2632.848 5.3182 2661.848 6.0152 2684.068 

3.45114 2548.776 4.04876 2596.952 4.67638 2633.516 5.33268 2662.332 6.03178 2684.296 

3.46342 2549.912 4.06124 2597.844 4.68914 2634.24 5.34572 2662.964 6.0445 2684.98 

3.47562 2551.06 4.074 2598.696 4.70318 2634.82 5.3613 2663.364 6.06092 2685.272 

3.48764 2552.22 4.08654 2599.58 4.71612 2635.532 5.37404 2664.016 6.07404 2685.956 

3.50048 2553.276 4.0991 2600.452 4.73046 2636.096 5.38924 2664.4 6.09144 2686.124 

3.5121 2554.476 4.11194 2601.292 4.74284 2636.888 5.40204 2665.048 6.10484 2686.78 
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3.52468 2555.56 4.12544 2602.052 4.75724 2637.428 5.4176 2665.412 6.12114 2687.076 

3.53668 2556.712 4.13828 2602.888 4.76976 2638.188 5.43078 2666.032 6.13394 2687.748 

3.54954 2557.748 4.15146 2603.684 4.78394 2638.76 5.44684 2666.344 6.15098 2687.964 

3.56146 2558.896 4.1642 2604.536 4.79676 2639.484 5.4594 2667.076 6.16464 2688.536 

3.57412 2559.952 4.17698 2605.376 4.81128 2640.016 5.47548 2667.36 6.18014 2688.956 

3.58592 2561.108 4.18916 2606.288 4.82396 2640.748 5.49136 2666.212 6.1938 2689.528 

3.59876 2562.136 4.2028 2607.02 4.83844 2641.28 5.5065 2666.66 6.20972 2689.964 

3.61034 2563.312 4.21512 2608.744 4.85112 2642.008 5.52018 2667.264 6.2237 2690.544 

3.62336 2564.308 4.22924 2608.556 4.86522 2642.576 5.53524 2667.72 6.2391 2690.956 

3.6351 2565.456 4.24136 2609.46 4.87766 2643.332 5.54856 2668.34 6.25346 2691.488 

3.64808 2566.452 4.25574 2610.1 4.89172 2643.904 5.56394 2668.752 6.26982 2691.852 

3.65994 2567.58 4.26762 2611.024 4.90462 2644.604 5.57724 2669.38 6.28388 2692.404 

3.6724 2568.632 4.28192 2611.664 4.91884 2645.156 5.59274 2669.776 6.30088 2692.656 

3.68426 2569.752 4.29418 2612.532 4.93204 2645.816 5.60596 2670.44 6.3147 2693.292 

3.6969 2570.776 4.30838 2613.176 4.94598 2646.396 5.62166 2670.804 6.33122 2693.656 

3.70936 2571.816 4.32042 2614.068 4.95892 2647.084 5.635 2671.412 6.34496 2694.324 

3.7218 2572.86 4.33396 2614.78 4.97358 2647.576 5.65018 2671.832 6.3617 2694.68 

3.73434 2573.88 4.34614 2615.652 4.98638 2648.284 5.66358 2672.452 6.37586 2695.312 

3.74694 2574.848 4.35958 2616.368 5.00148 2648.728 5.67852 2672.912 6.39274 2695.64 

3.75934 2575.848 4.37196 2617.204 5.0141 2649.444 5.69252 2673.468 6.40612 2696.356 

3.77146 2576.888 4.38582 2617.868 5.0289 2649.956 5.7078 2673.888 6.42394 2696.588 

3.78392 2577.86 4.39844 2618.676 5.04136 2650.676 5.72128 2674.496 6.4379 2697.288 

3.79638 2578.844 4.41262 2619.292 5.05568 2651.192 5.73594 2674.98 6.45434 2697.604 

3.80894 2579.788 4.42486 2620.136 5.0684 2651.88 5.74972 2675.556 6.46776 2698.304 

3.82152 2580.74 4.43874 2620.788 5.08338 2652.336 5.7649 2676.028 6.48464 2698.644 

3.83372 2581.724 4.45112 2621.608 5.09608 2652.896 5.77888 2676.568 6.4988 2699.28 

3.84612 2582.68 4.4649 2622.268 5.11122 2653.352 5.79404 2676.992 6.51528 2699.64 

3.85854 2583.632 4.47758 2623.048 5.1239 2654.052 5.80764 2677.576 6.52894 2700.308 

3.87158 2584.512 4.4914 2623.692 5.1386 2654.532 5.823 2677.996 6.54672 2700.504 

3.88386 2585.464 4.50412 2624.46 5.1509 2655.268 5.8366 2678.596 6.56042 2701.268 

3.89676 2586.344 4.51748 2625.152 5.16646 2655.656 5.8524 2678.968 6.57728 2701.544 

3.90894 2587.308 4.52988 2625.952 5.1794 2656.32 5.86568 2679.604 6.59124 2702.184 
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3.92196 2588.168 4.5433 2626.668 5.19442 2656.756 5.88196 2679.928 6.6084 2702.476 

3.93414 2589.128 4.55606 2627.408 5.2067 2657.488 5.89486 2680.648 6.62246 2703.132 

3.9472 2589.964 4.56972 2628.048 5.2225 2657.836 5.91164 2680.892 6.6395 2703.408 

3.95938 2590.908 4.5827 2628.76 5.235 2658.54 5.92478 2681.536 6.65358 2704.04 

3.9726 2591.724 4.59644 2629.4 5.24994 2658.976 5.94266 2681.504 6.67044 2704.364 

3.98456 2592.712 4.6094 2630.128 5.26326 2659.588 5.95584 2682.248 6.6845 2705 

3.99764 2593.524 4.6233 2630.748 5.27744 2660.108 5.9724 2682.46 6.70188 2705.256 

 

7.92376 2728.48 10.22458 2748.592 12.03078 2729.736 13.9527 2698.912 

7.93768 2729.3 10.24128 2748.924 12.0476 2730.128 13.9804 2697.28 

7.95744 2729.14 10.26344 2748.348 12.07132 2729.276 13.99676 2697.956 

7.97162 2729.72 10.27988 2748.772 12.0881 2729.704 14.02628 2695.944 

7.99254 2729.316 10.30228 2748.152 12.11458 2728.288 14.04316 2696.556 

8.00666 2730.032 10.319 2748.524 12.13066 2728.924 14.06646 2695.852 

8.02602 2729.952 10.34008 2748.156 12.15496 2727.96 14.08424 2696.184 

8.04046 2730.6 10.35632 2748.604 12.17126 2728.472 14.10988 2694.996 

8.06086 2730.204 10.37848 2748.024 12.195 2727.616 14.12746 2695.408 

8.07552 2730.828 10.39444 2748.56 12.2115 2728.096 14.1558 2693.644 

8.09508 2730.712 10.41858 2747.572 12.23724 2726.836 14.17366 2694.044 

8.10974 2731.268 10.43424 2748.176 12.2533 2727.452 14.19716 2693.308 

8.12858 2731.308 10.45812 2747.256 12.27914 2726.168 14.21516 2693.604 

8.14356 2731.768 10.4738 2747.836 12.29564 2726.7 14.23964 2692.668 

8.16418 2731.384 10.49706 2747.04 12.3197 2725.784 14.2584 2692.832 

8.17892 2732.12 10.51294 2747.592 12.33616 2726.28 14.2827 2691.912 

8.19964 2731.668 10.53786 2746.452 12.36124 2725.164 14.30122 2692.116 

8.21386 2732.428 10.55364 2747.068 12.3775 2725.72 14.32774 2690.764 

8.23662 2731.68 10.57642 2746.36 12.40488 2724.128 14.34598 2691.06 

8.25088 2732.524 10.5923 2746.9 12.42064 2724.852 14.37122 2689.96 

8.27064 2732.456 10.61796 2745.628 12.44652 2723.552 14.38936 2690.252 

8.28522 2733.052 10.63318 2746.376 12.46244 2724.192 14.41652 2688.74 

8.30608 2732.644 10.65966 2744.936 12.48728 2723.12 14.43432 2689.156 
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8.32086 2733.512 10.67486 2745.7 12.5034 2723.708 14.46184 2687.568 

8.34206 2732.932 10.69778 2744.932 12.52748 2722.788 14.47974 2687.94 

8.35654 2733.82 10.71332 2745.528 12.54398 2723.272 14.50318 2687.22 

8.37772 2733.352 10.73832 2744.38 12.56838 2722.3 14.5217 2687.424 

8.39282 2734.084 10.75374 2745.056 12.58488 2722.8 14.54574 2686.568 

8.41232 2734.14 10.778 2744.06 12.6111 2721.452 14.56382 2686.928 

8.42708 2734.84 10.79348 2744.684 12.62728 2722.08 14.59106 2685.316 

8.44782 2734.596 10.81874 2743.476 12.65488 2720.436 14.60832 2685.864 

8.46234 2735.408 10.83426 2744.136 12.67134 2721.024 14.63718 2683.96 

8.4851 2734.8 10.8603 2742.776 12.6945 2720.316 14.65406 2684.62 

8.49958 2735.672 10.87594 2743.428 12.71126 2720.756 14.68192 2682.988 

8.52076 2735.36 10.90118 2742.224 12.7357 2719.788 14.69894 2683.572 

8.53502 2736.24 10.91766 2742.72 12.7525 2720.248 14.72672 2681.96 

8.55816 2735.572 10.94336 2741.376 12.77662 2719.332 14.74458 2682.364 

8.57252 2736.48 10.95934 2742 12.79396 2719.684 14.76828 2681.624 

8.59252 2736.428 10.98348 2741.028 12.81862 2718.66 14.78602 2681.992 

8.60688 2737.232 10.9992 2741.624 12.83544 2719.124 14.81002 2681.168 

8.62944 2736.676 11.02476 2740.36 12.86318 2717.46 14.82786 2681.516 

8.64436 2737.464 11.04024 2741.056 12.87924 2718.196 14.85712 2679.58 

8.66438 2737.428 11.06494 2739.96 12.90626 2716.644 14.87426 2680.212 

8.67922 2738.124 11.0808 2740.532 12.92262 2717.248 14.90334 2678.312 

8.7007 2737.752 11.1053 2739.488 12.94822 2716.056 14.92004 2679.004 

8.71556 2738.536 11.12126 2740.056 12.96466 2716.636 14.9478 2677.388 

        

8.7375 2738.076 11.14368 2739.412 12.99158 2715.156 14.96474 2678.016 

8.75192 2738.944 11.16066 2739.756 13.00816 2715.744 14.99248 2676.408 

8.7759 2738.104 11.18444 2738.872 13.03344 2714.616 15.00946 2677.012 

8.79 2739.096 11.2006 2739.38 13.04978 2715.2 15.0363 2675.6 

8.81188 2738.656 11.22438 2738.48 13.07748 2713.556 15.05352 2676.148 
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Appendix 5 : Script of the Backpropagation algorithm used to predict the failure of the 

SENT specimen : 

 

% Solve an Input-Output Fitting problem with a Neural Network 

% Script generated by Neural Fitting app 

% Created 19-Apr-2020 19:47:15 

% 

% This script assumes these variables are defined: 

% 

%   input - input data. 

%   target - target data. 

 

x = input; 

t = target; 

 

% Choose a Training Function 

% For a list of all training functions type: help nntrain 

% 'trainlm' is usually fastest. 

% 'trainbr' takes longer but may be better for challenging problems. 

% 'trainscg' uses less memory. Suitable in low memory situations. 

trainFcn = 'trainlm';  % Levenberg-Marquardt backpropagation. 

 

% Create a Fitting Network 

hiddenLayerSize = 35; 

net = fitnet(hiddenLayerSize,trainFcn); 

 

% Setup Division of Data for Training, Validation, Testing 

net.divideParam.trainRatio = 70/100; 

net.divideParam.valRatio = 15/100; 

net.divideParam.testRatio = 15/100; 

 

% Train the Network 

[net,tr] = train(net,x,t); 
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% Test the Network 

y = net(x); 

e = gsubtract(t,y); 

performance = perform(net,t,y) 

 

% View the Network 

view(net) 

 

% Plots 

% Uncomment these lines to enable various plots. 

%figure, plotperform(tr) 

%figure, plottrainstate(tr) 

%figure, ploterrhist(e) 

%figure, plotregression(t,y) 

%figure, plotfit(net,x,t) 
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Appendix 6 : Script of the Backpropagation algorithm used to predict the failure of the 

PIPELINE : 

 

% Solve an Input-Output Fitting problem with a Neural Network 

% Script generated by Neural Fitting app 

% Created 25-oct-2020 08:50:23 

% 

% This script assumes these variables are defined: 

% 

%   input - input  data. 

%   target - target data. 

 

x = input; 

t = target; 

 

% Choose a Training Function 

% For a list of all training functions type: help nntrain 

% 'trainlm' is usually fastest. 

% 'trainbr' takes longer but may be better for challenging problems. 

% 'trainscg' uses less memory. Suitable in low memory situations. 

trainFcn = 'trainlm';  % Levenberg-Marquardt backpropagation. 

 

% Create a Fitting Network 

hiddenLayerSize = 50; 

netpipe = fitnet(hiddenLayerSize,trainFcn); 

 

% Setup Division of Data for Training, Validation, Testing 

netpipe.divideParam.trainRatio = 85/130; 

netpipe.divideParam.valRatio = 20/130; 

netpipe.divideParam.testRatio = 20/130; 

 

% Train the Network 

[netpipe,tr] = train(netpipe,x,t); 
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% Test the Network 

y = netpipe(x); 

e = gsubtract(t,y); 

performance = perform(netpipe,t,y) 

 

% View the Network 

view(netpipe) 

 

% Plots 

% Uncomment these lines to enable various plots. 

%figure, plotperform(tr) 

%figure, plottrainstate(tr) 

%figure, ploterrhist(e) 

%figure, plotregression(t,y) 

%figure, plotfit(netpipe,x,t) 
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Appendix 7 : Isotropic elasticity parameters of the large and mni CT speicmens 

Logarithmic 

plastic strain 

Equivalent stress 

0 578 

2.00E-02 630 

4.00E-02 685 

6.00E-02 728 

8.00E-02 762 

1.00E-01 781 

1.20E-01 801 

1.40E-01 816 

1.60E-01 830 

1.80E-01 844 

2.00E-01 859 

2.20E-01 8.73E+02 

2.40E-01 8.85E+02 

2.60E-01 8.97E+02 

2.80E-01 9.08E+02 

3.00E-01 9.19E+02 

3.20E-01 9.29E+02 

3.40E-01 938 

3.60E-01 9.47E+02 

3.80E-01 9.55E+02 

4.00E-01 9.64E+02 

4.20E-01 9.71E+02 

4.40E-01 979 

4.60E-01 9.86E+02 

4.80E-01 9.93E+02 

5.00E-01 1.00E+03 

5.20E-01 1.01E+03 



Appendices 

110 

5.40E-01 1.01E+03 

5.60E-01 1.02E+03 

5.80E-01 1.02E+03 

6.00E-01 1.03E+03 

6.20E-01 1.04E+03 

6.40E-01 1.04E+03 

6.60E-01 1047 

6.80E-01 1.05E+03 

7.00E-01 1.06E+03 

 


