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1 Introduction
Optimization problems are everywhere in our daily lives. When we
choose the way to go to work, when we try to pack in a backpack,
or when we choose our investments to maximize the expected return,
we are essentially solving an optimization problem. No formal training
is required to solve a problem in natural processes, animals or plants.
The rapid resolution of optimization problems for all species is key to
survival, and over time, this has been favored by evolution. Obviously,
these are solved heuristically rather than accurately, meaning that the
approximations produced in this way are not guaranteed to be accurate.
Nature tries to deduce the possible solution of a new problem from a
solution of the past. This is called learning by analogy and is applied
iteratively until a target state is reached or closer to the target state.

Heuristics (and metaheuristics) have been present since the forma-
tion of life on Earth, but for their scientific study had to wait until the
20th century [78]. Presumably, they are so natural that it has been
necessary to wait for the formal development of optimization.

To date, more than 192 procedures have been documented. In ad-
dition to the publication of new methods and procedures, the literature
on setting the parameters of algorithms or increasing the accuracy of
procedures has appeared and is becoming more common. The lengthy
manual setting of parameters is slowly being replaced by adaptive meth-
ods [3, 17, 71, 91]. Increasing accuracy and efficiency can be enhanced
by a combination of different procedures at multiple levels or in parallel
[46, 47].

Almost simultaneously with the research of the methods, their ap-
plications and the research on them appeared. They can be used effec-
tively in many areas. Without wishing to be exhaustive, some of them
are highlighted: structure optimization [11, 39], shortest path problem
[20], optimal location of ocean wave power plants on farms [57].

2 Review of literature
Evolutionary computation (EC) are a subset of artificial intelligence,
including a subset of stochastic search procedures. These are a collec-
tion of iterative methods and procedures that use the previous results
to continuously develop the possible solution, the set of solutions [19].

Their operation is mainly determined by the mathematical model
that generates newer and newer solutions. The concept of their design



can be several and can be grouped in several ways. Possible grouping
by Burgolya [15]:

• biological evolution methods: the steps observed in evolutionary
processes (e.g., selection, inheritance, etc.) are modeled using
mathematical formalism. These include, but are not limited to,
genetic algorithms (GA) [4, 26], genetic programming, evolution-
ary algorithms (EA) [19], evolutionary programming [24], and
evolutionary strategies [5];

• biological procedure, behavioral methods: such as various swarm
intelligences [2, 21, 22], species foraging methods, reproductive
strategies, and many other biological behaviors [13, 28, 55, 87, 92];

• methods using purely mathematical models: in this case, abstract
linear combination or probability modell are used [27, 71, 79].

It is important to note that evolutionary computation (EC) and
evolutionary algorithms (EA) are often used interchangeably in the lit-
erature. Although EA is a subset of EC. Hereinafter, this interpretation
as a synonym will be applied.

Szabó [80, 81] suggests a method for estimating the required num-
ber of iterations (exit condition) by analyzing the convergence and it-
eration history. Allowing to estimate the convergence resulting from
stochastic operation, which differs from task to task.

The constantly rising prices of raw materials and energy today, the
stricter environmental regulations justify and necessitate the develop-
ment of optimal mechanical solutions and structures. Mankovits et
al. performs rubber spring shape optimization using the finite ele-
ment method in [30, 51, 52, 53]. Baksa & Páczelt in [7, 8] solves
an optimization problem related to contact tasks using a finite element
method. There are two possible outcomes of optimization for these
tasks. Optimization of kinematic quantities [60] on the one hand, and
dynamic quantities [62, 63] on the other. It deals with finite element
formalism of contact tasks Baksa et al. in [6, 9, 65].

In connection with structure optimization, the optimal design of
truss transmission towers was studied Rao in [70, 72] and Silva et
al. in [18]. Angular steel sections are usually used for these structures
Taniwaki [82], but due to their low deflection stiffness, it is preferable
to use circular hollow sections according to Orbán et al. [58]. The
transmission line is dealing with the destruction of towers Rao in [73].
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Virág & Jármai in [83] reviews the optimal design of ribbed plates
with different rib designs. Virág & Szirbik in [84, 85, 86] use their fi-
nite element model to study the effect of optimized ribbed plate param-
eter changes on eigenvalues. Assuming a uniaxial load, the eigenvalues
for the loss of stability are determined by removing the ribs during the
numerical test.

One of the most critical issues in the design of welded structures
is stability issues. Demonstrates a method for designing box-section
columns with a minimum mass Petrik et al. in [66], examining the
effect of using several standard specifications and steels with different
yield strengths on the minimum mass. Fire impact can be as critical
a design consideration as loss of stability. Petrik et al. describes
a method for the optimal design of pressure vessels under fire load in
[67].

It is difficult to determine the cost functions during the optimal de-
sign in terms of structure cost, because they change over time Klansek
& Kravanja in [45], Jalkanen in [32] and depend on the conditions
of the given country Tímár et al. in [31]. For comparison purposes,
internationally measured production times and data should be used
and multiplied by a wider range of variable cost factors Jármai et al.
in [35, 37, 38]. It deals with welding times and costs Pahl & Beelich
in [41] and Hubka in [59]. Other costs – such as painting, cutting,
plate straightening, etc. – described in Jármai in [35] and Farkas &
Jármai [33, 34].

3 Applyed methods
The literary adage of there is “no free lunch,” was applied to com-
paring algorithms, because their outcomes are variable and difficult to
compare. I strived to create uniform conditions for my simulations.
The results are well observable; that the 11 chosen algorithms con-
verge during the iterative steps with a total of 30 test functions, with
a five-dimensional order of magnitude.

By converting the calculations within the iteration step of the flower
pollination algorithm (FPA) to matrix and / or vector operations, and
by breaking down fitness functions into hierarchical simple functions,
the optimization can be run on a SIMD architecture. Compared to
sequential processing, a significant increase in computational speed can
be achieved, which requires parallelization of both the operations of the
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algorithm and the calculations associated with the fitness function.
The equations describing the cross-members of a truck’s platform

in terms of strength, stability and fatigue can be included in a fitness
function with the help of penalty functions, for the purpose of searching
for a minimum mass. Originally weight-optimized RHS crossmembers,
they can be further optimized by using I-sections and reducing the
number of supports.

During a cost-optimization of the main girder of a box section crane,
with a firefly algorithm, it was shown that the use of steel with higher
yield strength but costing more, is not recommended. The optimized
cost, increases linearly as a function of payload, cubically as the span
length increases, and finally according to the fatigue curve. In each
case, the optimized cost functions for the different purposes are quasi-
parallel to each other.

The internal forces of the truss like structures, and the stresses re-
quired for sizing, can be determined by the finite element method. By
optimizing and simplifying the pre- and post-processing operations of
the finite element method, I connected it with the self-adaptive differ-
ential evolution algorithm. The relationship between the two methods
offers an efficient numerical calculation tool. Through the quantified
example of a transmission line tower, in the case of deltoid-shaped
griding, the optimal topology in terms of mass - such as the number of
grids, etc. - strongly depends on the yield strength of the steel used.
The use of steel with higher yield strength, does not necessarily mean
a reduction in mass.

4 Goals of research
1. goal: For the evolutionary algorithms studied in this disserta-

tion, such as artificial bee colony (ABC) [40, 42, 43], bee algo-
rithm (StdBA) [68, 69], biogeography-based optimization (BBO)
[10, 76, 77], differential evolution (DE) [79], adaptive differential
evolution (SaDE and SaNSDE) [71, 91], firefly algorithm (FA)
[87, 89], flower pollination algorithm (FPA) [88, 90], harmony
search (HS) [25, 74], invasive weed optimization (IWO) [49, 56],
and particle swarm optimization (PSO) [14, 75] are difficult or in-
compatible. incomparable performance results are reported. The
test functions used to evaluate performance or the simulation en-
vironment settings are different.
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My goal is to extensively simulate the listed algorithms using con-
tinuous test functions and uniform environment settings. Rank-
ing them based on simulation results.

2. goal: Nowadays, the computing capacity of graphics cards can
also be used for general purpose calculations [16, 29, 36]. This
allows for data processing following the high computational par-
allel SIMD and SIMT architecture. Parallel versions of elemen-
tary, linear algebraic and numerical algorithms specifically using
the CUDA API are available [44]. In some cases, they are also
runtime-optimized, such as parallel reduction [54].
My goal is to find a way to execute the FPA algorithm and the
fitness function in parallel, using the possibilities provided by the
graphics card. I pay special attention to objective functions that
can be computed by parallel reduction. My goal is also to explore
the computational capacities between normal sequential running
and parallel running.

3. goal: Research related to optimization [1, 48, 53, 66, 84] is be-
coming increasingly important. Within this, the applications of
evolutionary algorithms in structure optimization also play an
important role [11, 38, 39, 35].
My goal is to optimize two structures that occur in practice by
evolutionary methods, such as the optimization of the crossmem-
bers of platform of the van and the main girder of the crane. In
the case of a truck platform, I examine how the optimum mass
changes if we deviate from the cross-sectional geometry used in
the original structure and the number of crossmembers changes.
When optimizing your main crane girder, I look at the change in
cost, using different hook loads, spans, and raw materials.

4. goal: The finite element method is an approximate calculation
method based on different variational principles [12, 23, 30, 61,
64]. For truss-like structures modeled with pushed-pulled bar,
this approximate calculation gives the exact solution [61].
My goal is to find a method to combine evolutionary optimization
with a finite element solution of structures that can be modeled
with pulled-pushed bar elements. Solving a problem that occurs
in practice with the found method. The chosen quantified engi-
neering problem is the optimization of the lower part of a trun-
cated pyramid-shaped transmission line tower with a truss like
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structure that can be modeled with rod elements. During the op-
timization, it is examined how the mass of the structure changes
if the yield strength of the raw material is between fy = 235MPa
and fy = 690MPa, or if the number of grids changes or if it is lim-
ited the displacement of the node that originally had the largest
displacement.

5 New scientific results – Theses
1st thesis: I have tested 11 pcs evolutionary algorithm with test

function set of [50], using the same simulation environment (e.g.,
number of computations of objective function values, population
size, etc.). The convergence of the average error values relative
to the known optimum per iteration step and the distribution of
the error values were illustrated, I ranked the algorithms. Based
on the ranking and distribution of errors, following the “no-free
lunch” and its theory, the efficiency and performance of the algo-
rithms in solving future tasks can be estimated.

Published pulications in this topic: 〈1〉, 〈9〉, 〈13〉

2nd thesis: I proposed the parallel processing of flower pollination
(FPA) algorithms and a group of fitness functions on graphics
cards.

(a) For the parallel processing of a flower pollination algorithm,
I propose to organize the parameters – random numbers,
input and output variables – into vectors and matrices. The
elements of the population organized as a matrix can be
calculated independently in parallel, following the rules of
SIMD and / or SIMT architecture.

(b) I have developed the decomposition of the fitness functions
required to optimize Sphere, Ackley’s, Rastrigin functions
and main gridder of overhead crane into simple hierarchical
functions and their processing by parallel reduction.

(c) I have shown how the dimensionless velocity increase can
be achieved with the methods developed above using the
parallel calculations.

Published publications in this topic: 〈3〉, 〈11〉, 〈12〉
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3rd thesis: Using the fitness function required to optimize the cross-
member of the truck platform, and using a flower pollination al-
gorithm (FPA), I have shown that the use of I-sections is more
advantageous than the original RHS sections in terms of minimum
weight, and by reducing the number of crossmembers additional
weight savings can be achieved.
I developed the fitness function required for the optimization of
the main girder of the cabinet section crane, which I optimized
with the firefly algorithm (FA), and showed:

(a) does not make sense to use higher yield strength but more ex-
pensive steel, the cost minimum functions are quasi-parallel,

(b) as a function of the hook load, the cost function increases
linearly,

(c) as a function of span, the cost function increases according
to a cubic function,

(d) as a function of load cycles, the cost function follows the
fatigue curve.

Published publications in this topic: 〈2〉, 〈4〉, 〈5〉, 〈10〉, 〈14〉, 〈16〉

4th thesis: I proposed a method to generate the fitness function re-
quired for evolutionary optimization using a finite element method
to optimize truss like structures to a minimum of mass with self-
adaptive differential evolution. In topic of the optimization of the
lower part of the transmission line tower, I showed using deltoid
shaped gridding:

(a) The design of the deltoid lattice is most optimal if the point
of intersection of the lattice bars forming the belt within the
division is exactly half of the belt bar, otherwise the weight
increase can be up to ≈ 40%,

(b) the use of higher yield strength steels, without changing the
topology, such as the number of grid division, does not nec-
essarily result in less weight,

(c) by limiting the displacement of the node with the largest
original displacement, the optimized mass can be approxi-
mated by hyperbolas as a function of the allowed displace-
ment,

Published publications in this topic: 〈8〉, 〈15〉, 〈17〉
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6 Paths for further development
Given the amount of calculations to be performed; the future devel-
opment direction of optimization using evolutionary algorithms is to
support processing with parallel calculations.

The biggest disadvantage of the proposed method of hierarchical
division of fitness functions is, that it is currently done manually. Per-
forming preliminary manual calculations are tedious. If they’re not
regularly occurring, repetitive tasks, they may not even be worth it.
A direction in future development research, could be to develop an
algorithm to produce the necessary balanced tree structure, that will
automatically generate this from the mathematical expression, along
with the required input vector.

Due to the properties of the applied element model, the number of
operations to be performed and the equations to be solved are relatively
small in the calculations of truss like structures, using the finite element
method. Their number also increase slowly or moderately as the num-
ber of elements increase. Looking at the solution of a task made up of
bar elements alone, does not necessarily require a solution with parallel
computation. Regarding the optimization problem where structurally
the same system of algebraic equations with different coefficients must
be solved thousands of times, even ten of thousands of times, a faster
parallel calculation can be a legitimate prospect.

At the population level, small individual matrix operations can be
combined into a large-scale task that can be efficiently processed in
parallel.
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