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1. INTRODUCTION 

One of the successful equations for describing a class of dynamic nonlinear phenomena is the 
Kardar–Parisi–Zhang (KPZ) equation [1]. The application of this equation varies widely in topics 
such as vapour deposition, directed polymers, bacterial colony growth and superconductors [2], 
[3]. There are a number of computational studies related to discrete model simulations such as the 
Eden model, ballistic deposition models [4-9] and directed polymer model. All of these provide 
important features in the physical processes through simulation efficiency. The introduction of 
direct numerical integration is also an important point that requires more intensive computations. 
The first large scale numerical integration of the KPZ equation was performed by Amar and Family 
and the discrete Gaussian model was verified in [10]. Later, Moser improved his accuracy with 
further works [11-12]. However, the KPZ equation is not just a nonlinear equation that is applied 
by a similar method. To verify the theoretical predictions, numerical and analytical investigations 
are performed for the KPZ equation with correlated noise [13] and with quenched noise in 
anisotropic media [14], or in reaction–diffusion systems with multiplicative noise [15], for the 
Kuramato–Shivashisky equation (KS) of flame front propagation [16-17] and for the epitaxial 
growth equation [18]. 

In general, the direct approach to studying the growth equation is numerical integration and it 
can be seen as the ideal form of the equation that allows us to fully control the investigation. 
Unfortunately, Newman and Bray [19] reported some disadvantageous properties of the 
conventional numerical integration scheme, such as instability and an unphysical fixed point. Later 
works [20-21] reported that during numerical simulation instability can occur even in the case of 
small time steps. Lam and Shin [22] found that direct numerical integration by conventional finite 
difference schemes actually do not approximate the continuum KPZ equation. Previously, Amar 
and Family [23] integrated a similar equation using a generalized nonlinear term. The scaling 
behaviour of the KPZ equation was in most cases found to be different from the continuum 
equation. They even explained the results of their studies on KPZ nonlinear terms combining the 
effects of noise and nonlinearity. 

In the last 30 years, different kinds of numerical methods have been proposed for the KPZ 
equation. These were implemented with various discretizing formulas of the nonlinear term. 
However, the diffusion term was mostly handled by the most standard Forward Time Centred 
Space (FTCS), where the time discretisation is based on the explicit Euler method. 

The application of the discrete variational formulation to the KPZ equation has been discussed. 
An alternative approach to other well-known techniques, the variational analytical solutions of 
KPZ were introduced by Wio et al. in [24-26] and non-equilibrium potential has been obtained to 
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understand radial growth on a growing domain. In [24], a relation between the real-space 
discretisation schemes was examined. The authors provided discrete schemes of the KPZ equation, 
and they discussed the role of the Galilean invariance for discrete representations. In [26], the 
properties of a functional related to the KPZ equation are investigated. The main result is a path 
integral scheme; and, the authors defined expressions for the probability of entropy production 
along a trajectory and they obtained integral fluctuation theorems. 

The thermodynamic uncertainty relation for the (1 + 1) dimensional Kardar–Parisi–Zhang  
equation on a finite spatial interval was considered by Niggeman and Seifert [27]. Numerical 
simulations compared with theoretical predictions showed convincing agreement. 

Cartes et al. [28] studied the analytical laws of the scale-dependent correlation time to follow 
the expected crossover from the short-distance Edwards–Wilkinson scaling to the universal long-
distance Kardar–Parisi–Zhang  scaling. 

The mathematical model derived from this equation can serve as a starting point for exploring 
ultra-thin film coatings with complex properties arising from the film growth process, such as 
porosity and pinholes. [29]. In terms of medical surface coating applications, such as stent coatings 
[29], this equation can simulate the process and has potential value in advancing our understanding 
and improvement of such surface growth. However, since the equation only has exact exponents 
for one-dimensional cases, additional numerical analysis and simulations are necessary to 
accurately characterize these processes.. 

The critical importance of controlling the surface during film deposition is demonstrated by 
adjusting parameters such as roughness, porosity, and thickness of the films. The use of computer 
simulations is becoming increasingly useful for precision control, therefore requiring further 
research to improve thin film deposition techniques and procedures. 
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2. IMPACT OF THE INITIAL SURFACE MORPHOLOGY 

 

2.1. Results without noise term 

Simulations have been carried out by MATLAB R2019a. Numerical solution for height 
profiles are calculated with the following data: 𝑥𝑥 ∈   [−200, 200], 𝑡𝑡 ∈  [0, 10000],𝑁𝑁 =
 100,∆𝑡𝑡 =  1/100, where 𝑁𝑁 denotes the number of division points on the 𝑥𝑥-axis and ∆𝑡𝑡 is the 
time step. 

In the resulted figures below the complete solutions of the KPZ Eq. (2.1)  

 𝜕𝜕ℎ
𝜕𝜕𝜕𝜕

(𝑥𝑥, 𝑡𝑡) = 𝜈𝜈∇2ℎ(𝑥𝑥, 𝑡𝑡) + 𝜆𝜆
2

(∇ℎ)2 + 𝜂𝜂(𝑥𝑥, 𝑡𝑡), (2.1) 

that have been presented for different initial condition and various amplitudes. However, for 
simplicity, the parameters are chosen as 𝑣𝑣 =  𝜆𝜆 = 0.1 and the initial conditions are  

 ℎ(𝑥𝑥, 0) = �1 · cos �𝑥𝑥
8
� � �1 + sin �𝑥𝑥

8
� �, (2.2) 

and  

 ℎ(𝑥𝑥, 0) = �0.1 · cos �𝑥𝑥
8
� � �0.1 + sin �𝑥𝑥

8
� �. (2.3) 

Figure 2.1 presents the solutions in the time range [1, 600] for the different amplitudes applied 
in the initial conditions Eqs. (2.2) and (2.3). It seems that the results are vibrating depending on 
the parameter value in the initial condition. In Fig. 2.1(a) it can be seen that ℎ(𝑥𝑥, 𝑡𝑡) is between 
±1.3 and in Fig. 2.1(b) that it is between ±0.6 which begin to smooth out in both cases. This 
examination suggests that the initial condition amplitudes affect only the early phases of the 
surface evolution, while later the surface tends to approach a flat state regardless of the initial 
amplitudes 
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a        b 

Figure 2.1. The solutions of the KPZ equation (2.1) without noise term with initial conditions 
(2.2) and (2.3). 

 

2.2. Results with Gaussian noise 

Figure 2.4 presents the numerical results for the given parameters and 𝑎𝑎 = 1 and for applying 
different initial condition amplitudes to Eq. (2.4) as follows 

 ℎ(𝑥𝑥, 0) = �1 · cos �𝑥𝑥
8
� � · �1 + sin �𝑥𝑥

8
� �. (2.4) 

and  

 ℎ(𝑥𝑥, 0) = �0.1 · cos �𝑥𝑥
8
� � · �0.1 + sin �𝑥𝑥

8
� �. (2.5) 

Figures 2.2 (a) and 2.2 (b) show almost the same structure. The only change is that if the amplitude 
is 1, the ripple appears, which can also be characterized by the maximum value of the amplitude. 
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a        b 

Figure 2.2. The solutions of the KPZ Eq. (2.1) with Gaussian noise term with initial conditions 
(2.4) and (2.5). 

 

Figure 2.3 shows the solutions of Eq. (2.1) with the same parameters. The figure shows the 
change in amplitude and the different representations of the graphs. We examine the effect of the 
strength of the Gaussian noise, providing 𝑎𝑎 = 0.1 and 𝑎𝑎 = 0.01 in the Gaussian noise term 𝜂𝜂(𝑥𝑥, 𝑡𝑡) 
together with the initial state 

 ℎ(𝑥𝑥, 0) = �1 · cos �𝑥𝑥
8
� � · �1 + sin �𝑥𝑥

8
� �. (2.6) 

It results the big wavy shape in the surface escaping while keeping increase amplitude of noise 
term.  

 

a        b 

Figure 2.3. The solutions of the KPZ Eq. (2.1) with Gaussian noise term with initial condition 
(2.6) and  a=0.1 or a=0.01. 
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3. IMPACT OF NOISE TERMS 

 

3.1. Results without noise term  

Simulation data during the experiment are the following:  

 x ∈  [-100, 100],  t ∈ [0, 1000], N = 100, ∆t = 1/100, (3.1) 
where 𝑁𝑁 denotes the number of division points on the 𝑥𝑥-axis and ∆𝑡𝑡 is the time step. 

In the resulted figures below the complete solutions of the original PDE (2.1) have been 
presented showing in different initial condition and various amplitudes. However, for simplicity, 
the parameters are chosen as 𝑣𝑣 = 0.1 𝑎𝑎𝑎𝑎𝑎𝑎 2, 𝜆𝜆 = 1 and the initial condition is 

 ℎ(𝑥𝑥, 0) = cos �
𝑥𝑥
4
�. (3.2) 

 

  
Figure 3.1. Solution to (3.1) KPZ equation 

without noise term for the parameter set 𝜈𝜈 =
0.1, 𝜆𝜆 = 1. 

 

Figure 3.2. Solution to (3.2) KPZ equation 
without noise term for the parameter set 𝜈𝜈 =

2, 𝜆𝜆 = 1. 

 
Figure 3.1 and Figure 3.2 present the solutions in the time range [1, 100] with initial condition 

(5.3). In the simulation result, on Fig. 3.1 the smoothing value is 𝜈𝜈 = 0.1 and it can be seen that 
there is only initial condition effect at the beginning of the figure. This wavy surface continues till 
t = 10, then it becomes totally flat surface. Figure 3.2 represents the smoothing value which in our 
case equals to 𝜈𝜈 = 2 and the surface waviness decreases slowly. However, this process creates a 
wavy surface for a long time, resulting in a significantly visible effect of the value 𝑣𝑣. 

 

3.2. Results with Gaussian noise  

Figure 3.3 and Figure 3.4 present the solutions in the time range [1, 100] with initial condition 
(3.3). In the result of simulation Fig. 3.3, the smoothing value is 𝑣𝑣 = 0.1 and it can be seen that 
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there is a small initial condition effect at the beginning of the figure then the Gaussian noise effect 
takes place. The Gaussian noise effect almost has not been affected by the initial condition. 
However, Figure 3.4 represents the smoothing value when it equals to 𝑣𝑣 = 2 showing that surface 
waviness decreases slowly and effects to the Gaussian noise making it sharper curved. At the same 
time this process creates wavy surface for long time which gives significantly visible effect of 
value v. 

  
Figure 3.3. Solution to (3.3) KPZ equation 
without noise term for the parameter set 

𝜈𝜈 = 2, 𝜆𝜆 = 1. 

Figure 3.4. Solution to (3.3) The KPZ equation 
without a noise term was studied for the 

specified parameters v=2, λ=1. 
 

3.3. Result with pink noise 

Our first case is pink noise term 𝜂𝜂(𝑥𝑥, 𝑡𝑡) = 𝑎𝑎
𝑤𝑤

.  

The Figure 3.5 and 3.6 display the form of the shape function with varying physical 
parameters. At first, the solutions in both figures look the same. However, there is a significant 
increase on the Fig. 3.6 in a small time 𝑡𝑡. In other word the solution has an initial increase when 
the parameters 𝑣𝑣 and 𝜆𝜆 are lower. As time goes the surface formation tend to reach flat surface 
with a small curve in the centre, which shows the pink noise effect along the surface.  

  
Figure 3.5 presents the solution of the KPZ 
equation that includes a pink noise term, for 
a specific set of parameters ν=a=1 and λ=2. 

Here, initial condition is ℎ(𝑥𝑥, 0) = 0. 

Figure 3.6. The solution of the KPZ equation 
with pink noise is depicted in Figure 5.5, with 
the specified parameters ν=3,a=1 and λ=4. 

Here, initial condition is ℎ(𝑥𝑥, 0) = 0. 



 

 

 ANALYSIS AND EVALUATION OF COATING CHARACTERISTICS  

10 

 

3.4.  Result with white noise  

Our second case leads to the white noise term 𝜂𝜂(𝑥𝑥, 𝑡𝑡) = 𝑎𝑎 𝑤𝑤0. Figures 3.7 and 3.8 show the 
shape for the white noise. The different feature of this noise term from the pink noise is twice 
higher time of execution. However, when the parameters 𝜈𝜈 and 𝜆𝜆 are higher, the behaviour of the 
initial shape of the function is lower. While this effect reaches an arc shape after in small time 𝑡𝑡 
and it continuous on the surface till the end of the time.  

  
Figure 3.7. The KPZ equation solution with 

white noise, using the specified set of 
parameters ν=a=1 and λ=2. Here, initial 

condition is ℎ(𝑥𝑥, 0) = 0. 

Figure 3.8. The KPZ equation solution with 
white noise, using the specified set of 

parameters ν=3, a=1 and λ=4. Here, initial 
condition is ℎ(𝑥𝑥, 0) = 0.. 

 

4. SOLUTION METHODS APPLYING DIFFERENTIAL FINITE 
ELEMENT METHODS 

 

4.1.  Forward Time Centered Space Scheme  

In the paper [11], Moser et al. introduced spatial derivatives of the right-hand side of the KPZ 
Eq. (2.1). It was discretised using standard forward–backward differences on a cubic (4.1) grid 
with lattice constant ∆𝑥𝑥, which is also known as a forward time centred space (FTCS). 

ℎ𝑖𝑖𝑛𝑛+1 = ℎ𝑖𝑖𝑛𝑛 + 𝑟𝑟(ℎ𝑖𝑖+1𝑛𝑛 + ℎ𝑖𝑖−1𝑛𝑛 − 2ℎ𝑖𝑖𝑛𝑛) + 𝜇𝜇(ℎ𝑖𝑖+1𝑛𝑛 − ℎ𝑖𝑖−1𝑛𝑛 )2 + ∆𝑡𝑡 𝑘𝑘(𝑥𝑥, 𝑡𝑡) (4.1) 
where ∆𝑡𝑡 is the step size and 𝑡𝑡𝑖𝑖+1 = 𝑡𝑡𝑖𝑖 + ∆𝑡𝑡, 𝑟𝑟 = 𝜐𝜐∆𝜕𝜕

∆𝑥𝑥2
 and 𝜇𝜇 = 𝜆𝜆∆𝜕𝜕

8∆𝑥𝑥2
 are the appropriate mesh ratios. 

We use only one array for the variable h, which has as many elements as the number of nodes. 
However, when we calculate ℎ𝑖𝑖𝑛𝑛+1, the value of ℎ𝑖𝑖−1𝑛𝑛  is still necessary, thus we have to introduce 
an auxiliary temporary array variable to store the calculated values, and only after the completion 
of the loop can we load the new values ℎ𝑖𝑖𝑛𝑛+1 to the array. Therefore, with its speed, the seemingly 
simplest algorithm can still be surpassed, as we will show later. 
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4.2.  Heun’s method 

The Heun method is an improved or a modified Euler’s method applied in computational 
science and mathematics. It represents the explicit trapezoidal rule [30-31], which is a two-stage 
Runge–Kutta method. This method was originally proposed to solve ordinary differential 
equations (ODEs) with given initial conditions: 

𝑦𝑦′(𝑡𝑡) = 𝑓𝑓(𝑦𝑦(𝑡𝑡), 𝑡𝑡), 𝑡𝑡(𝑡𝑡0) = 𝑦𝑦0. (4.2) 
The procedure in this case is the following. At the first stage, Heun’s method calculates the 
intermediate value 𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 and then the final approximation 𝑦𝑦𝑛𝑛+1 at the next integration point: 

𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  = 𝑦𝑦𝑛𝑛 + ℎ𝑓𝑓(𝑡𝑡𝑛𝑛,𝑦𝑦𝑛𝑛), 

𝑦𝑦𝑛𝑛+1 = 𝑦𝑦𝑛𝑛 + ℎ
2

[𝑓𝑓(𝑡𝑡𝑛𝑛,𝑦𝑦𝑛𝑛) + 𝑓𝑓(𝑡𝑡𝑛𝑛+1,𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)]. 
(4.3) 

Although the rate of convergence of Heun’s method is two, thus it is usually more accurate 
than the simple explicit (Euler) method, its Courant–Friedrichs–Lewy (CFL) stability limit is 
unfortunately the same [32-33]. 

The predictor–corrector type that Heun’s method applied to the KPZ equation reads as: 

ℎ𝑗𝑗
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = ℎ𝑗𝑗𝑛𝑛 + 𝑟𝑟�ℎ𝑗𝑗−1𝑛𝑛 + ℎ𝑗𝑗+1𝑛𝑛 − 2ℎ𝑗𝑗𝑛𝑛� + 𝜇𝜇�ℎ𝑗𝑗+1𝑛𝑛 − ℎ𝑗𝑗−1𝑛𝑛 �

2
+ 𝑘𝑘(𝑥𝑥, 𝑡𝑡𝑛𝑛 + ∆𝑡𝑡/2)∆𝑡𝑡 

ℎ𝑖𝑖𝑛𝑛+1 = ℎ𝑖𝑖𝑛𝑛 +
𝑟𝑟
2
�ℎ𝑖𝑖−1𝑛𝑛 + ℎ𝑖𝑖+1𝑛𝑛 − 2ℎ𝑖𝑖𝑛𝑛 + ℎ𝑗𝑗−1

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + ℎ𝑗𝑗+1
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 2ℎ𝑗𝑗

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�

+ 𝜇𝜇 �(ℎ𝑖𝑖+1𝑛𝑛 − ℎ𝑖𝑖−1𝑛𝑛 )2 + �ℎ𝑗𝑗+1
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − ℎ𝑗𝑗−1

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�
2
� + 𝑘𝑘 �𝑥𝑥, 𝑡𝑡𝑛𝑛 +

∆𝑡𝑡
2
� ∆,  

(4.4) 

where 𝜇𝜇 = 𝜆𝜆∆𝜕𝜕
8∆𝑥𝑥2

  and 𝑘𝑘(𝑥𝑥, 𝑡𝑡) is noise term. When Heun’s method is implemented by two for loops, 
we need not only one extra array to store ℎ𝑗𝑗

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, but a temporary array as in the FTCs method. This 
makes a time step of Heun’s algorithm slower and memory-consuming, although, to a much lesser 
extent than in the case of implicit methods. 

 

4.3. Leapfrog–Hopscotch method 

The leapfrog–hopscotch (LH) structure was first proposed and explained in our recent paper 
[27]. Similar to the original odd–even hopscotch (OEH) algorithm introduced five decades ago by 
Gordon [34] and Gourlay [35], one must divide the grid into two subgrids of odd and even nodes 
(light and dark blue dots in Fig. 4.1, respectively) such that the nearest neighbours of odd nodes 
are always even and vice versa. The calculation starts with a half-sized time step for the odd nodes 
using the initial ℎ𝑖𝑖0 values, symbolised by the green arrows in Fig. 4.1. Then, full time steps are 
made to calculate alternately the even and the odd nodes (light and dark blue arrows, respectively) 
until one reaches the final time, where the time step size must also be halved for odd nodes (orange 
arrows). One can see that in each step, the latest available u values of the neighbours (denoted by 
ℎ𝑖𝑖±1𝑝𝑝𝑝𝑝𝑟𝑟𝑝𝑝𝑛𝑛𝜕𝜕) are used, thus the method is explicit. We mention that this LH structure was thoroughly 
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examined for the diffusion equation [30]. According to a large number of numerical experiments, 
the UPFD formula is optimal for use in the zeroth time step and the symmetric 𝜃𝜃 = 1

2�  formula 
in all other steps, thus we will apply only these formulas and we will call this concrete method (the 
LH time–space structure and the formulas) “the LH method”. Due to the special symmetry of the 
time–space discretisation and the 𝜃𝜃 = 1

2� , this method has excellent properties, as we will see in 
the following. 

 

Figure 4.1. The new leapfrog–hopscotch structure. 

 

We express the new value of the h variable in the following form in the case of the one space-
dimensional KPZ equation [32-33] at the zeroth step: 

ℎ𝑖𝑖𝑛𝑛+1 =
2ℎ𝑖𝑖𝑛𝑛 + 𝑟𝑟(ℎ𝑖𝑖−1𝑝𝑝𝑝𝑝𝑟𝑟𝑝𝑝𝑛𝑛𝜕𝜕 + ℎ𝑖𝑖+1𝑝𝑝𝑝𝑝𝑟𝑟𝑝𝑝𝑛𝑛𝜕𝜕) + 𝜇𝜇 (ℎ𝑖𝑖−1𝑝𝑝𝑝𝑝𝑟𝑟𝑝𝑝𝑛𝑛𝜕𝜕 − ℎ𝑖𝑖+1𝑝𝑝𝑝𝑝𝑟𝑟𝑝𝑝𝑛𝑛𝜕𝜕)2 + 𝑘𝑘(𝑥𝑥, 𝑡𝑡𝑛𝑛 + ∆𝑡𝑡/2)∆𝑡𝑡

2(1 + 𝑟𝑟)
 (4.5) 

and at all other steps (denoted by 4.1 and 4.2 in Fig. 4.1.): 

ℎ𝑖𝑖𝑛𝑛+1 =
(1 − 𝑟𝑟)ℎ𝑖𝑖𝑛𝑛 + 𝑟𝑟(ℎ𝑖𝑖−1𝑝𝑝𝑝𝑝𝑟𝑟𝑝𝑝𝑛𝑛𝜕𝜕 + ℎ𝑖𝑖+1𝑝𝑝𝑝𝑝𝑟𝑟𝑝𝑝𝑛𝑛𝜕𝜕) + 𝜇𝜇 (ℎ𝑖𝑖−1𝑝𝑝𝑝𝑝𝑟𝑟𝑝𝑝𝑛𝑛𝜕𝜕 − ℎ𝑖𝑖+1𝑝𝑝𝑝𝑝𝑟𝑟𝑝𝑝𝑛𝑛𝜕𝜕)2 + 𝑘𝑘(𝑥𝑥, 𝑡𝑡𝑛𝑛 + ∆𝑡𝑡/2)∆𝑡𝑡

1 + 𝑟𝑟
 (4.6) 

except the last, which is a half time step thus the substitution ∆𝑡𝑡 → ∆𝑡𝑡
2� , 𝑟𝑟 → 𝑟𝑟

2� , 𝜇𝜇 → 𝜇𝜇
2�    must 

be performed in Eq. (4.6). We note that if µ =  0 and 𝑘𝑘 =  0 then one obtains back the original 
LH method’s form developed for the diffusion equation. One can see that due to the time–space 
structure, the LH method does not use any extra arrays for the temporary values of h, and that is 
why it has less memory requirement, and it can be slightly faster than the simplest FTCS method. 
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4.4. Comparison of different methods 

For all three methods, with the parameters given in Eq. (4.7), the simulations were performed 
and the results are presented in Fig. 4.2. 

𝜈𝜈 = 1,  𝜆𝜆 = 6,  𝑎𝑎 = 1,  𝑐𝑐 = 1 (4.7) 
 

 

Figure 4.2. Comparison of three different methods with various parameters in Eq. (4.7). The 
final time is 𝑡𝑡𝑓𝑓𝑖𝑖𝑛𝑛 = 1. 

 

One can see in Fig. 4.2 that the curves are indistinguishable, which means that each method 
is accurate. The (global) numerical difference is the absolute difference of the numerical solutions 
ℎ𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛 produced by the examined methods at final time 𝑡𝑡fin for the KPZ equation: the FTCS scheme, 
the Heun method and the LH method for 10−5 and 10−4 time step size. For brevity, we denote this 
latter case, the LH method with 10−4 time step size as LH*. 

In order to find an individual difference in the nodes or cells, we calculate the maximum and 
the average differences in the following ways: 

FTCS,Heun FTCS Heun FTCS,LH FTCS LH Heun,LH Heun LH
i i i i i ii i iD h h , D h h , D h h ,= − = − = −

 (4.8) 
Average differences (L1 errors) 

𝐿𝐿1
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹,𝐻𝐻𝑝𝑝𝑛𝑛𝑛𝑛 = ∑ 𝐷𝐷𝑖𝑖

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹,𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻

𝑁𝑁𝑥𝑥
,   𝐿𝐿1

𝐿𝐿𝐻𝐻,𝐿𝐿𝐻𝐻∗ = ∑ 𝐷𝐷𝑖𝑖
𝐿𝐿𝐻𝐻,𝐿𝐿𝐻𝐻∗

𝑁𝑁𝑥𝑥
,𝑖𝑖𝑖𝑖  etc. (4.9) 

Maximum differences (L∞ errors) 

𝐿𝐿∞
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹,𝐻𝐻𝑝𝑝𝑛𝑛𝑛𝑛 = max

𝑖𝑖
�𝐷𝐷𝑖𝑖

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹,𝐻𝐻𝑝𝑝𝑛𝑛𝑛𝑛� , 𝐿𝐿∞
𝐿𝐿𝐻𝐻,𝐿𝐿𝐻𝐻∗ = max

𝑖𝑖
�𝐷𝐷𝑖𝑖

𝐿𝐿𝐻𝐻,𝐿𝐿𝐻𝐻∗�,  etc. (4.10) 
In Tables 4.1 and 4.2, we show the average and the maximum differences of the methods, namely 
the FTCS, the Heun and the LH with two different time step sizes ∆𝑡𝑡. It is clear that due to 
enhanced stability, the LH method can be used with larger time step sizes for further investigation 
of the KPZ equation. 
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Table 4.1. Average difference without noise term. 

tfin 𝐿𝐿1
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹,𝐻𝐻𝑝𝑝𝑛𝑛𝑛𝑛 𝐿𝐿1

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹,𝐿𝐿𝐻𝐻 𝐿𝐿1
𝐻𝐻𝑝𝑝𝑛𝑛𝑛𝑛,𝐿𝐿𝐻𝐻 𝐿𝐿1

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹,𝐿𝐿𝐻𝐻∗ 𝐿𝐿1
𝐻𝐻𝑝𝑝𝑛𝑛𝑛𝑛,𝐿𝐿𝐻𝐻∗ 𝐿𝐿1

,𝐿𝐿𝐻𝐻,𝐿𝐿𝐻𝐻∗ 

0.1 3.48 ∙ 10−7 3.47 ∙ 10−7 2.70 ∙ 10−9 3.86 ∙ 10−4 3.88 ∙ 10−4 3.88 ∙ 10−4 

1 5.45 ∙ 10−7 5.42 ∙ 10−7 2.45 ∙ 10−9 4.30 ∙ 10−5 4.34 ∙ 10−5 4.34 ∙ 10−5 

10 3.20 ∙ 10−7 3.19 ∙ 10−7 1.10 ∙ 10−9 3.20 ∙ 10−7 8.38 ∙ 10−8 8.38 ∙ 10−8 

 

Table 4.2. Maximum difference without noise term. 

tfin max
𝑖𝑖
�𝐷𝐷𝑖𝑖

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹,𝐻𝐻𝑝𝑝𝑛𝑛𝑛𝑛  max
𝑖𝑖
�𝐷𝐷𝑖𝑖

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹,𝐿𝐿𝐻𝐻� max
𝑖𝑖
�𝐷𝐷𝑖𝑖

𝐻𝐻𝑝𝑝𝑛𝑛𝑛𝑛,𝐿𝐿𝐻𝐻� max
𝑖𝑖
�𝐷𝐷𝑖𝑖

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹,𝐿𝐿𝐻𝐻∗  max
𝑖𝑖
�𝐷𝐷𝑖𝑖

𝐻𝐻𝑝𝑝𝑛𝑛𝑛𝑛,𝐿𝐿𝐻𝐻∗  max
𝑖𝑖
�𝐷𝐷𝑖𝑖

𝐿𝐿𝐻𝐻,𝐿𝐿𝐻𝐻∗  

0.1 6.91 ∙ 10−7 6.93 ∙ 10−7 8.56 ∙ 10−9 6.66 ∙ 10−4 6.66 ∙ 10−4 6.66 ∙ 10−4 

1 1.32 ∙ 10−6 1.31 ∙ 10−6 6.57 ∙ 10−9 1.47 ∙ 10−4 1.48 ∙ 10−4 1.48 ∙ 10−4 

10 3.24 ∙ 10−7 3.23 ∙ 10−7 1.12 ∙ 10−9 4.66 ∙ 10−7 1.52 ∙ 10−7 1.51 ∙ 10−7 
In addition, the total running time of the tested algorithms is presented in Table 4.3. It is shown 

that in various time 𝑡𝑡, the method’s running time is different and the fastest is the leapfrog–
hopscotch method for any time length. It is slightly faster than the FTCs method with the same 
time step size, as we mentioned before. 

 

Table 4.3. Running time differences between the methods. 

Methods Running Time (s) 
𝑡𝑡𝑓𝑓𝑖𝑖𝑛𝑛 = 0.1 𝑡𝑡𝑓𝑓𝑖𝑖𝑛𝑛 = 1.0 𝑡𝑡𝑓𝑓𝑖𝑖𝑛𝑛 = 10.0 

FTCS method, ∆𝑡𝑡 = 10−5  0.3232 2.9663 28.6288 
Heun’s method, ∆𝑡𝑡 = 10−5 0.6573 6.2133 73.8652 
LH method, ∆𝑡𝑡 = 10−5 0.3135 2.5480 24.4324 
LH method, ∆𝑡𝑡 = 10−4 0.0825 0.3105 2.4560 

Note that when the time step size ∆𝑡𝑡 is larger than 10−5, the methods are unstable except for 
the LH method. This proves that our new method is not only the fastest, but also more stable even 
in larger time steps ∆𝑡𝑡. This numerical experiment demonstrated again that this new explicit 
method is very effective for the KPZ equation. We think that it will be very promising, especially 
in two or three space-dimensional numerical experiments since they include a large amount of the 
nodes or cells. 
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4.5. Impact of different parameter values (without noise term) 

In this section, we investigate the effect of different parameters, such as the coefficient 𝜈𝜈, 𝜆𝜆, 
a and 𝑡𝑡𝑓𝑓𝑖𝑖𝑛𝑛. When one of the parameters are changed, all other parameters are fixed: 𝜈𝜈 = 1,  𝜆𝜆 =
6,  𝑎𝑎 = 1 and different final time 𝑡𝑡𝑓𝑓𝑖𝑖𝑛𝑛. For the sake of verification, we still use not only the LH, 
but the FTCS and Heun’s methods as well. 

Figure 4.3 illustrates the solutions obtained with different methods for the linear diffusion 
parameter 𝜈𝜈. It is clear that increasing the strength of the diffusion decreases the waviness of the 
surface. We note that when 𝜈𝜈 = 6.0, the traditional methods (FTCS and Heun) are unstable, and 
they cannot be used even with this small-time step size. 

 

Figure 4.3. Numerical simulation of h for different diffusion coefficients υ with three methods. 

 

In Fig.4.4, we illustrate the behaviour as a function of the nonlinear term parameter 𝜆𝜆 for final 
time  𝑡𝑡𝑓𝑓𝑖𝑖𝑛𝑛 = 1. One can see that the function is shifting to higher levels when the coefficient of the 
nonlinear term 𝜆𝜆 is increasing and the waviness of the function decreases. 
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Figure 4.4. Numerical simulation of h for different nonlinear term coefficients λ with three 
methods. 

Here, we are interested in the effect of the time on the used methods. In Fig. 4.5, we present 
the numerical solution of the discretised KPZ equation for different final times. Therefore, we 
perform the simulation for three different final times 𝑡𝑡𝑓𝑓𝑖𝑖𝑛𝑛 = 0.1, 1.0  and 10 with the parameters 
given in Eq. (4.10). One can conclude that the waviness of the surface is decreasing as time elapses. 

Figure 4.5. Numerical simulation of the system different time t with various methods 

 

After examining each method with various parameters, we have more information on how the 
surface formation occurs. In the simulations, each increased parameter decreases the waviness of 
the function. However, as we mentioned above, if the linear term parameter has a higher value 
(𝜐𝜐 ≥ 6), then only the LH method is stable, while the FTCS and Heun’s methods are not stable.  
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5. SOLUTION METHODS APPLYING DIFFERENTIAL FINITE 
ELEMENT METHODS 

5.1. Width function  

The main attention of our work is the examination of the solutions to the KPZ equation in 1+1 
dimension and the mean surface width or interface roughness of the height profile defined by 

 
𝑊𝑊(𝐿𝐿, 𝑡𝑡) = �1

𝐿𝐿 ∫ [ℎ(𝑥𝑥, 𝑡𝑡) − 〈ℎ(𝐿𝐿, 𝑡𝑡)〉]2𝑎𝑎𝑥𝑥𝐿𝐿
0 , (5.1) 

where 〈ℎ(𝐿𝐿, 𝑡𝑡)〉 = ∫ ℎ(𝑥𝑥, 𝑡𝑡)𝑎𝑎𝑥𝑥/𝐿𝐿𝐿𝐿
0  denotes the mean height at time 𝑡𝑡. For finite 𝐿𝐿, this quantity 

shows the scaling behaviour of many growth processes introduced by Family and Vicsek [36] 

 𝑊𝑊(𝐿𝐿, 𝑡𝑡) = 𝐿𝐿𝛼𝛼𝑊𝑊 � 𝜕𝜕
𝐿𝐿𝑧𝑧
�, (5.2) 

with the dynamical exponent 𝑧𝑧 and the roughness exponent 𝛼𝛼. The scaling function has the limits 
W(𝑦𝑦) → 1 for 𝑦𝑦 →  ∞ and W(𝑦𝑦)~𝑦𝑦𝛽𝛽 for 𝑦𝑦 ≪ 1 as 𝑦𝑦 = 𝜕𝜕

𝐿𝐿𝑧𝑧
 The exponent 𝛽𝛽  called growth exponent 

is given by 𝛽𝛽 = 𝛼𝛼/𝑧𝑧. The saturation scales are as 𝐿𝐿𝑧𝑧, and the saturation width is proportional to 𝐿𝐿𝛼𝛼 
[10]. In 1+1 dimension, the KPZ equation holds 𝛼𝛼 = 1/2 and 𝑧𝑧 = 3/2, thus, verifying the general 
Galilean invariance scaling relation 𝛼𝛼 + 𝑧𝑧 = 2 [25]. The ratio of these values yields 𝛽𝛽 = 1/3.  

Initially, the authors [32] introduced spatial derivatives for the right-hand side of the KPZ 
equation (2.1). A discretized method was used that includes standard forward-backward 
differences for a cubic grid with a lattice constant ∆𝑥𝑥 

 
ℎ𝑖𝑖𝑛𝑛+1 = ℎ𝑖𝑖𝑛𝑛 +

∆𝑡𝑡
∆𝑥𝑥2

�𝜈𝜈(ℎ𝑖𝑖+1𝑛𝑛 + ℎ𝑖𝑖−1𝑛𝑛 − 2ℎ𝑖𝑖𝑛𝑛) +
𝜆𝜆
8

(ℎ𝑖𝑖+1𝑛𝑛 − ℎ𝑖𝑖−1𝑛𝑛 )2�

+ � 2𝐷𝐷
∆𝑥𝑥𝑝𝑝 √

12∆𝑡𝑡 𝜂𝜂𝑖𝑖𝑛𝑛. 
(5.3) 

The most accurate result was obtained for Eq. (5.3) using Euler’s method when 𝑎𝑎 = 1 or 𝑎𝑎 = 2. 
The results were similar and comparable to simulated results of another author [33]. However, for 
𝑎𝑎 = 3, the simulation showed the limitation of this method. Based on the previous simulation 
results, we apply for 𝑎𝑎 = 1 in the present numerical experiments. 

5.2. The numerical method applied for the KPZ equation in 1+1 dimension 

The topic of discussion is the KPZ growth in (1+1) dimensions with temporal correlation, 
followed by an examination of the scaling results. We review existing numerical results and 
compare them with our simulation results.  Furthermore, we perform several numerical simulations 
for different diffusion coefficients 𝜈𝜈, as well as for the nonlinear coefficient 𝜆𝜆 and for systems of 
larger size 𝐿𝐿 while fixing the other parameters. All numerical results are compared with the results 
of previous works [37-38]. For the simulations to analyze the effect of different coefficient, we 
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used a computer to analyze the effect of different coefficients, a MacBook Air 1,6 GHz Dual-Core 
Intel Core i5, 8 GB 2133 MHz LPDDR3 and the MATLAB R2019b software (The MathWorks, 
Inc., Portola Valley, CA, USA).  

The simulation shows that the discretized version of the temporal correlated KPZ equation in 
(1+1) dimension displays numerical divergence in the effective 𝜆𝜆 regime [39], making it 
impossible to observe the system's evolution past a certain time limit due to singular growth. In 
order to prevent numerical instability, the nonlinear term is replaced by an exponentially 
decreasing function, as proposed by Dasgupta et al. [21]  

 
𝑓𝑓(𝑥𝑥) ≡

1 − 𝑒𝑒−𝑟𝑟𝑥𝑥

𝑐𝑐
, (5.4) 

where 𝑐𝑐 is an adjustable parameter. Therefore, the temporal correlated KPZ equation in (1+1) 
dimension is modified and takes the following form  

 
ℎ𝑖𝑖𝑛𝑛+1 = ℎ𝑖𝑖𝑛𝑛 + 𝑣𝑣 ∆𝜕𝜕

(∆𝑥𝑥)2
[ℎ𝑖𝑖+1𝑛𝑛 − 2ℎ𝑖𝑖𝑛𝑛 + ℎ𝑖𝑖−1𝑛𝑛 ] + ∆𝑡𝑡 𝜆𝜆

2𝑟𝑟
�1 − 𝑒𝑒

−𝑟𝑟�
ℎ𝑖𝑖+1
𝐻𝐻 −ℎ𝑖𝑖−1

𝐻𝐻

2∆𝑥𝑥 �
2

� + 𝜂𝜂𝑖𝑖𝑛𝑛, 

𝜂𝜂𝑖𝑖𝑛𝑛 =  � 2𝐷𝐷
∆𝑥𝑥𝑑𝑑 √12∆𝑡𝑡 ∙ 𝑅𝑅(𝑡𝑡). 

 

(5.5) 

In Eq. (5.6), 𝑅𝑅(𝑡𝑡) is a random number  from a uniform distribution in the interval 
[−1.0, +1.0]. In our further investigations, 𝑐𝑐 =  0.1, 𝑎𝑎 = 1 and the spatial and temporal steps are 
∆𝑥𝑥 = 1 and ∆𝑡𝑡 = 10−3, respectively. Our initial work started from flat interface at 𝑡𝑡 = 0 with 
periodic boundary conditions that were used in our previous paper for different discretized 
methods.  

We use random numbers in our simulations that vary between 𝑎𝑎 = −1.0 and 𝑏𝑏 = 1.0, and 

 𝑅𝑅(𝑡𝑡) = 𝑎𝑎 + (𝑏𝑏 − 𝑎𝑎) ∙ 𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎(∆𝑡𝑡,∆𝑥𝑥), (5.6) 
where 𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡1, 𝑥𝑥1) returns a t1 by x1 array of random numbers where 𝑡𝑡1, . . . , 𝑥𝑥1 indicate the size 
of each dimension. 

5.3. The impact of a and b on the surface growth 

First, we investigate the morphology of the solutions to (5.5) when different lower and upper 
limits are applied in 𝑅𝑅(𝑡𝑡) in the noise term. The noise term values are random with different 
integers 𝑎𝑎 and 𝑏𝑏. 

 ∆𝑥𝑥 = 1,   ∆𝑡𝑡 = 10−3,   𝜆𝜆 = 1,   𝜈𝜈 = 0.01,   𝐿𝐿 = 1128,   𝑐𝑐 = 0.1, 𝐷𝐷 = 1, 𝑡𝑡 =
100 𝑠𝑠.  (5.7) 
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For different a and b, Fig. 5.1 shows the implementations for random numbers in the noise term 
for Eq. (5.5) with parameters fixed in (5.7). When the values of 𝑎𝑎 are -0.5 or -1 and for 𝑏𝑏 is 0.5 or 
1, it can be seen that the height of the surface ℎ(𝑥𝑥, 𝑡𝑡) formation is very high, reaching 4020. 
However, it is obvious from Fig. 5.1 that increasing the values of a and b also increases the surface 
roughness. For 𝑎𝑎 =0 and 𝑏𝑏=0.5, we obtained the smallest roughness and for 𝑎𝑎 =-1, 𝑏𝑏 =1, the 
roughest surface structure. We note that the application of different parameters of 𝑎𝑎 and 𝑏𝑏 has an 
effect on the surface height and it can cause sudden increase of  ℎ(𝑥𝑥, 𝑡𝑡).  Fortunately, the use of 
the equal 𝑎𝑎 and 𝑏𝑏 values show relatively similar surface formation height ℎ(𝑥𝑥, 𝑡𝑡) as in other former 
research papers. 

 

Figure 5.1. The plots of the solutions to the KPZ equation in (1+1) dimension at a growth time 
𝑡𝑡 =  100 with parameters fixed in (5.7), 𝜆𝜆 = 1, and random numbers in the noise term that 

oscillate between 𝑎𝑎 ∈ [−1.0, 0], 𝑏𝑏 ∈ [0.5, 1]. 

 

In the Fig. 5.2, the surface width 𝑊𝑊(𝑡𝑡) is plotted using the Eq. (5.7) and different pairs of a 
and b in the noise term. It shows that an increase of  for |𝑎𝑎| and 𝑏𝑏, increases the surface width 
function as does the surface roughness. 
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Figure 5.2. Log-log plot of the surface width  𝑊𝑊(𝑡𝑡) for parameters fixed in (5.7),  𝑡𝑡 =  100 and 
the random numbers in the noise term that oscillate between 𝑎𝑎 ∈ [−1.0, 0], 𝑏𝑏 ∈ [0.5, 1]. 

5.4. The impact of 𝝂𝝂 and 𝝀𝝀 

The Kardar-Parisi-Zhang (KPZ) equation is a mathematical model that describes the behavior 
of randomly growing surfaces. The equation involves several parameters, including the roughness 
exponent (𝜈𝜈) and the growth exponent (𝜆𝜆). 

Overall, the values of 𝜈𝜈 and 𝜆𝜆 in real experiments depend on the specific physical system 
being studied and the experimental conditions. The KPZ equation has been found to be a useful 
tool for describing the behavior of growing surfaces in a wide range of systems, and further studies 
are needed to better understand the relationship between the KPZ parameters and the behavior of 
different physical systems. 

In this section, various smoothing 𝜈𝜈 and nonlinear 𝜆𝜆 parameters are investigated to show how 
they affect on the surface morphology. The simulation results are shown for the Eq. (5.5) with 
following fixed parameters  

 ∆𝑥𝑥 = 1,   ∆𝑡𝑡 = 10−3,   𝐿𝐿 = 1128,   𝑐𝑐 = 0.1,   𝑡𝑡 = 100 𝑠𝑠. (5.8) 
First, the interface profiles are plotted for the KPZ equation with different smoothening 

parameters 𝜈𝜈. Figure 5.3 shows the various interface profiles for 𝜆𝜆 = 1 and  𝜈𝜈 =
0.01, 0.1, 0.5, 1, 2, 5, 10. Figure 5.3 shows that the height of the interface profile decreases as the 
value of 𝜈𝜈 decreases. If the smoothening parameter 𝜈𝜈 is equal to 0.01, the height of surface 
roughness vibrating between ℎ(𝑥𝑥, 𝑡𝑡)  =  5500 …   5700 indicated in red  in the figure. The least 
influenced height of the surface profile is shown in light blue (𝜈𝜈 = 10), which is below ℎ(𝑥𝑥, 𝑡𝑡)  =
 5100 and the smoothest compared to all other smaller parameters.  
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Figure 5.3. The shape of the KPZ equation in (1+1) dimension at the time of growth is studied 
𝑡𝑡 =  100, 𝜆𝜆 = 1 and fixed parameters (5.8) for various parameters of 

𝜈𝜈 (0.01, 0.1, 0.5, 1, 2, 5, 10). 

 

The surface width function is presented on a log-log graph in Fig 5.4. Here, we fixed all the 
parameters as in (5.8) and keep changing the value of smoothening term 𝜈𝜈 from 0.01 to 10. 
Initially, each simulated result starts from the same point but during the time 𝑡𝑡 they behave 
differently according to variety of the parameter 𝜈𝜈. In the Fig. 5.4, the red line shows the highest 
width 𝑊𝑊(𝑡𝑡) in 𝜈𝜈 = 0.01 that presents slightly curved line in the end. At the same time, it can be 
seen that increase of parameter 𝜈𝜈 decreases the width 𝑊𝑊(𝑡𝑡). However, the roughness of the lines 
is different that it is smoothy 𝜈𝜈 = 0.01 and rough 𝜈𝜈 = 10, respectively. Figure 4 also indicates that 

the slope of the function 𝑊𝑊(𝑡𝑡) agrees well with 𝑡𝑡
1
3 in the literature.  

h(
x,

t) 
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Figure 5.4. Log-log plot of the surface width 𝑊𝑊(𝑡𝑡) for fixed parameters (5.8), 𝜆𝜆 = 1 and 𝑡𝑡 =
 100. The parameter  𝜈𝜈 is between 0.01 and 10.0. 

Figure 5.5 exhibits the plots of height ℎ(𝑥𝑥) for various parameters 𝜆𝜆 of the nonlinear term 
ranging from 0.01 to 10. All the results obtained are obtained with a fixed smoothing parameter 
ν=0.01. Note that when ν is larger than 0.01, anomalous surface formation appears for different 
values of λ. However, the other fixed parameters were given in (5.8). When λ and ν are chosen to 
be equal, i.e., 0.01, the height of the interface profile h(x) is the lowest, as shown in Fig. 5.5 . The 
height of the interface profile ℎ(𝑥𝑥) is uniformly oscillating. However, as the value of the nonlinear 
term λ increases, the surface roughness also increases and reaches the maximum value ℎ(𝑥𝑥) =
1.2 ∙ 104 for λ=10. 

 

Figure 5.5. The shape of the KPZ equation in (1+1) dimension at the time of growth is studied 
𝑡𝑡 =  100, ν=0.01 and parameters in (7.8) for parameters of 𝜆𝜆 = 0.01, 0.1, 0.5, 1, 2, 5, 10. 
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Fig. 5.6 presents log-log plot of the surface width 𝑊𝑊(𝑡𝑡) for fixed values of Eq. (5.8) and 
ν=0.01. It is similar to the Fig. 5.4 that initial point of all simulated results is started from the same 
points and increase till the certain time 𝑡𝑡. When the values of 𝜆𝜆 and 𝜈𝜈 are close/the same to each 
other, the interface width 𝑊𝑊(𝑡𝑡) is resemble too. However, increasing the value of nonlinear term 
𝜆𝜆, increase the interface width 𝑊𝑊(𝑡𝑡). It is obvious from the Fig. 5.6 that the highest curved and 
light blue (malibu) colored line represents the highest value of 𝜆𝜆 that equals to 10. Figure 5.6 also 

indicates that the slope of the function 𝑊𝑊(𝑡𝑡) agrees well with 𝑡𝑡
1
3 in the literature. 

 

Figure 5.6. Log-log plot of the surface width  𝑊𝑊(𝑡𝑡) for parameters (5.8), time 𝑡𝑡 =  100  and 
ν=0.01. The parameter of 𝜆𝜆 is between 0.01 and 10.0. 

 

5.5. The impact of  𝒕𝒕 on the slope of 𝑾𝑾(𝒕𝒕) 

To examine and compare the slope of the function 𝑊𝑊(𝑡𝑡), three different time periods 𝑡𝑡 = 10, 
100 and 500 are chosen. All the parameters in (5.8) are fixed except for the time and the value of 
the smoothing term ν. The Fig. 5.7 shows the slope results relation to the different values of the 
smoothing term ν, that is from 0.01, 0.05, 0.1, 0.5 …  to 10. As it is presented in Fig. 5.7, the 
highest slope value that above 0.6 is obtained when the time was 𝑡𝑡 = 10 for 𝜈𝜈 = 0.01. It is shown 
by the blue line with circle. However, the values of slope significantly decreased till 𝜈𝜈 = 2 then it 
continued decreasing smoothly. Consequently, the second highest slope is obtained when the time 
was 𝑡𝑡 = 100 with the slope value between 0.55 and 0.6 and it is represented by the red starred line 
in the figure. Similarly, the above-mentioned behavior happened here too but it should be noted 
that slope values  are higher for 𝑡𝑡 = 100 than 𝑡𝑡 = 10. Interestingly, the longest time that was 𝑡𝑡 = 
500 showed fluctuated result between 0.35 and 0.5 for along the 𝜈𝜈 values. It is illustrated by black 
line and “×”     

Our examination of the slope of 𝑊𝑊(𝑡𝑡) shows that as 𝑡𝑡 increases, the numerical results come 
closer and closer to the theoretical value of 1/3. For small 𝑡𝑡 the slope is less than 1/3. 
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Figure 5.7. The width function’s slope for the values of 𝜈𝜈 =  (0.01, 0.05, 0.1, 0.5 …  10) 𝑡𝑡 =
10, 100, 500 for the fixed 𝜆𝜆 = 1. All other parameters are given in (5.8). 

In Fig. 5.8, the slope of 𝑊𝑊(𝑡𝑡) is plotted for different nonlinear term values 
𝜆𝜆 (0.01, 0.05, 0.1, 0.5 …  10) and time lengths 𝑡𝑡 =  10, 100 and 500. It is shown that the highest 
slope belongs to the smallest time 𝑡𝑡 =  10. It starts at 0.45 and increases significantly to 1.2 then 
levels off. Figure 5.8 shows that the near-constant slope decreases with increasing time 𝑡𝑡.  

 

Figure 5.8. The width function’s slope for different values of 𝜆𝜆 (0.01, 0.05, 0.1, 0.5 …  10) in 
various time length 𝑡𝑡 = 10, 100, 500 for the fixed 𝜈𝜈 = 0.01. All other used parameters are given 

in the Eq. (5.8). 

5.6. The impact of 𝑳𝑳 

Figure 5.9 shows the data obtained for different sizes of 𝐿𝐿 lengths between 128 and 1024. 
These were obtained with a simulation run time of 𝑡𝑡 =  104, 𝜆𝜆 = 1, 𝜈𝜈 = 1. In all cases we started 
with a flat surface at 𝑡𝑡 = 0. The data obtained for the (1+1)-dimensional KPZ equation confirm the 
Vicsek and Family scaling (5.2) for systems of different 𝐿𝐿 sizes.  
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Figure 5.9. The log-log plot of width function in different linear system sizes L between 128 and 
1024. Here, fixed parameters are: ∆𝑥𝑥 = 1,∆𝑡𝑡 = 10−2, 𝜆𝜆 = 1, 𝜈𝜈 = 1, 𝑐𝑐 = 0.1, 𝑡𝑡 = 104 𝑠𝑠𝑒𝑒𝑐𝑐.  The 

dashed line shows a power-low with exponent 1/3. 

 

Figure 5.9 shows that the different linear system size 𝐿𝐿 affects the slope of the width function. 
We started our numerical simulation with a system size of 𝐿𝐿 = 1024, which is indicated in brown. 
The initial point of the line increases steadily, but after a certain time 𝑡𝑡 oscillation started. When 
we reduce the system size 𝐿𝐿 to 128, denoted by red, the oscillation starts early and the magnitude 
of the oscillation is at its maximum. 

The impact of the random values in the noise term, the two parameters, 𝑎𝑎 and 𝑏𝑏, on the surface 
growth of the 1+1 dimensional KPZ equation described by Eq. (5.6) in the presence of noise with 
different lower and upper limits in 𝑅𝑅(𝑡𝑡) is investigated. The results, shown in Figs. 5.1 and 5.2, 
demonstrate that increasing the values of 𝑎𝑎 and 𝑏𝑏 increases the surface roughness, and that the use 
of equal values of 𝑎𝑎 and 𝑏𝑏 results in relatively similar surface formation heights as compared to 
results of other researchers.  

Moreover, the slope of the width function 𝑊𝑊(𝑡𝑡) is analyzed using simulations at different 
values of time (𝑡𝑡 = 10, 100, and 500), smoothing term (𝜈𝜈), and nonlinear term (𝜆𝜆). The results 
indicate that as 𝑡𝑡 increases, the numerical results of the slope of 𝑊𝑊(𝑡𝑡) approximates well the 
theoretical value  1/3 which confirms the Vicsek and Family scaling. Figures 5.7 and 5.8 show 
the relationship between different time lengths and smoothing/nonlinear term values and their 
effect on the slope of 𝑊𝑊(𝑡𝑡). The effect of different linear system sizes (𝐿𝐿) on the slope of the width 
function is given. The simulation shows that as 𝐿𝐿 decreases, the oscillation starts earlier and is 
more pronounced. 
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6. NEW SCIENTIFIC RESULTS – THESES 

T1. I analyzed the numerical solutions to the one-dimensional KPZ equation using MATLAB with 

various initial condition amplitudes 𝑎𝑎 and noise terms. The results showed that noise terms 

produced similar surface shapes regardless of the initial condition amplitude, and the presence of 

Gaussian noise is not observable at high initial conditions amplitude.  

I investigated three power-law-type noises 𝑤𝑤𝑛𝑛 with exponents of −1, 0, 1, called pink, white and 

blue noise respectively  including Gaussian and Lorentzian noises. In order to observe and better 

understand certain physical phenomena, I used the data obtained from these experiments and 

validated a mathematical model. Decreasing initial condition amplitude and noise term strength 

for the KPZ equation resulted smoother surface structure [S1, S2, S3].  

 

T2. I examined KPZ equation in one spatial dimension using the leapfrog–hopscotch (LH), standard 

forward time centered space (FTCS) scheme and the Heun methods. All methods are verified with 

analytical solution from at 𝑡𝑡 =  1 as the initial condition and the Dirichlet boundary conditions.  I 

showed that the average and the maximum differences of the methods, namely the FTCS, the Heun 

and the LH with two different time step sizes ∆𝑡𝑡. I found that FTCS and the Heun’s methods are 

usually unstable above ∆𝑡𝑡 =  2 ×  10−5 (the concrete threshold for stability depends on the 

parameters such as 𝜈𝜈, 𝜆𝜆, 𝑎𝑎 and ∆𝑡𝑡), while the LH method was stable in all numerical experiments. 

It can be unstable only if the nonlinear term 𝜆𝜆 are much higher than the linear coefficient 𝜈𝜈 and 

there are spike-like pillars or grooves. Therefore, even if the LH method is not unconditionally 

stable for the KPZ equation, it is obvious that it has much better stability properties than the 

conventional explicit methods [S4].  

 

T3. I compared the impact of Gaussian and Brownian noises for the solutions of KPZ equation for 

various coefficients such as: 𝜈𝜈, 𝜆𝜆, 𝑎𝑎 and 𝑡𝑡. I simulated two different noise terms with different 

parameters like linear, nonlinear and noise term amplitude. The effect of each applied parameter 

presented and discussed below:   
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When the noise term amplitude is set to 𝑎𝑎 =  1, the Brownian noise term has a greater effect than 

the Gaussian noise term.  

• Increasing the simulation time 𝑡𝑡𝑓𝑓𝑖𝑖𝑛𝑛 from 1 to 10 showed that the effect of the Brownian 

noise term remains stronger than the Gaussian noise term, even at higher noise amplitudes.  

• I also examined the impact of parameters 𝜈𝜈 and λ on the method. When the diffusion term's 

value is high at 𝜈𝜈 = 3.0 and the nonlinear term has a low value at λ = 0.1 the surface shape 

closely resembles a sine wave.  

• The Brownian noise term is affected by the increased linear term parameter 𝜈𝜈, while the 

Gaussian noise term remains unchanged [S4].  

 

T4. I discussed and numerically simulated the growth height of the KPZ equation using numerical 

method proposed by Dasgupta et al. [16]. I used random numbers 𝑅𝑅(𝑡𝑡) as a noise term that vary 

between 𝑎𝑎 = −1.0 and 𝑏𝑏 = 1.0. I found out that increasing the values of 𝑎𝑎 and 𝑏𝑏 increases the 

surface roughness. Consequently, the equal values of 𝑎𝑎 and 𝑏𝑏 results in relatively similar surface 

formation heights comparing to other researchers. In addition, I compared and investigated impacts 

of linear, nonlinear term parameters and different time to the height of the function. I got that 

increase of 𝜈𝜈 decreases oscillation level but increase the height of the function. In contrast, 𝜆𝜆 =

0.01 … 10.0 and time 𝑡𝑡 = 1.0 … 10.0 increase the surface roughness [S6].  

 

T5. I investigated impacts of 𝜈𝜈 linear, 𝜆𝜆 nonlinear parameters and time 𝑡𝑡 to the surface width 𝑊𝑊(𝑡𝑡). I 

got that increase of 𝜈𝜈 that decrease surface width but oscillation level rised. The impact of  𝑡𝑡 on 

the slope of the surface width 𝑊𝑊(𝑡𝑡) for 𝜈𝜈 and 𝜆𝜆 =  (0.01, 0.05, 0.1, 0.5 …  10) simulated and 

calculated. The numerical results of the slope of surface width 𝑊𝑊(𝑡𝑡) approximates well to the 

theoretical value  1/3 which confirms the Vicsek and Family scaling for systems of different sizes. 

We showed the relationship between different time lengths and smoothing/nonlinear term values 

and their effect on the surface slope of 𝑊𝑊(𝑡𝑡). The effect of different linear system sizes (𝐿𝐿) on the 

slope of the surface width function is given. The simulation shows that as 𝐿𝐿 decreases, the 

oscillation starts earlier and is more pronounced [S6]. 
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