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1. INTRODUCTION 

One of the successful equations for describing a class of dynamic nonlinear phenomena is the 
Kardar–Parisi–Zhang (KPZ) equation [1]. The application of this equation varies widely in topics 
such as vapour deposition, directed polymers, bacterial colony growth and superconductors [2], 
[3]. There are a number of computational studies related to discrete model simulations such as the 
Eden model, ballistic deposition models [4] and directed polymer model. All of these provide 
important features in the physical processes through simulation efficiency. The introduction of 
direct numerical integration is also an important point that requires more intensive computations. 
The first large scale numerical integration of the KPZ equation was performed by Amar and Family 
and the discrete Gaussian model was verified in [5]. Later, Moser improved his accuracy with 
further works [6], [7]. However, the KPZ equation is not just a nonlinear equation that is applied 
by a similar method. To verify the theoretical predictions, numerical and analytical investigations 
are performed for the KPZ equation with correlated noise [8] and with quenched noise in 
anisotropic media [9], or in reaction–diffusion systems with multiplicative noise [10], for the 
Kuramato–Shivashisky equation (KS) of flame front propagation [11], [12] and for the epitaxial 
growth equation [13]. 

In general, the direct approach to studying the growth equation is numerical integration and 
it can be seen as the ideal form of the equation that allows us to fully control the investigation. 
Unfortunately, Newman and Bray [14] reported some disadvantageous properties of the 
conventional numerical integration scheme, such as instability and an unphysical fixed point. Later 
works [15], [16] reported that during numerical simulation instability can occur even in the case 
of small time steps. Lam and Shin [17] found that direct numerical integration by conventional 
finite difference schemes actually do not approximate the continuum KPZ equation. Previously, 
Amar and Family [18] integrated a similar equation using a generalized nonlinear term. The scaling 
behaviour of the KPZ equation was in most cases found to be different from the continuum 
equation. They even explained the results of their studies on KPZ nonlinear terms combining the 
effects of noise and nonlinearity. 

In the last 30 years, different kinds of numerical methods have been proposed for the KPZ 
equation. These were implemented with various discretizing formulas of the nonlinear term. 
However, the diffusion term was mostly handled by the most standard Forward Time Centred 
Space (FTCS), where the time discretisation is based on the explicit Euler method. 

The application of the discrete variational formulation to the KPZ equation has been 
discussed. An alternative approach to other well-known techniques, the variational analytical 
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solutions of KPZ were introduced by Wio et al. in [19]–[21] and non-equilibrium potential has 
been obtained to understand radial growth on a growing domain. In [19], a relation between the 
real-space discretisation schemes was examined. The authors provided discrete schemes of the 
KPZ equation, and they discussed the role of the Galilean invariance for discrete representations. 
In [21], the properties of a functional related to the KPZ equation are investigated. The main result 
is a path integral scheme; and, the authors defined expressions for the probability of entropy 
production along a trajectory and they obtained integral fluctuation theorems. 

The thermodynamic uncertainty relation for the (1 + 1) dimensional Kardar–Parisi–Zhang  
equation on a finite spatial interval was considered by Niggeman and Seifert [22]. Numerical 
simulations compared with theoretical predictions showed convincing agreement. 

Cartes et al. [23] studied the analytical laws of the scale-dependent correlation time to 
follow the expected crossover from the short-distance Edwards–Wilkinson scaling to the universal 
long-distance Kardar–Parisi–Zhang  scaling. 

In the work [24], the author reviewed KPZ class growth models to investigate roughness 
scaling using Cayley trees. Height fluctuations have been shown to be a consequence of boundary 
effects. 

The application and analysis of stochastic surface growth processes allows for the 
development of devices with desired features made from thin films for both technical and medical 
uses, such as stents. Aside from controlling the thickness, surface roughness, and porosity of the 
films, the key to preserving mechanical properties in stent devices that use electro-deposited films 
is managing the coating process and ensuring proper adhesion..  

One may pay attention to two significant challenges with these devices: (1) material failure 
can occur as a result of ruptures caused by the expansion of fatigue cracks and corrosion processes, 
and (2) accumulation of material deposits on the devices. The repeated strain of tens of millions 
of loading cycles can also cause fatigue, which could lead to the fracture or failure of the stent. 
Fatigue-crack development and fracture toughness [25] are extensively established but yet 
unknown for many materials. In certain applications of stents, such as ureteral stents, prolonged 
use can result in the buildup of a biomaterial deposit (microbial biofilm).  

While numerous experimental studies have been conducted on stent devices both in vivo 
and in vitro, only a limited number of theoretical studies exist, and none have specifically focused 
on the theoretical characterization of the surface properties of these materials [26]. Some studies 
have examined the surface roughness of various coating materials used in stent devices [27]. 
Theoretical methods and computational tools for simulation and analysis of materials, which are 
widely utilized in physics and materials science, have not been utilised. Thin films simulations 
may be widely used in biomaterials investigation due to their low cost and possible uses in the 
creation of novel materials.  
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Figure 1.1. Surface segment of the surface [28]. 

 

Computational growth models can simulate the fracture of the material in cases of fatigue-
crack propagation and cracks, providing insight into the long-term integrity of the stents. Some 
rupture studies characterize the fragmented material using self-similar notions, and this rupture 
may be described using directed polymers in random media. The KPZ equation, which gives 
theoretical insight of the surface, is typically used to map directed polymers in random media [29].  

A nonlinear differential equation, unlike the KPZ equation, takes into account nonlinear 
effects arising from the chemical potential, such as surface diffusion. This equation was initially 
introduced by Lai and Das Sarma [28], who were inspired by the Molecular Beam Epaxy (MBE) 
process at high temperatures, where surface diffusion plays a key part in the growth process  

 𝜕𝜕ℎ
𝜕𝜕𝑡𝑡

= 𝜈𝜈∇4ℎ(𝑥𝑥, 𝑡𝑡) + 𝜆𝜆∇2(∇ℎ)2 + 𝜂𝜂(𝑥𝑥, 𝑡𝑡). (1.1) 
As Lai and Das Sarma point out, this Eq.(1.1) takes into consideration surface diffusion 

and may offer a simplified model for perfect MBE development. The nonlinear expression in one 
space dimension  

 𝜕𝜕2

𝜕𝜕𝑥𝑥2
�𝜕𝜕ℎ
𝜕𝜕𝑥𝑥
�
2
. (1.2) 

may be understood geometrically as a surface segment, as shown in Fig. 1.1. Eq. (1.2) 
demonstrates a conserved dynamics with non-conservative noise and is typically represented by 
the symbol NCN4 (nonlinear conservative dynamics, non-conservative noise) [29]. This equation 
can be accurately solved using the Renormalization Group analysis, and the exponents for a fractal 
dimension 𝑑𝑑 =  2 are 𝛼𝛼 =  2/3, 𝛽𝛽 =  1/5, and 𝑧𝑧 =  10/3.  

 𝜕𝜕ℎ
𝜕𝜕𝑡𝑡

(𝑥𝑥, 𝑡𝑡) = 𝜈𝜈∇2ℎ + 𝜆𝜆
2

(∇ℎ)2 + 𝜆𝜆∇2(∇ℎ)2 + 𝐹𝐹 + 𝜂𝜂(𝑥𝑥, 𝑡𝑡). (1.3) 
The relaxation processes, lateral growth, surface diffusion, and desorption are all taken into 

consideration in Eq.(1.3).  
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The mathematical model derived from this equation can serve as a starting point for 
exploring ultra-thin film coatings with complex properties arising from the film growth process, 
such as porosity and pinholes. [30]. In terms of medical surface coating applications, such as stent 
coatings [30], this equation can simulate the process and has potential value in advancing our 
understanding and improvement of such surface growth. However, since the equation only has 
exact exponents for one-dimensional cases, additional numerical analysis and simulations are 
necessary to accurately characterize these processes. 

The critical importance of controlling the surface during film deposition is demonstrated 
by adjusting parameters such as roughness, porosity, and thickness of the films. The use of 
computer simulations is becoming increasingly useful for precision control, therefore requiring 
further research to improve thin film deposition techniques and procedures.  
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2. THE UNIVERSALITY CLASS IN SURFACE GROWTH  

2.1.  Surface growth universality 
The universality class is one of the least studied concepts. It is a quite complex random 

system that plays major role in research on probability, in statistical mechanics and mathematical 
physics.  There are some findings on studying differences and similarities between ballistic 
deposition models and the Kardar-Parisi-Zhang universality class in various dimensions [4].  
 For a long time, the study of surface growth of materials has been a complex area of 
research. The growth includes a number of disciplines such as microelectronics (growth of nano 
devices) [31] metallurgy (solidification of alloys), biophysics [32] (growth of proteins, cells and 
tumours, and cytoskeleton polymerization in the immune system) [33]. These present different 
problems, obviously in different underlying mechanisms. Therefore, the nature of crystalline is 
crucial for surface dynamics. Crystalline surfaces exhibit two different structures in the 
microscale: a rough surface (i) and a smooth or atomically flat surface (ii). Most metals and several 
organic components are included in the first category, where their melting temperature is reached 
[34]. In this process, the surface fluctuates strongly, and the concept of a crystalline plane is 
difficult to define. In the second category, surface atoms or molecules fit perfectly in a smooth 
atomically flat plane. For example, semiconductors, some metals, and more organic materials fall 
into this category.  
 The microscopic nature of the surface is crucial for the physics of crystalline growth. As it 
presents many unwanted bonds, the addition of new particles to the growing solid is quick for 
rough solid surface. However, smooth solid or atomically flat solid surface adhesive particles are 
rare and complicated process. The surface growth can be two-dimensional (2D) caused by 
adhesion of the atoms to the existing surface layer. This process occurs when cutting a material 
with poor angle relative to tightly joined plane. It results in two cases those are screw dislocation 
and vicinal surface. This category is growth problems driven by kinetics. The source phase 
classified into three prototypes: (i) growth from a solution (this case includes many organic 
materials, minerals, biological materials, etc.). In this solution, the elementary building blocks 
diffuse in solution [35] along the surface of the growing material and perform different kinetics, 
as mentioned above (e.g., nucleation, attachment to pre-existing steps, etc.); (ii) growth from a 
vapour; and (iii) growth from a beam  [36]–[38]. In cases (ii) and (iii), the transport process in the 
mother phase is not relevant. The latter two categories are ballistic growth or Molecular Beam 
Epitaxy [39].  
 The term of ballistic deposition or sticky block was used by Vold [40] in 1959 describing 
a real growing interface and spatial correlation. The process itself can be presented by blocks that 
sticks to the first edge against that becomes incident. This process is given in Fig. 2.1 (a, b). It 
creates overhanging blocks and defines the height function ℎ(𝑥𝑥, 𝑡𝑡) as the maximum height above 
𝑥𝑥 occupied by a box in certain time 𝑡𝑡.  Due to radical increase and value of unknown rate of block, 
an interesting question appears in this deposition model that how this microscopic change 
manifests itself in certain time.   
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a b 

Figure 2.1. The result of ballistic deposition models. (a) independently exponentially distributed 
waiting time, blocks are falling from above. (b) illustrates the result of the deposition model by 

the same process of falling blocks in longer [32]. 
 

 The ballistic deposition model is illustrated in Fig. 2.1(a) that in independently 
exponentially distributed waiting time, blocks are falling from above. Fig. 2.1(b) illustrates the 
result of the deposition model by the same process of falling blocks in longer time duration. The 
ballistic deposition model grows considerably faster and smoother top interface than other models 
[32].  
 The longer time result that presented in the Fig. 2.2, shows the scale of fluctuations of 
𝑢𝑢(𝑥𝑥, 𝑡𝑡) and the height function ℎ(𝑥𝑥, 𝑡𝑡) remains correlated transversally over a long distance. There 

are exact conjectures for these fluctuations. They are supposed to grow like 𝑡𝑡
1
3 and demonstrate a 

non-trivial correlation structure in a transversal scale of 𝑡𝑡
2
3 [41]. Precise prediction exist to provide 

the limiting distributions. Until certain constants 𝑐𝑐1, and 𝑐𝑐2, the sequence of scaled heights  
 𝑐𝑐2𝑡𝑡

1
3(ℎ(0, 𝑡𝑡) − 𝑐𝑐1𝑡𝑡) (1.1) 

 
should converge as Gaussian Orthogonal Ensemble (GOE) Tracy-Widom random variable. The 
Tracy-Widom distributions are illustrated as present-time bell curves and are named GOE or GUE 
(Gaussian Unitary Ensemble) derived from the random matrix ensembles in which these 
distributions were first observed by Tracy-Widom [42], [43]. 
 It shows the sign of dissimilar integration with a probabilistic system. Apparently, there is 
a question that how this prediction arises? It came from an analysis of some similar growth 
processes that happen  to be integrable. Ballistic deposition has similar characteristics to these 
models that are believed to be the key to KPZ class membership [41]: 

- Locality: Height function ℎ(𝑥𝑥, 𝑡𝑡) change depends only on neighboring heights. 
- Smoothing: Large valleys are quickly filled. 
- Non-linear slope dependence: Vertical effective growth rate does not depend linearly on 

local slope. 
- Space-time independent noise: Growth is driven by noise which quickly decorrelates in 

space/time and is not heavy-tailed.  
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There is no proof that fully investigated mathematically for the connection between KPZ class 
solution behavior and the ballistic deposition model. However, the obtained simulation results 
presented in Fig. 2.1 and Fig. 2.2 suggest that they are in the same class.  
 

 

Figure 2.2. Simulation of ballistic deposition models driven by the same process of falling blocks 
and run for a longer time [41].  

 
The continuum equation that mentioned above is assumed to give the significant dynamics 

of the ballistic deposition models and it is the famous KPZ equation [1], [38], given in (1+1) 
dimension by  
 𝜕𝜕ℎ

𝜕𝜕𝑡𝑡
(𝑥𝑥, 𝑡𝑡) = 𝜈𝜈∇2ℎ(𝑥𝑥, 𝑡𝑡) + 𝜆𝜆

2
(∇ℎ)2 + 𝜂𝜂(𝑥𝑥, 𝑡𝑡), (2.2) 

 
where 𝜈𝜈 is the diffusion coefficient, and 𝜆𝜆 is nonlinear coefficient representing lateral growth. The 
noise term is 𝜂𝜂(𝑥𝑥, 𝑡𝑡). 

There are currently many suggestions for a direct association between discrete models and 
continuum equations of motion. There are phenomenological [44] and symmetry, arguments [1], 
[29], [45], [46] that can be very illuminating. There is also another approach based on the real-
space renormalization-group method [47] which can identify relevant microscopic parameters (for 
example, diffusion) from numerical data when the universality class of the model is already 
known. Nevertheless, much effort is made to establish a direct relationship between discrete 
models and continuum equations using formal expansions of discrete equation of motion [48]–
[55]. The derivation of the continuum equation is usually based on regularizing and coarse graining 
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discrete Langevin equations which is taken from a Kramers-Moyal expansion of the master 
equation. It means that the transition probabilities are calculated from the microscopic rules of the 
model for any given discrete height configuration {ℎ𝑖𝑖} and include the discrete 𝜃𝜃 (Heaviside) and 
𝛿𝛿 (Dirac) functions. However, the transition probability is presumably a continuous function, 
requiring some coarse-graining procedure. In detail, this involves expansions of the form  
 

𝜃𝜃(𝑥𝑥) = 1 + ∑ 𝐴𝐴𝑘𝑘𝑥𝑥𝑘𝑘∞
𝑘𝑘=1 , (2.3) 

as initially presented in [56].   
There is another suggestion for 𝜃𝜃 with the following scheme  

 
𝜃𝜃(𝑥𝑥) = 1+tanh (𝐶𝐶𝑥𝑥)

2
, (2.4) 

where 𝐶𝐶 is an arbitrary positive value with exact 𝜃𝜃(𝑥𝑥) function as 𝐶𝐶 → ∞ [26]. Here 𝐶𝐶 is an 
uncontrolled parameter. In [24], a shifted form is used 
 

𝜃𝜃(𝑥𝑥) = lim
𝐶𝐶→∞

1+tanh (𝐶𝐶{𝑥𝑥+𝑐𝑐})
2

, (2.5) 

here 𝑐𝑐 ∈ �0, 1
2
�, or using the modified arctan (𝐶𝐶𝑥𝑥) version of [52] or erf (𝐶𝐶𝑥𝑥) [53] instead of 

tan (𝐶𝐶𝑥𝑥) in Eq.(2.4), in contrast this allows a power expansion that has an infinite radius of 
convergence [53].   

There are some problematic cases with deriving the Kardar-Parisi-Zhang equation from the 
discrete model known as Ballistic Deposition (BD) [57]. Therefore, a specific case has been 
developed. The method is based on the discrete Langevin equation. The expansions are used as 
follows  
 

𝜃𝜃(𝑥𝑥 − 𝑎𝑎) = 𝜃𝜃(𝑥𝑥) + �
𝑎𝑎𝑛𝑛

𝑛𝑛

∞

𝑛𝑛=1

𝜕𝜕𝑛𝑛𝜃𝜃(𝑦𝑦)
𝜕𝜕𝑦𝑦𝑛𝑛

�
𝑦𝑦=𝑥𝑥

.  (2.6) 

Also, closely related Langevin based approach is used to represent the max function [55] in order 
to reach the KPZ equation from the discrete BD. Recently in [58], using Eq.(2.6), the Edwards-
Wilkinson [59]equation was derived from a discrete model using  
 

𝜃𝜃(𝑥𝑥) = 𝑚𝑚𝑎𝑎𝑥𝑥{𝑥𝑥 + 𝑎𝑎, 0} = 𝑚𝑚𝑎𝑎𝑥𝑥{𝑥𝑥} = lim
𝜀𝜀→0+

�𝜀𝜀
𝑎𝑎

ln �𝑒𝑒
�𝑥𝑥+𝑎𝑎𝜀𝜀 �+1

𝑒𝑒
𝑥𝑥
𝜀𝜀+1

��, (2.7) 

where 𝜀𝜀 is any constant in the interval (0,1].  
Despite the new and interesting derivation approach, there are three main drawbacks. They 

are first implemented in one dimension, where the higher dimensions are not discussed at all or 
cause particularly high difficulties (see, for example, reference [55]). 

The second derivation is an expansion as given in Eq. (2.2) which is a problem because the 
Heaviside function is certainly not analytic around zero. Another example is to use an expression 
such as Eq. (2.4) and expand it for small 𝐶𝐶, while the limiting procedure required to maintain 
equality requires 𝐶𝐶 → ∞ [43].  
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The last is that macroscopic quantities (e.g., the diffusion coefficient) cannot be inferred 
from microscopic rules with artificial parameters such as 𝐶𝐶 and (𝜖𝜖), which cannot be removed 
later. In the paper [60], it was shown that the absence of formal derivation is not accidental, but 
rather reflects the significant differences between the continuum equation describing the BD model 
and the KPZ equation. This difference proves to be slight in one-dimension in the presence of 
noise but it is crucial when discussing deterministic dynamics. However, there is still an open 
question: first whether the BD model in 𝑑𝑑 dimensions has a proper continuous description that 
does not depend on the discrete lattice on which it was defined, and how this equation can be 
derived. The second is whether the BD model belongs to the KPZ universality class in dimensions 
higher than one or not. 
 

2.2.  Eden model 
For a long time the geometric scaling properties of structures that grown by ballistic 

deposition [57] and Eden growth [61] numerially simulated and studied. Interestingly, both 
structures can be described in the fractal geometry concept [62] and related geometric scaling 
relationships. The internal structure of both models is uniform on all short length scales (where 𝐷𝐷 
is the fractal dimensionality, 𝑑𝑑 is the Euclidean distance). A surface or line growth variance (𝑆𝑆) in 
strip geometry can be described by the scaling form  
 

𝑆𝑆(𝑀𝑀)~𝐿𝐿𝑎𝑎𝑓𝑓(ℎ/𝐿𝐿
𝛽𝛽
𝛼𝛼), (2.8) 

where 𝑓𝑓(𝑥𝑥) is a scaling function defined by  

𝑓𝑓(𝑥𝑥)~ �𝑥𝑥
1
2                  for 𝑥𝑥 ≪ 1,

constant      for 𝑥𝑥 ≫ 1,
 

initially presented by Family and Vicsek [63] for ballistic deposition and by Julien and Botet [64] 
for Eden model. The mean height value ℎ is originally flat surface and the width of the strip (or 
column for 𝑑𝑑 = 3) is 𝐿𝐿. Both ballistic deposition and Eden models were simulated with the same 
idea in large scale growth that the exponents 𝛼𝛼 and 𝛽𝛽 in Eq. (2.8) are equal [65]–[67]. The values 
of 𝛼𝛼 and 𝛽𝛽 are 1

2
 and 1

3
 for 𝑑𝑑 =  2, respectively. These obtained values are predicted theoretically 

by the authors [1]. Therefore, the self-affine fractal surfaces of deposits can be described in term 
of equation (2.8) that generated by ballistic deposition models and Eden growth models, including 
universal exponents 𝛼𝛼 and 𝛽𝛽.  
 Here, discussion concerns with a different aspect of Eden growth and ballistic deposition. 
The incoming particles sticks to only one particle in the growing deposit for ballistic deposition. 
The process presents growing trees that is shown in the [40]. Ballistic deposition may occupy more 
than one nearest neighbour site in lattice models. ` 

2.3.  1+1 dimension study of finite-size scaling of a ballistic deposition 
model  

 
 In general, the assumption shows that the ballistic deposition model belongs to the KPZ 
universality class, but it is slow for theoretical predicted values of the exponents 𝛼𝛼 = 1

2
, 𝛽𝛽 = 1

3
, 

and 𝑧𝑧 = 3
2
 [68] which require more larger lattices simulation. The study [64] used finite scaling 
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and large sampling in order to have rather large lattices with few samples in the simulations. The 
authors have been focused on the functional size of the various exponents. Finally, only two of the 
exponents are independent, which we have given above.  
 In the ballistic deposition model, the interface width is defined by  
 〈𝑊𝑊(𝑡𝑡)〉 = �〈ℎ2(𝑡𝑡)〉 − 〈ℎ(𝑡𝑡)〉2. (2.9) 

 Thus, the width of the interface follows the scaling function proposed by Family and 
Vicsek [64], which is defined as:  
 

𝑊𝑊(𝑡𝑡) = 𝐿𝐿𝛾𝛾𝑓𝑓 � 𝑡𝑡
𝐿𝐿𝑧𝑧
�, (2.20) 

where the scaling function 𝑓𝑓(𝑥𝑥) with 𝑥𝑥 = 𝑡𝑡/𝐿𝐿𝑧𝑧 is proportional to 𝑓𝑓(𝑥𝑥) = 𝑥𝑥𝛽𝛽 for 𝑥𝑥 ≪ 1 and 𝑓𝑓(𝑥𝑥) ≈
𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑡𝑡 for 𝑥𝑥 ≫ 1. Here, the exponent 𝛾𝛾 is the roughness exponent with respect to the saturation of 
the interface width. The exponent 𝛽𝛽 is the growth exponent and the exponent z  is the crossover 
or saturation exponent. Since the exponent 𝑧𝑧 represents the transition time from the ballistic 
deposition regime to the saturation regime, it can characterize finite systems. This is more typical 
for time-dependent rather than equilibrium systems, where correlations are built up and are 
eventually reduced by the finite size of the system. The analogue equivalent of equilibrium systems 
occurs at the critical point of the second order phase transition. It can be defined during the growth 
process that is shown in the Fig. 2.3. The two-dimensional simulation carried in two models in the 
paper by Meakin [68]. They measured the maximum width (𝑊𝑊) and maximum height (ℎ). In the 
case of 3 dimensional models, the width of projection onto the 𝑥𝑥 -plane was measured.  
 There were 86 simulations were carried in 2 dimensional model [41] with the 107  number 
of particles for the lengths size 𝐿𝐿 =  8192. Simulation were conducted with periodic boundary 
condition in all simulation results.  

 

Figure 2.3. Two-dimensional simulation result of ballistic deposition. Emphasized part shows 
the tree that created by connected particles [68]. 
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There were 86 simulations were carried in 2-dimensional model [68] with the 107  number of 
particles for the lengths size 𝐿𝐿 =  8192. Simulation was conducted with periodic boundary 
condition in all simulation results. The results of the simulation for the width (𝑊𝑊) and height (ℎ) 
had a value of 0.4 and 0.6, respectively. These results are obtained in proved for KPZ equation in 
our dissertation chapter 6. 
 Initially, the growth of the interface is dependent on the lattice size and its scaling function 
that can be described by the proportional relation 𝑡𝑡𝛽𝛽/𝐿𝐿𝑧𝑧𝛽𝛽. This leads to a correlation between the 
exponents. 
 

𝛼𝛼 = 𝛽𝛽𝑧𝑧. (2.31) 

 In [64], the simulation of the ballistic deposition model was performed in the square lattice 
with different lattices of linear sizes 𝐿𝐿, which provided a detailed finite size dependence study. 
Periodic boundary conditions were applied in a direction perpendicular to the incoming flux of the 
particles. The ballistic deposition model started to saturate at the instant of time 𝑡𝑡𝑥𝑥, which means 
crossover time. Equation (2.10) showed that the crossover time is consistent with the relation  
 

𝑡𝑡𝑥𝑥∞𝐿𝐿𝑧𝑧, (2.42) 

where the symbol ‘∞’ means ‘proportional to’. Relation (2.12) initially increases linearly for 𝑡𝑡 ≪
𝑡𝑡𝑥𝑥 then takes a constant value.  
 

 

Figure 2.4. Plot of the width vs. time for systems of sizes L as 10, 20, 40, 80, 160, 320, 640, and 
Lmax = 1280 lattice constants wide. Smaller sizes saturate at a smaller value of the width [36]. 
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Figure 2.5. Plot of the collapsed scaling function. Tails represent the initial transient behaviour 

due to a clean substrate between 𝑧𝑧𝑚𝑚𝑖𝑖𝑛𝑛 = 1
640

 and  𝑧𝑧𝑚𝑚𝑎𝑎𝑥𝑥 = 1
10

 [37]. 

 
 From Eq. (2.12), the characteristic dependence of the crossover time on the size of the 
system can be observed as well as the fact that the crossover time increases with the size of the 
system. The crossover time was defined as the time given by the intersection of the straight line 
describing the saturation regime and the straight line describing the growth regime. In the process 
of calculating the slope of the latter straight line, there is a transient regime in the initial stages of 
growth [65]. Figure 2.5 presents the results for exponent 𝑧𝑧 for the same lattice sizes as in Figure 
2.4.  
 The value of the exponent 𝑧𝑧 increases monotonically depending on the size of the system. 
The absolute value of the local slope increases by 1

𝐿𝐿
→ 0 but asymptotic limit of indication has not 

been reached yet. Since the exponent 𝛽𝛽 characterizes the growth of the interface for finite system 
size in early times, we can understand from [63] that smaller lattice constants lead to a non-
monotonic approach to the asymptotic value. Although the conservative value 𝛽𝛽 ≥  0.30 can be 
obtained by extrapolation, it is not clear whether it can converge to the value 0.3 [66] predicted by 
the KPZ universality class. Later the system had time to grow lateral correlations much longer than 
its own linear size, but since the spatial correlations are limited by the size of the system, it showed 
that the system has a natural length scale, the saturation width of the interface. Because of Eq. 
(2.10) and Fig. 2.4, we expect the value of the saturated width of the interface to scale as 𝐿𝐿𝛼𝛼. As 
with previous quantities the roughness exponent 𝛼𝛼 did not saturate. It is also instructive to observe 
the value of the exponent α  given from Eq. (2.11). The value of α is taken from 𝛽𝛽𝑧𝑧 for a given 
size of the system. Again, the results do not converge to the asymptotic values. Finally, the values 
of the 𝑧𝑧 and exponent 𝛼𝛼 have also to satisfy the following scaling relation 
 

𝑧𝑧 + 𝛼𝛼 = 2, (2.53) 

thus, this quantity is plotted for various system sizes. Again, we can observe that the sum of two 
values is far from being achieved through the trend in the right direction. (See Fig. 2.7). 
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Figure 2.6. Plot of the roughness exponent, 𝛼𝛼, vs. 1/𝐿𝐿 for the same system sizes referred to in 
Figure 2.4. Filled triangles are calculated using Eq.(2.11), while filled rectangles are the values 

directly calculated [36]. 

 

Figure 2.7. The plot shows the quantity 𝛼𝛼 + 𝑧𝑧 vs. 1/𝐿𝐿. Refer [36] for further details. 
 
The ballistic deposition model shows strong corrections to scaling up to lattice sizes of 1280 lattice 
constants wide, leading to quite low convergence rates towards the asymptotic values of the 
exponents 𝛼𝛼,𝛽𝛽, and 𝑧𝑧. Results presented in [63] indicate that correction scale higher than 1280 has 
not been investigated and it requires more processes of simulating larger lattices to obtain better 
estimates. 

1+1 dimension study of finite-size scaling of the ballistic deposition model provides an 
example of how nanostructured materials may introduce more stringent demands on present day 
theories. In particular, the slow convergence of the exponents 𝛼𝛼,𝛽𝛽, and 𝑧𝑧 to their asymptotic limit 
may prevent some real systems from being in the asymptotic regime. However, it requires more 
study on the KPZ universality model and its connection with the ballistic deposition model.  
 

 2.4.  Direct connection between the BD and the KPZ equation  
 

Takashi Nagatani [55] described a direct and formal derivation of the KPZ equation from the 
ballistic deposition models. Figure 2.1 shows that the particle sticks to the first site along its trajectory 
and occupies nearest neighbour. It represents ballistic deposition as 𝑖𝑖 − 1, 𝑖𝑖, 𝑖𝑖 + 1. At time 𝑡𝑡 + 1, the 

DOI: 10.14750/ME.2023.031



 

18 
 

height ℎ(𝑖𝑖, 𝑡𝑡 + 1) is given by  
 

ℎ(𝑖𝑖, 𝑡𝑡 + 1) = 𝑚𝑚𝑎𝑎𝑥𝑥[ℎ(𝑖𝑖 − 1, 𝑡𝑡),ℎ(𝑖𝑖, 𝑡𝑡) + ℎ(𝑖𝑖 + 1, 𝑡𝑡)] (2.64) 

where max []  is the maximum of the function. In [41] a limiting procedure was applied to the 
difference of heights between nearest neighbours and the following Eq. (2.15) was obtained  
 

ℎ(𝑖𝑖, 𝑡𝑡 + 1) − ℎ(𝑖𝑖 − 1, 𝑡𝑡 + 1) = lim
𝜀𝜀→0+

𝜀𝜀 ln
𝑒𝑒
ℎ(𝑖𝑖−1,𝑡𝑡)

𝜀𝜀 + 𝑒𝑒
[ℎ(𝑖𝑖,𝑡𝑡)+1]

𝜀𝜀 + 𝑒𝑒
ℎ(𝑖𝑖+1,𝑡𝑡)

𝜀𝜀

𝑒𝑒
ℎ(𝑖𝑖−2,𝑡𝑡)

𝜀𝜀 + 𝑒𝑒
ℎ(𝑖𝑖−1,𝑡𝑡)+1

𝜀𝜀 + 𝑒𝑒
ℎ(𝑖𝑖,𝑡𝑡)
𝜀𝜀

. (2.75) 

When 𝑒𝑒
ℎ(𝑖𝑖,𝑡𝑡)−ℎ(𝑖𝑖−1,𝑡𝑡)

𝜀𝜀  is replaced by 𝑐𝑐(𝑖𝑖, 𝑡𝑡) a difference-difference equation was obtained  
 

𝑐𝑐(𝑖𝑖, 𝑡𝑡 + 1) = [𝛿𝛿𝑐𝑐(𝑖𝑖 − 1, 𝑡𝑡) + 𝑐𝑐(𝑖𝑖 − 1, 𝑡𝑡)𝑐𝑐(𝑖𝑖, 𝑡𝑡) + 𝛿𝛿𝑐𝑐(𝑖𝑖 − 1, 𝑡𝑡)𝑐𝑐(𝑖𝑖, 𝑡𝑡)𝑐𝑐(𝑖𝑖 +
1, 𝑡𝑡)][𝛿𝛿 + 𝑐𝑐(𝑖𝑖 − 1, 𝑡𝑡) + 𝛿𝛿𝑐𝑐(𝑖𝑖 − 1, 𝑡𝑡)𝑐𝑐(𝑖𝑖, 𝑡𝑡)]−1, (2.86) 

where 𝛿𝛿 = 𝑒𝑒−
1
𝜀𝜀. We consider that the hydrodynamic mode on in the rough surface in the coarse-

grained scales. The perturbation method applied to Eq. (2.16) defined slow variables 𝑋𝑋 and 𝑇𝑇 for 
the space variables 𝑖𝑖 and time variables 𝑡𝑡 [69].  
 For |𝛥𝛥𝑥𝑥| ≪ 1, we get 𝑋𝑋 = (Δ𝑥𝑥)𝑖𝑖, 𝑇𝑇 = 𝛿𝛿(Δ𝑥𝑥)2𝑡𝑡. By setting ln 𝑐𝑐(𝑖𝑖, 𝑡𝑡) =
(∆𝑥𝑥)𝜈𝜈(Δ𝑥𝑥𝑖𝑖, 𝛿𝛿(Δ𝑥𝑥)2𝑡𝑡) = (Δ𝑥𝑥)𝜈𝜈(𝑋𝑋,𝑇𝑇), and expanding 𝑐𝑐(𝑖𝑖, 𝑡𝑡) to order (∆𝑥𝑥)3, the following formula 
was obtained  
 

𝑐𝑐(𝑖𝑖, 𝑡𝑡) = 𝑒𝑒𝑥𝑥𝑒𝑒[(∆𝑥𝑥)𝜈𝜈(𝑋𝑋,𝑇𝑇)] = 1 + (Δ𝑥𝑥)𝜈𝜈 +
(Δ𝑥𝑥)2𝜈𝜈2

2
+

(Δ𝑥𝑥)3𝜈𝜈3

6
+ ⋯, (2.17) 

where 𝜈𝜈 equals 𝜈𝜈(𝑋𝑋,𝑇𝑇) in the second equality. Similarly, 𝑐𝑐(𝑖𝑖 − 1, 𝑡𝑡), 𝑐𝑐(𝑖𝑖 + 1, 𝑡𝑡) and 𝑐𝑐(𝑖𝑖, 𝑡𝑡 + 1) 
were expanded in [41] and by substituting long-wavelength expansion into Eq. (2.18)  
 

𝑐𝑐(𝑖𝑖, 𝑡𝑡 + 1) =
[𝑐𝑐(𝑖𝑖 − 1, 𝑡𝑡) + 𝑐𝑐(𝑖𝑖 − 1, 𝑡𝑡)𝑐𝑐(𝑖𝑖, 𝑡𝑡)]

[1 + 𝑐𝑐(𝑖𝑖 − 1, 𝑡𝑡)] . (2.98) 

We obtained KPZ equation through Burgers equation 
 

𝜕𝜕𝑇𝑇ℎ = �(𝜕𝜕𝑋𝑋ℎ)2+𝜕𝜕𝑋𝑋
2ℎ�

8
. (2.19) 

 In addition, there was an attempt at modifying models for the ballistic deposition with next 
nearest neighbour sticking rule in the same sequence as Eqs (2.14)-(2.17). However, the 
application of the limiting procedure and the perturbation method to the (2+1)-dimensional 
ballistic deposition could not derive the KPZ equation.  
 

2.5.  Eden model and universality within the one-dimensional KPZ class  
 

Previously, Derrida et al. [70] [71] have proposed that for all (1+1) dimensional models 
within the KPZ class, the large deviation function related to the interface height ℎ exhibits 
universal scaling in the limit of large systems 
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𝑅𝑅𝑇𝑇 =
[〈ℎ3〉]2

〈ℎ𝑡𝑡2〉 ∙ 〈ℎ𝑡𝑡4〉
 (2.20) 

converges to a universal value of 0.415 to 17 as t approaches infinity. In this expression, 
ℎ𝑡𝑡  represents the space-averaged height, and refers to ensemble averages   

Although the KPZ equation can describe a wide range of systems, including particles 
moving on a lattice or directed polymers in random media, we will focus solely on growth models 
to simplify the presentation. The extension to other applications should be relatively 
straightforward. In this context, we consider a discrete growth model on a one-dimensional lattice 
of 𝑁𝑁 sites with periodic boundary conditions. At each time step, a growth event occurs in each site 
with a probability 𝑑𝑑𝑡𝑡.  

The space-averaged height after 𝑡𝑡 time steps is the quantity ℎ𝑡𝑡 whose distribution we are 
interested in. It should be noted that the variable under consideration in [70]  was 𝑌𝑌𝑡𝑡 = 𝑁𝑁ℎ𝑡𝑡. As a 
result, the phrasing of the findings may change differently here. Alternatively, we will utilize the 
averaged velocity 𝑣𝑣𝑡𝑡 = ℎ𝑡𝑡/𝑡𝑡 as a variable.  

The probability distribution 𝑃𝑃(ℎ𝑡𝑡) should become independent of the starting condition if 
𝑡𝑡 is high enough. The long deviation function 𝑓𝑓 is defined in the long time limit as  

 

𝑓𝑓(𝑣𝑣) = lim
𝑡𝑡→∞

𝑙𝑙𝑛𝑛𝑃𝑃(𝑣𝑣𝑡𝑡)
𝑡𝑡

. (2.21) 

We hypothesize that for large systems, the high deviation function takes the form when the 
departure of 𝑣𝑣 from its average �̅�𝑣 is at most of order 1/𝑁𝑁  

 
𝐹𝐹(𝑣𝑣) = 𝐾𝐾𝐻𝐻 �𝑁𝑁 𝑣𝑣−𝑣𝑣�

𝑣𝑣�
�, (2.22) 

where asymptotic behavior of H is as follows:  
 𝐻𝐻(𝑉𝑉) = −𝑉𝑉2 + 𝑂𝑂(𝑉𝑉)3 for |𝑉𝑉| < 1, 

𝐻𝐻(𝑉𝑉) ≃ −[2√3/(5√𝜋𝜋)]𝑉𝑉
5
2 for 𝑉𝑉 → +∞, 

𝐻𝐻(𝑉𝑉) ≃ −[4√𝜋𝜋/3]|𝑉𝑉|
3
2  for 𝑉𝑉 → −∞. 

(2.23) 

 
The coefficient 𝐾𝐾 is defined as  

 
𝐾𝐾 = 1

2𝑁𝑁2
𝑣𝑣2����

lim
𝑡𝑡→∞

(〈ℎ𝑡𝑡2〉𝑐𝑐/𝑡𝑡)
, (2.24) 

where 〈ℎ𝑡𝑡2〉𝑐𝑐 is the second order cumulant. The rescaling factor 𝐾𝐾 varies depending on the model, 
but it is believed that the form of 𝐻𝐻 is the same for all microscopic models within the KPZ class.. 

It is worth noting that the shape of H presented above may be influenced by the type of 
boundary conditions utilized. For open border circumstances, for example, we can get a different 
answer. However, it is believed that 𝐻𝐻 is universal in that it would be consistent across all 
microscopic models, given the same geometrical restrictions, such as periodic boundary conditions 
in this case. 
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The central component of the big deviation function defines all the cumulants 〈ℎ𝑡𝑡2〉𝑐𝑐. The 
universality of the limit of Eq. (2.21) follows directly from the universality of the form of Eq. 
(2.22).  

In this part, we describe the analytical results derived for the huge deviation function on 
several models. Initially, the suggestion of the hypothesis was put forth after computing the large 
deviation function for a specific model in the KPZ class, the asymmetric exclusion process 
(ASEP). 

In the ASEP, a system of particles 𝑒𝑒 moves on a ring of 𝑁𝑁 sites. If this site is unoccupied, 
each particle jumps to the next site to its right with probability ∆𝑡𝑡 during each time interval ∆𝑡𝑡. 
The large deviation function [70] confirms the scaling equation (2.22) for the asymmetric 
exclusion process (ASEP) model. It is not applicable to other models.   

 
𝐾𝐾 = �𝜌𝜌(1 − 𝜌𝜌)

𝜋𝜋𝑁𝑁3  (2.25) 

and  
 

�̅�𝑣 = 𝑁𝑁
𝑁𝑁−1

𝜌𝜌(1 − 𝜌𝜌).  (2.26) 

 Since then, Lee and Kim [72] have expanded the result to include the partially asymmetric 
exclusion process, where particles can move to the right or left with a probability. (1 + 𝜀𝜀)∆𝑡𝑡/2 or 
(1 − 𝜀𝜀)𝑑𝑑𝑡𝑡/2. They did it by employing the theory of quantum spin chains and discovering the 
form Eq. (2.22) with  

 
𝐾𝐾 = 𝜀𝜀�

𝜌𝜌(1 − 𝜌𝜌)
𝜋𝜋𝑁𝑁3  (2.27) 

and  
 

�̅�𝑣 = 𝜀𝜀 𝑁𝑁
𝑁𝑁−1

𝜌𝜌(1 − 𝜌𝜌).  (2.28) 

Brunet and Derrida [73] have been thinking about guided polymers that are anchored to 
impurities. If we consider the height of the interface as equivalent to the free energy for a polymer 
with length t, then this model falls within the KPZ class. According to earlier results, the scaling 
Eq. (2.23) for the big deviation function, and hence the universal asymptotic value appear to be 
proven. 

Analytical findings are difficult to get for the majority of models. In the limit of a big 
system, it is easier to determine numerically whether the cumulant ratio converges to the 
hypothesized universal value 0.415 to 17.  

It should be noted that because the computation of the fourth moment of a quantity that is 
an average over a large number of data points is quite time-consuming as it involves analyzing the 
statistics of the quantity.Furthermore, as 𝑡𝑡 rises, we have less and fewer statistics to determine 
from a particular simulation. This is why significant 𝑡𝑡 fluctuations are crucial.  

As a result, our numerical computations are more indicative of the conjecture than true 
numerical proofs. However, we believe they are substantial. Some simulations for various 
deposition models had been done in [71]. 

Stauffer [74] then released some numerical findings derived for the Eden model, which 
appeared to contradict the hypothesis. We believe there is no contradiction. The difference stems 

DOI: 10.14750/ME.2023.031



 

21 
 

from how time is defined. If we define time as we propose below, our numerical results are plainly 
consistent with the hypothesis.  

First, let us review the Eden model's definition. We consider an interface growing on a ring 
with N sites. At each time step, we choose one of the boundary sites, which is an empty site that 
borders an occupied site, as described in version A of [29]. If a boundary site is selected, it becomes 
occupied and its unoccupied neighbors become new boundary sites. 

The number 𝑁𝑁B of border sites fluctuates with the form of the interface throughout time. In 
the continuous limit, each boundary site should be picked with probability ∆𝑡𝑡 at each time step 𝑑𝑑𝑡𝑡. 
This indicates that the greater the 𝑁𝑁B, the more likely at least one location will be picked. 

To account for this impact in numerical simulations, time should not be increased by a 
consistent amount between two border site choices. 1

𝑁𝑁𝐵𝐵
  should be used to weight the time 

increment. 
The crucial distinction between our numerical simulations and Stauffer's lies in this aspect. 

Stauffer was employing the classic Eden model [48], in which time is not weighted. We observe 
that the simulation results in Figure 2.8 align with the hypothesis when using the weighted 
definition of time.  

 

 

Figure 2.8. The graph shows the relationship between the cumulative ratio and time for different 
system sizes. The horizontal line with dots and dashes represents the expected value for an 

infinite system over an infinite amount of time. The data was gathered for various system sizes 
𝐿𝐿 =  10, 20, 40, and 80, time unit are 1011, 8.5 ∙ 1010 , 2.3 ∙ 1010, and 8 ∙ 109 time units. Time 
is specified in such a way that each boundary site may be picked with probability dt at each time 

step dt [77]. 
 

Stauffer's results  indicate that the original Eden model would not be classified as KPZ. 
This is what the following basic argument would imply. As previously stated, using a weighted 
time implies that an event can occur in any location separately. If we take a nonweighted time, we 
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may infer that the chance of an event occurring in a certain site is dependent on the geometry of 
the interface in the entire system. As a result, the growth criteria are no longer local, therefore it is 
not unexpected that the model is not in the KPZ class [74].  
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3.  KPZ EQUATION / STOCHASTIC BURGERS/SCALIG EXPONENT 

3.1. KPZ equation  
The Kardar-Parisi-Zhang (KPZ) equation is  

 
𝜕𝜕ℎ
𝜕𝜕𝑡𝑡

= −𝜆𝜆(∇ℎ)2 + 𝜈𝜈∇2ℎ + √𝐶𝐶𝑟𝑟𝜂𝜂, (3.1) 

where stands for space-time white noise first, generally which is a Gaussian field with a 
distribution valued correlation function. It is an equation for a height function with a random 
evolution ℎ ∈ ℝ that depends on position 𝑥𝑥 ∈ ℝ and time 𝑡𝑡 ∈ ℝ+. The physical constants are 𝜆𝜆, 𝜈𝜈 
and 𝐶𝐶𝑟𝑟 

 
〈𝜂𝜂(𝑥𝑥, 𝑡𝑡), 𝜂𝜂(𝑥𝑥′, 𝑡𝑡′)〉 = 𝛿𝛿(𝑥𝑥 − 𝑥𝑥′)𝛿𝛿(𝑡𝑡 − 𝑡𝑡′), (3.2) 

where 𝑥𝑥′and 𝑡𝑡′are just variables used to specify the covariance function of the noise term, 𝛿𝛿(𝑥𝑥) 
and 𝛿𝛿(𝑡𝑡) are Dirac delta functions.  

Kardar, Parisi, and Zhang initially proposed the Eq. (2.2) in 1986 [1], and it swiftly rose to 
prominence as physics' standard explanation for random interface growth. The mathematical 
complexity of the nonlinearity made it too difficult for the stochastic partial differential equations 
to be effective. Thus, the issue of well-posedness is really critical.  

Formally, it is equivalent to the stochastic Burgers equation  
 

𝜕𝜕ℎ
𝜕𝜕𝑡𝑡

= −𝜆𝜆(∇ℎ)2 + ∇2ℎ + √𝐶𝐶𝑟𝑟𝜕𝜕𝑥𝑥𝜂𝜂.  (3.3) 

 In higher dimensions, a similar equation can be written,  
 

𝜕𝜕ℎ
𝜕𝜕𝑡𝑡

= −𝜆𝜆|∇ℎ|2 + 𝜈𝜈∆ℎ + √𝐶𝐶𝑟𝑟𝜂𝜂, (3.4) 

with 𝑥𝑥 ∈ ℝ𝑑𝑑. Additionally, one may try to generalize the non-linearity  
 

𝜕𝜕ℎ
𝜕𝜕𝑡𝑡

= 𝑓𝑓(∇ℎ) + 𝜈𝜈∆ℎ + √𝐷𝐷𝜂𝜂. (3.1) 

It seems that only Eq. (3.1) produces a nontrivial field when space-time white noise is 
forced. Here, we'll stick to just one space dimension with quadratic nonlinearity Eq. (3.1). We are 
still dealing with the extremely challenging problem of a field theory with broken time reversible 
invariance in this 1+1 dimensional scenario.  

The stochastic Burgers Eq. (3.3) serves as a representation for turbulence as a mathematical 
model. Forster, Nelson, and Stephen [78] conducted a dynamical renormalization group analysis 
on it in 1977 [78] (see also [1], [12]), forecasting a dynamical scaling exponent  

 
𝑧𝑧 = 3

2
.  (3.2) 

This implies that one should anticipate nontrivial fluctuation behavior under the rescaling 
for the KPZ equation's solution ℎ 

 
ℎ(𝑥𝑥, 𝑡𝑡) = 𝜀𝜀

1
2ℎ(𝜀𝜀−𝑧𝑧𝑡𝑡, 𝜀𝜀−1𝑥𝑥), (3.3) 
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where 𝜀𝜀 is rescaling constant.  
This will be covered in much more detail later on in the notes. We now turn to the process' 

physical derivation and its physical predictions. Note that the goal of this introduction is merely to 
describe the physical background; it is not meant to be rigorous. Naturally, one is interested in 
demonstrating the equation's existence and uniqueness from a mathematical perspective. The 
solutions, however, can be expressed in terms of a classically well-posed stochastic partial 
differential equation, as we shall see. The main focus of these notes will be on the scaling 
exponents, the large scale fluctuation behavior, and the actual behavior of solutions, all of which 
are hypothesized to be universal within the so-called KPZ universality class.  

 

3.2. Physical interpretation  
Both diffusion and random deposition are processes that ℎ grows. Three factors contribute to 

the passage of time: (3.1) Growth that is lateral or slope dependent, (3.2) relaxation, and (3.3) 
random forcing. The result is as follows:  

 
𝜕𝜕ℎ
𝜕𝜕𝑡𝑡

= −𝜆𝜆𝑓𝑓(∇ℎ)2 + 𝜈𝜈∇2ℎ + √𝐶𝐶𝑟𝑟𝜂𝜂.  (3.8) 

the first term on the right hand side is the non-linear term (∇ℎ)2 and the second one (∇2ℎ) is the 
diffusive term of Eq. (3.8). It is assumed that the random force Eq. (3.3) is roughly independent at 
various times and locations. Gaussian space-time white noise, which has a mean zero and space-
time correlations, is the most basic model.  

 
〈𝜂𝜂(𝑥𝑥, 𝑡𝑡), 𝜂𝜂(𝑐𝑐,𝑦𝑦)〉 ≔ 𝐸𝐸[𝜂𝜂(𝑡𝑡, 𝑥𝑥)𝜂𝜂(𝑐𝑐,𝑦𝑦)] = 𝛿𝛿(𝑥𝑥 − 𝑦𝑦)𝛿𝛿(𝑡𝑡 − 𝑐𝑐). (3.9) 

 
The noise level is represented by the letter √𝐶𝐶𝑟𝑟.Traditionally, it has a square root, making 

𝐶𝐶𝑟𝑟 the variance or mean square. The important term in Eq. (3.1), the deterministic portion of the 
growth, is considered to be a symmetric function that depends solely on the slope. An illustration 
of what we mean by "lateral growth" is shown below.  

 

Figure 3.1. Lateral growth process. 
 

The obvious alternative for 𝑓𝑓 in the image might be (1 + (∇ℎ)2) −
1
2. However, this results in an 

equation seems impossible to solve. Amazingly, one discovers a non-trivial field through such a 
naive derivation (see introductions in [80], [2], and [29]).  
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3.3. Scaling concept  
Here, we focus just on the specific choice 𝜆𝜆 =  𝑣𝑣 = 1

2
,𝐶𝐶𝑟𝑟 =  1,  

 
𝜕𝜕ℎ
𝜕𝜕𝑡𝑡

= −1
2

(∇ℎ)2 + 1
2
∇2ℎ + 𝜂𝜂. (3.10) 

Subsituiting 
 

ℎ𝜀𝜀(𝑡𝑡, 𝑥𝑥) = 𝜀𝜀𝑏𝑏ℎ(ℎ−𝑧𝑧𝑡𝑡, 𝜀𝜀−1𝑥𝑥) (3.11) 

 
we obtain 𝜕𝜕ℎ

𝜕𝜕𝑡𝑡
= 𝜀𝜀𝑧𝑧−𝑏𝑏∇ℎ𝜀𝜀, ∇ℎ = 𝜀𝜀1−𝑏𝑏∇ℎ𝜀𝜀, and ∇2ℎ = 𝜀𝜀2−𝑏𝑏∇2ℎ𝜀𝜀. The rescaling of the white noise 

is more intriguing  
 

𝜉𝜉(𝑡𝑡, 𝑥𝑥) 𝑑𝑑𝑖𝑖𝑐𝑐𝑡𝑡
= 𝜀𝜀

𝑧𝑧+1
2 𝜉𝜉(𝜀𝜀1𝑥𝑥, 𝜀𝜀𝑧𝑧𝑡𝑡). (3.12) 

 
If the two random fields have the same distribution that demonstrates the equality then this leads 
to  

 
𝜕𝜕ℎ
𝜕𝜕𝑡𝑡

= −1
2
𝜀𝜀2−𝑧𝑧−𝑏𝑏(𝜕𝜕𝑡𝑡ℎ𝜖𝜖)2 + 1

2
𝜀𝜀2−𝑧𝑧𝜕𝜕𝑥𝑥2ℎ𝜖𝜖 + 𝜀𝜀𝑏𝑏−

1
2𝑧𝑧+

1
2𝜂𝜂. (3.13) 

Apparently, we have a choice now 𝜆𝜆 = 1
2
𝜀𝜀2−𝑧𝑧−𝑏𝑏, 𝜈𝜈 = 1

2
𝜀𝜀2−𝑧𝑧, √𝐶𝐶𝑟𝑟 = 𝜀𝜀𝑏𝑏−

1
2𝑧𝑧+

1
2 to get (3.1) from 

(3.10). When comparing discrete models to KPZ, one must determine the proper 𝑣𝑣, and 𝐶𝐶𝑟𝑟 (see 
[81]).   
 
 

3.4. 1 + 1 dimensional noisy Burgers equation  
 

The height differences is ℎ𝑡𝑡(𝑥𝑥′) − ℎ𝑡𝑡(𝑥𝑥) in 1 + 1 dimensions that become stationary as 
𝑡𝑡 → ∞. If ℎ𝑡𝑡 is regulated by the KPZ equation, then ℎ fulfills  

 
𝜕𝜕ℎ
𝜕𝜕𝑡𝑡

= 𝜕𝜕
𝜕𝜕𝑥𝑥
�1
2
𝜆𝜆ℎ2 + 1

2
+ 𝜈𝜈 𝜕𝜕

𝜕𝜕𝑥𝑥
ℎ�. (3.14) 

Burger's equation contains 𝜆𝜆 = −1, which may be obtained by replacing ℎ with −1
𝜆𝜆
ℎ� . 

Burgers ℎ is the velocity field of a one-dimensional fluid. Equation (3.14) is therefore the Navier-
Stokes equation with random forcing.  

Because ℎ is locally preserved, we can still fix its average value, which is set to 〈ℎ〉 = 0 
by our starting data. Noise and diffusion alone (i.e. Eq. (3.14) with 𝜆𝜆 = 0) generate a unique 
invariant distribution. It is Gaussian white noise with covariance.  

 
〈ℎ(𝑥𝑥)ℎ(𝑥𝑥′)〉 = (𝛾𝛾/2𝜈𝜈)𝛿𝛿(𝑥𝑥 − 𝑥𝑥′). (3.15) 

This measure also happens to be invariant under the flow created by the solutions of  
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𝜕𝜕ℎ
𝜕𝜕𝑡𝑡

=
�𝜆𝜆2�∇

2ℎ

∆𝑥𝑥
. (3.16) 

[78], [82]. To demonstrate this, imagine a length L interval with periodic boundary conditions. 
Formally, the right side of Eq. (3.16) is devoid of divergence 

 
∫ 𝜕𝜕

𝜕𝜕𝑥𝑥
ℎ(𝑥𝑥)𝑑𝑑𝑥𝑥 = 0𝐿𝐿

0 , (3.17) 

because of periodic boundary conditions. As a result, we just need to confirm the density's 
temporal invariance 

 
𝑒𝑒𝑥𝑥𝑒𝑒 �− 𝜈𝜈

𝛾𝛾 ∫ (𝑥𝑥)2𝑑𝑑𝑥𝑥ℎ𝑡𝑡𝐿𝐿
0 �. (3.18) 

Differentiating in time yields  
 

−�𝜆𝜆𝜈𝜈
2𝛾𝛾
� �∫ ℎ(𝑥𝑥) 𝜕𝜕

𝜕𝜕𝑥𝑥
ℎ(𝑥𝑥)2𝑑𝑑𝑥𝑥𝐿𝐿

0 � 𝑒𝑒𝑥𝑥𝑒𝑒 �− 𝜈𝜈
𝛾𝛾 ∫ ℎ(𝑥𝑥)2𝑑𝑑𝑥𝑥𝐿𝐿

0 �. (3.19) 

The prefactor is eliminated by partial integration. In higher dimensions, the prefactor is 
∫ℎ(𝑥𝑥)(ℎ(𝑥𝑥) ∙ ∇ℎ(𝑥𝑥)𝑑𝑑𝑑𝑑𝑥𝑥 which, in general, does not vanish. 

The stationarity of white noise comes as a surprise since a smooth profile ℎ𝑡𝑡 first converges 
as 𝑡𝑡 → ∞ to a constant profile. White noise profiles are often harsh and may not settle as 𝑡𝑡 → ∞. 
These arguments raise the question of how mathematically defined Eq. (3.t14) is. Of course, a 
small distance limit should be implemented physically. If one discretizes Eq. (3.14) as  

 
𝑑𝑑
𝑑𝑑𝑡𝑡
ℎ(𝑗𝑗) = �𝜆𝜆

6
� �ℎ(𝑗𝑗) + ℎ(𝑗𝑗 + 1)� + ℎ(𝑗𝑗 + 1)) − ℎ(𝑗𝑗 − 1)(ℎ(𝑗𝑗 − 1) + ℎ(𝑗𝑗))) +

𝜈𝜈(ℎ(𝑗𝑗 + 1) − ℎ(𝑗𝑗 − 1)) + 𝜉𝜉(𝑗𝑗), 
(3.20) 

the ℎ(𝑗𝑗)’s are distributed as separate Gaussian distributions with variance 𝛾𝛾/2𝜈𝜈 in the steady state 
[83]. Furthermore, as will be detailed in Chapter 6, the stationary distribution for numerous lattice 
growth models may be determined explicitly. At a large separation, the slopes are independent. 
These findings increase our faith in Eq. (3.15). 

In the case of stationary growth, we infer that  
 

〈(ℎ𝑡𝑡(𝑥𝑥) − ℎ𝑡𝑡(𝑥𝑥′))2〉 = � 𝛾𝛾
2𝜈𝜈
� |𝑥𝑥 − 𝑥𝑥′|. (3.21) 

Our reasoning provides no insight into the scaling function. Jansen and Schmittmann [84] 
demonstrated that there is a universal function, 𝑔𝑔, such that is average in the stationary measure 
with small 𝑘𝑘 and large 𝑡𝑡 in the Eq. (3.22). 

 

∫ 𝑒𝑒𝑖𝑖𝑘𝑘𝑥𝑥〈ℎ(𝑥𝑥)ℎ(0)〉𝑑𝑑𝑥𝑥 = 𝛾𝛾
2𝜈𝜈
𝑔𝑔 ��𝜆𝜆

2𝛾𝛾
2𝜈𝜈
�
1
3 𝑘𝑘|𝑡𝑡|

2
3�. (3.22) 

The scaling function 𝑔𝑔(𝑥𝑥) is not explicitly known. Because of symmetry, 𝑔𝑔(𝑥𝑥)  =
 𝑔𝑔(−𝑥𝑥) and 𝑔𝑔′(0)  =  0. Authors [84] calculated 𝑔𝑔(𝑥𝑥) for a small 𝑥𝑥 and discovered 𝑔𝑔"(0)  ≅
−4.5. For large 𝑥𝑥 approximations show that 𝑔𝑔 decays as 𝑒𝑒𝑥𝑥𝑒𝑒 �−𝑐𝑐|𝑎𝑎|

3
2�, where 𝑐𝑐 is a constant and 

𝑎𝑎 is  the amplitude value [79], [85], [86]. The key point in (3.22) is that only macroscopic growth 
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model parameters appear: 𝜆𝜆 represents the growth velocity, and 𝛾𝛾/2𝑣𝑣 is the intensity of the static 
fluctuations. The scaling form (3.22), which determines the large scale behavior of any two-
dimensional growth process (assuming the growth rules are sufficiently local and 𝜆𝜆 ≠ 0; dictates 
the large scale behavior of any two-dimensional growth process). 
 Since we have predicted the stationary measure, we may compute the effective growth 
velocity 𝜈𝜈𝑒𝑒𝑒𝑒𝑒𝑒(∇ℎ) (see explanation below Eq. (3.23)). The Gaussian (3.18), in fact, is the steady 
state for any bare growth velocity 𝜈𝜈(∇ℎ). The effective growth velocity is thus provided by (3.14) 
with �𝜆𝜆

2
� ℎ2 substituted by 𝜈𝜈(ℎ) 

 
𝜈𝜈𝑒𝑒𝑒𝑒𝑒𝑒(∇ℎ) = ∫ � 𝜈𝜈

𝜋𝜋𝛾𝛾
�
2
𝑒𝑒−

𝜈𝜈𝑢𝑢2

𝛾𝛾 𝜈𝜈(∇ℎ + ℎ)𝑑𝑑ℎ. (3.23) 
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4.  IMPACT OF THE INITIAL SURFACE MORPHOLOGY  

Non-linear PDEs has no general mathematical theory, which could help us to derive 
physically relevant solutions. There are different methods available, beyond the celebrated Lie 
algebra formalism [87], the most commonly used method is the reduction technique. This means 
that the original variables of the PDEs like the time t and the spatial coordinate 𝑥𝑥 are used to define 
a new variable (for example 𝑓𝑓). Via a variable transformation the original PDE can be reduced to 
an ordinary differential equation (ODE). The choice of the form of  𝑓𝑓(𝑥𝑥, 𝑡𝑡) is basically quite large. 
Usually, the continuity of first and second derivatives of 𝑓𝑓 in respect of x and t is required. Beyond 
these continuous models based on partial differential equations (PDEs), there are numerous purely 
numerical methods available to study diverse surface growth phenomena. Without completeness, 
we mention the kinetic Monte Carlo [88],  Lattice-Boltzmann simulations [89], and the etching 
model [90]–[96].  

 

4.1.  Results without noise term 
Simulations have been carried out by MATLAB R2019a. Numerical solution for height 

profiles are calculated with the following data: 𝑥𝑥 ∈   [−200, 200], 𝑡𝑡 ∈  [0, 10000],𝑁𝑁 =
 100,∆𝑡𝑡 =  1/100, where 𝑁𝑁 denotes the number of division points on the 𝑥𝑥-axis and ∆𝑡𝑡 is the 
time step. 

In the resulted figures below the complete solutions of the KPZ Eq.  
 𝜕𝜕ℎ

𝜕𝜕𝑡𝑡
(𝑥𝑥, 𝑡𝑡) = 𝜈𝜈∇2ℎ(𝑥𝑥, 𝑡𝑡) + 𝜆𝜆

2
(∇ℎ)2 + 𝜂𝜂(𝑥𝑥, 𝑡𝑡), (4.1) 

that have been presented for different initial condition and various amplitudes. However for 
simplicity, the parameters are chosen as 𝑣𝑣 =  𝜆𝜆 = 0.1 and the initial conditions are  

 
ℎ(𝑥𝑥, 0) = �1 · cos �𝑥𝑥

8
� � �1 + sin �𝑥𝑥

8
� �, (4.2) 

and  
 

ℎ(𝑥𝑥, 0) = �0.1 · cos �𝑥𝑥
8
� � �0.1 + sin �𝑥𝑥

8
� �. (4.3) 

Figure 4.1 presents the solutions in the time range [1, 600] for the different amplitudes applied in 
the initial conditions Eqs. (4.2) and (43). It seems that the results are vibrating depending on the 
parameter value in the initial condition. In Fig. 4.1(a) it can be seen that ℎ(𝑥𝑥, 𝑡𝑡) is between ±1.3 
and in Fig. 4.1(b) that it is between ±0.6 which begin to smooth out in the both cases. This 
examination suggests that the initial condition amplitudes affect only the early phases of the 
surface evolution, while later the surface tends to approach a flat state regardless of the initial 
amplitudes. 
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a        b 

Figure 4.1. The solutions of the KPZ equation (4.1) without noise term with initial conditions 
(4.2) and (4.3). 

Figure 4.2 presents the results in the same parameters for 𝜈𝜈 = 𝜆𝜆= 0.1 applying different initial 
condition.  

The following initial conditions are considered 
 

ℎ(𝑥𝑥, 0) = �1 · sin � 𝑥𝑥
16
� � + �1 · cos � 𝑥𝑥

16
� �. (4.4) 

and  
 

ℎ(𝑥𝑥, 0) = �0.1 · sin � 𝑥𝑥
16
� � + �0.1 · cos � 𝑥𝑥

16
� �. (4.5) 

Figures presented in Fig. 4.2(a) and Fig. 4.2(b) are different from each other by difference in their 
amplitudes. Based on these results, we can conclude that for initial condition amplitudes greater 
than 1, the surface evolution shown in Fig. 4.2(a) starts from a negative height with some waves, 
but increasing the amplitude leads to a decrease in the wave amplitude and the surface eventually 
approaches a flat state in the end. However, small amplitude values increase waviness in ℎ(𝑥𝑥, 𝑡𝑡) 
line proportionally. 

 
a        b 

Figure 4.2. The solutions of the KPZ Eq. (4.1) without noise term with initial conditions (4.4) 
and (4.5). 
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To illustrate the impact of the amplitude of the initial surface Fig. 4.3(a) and Fig. 4.3(b) 

exhibit the solution to Eq. (4.1) with initial conditions 
 

ℎ(𝑥𝑥, 0) = 1 · 𝑐𝑐𝑖𝑖𝑛𝑛 � 𝑥𝑥
16
�  (4.6) 

and  
 

ℎ(𝑥𝑥, 0) = 0.1 · 𝑐𝑐𝑖𝑖𝑛𝑛 � 𝑥𝑥
16
�,    (4.7) 

and also gives the same results as discussed above.  
 

 
a        b 

Figure 4.3. The solutions of the KPZ Eq. (4.1) without noise term with initial conditions (4.6) 
and (4.7). 

 
The functions demonstrate a comparable structure, as shown by Fig. 4.1 and Fig. 4.3, which 

depict the relationship between amplitude values over the same time period. Figure 4.1 
demonstrates that the waviness can be altered based on the amplitude inputs. We may say that 
different numerical values of initial condition do not drastically change the whole surface as it is.  
 

4.2.  Results with Gaussian noise 
As the main universality classes relevant for kinetic roughening, we focus on the case in 

which the surface or interface is subject to time dependent noise. In typical applications, these 
fluctuations arise in those of a driving flux (of, say, aggregating units, atoms or molecules) acting 
on the system. This is a convenient way to represent the nature of the noise, but it does not by any 
means imply that its amplitude is directly the square root of the average external flux. For instance, 
in studies of grows molecular beam epitaxy (MBE) for electrochemical [97] or chemical vapor 
deposition (ECD, CVD, respectively) [98] the noise term appearing in the Langevin equation for 
the interface [51], [99] is seen to be rather more involved than that. However, and this can never 
be overemphasized, the universal behavior applies to asymptotic properties, well beyond all 
existing transients (induced by, e.g. physical instabilities acting on the system) and crossovers (due 
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to competition among various physical mechanisms, each of which is dominant for a different 
range in time and space). For the type of systems, we are considering, the asymptotic properties  
are adequately described by equations featuring additive noise, which is Gaussian and uncorrelated 
in time and space [100].  

Applying similarity transformation ℎ(𝑥𝑥, 𝑡𝑡) = 𝑓𝑓(𝜁𝜁) and 𝜁𝜁 = 𝑥𝑥
√𝑡𝑡

  with Gaussian noise gives us 
the ODE of 

 

𝑣𝑣𝑓𝑓′′(𝜁𝜁) + 0.5𝑓𝑓′(𝜁𝜁)[𝜁𝜁 + 𝜆𝜆𝑓𝑓′(𝜁𝜁)] + 𝑎𝑎𝑒𝑒
−𝜁𝜁2

𝑛𝑛 = 0,   𝑡𝑡 > 0,  (4.8) 

where 𝑎𝑎 is in connection with the standard deviation of the Gaussian distribution and n determines 
the type of the noise term [96]. There is no general formula available for arbitrary parameters 𝜆𝜆, 
𝜇𝜇, 𝑎𝑎. Fortunately, if two parameters are fixed e.g. 𝑣𝑣 =  𝜆𝜆 =  0.1 and 𝑛𝑛 =  1, then there is a closed 
expression (analytical solution) available for the solution 

 

𝑓𝑓(𝜁𝜁) = − 1
2𝜆𝜆

ln �1 + tan �√𝜆𝜆𝑎𝑎𝜋𝜋 ∙ erf��𝜁𝜁
2
� + 𝑐𝑐1�

2

� + 𝑐𝑐2, (4.9) 

where erf means the error function and 𝑐𝑐1 and 𝑐𝑐2 are integration constants, see [95], [96]. 
Figure 4.4 presents the numerical results for the given parameters and 𝑎𝑎 = 1 and for 

applying different initial condition amplitudes to Eq. (4.1) as follows 
 

ℎ(𝑥𝑥, 0) = �1 · cos �𝑥𝑥
8
� � · �1 + sin �𝑥𝑥

8
� �. (4.10) 

and  
 

ℎ(𝑥𝑥, 0) = �0.1 · cos �𝑥𝑥
8
� � · �0.1 + sin �𝑥𝑥

8
� �. (4.11) 

Figures 4.4(a) and 4.4(b) show almost the same structure. The only change is that if the amplitude 
is 1, the ripple appears, which can also be characterized by the maximum value of the amplitude. 

 
a        b 

Figure 4.4. The solutions of the KPZ Eq. (4.1) with Gaussian noise term with initial conditions 
(4.10) and (4.11). 
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Figure 4.5 shows the solutions of Eq. (4.1) with the same parameters. The figure shows the 

change in amplitude and the different representations of the graphs. We examine the effect of the 
strength of the Gaussian noise, denoted by a in Eq. (4.8) providing 𝑎𝑎 = 0.1 and 𝑎𝑎 = 0.01 in the 
Gaussian noise term 𝜂𝜂(𝑥𝑥, 𝑡𝑡) together with the initial state 

 
ℎ(𝑥𝑥, 0) = �1 · cos �𝑥𝑥

8
� � · �1 + sin �𝑥𝑥

8
� �. (4.12) 

It results the big wavy shape in the surface escaping while keeping increase amplitude of noise 
term.  

 
a        b 

Figure 4.5. The solutions of the KPZ Eq. (4.1) with Gaussian noise term with initial condition 
(4.12) and  a=0.1 or a=0.01. 

 
Figure 4.6 presents the results in the same output figures as presented in Fig. 4.4 in spite of 

changing initial condition and its amplitudes  
 ℎ(𝑥𝑥, 0) = 1 · 𝑐𝑐𝑖𝑖𝑛𝑛 � 𝑥𝑥

16
� + 1 · 𝑐𝑐𝑐𝑐𝑐𝑐 � 𝑥𝑥

16
 �. (4.13) 

and  
 

ℎ(𝑥𝑥, 0) = 0.1 · 𝑐𝑐𝑖𝑖𝑛𝑛 � 𝑥𝑥
16
� + 0.1 · 𝑐𝑐𝑐𝑐𝑐𝑐 � 𝑥𝑥

16
�. (4.14) 

DOI: 10.14750/ME.2023.031



 

33 
 

 
a        b 

Figure 4.6. The solutions of the KPZ Eq. (4.1)with Gaussian noise term with initial condition 
(4.14) and (4.4) for a=1. 

 
Figure 4.7 presents the results of the numerical simulations for Eq. (4.1) applying different 

initial conditions with 𝑎𝑎 = 0.1 or 𝑎𝑎 = 0.01 in the Gaussian noise term 𝜂𝜂 of Eq. (4.1). 
In this figure different amplitude changes can be seen and how the graphs are variously 

presented while initial condition is kept  
 

ℎ(𝑥𝑥, 0) = 1 · 𝑐𝑐𝑖𝑖𝑛𝑛(𝑥𝑥/16) + 1 · 𝑐𝑐𝑐𝑐𝑐𝑐 � 𝑥𝑥
16
�. (4.15) 

Difference between Fig. 4.5 and Fig. 4.7 is their wavy steps in the same range 𝑥𝑥 ∈   [−200 200].  

 
a        b 

Figure 4.7. The solutions of the KPZ Eq. (4.1) with Gaussian noise term with initial condition 
(4.15) and  a=0.1 or a=0.01. 

 
Figure 4.8 introduces the same output figures as presented in Fig. 4.4 and Fig. 4.6 in spite of 
changing the amplitudes in the initial condition 

 
ℎ(𝑥𝑥, 0) = 1 · 𝑐𝑐𝑖𝑖𝑛𝑛 � 𝑥𝑥

16
�. (4.16) 

and 
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ℎ(𝑥𝑥, 0) = 0.1 · 𝑐𝑐𝑖𝑖𝑛𝑛 � 𝑥𝑥

16
�  (4.17) 

However, as it is shown that difference between all these figures are their wavy starting points 
which is increasing waviness in the same range 𝑥𝑥 ∈   [−200 200].  

 
a        b 

Figure 4.8. The solutions of the KPZ Eq. (4.1) with Gaussian noise term with initial conditions 
(4.16) and (4.17). 

 
Figure 4.9 presents the results of changed amplitudes with 𝑎𝑎 = 0.1 or 𝑎𝑎 = 0.01 in the Gaussian 
noise term 𝜂𝜂 while initial condition is kept  

 
ℎ(𝑥𝑥, 0) = 1 · 𝑐𝑐𝑖𝑖𝑛𝑛 � 𝑥𝑥

16
�. (4.18) 

As above results here are represents the impact of the initial condition and noise amplitudes and 
show wavy increase in the graphs.  

 
a        b 

Figure 4.9. The solutions of the KPZ Eq. (4.1) with Gaussian noise term with initial condition 
(4.18) and  a=0.1 or a=0.01. 

 

We consider the solutions of the KPZ equation (4.1) with a Gaussian noise term for initial 
condition (4.18) and values of 𝑎𝑎 equal to 0.1 or 0.01.  
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To conclude, we can say that with an appropriate change of amplitudes in the initial 
condition and/or strength of noise in the noise term; or examining the problem without noise term, 
numerical solutions for the KPZ equation can be obtained for one spatial dimension. Numerous 
shaped figures show that every initial condition effects on wavy starting point of surfaces from 
smaller range to higher on both Gaussian noise and without noise case in the same way. One of 
the difference between these two cases that if we do not apply the noise term then after some time 
the solution surface is flat, but applying the Gaussian noise the surface has a wavy structure even 
after 𝑡𝑡 =10000. Reducing the amplitude in the initial condition provides smoother shape in the 
surface structure. 
 
 

4.3.  Various initial condition amplitudes with noise terms 
 

In this section we investigate the numerical solution to KPZ Eq. (4.1) with Gaussian noise, 
white noise and without noise terms. The importance is to point out the morphology of the initial 
surface of the substrate and the results obtained show different surface formations. In our 
investigations, the parameter values are chosen as 𝜈𝜈 = 1 and 𝜆𝜆 = 1

2
  when we refer to the KPZ 

equation.  

In some of previous studies [95], [96], [101]–[106], the role of the additional noise term 
makes the KPZ solutions interesting. However, when we conducted experiments without noise 
term in literature [107], [108], it introduced the phenomenal effect of different initial conditions to 
the surface. Now, our aim is to look for the solutions of Eq. (4.1) with initial condition 𝐴𝐴 sin � 𝑥𝑥

16
�  

applying various amplitudes. Furthermore, we will see numerical results with Gaussian noise and 
white noise terms with all physical parameters (𝜈𝜈, 𝜆𝜆,𝐴𝐴). Here, 𝐴𝐴 is the initial condition parameter. 

In the simulations, the solutions to Eq. (4.1) with various noise terms have been presented. 
Also, the case without noise term effect is studied. Furthermore, three different amplitudes are 
applied for the initial condition of the form  

 
ℎ(𝑥𝑥, 0) = A sin � 𝑥𝑥

16
�. (4.19) 

with amplitude A. The numerical analyses have been conducted on the MATLAB R2019b with 
parameters given below (4.20). In the calculations, the initial time 𝑡𝑡 has been chosen as 0.01 until 
100. The following values are fixed throughout the study 

 
𝑥𝑥 ∈  [−100, 100], 𝑡𝑡 ∈  [0.01, 100], 𝑁𝑁 =  100,   ∆𝑡𝑡 =  0.01/100. (4.20) 

In the process of the simulation obtaining the solution of the KPZ Eq. (4.1), the initial conditions 
which mimic the initial surface structure are chosen as in Eqs. (4.21)-(4.23). The amplitude 
parameters are taken in a maximally simple form to determine relational changes of the initial 
conditions and the noise term differences. To get a better understanding first, we determine the 
solution Eq. (4.1) without noise term with different amplitude values  
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 ℎ(𝑥𝑥, 0) = 10 sin � 𝑥𝑥
16
�, (4.21) 

and 

 ℎ(𝑥𝑥, 0) = sin � 𝑥𝑥
16
�. (4.22) 

and 

 ℎ(𝑥𝑥, 0) = 0.1 sin � 𝑥𝑥
16
�. (4.23) 

   

4.3.1. The case: without noise term  

The research result using the traveling wave Ansatz with closed forms to obtain analytic 
solutions to KPZ Eq. (4.1) without noise term was presented in paper [95]. The self-similar Ansatz 
[95] has the form ℎ(𝑥𝑥, 𝑡𝑡)  =  𝑡𝑡−𝛼𝛼𝑓𝑓 � 𝑥𝑥

𝑡𝑡𝛽𝛽
� ∶=  𝑡𝑡−𝛼𝛼𝑓𝑓(𝜔𝜔), These methods belong to the reduction 

mechanism, where applying a suitable variable transformation reduces the original partial 
differential equations (PDEs) or systems of PDEs to an ordinary differential equation (ODE) or 
systems of ODEs. Applying the traveling wave Ansatz to the KPZ partial differential Eq. (4.1) 
with 𝜂𝜂(𝑥𝑥, 𝑡𝑡)  =  0 leads to the ordinary differential equation (ODE) of  

 

−𝜈𝜈𝑓𝑓′′(𝜔𝜔) + 𝑓𝑓′(𝜔𝜔) �𝑐𝑐 −  
𝜆𝜆
2
𝑓𝑓′(𝜔𝜔)� = 0. (4.24) 

The solution to equation (4.24) can be given as  

 

𝑓𝑓(𝜔𝜔) = 2
𝜆𝜆

ln�
𝜆𝜆�𝑐𝑐1𝜐𝜐𝑒𝑒

𝑐𝑐𝑐𝑐
𝜐𝜐 −𝑐𝑐2𝑐𝑐�

2𝑣𝑣𝑐𝑐
� 𝜈𝜈,   (4.25) 

where 𝑐𝑐1 and 𝑐𝑐2 are the constants of the integration. It should be noted that this is a linear function 
equation 𝑓𝑓(𝜔𝜔)  =  𝑎𝑎𝜔𝜔 + 𝑏𝑏 which is presented in a complicated form. The parameters for 𝑐𝑐1 is set, 
and it equals 0, which gives a constant solution. Physically it means that there is a continuous 
surface growing till infinity which is quite unphysical. Therefore, some additional noise is needed 
to have physically realistic surface growing phenomena. However, in our situation, when there is 
no noise term (𝜂𝜂(𝑥𝑥, 𝑡𝑡)  =  0), the surface is flat without any wavy effect.  
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When there is an initial condition effect, and its amplitude difference is investigated, then 
the wavy surface of the graph appears as Fig. 4.10 without any curve or wedge surface effect.

  

Figure 4.10. The solution graph to (4.1) without noise term and with given values (4.19) and 
various initial conditions (4.21)-(4.23). 

 

As it is presented in Fig. 4.10, the amplitude of the initial condition is an important parameter for 
the formation of the surface even without noise term. When the amplitude parameter of the initial 
condition equals 10, the starting part of the wavy surface fluctuates between given values. After a 
certain time, this surface becomes flat; see details on the results and numerical data in paper [109].  

 

4.3.2. The case with Gaussian noise term 

Kinetic roughening is an important part of universality classes. For this reason, we pay 
attention to the time-dependent noise affecting the surface growth. Generally, these surface 
fluctuations occur by driving flux or atoms acting on the system. However, this does not mean that 
its amplitude is directly the square root of the average external flux. For example, research on 
beam molecular epitaxy growth for electrochemical or chemical vapor deposition showed that the 
noise term from the Langevin equation for the interface is more affected. However, it cannot be 
overemphasized.  Universal behavior refers to asymptotic properties, far exceeding all existing 
transients (induced by, e.g., physical instability acting on the system) and crossovers (due to 
competition among various physical mechanisms, each of which is dominant for a different range 
in time and space). Considering the type of system and the asymptotic properties, the equations 
containing the additive noise term adequately describe the phenomenon. The Gaussian-type noise 
is uncorrelated in time and space [69]. Applying similarity transformation ℎ(𝑥𝑥, 𝑡𝑡) = 𝑓𝑓(𝑤𝑤) and 
𝑤𝑤 = 𝑥𝑥

√𝑡𝑡
 to (1) with Gaussian noise, one gets the ODE of 
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𝑣𝑣𝑓𝑓′′(𝑤𝑤) + 0.5𝑓𝑓′(𝑤𝑤)[𝑤𝑤 + 𝜆𝜆𝑓𝑓′(𝑤𝑤)] + 𝑎𝑎𝑒𝑒
−𝑤𝑤2

𝑛𝑛 = 0 , (4.26) 

where value 𝑎𝑎 is chosen as 1. There is no general formula available for the solution to (4.26) for 
arbitrary parameters 𝜆𝜆, 𝑎𝑎. If we fixed all parameters such as: 𝜈𝜈 = 1, 𝜆𝜆 = 1

2
 and 𝑎𝑎 =  1, then there 

is a closed expression (an analytical solution) available  

 

𝑓𝑓(𝑤𝑤) = − 1
2𝜆𝜆

ln �1 + tan �√𝜆𝜆𝑎𝑎𝜋𝜋 ∙ erf ��𝑤𝑤
2
� + 𝑐𝑐1�

2

� + 𝑐𝑐2, (4.27) 

where erf means the error function and 𝑐𝑐1 and 𝑐𝑐2 are integration constants, see [100], [110]. 

We will consider the case of sharp wedge initial condition for positive, small 𝜀𝜀 as 

 
ℎ𝜀𝜀(𝑥𝑥, 0) = − |𝑥𝑥|

𝜀𝜀
   with   𝜀𝜀 > 0,   𝜀𝜀 → 0. (4.28) 

The solution to Eq. (4.1) with (4.8) is presented as follows  

 

ℎ(𝑥𝑥, 𝑡𝑡) = − 𝑡𝑡
24
− 𝑥𝑥2

2𝑡𝑡
+ �𝑡𝑡

2
�
1
3 𝜂𝜂(𝑥𝑥, 𝑡𝑡).  (4.29) 

 

The flattening parabola should be viewed as the top part of the droplet in the experiment 
of [101], [102] and 𝜂𝜂(𝑥𝑥, 𝑡𝑡) represents the superimposed fluctuations. Eventually, the KPZ equation 
holds in greater generality. In particular, it is also applied for interface motion and growth models 
in higher dimensions. For surveys on the earlier developments, we refer to [2], [29], [111], [112]. 
Recently, the KPZ equation has been used as a challenging test ground for non-equilibrium 
renormalization group techniques [113].  

The subtraction 𝑥𝑥
2

2𝑡𝑡
 from Eq. (4.29) is uniquely fixed by the requirement that 𝜂𝜂(𝑥𝑥, 𝑡𝑡) is 

independent of 𝑥𝑥 for any given 𝑡𝑡 >  0. In fact, by the scaling invariance of the KPZ equation, for 
fixed 𝑡𝑡, higher-order correlations also depend only on the relative distance in 𝑥𝑥. Noise term 𝜂𝜂(𝑥𝑥, 𝑡𝑡) 
depends on 𝑡𝑡. However, to find out its value is less obvious. Because a diverging uniform shift in 
h-direction is the construction of the solution. This is most easily explained for the initial condition 
ℎ𝜀𝜀(𝑥𝑥, 0). The construction of the solution requires  

 
lim
𝜀𝜀→0

𝑒𝑒ℎ𝜀𝜀(𝑥𝑥,0) = 𝛿𝛿(𝑥𝑥),  (4.30) 

which presents that ℎ𝜀𝜀(𝑥𝑥, 0) = −𝜀𝜀−1|𝑥𝑥| − log(2𝜀𝜀) with log(2𝜀𝜀)  diverging as 𝜀𝜀 → 0 (see [114]). 
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Figure 4.11. Solutions to Eq. (4.1) with Gaussian noise term with values (4.20) and initial 
conditions (4.21)-(4.23) for t=100. 

  

Figure 4.11 represents the so-called bell curve Gaussian surface. On the one hand, in the 
graph for the amplitude of the initial condition between 0.1 and 1 (in Eqs. (4.21) and (4.23)) the 
same curves are obtained in spite of initial surface differences. Alternatively, while initial 
condition amplitude equals 10, the wavy surface affects the Gaussian noise term curve edge 
resulting in a decrease in the noise term appearance.  

 

4.3.3. The case with white noise term 

The white noise term for 𝜂𝜂(𝑥𝑥, 𝑡𝑡) is not a regular function. The solution ℎ(𝑥𝑥, 𝑡𝑡) partially 
inherits this roughness of the surface due to the noise and therefore, the function (𝜕𝜕ℎ/𝜕𝜕𝑥𝑥)2 is not 
studied till now. Nevertheless, more reliable solutions can be formulated by suitable approximation 
schemes, which are explained in detail in . The most direct one can be easily stated. One smoothens 
𝜂𝜂 to 𝜂𝜂𝜅𝜅 as 

 
𝜂𝜂𝜅𝜅(𝑥𝑥, 𝑡𝑡) = ∫ 𝜅𝜅𝜑𝜑�𝜅𝜅(𝑥𝑥 − 𝑥𝑥′)�𝜂𝜂(𝑥𝑥′, 𝑡𝑡) 𝑑𝑑𝑥𝑥′ = 𝜑𝜑𝜅𝜅 ∙ 𝜂𝜂(𝑥𝑥, 𝑡𝑡), 𝜅𝜅 →  ∞  (4.31) 

with some smooth function 𝜑𝜑, a localized and normalized smearing function. Then 𝜂𝜂𝜅𝜅  →  𝜂𝜂 as 
𝜅𝜅 →  ∞  and Eq. (4.1) has well-defined solutions ℎ𝜅𝜅(𝑥𝑥, 𝑡𝑡) with noise terms 𝜂𝜂𝜅𝜅. They move with a 
uniform background velocity 𝑣𝑣𝜅𝜅 along the ℎ-direction. Then 𝑣𝑣𝜅𝜅  →  ∞ as 𝜅𝜅 →  ∞, but ℎ𝜅𝜅(𝑥𝑥, 𝑡𝑡)  −
 𝑣𝑣𝜅𝜅𝑡𝑡 has a limit. Since 𝑣𝑣𝜅𝜅 sets merely the choice of a reference frame, the claim is that under this 
limit procedure, the fluctuation properties remain intact [111].  

While understandable solutions are thus ensured, little is known about their properties. To 
make 𝜕𝜕ℎ(𝑥𝑥,𝑡𝑡)

𝜕𝜕𝑥𝑥
 stationary, one has to start the solution to the KPZ equation with two-sided Brownian 

motion. With this input, one argues that the height fluctuations will grow as 𝑡𝑡
1
3, while the transverse 
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correlation length increases as 𝑡𝑡
2
3  . Very recently, it has been proved that the variance of the 

stationary two-point function increases as 𝑡𝑡
4
3  by providing suitable upper and lower bounds [116].  

If we choose as initial function the narrow wedge  

 
ℎ(𝑥𝑥, 0)  =  − |𝑥𝑥|

𝛿𝛿
  (4.32) 

with 𝛿𝛿 ≪ 1, it leads to following representation   

 

ℎ(𝑥𝑥, 𝑡𝑡) =

⎩
⎨

⎧−
𝑥𝑥2

2𝜆𝜆𝑡𝑡
  for |𝑥𝑥| ≤

2𝜆𝜆𝑡𝑡
𝛿𝛿

,

−
|𝑥𝑥|
𝛿𝛿

  for |𝑥𝑥| >
2𝜆𝜆𝑡𝑡
𝛿𝛿

.
 (4.33) 

The initial condition may look artificial. In spite of short times, the nonlinearity dominates, 
and ignoring the other terms in the Eq. (4.33), ℎ spreads very fast into the parabolic profile. It can 
be seen as the top part of a growing surface. Physically one thereby covers the case of 
macroscopically curved height profiles [116]–[120].  

 

Figure 4.12. Solutions to (4.1) with white noise term with values (4.20) and initial conditions 
(4.21)-(4.23). 

 

The solution (4.33) for the distribution of ℎ(𝑥𝑥, 𝑡𝑡) for all 𝑡𝑡 >  0 is exact in the properly 
normalized limit 𝛿𝛿 →  0. A further explanation has been presented in the paper [116]–[120]. 

At the beginning of time t, there is an angled surface as an effect of the noise term. Despite the 
difference in amplitude of the initial condition, the primary form of the graph is the same. Figure 
4.12 represents the initial condition amplitude effect only to the surface but not the noise itself.  
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Figure 4.13. Cross-section of h(x,t) and x with the effect of initial condition (4.21) to all three 
cases for t=100.  

 

To introduce visible differences between the noise terms and amplitude, the impact of them 
is presented in Fig. 13. It is obvious that the initial condition effect is the same in all the 
simulations. However, at the beginning of the time 𝑡𝑡, the parts of each graph are differently formed 
due to the effect of the noise terms. Without noise term, the graph started with the straight wave 
surface and smoothed after a certain time. The second simulation result presented for the white 
noise term graph started with an edge surface at the beginning and took effect of the initial 
condition to itself. Also, in the third graph with Gaussian noise term, the surface has the same 
wavy surface formation. However, it can be seen in the middle of the graph that a bell curve shape 
appeared due to the Gaussian noise term.   

The height distribution function of the (1+1) dimensional KPZ equation with different 
initial condition amplitudes and different noise terms is numerically analysed. It can be concluded 
that for fixed parameters of KPZ Eq. (4.1), the noise terms represented similar shapes on the 
surface with the same initial condition. However, the noise term effect remained at the same level 
in every simulation despite different amplitudes. Moreover, when the initial condition was high 
enough, then the presence of Gaussian noise cannot be observed on the surface (see Fig. 4.11).  
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5. IMPACT OF NOISE TERMS  

Without having general mathematical theory, non-linear partial deferential equation (PDE) 
stands in a crucial point in order to derive physically relevant solutions. There are various available 
techniques [9] and generally the most applied method is the reduction technique. This technic 
defines a new variable or function (for example 𝑓𝑓) from the original variables of the PDEs like the 
time t and the spatial coordinate 𝑥𝑥. Transforming of original PDE, variables can form an ordinary 
differential equation (ODE). Choosing 𝑓𝑓(𝑥𝑥, 𝑡𝑡) form is mostly quite large. That’s why usually, the 
continuity of first and second derivatives of 𝑓𝑓 in respect of x and t is required. Via a variable 
transformation the original PDE can be reduced to an ODE. The choice of the form of  𝑓𝑓(𝑥𝑥, 𝑡𝑡) is 
basically quite large. Usually, the continuity of first and second derivatives of 𝑓𝑓 in respect of x and 
t is required. Beyond these continuous models based on PDEs, there are numerous purely 
numerical methods available to study diverse surface growth phenomena. Without completeness, 
we mention the kinetic Monte Carlo [10], Lattice-Boltzmann simulations [11] and the etching 
model [12]. 
 

5.1.  Results without noise term 
In our work, the KPZ Eq.  (5.1) has been simulated and analyzed using MATLAB R2019a.  

 
𝜕𝜕ℎ
𝜕𝜕𝑡𝑡

(𝑥𝑥, 𝑡𝑡) = 𝜈𝜈∇2ℎ(𝑥𝑥, 𝑡𝑡) +
𝜆𝜆
2

(∇ℎ)2 + 𝜂𝜂(𝑥𝑥, 𝑡𝑡) (5.1) 

Simulation data during the experiment are the following:  
 

x ∈  [-100, 100],  t ∈ [0, 1000], N = 100, ∆t = 1/100, (5.2) 

where 𝑁𝑁 denotes the number of division points on the 𝑥𝑥-axis and ∆𝑡𝑡 is the time step. 
In the resulted figures below the complete solutions of the original PDE (5.1) have been 

presented showing in different initial condition and various amplitudes. However, for simplicity, 
the parameters are chosen as 𝑣𝑣 = 0.1 𝑎𝑎𝑛𝑛𝑑𝑑 2, 𝜆𝜆 = 1 and the initial condition is 

 
ℎ(𝑥𝑥, 0) = cos �

𝑥𝑥
4
�. (5.3) 
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Figure 5.1. Solution to (5.3) KPZ equation without noise term for the parameter set 𝜈𝜈 = 0.1, 𝜆𝜆 =
1. 

 

Figure 5.2. Solution to (5.3) KPZ equation without noise term for the parameter set 𝜈𝜈 = 2, 𝜆𝜆 =
1. 
  

Figures 5.1 and Figure 5.2 present the solutions in the time range [1, 100] with initial 
condition (5.3). In the simulation result, on Fig. 5.1 the smoothing value is 𝜈𝜈 = 0.1 and it can be 
seen that there is only initial condition effect at the beginning of the figure. This wavy surface 
continues till t = 10, then it becomes totally flat surface. Figur 5.2 represents the smoothing value 
which in our case equals to 𝜈𝜈 = 2 and the surface waviness decreases slowly. However, this 
process creates a wavy surface for a long time, resulting in a significantly visible effect of the 
value 𝑣𝑣. 
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5.2.  Results with Gaussian noise 
Properly described asymptotic properties include the additive noise equation, which is 

Gaussian and uncorrelated in time and space [100].  Applying similarity transformation 𝑤𝑤(𝑥𝑥, 𝑡𝑡) =
𝑓𝑓(𝜁𝜁) and 𝜁𝜁 = 𝑥𝑥

√𝑡𝑡
  with Gaussian noise gives us the ODE of 

 

𝜈𝜈𝑓𝑓′′(𝜁𝜁) + 0.5𝑓𝑓′(𝜁𝜁)[𝜁𝜁 + 𝜆𝜆𝑓𝑓′(𝜁𝜁)] + 𝑎𝑎𝑒𝑒
−𝜁𝜁2

𝑛𝑛 = 0,   𝑡𝑡 > 0, (5.4) 

where 𝑎𝑎 is in connection with the standard deviation of the Gaussian distribution. There is no 
general formula available for arbitrary parameters 𝜆𝜆, 𝜇𝜇, 𝑎𝑎. That’s why there are two parameters 
fixed e.g. 𝜆𝜆 = 𝑛𝑛 =  1 and 𝑣𝑣 = 0.1 …  2. Then, there is a closed expression (analytical solution) 
available for the solution 

 

𝑓𝑓(𝜁𝜁) = − 1
2𝜆𝜆

ln �1 + tan �√𝜆𝜆𝑎𝑎𝜋𝜋 ∙ erf��𝜁𝜁
2
� + 𝑐𝑐1�

2

� + 𝑐𝑐2,  (5.5) 

where erf means the error function and 𝑐𝑐1 and 𝑐𝑐2 are integration constants, see [95], [96].  
 

 

Figure 5.3. Solution to (5.3) KPZ equation without noise term for the parameter set 𝜈𝜈 = 2, 𝜆𝜆 =
1. 

DOI: 10.14750/ME.2023.031



 

45 
 

 

Figure 5.4. Solution to (5.3) The KPZ equation without a noise term was studied for the specified 
parameters v=2, λ=1. 

 
Figures 5.3 and Figure 5.4 present the solutions in the time range [1, 100] with initial 

condition (5.3). In the result of simulation Fig. 5.3, the smoothing value is 𝑣𝑣 = 0.1 and it can be 
seen that there is a small initial condition effect at the beginning of the figure then the Gaussian 
noise effect takes place. The Gaussian noise effect almost has not been affected by the initial 
condition. However, Figure 5.4 represents the smoothing value when it equals to 𝑣𝑣 = 2 showing 
that surface waviness decreases slowly and effects to the Gaussian noise making it sharper curved. 
At the same time this process creates wavy surface for long time which gives significantly visible 
effect of value v. 

Here, we examined the numerical solutions of (5.1) with MATLAB simulations. The 
simulation data explain the phenomena observed by the experiments and validate the mathematical 
model [121]. Thus, the higher coefficient of the second half of Eq. (5.1) ensures the smooth effect 
of the ripple of the initial condition. In summary, by changing the parameter 𝑣𝑣 appropriately, the 
effect of the initial condition can be seen for a longer period of time. 

 
 

5.3.   Result with pink noise 
Our first case is pink noise term 𝜂𝜂(𝑥𝑥, 𝑡𝑡) = 𝑎𝑎

𝑤𝑤
.  

The Figures 5.5 and 5.6 display the form of the shape function with varying physical parameters. 
At first, the solutions in both figures look the same. However, there is a significant increase on the 
Fig. 5.6 in a small time 𝑡𝑡.  In other word the solution has an initial increase when the parameters 
𝑣𝑣 and 𝜆𝜆 are lower.  As time goes the surface formation tend to reach flat surface with a small curve 
in the centre, which shows the pink noise effect along the surface.  
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Figure 5.5 The solution of the KPZ equation that includes a pink noise term, for a specific set of 
parameters ν=a=1 and λ=2. Here, initial condition is ℎ(𝑥𝑥, 0) = 0. 

 

 

Figure 5.6. The solution of the KPZ equation with pink noise is depicted in figure 5.5, with the 
specified parameters ν=3,a=1 and λ=4. Here, initial condition is ℎ(𝑥𝑥, 0) = 0. 

 

5.4.  Result with white noise  
Our second case leads to the white noise term 𝜂𝜂(𝑥𝑥, 𝑡𝑡) = 𝑎𝑎 𝑤𝑤0.  Figures 5.7 and 5.8 show 

the shape for the white noise. The different feature of this noise term from the pink noise is twice 
higher time of execution. However, when the parameters 𝜈𝜈 and 𝜆𝜆 are higher, the behaviour of the 
initial shape of the function is lower. While this effect reaches an arc shape after in small time 𝑡𝑡 
and it continuous on the surface till the end of the time.  

DOI: 10.14750/ME.2023.031



 

47 
 

 

Figure 5.7. The KPZ equation solution with white noise, using the specified set of parameters 
ν=a=1 and λ=2. Here, initial condition is ℎ(𝑥𝑥, 0) = 0. 

 

Figure 5.8. The KPZ equation solution with white noise, using the specified set of parameters 
ν=3, a=1 and λ=4. Here, initial condition is ℎ(𝑥𝑥, 0) = 0. 

 

5.5.  Result with blue noise 
Our next noise term case is 𝜂𝜂(𝑥𝑥, 𝑡𝑡) = 𝑎𝑎𝑤𝑤. Figure 5.9 and Figure 5.10 show the solution 

function ℎ(𝑥𝑥, 𝑡𝑡) of the wavy surface.  In the beginning in both figures the initial part of surface is 
increasing in small time t, however it is various depending on parameters of 𝑣𝑣 and 𝜆𝜆 as previous 
simulation results. Here, the effect of blue noise term remains as a wavy surface.   
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Figure 5.9. The KPZ equation solution with blue noise, using the specified set of parameters 
ν=a=1 and λ=2. Here, initial condition is ℎ(𝑥𝑥, 0) = 0. 

 

Figure 5.10. The KPZ equation solution with blue noise, using the specified set of parameters  
ν=3, a=1 and λ=4. Here, initial condition is ℎ(𝑥𝑥, 0) = 0. 

5.6.  Result with Gaussian noise 

Our numerical simulation includes Gaussian noise 𝜂𝜂(𝑥𝑥, 𝑡𝑡) = 𝑎𝑎𝑒𝑒−
𝑤𝑤2

2 . Figures 5.11 and 5.12 
present the solutions which the features are very similar to formerly investigated research results 
[122], [123]. Initially, both figures are decreasing from the bell curve to smaller curved surface as 
time goes on. As it has already been stated that noise terms the parameters of 𝑣𝑣 and 𝜆𝜆 are playing 
the same role as previous cases.  
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Figure 5.11. The KPZ equation solution with Gaussian noise, using the specified set of ν=a=1 
and λ=2. Here, initial condition is ℎ(𝑥𝑥, 0) = 0. 

 

Figure 5.12. The KPZ equation solution with Gaussian noise, using the specified set of ν=3, a=1 
and λ=4. Here, initial condition is ℎ(𝑥𝑥, 0) = 0. 

5.7.  Result with Lorentzian noise 
As a last system we investigate the Lorentzian noise 𝜂𝜂(𝑥𝑥, 𝑡𝑡) = 1

1+𝑤𝑤2. In comparison to other 
noise terms, the Lorentzian noise executed in very small time 𝑡𝑡 and the surface is wavy with high 
vibrant shape. Despite previous noise term simulation results, this noise term initial formation has 
not been changed by the parameters of 𝑣𝑣 and 𝜆𝜆. Here, only starting point of surface affected and 
shaped more curved.  
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Figure 5.13. The KPZ equation solution with Lorentzian noise, using the specified set of  ν=a=1 
and λ=2. Here, initial condition is ℎ(𝑥𝑥, 0) = 0. 

 

Figure 5.14. The KPZ equation solution with Lorentzian noise, using the specified set of  ν=3, 
a=1 and λ=4. Here, initial condition is ℎ(𝑥𝑥, 0) = 0. 

 
In summary, we can say that with an appropriate change of parameter on PDE Toolbox and 

applying new variables on it, we can numerically simulate the KPZ equation with different noise 
terms. We analysed three power-law-type noises 𝑤𝑤𝑛𝑛 with exponents of -1, 0, 1, called pink, white 
and blue noise respectively. Each of them describes completely different dynamics. In addition, 
we investigated the properties of Gaussian and Lorentzian noises. The parameters of some values 
are investigated and discussed.  
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6. SOLUTION METHODS APPLYING DIFFERENTIAL FINITE ELEMENT METHODS  

The Kardar–Parisi-Zhang (KPZ) equation (6.1) 

 
𝜕𝜕ℎ
𝜕𝜕𝑡𝑡

(𝑥𝑥, 𝑡𝑡) = 𝜈𝜈∇2ℎ(𝑥𝑥, 𝑡𝑡) +
𝜆𝜆
2

(∇ℎ)2 + 𝜂𝜂(𝑥𝑥, 𝑡𝑡) (6.1) 

is examined using the recently published leapfrog–hopscotch (LH) method as well as the most 
standard forward time centered space (FTCS) scheme and the Heun method. The methods are 
verified by reproducing an analytical solution. The performance of each method is then compared 
by calculating the average and the maximum differences among the results and displaying the 
runtimes. Numerical tests show that due to the special symmetry in the time–space discretisation, 
the new LH method clearly outperforms the other two methods. In addition, we discuss the effect 
of different parameters on the solutions [124]. 

6.1.  Forward Time Centered Space Scheme  
In the paper [6], Moser et al. introduced spatial derivatives of the right-hand side of the 

KPZ Eq. (2.2). It was discretised using standard forward–backward differences on a cubic (6.2) 
grid with lattice constant ∆𝑥𝑥, which is also known as a forward time centred space (FTCS). 

ℎ𝑖𝑖𝑛𝑛+1 = ℎ𝑖𝑖𝑛𝑛 + 𝑟𝑟(ℎ𝑖𝑖+1𝑛𝑛 + ℎ𝑖𝑖−1𝑛𝑛 − 2ℎ𝑖𝑖𝑛𝑛) + 𝜇𝜇(ℎ𝑖𝑖+1𝑛𝑛 − ℎ𝑖𝑖−1𝑛𝑛 )2 + ∆𝑡𝑡 𝑘𝑘(𝑥𝑥, 𝑡𝑡) (6.2) 

where ∆𝑡𝑡 is the step size and 𝑡𝑡𝑖𝑖+1 = 𝑡𝑡𝑖𝑖 + ∆𝑡𝑡, 𝑟𝑟 = 𝜐𝜐∆𝑡𝑡
∆𝑥𝑥2

 and 𝜇𝜇 = 𝜆𝜆∆𝑡𝑡
8∆𝑥𝑥2

 are the appropriate mesh ratios. 
We use a for loop going through the nodes to calculate the right-hand side of Eq. (6.1) and omit 
the old values. We use only one array for the variable h, which has as many elements as the number 
of nodes. However, when we calculate ℎ𝑖𝑖𝑛𝑛+1, the value of ℎ𝑖𝑖−1𝑛𝑛  is still necessary, thus we have to 
introduce an auxiliary temporary array variable to store the calculated values, and only after the 
completion of the loop can we load the new values ℎ𝑖𝑖𝑛𝑛+1 to the array. Therefore, with its speed, 
the seemingly simplest algorithm can still be surpassed, as we will show later. 

 

6.2.  Heun’s method 
The Heun method is an improved or a modified Euler’s method applied in computational 

science and mathematics. It represents the explicit trapezoidal rule [125], [126], which is a two-
stage Runge–Kutta method. This method was originally proposed to solve ordinary differential 
equations (ODEs) with given initial conditions: 

𝑦𝑦′(𝑡𝑡) = 𝑓𝑓(𝑦𝑦(𝑡𝑡), 𝑡𝑡), 𝑡𝑡(𝑡𝑡0) = 𝑦𝑦0. (6.3) 

The procedure in this case is the following. At the first stage, Heun’s method calculates the 
intermediate value 𝑦𝑦𝑝𝑝𝑝𝑝𝑒𝑒𝑑𝑑 and then the final approximation 𝑦𝑦𝑛𝑛+1 at the next integration point: 

𝑦𝑦𝑝𝑝𝑝𝑝𝑒𝑒𝑑𝑑  = 𝑦𝑦𝑛𝑛 + ℎ𝑓𝑓(𝑡𝑡𝑛𝑛,𝑦𝑦𝑛𝑛), (6.4) 
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𝑦𝑦𝑛𝑛+1 = 𝑦𝑦𝑛𝑛 + ℎ
2

[𝑓𝑓(𝑡𝑡𝑛𝑛,𝑦𝑦𝑛𝑛) + 𝑓𝑓(𝑡𝑡𝑛𝑛+1,𝑦𝑦𝑝𝑝𝑝𝑝𝑒𝑒𝑑𝑑)]. 

Although the rate of convergence of Heun’s method is two, thus it is usually more accurate 
than the simple explicit (Euler) method, its Courant–Friedrichs–Lewy (CFL) stability limit is 
unfortunately the same [127], [128]. 

The predictor–corrector type that Heun’s method applied to the KPZ equation reads as: 

ℎ𝑗𝑗
𝑝𝑝𝑝𝑝𝑒𝑒𝑑𝑑 = ℎ𝑗𝑗𝑛𝑛 + 𝑟𝑟�ℎ𝑗𝑗−1𝑛𝑛 + ℎ𝑗𝑗+1𝑛𝑛 − 2ℎ𝑗𝑗𝑛𝑛� + 𝜇𝜇�ℎ𝑗𝑗+1𝑛𝑛 − ℎ𝑗𝑗−1𝑛𝑛 �

2
+ 𝑘𝑘(𝑥𝑥, 𝑡𝑡𝑛𝑛 + ∆𝑡𝑡/2)∆𝑡𝑡 

ℎ𝑖𝑖𝑛𝑛+1 = ℎ𝑖𝑖𝑛𝑛 +
𝑟𝑟
2
�ℎ𝑖𝑖−1𝑛𝑛 + ℎ𝑖𝑖+1𝑛𝑛 − 2ℎ𝑖𝑖𝑛𝑛 + ℎ𝑗𝑗−1

𝑝𝑝𝑝𝑝𝑒𝑒𝑑𝑑 + ℎ𝑗𝑗+1
𝑝𝑝𝑝𝑝𝑒𝑒𝑑𝑑 − 2ℎ𝑗𝑗

𝑝𝑝𝑝𝑝𝑒𝑒𝑑𝑑�

+ 𝜇𝜇 �(ℎ𝑖𝑖+1𝑛𝑛 − ℎ𝑖𝑖−1𝑛𝑛 )2 + �ℎ𝑗𝑗+1
𝑝𝑝𝑝𝑝𝑒𝑒𝑑𝑑 − ℎ𝑗𝑗−1

𝑝𝑝𝑝𝑝𝑒𝑒𝑑𝑑�
2
� + 𝑘𝑘 �𝑥𝑥, 𝑡𝑡𝑛𝑛 +

∆𝑡𝑡
2
� ∆,  

(6.5) 

where 𝜇𝜇 = 𝜆𝜆∆𝑡𝑡
8∆𝑥𝑥2

  and 𝑘𝑘(𝑥𝑥, 𝑡𝑡) is noise term. When Heun’s method is implemented by two for loops, 

we need not only one extra array to store ℎ𝑗𝑗
𝑝𝑝𝑝𝑝𝑒𝑒𝑑𝑑, but a temporary array as in the FTCs method. This 

makes a time step of Heun’s algorithm slower and memory-consuming, although, to a much lesser 
extent than in the case of implicit methods. 

 

6.3. Leapfrog–Hopscotch method 
The leapfrog–hopscotch (LH) structure was first proposed and explained in our recent paper 

[125]. Similar to the original odd–even hopscotch (OEH) algorithm introduced five decades ago 
by Gordon [129] and Gourlay [130], one must divide the grid into two subgrids of odd and even 
nodes (light and dark blue dots in Fig. 6.1, respectively) such that the nearest neighbours of odd 
nodes are always even and vice versa. The calculation starts with a half-sized time step for the odd 
nodes using the initial ℎ𝑖𝑖0 values, symbolised by the green arrows in Fig. 6.1. Then, full time steps 
are made to calculate alternately the even and the odd nodes (light and dark blue arrows, 
respectively) until one reaches the final time, where the time step size must also be halved for odd 
nodes (orange arrows). One can see that in each step, the latest available u values of the neighbours 
(denoted by ℎ𝑖𝑖±1𝑝𝑝𝑒𝑒𝑐𝑐𝑒𝑒𝑛𝑛𝑡𝑡) are used, thus the method is explicit. We mention that this LH structure was 
thoroughly examined for the diffusion equation [125]. According to a large number of numerical 
experiments, the UPFD formula is optimal for use in the zeroth time step and the symmetric 𝜃𝜃 =
1

2�  formula in all other steps, thus we will apply only these formulas and we will call this concrete 
method (the LH time–space structure and the formulas) “the LH method”. Due to the special 
symmetry of the time–space discretisation and the 𝜃𝜃 = 1

2� , this method has excellent properties, as 
we will see in the following. 
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Figure 6.3. The new leapfrog–hopscotch structure. 
 

We express the new value of the h variable in the following form in the case of the one 
space-dimensional KPZ equation [131], [132] at the zeroth step: 

ℎ𝑖𝑖𝑛𝑛+1 =
2ℎ𝑖𝑖𝑛𝑛 + 𝑟𝑟(ℎ𝑖𝑖−1𝑝𝑝𝑒𝑒𝑐𝑐𝑒𝑒𝑛𝑛𝑡𝑡 + ℎ𝑖𝑖+1𝑝𝑝𝑒𝑒𝑐𝑐𝑒𝑒𝑛𝑛𝑡𝑡) + 𝜇𝜇 (ℎ𝑖𝑖−1𝑝𝑝𝑒𝑒𝑐𝑐𝑒𝑒𝑛𝑛𝑡𝑡 − ℎ𝑖𝑖+1𝑝𝑝𝑒𝑒𝑐𝑐𝑒𝑒𝑛𝑛𝑡𝑡)2 + 𝑘𝑘(𝑥𝑥, 𝑡𝑡𝑛𝑛 + ∆𝑡𝑡/2)∆𝑡𝑡

2(1 + 𝑟𝑟)
 (6.6) 

and at all other steps (denoted by 6.1and 6.2 in Fig. 6.1.): 

ℎ𝑖𝑖𝑛𝑛+1 =
(1 − 𝑟𝑟)ℎ𝑖𝑖𝑛𝑛 + 𝑟𝑟(ℎ𝑖𝑖−1𝑝𝑝𝑒𝑒𝑐𝑐𝑒𝑒𝑛𝑛𝑡𝑡 + ℎ𝑖𝑖+1𝑝𝑝𝑒𝑒𝑐𝑐𝑒𝑒𝑛𝑛𝑡𝑡) + 𝜇𝜇 (ℎ𝑖𝑖−1𝑝𝑝𝑒𝑒𝑐𝑐𝑒𝑒𝑛𝑛𝑡𝑡 − ℎ𝑖𝑖+1𝑝𝑝𝑒𝑒𝑐𝑐𝑒𝑒𝑛𝑛𝑡𝑡)2 + 𝑘𝑘(𝑥𝑥, 𝑡𝑡𝑛𝑛 + ∆𝑡𝑡/2)∆𝑡𝑡

1 + 𝑟𝑟
 (6.7) 

except the last, which is a half time step thus the substitution ∆𝑡𝑡 → ∆𝑡𝑡
2� , 𝑟𝑟 → 𝑟𝑟

2� , 𝜇𝜇 → 𝜇𝜇
2�    must be 

performed in Eq. (6.7). We note that if µ =  0 and 𝑘𝑘 =  0 then one obtains back the original LH 
method’s form developed for the diffusion equation. One can see that due to the time–space 
structure, the LH method does not use any extra arrays for the temporary values of h, and that is 
why it has less memory requirement, and it can be slightly faster than the simplest FTCS method. 

 

6.4. Stability considerations 
Since the conventional explicit methods have severe stability problems, usually implicit 

methods are used to solve the linear diffusion equation and most of its nonlinear modifications. 
For example, the explicit Euler (FTCS) is stable for the linear diffusion equation with coefficient 
𝜈𝜈 only if the time step size is small enough, i.e., 𝜈𝜈∆𝑡𝑡

∆𝑥𝑥2
≤ 1

2
 (this is also called the CFL limit). 

However, implicit methods not only require more computational effort (especially in the nonlinear 
case), but they are very slow and memory consuming in the case of a large number of nodes/cells 
and if the matrix is not tridiagonal, which is always true in 2 or more space dimensions. 
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In [125], we analytically proved and numerically demonstrated that the new LH method is 
unconditionally stable for the linear diffusion equation, and it has roughly the same accuracy as 
Heun’s method. The LH method is almost as accurate for stiff systems as the implicit Crank–
Nicolson scheme, but it is much faster. This encouraged us to adapt the LH method to the KPZ 
equation. 

However, the KPZ equation contains a nonlinear term with coupling coefficient 𝜆𝜆 and a 
noise term, besides the linear diffusion term. Dasgupta et al. showed [16] that in the discretised 
model, isolated pillars or grooves are prone to increase indefinitely if their height exceeds a critical 
value, which depends on a single parameter proportional to 𝜆𝜆�𝐴𝐴/𝜈𝜈3, where A is the amplitude of 
the noise term. They argued that this instability is inherent in the numerical treatment due to the 
space discretisation of the continuous equation. Our observations reinforce these findings in the 
case of the LH method as well, but the systematic examination of the probability of the appearance 
of these instabilities is out of the scope of this paper. 

What we stress here is that we are talking about two qualitatively different kinds of 
instabilities. In the original continuous equation, the nonlinear term yields the growth of pillars 
and grooves, while the diffusion tries to smooth them out. However, in the case of the conventional 
explicit schemes, the diffusion itself also causes instability. The LH method is close to being ideal 
from this point of view as well: stronger diffusion means faster smoothing and thus increased 
stability. 

 

6.5. Verification using an analitical solution 
If we introduce the variable 𝜔𝜔 = 𝑥𝑥 + 𝑐𝑐𝑡𝑡, then Eq. (6.1) with the Brownian noise term can 

be written as follows: 
𝜕𝜕ℎ(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑡𝑡

= 𝜐𝜐∇2ℎ + 𝜆𝜆
2

(∇ℎ)2 + 𝑎𝑎
𝜔𝜔2 

. (6.8) 

For verification, we reproduce the following recently published analytical solution to Eq. (6.7) 
[96]: 

ℎexact(𝜔𝜔) = 1
𝜆𝜆
�𝑐𝑐𝜔𝜔 + 𝜈𝜈 𝑙𝑙𝑛𝑛� 𝜆𝜆2𝐼𝐼𝑑𝑑(𝜑𝜑)2

𝑐𝑐2𝜔𝜔�𝐾𝐾𝑑𝑑(𝜑𝜑)𝐼𝐼𝑑𝑑−1(𝜑𝜑)+𝐼𝐼𝑑𝑑(𝜑𝜑)𝐾𝐾
𝑑𝑑+12

(𝜑𝜑)�
2��, (6.9) 

where 𝑎𝑎, 𝑐𝑐=const., 𝜑𝜑 = 𝑐𝑐𝜔𝜔
2𝜈𝜈

, while 𝐼𝐼𝑑𝑑(𝜑𝜑) and 𝐾𝐾𝑑𝑑(𝜑𝜑) are the modified Bessel functions of the first 

and the second kind with the subscript of 𝑑𝑑 = √𝜈𝜈2−2𝑎𝑎𝜆𝜆
2𝜈𝜈

. 

The following parameters are used in the numerical calculation: 

𝜈𝜈 = 1,  𝜆𝜆 = 6,  𝑎𝑎 = 0.05,  𝑐𝑐 = 1, 𝑥𝑥 ∈ [0,6],  𝑡𝑡 ∈ [1,2]. (6.10) 

The number of space nodes is 300, thus the space step size is 𝛥𝛥𝑥𝑥 = 0.02. 

For the initial and the boundary conditions, the analytical solution is used at t = 1 as the initial 
condition and the Dirichlet boundary conditions are taken at the edges of the spatial interval. We 
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note that the evaluation of the modified Bessel functions to obtain the initial and the boundary 
conditions was by far the most time consuming part of the code. 

The (global) numerical error function is the absolute difference of the numerical solutions 
𝑢𝑢𝑗𝑗num produced by the examined method and the analytical solution ℎ𝑗𝑗exact = ℎexact�𝑥𝑥 = 𝑥𝑥𝑗𝑗� at the 
final time. We use these errors of the nodes to calculate the maximum error: 

Error(𝐿𝐿∞) = max
1≤𝑗𝑗≤𝑁𝑁

�𝑢𝑢𝑗𝑗exact(𝑡𝑡 = 2) − 𝑢𝑢𝑗𝑗num(𝑡𝑡 = 2)�. (6.11) 

The 𝐿𝐿∞ errors as a function of the time step size h can be seen in Fig. 6.2. 

Er
ro

rs
 

 
 Time step size h 

Figure 6.2. The L∞ errors as a function of time step size ∆t for the numerical solutions of Eq. 
(6.1) in case of the standard FTCS scheme, the Heun method and the Leapfrog–hopscotch 

method. 
 

One can see that the LH method reaches the minimum error (determined by space 
discretisation) at about 2 × 10−3, while the FTCS and the Heun methods are unstable above 
2 × 10−4. It means that the LH method can be safely used with an order of magnitude larger time 
step sizes than the examined conventional methods. 

 

6.6. Comparison of different methods 
We continue the investigation in those cases where the analytical solution is not known. 

The spatial length of the simulated system is 𝐿𝐿 = 32, so 𝑥𝑥 ∈ [0, 32], while the space step size is 
𝛥𝛥𝑥𝑥 = 0.01, thus the number of nodes is 𝑁𝑁𝑥𝑥 = 3201. In order to minimise the effect of the 
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boundaries, we wanted to use periodic boundary conditions. However, the noise terms are not 
periodic functions of space, therefore we constructed a special modification of the periodic 
boundary conditions, when the previous (left) and the following (right) copy of the system is not 
only shifted but mirrored as well. It is implemented by taking ℎ1 = ℎ3 and ℎ𝑁𝑁𝑥𝑥 = ℎ𝑁𝑁𝑥𝑥−2 in the 
case of each method. 

The initial time of the simulation is 𝑡𝑡𝑖𝑖𝑛𝑛 = 0.01 (note that the term 𝑥𝑥 + 𝑐𝑐𝑡𝑡 is present in the 
denominator of the Brownian noise term, thus x and t cannot be zero at the same time), and the 
final time is 𝑡𝑡𝑒𝑒𝑖𝑖𝑛𝑛 = 0.1, 1 or 10. The time step size is chosen as 10−5 for the FTCS and the Heun 
methods, but it is 10−5 and 10−4 for the LH method. In this section we fix the parameters as 
follows: 

𝜈𝜈 = 1,  𝜆𝜆 = 6,  𝑎𝑎 = 1,  𝑐𝑐 = 1 (6.12) 

In our previous research works [36,37], we used different initial conditions with different 
amplitudes for Eq. (6.1). Here, all numerical simulations for each scheme were performed with the 
same initial condition ℎ(𝑥𝑥, 0). 

ℎ(𝑥𝑥, 𝑡𝑡 = 0) = sin �𝜋𝜋 ∙ 𝑥𝑥
4
� + cos �𝜋𝜋 ∙ 𝑥𝑥

4
�. (6.13) 

For the simulations to measure the running times, we used a laptop computer (ASUS, Taiwan) 
with a 2.6 GHz Intel I CITM i7-10750H CPU, 8.0 GB RAM with the MATLAB R2020b 
software(The MathWorks, Inc. USA) in which there was a built in tic-toc function to measure the 
total running time of the tested algorithms. 

For all three methods, with the parameters given in Eq. (6.1), the simulations were 
performed and the results are presented in Fig. 6.3. 

 

Figure 6.3. Comparison of three different methods with various parameters in Eq. (6.12). The 
final time is 𝑡𝑡𝑒𝑒𝑖𝑖𝑛𝑛 = 1. 

 

One can see in Fig. 6.3 that the curves are indistinguishable, which means that each method 
is accurate. The (global) numerical difference is the absolute difference of the numerical solutions 
ℎ𝑖𝑖𝑛𝑛𝑛𝑛𝑚𝑚 produced by the examined methods at final time 𝑡𝑡fin for the KPZ equation: the FTCS scheme, 
the Heun method and the LH method for 10−5 and 10−4 time step size. For brevity, we denote this 
latter case, the LH method with 10−4 time step size as LH*. 

In order to find an individual difference in the nodes or cells, we calculate the maximum 
and the average differences in the following ways: 
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FTCS,Heun FTCS Heun FTCS,LH FTCS LH Heun,LH Heun LH
i i i i i ii i iD h h , D h h , D h h ,= − = − = −

 (6.14) 

Average differences (L1 errors) 

𝐿𝐿1
𝐹𝐹𝑇𝑇𝐶𝐶𝐹𝐹,𝐻𝐻𝑒𝑒𝑛𝑛𝑛𝑛 = ∑ 𝐷𝐷𝑖𝑖

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹,𝐻𝐻𝐻𝐻𝑢𝑢𝑛𝑛

𝑁𝑁𝑥𝑥
,   𝐿𝐿1

𝐿𝐿𝐻𝐻,𝐿𝐿𝐻𝐻∗ = ∑ 𝐷𝐷𝑖𝑖
𝐿𝐿𝐻𝐻,𝐿𝐿𝐻𝐻∗

𝑁𝑁𝑥𝑥
,𝑖𝑖𝑖𝑖  etc. (6.15) 

Maximum differences (L∞ errors) 

𝐿𝐿∞
𝐹𝐹𝑇𝑇𝐶𝐶𝐹𝐹,𝐻𝐻𝑒𝑒𝑛𝑛𝑛𝑛 = max

𝑖𝑖
�𝐷𝐷𝑖𝑖

𝐹𝐹𝑇𝑇𝐶𝐶𝐹𝐹,𝐻𝐻𝑒𝑒𝑛𝑛𝑛𝑛� , 𝐿𝐿∞
𝐿𝐿𝐻𝐻,𝐿𝐿𝐻𝐻∗ = max

𝑖𝑖
�𝐷𝐷𝑖𝑖

𝐿𝐿𝐻𝐻,𝐿𝐿𝐻𝐻∗�,  etc. (6.16) 

In Tables 6.1 and 6.2, we show the average and the maximum differences of the methods, 
namely the FTCS, the Heun and the LH with two different time step sizes ∆𝑡𝑡. It is clear that due 
to enhanced stability, the LH method can be used with larger time step sizes for further 
investigation of the KPZ equation. 

Table 6.1. Average difference without noise term. 

tfin 𝐿𝐿1
𝐹𝐹𝑇𝑇𝐶𝐶𝐹𝐹,𝐻𝐻𝑒𝑒𝑛𝑛𝑛𝑛 𝐿𝐿1

𝐹𝐹𝑇𝑇𝐶𝐶𝐹𝐹,𝐿𝐿𝐻𝐻 𝐿𝐿1
𝐻𝐻𝑒𝑒𝑛𝑛𝑛𝑛,𝐿𝐿𝐻𝐻 𝐿𝐿1

𝐹𝐹𝑇𝑇𝐶𝐶𝐹𝐹,𝐿𝐿𝐻𝐻∗ 𝐿𝐿1
𝐻𝐻𝑒𝑒𝑛𝑛𝑛𝑛,𝐿𝐿𝐻𝐻∗ 𝐿𝐿1

,𝐿𝐿𝐻𝐻,𝐿𝐿𝐻𝐻∗ 

0.1 3.48 ∙ 10−7 3.47 ∙ 10−7 2.70 ∙ 10−9 3.86 ∙ 10−4 3.88 ∙ 10−4 3.88 ∙ 10−4 

1 5.45 ∙ 10−7 5.42 ∙ 10−7 2.45 ∙ 10−9 4.30 ∙ 10−5 4.34 ∙ 10−5 4.34 ∙ 10−5 

10 3.20 ∙ 10−7 3.19 ∙ 10−7 1.10 ∙ 10−9 3.20 ∙ 10−7 8.38 ∙ 10−8 8.38 ∙ 10−8 

 

Table 6.2. Maximum difference without noise term. 

tfin max
𝑖𝑖
�𝐷𝐷𝑖𝑖

𝐹𝐹𝑇𝑇𝐶𝐶𝐹𝐹,𝐻𝐻𝑒𝑒𝑛𝑛𝑛𝑛� max
𝑖𝑖
�𝐷𝐷𝑖𝑖

𝐹𝐹𝑇𝑇𝐶𝐶𝐹𝐹,𝐿𝐿𝐻𝐻� max
𝑖𝑖
�𝐷𝐷𝑖𝑖

𝐻𝐻𝑒𝑒𝑛𝑛𝑛𝑛,𝐿𝐿𝐻𝐻� max
𝑖𝑖
�𝐷𝐷𝑖𝑖

𝐹𝐹𝑇𝑇𝐶𝐶𝐹𝐹,𝐿𝐿𝐻𝐻∗� max
𝑖𝑖
�𝐷𝐷𝑖𝑖

𝐻𝐻𝑒𝑒𝑛𝑛𝑛𝑛,𝐿𝐿𝐻𝐻∗� max
𝑖𝑖
�𝐷𝐷𝑖𝑖

𝐿𝐿𝐻𝐻,𝐿𝐿𝐻𝐻∗� 

0.1 6.91 ∙ 10−7 6.93 ∙ 10−7 8.56 ∙ 10−9 6.66 ∙ 10−4 6.66 ∙ 10−4 6.66 ∙ 10−4 

1 1.32 ∙ 10−6 1.31 ∙ 10−6 6.57 ∙ 10−9 1.47 ∙ 10−4 1.48 ∙ 10−4 1.48 ∙ 10−4 

10 3.24 ∙ 10−7 3.23 ∙ 10−7 1.12 ∙ 10−9 4.66 ∙ 10−7 1.52 ∙ 10−7 1.51 ∙ 10−7 

In addition, the total running time of the tested algorithms is presented in Table 6.3. It is 
shown that in various time 𝑡𝑡, the method’s running time is different and the fastest is the leapfrog–
hopscotch method for any time length. It is slightly faster than the FTCs method with the same 
time step size, as we mentioned before. 

Table 6.3. Running time differences between the methods. 

Methods 
Running Time (s) 

𝑡𝑡𝑒𝑒𝑖𝑖𝑛𝑛 = 0.1 𝑡𝑡𝑒𝑒𝑖𝑖𝑛𝑛 = 1.0 𝑡𝑡𝑒𝑒𝑖𝑖𝑛𝑛 = 10.0 

FTCS method, ∆𝑡𝑡 = 10−5  0.3232 2.9663 28.6288 

Heun’s method, ∆𝑡𝑡 = 10−5 0.6573 6.2133 73.8652 
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LH method, ∆𝑡𝑡 = 10−5 0.3135 2.5480 24.4324 

LH method, ∆𝑡𝑡 = 10−4 0.0825 0.3105 2.4560 

Note that when the time step size ∆𝑡𝑡 is larger than 10−5, the methods are unstable except 
for the LH method. This proves that our new method is not only the fastest, but also more stable 
even in larger time steps ∆𝑡𝑡. This numerical experiment demonstrated again that this new explicit 
method is very effective for the KPZ equation. We think that it will be very promising, especially 
in two or three space-dimensional numerical experiments since they include a large amount of the 
nodes or cells. 

 

6.7. Impact of different parameter values (without noise term) 
In this section, we investigate the effect of different parameters, such as the coefficient 𝜈𝜈, 𝜆𝜆, 

a and 𝑡𝑡𝑒𝑒𝑖𝑖𝑛𝑛. When one of the parameters are changed, all other parameters are fixed: 𝜈𝜈 = 1,  𝜆𝜆 =
6,  𝑎𝑎 = 1 and different final times 𝑡𝑡𝑒𝑒𝑖𝑖𝑛𝑛 are used. For the sake of verification, we still use not only 
the LH, but the FTCS and Heun’s methods as well. 

Figure 6.4 illustrates the solutions obtained with different methods for the linear diffusion 
parameter 𝜈𝜈. It is clear that increasing the strength of the diffusion decreases the waviness of the 
surface. We note that when 𝜈𝜈 = 6.0, the traditional methods (FTCS and Heun) are unstable, and 
they cannot be used even with this small time step size. 

 

Figure 6.4. Numerical simulation of h for different diffusion coefficients υ with three methods. 
 

In Fig. 6.5, we illustrate the behaviour as a function of the nonlinear term parameter 𝜆𝜆 for 
final time  𝑡𝑡𝑒𝑒𝑖𝑖𝑛𝑛 = 1. One can see that the function is shifting to higher levels when the coefficient 
of the nonlinear term 𝜆𝜆 is increasing and the waviness of the function decreases. 
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Figure 6.5. Numerical simulation of h for different nonlinear term coefficients λ with three 
methods. 

Here, we are interested in the effect of the time on the used methods. In Fig. 6.6, we present 
the numerical solution of the discretised KPZ equation for different final times. Therefore, we 
perform the simulation for three different final times 𝑡𝑡𝑒𝑒𝑖𝑖𝑛𝑛 = 0.1, 1.0  and 10 with the parameters 
given in Eq. (6.12). One can conclude that the waviness of the surface is decreasing as time elapses. 

Figure 6.6. Numerical simulation of the system different time t with various methods 
 

After examining each method with various parameters, we have more information on how 
the surface formation occurs. In the simulations, each increased parameter decreases the waviness 
of the function. However, as we mentioned above, if the linear term parameter has a higher value 
(𝜈𝜈 ≥ 6), then only the LH method is stable, while the FTCS and Heun’s methods are not stable. 

 

6.8. Comparison of various noise term effects 
Once we verified and proved the most stable method, we used the leapfrog–hopscotch 

method to numerically solve the KPZ equation with different noise terms and various parameters. 
In our previous works, we analysed the solutions with the noise term 𝑘𝑘(𝜔𝜔) = 𝑎𝑎𝜔𝜔2 [95], [96]. In 
our current numerical simulation, we examine Gaussian noise term 𝑎𝑎𝑒𝑒−𝜔𝜔2 and Brownian noise 
term 𝑎𝑎/𝜔𝜔2 when all the physical parameters are set as in Eq. (6.17). However, some parameters 
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are investigated separately to show their effect on the solution and to show their effect on the 
system. If not explicitly stated otherwise, the values of the parameters will be the following: 

𝜈𝜈 = 1,  𝜆𝜆 = 1,  𝑎𝑎 = 1,  𝑐𝑐 = 1,∆𝑡𝑡 = 10−5 (6.17) 

Figure 6.7 shows that the Brownian noise term’s effect is higher than the Gaussian noise 
term. In this simulation, the amplitude of the noise terms is 𝑎𝑎 = 1 in both cases. The Brownian 
noise function 𝑘𝑘 has quite a high value that is close to the origin due to the small values of x and t 
in the denominator, thus it remarkably raises the function h at the left side of the figure, but this 
effect vanishes for larger values of 𝑥𝑥. On the other hand, the h function in the case of the Gaussian 
noise is only slightly different than h without a noise term, even for 𝑥𝑥 = 0. 

Figure 6.7. Numerical simulation results of leapfrog–hopscotch discretised methods with various 
noise term effects in time 𝑡𝑡𝑒𝑒𝑖𝑖𝑛𝑛 = 1. The time step size is ∆𝑡𝑡 = 10−5. 

 

We increased the time 𝑡𝑡𝑒𝑒𝑖𝑖𝑛𝑛 of the simulation from 1 to 10. In this case, we see from Fig. 
6.8 that the effect of the Brownian noise term is again much stronger than the Gaussian noise term 
and the elevation on the left side requires a longer length of x to reach the non-elevated surface 
(right side of the figure) without a noise term. Similarly to the previous result in Fig. 6.7, the 
function h in case of Gaussian noise is slightly smoother and the effect of the noise is small. 

Figure 6.8. Numerical simulation results of the leapfrog–hopscotch method with various noise 
term effect in time 𝑡𝑡𝑒𝑒𝑖𝑖𝑛𝑛 = 10. The time step size is ∆𝑡𝑡 = 10−5. 
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As stated above, the noise term has significant effects on the system. Therefore, we 
performed our method with a higher amplitude than 𝑎𝑎 = 1. We fixed the amplitude as 𝑎𝑎 = 10.0 
and it was simulated with all the noises. Figure 6.9 for 𝑡𝑡𝑒𝑒𝑖𝑖𝑛𝑛 = 1 and Fig. 6.10 for 𝑡𝑡𝑒𝑒𝑖𝑖𝑛𝑛 = 10 show 
that when the noise term amplitude is high, the results are different. However, the effect of 
Brownian noise is again much stronger than Gaussian noise. This proves that noise term amplitude 
plays a crucial role in the simulation result. 

Figure 6.9. Numerical simulation results of the leapfrog–hopscotch method in case of various 
noise term effects with amplitude a=10.0. The time step size is ∆𝑡𝑡 = 10−5   and the final time is 

𝑡𝑡𝑒𝑒𝑖𝑖𝑛𝑛 = 1. 
 

Figure 6.10. Numerical simulation results of various noise term effects with the amplitude 
a=10.0 and 𝑡𝑡𝑒𝑒𝑖𝑖𝑛𝑛 = 10 obtained by the leapfrog–hopscotch method. The time step size is ∆𝑡𝑡 =

10−4. 
 

We have already discussed the average/maximum differences without noise terms and we 
presented all of the obtained results in Tables 6.1-3. We have seen that the LH* method (LH 
method with increased time step size) is very accurate for a large final time. Therefore, we now 
simulate surface growth by the LH* method with different noise terms in longer time 𝑡𝑡𝑒𝑒𝑖𝑖𝑛𝑛 = 10 to 
see the effect of the amplitude to the smaller time stem size. As a result, the effect of the Brownian 
noise is significantly stronger than that of the Gaussian, which has only a slight effect, 
approximately x = 0 compared to the case without the noise term. Compared to Fig. 6.9, we see 
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that due to the longer final time - and without the noise member functions - its height is low for 
Gaussian. However, the function k in the case of the Brownian noise term is even higher due to 
the longer simulation time 𝑡𝑡𝑒𝑒𝑖𝑖𝑛𝑛 = 10. 

We demonstrated in Fig. 6.9 that the effect of the increased (linear) diffusion term 
parameter 𝜈𝜈 is decreased surface waviness. Now, we present the effect of the parameters 𝜈𝜈 and 𝜆𝜆 
on the method when the value of the diffusion term is large, 𝜈𝜈 = 3.0  and the value of the nonlinear 
term is small, 𝜆𝜆 = 0.1. In Fig. 6.10, one can see that the shape of the surface is very close to a sine 
wave and the increased linear term parameter 𝜐𝜐 changes Brownian noise but not the Gaussian noise 
term. 

 

Figure 6.11. Numerical simulation results of leapfrog–hopscotch methods in case of various 
noise terms with increased diffusion: v=3.0 and λ=0.1. The time step size is ∆𝑡𝑡 = 10−5 and the 

final time is𝑡𝑡𝑒𝑒𝑖𝑖𝑛𝑛 = 1. 
 

In Fig. 6.11, we fixed all other parameters as in Eq. (6.8) but only linear and nonlinear 
terms are changed to a very small value of 𝜐𝜐 and to a large value of  𝜆𝜆. The effect is slightly similar 
to that in Fig. 6.5. However, due to the small value of 𝜈𝜈 and the large value of 𝜆𝜆, the bottoms of 
the wavy surface became very narrow valleys. 
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Figure 6.12.  Numerical simulation results of leapfrog–hopscotch methods in case of various 
noise term effect with decreased diffusion υ=0.1 and increased nonlinear parameter λ=6.0. The 

time step size is ∆𝑡𝑡 = 10−5 and the final time is 𝑡𝑡𝑒𝑒𝑖𝑖𝑛𝑛 = 1. 
 

The most standard FTCS scheme, the well-known Heun method and the recently invented 
leapfrog–hopscotch method are used to solve the KPZ equation in one spatial dimension. We have 
validated all methods using an analytical solution, and we compared the performance of these 
methods in cases of different parameters. We found that FTCS and the Heun’s methods are usually 
unstable above ∆𝑡𝑡 = 2 × 10−5 (the concrete threshold for stability depends on the parameters), 
while the LH method was stable in all of the presented numerical experiments. It can be unstable 
only if the nonlinear coupling term 𝜆𝜆 are much higher than the linear coefficient 𝜐𝜐 and/or there are 
spike-like pillars or grooves. Therefore, even if the LH method is not unconditionally stable for 
the KPZ equation, it is obvious that it has much better stability properties than the conventional 
explicit methods. 

The effect of the parameters on the solution for the KPZ equation, and most importantly the 
coefficients in the equation, have been examined. The newly proposed LH method has been used 
without noise and with Gaussian and Brownian noise terms to show the effect of the noise terms 
for fixed parameters. In addition, we have simulated two different noise terms with different 
parameters such as 𝜈𝜈 linear, 𝜆𝜆 nonlinear and 𝑎𝑎 noise term amplitude parameters. The effect of each 
applied parameter has been presented and discussed.    
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7. EXAMINATION OF THE WIDTH FUNCTION  

7.1.  Width function  
  

The main attention of our work is the examination of the solutions to the KPZ equation in 1+1 
dimension and the mean surface width or interface roughness of the height profile defined by 

 
𝑊𝑊(𝐿𝐿, 𝑡𝑡) = �1

𝐿𝐿 ∫ [ℎ(𝑥𝑥, 𝑡𝑡) − 〈ℎ(𝐿𝐿, 𝑡𝑡)〉]2𝑑𝑑𝑥𝑥𝐿𝐿
0 , (7.1) 

where 〈ℎ(𝐿𝐿, 𝑡𝑡)〉 = ∫ ℎ(𝑥𝑥, 𝑡𝑡)𝑑𝑑𝑥𝑥/𝐿𝐿𝐿𝐿
0  denotes the mean height at time 𝑡𝑡. For finite 𝐿𝐿, 

this quantity shows the scaling behaviour of many growth processes introduced by Family and 
Vicsek [82] [83] 

 𝑊𝑊(𝐿𝐿, 𝑡𝑡) = 𝐿𝐿𝛼𝛼𝑊𝑊 � 𝑡𝑡
𝐿𝐿𝑧𝑧
�, (7.2) 

with the dynamical exponent 𝑧𝑧 and the roughness exponent 𝛼𝛼. The scaling function has the limits 
W(𝑦𝑦) → 1 for 𝑦𝑦 →  ∞ and W(𝑦𝑦)~𝑦𝑦𝛽𝛽 for 𝑦𝑦 ≪ 1 as 𝑦𝑦 = 𝑡𝑡

𝐿𝐿𝑧𝑧
 The exponent 𝛽𝛽  called growth exponent 

is given by 𝛽𝛽 = 𝛼𝛼/𝑧𝑧. The saturation scales are as 𝐿𝐿𝑧𝑧, and the saturation width is proportional to 𝐿𝐿𝛼𝛼 
[10]. In 1+1 dimension, the KPZ equation holds 𝛼𝛼 = 1/2 and 𝑧𝑧 = 3/2, thus, verifying the general 
Galilean invariance scaling relation 𝛼𝛼 + 𝑧𝑧 = 2 [25]. The ratio of these values yields 𝛽𝛽 = 1/3.  

Our aim is to use the discretized KPZ equation as in [49] to explore different surface formations 
and roughnesses. We wish to study the role of linear term parameter 𝜈𝜈 and the non-linear parameter 
𝜆𝜆 on the growth formations. In addition, we investigate the surface roughness during different 
linear system sizes 𝐿𝐿 . In the past, most of the research on stochastic control has been concerned 
with theoretical models that suppress the non-linearity either entirely or partially [84] [85] [86] 
[87] [88]. Avoiding or minimizing the effect of the non-linearity is necessary during the numerical 
simulation process to avoid or minimize the effect on both the dynamic and steady-state properties. 
In previous works [88] [89] [90], a method to control the non-linear term using exponential 
decreasing function technique has been proposed. In contrast, here we numerically simulate the 
proposed method using fixed parameters and present a random number taken from a uniform 
distribution for the noise term. Based on previous  results, it is validated to control the system and 
achieve the desired saturation width. This type of control approach has been previously 
implemented and used for the stochastic Kuramoto-Sivashinsky equation [86]. 

Initiall, the authors [49] introduced spatial derivatives for the right-hand side of the KPZ equation 
(2.2). A discretized method was used that includes standard forward-backward differences for a 
cubic grid with a lattice constant ∆𝑥𝑥 

DOI: 10.14750/ME.2023.031



 

65 
 

 
ℎ𝑖𝑖𝑛𝑛+1 = ℎ𝑖𝑖𝑛𝑛 +

∆𝑡𝑡
∆𝑥𝑥2

�𝜈𝜈(ℎ𝑖𝑖+1𝑛𝑛 + ℎ𝑖𝑖−1𝑛𝑛 − 2ℎ𝑖𝑖𝑛𝑛) +
𝜆𝜆
8

(ℎ𝑖𝑖+1𝑛𝑛 − ℎ𝑖𝑖−1𝑛𝑛 )2�

+ � 2𝐷𝐷
∆𝑥𝑥𝑑𝑑 √

12∆𝑡𝑡 𝜂𝜂𝑖𝑖𝑛𝑛. 
(7.3) 

 

The most accurate result were obtained for Eq. (7.3) using Euler’s method when 𝑑𝑑 = 1 or 𝑑𝑑 = 2. 
The results were similar and comparable to simulated results of other author [51] [95]. However, 
for 𝑑𝑑 = 3, the simulation showed the limitation of this method. Based on the previous simulation 
results, we apply for 𝑑𝑑 = 1 in the present numerical experiments. 

 

7.2. The numerical method applied for the KPZ equation in 1+1 
dimension 

 

 The topic of discussion is the KPZ growth in (1+1) dimensions with temporal correlation, 
followed by an examination of the scaling results. We review existing numerical results and 
compare them with our simulation results.  Furthermore, we perform several numerical simulations 
for different diffusion coefficients 𝜈𝜈, as well as for the nonlinear coefficient 𝜆𝜆 and for systems of 
larger size 𝐿𝐿 while fixing the other parameters. All numerical results are compared with the results 
of previous works [49] [69] [88] [89] [90] [95] [96]. For the simulations to analyze the effect of 
different coefficient, we used A computer was used to analyze the effect of different coefficients, 
a MacBook Air 1,6 GHz Dual-Core Intel Core i5, 8 GB 2133 MHz LPDDR3 and the MATLAB 
R2019b software (The MathWorks, Inc., Portola Valley, CA, USA).  

 The simulation shows that the discretized version of the temporal correlated KPZ equation 
in (1+1) dimension displays numerical divergence in the effective 𝜆𝜆 regime [89], making it 
impossible to observe the system's evolution past a certain time limit due to singular growth. In 
order to prevent numerical instability, the nonlinear term is replaced by an exponentially 
decreasing function, as proposed by Dasgupta et al. [16]  

 
𝑓𝑓(𝑥𝑥) ≡

1 − 𝑒𝑒−𝑐𝑐𝑥𝑥

𝑐𝑐
, (7.4) 

where 𝑐𝑐 is an adjustable parameter. Since it is fixed as 1, the different solutions for the coefficient 
𝜆𝜆 of the nonlinear term can be compared. Therefore, the temporal correlated KPZ equation in (1+1) 
dimension is modified and takes the following form  

 
ℎ𝑖𝑖𝑛𝑛+1 = ℎ𝑖𝑖𝑛𝑛 + 𝑣𝑣 ∆𝑡𝑡

(∆𝑥𝑥)2
[ℎ𝑖𝑖+1𝑛𝑛 − 2ℎ𝑖𝑖𝑛𝑛 + ℎ𝑖𝑖−1𝑛𝑛 ] + ∆𝑡𝑡 𝜆𝜆

2𝑐𝑐
�1 − 𝑒𝑒

−𝑐𝑐�
ℎ𝑖𝑖+1
𝑛𝑛 −ℎ𝑖𝑖−1

𝑛𝑛

2∆𝑥𝑥 �
2

� + 𝜂𝜂𝑖𝑖𝑛𝑛, 

𝜂𝜂𝑖𝑖𝑛𝑛 =  � 2𝐷𝐷
∆𝑥𝑥𝑑𝑑 √12∆𝑡𝑡 ∙ 𝑅𝑅(𝑡𝑡). 

 

(7.5) 
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In Eq. (7.6), 𝑅𝑅(𝑡𝑡) is a random number  from a uniform distribution in the interval 
[−1.0, +1.0]. In our further investigations, 𝑐𝑐 =  0.1, 𝑑𝑑 = 1 [130] and the spatial and temporal 
steps are ∆𝑥𝑥 = 1 and ∆𝑡𝑡 = 10−3, respectively. Our initial work started from flat interface at 𝑡𝑡 = 0 
with periodic boundary conditions that were used in our previous paper [97], [98] for different 
discretized methods.   
  We use random numbers in our simulations that vary between 𝑎𝑎 = −1.0 and 𝑏𝑏 = 1.0, and 

 𝑅𝑅(𝑡𝑡) = 𝑎𝑎 + (𝑏𝑏 − 𝑎𝑎) ∙ 𝑟𝑟𝑎𝑎𝑛𝑛𝑑𝑑(∆𝑡𝑡,∆𝑥𝑥), (4.6) 

where 𝑟𝑟𝑎𝑎𝑛𝑛𝑑𝑑(𝑡𝑡1, 𝑥𝑥1) returns a t1 by x1 array of random numbers where 𝑡𝑡1, . . . , 𝑥𝑥1 indicate the size 
of each dimension [98].  

 

7.3. The impact of a and b on the surface growth 
 

First, we investigate the morphology of the solutions to (7.5) when different lower and upper limits 
are applied in 𝑅𝑅(𝑡𝑡) in the noise term. The noise term values are random with different integers 𝑎𝑎 
and 𝑏𝑏. 

 ∆𝑥𝑥 = 1,   ∆𝑡𝑡 = 10−3,   𝜆𝜆 = 1,   𝜈𝜈 = 0.01,   𝐿𝐿 = 1128,   𝑐𝑐 = 0.1, 𝐷𝐷 = 1, 𝑡𝑡 = 100.  (7.7) 

 

 
Figure 7.1. The plots of the solutions to the KPZ equation in (1+1) dimension at a growth time 
𝑡𝑡 =  100 with parameters fixed in  (7.7), 𝜆𝜆 = 1, and random numbers in the noise term that 

oscillate between 𝑎𝑎 ∈ [−1.0, 0], 𝑏𝑏 ∈ [0.5, 1]. 

 

For different a and b, Fig. 7.1 shows the implementations for random numbers in the noise term 
for  Eq. (7.5) with parameters fixed in (7.7). When the values of 𝑎𝑎 are -0.5 or -1 and for 𝑏𝑏 is 0.5 or 
1, it can be seen that the height of the surface ℎ(𝑥𝑥, 𝑡𝑡) formation is very high, reaching 4020. 
However, it is obvious from Fig. 7.1 that increasing the values of a and b also increases the surface 
roughness. For 𝑎𝑎 =0 and 𝑏𝑏=0.5, we obtained the smallest roughness and for 𝑎𝑎 =-1, 𝑏𝑏 =1, the 
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roughest surface structure. We note that the application of different parameters of 𝑎𝑎 and 𝑏𝑏 has an 
effect on the surface height and it can cause sudden increase of  ℎ(𝑥𝑥, 𝑡𝑡).  Fortunately, the use of 
the equal 𝑎𝑎 and 𝑏𝑏 values show relatively similar surface formation height ℎ(𝑥𝑥, 𝑡𝑡) as in other former 
research papers [78] [89] [100]. 

In the Fig. 7.2, the surface width 𝑊𝑊(𝑡𝑡) is plotted using the Eq. (7.7) and different pairs of a and b 
in the noise term. It shows that an increase of  𝑓𝑓𝑐𝑐𝑟𝑟 |𝑎𝑎| and  |𝑏𝑏|, increases the surface width function  
as does the surface roughness. 

 
Figure 7.2. Log-log plot of the surface width  𝑊𝑊(𝑡𝑡) for parameters fixed in (7.7),  𝑡𝑡 =  100 and 

the random numbers in the noise term that oscillate between 𝑎𝑎 ∈ [−1.0, 0], 𝑏𝑏 ∈ [0.5, 1]. 

 

7.4. The impact of 𝜈𝜈 and 𝜆𝜆 
 

The Kardar-Parisi-Zhang equation is a mathematical model that describes the behavior of 
randomly growing surfaces. The equation involves several parameters, including the roughness 
exponent (𝜈𝜈) and the growth exponent (𝜆𝜆). 

In an experiment, the numerical values of 𝜈𝜈 and 𝜆𝜆 depend on the specific system being 
studied. There have been numerous studies on the KPZ equation in different physical systems 
[134-140], and the values of these parameters can vary widely depending on the experimental 
conditions [137]. 

The previous investigations of one-component growth mechanisms are based on the 
Kardar-Parisi-Zhang universality class [41]. The scaling exponents of metals in previous studies 
were found to be between 0.22 and 0.56. Studies using thermal evaporation sources gave consistent 
scaling exponents of about 0.25 for iron [138] and 0.42 for molybdenum [139]. The present study 
found a scaling exponent of 0.3, which is in agreement with the scaling exponents for sputter-
deposited gold and molybdenum films. However, these values are larger than 0.25, which were 
predicted by the KPZ equation for the 2+1 system [134] [135]. 
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Other studies have found different values of 𝜈𝜈 and 𝜆𝜆 in different systems. For instance, in 
a study of bacterial colonies, the roughness exponent was found to be around 0.5, while the growth 
exponent was around 1.25 [136]. In a study of electrodeposition, the roughness exponent was 
found to be around 0.8, while the growth exponent was around 1.5 [137]. 

Overall, the values of 𝜈𝜈 and 𝜆𝜆 in real experiments depend on the specific physical system 
being studied and the experimental conditions. The KPZ equation has been found to be a useful 
tool for describing the behavior of growing surfaces in a wide range of systems, and further studies 
are needed to better understand the relationship between the KPZ parameters and the behavior of 
different physical systems. 

 In this section, various smoothing 𝜈𝜈 and nonlinear 𝜆𝜆 parameters are investigated to show 
how they affect on the surface morphology. The simulation results are shown for the Eq. (7.5) with 
following fixed parameters  

 ∆𝑥𝑥 = 1,   ∆𝑡𝑡 = 10−3,   𝐿𝐿 = 1128,   𝑐𝑐 = 0.1,   𝑡𝑡 = 100. (7.8) 

First, the interface profiles are plotted for the KPZ equation with different smoothening parameters 
𝜈𝜈. Figure 7.3 shows the various interface profiles for 𝜆𝜆 = 1 and  𝜈𝜈 = 0.01, 0.1, 0.5, 1, 2, 5, 10. 
Figure 7.3 shows that the height of the interface profile decreases as the value of 𝜈𝜈 decreases. If 
the smoothening parameter 𝜈𝜈 is equal to 0.01, the height of surface roughness vibrating between 
ℎ(𝑥𝑥, 𝑡𝑡)  =  5500 …   5700 indicated in red  in the figure. The least influenced height of the surface 
profile is shown in light blue (𝜈𝜈 = 10), which is below ℎ(𝑥𝑥, 𝑡𝑡)  =  5100 and the smoothest 
compared to all other smaller parameters.  

 

 
Figure 7.3. The shape of the KPZ equation in (1+1) dimension at the time of growth is studied 

𝑡𝑡 =  100, 𝜆𝜆 = 1 and fixed parameters (7.8) for various parameters of 
𝜈𝜈 (0.01, 0.1, 0.5, 1, 2, 5, 10). 

 

The surface width function is presented on a log-log graph in Fig 7.4. Here, we fixed all 
the parameters as in (7.8) and keep changing the value of smoothening term 𝜈𝜈 from 0.01 to 10. 
Initially, each simulated result starts from the same point but during the time 𝑡𝑡 they behave 

h(
x,

t) 
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differently according to variety of the parameter 𝜈𝜈. In the Fig. 7.4, the red line shows the highest 
width 𝑊𝑊(𝑡𝑡) in 𝜈𝜈 = 0.01 that presents slightly curved line in the end. At the same time, it can be 
seen that increase of parameter 𝜈𝜈 decreases the width 𝑊𝑊(𝑡𝑡). However, the roughness of the lines 
is different that it is smoothy 𝜈𝜈 = 0.01 and rough 𝜈𝜈 = 10, respectively. Figure 4 also indicates that 

the slope of the function 𝑊𝑊(𝑡𝑡) agrees well with 𝑡𝑡
1
3 in the literature.  

 
Figure 7.4. Log-log plot of the surface width 𝑊𝑊(𝑡𝑡) for fixed parameters (7.8), 𝜆𝜆 = 1 and 𝑡𝑡 =

 100. The parameter  𝜈𝜈 is between 0.01 and 10.0. 

 

 

Figure 7.5 exhibits the plots of height ℎ(𝑥𝑥) for various parameters 𝜆𝜆 of the nonlinear term 
ranging from 0.01 to 10. All the results obtained are obtained with a fixed smoothing parameter 
ν=0.01. Note that when ν is larger than 0.01, anomalous surface formation appears for different 
values of λ. However, the other fixed parameters were given in (7.8). When λ and ν are chosen to 
be equal, i.e., 0.01, the height of the interface profile h(x) is the lowest, as shown in Fig. 7.5 . The 
height of the interface profile ℎ(𝑥𝑥) is uniformly oscillating. However, as the value of the nonlinear 
term λ increases, the surface roughness also increases and reaches the maximum value ℎ(𝑥𝑥) =
1.2 ∙ 104 for λ=10. 
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Figure 7.5. The shape of the KPZ equation in (1+1) dimension at the time of growth is studied 
𝑡𝑡 =  100, ν=0.01 and parameters in (7.8) for parameters of 𝜆𝜆 = 0.01, 0.1, 0.5, 1, 2, 5, 10. 

Fig. 7.6 presents log-log plot of the surface width 𝑊𝑊(𝑡𝑡) for fixed values of Eq. (7.8) and 
ν=0.01. It is similar to the Fig. 7.4 that initial point of all simulated results is started from the same 
points and increase till the certain time 𝑡𝑡. When the values of 𝜆𝜆 and 𝜈𝜈 are close/the same to each 
other, the interface width 𝑊𝑊(𝑡𝑡) is resemble too. However, increasing the value of nonlinear term 
𝜆𝜆, increase the interface width 𝑊𝑊(𝑡𝑡). It is obvious from the Fig. 7.6 that the highest curved and 
light blue (malibu) colored line represents the highest value of 𝜆𝜆 that equals to 10. Figure 7.6 also 

indicates that the slope of the function 𝑊𝑊(𝑡𝑡) agrees well with 𝑡𝑡
1
3 in the literature. 

 
Figure 7.6. Log-log plot of the surface width  𝑊𝑊(𝑡𝑡) for parameters (7.8), time 𝑡𝑡 =  100  and 

ν=0.01. The parameter of 𝜆𝜆 is between 0.01 and 10.0. 

 

7.5. The impact of  𝑡𝑡 on the slope of 𝑊𝑊(𝑡𝑡) 
 

To examine and compare the slope of the function 𝑊𝑊(𝑡𝑡), three different time periods 𝑡𝑡 = 
10, 100 and 500 are chosen. All the parameters in (7.8) are fixed except for the time and the value 
of the smoothing term ν. The Fig. 7.7 shows the slope results relation to the different values of the 
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smoothing term ν, that is from 0.01, 0.05, 0.1, 0.5 …  to 10. As it is presented in Fig. 7.7, the 
highest slope value that above 0.6 is obtained when the time was 𝑡𝑡 = 10 for 𝜈𝜈 = 0.01. It is shown 
by the blue line with circle. However, the values of slope significantly decreased till 𝜈𝜈 = 2 then it 
continued decreasing smoothly. Consequently, the second highest slope is obtained when the time 
was 𝑡𝑡 = 100 with the slope value between 0.55 and 0.6 and it is represented by the red starred line 
in the figure. Similarly, the above-mentioned behavior happened here too but it should be noted 
that slope values  are higher for 𝑡𝑡 = 100 than 𝑡𝑡 = 10. Interestingly, the longest time that was 𝑡𝑡 = 
500 showed fluctuated result between 0.35 and 0.5 for along the 𝜈𝜈 values. It is illustrated by black 
line and “×”     

Our examination of the slope of 𝑊𝑊(𝑡𝑡) shows that as 𝑡𝑡 increases, the numerical results come 
closer and closer to the theoretical value of 1/3. For small 𝑡𝑡 the slope is less than 1/3. 

 
Figure 7.7. The width function’s slope for the values of 𝜈𝜈 =  (0.01, 0.05, 0.1, 0.5 …  10) 𝑡𝑡 =

10, 100, 500 for the fixed 𝜆𝜆 = 1. All other parameters are given in (7.8). 

 

 
Figure 7.8. The width function’s slope for different values of 𝜆𝜆 (0.01, 0.05, 0.1, 0.5 …  10) in 

various time length 𝑡𝑡 = 10, 100, 500 for the fixed 𝜈𝜈 = 0.01. All other used parameters are given 
in the Eq. (7.8). 
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In Fig. 7.8, the slope of 𝑊𝑊(𝑡𝑡) is plotted for different nonlinear term values 
𝜆𝜆 (0.01, 0.05, 0.1, 0.5 …  10) and time lengths 𝑡𝑡 =  10, 100 and 500. It is shown that the highest 
slope belong to the smallest time 𝑡𝑡 =  10. It starts at 0.45 and increases significantly to 1.2 then 
levels off. Figure 7.8 shows that the near-constant slope decreases with increasing time 𝑡𝑡.  

 

7.6. The impact of 𝐿𝐿 
Figure 7.9 shows the data obtained for different sizes of 𝐿𝐿 lengths between 128 and 1024. 

These were obtained with a simulation run time of 𝑡𝑡 =  104, 𝜆𝜆 = 1, 𝜈𝜈 = 1. In all cases we started 
with a flat surface at 𝑡𝑡 = 0. The data obtained for the (1+1)-dimensional KPZ equation confirm the 
Vicsek and Family scaling (7.2) for systems of different 𝐿𝐿 sizes.  

 

 
Figure 7.9. The log-log plot of width function in different linear system sizes L between 128 and 

1024. Here, fixed parameters are: ∆𝑥𝑥 = 1,∆𝑡𝑡 = 10−2, 𝜆𝜆 = 1, 𝜈𝜈 = 1, 𝑐𝑐 = 0.1, 𝑡𝑡 = 104.  The 
dashed line shows a power-low with exponent 1/3. 

 

Figure 7.9 shows four independent numerical simulation for various length L and this 
different linear system size 𝐿𝐿 affects the slope of the width function. shows that the different linear 
system size 𝐿𝐿 affects the slope of the width function. We started our numerical simulation with a 
system size of 𝐿𝐿 = 1024, which is indicated in brown. The initial point of the line increases steadily, 
but after a certain time 𝑡𝑡 oscillation started. When we reduce the system size 𝐿𝐿 to 128, denoted by 
red, the oscillation starts early and the magnitude of the oscillation is at its maximum. 

The impact of the random values in the noise term, the two parameters, 𝑎𝑎 and 𝑏𝑏, on the 
surface growth of the 1+1 dimensional KPZ equation described by Eq. (7.6) in the presence of 
noise with different lower and upper limits in 𝑅𝑅(𝑡𝑡) is investigated. The results, shown in Figs. 7.1 
and 7.2, demonstrate that increasing the values of 𝑎𝑎 and 𝑏𝑏 increases the surface roughness, and 
that the use of equal values of 𝑎𝑎 and 𝑏𝑏 results in relatively similar surface formation heights as 
compared to results of other researchers.  

Moreover, the slope of the width function 𝑊𝑊(𝑡𝑡) is analyzed using simulations at different 
values of time (𝑡𝑡 = 10, 100, and 500), smoothing term (𝜈𝜈), and nonlinear term (𝜆𝜆). The results 
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indicate that as 𝑡𝑡 increases, the numerical results of the slope of 𝑊𝑊(𝑡𝑡) approximates well the 
theoretical value  1/3 which confirms the Vicsek and Family scaling. Figures 7.7 and 7.8 show 
the relationship between different time lengths and smoothing/nonlinear term values and their 
effect on the slope of 𝑊𝑊(𝑡𝑡). The effect of different linear system sizes (𝐿𝐿) on the slope of the width 
function is given. The simulation shows that as 𝐿𝐿 decreases, the oscillation starts earlier and is 
more pronounced.  

 

7.7. Investigations in (1+1) dimension 
 

The impact of long-range temporal correlations on the surface morphology is studied by 
examining Equation (7.1). The spatial step is ∆𝑥𝑥 = 1 [55]. Here, the lattice size L used in the 
numerical integration has the values 𝐿𝐿 = 1128 [59]. In Eq. (7.6), 𝑅𝑅 is a random number taken 
from a uniform distribution from the interval [0.5, +0.5].  

Figures 7.10 and 7.11 illustrate the instable growth in different time 𝑡𝑡 when Eq. (7.2) is 
simulated with 𝑣𝑣 = 1/2, 𝜆𝜆 = 1, and 𝑐𝑐 = 0.1, in one dimensional interface with 𝐿𝐿 = 1128. Here, 
time increases from 𝑡𝑡 =  1.0, 2.0, 5.0 𝑡𝑡𝑐𝑐 10.0 (with ∆𝑡𝑡 = 0.05).  

 

 

Figure 7.10. Numerical simulation results of Eq. (7.1) in different time from t = 1.0 to t = 10.0. 
 

Figure 7.10 shows the result of the numerical simulation for different time 𝑡𝑡. When the 
time increases, the surface height also increases. However, we would like to point out that the 
amplitude of the surface formation also increases and shows a rougher surface. 
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Figure 7.11. The log-log plots of thee surface roughness 𝑊𝑊(𝑡𝑡) = �〈[ℎ(𝑥𝑥, 𝑡𝑡) − 〈ℎ〉]〉 for different 
time values. Red circle lines present the result for t = 1.0, blue asterisk lines indicate the time t = 

2.0. Black line and dashed magenta lines indicate the time t = 5.0. 
 

Figure 7.11 shows the increase in surface roughness with time. The total width 𝑊𝑊(𝑡𝑡) is 
plotted for different time t, and as time increases, the height of the interface also increases. Note 
that the amplitude of the KPZ equation increases with increasing time. 
  

We numerically simulated KPZ equation in 1+1 dimension with a random noise term from 
a uniform distribution in the interval [0.5, +0.5]. It is confirmed that the appearance of instability 
exists, and the surface formation varies with the length of time. The simulation results show that 
when 𝑡𝑡 final is increased from 𝑡𝑡 = 1.0 to 𝑡𝑡 =  10.0 the height of results shifted to upper position. 
We can conclude that the instability of the discretized KPZ equation is affected by different time 
effects.  
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NEW SCIENTIFIC RESULTS OF THE THESES 

The main contributions from the research can be summarised as follows:  
 
I. I analyzed the numerical solutions to the one-dimensional KPZ equation using 

MATLAB with various initial condition amplitudes 𝑎𝑎 and noise terms. The results 
showed that noise terms produced similar surface shapes regardless of the initial 
condition amplitude, and the presence of Gaussian noise is not observable at high initial 
conditions amplitude.  
I investigated three power-law-type noises 𝑤𝑤𝑛𝑛 with exponents of −1, 0, 1, called pink, 
white and blue noise, respectively, and including Gaussian and Lorentzian noises. In 
order to observe and better understand certain physical phenomena, I used the data 
obtained from these experiments and validated a mathematical model [121]. Decreasing 
initial condition amplitude and noise term strength for the KPZ equation resulted 
smoother surface structure [S1, S2, S3].  
  

II. I examined KPZ equation in one spatial dimension using the leapfrog–hopscotch (LH), 
standard forward time centered space (FTCS) scheme and the Heun methods. All 
methods are verified with analytical solution from [95] at 𝑡𝑡 =  1 as the initial condition 
and the Dirichlet boundary conditions.  I showed that the average and the maximum 
differences of the methods, namely the FTCS, the Heun and the LH with two different 
time step sizes ∆𝑡𝑡. I found that FTCS and the Heun’s methods are usually unstable above 
∆𝑡𝑡 =  2 × 10−5 (the concrete threshold for stability depends on the parameters such 
as 𝜈𝜈, 𝜆𝜆, 𝑎𝑎 and ∆𝑡𝑡), while the LH method was stable in all numerical experiments. It can 
be unstable only if the nonlinear term 𝜆𝜆 are much higher than the linear coefficient 𝜈𝜈 
and there are spike-like pillars or grooves. Therefore, even if the LH method is not 
unconditionally stable for the KPZ equation, it is obvious that it has much better stability 
properties than the conventional explicit methods [S4].  
 

III. I compared the impact of Gaussian and Brownian noises for the solutions of KPZ 
equation for various coefficients such as: 𝜈𝜈, 𝜆𝜆, 𝑎𝑎 and 𝑡𝑡. I simulated two different noise 
terms with different parameters like linear, nonlinear and noise term amplitude. The 
effect of each applied parameter presented and discussed below:   
When the noise term amplitude is set to 𝑎𝑎 =  1, the Brownian noise term has a greater 
effect than the Gaussian noise term.  

• Increasing the simulation time 𝑡𝑡𝑒𝑒𝑖𝑖𝑛𝑛 from 1 to 10 showed that the effect of the 
Brownian noise term remains stronger than the Gaussian noise term, even at 
higher noise amplitudes.  

• I also examined the impact of parameters 𝜈𝜈 and λ on the method. When the 
diffusion term's value is high at 𝜈𝜈 = 3.0 and the nonlinear term has a low value 
at λ = 0.1 the surface shape closely resembles a sine wave.  

• The Brownian noise term is affected by the increased linear term parameter 𝜈𝜈, 
while the Gaussian noise term remains unchanged [S4].  
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IV. I discussed and numerically simulated the growth height of the KPZ equation using 
numerical method proposed by Dasgupta et al. [16]. I used random numbers 𝑅𝑅(𝑡𝑡) as a 
noise term that vary between 𝑎𝑎 = −1.0 and 𝑏𝑏 = 1.0. I found out that increasing the 
values of 𝑎𝑎 and 𝑏𝑏 increases the surface roughness. Consequently, the equal values of 𝑎𝑎 
and 𝑏𝑏 results in relatively similar surface formation heights comparing to other 
researchers [80, 105]. In addition, I compared and investigated impacts of linear, 
nonlinear term parameters and different time to the height of the function. I got that 
increase of 𝜈𝜈 decreases oscillation level but increase the height of the function. In 
contrast, 𝜆𝜆 = 0.01 … 10.0 and time 𝑡𝑡 = 1.0 … 10.0 increase the surface roughness [S6].  
 

V. I investigated impacts of 𝜈𝜈 linear, 𝜆𝜆 nonlinear parameters and time 𝑡𝑡 to the surface width 
𝑊𝑊(𝑡𝑡). I got that increase of 𝜈𝜈 that decrease surface width but oscillation level rised. The 
impact of  𝑡𝑡 on the slope of the surface width 𝑊𝑊(𝑡𝑡) for 𝜈𝜈 and 𝜆𝜆 =
 (0.01, 0.05, 0.1, 0.5 …  10) simulated and calculated. The numerical results of the 
slope of surface width 𝑊𝑊(𝑡𝑡) approximates well to the theoretical value  1/3 which 
confirms the Vicsek and Family scaling for systems of different sizes. We showed the 
relationship between different time lengths and smoothing/nonlinear term values and 
their effect on the surface slope of 𝑊𝑊(𝑡𝑡). The effect of different linear system sizes (𝐿𝐿) 
on the slope of the surface width function is given. The simulation shows that as 𝐿𝐿 
decreases, the oscillation starts earlier and is more pronounced [S6]. 
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