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1. INTRODUCTION 

1.1. The Application and the Importance of Heat Conduction 

In many areas of engineering, the study of mass and heat transfer is of fundamental importance. 

Understanding the physical principles underlying the different heat transfer modes is crucial for 

engineers, as is being able to calculate the amount of energy transported per unit time using the 

rate equations [1]. To enhance the efficiency of the equipment like condensers, boilers, 

economizers in a thermal power plant and air pre-heaters, a mechanical engineer may be interested 

in understanding the mechanisms of heat transfer involved in their operations. Due to the 

importance of safe operation in their design, nuclear power facilities require accurate information 

on heat transfer. Systems for refrigeration and air conditioning also include heat-exchanging 

components, which require careful design. Electrical engineers are concerned about preventing 

material damage to electric motors, generators, and transformers caused by hot spots created by 

incorrect heat transfer design. An electronic engineer is interested in effective ways to remove heat 

from chips and semi-conductor devices so that they can operate at temperatures that are safe. 

Considering how rapidly computing devices are becoming smaller, a computer hardware engineer 

is interested in the cooling needs of circuit-boards. In the field of chemical engineering, researchers 

are interested in the process of heat and mass transfer in different chemical reactions. The rate of 

heat transfer necessary for a certain treatment method is a point of interest to a metallurgical 

engineer. For example, the rate of cooling during the casting process has a significant impact on 

the quality of the final product. The rate of heat transfer in the heat shields used in re-entry vehicles 

and in rocket nozzles is of interest to aeronautical engineers. Food processing, grain drying, and 

preservation are all of interest to an agricultural engineer. A civil engineer is aware of the effect 

of the heat transfer on buildings and the thermal stresses developed in structures. A concern of an 

environmental engineer is the influence of heat on the dispersion of pollutants in the air, their 

transport through soils, lakes, and oceans, and their effects on life. A bioengineer is generally 

concerned with the heat and mass transfer mechanisms that occur within the human body, 

including hypothermia and hyperthermia [2], [3]. 
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The applications of heat and mass transfer outlined above are only a few examples. The 

principal factors for existence of life on Earth are the solar system and the related energy transfer 

from the sun. It is true to say that it is very difficult, if not impossible, to completely avoid heat 

transfer in any process taking place on Earth.  

Many critical problems that arise in many engineering equipment can be solved effectively and 

economically by analysing the mechanisms of the heat and mass transfer. We may take the 

development of heat pipes as an example. These pipes can transport heat at a rate that is 

significantly higher than that of copper or silver rods of the same diameters, even at roughly 

isothermal conditions. Minimizing heat gain in the summer and heat loss in the winter is the 

foundation of energy-efficient house design. By designing efficient cooling systems, it is possible 

to develop modern gas turbine blades where the gas temperature is higher than the melting point 

of the blade material. We show another example of a successful heat transfer design. The design 

of computer chips, which experience heat flux similar to that seen in re-entry vehicles, is once 

again a success story in heat transfer design, particularly when the surface temperature of the chips 

is constrained to less than 100 ℃ [3], [4] .  

Although there are many successful heat transfer designs, further developments on heat and 

mass transfer studies are necessary in order to increase the life span and efficiency of the many 

devices discussed previously, which can lead to many more new inventions. Even though there are 

many efficient heat-transfer designs, more work has to be done on heat and mass transfer research 

to increase the lifespan and efficiency of the devices we have already covered and maybe inspire 

the development of new technologies [3]. 

 

1.2. Governing Differential Equation of Heat Conduction 

The differential control volume is defined in Figure 1.1 for the Cartesian coordinate system. 

The corresponding volume and mass of the differential control volume are defined, respectively, 

as 

 and ,dv dxdydz dm dxdydz= =  (1.1) 

where   is the mass density ( )3

kg
m

 of the control volume. The differential approach will assume 

a continuum such that all properties do not change microscopically. Neglecting any changes in the 

kineticand potential energy of the control volume, and applying the above assumptions, 

conservation of energy can be expressed as follows 
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Net rate of Rate of Rate of

heat transfer by + energy = change of .

conduction generation internal energy

     
     
     
     
     

 

The rate of change of internal energy within the control volume is 
T

c dxdydz
t





 [5]. The 

expression of conservation of energy can be written mathematically as follows 

 ,gen

T
Q E c dxdydz

t
  


+ =


 (1.2) 

 

Figure 1.1. Differential control volume for derivation of the heat conduction in cartesian 

coordinate. 

where ( )WgenE  represents the rate of energy generation within the control volume, and 

( )WQ  represents the net rate of transfer into the control volume due to the conduction, with 

positive Q   representing heat transfer into the system. 

The net rate of heat transfer in and out of the control volume, the first term in Eq. (1.2), is given 

as follows 

 ( ) ( ) ( ) ,x x dx y y dy z z dzQ q q q q q q + + += − + − + −  (1.3) 

where the heat fluxes terms entering the control volume can be calculated using Fourier’s law 

 where ,x x x

T
q kA A dydz

x


= − =


 (1.4) 

 where ,y y y

T
q kA A dxdz

y


= − =


 (1.5) 
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 where .z z z

T
q kA A dxdy

z


= − =


 (1.6) 

The heat fluxes exiting the control volume can be calculated using Taylor series. Neglecting 

Higher-order terms, for x  direction the term can be written as follows 

 .x
x dx x x x

q T T
q q dx kA kA dx

x x x x
+

    
= + = − + − 

    
 (1.7) 

Using Eqs. (1.4) and (1.7), the net rate of heat transfer in x  direction can be written 

 .x x dx

T
q q k dxdydz

x x
+

  
− =  

  
 (1.8) 

In similar way, the net heat transfer in x  and y  directions can be calculated 

 ,y y dy

T
q q k dxdydz

y y
+

  
− =  

  
 (1.9) 

 .z z dz

T
q q k dxdydz

z z
+

  
− =  

  
 (1.10) 

We substitute Eqs. (1.8), (1.9), and (1.10) into Eq. (1.3) to get 

 ( ) ( ) ( ).x x dx y y dy z z dzQ q q q q q q + + += − + − + −  (1.11) 

The rate of energy generation within the control volume can be calculated considering the 

volumetric rate of internal energy generation ( )3
W

m
g   

 .genE gdxdydz =  (1.12) 

Eqs. (1.11) and (1.12) can be introduced into Eq. (1.2) in order to provide the general heat equation 

 .
T T T T

c k k k g
t x x y y z z


          

= + + +    
          

 (1.13) 

Using vector notation, the previous equation can be expressed [6], [7] 

 ( ) ,
T

c k T g
t




=   +


 (1.14) 

where   is the differential vector operator, i j k
x y z

      
 = + +    

      
. 

If the thermal conductivity is constant, Eq. (1.14) can be reduced to the form 

 21
,

T g
T

t k


= +


 (1.15) 
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where 
k

c



=  is the thermal diffusivity of the medium. 

The principle statement of the heat equation is that in the presence of different temperatures, 

heat flows occur, which finally lead to a temperature equalization. The analogous situation is also 

found with concentration differences in substances. Due to such concentration differences, mass 

flows occur, which lead to an equalization of the concentrations. So, under more general 

circumstances, Eq. (1.14) can be written in the general form 

 ( ) ,
u

c k u c q
t

 


=  +


 (1.16) 

where ( ) ( )3: ;u r ,t u r ,t , ( ) ( )00u r ,t u r= =  and ( )q q r ,t= , while ( )c c r ,t= , 

( )r ,t =  ,  and ( )k k r ,t=  are known nonnegative functions. In case of diffusive mass transfer, 

( )u u x,t=  or ( )u u r ,t=  is the concentration of the particles. In case of heat conduction, u refers 

to the temperature, / ( )k c =  is the thermal diffusivity of the medium, ,k ,  and c  are the heat 

conductivity, the specific heat, and the mass density, while q  is the intensity of the heat sources 

(due to electric currents, electromagnetic radiation, etc.), respectively. Here, we must emphasize 

that the term 3
W

m
g  
   in Eq. (1.14) is not equivalent to the term K

sq     in Eq. (1.16). 

The generalizations of the diffusion equation, such as the advection-diffusion-reaction equation 

can model mass transport in different fields of science such as biology, chemistry, and physics. 

For example, the proteins in embryos [8], the atoms in carbon nanotubes [9], and the charge 

carriers in semiconductors [10]. Moreover, very similar equations or system of equations have 

been used to model the fluid flow through porous media, such as ground water, crude oil in 

underground reservoirs [11], and the moisture [12]. 

 

1.3. Numerical Methods for Solving Heat Conduction Equation 

The analytical solutions for the heat conduction equation are available usually when the 

problems are highly simplified in simple geometry. Not only the geometry but also the boundary 

and initial conditions can make the analytical solution impossible [4]. different numerical methods 

have been used to solve the heat conduction problems. Some of these methods were applied before 

the development of the powerful digital computers, and as a result they are no longer necessary. 

Since the development of powerful computers, the finite difference method (FDM) and the finite 

element method (FEM) have been the two numerical approaches which have received the most 

success and popularity [7].  

Variety of finite difference methods have been developed and applied to solve the PDEs, such 

as the heat conduction equation and its generalization, for example, the explicit method, the fully 

implicit method, and the ADI method [13]–[15]. One of the most common approaches to solve the 
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PDEs numerically is to discretize the spatial variable which converts the PDEs into a system of 

ODEs. After that we can solve the system of ODEs at each time level [16]. Nevertheless, most of 

these methods are tested and evaluated under conditions where the coefficients in the equations, 

such as the diffusivity α, are independent of the space variable. However, there are systems in real 

applications where the physical properties of material can be drastically different at adjacent 

points, for instance in a microprocessor. As a result, the coefficients and, consequently, the 

eigenvalues of the matrix system can have a range of several order of magnitude so the problem 

can be extremely stiff.  

The traditional explicit methods, either Adams-Bashforth or Runge-Kutta types, are 

conditionally stable, very small time-step sizes must be applied regardless of the measurement 

errors of the input data and the requirements on the accuracy of the output. It implies that the 

solution blows up if the time-step size exceeds the threshold number, or what is known as the CFL 

limit. Even the professional commercial adaptive time-step size solvers such as ode23 and ode45 

of MATLAB can experience instability when the tolerance is not so small [17]. 

On the other hand, implicit methods offer much better stability properties, and this why they 

are widely applied to solve these equations.[18]–[20]. For example, in his work [21] Mascagni 

applied the backward Euler method to the Hodgkin-Huxley equations. Manaa and Sabawi studied 

and compared the explicit Euler and implicit Crank-Nicolson methods when they are applied to 

Huxley equation. They found that the explicit Euler method was faster, but less stable and accurate 

than Crank-Nicolson [22]. Coupled hydrodynamics and nonlinear heat conduction problems were 

solved numerically by Kadioglu and Knoll by treating the heat equation implicitly and the 

hydrodynamics explicitly [23]. They mentioned that this technique, the so called IMEX, is typical 

for solving such kind of problems. Another example is in the field of reservoir-simulation, where 

the pressure equation is treated implicitly, and saturation equation is treated explicitly [24]. 

However, Lee and Tene used a fully implicit method to solve the problem of reservoir-simulation 

[25]. 

The most significant problem with implicit method is that each time step requires the solution 

of a system of algebraic equations, which cannot simply be parallelized. In case of one-

dimensional system where the matrix is tridiagonal and the number of nodes is small, the numerical 

computation can be fast, and it is hard to beat the implicit method. In contrast, the numerical 

computations can be time-consuming when we use the implicit method to solve mor complicated 

systems, such as reservoir-simulation with one trillion cells. However, there is an increasing trend 

towards parallelism in the recent years [26], [27], which can be considered as an advantage for the 

explicit methods. 

The second problem with most implicit or explicit methods is that they can lead to qualitatively 

unacceptable solutions, such as unphysical oscillations or negative values of the otherwise non-

negative variables. These variables can be concentrations, densities, or temperatures measured in 

Kelvin, and the numerical methods should preserve their positivity. To overcome this problem, 

Chen-Charpentier and others developed and investigated the fully explicit and unconditionally 
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positivity preserving finite difference (UPFD) scheme in order to solve advection-diffusion 

reaction equations [28]–[30]. After that Kolev treated a model of cancer migration and invasion. 

That model consists of an ordinary differential equation and two partial differential equations with 

diffusion terms. They discretized the ordinary equation and one of the partial differential equations 

using implicit scheme, while the other partial differential equation was solved by an explicit 

scheme which is similar to (UPDF) scheme [31]. However, their method, as well as the original 

UPFD scheme, has only first order temporal accuracy. Another positivity preserving scheme was 

developed by Chertock and Kurganov to solve a system of advection-reaction-diffusion equations 

which describes chemotaxis model. However, their method is positivity preserving only if the time 

step size does not exceed the CFL limit [32]. 

There exist unconditionally stable explicit methods in the case of linear heat equation. For 

instance, the odd-even hopscotch algorithm [33], [34] and the Alternating Direction Explicit 

(ADE) scheme  [35] both have second order temporal accuracy. 

In my research, I worked with my supervisor on improving and investigating families of 

conventional and novel explicit methods for solving linear and nonlinear diffusion equation based 

on fundamentally new way of thinking. In some cases, the improved methods are proven to be 

unconditionally stable, positivity preserving. Those schemes are applied to extremely stiff and 

inhomogeneous systems. Also, some adaptive time step controllers are constructed and 

investigated. 

1.4. Outline of the Thesis 

In Chapter 2, the fully explicit discretization for the spatial variables is illustrated. The novel 

explicit method, constant neighbour CNe the linear neighbour  LNe3 methods, are also discussed 

in this chapter. In Chapter 3, novel odd-even hopscotch-type numerical schemes are introduced. 

Systematic numerical experiments are conducted to investigate the performance of those methods. 

In Chapter 4,  families of adaptive time-step controllers are proposed to solve the heat conduction 

equation. The performance of the I-type controllers and the PI-type controllers is investigated. In 

Chapter 5, adaptive controllers of type I are suggested to solve the time-dependent diffusion 

equation in one dimension, where the diffusion coefficient itself depends simultaneously on space 

and time. 
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2. EXPLICIT DISCRETIZATION AND EXPLICIT METHODS 

In this chapter I will introduce a fully explicit discretization for the space variables in the 

diffusion equation which converts the PDE into a system of ODEs. Later, the methods we construct 

will be applied to the resulted system of ODEs. Also, I will illustrate briefly in this chapter some 

conventional and novel methods which are the cornerstone of all the schemes I will construct in 

subsequent chapters.  

 

2.1. A Fully Explicit Discretization 

The second order linear parabolic partial diffusion equation, or the so-called heat can be written 

as follows 

 2 ,
u

u q
t




=  +


 (2.1) 

Where u is the temperature (the concentration in case of diffusion-equation), / ( ) 0k c =   is the 

thermal diffusivity, q, k, c, and ρ are the intensity of heat sources (chemical reactions, radioactive 

decay, radiation,  etc.), heat conductivity, specific heat and (mass) density, respectively.   

To solve the heat equation numerically, the most common starting step is the same as in the 

standard method of lines. The most typical finite difference scheme to discretize the space variable 

is the second order central difference formula [36] 

 
2

2

i+1 j i j i-1 j i j

i j

( , ) ( , ) ( , ) ( , )

( , ) .

f x t f x t f x t f x t

x xf x t
xx

− −
+

  


 (2.2) 

The author in [37] presented the discretization more generally than traditional numerical 

analysis textbooks often did, for example, he did not consider , ,k c  and   as spatially uniform, 

because the discretization must represent the material properties of the real-life systems. In other 

words, instead of treating Eq. (2.1) he treated the more general formula 

 ( ) .
u

c k u c q
t

 


=  +


 (2.3)   

 In my numerical experiments I will treat inhomogeneous systems as we will see. That is why I 

find it is necessary to introduce the generalized formula of discretized space. Using Eq. (2.2) for a 

one-dimensional, equidistant grid, we get 

 
2 2

1 ( ) ( ) ( ) ( )
.x x

x x x
x x x

u u x x u x u x x u x
k k q

t x c x x
 

+ −

  +  − − −
=  +  + 

     
 (2.4) 

To simplify, we will use the index i  
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 i i+1 i i-1 i
i,i+1 i 1,i i

i i

,
du u u u uA

k k Q
dt c A x x x

−

− − 
=  +  + 

   
 (2.5) 

where iu is the temperature of the cell i , .C c m cV= =  is the heat capacity of that cell in ( )J/K  

units ( m  is the mass, V A x=   is the volume of the cell). We introduce two other quantities, the 

heat source term Q , 

 i
i

1
in units,

iV

K
Q qdV q

V s

 
=   

 
  

and the thermal resistance 
ij

ij

x
R

k A


=  in ( )/K W  units. In case of nonequidistant grid, the distances 

between the center of cells are ( )ij i j / 2d x x=  +  and the resistances can be calculated by the 

simple approximation as ij
ij

ij ij

.
d

R
k A

  Using the introduced quantities and Eq. (2.5) we can write 

 
1, 1,

i i-1 i i+1 i
i

i i i i i i

.
du u u u u

Q
dt R C R C− +

− −
= + +  

In case of homogeneous one-dimensional system with equidistance grid, the previous equation can 

be written as follows 

 
( )

2
i i-1 i i+1

i

2
.

du u u u
Q

dt x


− +
= +


 (2.6) 

We prefer to use the ODE system for a general (perhaps unstructured) grid, which gives the time 

derivative of each temperature independently of any coordinate-system: 

 
, j

j ii
i

i ij i

.
u udu

Q
dt R C

−
= +   (2.7) 

Which can be written in matrix form 

 ,
du

Mu Q
dt

= +  (2.8) 

where the diagonal element of matrix M can be written as follows 

 
,neighbours( )

1 1
.ii

ji i ij i

m
R C 

− −
= =  (2.9) 

Here we introduced the time constant or the characteristic time i  of cell i , which, for the simplest 

one-dimensional case, would take the form 

 
2

, (1 ).
2

i
i

x
i N




=    (2.10) 
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The off-diagonal ( )ij ij i1/m R C=  element of the M matrix can be nonzero only if the cells i and j  

are neighbours. From this point, all summations are going over the neighbours of the actual cell, 

which will be denoted by j (i)n . Unless stated otherwise, we consider closed (zero Neumann) 

boundary conditions, i.e., the edge of the examined domain is thermally isolated regarding 

conductive type heat transfer. To help the reader to imagine, we present the arrangement of the 

variables in Figure 2.1 for a 2D system of 4 cells. We emphasize that the shape and arrangement 

of the cells are not necessarily regular. 

 

Figure 2.1. A system of 4 cells 

 

For this system, the system of ODEs in matrix form can be written as 

 

1 12 1 13 1 12 1 13

1 1

2 12 2 12 2 23 2 24 2 23 2 242 2

3 3

3 13 3 23 3 13 3 23 3 34 3 344 4

4 24 4 34 4 24 4 34

1 1 1 1
0

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1
0

C R C R C R C R

u u

C R C R C R C R C R C Ru ud

u udt

C R C R C R C R C R C Ru u

C R C R C R C R

− − 
+ 

 
 − − −  

+ +   
   =
   − − −

+ +   
   

 − −
+ 

 

1

2

3

4

.

Q

Q

Q

Q

  
  
  +
  
  
  

 

 

2.2. Some Explicit Methods 

In this subsection we will review two novel methods and one unconventional method which are 

the constant-neighbour method CNe, the linear-neighbour method LNe and the unconditionally 

positive finite difference method UPFD. The constant-neighbour method CNe is a new explicit 

scheme that was introduced by Kovács and Gilicz [38] in 2018. Later, Kovács analysed this 

method mathematically in order to investigate its properties such as the stability and the 

convergence and verified that by numerical experiments. Also, he developed the linear-neighbour 
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method (LNe) which uses the CNe method as predictor. However, those methods depend on a new 

way of thinking [37], [39]. In 2013, Chen-Charpentier and Kojouharov introduced a new class of 

Finite Difference methods for advection–diffusion reaction equations that guarantees the positivity 

of the solutions, independent of the time step and mesh size [40]. Also, some conventional explicit 

methods will be discussed. 

 

2.2.1. The Constant-Neighbour Method CNe 

Considering Eq. (2.8), the constant-neighbour can be understood by the following steps: 

1a) we make an assumption: when we calculate the new value of a variable 
n+1
iu , we neglect that 

other variables (the neighbours) are also changing during the time step h t=  . It means that we 

consider ju
 a constant (

1n n
j ju u +=

) if j i . That assumption converts the coupled system of 

ODEs in Eq. (2.8) into uncoupled system of the form: 

 
i

i
i

i

,
du u

a
dt 

= −  (2.11) 

where we introduced 

 ,
j (i)

n
i ij j in

a m u Q


= +  (2.12) 

and the characteristic time of the cell 

 
ii

j (i)

i
i

ij

1
.

1
n

C

m

R





−
= =


 (2.13) 

1b) it is straightforward that Eq. (2.11) can be solved analytically. The solution at the end of the 

time step can be used as predictor values: 

 i i
i i

n 1,pred n
ii 1 .

h h

u u e a e
 


− −

+
 
 =  +  −
 
 

 (2.14) 

 

2.2.2. The Linear-Neighbour Method LNe 

This method can also be achieved by two steps 

2a) this step is the corrector, here we can make the assumption more realistic by assuming that the 

neighbouring values ju  of the actual cell iu  are changing linearly during the time step h t=  . 

For cell of index i  we introduce the effective slope 

 i
i

pred
i ,

a a
s

h
=

−
 (2.15) 
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where 
j (i)

pred
ij ii

n+1,pred
jn

a m u Q


= +  contains the predictor values which were introduced in 

Eq. (2.14). based on that approximation, we geta new uncoupled ODE system: 

 i
i i

i

i

.
du u

s t a
dt 

= + −  (2.16) 

2b) Again Eq. (2.16) can be solved analytically and the solution at the end of the time step: 

 ( )i i2
i i i i i i

n+1 n
i i 1 .

h h

u e a s e s hu  
  

− − 
 + − − +
 
 

=  (2.17) 

The scheme in Eq. (2.17) is called LNe2 and if we iterate the step (2b) we obtain the LNe3 method.  

To do that, we use the value of 
1n

iu +
 calculated in Eq. (2.17) as a predictor, calculate the new value 

of 
pred
ia  based on that corrector and then substitute it into Eq. (2.15) to get the new value for the 

effective slope. We substitute the new value of the effective slope into Eq. (2.16) to obtain 

uncoupled and linear system of ODEs which in turn can be solved analytically. If we go further 

with the iterations, we obtain LNe4, LNe5…etc. 

 

2.2.3. Unconditionally Positivity Preserving Scheme 

To illustrate this method, Chen-Charpentier and Kojouharov [40] simply considered the one-

dimensional advection-diffusion equation with linear decay: 

 ( )    
2

max max2
, , 0, 0, ,

u u u
D Ku x t x t

t x x


  
+ − = −  

  
 (2.18) 

for the unknown concentration function ( ),u u x t= , with appropriate boundary and initial 

conditions and the parameters , D  and K  are positive constants.  

We divide the space interval  max0, x  into subdivisions 0 1 ,..., Nx x x   . While 

( )1 , 1,..., ,ix i x i N= −  = max

1

x
x

N

 
 =  

− 
 and of course maxNx x= . We also divide the time interval 

 max0, t  using equal time steps of size t . Let 
n
iu  be the approximation of the unknown 

concentration function at time step n  and node i . The unconditionally positive finite difference 

(UPFD) scheme can be written: 

 
1 1 1

11 1
2

2
.

n n n n n n n
ni i i i i i i
i

u u u u u u u
D Ku

t x x


+ + +
++ −− − − +

+ − = −
  

 (2.19) 

The last formula can be written in explicit form 
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( )1 1
1

ˆ ˆˆ

.
1 ˆˆ 2

n
n ni
i i

n
i

u
Du D u

tu

u D K
t

+ −
+

+ + +
=

+ + +


 (2.20) 

where 
2

ˆˆ ,
D

D
x x


 = =

 
. This scheme can be applied to Eq. (2.1), in the absence of the advection 

term, where ̂  will be zero. 

2.2.4. The Odd-Even Hopscotch Structure OEH 

The odd-even hopscotch algorithm firstly appeared in Gordon’s work in 1965 [41]. Later in 

1970, Gourlay analysed and reformulated that algorithm [42], [43]. It is designed to be a fast, 

general-purpose algorithm which generates solutions with small expenditure of machine and 

human time [44]. To improve its accuracy, this fully explicit two-stage scheme has gone through 

modification and generalization processes, but always in the direction of implicitness, as far as we 

know. A variety of methods has been constructed starting with OEH and ending with ADI [42]. 

The OEH method has been applied to the Gray-Scott reaction-diffusion [45] and the Frank-

Kamenetskii [46], the incompressible Navier-Stokes Equations  [47], the Burgers’ equation [48] 

and even to the Dirac-equation [49]. A vectorized version of OEH method has been implemented 

in order to solve two-dimensional Burgers’ equation [50]. It has been found that the vectorization 

increased the efficiency of the solver. For solving two-dimensional Burgers’ equation, hybrid finite 

schemes were developed recently such as hopscotch-Crank-Nicolson-Du Fort-Frankel-Lax 

Friedrichs, hybrid hopscotch-Crank Nicolson-Lax Friedrichs and hopscotch Crank-Nicolson-Du 

Fort Frankel [51], [52]. 

Let us consider a spatially discretized system as that one in Eq. (2.8). In order to understand the 

structure of OEH, we illustrate the so-called bipartite grid. In that grid the set of nodes are divided 

into two subsets which are A (odd nodes, dark dots in Figure 2.2) and B (even nodes, light dots in 

Figure 2.2). The calculation of the values of the unknown variable u  consists of two stages. In the 

first stage, the values u of  the subset A are calculated at time level ( 1n+ ) using the only the values 

at time level ( n ). This process is depicted by black arrows in Figure 2.2. In the second stage, the 

values u  of  the subset B are calculated at time level ( 1n+ ) using the values at time levels ( n ) and 

( 1n+ ) as well. This process is depicted by thick red arrow in Figure 2.2. In the time level ( 1n+ ) , 

we change the role of the subsets A and B. In other words, the values of  subset B are calculated 

in the first stage and then the values of subset A are calculated in the second stage. The first stage 

in the original OEH uses the explicit Euler scheme, while the second stage uses the implicit Euler 

scheme. 
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Figure 2.2. The stencil of the odd-even hopscotch algorithm. Thin black arrows (thick red 

arrows) indicate operations at Stage 1 (Stage 2). 
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3. NEW STABLE, EXPLICIT, SECOND ORDER HOPSCOTCH METHODS FOR 

DIFFUSION-TYPE PROBLEMS 

In this chapter, I will illustrate novel numerical schemes for solving the diffusion or heat 

equation. Let me give a brief chronology of our work. In the first phase [53], [54], we started by 

creating new numerical schemes. Some of these schemes were designed based on odd-even 

hopscotch structure. They were tested in the case of one-dimensional systems. In the second phase 

[55], the schemes were investigated by solving more complicated systems, for example, two space 

dimensions and inhomogeneous media. The results inspired us to start the third phase [56]. So, we 

decided to systematically construct and test odd-even hopscotch-type numerical. Among the 

studied explicit two-stage methods some of them are unconditionally stable and their convergence 

rate in time step size is of the second order, which is analytically proved as well. The best methods 

are applied to the nonlinear Fisher’s equation to illustrate that those methods work also for 

nonlinear equations. In order to examine the competitiveness of the new schemes, we test them, in 

case of heat equation, against widely used numerical solvers considering strongly inhomogeneous 

media and thus the coefficients strongly depend on space. The results show that the new schemes 

are significantly more effective than the widely used explicit or implicit methods, especially in 

case of extremely large stiff systems.  

 

3.1. The Construction of the Methods 

 

3.1.1. The Construction of the Used Formula for One Dimensional System 

In case of one space dimensional equation (2.1) in the absence of the heat source, we discretize 

the space by creating nodes based on the usual rule 0ix i x ,i ,...,N=  =  as in Subsection 2.1. Using 

Eq. (2.6) in the absence of the heat source, we can discretize the time to get: 

 
2

n 1 n n n n
1 12

.i i i i iu u u u u

t x


+
− +− − +

=
 

 (3.1) 

From the last formula we obtain the explicit Euler scheme: 

 ( )n 1 n n n n
1 12 ,i i i i iu u r u u u+
− += + − +  (3.2) 

where n  refers to the time level and r  is the mesh ratio: 

 
2

0, , 1 .
2

iim hh
r h t i N

x


= = −  =   


 (3.3) 

In the right-hand side of Eq. (3.2), the value of the unknown variables u are considered at time 

level ( n ). If we consider these variables at time level ( 1n+ ), we obtain the implicit Euler scheme: 
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 ( )n 1 n n+1 n 1 n+1
1 12 .i i i i iu u r u u u+ +
− += + − +  (3.4) 

In the unconditionally positive finite difference scheme (Subsection 2.2.3), the right-hand side of 

Eq. (3.2) is treated differently. The values of the unknow variables u are taken at time level ( 1n+

) only for the node of interest i , while considered at time level ( n ) for the other nodes. Now for 

our studied system, and after considering Eq. (2.19) we obtain: 

 ( )n 1 n n n+1 n
1 12 .i i ii iu u r u u u+
− += + − +  (3.5) 

The right-hand side can be also treated as in the trapezoidal or Crank-Nicolson (CrN) method: 

 
n n n n+1 n 1 n+1

n 1 n 1 1 1 12 2
.

2 2

i i i i i i
i i

u u u u u u
u u r

+
+ − + − +

 − + − +
= + +  

 

 (3.6) 

That is known implicit formula. In the third term of the right-hand side of Eq. (3.6), we can take 

the neighbours at time level ( n ) to obtain the explicit version: 

 
n n n n n 1 n

n 1 n 1 1 1 12 2
.

2 2

i i i i i i
i i

u u u u u u
u u r

+
+ − + − +

 − + − +
= + +  

 

 (3.7) 

In the second term of the right-hand side of Eq. (3.6), we can take the neighbours at time level (

1n+ ) to obtain a new formula: 

 
n+1 n n+1 n+1 n 1 n+1

n 1 n 1 1 1 12 2
.

2 2

i i i i i i
i i

u u u u u u
u u r

+
+ − + − +

 − + − +
= + +  

 

  (3.8) 

The constant neighbour (CNe)  method and the linear neighbour (LNe) methods were explained 

in Subsection 2.2 for a general system. In our simple one-dimensional homogeneous medium, Eq. 

(2.12) becomes: 

 ( )2
neighbours( )

n n
n n n1 1

1 1 .
j i

i i
i ij j i i

u u r
a m u u u

hx




− +
− +

+
= = = +


  (3.9) 

We emphasize here that the value of ia  do not change during the time step. The CNe scheme in 

Eq. (2.14) becomes: 

 ( )iin 1 n 1 .iii

ii
i i

m h m ha
u u e e

m

+ =  − −  (3.10) 

In the LNe method, we must have a predicted values for the unknown variables 
pred
iu  that are valid 

at the end of time step. Those predicted values were obtained by the CNe method as explained in 

Subsection 2.2.2. In this chapter we will see that the predicted values can be obtained by other 

schemes such as explicit Euler. After we obtain the predicted values of the unknown variable 
pred
iu

(by some method), we can calculate the effective slope as we did in Eq. (2.15): 
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pred

.i
i

ia a
s

h
=

−
 (3.11) 

The value of ia  is the same as in Eq. (3.9) and 

 

( )

2
neighbours( )

n+1,pred n+1,pred
pred 1 1

n+1,pred n+1,pred
1 1

n+1,pred

.

j i

i i
iji

i i

j

u u
a m u

x

r
u u

h




− +

− +

+
= =



= +


 (3.12) 

Now we have all the necessary information and after considering the definition of ,r  the LNe 

scheme in Eq. (2.17) can be written as follows: 

 ( )
2 2

2 2n+1 n 1
1 1 .

2 2 2
i ii i

r
r rh h e

u e e s
r r r

u a
−

− −
 −

+ − + −  
 

=  (3.13) 

The formula in Eq. (3.11)  can be finalized as follows: 

 ( )2

n+1 n+1 n n
1 1 1 1 ,i i i i i

r
s u u u u

h
− + − += + − −  (3.14) 

and 

 

( )( )

( )

2 2

2

n+1 n n n
1 1

n+1,pred n+1,pred n n
1 11 1

1
1

2

1 1
1 .

2 2

i i i i

i ii i

r r

r

e u u e

e
u u u u

r

u u − −

−

− +

− +− +

+ + −

 −
+ + − − −  

 

=

 (3.15) 

 

3.1.2. A Family Of  New Odd-Even Hopscotch Algorithms 

In Subsection 2.2.4, I illustrated that the original odd-even Hopscotch method consists of two 

stages. The first stage in the original OEH uses the explicit Euler scheme, while the second stage 

uses the implicit Euler scheme. Our objective in this chapter is to systematically examine all the 

possible combinations of the previously specified formulas. Thus, in the first stage, we can use 

those explicit formulas or those that can be made explicit. We use Eqs. (3.2), (3.5), (3.7), (3.10) 

respectively. After expressing explicitly, the new values of 
1n

iu +
, the formulas of the first stage of 

hopscotch structure can written.  

Stage 1 formulas 

A) Explicit Euler 

 ( ) ( )n 1 n n n
1 11 2 .i i i iu r u r u u+
− += − + +  (3.16) 

B) UPFD 

DOI: 10.14750/ME.2023.030



CHAPTER 3 

21 
 

 
( )n n n

1 1n 1 .
1 2

i i i

i

u r u u
u

r

− ++
+ +

=
+

 (3.17) 

C) Explicit-neighbour “Crank-Nicolson” 

 
( ) ( )n n n

1 1n 1
1

.
1

i i i

i

r u r u u
u

r

− ++
− + +

=
+

 (3.18) 

D) CNe, constant neighbour 

 ( )2 2
n n

n 1 n 1 1 1 .
2

i i
i i

r ru u
u u e e− −+ − ++

= + −  (3.19) 

In the second stage, we start with Eqs. (3.2), (3.5), (3.6), (3.8), (3.10) and (3.15) respectively. If 

the values of the neighbours 
1

1

n

iu +

+  and 
1

1

n

iu +

−  are not used in the second stage, then the hopscotch 

structure makes no sense. Therefore, in the second stage, the explicit Euler and CNe formulas will 

be modified. Since the values of the neighbours are already calculated in the first stage, the UPFD 

scheme in Eq. (3.5) coincides with the implicit Euler scheme in Eq. (3.4). Now we can write the 

formulas of the second stage. 

Stage 2 formulas 

1. Explicit Euler 

 ( ) ( )n 1 n n+1 n+1
1 11 2 .i i i iu r u r u u+
− += − + +  (3.20) 

2. UPFD (Implicit Euler) 

 
( )n n+1 n+1

1 1n 1 .
1 2

i i i

i

u r u u
u

r

− ++
+ +

=
+

 (3.21) 

3. Crank-Nicolson 

 
n 1 n 1 n n

n 1 n1 1 1 1 1
.

1 2 2 1

i i i i
i i

u u u ur r
u u

r r

+ +
+ − + − +

 + + −
= + +  + + 

 (3.22) 

4. Implicit-Neighbour Crank-Nicolson 

 
( ) ( )n n+1 n+1

1 1n 1
1

.
1

i i i

i

r u r u u
u

r

− ++
− + +

=
+

 (3.23) 

5. Constant Neighbour CNe 

 ( )2 2
n+1 n+1

n 1 n 1 1 1 .
2

i i
i i

r ru u
u u e e− −+ − ++

= + −  (3.24) 

6. Linear Neighbour LNe 
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 ( ) ( )
2 2

2 2n+1 n n n n+1 n+1
1 1 1 1

1 1 1 1
1 .

2 2 2 2
i i i i i i

r r
r re e

e u u e u u
r r

u u
− −

− −
− + − +

   − −
+ + − + + −      

   
=  (3.25) 

Each formula from the first stage can be combined with six possible formulas from the second 

stage in hopscotch structure resulting in 4 6 24 =  possible methods. For instance, the methods 

denoted by A2 refers to the original well-know OEH, while the method denoted by A6 means that 

the explicit Euler formula is used in the first stage and the linear-neighbour formula is used in the 

second stage.  

3.1.3. The Construction Of the Methods for General 2D System 

 In Subsection 2.1, I derived the formula of spatially discretized heat conduction equation in 

case of general system. For a general system such that in Eq. (2.3), in the absence of the heat 

source, Eq. (2.8) can be written as follows 

 .
du

Mu
dt

=  (3.26) 

Recall that the previous equation is independent of any coordinate system. For the sake of 

simplicity, we introduce the following notations.  

 
( )

n
n,  ,i i

i j i j neighbours i

j
ij j

i ij

uh
r A h m u h

C R  

= = =   (3.27) 

and 

 
( )

n+1
new n+1 .

j i j neighbours i

j
i ij j

i ij

u
A h m u h

C R 

= =   (3.28) 

Now we are ready to introduce the formulas that can be applied in the first and second stages for 

general system. 

Stage 1 formulas  

A) Explicit Euler 

 ( )n 1 n
i1 .i i iu r u A+ = − +  (3.29) 

B) UPFD 

 

n
n 1 .

1

i i
i

i

u A
u

r

+ +
=

+
 (3.30) 

C) Explicit-neighbour “Crank-Nicolson” 

 
n 1 n2

.
1 / 2 2

i i
i i

i i

A r
u u

r r

+ −
= +

+ +
 (3.31) 

D) CNe, constant neighbour 
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 ( )n 1 n 1 .i ii
i i

i

r rA
u u e e

r

− −+ =  + −  (3.32) 

Stage 2 formulas  

1. Explicit Euler 

 ( )n 1 n new1 .i i i iu r u A+ = − +  (3.33) 

2. UPFD (Implicit Euler) 

 

n new
n 1 .

1

i i
i

i

u A
u

r

+ +
=

+
 (3.34) 

3. Crank-Nicholson 

 
( )new n

n 1 2
.

2

i i i i
i

i

A A r u
u

r

+ + + −
=

+
 (3.35) 

4. Implicit-neighbour “Crank-Nicholson” 

 
( )new n

n 1 2 2
.

2

i i i
i

i

A r u
u

r

+ + −
=

+
 (3.36) 

5. CNe, constant neighbour 

 ( )
new

n 1 n 1 .i ii
i i

i

r rA
u u e e

r

− −+ =  + −  (3.37) 

6. LNe, Linear neighbour 

 i

new new
n+1 n 1

.
i

i i i i
i i i

i i i

r
r A A A Ae

u e A
r r r

u
−

−  − −−
+ − +  
 

=  (3.38) 

By implementing these formulas in the hopscotch structure, one can obtain the generalized 

versions of the 24 combinations which were mentioned in the previous subsection. 

3.2. Numerical Experiments and Results 

The numerical solution is compared with the reference solution, or the benchmark solution, 

only at end of the time interval fint . This time interval will be defined later for each experiment. 

The accuracy is measured by using the global L error, which is the maximum of the absolute 

difference between numerical solution 
num

ju ( calculated by one of the previously introduced 

numerical methods at the end of the time interval) and the reference solution 
ref

ju , which can be 

either the analytical or very accurate numerical solution. 
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ref num

fin fin
0

Error( ) max ( ) ( ) .j j
j N

L u t u t
 

= −  (3.39) 

Also, I will introduce two other error norms which will be used for general grid. The first error 

norm is the 1L , that can be defined as the average error 

 
ref num

1 fin fin

0

1
Error( ) ( ) ( ) .j j

j N

L u t u t
N  

= −  (3.40) 

The second error norm is same difference, but weighted with the capacities of the cells 

 
ref num

fin fin

0

1
Error( ) ( ) ( ) .j j

j N

jEnergy C u t u t
N  

= −  (3.41) 

The last equation gives the error in terms of energy in case of heat equation. It takes into 

consideration that a temperature deviation in a big cell has more crucial effect in practice than in 

a tiny cell.   

If deal thermally isolated system, the matrix M  has one zero eigenvalue (due to the fact that 

the total heat would be constant without heat sources), while all the other eigenvalues are 

necessarily negative. If we denote the eigenvalues of the matrix M with the smallest (nonzero) and 

largest absolute values by MIN
 and MAX

, respectively, then one can define and calculate  the 

stiffness ratio as follows 

 MAX MIN/ .SR  =  (3.42) 

We are also going to use another important quantity to characterize the level difficulty of the 

problem, which is the maximum possible time step size for the explicit Euler scheme FTCS that 

guarantees the stability. That value can be calculated as follows 

 FTCS
MAX MAX 2 / .h =  (3.43) 

The simulations are conducted using the MATLAB R2020b software on a desktop computer 

with an Intel Core i5-9400 as CPU, 16.0 GB RAM. The running time is measured by the built-in 

tic-toc function of MATLAB. 

 

3.2.1. Tests for the First Evaluation 

We examine two space-dimensional rectangle-type lattices of x zN N N=   cells with zero 

Neumann boundary conditions, i.e., thermal isolation. Several numerical experiments have been 

conducted in order to test the behaviour of the 24 methods. The methods have been evaluated 

based on three crucial properties which are the stability, positivity and the order of convergence. 

We solve the system in Eq. (3.26) where the values of the heat capacities and the resistances are 

defined using the following formulas 
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 , ,
( ) ( ) ( )

, 1 , ,10 0 10C C Rx Rx Rz Rz
i x i z i

rand rand randC R R
     −  −  − 

= = =  (3.44) 

where rand is a built-in function in MATLAB which generates uniformly distributed-random 

numbers in the interval  0,1 . It means that Eq. (3.44)  generates values with a log-uniform 

distribution. The values of the exponents C C Rx Rx Rz Rz, , , , ,       have been chosen to generate 

systems with very different 
FTCS
MAXh  and stiffness ratio. For instance, 1 2 or 3 2 4 or 6C C, , , , , =  =

. The spatial dimensions of the systems have been 5 3  and 30 30 . The initial conditions have 

been generated using the randomly (0)iu rand= . The end of the time interval has been set to 

0 1 1. ,  and 10 . To calculate the reference solution, the implicit ode15s solver has been used while 

imposing a strict error tolerance (‘RelTol’ and ‘AbsTol’ were both 1210− ). Here we consider that 

an algorithm is stable if we never observe that the solution is explodes, i.e., if the error does not 

grow indefinitely as fint  grows regardless of the time step size. However, the stability will be 

rigorously examined later. Due to the second law of thermodynamics, the solution should follow 

the Maximum and Minimum principles [57, p. 87]. We consider that the method is positivity 

preserving if it never violates this principle, i.e., in this case no value of u exceeds the  0 1,  

interval, which has been examined at the end of each time step. This property obviously implies 

the stability. If a method is stable but not positivity preserving, then unphysical oscillations can 

arise with larger amplitude than the function value, but these are finally stabilized at a finite level. 

The original OEH method typically behaves like this. The results for the 24 OEH combinations 

are summarised in Table 3.1. I emphasize that at this point those properties are evaluated only 

through numerical experiments without any analytical investigation. Based on these intensive tests 

I chose algorithms A2, B1, C4, C5, D4 and D5 for further numerical  and analytical investigation. 

 1) Exp Eu 2) UPFD 3) CrN 4) IN CrN 5) CNe 6) LNe 

A) Exp Eu U S 2 U U S S 

B) UPFD S 2 P S S P S 

C) EN CrN U S S S 2 S 2 S 

D) CNe S P S S 2 P 2 P 

Table 3.1. Properties of the 24 algorithms. The letter U, S and P mean unstable, stable, and 

positivity preserving, respectively. The number 2 means that the algorithm is second order (all 

other schemes are first order). 

3.2.2. Solution of the Nonlinear Fisher’s Equation 

I will treat the so-called Fisher-KPP equation [58] which is nonlinear reaction-diffusion 

equations of the following form 
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 ( )2 1
u

u u u
t

 


=  + −


. (3.45) 

Originally this equation was introduced to describe how advantageous gene-variants spread in 

space and time. In this case β>0 is the coefficient of reaction (proliferation rate in the original 

equation). Since then, it has been applied to model other phenomena such as propagation of fronts 

in autocatalytic chemical reactions [59] and combustion processes [60]. In this experiment, we 

solve Eq. (3.45) with with 1 = , subject to the following initial condition: 

2

6( , 0) 1
x

u x t e


−

 
 = = +
 
 

. 

The analytical solution of this problem is the following travelling wave function [61], [62]: 

 

2
5

exact 6 6( , ) 1
x t

u x t e




−

− 
 = +
 
 

. 

 The appropriate Dirichlet boundary conditions are prescribed at the two ends of the interval: 

 
0 fin

2 2
5 5

6 6 6 6
0 fin( , ) 1 , ( , ) 1 .

x t x t

u x x t e u x x t e

 
 

− −

− −   
   = = + = = +
   
   

 

The values of the exact solution obviously lie in the unit interval, ( )  0 1u x,t , , x,t  . I note 

that it is hard to keep this property for the numerical solution in case of larger time step sizes.   

First, I have tried the simplest and most straightforward way to incorporate the nonlinear 

reaction term to the method: I added the extra term ( )n n1i i hu u −  at the end of each stage to the 

value of the variable 
n+1
iu . However, the obtained results were not promising at all, the errors 

were rather large. Then I arranged this addition in a separate third stage, where a loop is going 

through all the nodes with the following operation: 

 ( )n+1,pred n+1,pred n+1,predn+1 1i i i i hu u u u= + − , 

where 
n+1,pred
iu  is the result of the first and the second stage using the same formulas as in 

Subsection 3.1.1, i.e., with taking into account the effect of the diffusion term only. With this 

modification, I obtained much better results. In many numerical experiments, i.e., for several 

values of finx , fint , and β. Unfortunately, in some other cases the nonlinear term made the 

algorithms, especially the A2 and B1, unstable. The instability appeared usually for large values 

of β and h and manifested itself when the final time fint  was large. I attempted to solve this 
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instability problem by treating the nonlinear term in a semi-implicit way according to the following 

arrangement: 

 ( )n+1,pred n+1,predn+1 n+11i ii i hu u u u= + − . 

Note that now the new value 
n+1
iu  is present in the bracket on the right-hand side. This equation 

can be arranged into a fully explicit form: 

 
n+1,predn+1

n+1,pred

1
.

1
i i

i

h

h
u u

u





+
=

+
 (3.46) 

Remark 1 According to formula (3.46), the new value exceeds one, i.e. 
n+1 1iu   if and only if  

 ( ) n+1,pred n+1,pred n+1,pred
1 1 1.i i ih hu u u +  +    

This means that if the original values 
n
iu  were majorated by 1 and if the A2, …, D5 algorithms 

did not terminate this property during the first two stages, then the final result 
n+1,pred
iu   will be 

still majorated by 1. 

I performed several tests with the algorithms using this nonconventional semi-implicit 

treatment of the nonlinear reaction term and obtained many curves. I found that the methods were 

always stable, even if the 
n+1,pred
iu  values were above 1. Especially A2 (the original OEH) and, 

usually in a much less extent, B1 (the reversed OEH) can produce 
n+1,pred
iu  values above 1, but 

these potentially unstable elevations never grow unboundedly and usually diffuse away. However, 

this diffusion can be very slow in the case of the original OEH method. From this point of view, 

the original OEH is the weakest, which will be illustrated through the following concrete numerical 

experiment. We fix the space interval to  0 2x , , which is discretized by dividing it into 200 

equal parts: 0 0 200 0 01jx x j x , j ,..., , x .= +  =  =  where 0 0x = . We set 8 =  and fin 2t = . The 

errors as a function of the time step size h are presented in Figure 3.1. I have tried to perform these 

calculations in case of a non-equidistant mesh. The original OEH teeters on the brink of instability 

for large values of h but never actually becomes unstable, even when β is as large as 108. 

I emphasize that all examined methods have been convergent in all numerical experiments, so 

for small h they produced small errors. Still, I do not state that I have found the optimal way to 

incorporate the nonlinear term into our formulas, nor that these algorithms are the best to solve 

Fisher’s equation. This small subsection is only to demonstrate that these hopscotch-type methods 

can be successfully applied to solve nonlinear equations as well. 

DOI: 10.14750/ME.2023.030



CHAPTER 3 

28 
 

 

Figure 3.1. L errors as a function of the time step size for Fisher’s equation  with 8. =  

3.2.3. Comparison with Other Numerical Solvers, First Case 

We examine two space-dimensional rectangle-type lattices of x z100, 100N N= = , which means 

that we have 10000N =  cells. The system is subjected to zero Neumann boundary conditions. 

The value of the final time fint  has been chosen to be 0.1 . To set the values of the capacities and 

resistances in Eq. (3.44), the exponents were chosen to be: 

 2 4 1 2C C Rx Rz Rx Rz, , , =  =  =  =  =  = . 

It means that the capacities have a log-uniform distribution in the interval  0.01,100 . The stiffness 

ratio of this system, calculated by Eq. (3.42), is 83.1 10SR =  . The maximum time-step, calculated 

by Eq. (3.43), is 
FTCS 4
MAX  = 7.3 10h − . We compare the performance of the designed methods and 

that professionally coded and extensively tested MATLAB solvers, which are the followings: 

• ode15s, variable-step, variable-order (VSVO) solver based on the (implicit) numerical 

differentiation formulas (NDFs) of orders 1 to 5, where the letter s denotes that the code 

has been developed for stiff problems 

• ode23s, a modified (implicit) Rosenbrock formula of order 2 
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• ode23t, an implementation of the (implicit) trapezoidal rule using a “free” interpolant 

• ode23tb, a combination of the (implicit) trapezoidal rule and a backward differentiation 

formula 

• ode23, the explicit Runge-Kutta-Bogacki-Shampine method of order 2(3) 

• ode45, the explicit Runge-Kutta-Dormand-Prince formula of order 4(5) 

• ode113, a VSVO Adams-Bashforth-Moulton solver of orders 1 to 13 

 

In Figure 3.2 and Figure 3.3, I present the error produced by the schemes as a function of the 

time-step size and the total running time respectively. For all MATLAB solvers, the tolerance has 

started from ‘RelTol’= ‘AbsTol’ tol=1000, then it has been decreased by a factor of ten until it 

reached 510− . In Table 3.2, I present some results obtained by our schemes and Matlab solvers. 

One can see that the new schemes (as well as the original OEH) are much faster than the 

conventional explicit or implicit solvers, considering the same level of accuracy. 

 

Figure 3.2. L  errors as a function of the time step size for the first (less stiff) system of 

10000 cells in case of original CNe, the two-stage LNe and the OEH algorithms. 
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Figure 3.3. L  errors as a function of the total running times for the first system in case of 

OEH type methods and seven different MATLAB solvers.  

Numerical method Running time 

(s) 
L  

error 

1L  

error 

Energy 

error ode15s, tol=103 397 1.3×10-

2 

1.1×1

0-3 

5.62 

ode23s, tol=103 4346 4.2×10-

4 

3.0×1

0-5 

0.15 

ode23t, tol=10-8 849 2.9×10-

7 

2.0×1

0-8 

1.0×10-4 

ode23tb, tol=100 428 4.1×10-

4 

2.9×1

0-5 

0.14 

ode45, tol=0.1 21.0 3.3×10-

3 

6.5×1

0-7 

2.7×10-3 

ode23, tol=10-6 27.0 3.7×10-

7 

9.6×1

0-9 

4.8×10-5 

ode113, tol=10-6 19.1 6.7×10-

7 

4.2×1

0-10 

1.9×10-6 

A2, h=10-3 0.023 7.2×10-

3 

1.1×1

0-4 

1.2 

B1, h=10-3 0.023 1.5×10-

3 

1.6×1

0-5 

2.3×10-2 

B1 , h=10-5 2.26 1.5×10-

7 

1.6×1

0-9 

2.5×10-6 

D5, h=10-3 0.023 2.8×10-

3 

6.8×1

0-5 

0.65 

 

TABLE 3.2. Performance of different OEH and MATLAB solvers for the first system of 

10000 cells. 

3.2.4. Comparison with Other Numerical Solvers, Second Case 

We use the same set up of the previous experiment but we change only the following 

 3 6 3 1 4C C Rx Rz Rx Rz, , , , , =  =  =  =  =  =  
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which means that we increase the range of the distribution of the resistances and capacities . The 

geometric mean of resistances in the x direction is 10  while in the z direction it is only 0.1, which 

means that the system is anisotropic in space. Based on that the stiffness ratio is much higher than 

the previous experiment 122.4 10SR =   and 
EE 6
MAX  = 1.6 10h − . The energy-error and the L  errors 

are presented as a function of total running time in Figure 3.4 and Figure 3.5. I note that the new 

schemes are two or three orders of magnitude faster than the conventional explicit and implicit 

methods. I emphasize that none of the MATLAB solvers are able to provide any realistic (non-

divergent) results in 300s, while using the OEH algorithms one can get quite accurate results in a 

few tenths of a second. Table 3.3 shows some results which were obtained by MATALB solvers 

and the OEH schemes. 

We can conclude that B1 scheme ( reversed UPFD-EE Hopscotch) is the most efficient scheme 

to solve these types of problems. The D4, D5, C4 and C5 schemes approximately produced the 

same errors at the same running time. However, the D5 scheme has a unique property ( positivity 

preserving) , which will be discussed in another section, along with other properties for B1 scheme. 

 

Figure 3.4. L  errors as a function of the total running times for the second (very stiff) 

system in case of the original and the new hopscotch algorithms, and seven different 

MATLAB solvers. 
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Figure 3.5. Energy errors as a function of the total running times for the second system in 

case of the hopscotch algorithms, and seven different MATLAB solvers. 

 

Numerical method Running time 

(s) 
L  

error 

1L  

error 

Energy 

error ode15s, tol=10-6 680 4.1×10-

7 

1.5×1

0-8 

7.5×10-5 

ode23s, tol=1000 5694 4.7×10-

4 

2.4×1

0-5 

0.12 

ode23t, tol=1000 310 8.1×10-

2 

2.1×1

0-3 

10.6 

ode23tb, tol=10-8 2037 2.3×10-

7 

1.2×1

0-8 

5.8×10-5 

ode45, tol=1 9480 8.1×10-

2 

1.5×1

0-5 

7.0×10-2 

ode23, tol=10-6 5317 1.2×10-

6 

2.3×1

0-10 

1.1×10-6 

ode113, tol=10-2 6046 8.9×10-

4 

1.7×1

0-7 

7.7×10-4 

A2, h=10-4 0.23 1.47 1.0×1

0-2 

142 

B1, h=10-4 0.23 9.6×10-

3 

2.1×1

0-5 

7.1×10-3 

B1 , h=10-6 22.6 9.6×10-

7 

2.1×1

0-9 

1.5×10-6 

D5, h=10-4 0.23 1.2×10-

1 

8.4×1

0-4 

11.7 

D5, h=10-6 22.9 5.8×10-

4 

6.0×1

0-7 

8.5×10-3 

 

TABLE 3.3. Performance of different solvers for the second system of 10000 cells. 
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3.3. The Analytical Investigation of the Proposed Methods 

3.3.1. Stability 

First, I deal with the D5 scheme. In our previous work [37] we showed that in case of CNe 

method, the new value of the temperature 
1n

iu +
 of any cell is the weighted average of the cell of 

interest and its neighbour at the beginning of the time step. In Theorem 1, I will elaborate the 

previous statement to the D5 algorithm. Let me first evoke a simple lemma which I will use 

intensively in the proof of the theorems [63, p. 28]. 

Lemma: A convex combination i ix a x=  of convex combinations i ij ijx b y=  is still a 

convex combination: 

 ( )i ij ijx a b y ,=  

for any 
n

ijy  . 

Theorem 1. If method D5 is applied to Eq. (1.16) when 0q = , the new values 
1

i
nu +

are he convex 

combination of the old values j , 1,...,nu j N= . 

Proof. We will use the facts that iii 1/ m = −  and ij,j im   are non-negative quantities, thus 

ii
/ i0 e e 1

h m h−
 =   holds because of physical reasons, for example the Second law of 

thermodynamics. Let us start with the first stage: 

 
1 exp 1 exp ,i i

i i

n n
i i

h h
u u a

 

+     
=  − +  − −     

    
 (3.47) 

the term i ia  can be written as follows 

 
j

1
.i i i

ii

n
ij ja m u

m




−
=   (3.48) 

Now we will calculate the coefficients of the ,n
ju j i  

 
1/1 1

.
1 1/

ij

ii k i
k i

ij

i ij ik

i ik

Rm

m C R R

C R




−
= =


 (3.49) 

It can be easily seen that these coefficients are nonnegative, and their sum is one, which means 

that i ia  is a convex combination of the old values n
ju . Now it is obvious that the coefficients 

( )exp / ih −  and ( )( )1 exp / ih − −  in Eq. (3.47) are also nonnegative and their sum is 1 , 

therefore, according to the lemma, 
1n

iu +
 is also convex combination of the values , 1,...,n

ju j N= .  
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In the second stage, a similar argument holds, except that on the right hand side of Eq. (3.48) the 

only calculated values 
1n

iu +
 are presented. However, the application of the lemma once again 

completes the proof since these values are already convex combinations of the old values 
n
ju . 

Corollary. For the Fisher’s equation (3.45) if the initial values are in the interval  0 0 1iu , , then 

values of u  are still in this interval for any values of   and time-step sizeh , provided that the 

“semi-implicit” treatment in Eq. (3.46) of nonlinear reaction term is applied. 

Proof. Theorem 1 and Remark 1 immediately imply the statement. 

Theorem 2. Method B1 is unconditionally stable if applied to Eq. (2.1) in the absence of q. 

Proof. In [64] the authors examined the stability of the OEH method by Von Neumann stability 

analysis for the linear convection-diffusion equation. In this theorem, we will follow their way of 

proof. We consider two subsequent time steps 

S1: 
( )n n n

1 1n 1

1 2

i i i

i

u r u u
u

r

− ++
+ +

=
+

 for even i ,        S2: ( ) ( )n 1 n n+1 n+1
1 11 2i i i iu r u r u u+
− += − + +  for odd i  

S3: 
( )n+1 n+1 n+1

1 1n 2

1 2

i i i

i

u r u u
u

r

− ++
+ +

=
+

 for even i ,   S4: ( ) ( )n 2 n+1 n+2 n+2
1 11 2i i i iu r u r u u+
− += − + +  for odd 

i  

and I test the algorithm made as the unification of these four stages, i.e. a doubled time step size 

n n 2u u +→  algorithm. I test 
n+1
iu  from the formula of S3 by substituting S2 (it is allowed since S2 

and S3 refer to the same set of nodes) and obtain: 

 
( ) ( ) ( )n n+1 n+1 n+1 n+1

1 1 1 1n 2
1 2

,
1 2

i i i i i

i

r u r u u r u u
u

r

− + − ++
− + + + +

=
+

 

with the notation 2r =  this can be written as 

 ( ) ( ) ( )n 2 n n+1 n+1
1 11 1 ,i i i iu u u u  +
− ++ = − + +  (3.50) 

which is equivalent to Eq. (3.3) in [64] apart from the convection term. Noteworthy that Eq. (3.50)

contains only values at the uncoupled set of nodes where the sum of the space and time index i n+  

is odd. We can proceed with Eq. (3.50) for the investigation of linear stability and “if the 

computation at the uncoupled set of odd-numbered points is stable, we have also stability at all 

even points” [64]. Boonkkamp and Verwer obtained that the requirement of stability gives a 

restriction only to the magnitude of the convection term, thus we can conclude that the scheme is 

unconditionally stable for the heat or diffusion equation. Indeed, the resulting algebraic equation 

 ( ) ( )21 2 1 0,g    + − − − =  

where cosg ,=   , has the following roots 
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( )2 2 1 1

,
1

g g 





 − +
=

+
 

and the absolute value of these roots is majorated by 1 for all  1 1g , − , thus the errors cannot 

grow to infinity.  □ 

We note that I have constructed the stages S1-S4 of the above schemes in a matrix form. If we 

denote these by Ue, Eo, Uo and Ee, respectively (‘U’ and ‘E’ are UPFD and explicit while ‘e’ and 

‘o’ stand for even and odd cells), the matrix of the two-step algorithm can be written as 

( )( )H Ee Uo EoUe=  and  
n 2 nu Hu+ = . I have calculated the absolute values of the eigenvalues 

of this matrix H for several values of N, and found that the largest one is exactly 1, which verifies 

the unconditional stability property. On the other hand, the (infinity) norm [65] of H is proportional 

to r, which explain the large errors for large time step sizes. However, the powers of H have smaller 

norms, moreover, 

 lim 1 0n

n
H r ,

→
=    

which makes easier to understand the reason of the unconditional stability. 

 

3.3.2. Convergence 

In This subsection, I analyse the consistency and the convergence of B1 and D5 methods 

following the same way in [66], [67]. 

Theorem 3. The order of convergence of B1 (reversed UPFD-EE) and D5 (CNe-CNe) 

hopscotch algorithms as time integrators for fixed spatial discretization x  is two. 

Proof. Since formulas (3.16)-(3.25) are first order by their own, if one considers a single time 

step, it is obviously impossible to prove that these algorithms are second order. Because of this we 

consider a doubled time step with time step size 2h. First, we have to calculate the formula 
n 2
iu +

 

in the case of the two methods for both odd and even nodes. 

In the case of algorithm B1, by using Eq. (3.20) we have for the even nodes at the end of the 

first time step 

 ( ) ( )( )n 1 n n n n n n
1 1 2 21 2 2

1 2
i i i i i i i

r
u r u u u r u u ru

r

+
− + − += − + + + + +

+
. 

Let us introduce the notation 
n
i j

n n
i j i ju u u − += + ,  1 2 3j , , . Now we start the second time step 

by substituting the formula we have just obtained with shifted space index into the terms 
n

1iu −  and 

n
1iu +  in the UPFD formula (3.17) for the even cells to obtain 
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( )

( )1 22

2 1
2

1 2

n n
i i

n n
i iu u r u ru

r
 

+  = + +
 +

. (3.51) 

Finally using Eq. (3.20) again we can calculate the new values for the odd cells as well: 

 
( )

( )( )1 1 2 3 12

n 2 n n1 2
2 2

1 2 1 2

n n n n n
i i i i ii i i

r r
u u ru u r u u r u u

r r
    

+ −   = + + + + + +
    + +

. (3.52) 

Now we repeat this calculation for D5. For the even nodes at the end of the first time step we have  

 ( ) ( )1 2 2 2 22
1

21
e e 1 e 1 e

2 2

n n
n n r n r r ri i
i i i

u u
u u u+ − − − −



 +
= + + − − 

  
. 

At the second time step we have, for the even cells 

 

( ) ( )( )

( ) ( )

2 4 2 2 2
1 1

2
2 22 2

1
e e 1 e 1 e

2

2
1 e 1 e  ,

4

n n r n n r r r
i i i i

n n n
r ri i i

u u u u

u u u

+ − − − −
− +

− −− +

= + + − +

+ +
+ − +

 (3.53) 

and for the odd cells: 

 
( )( )

( ) ( )

2 4 2 2 22
21 1

2 4

2
2 21 3

2
e e e 1 e 1 e

1 e2
e .

23
1 e 1 e

4

n n
n r n r r r ri i

ri i
n n r
i i n n

r ri i

u u
u u

u u
u u

− − − − −
− 

+ −

− − 

 +
+ + − + 

−
 = +
 +
+ − + 
 

 (3.54) 

The following power series expansions will be used: 

 ( )
( )

( )2 3 4 2 3 4

2

1 1
1 2 4 8 , 1 4 12 32 .

1 2 1 2
r r r O r r r r O r

r r
= − + − + = − + − +

+ +
 

 ( ) ( )2 2 3 4 2 2 3 44 4
1 2 2 1 2 4

3 3

r re r r r O r , e r r r O r− −= − + − + − = − + + , etc. (3.55) 

Now let us consider one space dimensional equation (2.1) in the absence of the heat source. If 

we assume that the analytical solution of equation is sufficiently smooth, and denote x  by s , we 

can write 

( ) ( )
2 3 4

2 3 4 5
1

n 2 4
2 2 ,

3 2 6 12

n n n
i t tt ttt i i x xx xxx xxxxi

s s s
u u hu h u h u O h u u su u u u O s−

+ = + + + + = − + − + + , 

etc. 

From this point we omit the higher order terms, after which we obtain 
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4
2 2 4 2 4

1 2 3

4 27
2 , 2 4 , 2 9 .

12 3 4

n n n n n n
i i xx xxxx i i xx xxxx i i xx xxxx

s
u u s u u u u s u s u u u s u s u  = + + = + + = + +  

We substitute the exact solution to the obtained formulas, first to Eq. (3.51). With this we have  

 
( )

( )1 22

2 1
2 ,

1 2

n n
i i

n n
i iu u r u ru

r
 

+  = + + +
 +

 

where ɛ is the local truncation error of the doubled time step. Using Eq. (3.55) we obtain 

 ( ) ( ) ( )2 3 2 3 2 3
1 2

n 2 1 4 12 32 2 8 24 2 8 .n n
i i

n
i iu r r r u r r r u r r u  
+= − − + − − − + − −  (3.56) 

Inserting the truncated expansions into this equation we obtain 

3 2 3
2 3 2 2 2 4 4

2 2 2 2

4 1 26
2 2 2 8 2 .

3 6 3
t tt ttt xx xx xxxx xxxx xxxx

h h h h
hu h u h u s u s u hs u s u s u

s s s s

   
 

     
= + + − + − − +     

     
 

Since u  is the exact solution of original PDE (2.1) in the absence of heat source, thus 

 
( ) ( ) 2 ,

t xx

tt xx t xxxxt xx

u u

u u u u



  

=

= = =
 (3.57) 

and because of this, the terms in the boxes cancel each other, while other terms can also be 

simplified using Eq. (3.57), thus the final result is the following: 

 

3 3
3 2 2

4 2

4 1 26
8 .

3 6 3
ttt xxxx t tt

h h
h u h x u u u

x x
   = −  + +

 
 

Thus, the leading terms of the global truncation error is 

 

2 2
2 2 2

4 2

4 1 26
8 .

3 6 3

T
ttt xxxx t tt

h h
h u x u u u

x x
   = −  + +

 
 

Now we perform the same procedure in the remaining three cases. Employing Eq. (3.55) to Eq. 

(3.52) yields 

 ( ) ( )2 3 2 3 2 3n 2 n n n n
1 2 31 4 12 32 2 8 22 2 2 .i i i i iu r r r u r r r u r u r u +
  = − − + − − − + − −  

Substituting the truncated expansions into this, after some calculations we obtain

 

3 3 34 4
2 3 2 2 2 4

2 2 2 2

4 17
2 2 2 8 2 22 2 .

3 12 12 6
t tt ttt xx xx xxxx xxxx xxxx xxxx

h h s h s h
hu h u h u hu s u u u h u s u

s s s s

   
  

     
= + + − − − − − −     

     
 

The terms in the boxes again cancel each other, thus the local error is 
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 3 2 2 3 3

4 2

4 1 1 14 1
8 ,

3 6 3
ttt xxxx t tth u h x u h u h u

x x
   = −  − −

 
 

thus the global error is 

 

2 2
2 2 2

4 2

4 1 14
8 .

3 6 3

T
ttt xxxx t tt

h h
h u x u u u

x x
   = −  − −

 
 

Applying Eq. (3.55) to Eq. (3.53) we have 

 ( )( )2 3 2 3 2 3n 2 n n n n
1 2

32 52
1 4 8 2 8 2 6 2 .

3 3
i i i i iu r r r u r r r u r r u u +

 
   

= − − + − − − + − − +   
   

 

After similar calculations as above, we obtain the global error of the D5 method at even nodes: 

 

2 2
2 2 2

4 2

4 1 20 59
.

3 6 3 9

T
ttt xxxx t tt

h h
h u x u u u

x x
   = −  − −

 
 

Finally, applying Eq.(3.55) to Eq.(3.54) we obtain 

 ( )2 3 2 3 2 3 3n 2 n n n n
1 2 3

92 70
1 4 12 2 8 2 10 2 ,

3 3
i i i i iu r r r u r r r u r r u r u +

  
   

= − − + − − − + − − −   
   

 

and the final result is the following global error: 

 

2 2
2 2 2

4 2

4 1 4 19
.

3 6 3 9

T
ttt xxxx t tt

h h
h u x u u u

x x
   = −  − −

 
 

One can see that the global error is second order in the time step size for both methods and both 

for odd and even cells.  □ 

Remark 2 The first two terms in the global errors are the usual error of space and time 

discretization. The two other terms are, however, contain the space step size in the denominator. 

It means that 
2

h

x
 should go to zero to achieve convergence, thus the methods are only 

conditionally consistent. This is usual for these kinds of methods, see the original paper of Gourlay 

[43] (Theorem 5 and the remark after it), and also in [37]. 

Remark 3 The analytical solution of Eq. (2.8), in the absence of the heat source, using the nu  

values as initial conditions is  

 ( )1 2 2 2e 1 2 2 ... .n Mh n nu u Mh M h u+ = = + + +  

Performing the operations, we can obtain for a general element at the end of the doubled time step: 

 ( ) ( ) ( )2 2 2 2 3
1 21 4 12 2 8 2 .n n n n

i i i iu r r u r r u r u O r+
 = − + + − + +  

This is the same expression up to second order in r as the appropriate expressions of the numerical 

values, thus it is obvious that if one consider fixed spatial discretization, then the numerical 
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solution unconditionally converges to the exact solution of the obtained ODE system with the 

order 2. 
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4.  FAMILIES OF ADAPTIVE TIME STEP CONTROLLERS FOR SOLVING THE NON-

STATIONARY HEAT CONDUCTION EQUATION 

I systematically test families of explicit adaptive step-size controllers for solving the diffusion 

or heat equation. After discretizing the space variables as in the conventional method of lines, we 

are left with a system of ODEs. Different methods for estimating the local error and techniques for 

changing the step size when solving a system of ODEs were suggested previously by several 

researchers. In my work [68], those local error estimators and techniques are used to generate 

different types of adaptive step size controllers. Those controllers are applied to a system of ODEs 

resulted from discretizing diffusion equation. The performance of the controllers was compared in 

the case of three different experiments. The first and the second system are heat conduction in 

homogeneous and inhomogeneous medium, while the third one contains a moving heat source that 

can correspond to a welding process. 

In general, the explicit numerical methods for solving a system of ordinary differential 

equations use a fixed time step. This kind of approach can perform poorly if the solution changes 

rapidly in some parts of the integration interval and slowly in other ones. Using a small constant 

time-step, where the solution changes rapidly, can help to circumvent the problem of poor 

performance, but this small constant time-step may cause unnecessary computational cost where 

the solution changes slowly. Using adaptive methods based on automatic time-step selection can 

be the remedy of the expensive numerical computations [69]. Adapting the time-step size during 

the integration process is not just a matter of improving the performance of the integrator; it makes 

the solution of difficult problems practical [70]. There are at least three crucial factors when it 

comes to designing adaptive step-size integrators: the method of calculating the solution at the end 

of the actual time step, the method of estimating the local error in each time step, and the approach 

for changing the time-step [71]. 

Among a large number of explicit numerical methods available for solving a system of ODEs, 

our study will be restricted to two fundamentally different types of explicit methods, which are the 

single step multi-stage Runge-Kutta (RK) method and the recently published LNe3 method [37]. 

Estimating the local error in Runge-Kutta methods when applied to ordinary differential 

equations, was studied intensively in the literature of numerical analysis [69]–[79]. The methods 

of estimating the local error can be classified into two types: the methods which use the 

information of only a single step, and those which use the information of successive steps. The 

methods of the second type are out of the scope of this thesis. The most well-known method, of 

the first type, for estimating the local error is to calculate the dependent variable u first by using a 

full-time step h , and to recalculate it using two halved time steps / 2h . The difference between the 

two values of u represents the local error LE . Another common method is the pseudo-iterative 

formula which uses a RK formula of order ( )p , then a RK formula of order ( )1p +  which uses 
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the already calculated quantities of the lower order RK formula to spare time, that is why these 

algorithms are called embedded methods [77]. In his early work [72], Merson has derived a 

formula that gives a plausible estimation for the local error which is valid only if the ordinary 

differential equation is linear. Later, Scraton [78] suggested a new formula for estimating the local 

error but without any restrictions on its validity. The particular schemes of most interest are given 

in Eqs. (7), (8), and (9) of his paper. However, the formula suggested by Scraton can be applied 

only to a single differential equation, not to a system of ODEs [76]. To overcome this shortcoming, 

England [76] introduced a process that can be valid even when it is applied to a general system of 

ODEs. Also, Shampine [71] proposed a new formula in his work and compared the performance 

of different error estimators. 

The approach for changing the step size in case of ODEs, can be done using the elementary 

controller: 

 

1

,
p

new present

TOL
h s h

LE

 
=  

 
 (4.1) 

where 1s   is the safety factor, TOL  is tolerance specified by the user, h is the time step, LE is 

the estimated local error, and p is the order of the method. The elementary controller changes the 

step size based on the current estimation of the local error. This elementary controller generally 

shows a good performance, but there are some exceptions. For instance, the time step size can be 

limited by the stability properties of the used method, which in turn causes an oscillation in the 

step size sequences. More details about the shortcomings of the elementary controller can be found 

in [79]. Based on control theory, Gustafsson [80], [81] introduced the so-called PI controller to 

overcome the problem of oscillating step size. Its adaptivity algorithm is: 

 1
K K

I PLETOL nh h
new presentLE LE

n n

   
−   =

   
   

, (4.2) 

where IK  and PK  are constants, nLE  is the estimated local error at the current step size, 1nLE −  

is the estimated local error at the previous step size, and h  is the step size. Unlike the elementary 

controller, the PI controller changes the step size based on the past history of the local error 

estimation. Later, Soderlind [82]–[84] investigated this type of controllers. He developed new 

strategies for adaptive step size based on digital control theory. 

In the references mentioned in this chapter, the authors tested the methods for estimating the 

local error and the approaches for changing the step size only in the case of small systems of ODEs. 

Those algorithms might be efficient when they are applied to a single ordinary differential equation 

or a system of ODEs including limited number of equations. The objective of this paper is to design 

and extensively test adaptive step size controllers based on the previous mentioned studies then 

apply those algorithms to equation system (2.8), where the size of matrix M  is big. 
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4.1. The I and PI Step-Size Controllers 

Suppose that we applied an explicit numerical method of order p , with step size presenth , to 

equation system (2.8) in order to get an approximated solution 
1n

iu +
. Also, assume that we used 

some method for estimating the local error and the local error estimation, based on that method, is 

denoted by iLE . The norm of the error estimation is [85, p. 26] 

 1

11
max ,

Re

in

ni N
i i

LE
err

AbsTol u lTol

+

+ 

 
 

=  
+  

 (4.3) 

where AbsTol and RelTol are the relative and absolute tolerances which can be defined by the 

user.  

We note that in Eq. (17) in [69] and Eq. (4.10) in [86], the authors used a different formula for 

calculating the norm of the error estimation. In their formula they did not only consider the value 

of 
1n

iu +
, but they also considered the value of 

n
iu . Based on our numerical experiments, we do 

believe that including the value of 
n
iu in the calculation does not have significant effect and it only 

causes extra cost. 

Now, after calculating 
1nerr +
 we can change the step size using the following formula [69] 

 ( )( )1
max minmin ,max , n

new s presenth f f f h +=  (4.4) 

where 
1n +
is a function of 

1nerr +
 and it depends on the type of the step size controller. That 

function will be defined for each type of controller individually as we will see later. The 

nonnegative number sf  is a safety factor, and it is used to increase the probability of accepting 

the step size in the next iteration. The factors minf  and maxf  are used to prevent the step size from 

decreasing or increasing too rapidly. In our codes we set the following values for the factors 

min max0.9, 0.1, 5sf f f= = = . If 
1 1nerr +   the step size is accepted and the solution is advanced 

with 
1n

iu +
 and the step size will be modified by (4.4). If 

1 1nerr +   the step size and the solution 

1n
iu +

 are rejected and the calculations are repeated with new time step calculated by (4.4). 

In elementary controller I (asymptotic) the value of the function 
1n +
 depends on the current 

estimated error as follows: 

 ( )
1

1 1 .n n perr

−
+ +=  (4.5) 
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In PI controller the value of the function 1n +  depends on the current and previous estimated 

errors as follows: 

 ( ) ( )
1 2

1 1 .

k k
n n np perr err

−
+ +=  (4.6) 

Here the values 1 20.8, 0.31k k= =  are taken from [87]. For the first step I considered that 1nerr =

. To be systematic, I run all our codes for adaptive controller algorithms considering the following 

decreasing series for the tolerance: 
1 2Re 2 ,2 ,...AbsTol lTol − −= =  

 

4.2. Description of the Methods 

For the sake of simplicity, all the schemes resulted from Runge-Kutta methods and adaptive 

Runge-Kutta methods are described when they are applied to a single ordinary differential 

equation. Nevertheless, these schemes can be straightforwardly expanded to solve the system in 

Eq. (2.8). For initial value problem (IVP) of the form: 

 
( )

( )0 0

,
,

du
f t u

dt

u t u


= 


=


 (4.7) 

the general s-stage Runge Kutta method can be written as follows [88]: 

 

1

1

1

,

, , 1: .

s
n n

i i

i

s
n n

i i ij j

j

u u h b k

k f t c h u h a k i s

+

=

=


= + 




  
= + + = 

 
  




 (4.8) 

where the ,a b  and c  are constants and can be defined using Butcher array. 

 

4.2.1. Group A: Dormand-Prince Fifth-Order Runge-Kutta Method 

In Dormand-Prince method the k functions are evaluated as follows [79]: 
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( )1

2 1

3 1 2

4 1 2 3

5 1 2 3 4

6

,

1 1
,

5 5

3 3 9
,

10 40 40

4 44 56 32
,

5 45 15 9

8 19372 25360 64448 212
,

9 6561 2187 6561 729

9017
,

3168

n n

n n

n n

n n

n n

n n

k f t u

k f t h u hk

k f t h u hk hk

k f t h u hk hk hk

k f t h u hk hk hk hk

k f t h u hk

=

 
= + + 

 

 
= + + + 

 

 
= + + − + 

 

 
= + + − + − 

 

= + + 1 2 3 4 5

.

355 46732 49 5103

33 5247 176 18656
hk hk hk hk

















 
− + + − 
 

 (4.9) 

The fifth-order Runge-Kutta formula is: 

 
1

1 3 4 5 6

35 500 125 2187 11
.

384 1113 192 6784 84

n nu u h k k k k k+  
= + + + − + 

 
 (4.10) 

Estimating the local error requires another formula. To do that Dormand considered an extra 

evaluation: 

 7 1 3 4 5 6

35 500 125 2187 11
, .
384 1113 192 6784 84

nk f t h hk hk hk hk hk
 

= + + + − + 
 

 (4.11) 

The embedded formula is: 

 
1

1 3 4 5 6 7

5179 7571 393 92697 187 1
ˆ .

57600 16695 640 339200 2100 40

n nu u h k k k k k k+  
= + + + − + + 

 
 (4.12) 

The coefficients 7 ja  in Eq. (4.11) are designedly chosen to be the same as the coefficients ib  in 

Eq. (4.10). It means that Eq. (4.11) is equivalent to: 

 ( )1
7 , .n nk f t h u += +  (4.13) 

Now for the next step (when 
1 1nerr +  ), I set 1 7k k= . This trick is called FSAL (first-same-as-

last). This means that in the case of acceptance, the evaluation of the function 7k  can be reused 

again in the following step as 1k  which in turn reduces the cost of computations. The local error 

estimation can be calculated: 

 
1 1ˆ .n nLE u u+ += −  (4.14) 

Our notations hide the fact that the functions ,LE k  are vectors if the method is applied to a system 

of ODEs. Since the method is introduced to a single differential equation, as I mentioned 
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previously, the i  index has been dropped from all the formulas of those functions. Also, for the 

functions of the subsequent subsections, except Subsection 4.2.4, the i  index has been dropped as 

well. 

Substituting Eqs. (4.12) and (4.14) into Eq. (4.3), and considering Eqs. (4.4) and (4.5) result in 

the adaptive step size scheme of the Dormand-Prince method with I controller type, which will be 

denoted as “DPRK5(4) #I”. Considering Eq. (4.6) instead of Eq. (4.5) leads us to the adaptive step 

size scheme of the Dormand-Prince method, but with PI controller type, which will be denoted as 

“DPRK5(4) #PI”. For the sake of comparison, I will also test the scheme of Eq. (4.10), which is a 

fifth-order Runge-Kutta method with a fixed step size. This method will be denoted as “non 

adaptive DPRK5(4)”. 

Based on Eq. (4.9), we can design adaptive controllers which use the doubling step size 

technique. First, we take a single step of size h and we use the six stages of Eq. (4.9) in order to 

calculate the solution 
1nu +
 using Eq. (4.10). Second, we take two steps of size 

2

h
 to recalculate 

the solution, denoted again by 
1ˆnu +
, using Eqs. (4.9) and (4.10) two times. The local error can be 

simply estimated as in Eq. (4.14), then substituted into Eq. (4.3) to obtain: 

 1

1
max .

Re

n

n

LE
err

AbsTol u lTol

+

+

 
 

=  
+  

 (4.15) 

Note that instead of 
1ˆnu +
 now there is 

1nu +
 in the denominator. If the error norm is tolerable, the 

step size is accepted and there are three possibilities to advance the solution. The first possibility 

is to accept the solution 
1nu +
 resulted from taking a single step. With that possibility we can design 

two controllers based on Eqs. (4.4), (4.5), and (4.6). Those adaptive controllers will be denoted as 

“RKduplicate 1 # I” and “RKduplicate 1 # PI”. The second possibility is to accept the more 

accurate solution 
1ˆnu +
 and we will be left again with “RKduplicate 2 # I” and “RKduplicate 2 # 

PI”. The third one is Richardson extrapolation (see Eq. (4.5) from [86]), which combines the 

solutions 
1nu +
 and 

1ˆnu +
 to produce another, more accurate solution as follows: 

 

1 1
1 1 ˆ

ˆ ,
2 1

n n
n n

p

u u
u u

+ +
+ +

 −
= +   − 

 (4.16) 

where p is the order of the method, which is four in this scheme. Based on the last formula, we can 

design two adaptive controllers and they will be denoted as “RKduplicate 3 # I” and “RKduplicate 

3 # PI”. 
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4.2.2. Group B: Scraton’s Fourth-Order Runge-Kutta Method 

In his work [78], Scraton introduced a Runge-Kutta method with five stages: 

 

( )

( )

( )

1

2 1

3 1 2

4 1 2 3

5 1 2 3 4

,

2 2
,

9 9

1 1 1
, ,

3 12 4

3 3
, 23 81 90

4 128

9 9
, 345 2025 1224 544

10 10000

n n

n n

n n

n n

n n

k f t u

k f t h u hk

k f t h u hk hk

k f t h u hk hk hk

k f t h u hk hk hk hk


=

 

= + +  
  

 
= + + +  

  
 

= + + − +  
  

 
= + + − + − +  

 

 (4.17) 

and the fourth-order scheme is: 

 
1

1 3 4 5

17 81 32 250
.

162 170 135 1377

n nu u h k k k k+  
= + + + + 

 
 (4.18) 

To estimate the local error, Scraton evaluated the following functions: 

 

1 3 4 5

1 2 3 4

3 1

1 27 4 25

18 170 15 153

19 27 57 4
,

24 8 20 15

q k k k k

r k k k k

s k k


= − + − + 




= − + − 


= − 



 

then the local error estimation is given by the following nonlinear formula: 

 
qr

LE
s

= − . (4.19) 

Scraton stated that subtracting the local error calculated in Eq. (4.19) from Eq. (4.18) will increase 

the order of the scheme to be five: 

 
1

1 3 4 5

17 81 32 250

162 170 135 1377

n n qr
u u h k k k k

s

+  
= + + + + + 

 
. (4.20) 

For easy recognition, I refer to schemes (4.18) as “non adaptive RKSc 1”, and (4.20) as “non 

adaptive RKSc 2”. To design an adaptive step size controller based on Scranton’s error estimation, 

we substitute Eqs. (4.18) and (4.19) into Eq. (4.4), then we use Eqs. (4.4) and (4.5). This is an 

adaptive-Scraton scheme with I controller type. We have two possibilities to advance the solution 

when the step size is accepted: First, to use Eq. (4.18) and this type will be referred to as “RKSc 1 

# I”. Second, to use Eq. (4.20), and this type will be referred to as “RKSc 2 # I”. If we repeat the 
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previous steps, but using Eq. (4.6) instead of Eq. (4.5), we will get another two types of adaptive 

step size controllers which are “RKSc 1 # PI” and “RKSc 2 # PI”. 

4.2.3. Group C: England Fourth-Order Runge-Kutta Method 

England used four-stage Runge-Kutta method in the first step [71], [76]: 

 

( )

( )

( )

1

2 1

3 1 2

4 2 3

,

1 1
,

2 2
,

1 1
,

2 4

, 2

n n

n n

n n

n n

k f t u

k f t h u hk

k f t h u hk hk

k f t h u hk hk

=

 

= + +  
  


 = + + +  


= + − +


 (4.21) 

and the fourth order formula is: 

 ( )1
1 3 44 .

6

n n h
u u k k k+ = + + +  (4.22) 

Unlike in the case of other methods, England started the second time step before estimating the 

local error, and he used the same stage-formulas as in the first step: 

 

( )

( )

1
5

1
6 5

1
7 5 6

,

3 1
,

2 2

3 1
, .

2 4

n n

n n

n n

k f t h u

k f t h u hk

k f t h u hk hk

+

+

+

= +

 
= + + 

 

 
= + + + 

 

 

Before completing the second step, an extra evaluation is made which enables us to estimate the 

local error accumulated in the two steps: 

 ( )1 2 3 4 5 6 72 , 96 92 121 144 6 12 .
6

n n
extra

h
k f t h u k k k k k k k

 
= + + − − + − + + − 

 
 

The local error estimation according to England is: 

 ( )1 3 4 5 74 17 23 4 .
90

En extra

h
LE k k k k k k= − + + − + −  (4.23) 

Now, we substitute Eqs. (4.22) and (4.23) into Eq. (4.3) 

 
2

1
max .

Re

Enn

n

LE
err

AbsTol u lTol

+

+

 
 

=  
+  

 (4.24) 

If 2 1nerr +  , the evaluation of the last function in the second step can now proceed, 
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 ( )1
8 6 72 , 2 ,n nk f t h u hk hk+= + − +  

and we accept the following numerical solution: 

 ( )2 1
5 7 84 .

6

n n h
u u k k k+ += + + +  (4.25) 

If 
2 1nerr +  , we reject the step size without evaluating the function 

8k  and we repeat the first 

step with a new step size. In this case we lose seven function evaluations. When the time step is 

acceptable, 9 function evaluations will be performed if we consider the calculation of 
extrak  as 

well. In other words, we make only 
1

4
2

 function evaluations for each step, while it requires 5  

function evaluations per step if we use the logic of the classical adaptive Runge-Kutta such as 

Fehlberg method. It means that we saved  1 2  function evaluation for each step. One might argue 

that saving only a half function evaluation per step cannot compensate the expensive cost of the 

probability of losing seven function evaluations when the step size is rejected. According to the 

experience, for a well-designed adaptive controller the probability of a rejected step size is low 

and the majority of the steps are accepted. It is worthy here to recall that there are more effective 

tricks which enables us to make only 4  function evaluation per step, for instance, the so called 

FSAL trick previously described and the local extrapolation technique [89, p. 717]. 

Nevertheless, in case of either a rejected or an accepted step, we should repeat or proceed the 

calculations with the new step size. If we use Eq. (4.24) along with Eqs. (4.4) and (4.5), an adaptive 

controller of type I is applied and it will be denoted as “RKEn #I”. If we use Eq. (4.24) along with 

Eqs. (4.4) and (4.6), a new adaptive controller is applied but of type “PI”, and it will be denoted 

as “RKEn #PI”. The simple 4th order RK scheme using only Eq. (4.22) will be referred to as “non 

adaptive RKEn”. 

Shampine [71] used the same function evaluations as England used but with a new local error 

estimator of the form: 

 ( )1 3 4 5 7

1
4 17 23 4 .

180 2
Sh extra En

h
LE k k k k k k LE= − − + − + = −  (4.26) 

Again, based on Shampine’s formula for estimating the local error and using Eqs. (4.3), (4.4), (4.5)

, and (4.6) we can design another two types of step size controllers which are “RKSh #I” and 

“RKSh #PI”. Since England used two steps to calculate the numerical solution, then it is fair to 

compare the “RKEn #” types with that adaptive controller which depends on doubling the step 

size. First, we take a single step of size h  and we use the four stages of Eq. (4.21) in order to 

calculate the solution 1nu + using Eq. (4.22). Second, we take two steps of size 
2

h
 to recalculate 

the solution 1ˆnu +  using Eqs. (4.21) and (4.22) two times. The local error can be simply estimated 

now as in Eq. (4.14) and then Eq. Is used to calculate 1nerr + . If the error norm is tolerable, then 
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the step size is accepted, and we again have the same three possibilities, as in Subsection 4.2.1, to 

calculate the new solution. The first possibility is to accept the solution 1nu +  resulted from taking 

a single step. In this case we can design two controllers based on Eqs. (4.4), (4.5) and (4.6). Those 

adaptive controllers will be denoted as “RKdoubling 1 # I” and “RKdoubling 1 # PI”. The second 

possibility is to accept the solution 1ˆnu + , and this will be denoted again with “RKdoubling 2 # I” 

and “RKdoubling 2 # PI”. The third one is to use Richardson extrapolation: 

 

1 1
1 1 ˆ

ˆ ,
2 1

n n
n n

p

u u
u u

+ +
+ +

 −
= +   − 

 (4.27) 

where p is the order of the method, which is four in this scheme. Based on the last formula, we can 

design two adaptive controllers and they will be denoted as “RKdoubling 3 # I” and “RKdoubling 

3 # PI”. 

 

4.2.4. Group D: Second-Order LNe3 Method: 

The LNe3 method has been introduced in Subsection 2.2. The method deals with the spatially 

discretized heat equation, or generally, any system of first order linear ODEs. Unlike the previous 

subsections, this method will be explained when it is applied to a system of ODEs instead of single 

differential equation. The solution produced by Eq. (2.17), which is called LNe2 scheme, will be 

denoted by 
1n

iu +
, while the solution produced by iterating Eq. (2.17), which is called LNe3, will 

be denoted by 
1ˆn

iu +
. The local error can be estimated by the following formula: 

 1 1ˆ .n n
i i iLE u u+ += −  (4.28) 

Substituting Eqs. (2.17) and (4.28) into Eq. (4.3), and considering Eqs.(4.4), (4.5), and (4.6), 

adaptive controllers will be applied and they will be denoted as “ALNe3 #I” and “ALNe3 #PI”. 

We must note that when Fehlberg introduced his adaptive step size controller, many 

practitioners questioned the robustness of the method at that time. They thought that it was risky 

to estimate the local error using the same evaluation points. Later, experiments showed that this 

concern was not a problem in practice [89, p. 716]. Since the embedded LNe3 method is new, one 

might have the same concern. As we can see later, our experiments showed a very stable 

performance for that method. 

4.3. Numerical Experiments and Reuslts 

The numerical solution and the reference solution are compared only at fint , which is the final 

time of the simulation and will be specified later. We measure the accuracy using the global L  
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error, which is the maximum of the absolute difference between the reference temperature 
ref

ju   and 

the temperature 
num

ju  calculated by our numerical methods at the final time:  

 ref num
j fin j fin

1 j
Error( ) max ( ) ( ) .

N
L u t u t

 
= −  (4.29) 

In the first experiment, I will test the previously described methods in case of a linear diffusion 

equation in the absence of the heat source, which yields a non-stiff system of ODEs after spatial 

discretization. In the second experiment a linear diffusion equation in inhomogeneous media will 

be tested. The third experiment will treat the problem of a moving heat source. 

The simulations are conducted using the MATLAB R2020b software on a desktop computer 

with an Intel Core (TM) i11-11700F. Since the analytical solution does not exist for complicated 

systems, the reference solution was calculated by the implicit ode15s solver setting very stringent 

error tolerance (‘RelTol’ and ‘AbsTol’ were both 10−14 ). 

 

 

4.3.1. Experiment 1: Non-Stiff Linear Diffusion Equation 

In this experiment we consider Eq. (2.7) in 2 space dimension 

( )     3, , 0,1 0,1 0, 2 10x y t −      , subjected to zero Neumann boundary conditions. The space 

domain was divided into 50 50x yN N N=  =  , thus we have  2500  cells. The initial conditions 

were generated randomly using the built-in function ‘rand’ in MATLAB ( )0iu rand= . The ‘rand 

’function generates random numbers uniformly distributed in the interval  0,1 . The resistances 

and capacities were set as 
31, 10i i iRx Rz C −= = = . The stiffness ratio of the introduced system is 

roughly 44 10  and the CFL limit for the explicit Euler scheme is 42.5 10− . 

For all the groups of methods, Figures 4.1, 4.2,  4.3 and 4.4  show that the adaptive controllers 

of type (I) achieve approximately the same or slightly better performance as the controllers of type 

(PI) when both use the same method for estimating the local error. For example – as we can see 

from Figure (4.1) – the curves of the controllers “RKdoubling 1 #I” and “RKdoubling 1#PI” are 

almost identical. From Figures  4.1 and 4.3, we can clearly see that using Eq. (4.27), which was 

suggested in theorem 4.1 in [86], improved the performance of the algorithms based on the step 

doubling technique. However, the embedded Runge-Kutta-Dormand-Prince adaptive controller 

showed better performance than all the types of adaptive controllers based on the step doubling 

technique as we can see in Figure 4.1. It is not a surprising result and was clearly stated in [85, p. 

911] that step doubling has been superseded by a more efficient step size adjustment algorithm 

based on embedded Runge-Kutta formulas when it is applied to a system of ODEs. Another 

important observation is related to England and Shampine methods of group C. Although England 

stated in his work [76] that his method is valid “when applied to a general system of differential 
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equations”, our numerical experiments appear to contradict his claims. As we can see in Figure 

4.3, the adaptive controllers based on England and Shampine showed a poor performance when 

they were applied to our system (2.7). Scraton suggested a new scheme (4.20), Eq. (9) in his work 

[78], to increase the order of the method. As we can see in Figure 4.2, the non-adaptive scheme 

(4.20), which is the red colour curve, showed unstable behaviour. However, the adaptive schemes, 

which are RKSc 2 # I and RKSc 2 # PI, showed a stable performance but without improving the 

accuracy if they are compared to “RKSc 1 # I” and “RKSc 1 # PI”. 

For each group of methods, we can see that the non-adaptive scheme is faster than the adaptive 

controller. Here a question arises: why do we use the adaptive controller if the non- adaptive 

scheme is faster? The subsequent discussion will show that the non-adaptive Runge-Kutta scheme 

is vulnerable, and the stability can be easily violated when small changes in the conditions or 

parameters of the experiment take place. To illustrate that, the time domain of the experiment 
32 10−  was replaced by 

12 10−  while all other settings and conditions remained the same. Figure 

4.5 shows the performance of the methods of group A. We can see that after we made a small 

change in the time domain, the behaviour of “non adaptive DPRK5(4)” became unstable and its 

curve blew up and became discontinuous. Despite of the fact that the behaviour of the adaptive 

controllers changed after we changed the time domain, their performance remained stable. It does 

indeed look like that the running time, in case of adaptive controllers, is relatively independent of 

the required accuracy. This point is out of the scope of this thesis and one can see a good 

explanation in Appendix D of [90]. So, the advantage of using the adaptive controller is not always 

about reducing the computational time, but it is sometimes more about providing reliable results 

when the non-adaptive scheme fails. 

The “non adaptive LNe3” method is excluded from the last discussion and in the second 

experiment I will show that this method remains stable regardless of the conditions of the system. 

It was proved mathematically, and verified by numerical experiments, that the method is 

unconditionally stable [37]. 
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Figure 4.1. Experiment 1: L  errors as a function of the running time for group A. 

 

Figure 4.2. Experiment 1: L  errors as a function of the running time for group B. 
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Figure 4.3. Experiment 1: L  errors as a function of the running time for group C. 

 

Figure 4.4. Experiment 1: L  errors as a function of the running time for group D 
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Figure 4.5. Experiment 1: L  errors as a function of the running time for group A when fint  is 

larger. 

 

 

4.3.2. Experiment 2: Stiff Linear Diffusion Equation 

In this experiment we consider Eq. (2.7) in 2 space-dimensions 

( )     4, , 0,1 0,1 0, 2 10x y t −      , subjected to zero Neumann boundary conditions. The space 

domain was divided into 20 20x yN N N=  =  , thus we have  400  nodes. The capacity and the 

resistances obeyed the following formula: 

 ( )( ) ( )4 4 410 1 1 10 , 10 1 1, 1.x yC x R x R y− − −= − + = − + = +  

The stiffness ratio of the resulted system is 91.05 10 , while 
10

max 9 10h − . For such relatively 

stiff system, all the non-adaptive schemes based on Runge-Kutta showed a poor performance. 

They can provide a reliable result only when the time step is very small which increases the cost 

of the computations. The adaptive controllers which used England or Shampine methods for 

estimating the local error showed also a poor performance when they are compared to those 

adaptive controllers which used the step doubling technique. As we can see in Figure 4.6, the 

highest accuracy that the England or Shampine formulas could reach was of the order 810− , while 
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it is of the order 1310−  if the step doubling technique is used. Also, the performance of the 

controllers of type (I) was identical and sometimes even better than the performance of those of 

type (PI).  For the sake of comparison, in Figure 4.7 we selected the most accurate methods of 

groups A, B and C, as well as the methods of group D. 

 

Figure 4.6. Experiment 2: L  errors as a function of the running time for group C. 

 

 

Figure 4.7. Experiment 2: L  errors as a function of the running time for the selected methods. 
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4.3.3. Experiment 3: Stiff Diffusion Equation with a Moving Heat Source 

In this experiment we consider Eq. (2.7) in 2 space-dimensions 

( )     5, , 0,1 0,1 0, 2 10x y t −      , subjected to zero Neumann boundary conditions. The space 

domain was divided into 30 30x yN N N=  =  , thus we have  900  cells. The initial conditions 

are generated randomly using the built-in function ‘rand’ in MATLAB ( )0iu rand= . The capacity 

and the resistances obeyed the following form: 

 ( )( ) ( )6 4 610 1 1 10 , 10 1 1, 1.x yC x R x R y− − −= − + = − + = +  

The stiffness ratio of the resulted system is roughly 111.5 10 , while 
12

max 6.4 10h − . Here we 

consider a moving Gaussian point heat source which takes the formula: 

 

( ) ( )0 0

2

max e ,

y xy y v t x x v t

r
q q

 + − + + −
 −
 
 =  

where maxq  is the maximum heat flux at the centre of the heat source, r  is the effective heating 

radius of the heat source,  xv  and yv  are the velocities of the heat source in x and z directions 

respectively and ( )0 0,x y  is the initial position of the heat source. The parameters of the heat source 

are set to be: 

 

( ) ( )

6
max

3

0 0

10

25 10 , 0 .

, 0, 0.5

x y

q

v v

x y

=


=  = 


= − 

 

It means that heat source will move with a constant speed along the positive direction of the x axis. 

The effective heating radius is chosen to be 5 5r x z=  =   to ensure that there are at least four 

nodes inside the effective heating dimeter. Figure. 4.8 shows the contour of the temperature 

distribution at the end of the time interval and the trace of the heating process refers to the trajectory 

of the heat source. 
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Figure 4.8. Experiment 3: The contour of the temperature distribution at the end of the time 

interval. 

We can clearly see from Figure 4.9 that the LNe3 and its adaptive scheme are much faster than the 

adaptive schemes of Runge-Kutta when high accuracy is not required, while adaptive Runge-Kutta 

schemes are more applicable when the desired accuracy goes beyond a certain level (which is of 

order 610− in our experiment). 
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Figure 4.9. Experiment 3: L  errors as a function of the running time. 
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5.  FAMILIES OF ADAPTIVE TIME STEP CONTROLLERS FOR  THE TRANSIENT 

DIFFUSION EQUATION WITH DIFFUSION COEFFICIENT DEPENDING ON BOTH 

SPACE AND TIME 

In this chapter I deal with the time-dependent diffusion equation in one dimension, where the 

diffusion coefficient itself depends simultaneously on space and time. I introduce and design 

several adaptive time-step controllers to solve numerically that equation. The simplest regular 

diffusion PDE in one space dimension is 

 
( ) ( )

( ) ( )
2

0

2

, ,
, , 0 .

u x t u x t
u x t u x

t x


 
= = =

 
 (5.1) 

The boundary conditions will be discussed in the concrete analytical and numerical examples. In 

this work, we modify Eq. (5.1) to have a diffusion coefficient which is non-constant in two senses. 

We introduce a new variable, which is a combination of the space and time variable: 
x

t
 = 

. The diffusion coefficient has the simplest power law dependence on this variable: ( ) m  = , 

where   is a constant, whose physical dimension depends on the concrete value of m . Inserting 

it into the diffusion equation we obtain 

 
( ) ( ) ( ) ( )2

1

2

, , , ,
.m m mu x t u x t u x t u x t

m
t x x x x x


    −

      
= = +            

 (5.2) 

In our published work [91], Ferenc Barna has introduced the analytical solution of Eq. (5.2) which 

will be used as a reference solution in my numerical experiments. Since the analytical procedures 

are out of the scope of my research, I will introduce here only the final formula of the solution 

without going through the details: 

 ( )

( )
( ) ( )

( )

2

1
2

2/
2

4 2
4 1 1

,
2 4 2 4

/
, e ,

2 2

m
mx t

m
m

m m

x tt
u x t c W

x m





−
−

−
−

− −

− −

 
 

=    − 
 

 (5.3) 

where   is a real number, and c  is a normalization constant. W  is the Whittaker functions [92] 

given by the following formula: 

 ( )
1

2 2
,

1
e ,1 2 ; ,

2

z

W z z U z


    
− +  

= − + + 
 

 

where U  is kummer  function. It can be shown with careful parameter analysis that for negative 

values of  , the solutions have an exponential growth at large time and spatial coordinates which 

may be considered non-physical; thus, we exclude them from further numerical investigations. 
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5.1. The Space-Temporal Discretization and the Applied Schemes 

We consider Eq. (2.3) in the absence of the heat source: 

 ( ) ( ) ( )
u u

c x x k x
t x x


   

=  
   

. (5.4) 

For simplicity, we consider ( , ) 1c x t   and ( , ) 1x t   in this work, and all the space- and time-

dependence of the diffusivity will be incorporated into the conductivity ( , )k x t . To discretize Eq. 

(5.4), we follow the same procedures in Subsection 2.1 to obtain a system of ODEs:  

 
, 1 , 1

1 1
n n
i i i i

i i i i i

i i

du u u u u

dt R C R C− +

− +− −
= + . (5.5) 

Unlike Eq. (2.7), the resistance in Eq. (5.5) contains the superscript n  which means that resistance 

is not only a function of the space but also the time. The resistance in this case is given by the 

following formula: 

 

( )
, 1

, 1

, 1,..., 1.

/

n
i i m

n
i i

x
R i N

D x t

+

+


= = −  (5.6) 

In the last equation, the index i  of the variable x  has been dropped since we are dealing with 

equidistance grid. 

Now we can introduce the adaptive controllers which we will use to reproduce the solution of  

Eq. (5.2) numerically. In Chapter 4, we came out with the result that the adaptive schemes using 

(PI) controller do not have any advantage compared to the same schemes using (I) controller. So, 

we use only the adaptive controllers of type (I) in this chapter. The quantities in Eq. (3.27) will be 

introduced here again taking into consideration that the diffusion coefficient is function of the time 

and space: 

 1 1

, 1 , 1 , 1 , 1

1 1
+  and + , 1, ..., , 0, ..., .

n n
n n i i

i in n n n
i ii i i i i i i i

u uh h
r A i N n T

C CR R R R

− +

− + − +

   
   = = = =
   
   

 (5.7) 

A) The adaptive LNe3 schemes 

As I introduced in Chapter 2, the LNe3 method consists of three stages. In the first stage we use 

the CNe scheme. Considering the new notations in Eq. (5.7), the CNe scheme has the following 

formula: 

 ( )1 1 .
n n
i i

n
n n i
i i n

i

r rA
u u e e

r

− −+ =  + −  (5.8) 
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In the second stage, we use the scheme in Eq. (5.8) as predictor in order to calculate new new
iA  

values: 

 new
pred pred

1 1

, 1 , 1

+ .i
i i
n n

i i i i i

u uh
A

C R R

− +

− +

 
 =
 
 

 (5.9) 

The LNe2 scheme has the following formula: 

 
new new

1 1
.

n
in

i i i
n n

n n n i i
i i i n n n

i i i

r
r A A A Ae

u e A
r r r

u
−

−+  − −−
+ − +  
 

=  (5.10) 

In the third stage, the values in Eq. (5.10) one can first recalculate 
new
iA  again, then repeat Eq. 

(5.10) to obtain the LNe3 scheme.  

Each stage provides values of the unknown function u  at the end of the actual time step. It 

means that there are three possibilities to compare these values with one another in order to 

estimate the local error. The first possibility means that the difference between the numerical 

solutions calculated in the first and second stages is used as a local error estimator as follows: 

 1 1
1 2 ˆ ,n n

C LLE u u+ += −  (5.11) 

where 1ˆnu + and 1nu +  are the solutions calculated by Eqs. (5.8) and (5.10) respectively. The indices 

C1 and L2 in the last nomenclature 1 2C LLE   refer to the stages used to estimate the local error. 

Now we substitute 1 2C LLE  and 1nu +  into Eq. (4.3) to obtain the norm of the local error estimation. 

Considering the previous calculations and Eqs. (4.4) and (4.5), an adaptive time step controller is 

constructed, and it is denoted by ALNe3-C1L2.  Repeating the same step as in the previous lines, 

another adaptive time step controller is obtained, and it is denoted by ALNe3-C1L3. The third 

possibility is when the local error is estimated based on the first and the third stages and the applied 

controller will be denoted by ALNe3-L2L3 which used in Subsection 4.2.4. 

B) The adaptive CLL schemes 

The CLL scheme [93] is a modification of the LNe3 algorithm in order to achieve third order 

temporal convergence. It consists of three stages. It uses fractional time steps during the first and 

second stages and a full-time step in the third stage. Generally, the length at the first stage is 

1h ph= , 2 2
3

p  , but at the second stage it is always 2 2 3h h /= . In the first stage, the CNe 

formula is employed to calculate new predictor values: 

 ( )C 1 .
n n
i i

n
i

n
n i

i i
pr prA

u u e e
r

− −
= + −  (5.12) 
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In the second stage, we use formulas similar to Eq. (5.10), but with an 2 2 3h h /=  time step size to 

obtain the first corrector values. The new new
iA  values are calculated as in Eq. (5.9), i.e. 

C C
1 1

, 1 , 1

+C
i

i i
n n

i i i i i

u uh
A

C R R

− +

− +

 
 =
 
 

. Using these the corrector step is as follows: 

 
2 /3C C

2 /31 1
.

n
in

i i i
n n

n n n i i
i i i n n n

i i i

r
r A A A Ae

u e A
pr r r

u
−

−+  − −−
+ − +  
 

=  (5.13) 

In the third stage, a full-time step is taken with the LNe formula: 

 
CL CL

1 1
,

2 / 3 2 / 3

n
in

i i i
n n

n n n i i
i i i n n n

i i i

r
r A A A Ae

u e A
r r r

u
−

−+  − −−
+ − +  
 

=  (5.14) 

where CL
CL CL

1 1

, 1 , 1

+i
i i
n n

i i i i i

u uh
A

C R R

− +

− +

 
 =
 
 

.  

If we take 2
3p =  in the first stage, then an error estimation can be made as in Eq. (5.11), where 

1ˆnu +  is calculated by Eq. (5.12), considering that 2
3p = , while 1nu +  is calculated by Eq. (5.13). 

Substituting Eq. (5.11) into Eq. (4.3), then considering Eqs. (4.4) and (4.5), an adaptive controller 

can be implemented, and it will be denoted by ACLL-C1L2. If 1p = , another local error estimation 

can be considered as follows: 

 1 1
1 3 ˆ ,n n

C LLE u u+ += −  (5.15) 

where 1ˆnu +  is calculated by Eq. (5.12), taking 1p = , while 1nu +  is calculated by Eq. (5.14). 

Substituting Eq. (5.15) into Eq. (4.3), then considering Eqs. (4.4) and (4.5), an adaptive controller 

will be implemented, and it will be denoted by ACLL-C1L3. 

C) Runge-Kutta Cash-Karp Method RKCK 

Since it is a well-known method, and explained in detail in [79, p. 717], I think that it is not 

necessary to describe the tedious processes of implementing the method. The local error estimation 

in Eq. (16.2.6) and fourth order solution in Eq. (16.2.5) in [79] can be plugged in our Eq. (4.3) to 

obtain the norm of the local error estimation. Again, using Eqs. (4.4) and (4.5), the Runge Kutta 

Cash-Karp is obtained, and it is denoted by RKCK. 

D) Runge-Kutta-Fehlberg Method  

Plenty of references discussed and implemented this method. Here I will refer to [94], where 

the authors show how to estimate the local error using Eq. (5.55) in that reference. The numerical 

solution generated by Eq. (5.53), along with the local error estimated by Eq. (5.55) in that 

reference, can be substituted into our Eq. (4.3) to obtain the norm of error estimation. That norm 
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can be used to adapt the time step size using Eq. (4.4), resulting in the so-called Runge-Kutta-

Fehlberg 4(5) or RKF45 method and it will be referred to as RKF in our paper. 

 

 

5.2. Numerical Experiments and Results 

The numerical solution and the reference solution are compared only at 
fint , which is the final 

time of the simulation and will be specified later. We measure the accuracy using the global L  

error described in (4.29). 

The command kummerU, in MATLAB, has been used to calculate the Kummer U function 

(confluent hypergeometric function of the second kind). Since the calculation of the values of the 

boundary conditions for a given time point is orders of magnitude more time-consuming than 

performing the steps of the numerical schemes for all the nodes of the grid, we applied a trick to 

minimize running time. The boundary conditions have been calculated only in 4000 time points, 

and linear interpolation between the two appropriate times of the pre-calculated boundary values 

has been used to evaluate the boundary conditions at the actual time of the simulation. Of course, 

we always checked that the error due to this approximation is always much smaller than the errors 

of the numerical algorithms at the intermediate space points.    

Two numerical experiments are conducted to check the performance of these adaptive 

controllers and to compare their performances. The numerical computations are carried out using 

the MATLAB and desktop computer which were used in the experiments of Chapter 4. 

 

5.2.1. Experiment 1  

In this experiment, the following parameters are used:  

 
13 4 0 fin

02 4 3 1 5 96 10 1000 0 055 3 10 0 5 1 5m . , . , c . , N , x . , x , t . , t . . − −= = =  = =  =  = =  (5.16) 

The errors as a function of the running time are presented in a log-log diagram in Figure. 5.1. From 

the figure, it is evident that the adaptive LNe3 controllers and the adaptive CLL controllers are 

significantly faster than the RKF an RKCK when the desired accuracy is not very high. RKF and 

RKCK can achieve the same accuracy of the adaptive LNe and the adaptive CLL families with the 

same running time, only when the error is 61.4 10− . However, none of the adaptive controllers can 

go beyond this accuracy due to the space discretization error. It does indeed look like the error, in 

the case of the RKF and RKCK, is relatively independent of the running time. According to our 

previous experience, this is not uncommon behaviour in the case of explicit adaptive solvers, if 

the method used for designing the controller is only conditionally stable, such as some of the built-

in ODE solvers of MATLAB [95]. 
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Figure. 5.1. Experiment 1: The L  errors as a function of the running times 

 
 

5.2.1. Experiment 2  

In this experiment, the following parameters are used:  

 
4 0 fin

07 2 11 4 0 0042 500 0 48 5 10 0 9 1 5m . , . , c . , N , x . , x , t . , t . . −= = = = =  =  = =  

Figure 5.2 shows the errors as a function of the running time in a log-log diagram. This experiment 

shows that the adaptive LNe controllers and the adaptive CNe controllers are again faster than 

controllers designed based on the Runge-Kutta method. As we mentioned previously, the CFL 

limit is changing with respect to time, and it can be calculated for the explicit Euler method as 

EE
CFL MAX 2 /h = . That limit was calculated in this experiment at six selected points in time as 

follows 

 ( )   0 0time point + , 0, 0.2, 0.4, 0.6, 0.8,1fint i t t i −  . 

I plotted this limit as a function of time with a dashed blue line in Figure 5.3. Approximately at 

the same level of accuracy, when the produced error was of order 410− , the history of the time step 

size was also registered for each adaptive controller in order to check if they can follow the trend 
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of the EE
CFLh . Figure 5.3 shows that the LNe3 controllers and CLL controllers could roughly follow 

the trend of the CFL limit. It means that they could detect the changes in the CFL limit and modify 

the step size. The Runge-Kutta controllers could follow the general trend very well, but they suffer 

from fluctuating step size. The zoomed area of Figure 5.3 shows the behavior of the time-step size 

of RKCK during very short time (0.06% of the total time). On other hand, the time-step size in the 

case adaptive LNe3-L2L3 remained roughly constant. The reason behind the fluctuation in the 

case of the RK solvers is the conditional stability: when the time step size h is below the CFL limit 

(which is slightly larger for RK4 than for the first order explicit Euler), the error is very small and 

the time step size is increased. When the time step size exceeds the stability limit, errors are starting 

to be amplified exponentially. This exponential increase can be very slow at the beginning if h is 

still close to the limit, which may yield further time step size elevation. Once the increasing error 

is detected, h is suddenly decreased to let the errors diffuse away. Then the errors will be very 

small again, thus the cycle starts again. This fluctuation is time consuming and therefore 

undesirable. It is among the reasons why adaptive Runge-Kutta controllers are slower than other 

solvers in our experiments.  

 

Figure 5.2. Experiment 2: The L  errors as a function of the running times. 
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Figure 5.3. The time step size as a function time for the examined solvers. 

 

DOI: 10.14750/ME.2023.030



THESES-NEW SCIENTIFIC RESULTS 

67 
 

6. THESES – NEW SCIENTIFIC RESULTS 

T1. I constructed 24 schemes by combining conventional and non-conventional schemes within 

the odd-even hopscotch structure to obtain two stage methods. Then I produced preliminary 

numerical results and based on these I chose the 6 most efficient methods for further 

investigation. However, the original hopscotch method (A2) was one of these six methods. 

The performance of the selected methods was examined in the case of two 2-dimensional 

systems containing 10000 cells with very inhomogeneous randomly generated parameters and 

initial conditions. I showed that the proposed methods are competitive as they can give results 

with acceptable accuracy orders of magnitude faster than the well-optimized MATLAB 

routines.  

 

T2. The results showed that our novel hopscotch-based methods B1, C4, C5, D4, D5 are faster 

than the original hopscotch method (A2) when they are applied to a linear system with 

relatively high stiffness ratio. However, B1 method has the best performance comparing to all 

selected methods, and its advantage becomes larger when the system becomes more stiff. 

Based on the different numerical results, I selected those two methods which were proven to 

have the most valuable properties, namely, the reversed hopscotch (B1) and the CNe-CNe 

hopscotch (D5) algorithms. Then I analytically proved that their stability is guaranteed for the 

linear diffusion equation and that their convergence is second order in the time step size. 

 

T3. Our novel hopscotch-based methods were applied to Fisher’s equation. The results showed 

that the performance of the original hopscotch method (A2) is very poor when it is compared 

to performances of our novel hopscotch-based methods. I could prove analytically, in case of 

the CNe-CNe hopscotch (D5) scheme, that the way I treated the nonlinear reaction term 

guaranteed that the values of the unknown variable will remain in the unit interval if the initial 

values of that unknown are in unit interval, which in turn implies the positivity preserving 

property.  

 

T4. I systematically designed and tested families of adaptive time step controllers, based on PI 

and I controllers, for solving a system of ODEs resulted from spatially discretized linear 

diffusion equation. Several studies claimed that the adaptive step controllers of type PI are 

better than I type for solving a system of ODEs. Those studies compared the two types of 

controllers when they are applied to a single ODE or a small system of ODEs, and in the 

literature, I could not find any study which compare them when they are applied to a big 

system of ODEs. However, our result showed that adaptive schemes using PI controller do 

not have any advantage compared to the same schemes using I controller when they are 

applied to a big system of ODEs resulted from discretizing the space variable in the linear 

diffusion equation.  

 

T5. Using the linear neighbour LNe3 method, I designed a novel adaptive time step controller of 

type I and applied it to a system of ODEs resulted from spatially discretized linear diffusion 

equation in the absence and in the presence of the heat source. In both cases, I conducted the 

numerical experiments in inhomogeneous media with relatively high stiffness ratio. The result 
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showed that the adaptive LNe3 is much faster than the adaptive schemes of Runge-Kutta when 

high accuracy is not required. The adaptive Runge-Kutta schemes are faster at the level of 

accuracy which is not required in the engineering application. 

 

T6. Using LNe3 and CLL methods, families of novel adaptive time step controllers of type I are 

constructed. I treated the non-steady-state linear diffusion equation, where the diffusion 

coefficient itself depends simultaneously on space and time. I discretized the space variable 

in that equation to obtain a system of ODEs, then I used our adaptive controller to solve that 

system of equations. The numerical experiments showed that the performances of our adaptive 

controllers severely outperform the widely used schemes, which are Fehlberg Runge-Kutta 

and Cash-Karp Runge-Kutta. Recall that a lot of efforts have been made to improve traditional 

solvers by using the so-called PI and PID controllers. The LNe3 and the CLL-based adaptive 

controllers could change the time-step size smoothly using only the elementary controller 

without any need to implement the PI controller. I consider this as another advantage of these 

methods. 
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