
UNIVERSITY OF MISKOLC

FACULTY OF MECHANICAL ENGINEERING AND

INFORMATICS

Pattern Matching Based Automated
Learning of Inflection Generation and

Morphological Analysis
PHD DISSERTATION

AUTHOR:
Gábor SZABÓ

MSc in Information Engineering

“József Hatvany” DOCTORAL SCHOOL

OF INFORMATION SCIENCE, ENGINEERING AND TECHNOLOGY

Research Area
APPLIED COMPUTATIONAL SCIENCE

Research Group
DATA AND KNOWLEDGE BASES, KNOWLEDGE INTENSIVE SYSTEMS

HEAD OF DOCTORAL SCHOOL:
Prof. Dr. Jenő SZIGETI

ACADEMIC SUPERVISOR:
Prof. Dr. László KOVÁCS

Miskolc
2021

DOI: 10.14750/ME.2022.020

http://www.uni-miskolc.hu
http://gepesz.uni-miskolc.hu
http://gepesz.uni-miskolc.hu
https://doi.org/10.14750/ME.2022.020

i

Declaration of Authorship
The author hereby declares that this thesis has not been submitted, either in the same
or in different form, to this or to any other university for obtaining PhD degree.

The author confirms that the submitted work is his own and the appropriate credit
has been given where reference has been made to the work of others.

Szerzői nyilatkozat
Alulírott Szabó Gábor kijelentem, hogy ezt a doktori értekezést magam készítettem,
és abban csak a megadott forrásokat használtam fel.

Minden olyan részt, amelyet szó szerint vagy azonos tartalomban, de átfogalmazva
más forrásból átvettem, egyértelműen, a forrás megadásával megjelöltem.

Miskolc, 2021. november 2.

Szabó Gábor

A disszertáció bírálatai és a védésről készült jegyzőkönyv megtekinthető a Miskolci
Egyetem Gépészmérnöki és Informatikai Karának Dékáni hivatalában, valamint a
doktori iskola weboldalán: http://www.hjphd.iit.uni-miskolc.hu

DOI: 10.14750/ME.2022.020

http://www.hjphd.iit.uni-miskolc.hu

ii

Recommendation

Our professional collaboration with my PhD student Gábor Szabó started a long
time ago. He first got involved in the work at the Institute of Information Science
during his MSc studies, as a demonstrator and by writing research papers for the
Scientific Students’ Associations (”TDK”) conference. He was admitted to the ”József
Hatvany” Doctoral School of Information Science, Engineering and Technology in
2014, since then we have been working closely as supervisor and PhD student.

Based on the experience gained during our long scientific relationship, Gábor Szabó
stands out from other students in many ways. His main strengths are:

• demanding and precise work,
• pursuing thoroughly tested solutions,
• strong background knowledge in information technology and professional ex-

perience in software engineering,
• exceptional reliability and
• strong English language skills.

Gábor Szabó has successfully fulfilled the requirements of the Doctoral School to ac-
quire the pre-degree certificate, and he has also been evolving his publication skills
gradually and deliberately over the years. It is worth mentioning that in the field
of his research domain (machine learning processes, optimization and application
in the area of natural language processing), he managed to publish several quality
research papers, including

• 2 papers in journals with impact factor,
• 1 paper in a Q2 journal,
• 2 papers in Q3 journals and
• 2 papers in Q4 journals.

In his doctoral thesis, he managed to strike a balance between theory and practice,
by creating reference implementations and test systems to support the results of his
theoretical analysis. The preliminary defence, that was attended by both domes-
tic and foreign reviewers, also confirmed the outstanding scientific results of Gábor
Szabó.

Based on the candidate’s results and attitude, I support the public defence of his
doctoral thesis.

Miskolc, November 8, 2021

Prof. Dr. László KOVÁCS
academic supervisor

DOI: 10.14750/ME.2022.020

iii

Summary

This dissertation focuses on the pattern matching based automated learning of
inflection generation and morphological analysis. The problem is approached on
two levels: first, single-affix morphology models are proposed that can learn trans-
formation rules from a training word pair set related to a single affix type, then
a higher-level morphology model is proposed that can manage multiple affix types,
too. The proposed models are evaluated against Hungarian, a morphologically com-
plex agglutinative language.

There are several other existing morphology models that can be used for the
Hungarian language. The first step of this research project was to analyze four of
the most popular such models, including Hunmorph-Ocamorph, Hunmorph-Foma,
Humor and Hunspell. According to the experimental results relying on formal mea-
sures, the most usable morphology model among them is Hunmorph-Ocamorph.

The first proposed single-affix transformation engine model has a complex rule
structure that contains position indices and describes not only the context of the
transformation, but also its elementary transformation steps. The generated rules
are stored in a compact lattice structure that can be built using three different builder
algorithms. The other single-affix model is called ASTRA (Atomic String Transfor-
mation Rule Assembler), and has a simplified rule model that omits position in-
dices and describes the transformations as string replacement operations. Evalua-
tion shows that while the lattice based model achieves a more compact storage struc-
ture, the ASTRA model has an exceptional accuracy and generalization capability,
beating the base models such as simple dictionaries, FSTs and the TASR model.

For multi-affix inflection generation and morphological analysis learning, I pro-
pose the Morpher model that can manage multiple affix types. During the training
phase, Morpher deduces the training word pair sets based on a more generic training
data set, and builds a separate ASTRA instance for each affix type of the target lan-
guage. The model also calculates the conditional probabilities of the valid affix type
chains, and stores the valid lemmas and their possible parts of speech. The exper-
imental results show that Morpher’s average accuracy beats all the examined base
models including 6 SIGMORPHON models, 3 unsupervised segmentation models
and 2 analyzer models, while achieving low average training, inflection and analysis
time.

After performing the space and time complexity analysis of the Morpher and
ASTRA models, I propose 3 optimization techniques that aim to reduce the rule
base size and thus the average inflection and analysis time. The winner optimiza-
tion technique eliminates candidate atomic rules during the training phase by us-
ing their support values. After applying this optimization technique, the Morpher
model became able to perform inflection generation and morphological analysis in
acceptable finite time after being trained using up to 3 million training items. Com-
parison shows that the average training, inflection and analysis times are reduced
dramatically, while keeping the average accuracy high.

The reference implementation of the proposed models can be found in a few
Github projects. As of writing, these projects are implemented in Java 17, utilizing
its module system and parallel streams. The built binaries are published on jcenter
and Maven Central. For ecosystems other than Java, a Spring Boot based server-side
Morpher REST API application is published as well, in the form of a Docker image.
This API is consumed by a React and React Native based client application, capable
of running in the browser, as well as on Android and iOS devices.

DOI: 10.14750/ME.2022.020

iv

Összefoglalás

A disszertáció témája a ragozás és morfológiai elemezés mintaillesztésen alapuló
automatizált tanulása. A problémát két szinten közelítem meg: először két olyan
modellt mutatok be, amely képes egy tanító szópárhalmazból megtanulni egyetlen
toldaléktípus transzformációit, majd egy magasabb szintű modellt írok le, amely
képes egyszerre több toldaléktípust is kezelni. A modelleket magyar nyelvű adatok
segítségével tesztelem, amely egy morfológiailag komplex, agglutináló nyelv.

Az irodalomban jelenleg is található több olyan morfológiai modell, amely tá-
mogatja a magyar nyelvet. A kutatási projekt első lépése az volt, hogy kielemeztem
négy népszerű modellt ezek közül, beleértve a Hunmorph-Ocamorph, Hunmorph-
Foma, Humor és Hunspell eszközöket. A formális mérőszámokon alapuló eredmé-
nyek szerint a leginkább használható modell ezek közül a Hunmorph-Ocamorph.

Az egytoldalékos eset első bemutatott modellje egy hálóalapú modell, amely a
generált szabályokat egy tömör hálóban tárolja, melynek felépítéséhez három be-
mutatott hálóépítő algoritmus is használható. A szabályok struktúrája viszonylag
komplex, mivel pozícióindexeket és a traszformáció elemi lépéseit is tartalmazza.
A másik modell neve ASTRA (az angol Atomic String Transformation Rule Assembler
rövidítése). Ennek a modellnek a jellemzője, hogy a szabályleírója jóval egyszerűbb,
elhagyja a pozícióindexeket, a transzformációkat pedig egyszerű string csereként
modellezi. A modellek kiértékeléséből látszik, hogy míg a hálóalapú modell tömö-
rebb struktúrához vezet, az ASTRA modell kivételesen jó pontosságot képes elérni,
összehasonlítva az egyszerű szótárakkal, FST-kkel és a TASR modellel.

A többtoldalékos eset megoldására a Morpher nevű modellt készítettem el. Beta-
nítás közben a Morpher modell minden egyes toldaléktípushoz egy saját, különálló
ASTRA példányt épít, melyet egy általánosabb tanítóhalmazból generált szópárhal-
mazzal tanít be. Emellett kiszámolja a talált toldaléktípus láncok feltételes valószí-
nűségeit, és eltárolja a nyelv lemmáit, valamint azok lehetséges szófajait. A teszt-
eredményekből látszik, hogy a Morpher átlagos pontosságban felülmúlja az összes
vizsgált alapmodellt, köztük 6 SIGMORPHON modellt, 3 szegmentációs modellt és
2 elemző modellt, alacsony betanítási, ragozási és elemzési idő mellett.

A Morpher és ASTRA modellek hely- és időkomplexitásának vizsgálata után 3
optimalizációs technikát mutatok be, amelyek célja, hogy a tudásbázis méretének
csökkentésével a modellek időigényét is csökkentsék. A nyertes optimalizáció a
szabályjelöltek support értékei alapján dob el szabályokat betanítás közben. Ezt a
technikát alkalmazva a Morpher modell képessé válik akár 3 millió tanító mintával
történő betanítás után is elfogadható, véges időben elvégezni a ragozás és elem-
zés műveletét, amire optimalizáció nélkül nem lenne képes. Kisebb tanítóméretek
esetén összehasonlítva az időeredményeket, látszik a drámai javulás, miközben az
átlagos pontosság továbbra is magas marad.

A bemutatott modellek referenciaimplementációi forráskóddal együtt megtalál-
hatóak különböző Github projektekben. A Morpher keretrendszert (beleértve a há-
lóalapú modellt és az ASTRA-t is), Java-ban fejlesztettem, kihasználva annak mo-
dulrendszerét és párhuzamos, funkcionális adatfeldolgozó elemeit. A keletkezett
JAR fájlokat a jcenter és Maven Central repositorykban publikálom. A Javán kívüli
ökoszisztémák számára egy Spring Boot alapú, szerver oldali Morpher REST API
alkalmazást is fejlesztettem, amelyből egy Docker image publikálódik. Az API köré
pedig egy React és React Native alapú kliens alkalmazást készítettem, amely képes
futni böngészőben, illetve Android és iOS eszközökön egyaránt.

DOI: 10.14750/ME.2022.020

v

Acknowledgements
Firstly, I would like to express my gratitude to my academic supervisor, Prof. Dr.

László Kovács, for his continuous support since my BSc studies. Without his help
and insight, this work would not have been possible.

I would also like to thank my family, especially my Mom and Dad, for helping me
mentally and humanly, and supporting me with infinite patience, during good times
and bad times. I know that without your support and attitude, not only would I be
in a completely different situation, but I would also be a different person altogether.

DOI: 10.14750/ME.2022.020

vi

Contents

Declaration of Authorship i

Recommendation ii

Summary iii

Összefoglalás iv

Acknowledgements v

Contents vi

List of Notations x

List of Abbreviations xiv

List of Figures xv

List of Tables xvii

1 Introduction 1
1.1 Problem domain . 1
1.2 Natural Language Categorization . 3

1.2.1 Historical Language Families . 3
1.2.2 Linguistic Categories . 3
1.2.3 Morphological Language Classes 4

1.3 Research Goals . 5
1.4 Dissertation Guide . 6

2 Survey of the Current Models 8
2.1 Categorization of the Existing Morphology Models 8

2.1.1 Knowledge Representation . 8
Dictionary Based Systems . 9
Rule Based Systems . 10
Statistical Methods . 11
Artificial Intelligence Based Methods 12

2.1.2 Scope . 12
Single-Affix Models . 12
Multi-Affix Models . 13

2.1.3 Symmetry . 13
Asymmetric Models . 13
Symmetric Models . 14

2.1.4 Granularity of Analysis . 14
Morphological Analysis . 14

DOI: 10.14750/ME.2022.020

vii

Segmentation . 14
Lemmatization . 14
Stemming . 15

2.1.5 Machine Learning Capabilities 15
Non-Automated Training . 15
Supervised Training . 15
Unsupervised Training . 16
Semi-Supervised Training . 17

2.2 Main Baseline Morphology Models . 18
2.2.1 Two-Level Morphology . 18
2.2.2 Finite State Transducer (FST) . 19
2.2.3 Tree of Aligned Suffix Rules (TASR) 21
2.2.4 Unsupervised Segmentation Models 22

Morfessor 2.0 . 22
MORSEL . 23
MorphoChain . 24

2.2.5 SIGMORPHON . 24
SIGMORPHON 2016 . 25
SIGMORPHON 2017 . 25
SIGMORPHON 2018 . 25

2.2.6 Morphological Analyzers for the Hungarian Language 26
Hunmorph-Ocamorph . 26
Hunmorph-Foma . 26
Humor . 27
Hunspell . 27

2.3 Conclusion . 28

3 The Analysis of Existing Hungarian Morphological Analyzers 30
3.1 Similarity and Distance of Morphological Analyzers 31
3.2 Analyzing the Similarities and Differences of the Morphological Ana-

lyzers . 32
3.2.1 Comparison of the Annotation Token Systems 33
3.2.2 Recognition Statistics . 33
3.2.3 Mapping Among the Examined Morphological Analyzers . . . 36
3.2.4 Cumulative Distance . 37

3.3 Conclusion . 38

4 Single-Affix Transformation Engine Model 39
4.1 Lattice Based Model . 39

4.1.1 The Theory of Formal Concept Analysis 40
4.1.2 Levenshtein Distance Based Transformation Rule Generation . 41

Unit Cost Model for Levenshtein Distance Calculation 41
Improved Cost Function . 42

4.1.3 The Lattice Rule Model . 44
4.1.4 Lattice Builder Algorithms . 46

Complete Lattice Builder . 46
Consistent Lattice Builder . 47
Minimal Lattice Builder . 48

4.1.5 Inflection Generation . 49
4.2 Atomic String Transformation Rule Assembler (ASTRA) 49

4.2.1 The ASTRA Rule Model . 50

DOI: 10.14750/ME.2022.020

viii

4.2.2 The Training Method of ASTRA 50
4.2.3 Inflection Generation . 53
4.2.4 Morphological Analysis . 54

4.3 Experiments . 54
4.3.1 Average Training Time . 55
4.3.2 Average Size . 56
4.3.3 Average Search Time . 56
4.3.4 Average Accuracy . 57

4.4 Conclusion . 58

5 Multi-Affix Morphology Model 61
5.1 Architecture of the Proposed Model . 61
5.2 The Formal Model of Concatenative Morphology 63
5.3 The Training Phase of Morpher . 64
5.4 Performing Inflection Generation Using Morpher 66
5.5 Performing Morphological Analysis Using Morpher 67
5.6 Experimental Results . 69

5.6.1 Average Training Time . 70
5.6.2 Average Size . 71
5.6.3 Average Inflection and Analysis Time 71
5.6.4 Average Accuracy . 72
5.6.5 Generalization Capabilities . 74
5.6.6 Cross-Validation with the SIGMORPHON Data Sets 74

5.7 Conclusion . 75

6 Complexity Analysis and Optimization of Morpher and ASTRA 77
6.1 Complexity Analysis . 77

6.1.1 Space Complexity . 77
6.1.2 Time Complexity . 79

6.2 Optimization Techniques . 80
6.2.1 Eliminating the Redundant Atomic Rules 80
6.2.2 Limiting the Generalization Factor 81
6.2.3 Indirect Noise Reduction . 82

6.3 Empirical Analysis of the Optimization Parameters 82
6.4 Evaluation . 85

6.4.1 Comparison with the Baseline Morpher Model 85
Average Training Time . 85
Average Size . 85
Average Inflection and Analysis Time 87
Average Accuracy . 88

6.4.2 Using Big Training Data Volumes 88
Average Training Time . 88
Average Size . 89
Average Inflection and Analysis Time 89
Average Accuracy . 90

6.5 Conclusion . 91

DOI: 10.14750/ME.2022.020

ix

7 The Reference Implementation of the Morpher Ecosystem 94
7.1 The Training and Evaluation Data Generation Process 94
7.2 The Layers of the Morpher Ecosystem 96

7.2.1 Morpher Framework . 96
Morpher Core . 97
Morpher Transformation Engines 97
Morpher Language Handlers . 98
Morpher Engines . 98

7.2.2 Morpher API . 100
7.2.3 Morpher Client . 101

7.3 Conclusion . 102

8 Conclusion 104
8.1 Contribution . 104
8.2 Future work . 106

A Mapping of the Examined Annotation Token Systems 107

Author’s Publications 119

References 121

DOI: 10.14750/ME.2022.020

x

List of Notations

General notations
{xi}ni=1 An unordered set of n items x1, . . . , xn
〈xi〉ni=1 An ordered list of n items x1, . . . , xn
Σ The alphabet containing non-empty characters
Σk The set of strings with a length of k above the Σ alphabet
Σ∗ The set of all the strings above Σ, i.e. ∪∞i=0Σi

c An arbitrary character in the Σ alphabet
∅ The empty character
s An arbitrary string in Σ∗

ε The empty string
si The ith character in the string s
|s| The length of the string s
s−1 The reverse of the string s, i.e. if s = s1 . . . sk then s−1 = sk . . . s1

W The set of meaningful words in the target language. W ⊂ Σ∗

w An arbitrary meaningful word in W
w [i, j] The substring of the word w from the ith character to the jth character
(wl, wr) An arbitrary word pair from the words in W
I The set of training word pairs for single-affix transformation engines
W̄ The set of lemmas in the target language. W̄ ⊂W
w̄ An arbitrary lemma in W̄
T The set of affix types in the target language
T An arbitrary affix type in T
T̄ The set of parts of speech in the target language
T̄ An arbitrary part of speech in T̄
Ti → Tj The affix type Tj can be applied after Ti
w̄ ⇒ w The word w is reachable from the lemma w̄

Analysis of existing Hungarian morphological analyzers
A An arbitrary morphological analyzer
TA The set of annotation tokens related to the morphological analyzer A
TA An arbitrary annotation token related to the morphological analyzer A
l (A (w)) The lemma projection of the morphological analyzer relation
t (A (w)) The annotation token list projection of the morphological analyzer rela-
tion
WA The set of recognized words by the morphological analyzer A
νA The ratio of WA in the whole corpus
SRAi,Aj

The recognition similarity metric of the morphological analyzers Ai and Aj
DR
Ai,Aj

The recognition distance metric of the morphological analyzers Ai and Aj
mAi,Aj The mapping function of the annotion token systems of Ai and Aj
STAi,Aj ,mAi,Aj

The token similarity metric of the morphological analyzersAi andAj
based on the mapping mAi,Aj

DT
Ai,Aj ,mAi,Aj

The token distance metric of the morphological analyzers Ai and Aj
based on the mapping mAi,Aj

DOI: 10.14750/ME.2022.020

xi

SMAi,Aj ,mAi,Aj
The mapping similarity metric of the morphological analyzersAi and

Aj based on the mapping mAi,Aj

DM
Ai,Aj ,mAi,Aj

The mapping distance metric of the morphological analyzers Ai and
Aj based on the mapping mAi,Aj

DC
Ai,Aj ,mAi,Aj

The cumulative distance metric of the morphological analyzers Ai
and Aj based on the mapping mAi,Aj

Lattice based model
RL An arbitrary transformation rule of the lattice based transformation engine
model. RL =

(
αL, σL, ωL, ηLf , η

L
b ,∆

L
)

αL The prefix component of a transformation rule, i.e. some characters before the
changing substring in the base word form
σL The core component of a transformation rule, i.e. the changing substring of the
base word form
ωL The postfix component of a transformation rule, i.e. some characters after the
changing substring in the base word form
ηLf The front index of the rule context occurrence in the source word from its be-
ginning
ηLb The back index of the rule context occurrence in the source word from its end
∆L The transformation path component of a transformation rule, i.e. the list of
elementary transformation steps (character additions, removals, replacements and
invariant replacements): ∆L =

〈
δLi
〉

δL An elementary transformation step on a transformation path ∆L. It can be a
character addition, removal, replacement or an invariant replacement.
δL+ An arbitrary character addition transformation step
δL− An arbitrary character removal transformation step
δL= An arbitrary invariant character replacement transformation step
δL6= An arbitrary character replacement transformation step
cost

(
δL
)

The cost of the elementary transformation step δL

γ
(
RL
)

The context of the transformation rule RL, i.e. the concatenation of its
prefix, core and postfix components: γ

(
RL
)

= αL + σL + ωL

∩← The intersection operator for the prefix component of the lattice rule model.
This operator intersects the characters from the right side of the substrings until
these intersections can be performed.
∩↔ The intersection operator for the core and transformation path components of
the lattice rule model. This operator performs a complete intersection of the given
substrings and transformation lists.
∩→ The intersection operator for the postfix component of the lattice rule model.
This operator intersects the characters from the left side of the substrings until
these intersections can be performed.
∩̄ The intersection operator for the front and back index component of the lattice
rule model. This operator intersects the given indices only if they are equal.

ASTRA model
$ A special character that marks the start of a word. This character is not part of
the original Σ alphabet: $ 6∈ Σ
A special character that marks the end of a word. This character is not part of
the original Σ alphabet: # 6∈ Σ
Σ̆ The extended alphabet that contains all the non-special, non-empty characters,
and the special $ and # characters: Σ̆ = Σ ∪ {$,#}

DOI: 10.14750/ME.2022.020

xii

W̆ The set of meaningful words in the target language, extended with the special
$ and # characters: W̆ = {w̆ | w̆ = $ + w + # and w ∈W}
w̆ An arbitrary extended word in W̆
µOperator that extends the input word w with the $ and # characters. If the input
word is w = w1 . . . wk then µ (w) = $w1 . . . wk#
µ−1 Operator that removes the $ and # characters from the input word w̆. If the
input word is w̆ = $w1 . . . wk# then µ−1 (w̆) = w1 . . . wk
ψil The ith segment component in the left word of a word pair
ψir The ith segment component in the right word of a word pair
RA An arbitrary atomic rule of the ASTRA transformation engine model. RA =(
αA, σA, τA, ωA

)
αA The prefix component of an atomic rule, i.e. some characters before the chang-
ing substring in the base word form
σA The changing substring component of an atomic rule, i.e. the characters that
need to be replaced in the base word form
τA The replacement string component of an atomic rule, i.e. the characters that
need to replace σA in the base word form
ωA The postfix component of an atomic rule, i.e. some characters after the chang-
ing substring in the base word form
γ
(
RA
)

The context of the atomic ruleRA, i.e. the concatenation of its prefix, chang-
ing substring and postfix components: γ

(
RA
)

= αA + σA + ωA

ΓA A rule group containing atomic rules with the same context
γ
(
ΓA
)

The context of the rule group ΓA

f
(
RA | w̆

)
The fitness function that calculates the fitness value of the RA atomic

rule for the extended word w̆
θ The function that returns how similar the context of an atomic rule is to the input
word

Morpher model
λ Maps a word to its possible lemmas. λ : W → 2W̄

L Maps a lemma to its possible parts of speech. L : W̄ → 2T̄

ϕ Maps a word to its possible affix type lists. ϕ : W → {〈T1, . . . , Tk〉}
P
(
T̄
)

The probability of the part of speech T̄
M Function that can determine the conditional probability of an affix type chain
M−1 Function that can determine the conditional probability of a reversed affix
type chain
ET The transformation engine instance for the affix type T
FCET Operator that converts the given input word to a set of output words using
the transformation engine ET
BCET Operator that converts back the given input word to a set of output words
using the transformation engine ET
I Operator that performs inflection on an input lemma using a set of affix types
AOperator that performs morphological analysis on an input inflected word form
T The training data of the Morpher model. T =

{(
w, w̄, T̄ , 〈Ti〉

)}
ϑi The aggregated weight of the ith Morpher response

Cost analysis and optimization of ASTRA and Morpher
Θ Encloses the function from above and below. f (n) is Θ (g (n)) if there exist
positive constants c1, c2 and n0 such that 0 ≤ c1 · g (n) ≤ f (n) ≤ c2 · g (n) for all
n ≥ n0

O Represents the upper bound of a function. f (n) isO (g (n)) if there exist positive
constants c and n0 such that 0 ≤ f (n) ≤ c · g (n) for all n ≥ n0

DOI: 10.14750/ME.2022.020

xiii

W 2
ET

The set of deduced training word pairs for the transformation engine ET
pmax The number of atomic rules to generate at most for each deduced training
word pair
pgen The minimum context length of the retained atomic rules
Υpgen The minimum number of generated atomic rules that have a context shorter
than pgen
psupp The minimum support value of the retained atomic rules
pfreq The minimum word frequency of the retained atomic rules

DOI: 10.14750/ME.2022.020

xiv

List of Abbreviations

AI Artificial Intelligence

CRS Controlled Rewrite System

LMS Labeled Morphological Segmentation

MDL Minimum Description Length
Models

ASTRA Atomic String Transformation Rule Assembler
CRF Conditional Random Field
FCA Formal Concept Analysis
FSA Finite State Automaton
FST Finite State Transducer
GA Genetic Algorithm
HMM Hidden Markov Model
MEMM Maximum Entropy Markov Model
NLM Neural Language Model
NN Neural Network
OSTIA Onward Subsequential Transducer Inference Algorithm
PHMM Pair Hidden Markov Model
RNN Recursive Neural Network
SVM Support Vector Machine
TASR Tree of Aligned Suffix Rules

NLP Natural Language Processing

POS Part of Speech

SOV Subject-Object-Verb
SVO Subject-Verb-Object

DOI: 10.14750/ME.2022.020

xv

List of Figures

1.1 The Indo-European language family . 3
1.2 The main components of the proposed morphology model 5

2.1 A simplified view of dictionary based systems 9
2.2 A simplified view of rule based systems 10
2.3 A sample finite state automaton . 20
2.4 A sample onward subsequential transducer 20
2.5 A sample tree of aligned suffix rules . 21

3.1 Visualizing the annotation token system distances 33
3.2 Venn diagram of the number of recognized words for the three strongest

morphological analyzers . 35
3.3 Visualizing the recognition distances . 36
3.4 Visualizing the mapping distances . 37
3.5 Visualizing the cumulative distances . 38

4.1 A sample lattice . 40
4.2 Two possible Levenshtein matrices with optimal cost for the Hungar-

ian word pair (alma, almát) . 43
4.3 The structure of a sample lattice . 47
4.4 A sample maximal consistent node . 49
4.5 The average training time of the single-affix transformation engine

models . 55
4.6 The average size of the single-affix transformation engine models . . . 56
4.7 The average search time of the single-affix transformation engine mod-

els . 57
4.8 The average accuracy of the single-affix transformation engine models

using subsets of the evaluation word pair set for training 58
4.9 The average accuracy of the single-affix transformation engine models

using disjoint training and evaluation word pair sets 59

5.1 The main components of the Morpher model 62
5.2 Multiple lemmas and inflected word forms of the same Hungarian word 64
5.3 The average training time of the multi-affix morphology models 70
5.4 The average evaluation time of the multi-affix morphology models . . 72
5.5 The average accuracy of the multi-affix morphology models 73

6.1 The average accuracy based on the number of retained atomic rules
using psupp and pfreq optimization . 83

6.2 The average number of responses and the average index of the ex-
pected response based on the number of retained atomic rules using
psupp and pfreq optimization . 84

6.3 The histogram of the number of atomic rules based on their support
values and word frequencies . 84

DOI: 10.14750/ME.2022.020

xvi

6.4 The average training time of the baseline and the optimized Morpher
model . 86

6.5 The average size of the baseline and the optimized Morpher model . . 86
6.6 The average inflection time and the average analysis time of the base-

line and the optimized Morpher model 87
6.7 The average accuracy of the baseline and the optimized Morpher model 88
6.8 The average training time of the optimized Morpher model using big

training data volumes . 89
6.9 The average number of atomic rules of the optimized Morpher model

using big training data volumes . 89
6.10 The average inflection and analysis time of the optimized Morpher

model using big training data volumes 90
6.11 The average accuracy of the optimized Morpher model using big train-

ing data volumes . 90
6.12 The average number of responses and the average index of the ex-

pected response of the optimized Morpher model using big training
data volumes . 91

7.1 The visualization of the valid affix type chains in the Hungarian lan-
guage based on the generated data set 95

7.2 The architecture of the Morpher ecosystem 97
7.3 The Morpher web client . 100
7.4 The Morpher mobile client . 101

DOI: 10.14750/ME.2022.020

xvii

List of Tables

1.1 The accusative case of some Hungarian words 6

2.1 Categorization of the baseline morphology models 28

3.1 Token similarity
(
STAi,Aj ,mAi,Aj

)
and distance

(
DT
Ai,Aj ,mAi,Aj

)
values

among the morphological analyzers . 33
3.2 The number of recognized words

(∣∣WAi
∣∣) and the ratio of recognized

words
(
νAi
)

for each morphological analyzer 34
3.3 The number of words recognized by only one morphological analyzer 34
3.4 The number of words recognized by exactly two morphological ana-

lyzers . 34
3.5 The number of words recognized by exactly three morphological an-

alyzers . 35
3.6 Recognition similarity

(
SRAi,Aj

)
and distance

(
DR
Ai,Aj

)
values among

the morphological analyzers . 36
3.7 Mapping similarity

(
SMAi,Aj ,mAi,Aj

)
and distance

(
DM
Ai,Aj ,mAi,Aj

)
val-

ues among the morphological analyzers 36
3.8 Cumulative distance

(
DC
Ai,Aj ,mAi,Aj

)
values among the morphologi-

cal analyzers . 37

4.1 Hungarian vowel attributes . 43
4.2 Hungarian consonant attributes . 44
4.3 Sample lattice rules for the artificial word pair (xabyxabyz, xabyxcdwyz) 45
4.4 Sample rule intersection . 46
4.5 Sample atomic rules for the artificial word pair (xabyxabyz, xabyxcdwyz) 50
4.6 Sample segment decomposition for the word pair (dob, ledobott) 51
4.7 Summary of the measured metrics using 10,000 training word pairs

and a disjoint evaluation word pair set 60

5.1 The average file size of the exported knowledge bases 71
5.2 The accuracy of the multi-affix morphology models using 100 artificial

words imitating the inflection rules of Hungarian accusative case . . . 74
5.3 The accuracy of the Morpher model using the data sets provided by

SIGMORPHON . 75
5.4 Summary of the measured metrics using 100,000 training items 76

6.1 The average number of retained atomic rules, correctness ratio, num-
ber of responses and expected response index using different (pgen, pmax)
combinations . 85

6.2 Summary of the measured metrics of the baseline and the optimized
Morpher model using 100,000 training items 92

DOI: 10.14750/ME.2022.020

xviii

6.3 Summary of the measured metrics of the optimized Morpher model
using 1 million training items . 92

A.1 POS categories . 107
A.2 Noun features . 107
A.3 Verb features . 109
A.4 Noun derivations . 114
A.5 Verb derivations . 115
A.6 Adjective derivations . 116
A.7 Numeral derivations . 116
A.8 POSTP categories . 117

DOI: 10.14750/ME.2022.020

xix

Dedicated to my beloved family. . .

DOI: 10.14750/ME.2022.020

1

Chapter 1

Introduction

Nowadays there are several popular research areas in the field of computer linguis-
tics, including natural language processing (NLP), syntactic analysis or the auto-
mated learning of morphology. Since these research areas are related to different
levels of grammar, it is not uncommon that the results of one such research project
can be used as the input of a higher-level problem. The ultimate goal is to be able to
process free texts in order to extract the knowledge out of them, building knowledge
databases (such as ontologies [Gruber, 1993]) in an automated way.

The lowest level of grammar is morphology, therefore the automated learning of
morphology represents the base of many grammar related problems. There are sev-
eral approaches to the learning of morphology: some models apply classical meth-
ods like pattern matching, string transformation learning or classification, while oth-
ers use some kind of artificial intelligence (AI) tools such as neural networks (NN)
or genetic algorithms (GA).

In this dissertation I will examine the problem of the automated learning of mor-
phological rules in order to generate and morphologically analyze inflected word
forms. My approach is to solve these problems by applying classical methods. The
proposed novel models are based on string transformation learning and pattern
matching.

1.1 Problem domain

In this dissertation I explore the automated learning of morphology, the lowest level
of linguistics that studies written language elements. Besides morphology, grammar
has the following subdomains:

• Phonetics: the study of speech sounds
• Phonology: the study of the patterns of sounds in a language
• Syntax: the study of the structure of sentences
• Text linguistics: the study of texts
• Semantics: the linguistic study of meaning
• Pragmatics: the branch of linguistics that deals with the language in use and

the contexts in which it is used
Morphology analyzes the internal structure of individual words and how the

different word forms are constructed. According to the Merriam-Webster dictionary,
morphology is ”a study and description of word formation (such as inflection, derivation,
and compounding) in language”, so it works with intraword components. Higher level
grammatical processing often uses the results of morphological analysis. For exam-
ple during the syntactic analysis of a sentence we can use the morphological struc-
ture of its words to determine their syntactic roles. That is why morphology is the
first step towards the automated processing of free texts.

DOI: 10.14750/ME.2022.020

Chapter 1. Introduction 2

According to morphology, words are constructed from morphemes, that are the
smallest grammatical units with associated meaning. As we will see in Section 1.2,
some languages have stronger syntax and less morphological rules, thus less mor-
phemes in their words, while other languages are morphologically more complex.

In concatenative morphology, words are built up from a lemma and a number of
affixes. The lemma is the grammatically correct root form of the word that holds its
base meaning, while affixes are added to the lemma to modify the base meaning. In
natural languages there are a finite number of affix types that determine the semantic
meaning of the affixes, i.e. how the meaning of the base form is altered by them.
Examples of affix types include accusative case, plural form, past tense, etc.

Affixes can appear in arbitrary positions inside the word [Bauer, 2003]. Prefixes
are prepended to the root form of the word (in-correct), while suffixes are appended
(fly-ing). Infixes are substrings that are neither at the beginning, nor at the end of
the word. They are very rare in most languages, an example is the Latin verb vi-n-
cō where the ’n’ denotes present tense. In English most affixes are suffixes, but in
Hungarian we can also find some affix types that use prefixes (e.g. (megy, ki-megy)
which are go and go out in English) or both prefixes and suffixes (e.g. (jó, leg-jo-bb)
which are the base and superlative form of the word good). This latter case, when an
affix is made up of both a prefix and a suffix is often called a circumfix.

Another important morphological feature of a word is its part of speech (POS)
that indicates its main syntactic feature. One word might have multiple possible
parts of speech, and the part of speech of a word might change during inflection,
when using derivative affix types. As an example, the word good is an adjective, but
its inflected form goodness is a noun.

The process of adding affixes to a word is called inflection, while the inverse
operation where we analyze the internal structure of a word is called morphological
analysis. The input of inflection is a word and a set of affix types, while the output
is the inflected form. The input of analysis is an arbitrary word, and the output is
the lemma and the list of affix types found in the word. Morphological analyzers
can sometimes also determine the intermediate word forms of the input word.

Morphological analysis represents a more complex problem than inflection, since
we do not know how many and what kind of affixes to look for. Inflection rules can
be as simple as prepending or appending some characters to a word, but in some
languages they often cause other side effects such as vowel or consonant gradation.
In such cases the base form of the word also changes, making both inflection and
analysis more difficult to execute.

A simpler variation of morphological analysis is called segmentation. In this
case, the output does not contain the affix types, only the morphs, i.e. the substrings
identified by affix boundaries. Stemming is a simplification of segmentation, when
only the base form is returned. The stem is the word form that we get if we drop
all the affixes. The stem and the lemma are often identical, unless the base form
changes. For example the lemma of the English word tried is try, and its stem is tri.
On the other hand, both the stem and the lemma of the word dogs is dog. Lemmati-
zation is another variation of morphological analysis, when the lemma of the given
word is determined. Lemmatization is more complex than stemming, but simpler
than a complete morphological analysis.

DOI: 10.14750/ME.2022.020

Chapter 1. Introduction 3

1.2 Natural Language Categorization

Some morphology models are optimized for a given set of natural languages by
including language specific information and knowledge into the algorithms, while
others use statistical methods and can be applied to a wide variety of languages.

Natural languages have different classification systems, based on for example
their historical properties, word order and morphological attributes. While the lat-
ter one directly relates to morphology, the second one is more related to syntax than
to morphology. The historical categorization is important mainly for language re-
searchers.

1.2.1 Historical Language Families

Based on the history of languages, linguistics defined different language families
[Akmajian et al., 2017] that can be displayed in a tree. The child nodes of the root are
so-called proto-languages that usually represent the common root of the languages
of a continent. Under the proto-languages, there are several subcategories, until we
drill down to the level of leaves that contain the actual spoken languages themselves.

Figure 1.1 displays the relationship of the Indo-European languages. Other proto-
languages are Uralic, Caucasian, American, Austroasiatic and Sino-Tibetan. The
languages in the same family usually have similar morphological and syntactic at-
tributes.

FIGURE 1.1: The Indo-European language family

As we can see in Figure 1.1, some European languages are missing, since they are
not Indo-European languages. For example, the Hungarian and Finnish languages
are Uralic languages, meaning that their roots originate from the Ural Mountains.
Therefore these languages are somewhat different from Indo-European languages,
but they have several similarities to each other.

1.2.2 Linguistic Categories

This classification system is closer to syntax than to morphology, because it describes
word order inside the sentences. Usually if a language has fewer inflection rules,

DOI: 10.14750/ME.2022.020

Chapter 1. Introduction 4

then information is encoded using other techniques, such as word order or auxiliary
words.

There are nine categories in this classification system like languages with Subject-
Object-Verb (SOV) or Subject-Verb-Object (SVO) word order [Meyer, 2009]. An ex-
ample sentence for SVO is ”He has eaten an apple.” in English.

In Hungarian we can use multiple word orders based on the main information
that we want to communicate. The main word order is SVO: ”Ő evett egy almát.”
(”He ate an apple.”) but we can also move the words around to emphasize one part
of the sentence: ”Ő egy almát evett.” where the fact that he ate an apple and not an
orange for instance is more important than the fact that he ate something.

1.2.3 Morphological Language Classes

Based on their morphological aspects, languages can be grouped into several differ-
ent classes [Gelbukh et al., 2004, Akmajian et al., 2017].

Analytic languages have a fix set of possible affixes for each part of speech, and
usually each word has a low morpheme-per-word ratio. Instead of affixes, gram-
matical modifiers are encoded using word order and auxiliary words. English has
some analytic aspects.

Isolating languages are similar in that their words have usually no affixes, each
word is its own stem. Examples of such languages are Chinese or Vietnamese.

Synthetic languages, unlike the isolating and analytic languages have a high
morpheme-per-word ratio, meaning that grammatical relations are expressed by
adding different affixes to the lemma. This language category has three subgroups:

• Polysynthetic languages have very complicated grammatical rules. Some Na-
tive American languages belong to this class, where the semantic meaning of
words is equivalent to the sentences of more modern languages. This means
that each word consists of several morphemes. For example the Inukitut word
tavvakiqutiqarpiit means ”Do you have any tobacco for sale?”.

• Many Indo-European languages fall into the category of fusional languages.
The name of this language class comes from the fact that their words usually
fuse multiple affixes into just one, combining several grammatical relations.
Therefore the morphemes are hard to be distinguished from each other, their
boundaries are blurred. Vowel and consonant gradation, as well as supraseg-
mental features such as stress and tone are also frequently used to modify se-
mantic meaning. Russian, Polish, Slovak and Czech languages fall into this
category among others.

• The third subcategory contains the agglutinative languages like Hungarian,
Finnish, Turkish, Japanese, Korean, Aztec or Esperanto. In these languages
the words also contain multiple affixes, but their boundaries are easier to find
than the boundaries of fusional affixes. The morphological complexity of this
language class comes from the fact that each word can contain many affixes,
and the base form is often transformed, too.

There are other exotic languages that do not follow the rules of concatenative
morphology. Intraflective languages like Arabic and Hebrew express the meaning
of the words using consonant characters, while vowels add the grammatical mean-
ing to them. For example the Arabic word kitab has the lemma of k-t-b and the affixes
of -i-a. In the Ngiti language [Booij, 2012] the plural form of a noun is generated by
replacing the last two syllables with high tone syllables. For example the singular
kama has the plural form kámá.

DOI: 10.14750/ME.2022.020

Chapter 1. Introduction 5

1.3 Research Goals

Due to the complexity of morphology and the high number of irregularities, it is a
big challenge in computational linguistics to develop an efficient learning algorithm
for induction of inflection rules. Chapter 2 will summarize the currently available
models, but most of them have some drawbacks. The goal of this research is to
develop an efficient pattern matching based novel morphology model that can

• learn inflection rules from a training data set,
• inflect lemmas using a set of affix types, and
• analyze given words, determining the morphological structure of the input, its

lemma, possible parts of speech, affixes and its intermediate word forms.
Figure 1.2 displays a simplified view of the proposed model, including its main

components.

PLUR

almákat

ACC

alma
Inflection

Engine

PLUR

ACC

alma
Analysis

Engine

Training set

Rule Set

FIGURE 1.2: The main components of the proposed
morphology model

From a training data set, the model can deduce a rule set that is used by the
inflection and analysis engines. The inflection engine can output inflected word
forms based on input lemmas and affix type sets, while the analysis engine outputs
the lemma and the found affix types in the given inflected form. As we will see
in later chapters, the output includes the intermediate word forms as well, and the
given responses are sorted based on a calculated confidence value.

The target language of this research is Hungarian, which is a morphologically
complex agglutinative language, containing many affix types, complex inflection
rules including many vowel and consonant gradations. In Hungarian, a noun can
have 1,400 related variants, and a verb can have 59 different forms according to
[Prószéky and Novák, 2005]. The reason why this language was chosen for the eval-
uation of the proposed model besides its morphological complexity is that this is
my native language. However, the proposed model is likely suitable for other lan-
guages as well, mainly those that are in the same or less complex language category
as Hungarian. Nonetheless, the evaluation of the model will be performed using
Hungarian data sets. Just to illustrate the diverse nature of Hungarian inflection
rules, let us look at Table 1.1 that contains the base form and the accusative case (or
cases) of some Hungarian words.

DOI: 10.14750/ME.2022.020

Chapter 1. Introduction 6

TABLE 1.1: The accusative case of some Hungarian words

Index Lemma Accusative case Meaning

1 papír papírt paper
2 bot botot stick
3 kefe kefét brush
4 malom malmot mill
5 tó tót or tavat lake

The main rule in case of Hungarian accusative case is to append a ’t’ character
at the end of the word (1). However, sometimes we also need to insert an extra
vowel that depends on the vowels of the base form (2). If the word ends with a
short vowel, it may become long (3). There are many exceptions as well that have
more complex inflection rules (4), and some words may have multiple possible valid
inflected forms as well (5). Almost every affix type has its own complexities and
exceptions.

The novel scientific results will be evaluated using several test scenarios, and
also compared with the available baseline model implementations from literature to
demonstrate the advantages of the proposed model.

1.4 Dissertation Guide

The structure of the dissertation will be as follows:
• In Chapter 2 I present the survey of the main morphology models that can be

found in literature. In this survey we can read about the main concepts of these
models, their advantages and disadvantages.

• Chapter 3 compares and analyzes the main existing Hungarian morphological
analyzers and their annotation token systems using objective metrics. These
metrics, the analysis model and the evaluation results form the basis of my
first thesis.

• One of the key components of an efficient morphology model is a transforma-
tion engine that can induce transformation rules from a training word pair set
demonstrating the characteristics of a single affix type. In Chapter 4 we can
read about two such novel models: the first one is a lattice based model, while
the other one is a string based transformation engine called ASTRA (Atomic
String Transformation Rule Assembler). The novel scientific results of these
models form the basis of my second thesis.

• Chapter 5 contains the formalism and evaluation of the novel Morpher model.
While ASTRA is a single-affix morphology model that can learn the inflection
rules of a single affix type, Morpher is a multi-affix morphology model. It can
learn not only the transformation rules of the affix types of the target language,
but also the conditional probabilities of the valid affix type chains, the lemmas
and their parts of speech. The novel scientific results of the Morpher model
form the basis of my third thesis.

• In Chapter 6 I examine the space and time complexity of the Morpher and
ASTRA models. After understanding the cost of the training phase, the in-
flection and the morphological analysis operations and their substeps, I in-
troduce three possible optimization techniques that can be used to reduce the

DOI: 10.14750/ME.2022.020

Chapter 1. Introduction 7

rule base size (and thus the average inflection and analysis time) by eliminat-
ing unnecessary rules during the training phase. The novel scientific results of
the cost analysis and the introduced optimization techniques form the basis of
my fourth thesis.

• In Chapter 7 I describe the ways one can use the above mentioned novel mor-
phology models for further research. The Java source code of these models,
including the lattice based transformation engine, ASTRA and the Morpher
model is available on Github. They are also easy to consume using Maven
and Gradle through the jcenter or Maven Central repositories. I also devel-
oped a Spring Boot based server-side REST API application that publishes the
main operations of Morpher, and published a Docker image of it so that re-
search projects developed in other software environments can consume these
operations as well. For users, a multi-platform React and React Native based
client-side application is also available to use. These implementations form the
basis of my fifth thesis.

• In Chapter 8 I summarize my main contribution to this scientific topic, includ-
ing all the novel scientific results of this dissertation and the possible future
research areas that can further improve the proposed models, or use them to
solve higher level NLP problems.

DOI: 10.14750/ME.2022.020

8

Chapter 2

Survey of the Current Models

In this chapter I summarize the main aspects and features of existing morphology
models found in literature. Besides introducing the most important approaches of
morphological analysis and inflection, as well as automated learning methods, my
goal is also to categorize these models based on different grouping methodologies.

In Section 2.1 I examine several dimensions of the morphology models found in
literature. After that, in Section 2.2 I introduce the existing baseline models that I
will compare with the proposed models in the following chapters. Section 2.3 sum-
marizes the conclusions of the literature research, highlighting the advantages of the
examined models and those areas that I want to improve with my proposed models.

2.1 Categorization of the Existing Morphology Models

During the literature research, I found several dimensions that we can use to catego-
rize the examined morphology models. The dimensions that will be explored in the
following subsections include:

• Knowledge representation: What kind of information is extracted from the
training data and how? How well the examined model can generalize from
the training data?

• Scope: Can the examined model handle all the affix types of the target lan-
guage and recognize affix chains in the input words, or was it designed to
learn the transformations of only one affix type?

• Symmetry: Can the examined model both inflect and analyze input words
using the same knowledge base, or does the stored knowledge concentrate
only on one direction?

• Granularity of analysis: In case of morphological analysis, what is the inter-
face of the model? Can it return a complete response containing intermediate
words and the lemma (analysis) or only the affix boundaries (segmentation)?
Can it determine the grammatically correct root form (lemmatization) or does
it only drop the affixes from the input word (stemming)?

• Machine learning capabilities: How much annotated data, a priori knowledge
is required for the training phase? There are supervised, unsupervised and
semi-supervised models according to this aspect. However, several models
exist where the knowledge base has been built up manually by human experts.

2.1.1 Knowledge Representation

One of the most important questions regarding morphology models is their training
method and learning algorithm. The key question is how these models represent
knowledge in an easily searchable way. Most models that I found in literature use

DOI: 10.14750/ME.2022.020

Chapter 2. Survey of the Current Models 9

either dictionaries, extract morphological rules or apply statistical learning meth-
ods, often even combining these techniques. Nowadays, artificial intelligence based
methods are also used frequently to solve morphological problems.

Dictionary Based Systems

As Figure 2.1 demonstrates, dictionary based systems can be imagined as sets of
key-value pairs, where we map from the left-hand side to the right-hand side. In
morphology, the mapping happens from the base word forms to their inflected forms
or vice versa.

almákalma

(elme, elmék)

(alma, almák)

(ház, házak)

...

FIGURE 2.1: A simplified view of dictionary based systems

In Figure 2.1 we can see some of these key-value pairs: the base form and plural
of the Hungarian words for mind, apple and house. When the dictionary receives the
word apple, it looks up the appropriate key-value pair and returns the correct plural
form.

As we can see, dictionaries can store the inflected forms of one affix type easily.
However, the dictionary size can increase dramatically if we want to include all the
possible inflected forms. Another disadvantage of dictionaries is that they cannot
generalize well: if an entry is missing from the dictionary, then the model will not be
able to produce its inflected form. Moreover, dictionaries are often built manually
by human experts, as pointed out in [Gelbukh and Sidorov, 2003].

Therefore such simple dictionaries are usually only used to store the irregular
word forms as part of more complex rule based or statistical morphology models,
as described in [Tóth and Kovács, 2014]. The AMC model uses a smaller sized as-
sociative memory to store the exceptions that would otherwise be more difficult to
handle correctly by the proposed classification model.

Another grammar related application area of dictionaries is WordNets that ex-
ist for both English [Miller, 1998] and Hungarian [Miháltz et al., 2008] among other
languages. However, they tend to focus more on the syntactic and semantic levels
than morphology. Also, due to the complex nature of grammar, WordNets leverage
ontologies for knowledge representation. Theoretically they could contain morpho-
logical information as well, but it would increase their size and connections radi-
cally. The Szeged Corpus [Csendes et al., 2004] is one such attempt that includes 1.2
million word entries that have been morpho-syntactically analyzed using Humor
[Prószéky and Tihanyi, 1993] and then manually disambiguated.

The content of dictionaries are often compressed using different data structures.
One possibility is to use finite state transducers (FSTs) [De la Higuera, 2010] that will
be further explored in Subsection 2.2.2.

DOI: 10.14750/ME.2022.020

Chapter 2. Survey of the Current Models 10

Rule Based Systems

Instead of storing the exact words and word pairs of the training data, rule based
systems try to extract compact transformation rules from it and store these rules
instead, as shown in Figure 2.2.

almákalma

e → ék

a → ák

z → zak

...

FIGURE 2.2: A simplified view of rule based systems

This conceptual difference results in a smaller knowledge base, since one rule can
cover several items in the training data set. This also helps in generalization, since
the stored transformation rules might match words that have not been included in
the training data set, but can still be transformed correctly using the rule base. How-
ever, sometimes the matching transformation rule results in an incorrectly trans-
formed word form, this case is called overgeneralization. The overgeneralization
effect can be decreased by storing a smaller number of exceptional cases in a dictio-
nary for instance [Tóth and Kovács, 2014].

The main parts of a transformation rule is the context and the replacement. Mod-
els differ in how they represent the substring to be changed and the replacement
string, as well as how much information is stored about the context. There are sim-
pler context insensitive methods that only care about the substring that needs to be
replaced in the input word, while context sensitive methods can also distinguish
among the different occurrences of the same substring based on its index or neigh-
boring characters.

One of the best-known rule based systems is the Porter stemmer [Porter, 1980]
that can cut the affixes of the input words using simple transformation rules. The
model was originally designed for the English language and contained 60 base rules.
The stemmer was then generalized as a simple programming language called Snow-
ball [Porter, 2001] that can be used to define the rules. A compiler can create a thread-
safe C or Java based application from the Snowball source code. For the Hungarian
language, several Snowball based stemmers were created, but due to the complex
agglutinative nature of the language, it turned out that they all performed worse
than the best n-gram based solution [Tordai and de Rijke, 2006].

A more complex rule based model was established by Hajič for the Czech fu-
sional language [Hajič, 1988]. The proposed model is based on a controlled rewrit-
ing system (CRS). On top of this CRS model, a substitution operation is defined
that can replace parts (variables) in words, using rewrite rules. The same variable
is replaced with the same string in all occurrences. Although the formalism of the
controlled rewriting system is a suitable morphology framework for agglutinative
and fusional languages, the paper does not determine the rule generation process.

The TASR model [Shalonova and Flach, 2007] that will be examined in Subsec-
tion 2.2.3 is also a rule based system. The generated suffix rules are stored in a tree
for efficient searching.

DOI: 10.14750/ME.2022.020

Chapter 2. Survey of the Current Models 11

Statistical Methods

Statistical methods use some kind of probabilistic approach to generate the best
knowledge base from the given training data set. The internal representation of
these models can vary, they might store transformation rules as well, but the point
is that they try to optimize the stored entities based on a goodness value calculated
from the training data using some kind of probabilistic method.

One common approach is to define an error function either locally for the rules or
globally for the knowledge base. In [Satta and Henderson, 1997] the generated rules
are simple string transformation rules that have positive and negative evidence, i.e.
the number of items in the training set for which these rules apply or not. The learn-
ing algorithm tries to find the set of generated transformations for which the global
error value is optimal. For performance reasons, suffix trees are used extensively to
store the substrings.

Markov models also form a popular statistical method family that has several
variations. Pair hidden Markov models (PHMMs) have been tested to learn inflec-
tion rules successfully [Clark, 2001]. The goal of a PHMM is to learn string trans-
ductions from training word pairs based solely on probabilities. PHMMs consist of
states, similarly to FSTs, where s0 is the start state and s1 is the end state. At each
state, the model can output characters into the left stream (q10), the right stream (q01)
or both (q11). In each state, the sum of output parameters must be 1 for the alphabet
Σ: ∑

c∈Σ

q11 (c | s) + q10 (c | s) + q01 (c | s) = 1

[Creutz and Lagus, 2004] utilizes hidden Markov models (HMMs) using a four-
step unsupervised inflection learning algorithm. The model assumes that the words
consist of a stem, and zero or more prefixes and suffixes. The initial segmentation
is done using Morfessor Baseline [Creutz and Lagus, 2002], then it is adjusted using
a first-order Markov chain (bigrams). The evaluation using Finnish and English
corpora shows that although the Morfessor Baseline method improves its precision
using larger training data, its recall drops, while the proposed model reaches lower
precision, but its recall remains high.

In the work of [Lafferty et al., 2001], conditional random fields (CRFs) are proved
to improve HMMs and maximum entropy Markov models (MEMMs). According to
the publication that originally proposed the CRF model, CRFs are more robust than
Markov models and do not have the label bias problem, even with the same param-
eterization. CRFs have been applied successfully for the Uyghur language that is a
morphologically complex agglutinative language [Aisha and Sun, 2009]. For evalu-
ation, more than 500 thousand words have been collected from the Internet, from
various domains, and the proposed model reached about 90% accuracy.

A subcategory of statistical morphology models is those that treat inflection as
a classification problem. Generally the input of classification is a set of O = {oi}
objects and their classes in the form (oi, cj) where the ith object belongs to the jth
class, cj ∈ C. The goal is to extrapolate and learn the class of previously unseen
objects as well. If the set of O ⊆ U is the training set and O′ ⊆ U is the remaining
set of objects for which O ∩ O′ = ∅ and O ∪ O′ = U , then we need to define the
m : U → C membership function, knowing only its projection m′ : O → C.

In case of morphology, the training set will contain word pairs (wil, wir) = o ∈ O
containing the base form and inflected form of the word pairs according to an affix
type. The classes will be the transformations that need to be applied on the base
forms. During inflection, a classification model needs to find the closest known word

DOI: 10.14750/ME.2022.020

Chapter 2. Survey of the Current Models 12

to the input word and its class, then apply the transformation represented by the
class. The AMC model [Tóth and Kovács, 2014] uses a classification engine at its
core to find the inflected form of input words.

Artificial Intelligence Based Methods

As with any other problem domain, artificial intelligence (AI) models can also be
used. The main prerequisite of solving the inflection problem with an AI model is
to translate the inputs and outputs (in this case, words and transformations) to their
domain, often numeric values.

Neural networks (NNs) are relatively easy to use, since they have firm math-
ematical background and several implementations can be used out of the box. In
most NN based morphological solutions, words are treated independently, meaning
that related word forms have no stored connections. [Luong et al., 2013] combines
recursive neural networks (RNNs) that can manage the morphemes of words, and
neural language models (NLMs) that manage words in sentences or phrases. To seg-
ment the words for evaluation, the Morfessor [Creutz and Lagus, 2002] model was
used, that will be examined in Subsection 2.2.4. Most SIGMORPHON models use
an NN variant as well, these models will be introduced in Subsection 2.2.5.

Another popular AI model that can be treated as a black box is the model of ge-
netic algorithms (GA). [Gelbukh et al., 2004] proposes a morphological application,
where the base forms and endings of the training words are extracted into a knowl-
edge base in an unsupervised manner. The main concept behind genetic algorithms
is that some key features of the problem are identified as genes that are modified
using crossover and mutation in some iterations. This model is not deterministic,
but choosing the right genes and parameters, as well as the right number of itera-
tions usually leads to a valid solution. The proposed model was evaluated using
the words of the Scrabble game, as well as the Spanish words of Don Quijote. For
English words, the Porter stemmer had better accuracy.

2.1.2 Scope

Morphology models can also be categorized based on their scope, i.e. if they are
capable of learning the whole morphology of a language including all of its affix
types, or only the transformations of a single affix type.

Single-Affix Models

Some of the already mentioned models can only handle a single affix type. For in-
stance a simple dictionary stores word pairs and cannot distinguish among the trans-
formations of different affix types. Also, FSTs [De la Higuera, 2010] and the TASR
model [Shalonova and Flach, 2007] receives a word pair set as their training data,
without any information on affix types. They will be examined in Subsection 2.2.2
and Subsection 2.2.3, respectively.

The only way such tools can be used for multi-affix morphology learning is to
develop a higher-level model for affix type chain management, and training a sep-
arate FST or TASR for each affix type, or extend their structure with some labeling
mechanism.

DOI: 10.14750/ME.2022.020

Chapter 2. Survey of the Current Models 13

Multi-Affix Models

Multi-affix models are capable of handling multiple affix types, i.e. inflect words
using multiple affix types and recognize transformations related to multiple gram-
matical categories.

The Porter stemmer [Porter, 1980], although it does not know exactly the affix
type labels, can cut multiple affixes from the input words.

Similarly, Morfessor [Creutz and Lagus, 2002], MORSEL [Lignos, 2010] and Mor-
phoChain [Narasimhan et al., 2015] can find the affix boundaries of multiple affix
types. However, they cannot label these affixes using affix type names, either. These
models will be further explored in Subsection 2.2.4.

The SIGMORHPON shared tasks also require to model all affix types of the tar-
get languages, so the models of Subsection 2.2.5 also fall into the multi-affix model
category, as well as the morphological analyzers of Subsection 2.2.6.

2.1.3 Symmetry

Another simple dimension of morphology model categorization is symmetry: some
models are unidirectional, meaning that they can either inflect or analyze the input
words; others can work in both directions.

Asymmetric Models

The main constraint on symmetry is the structure of stored knowledge. For instance
a classic dictionary based system usually can only work in one direction. Therefore
if the keys are the base forms, then such a dictionary can only execute inflection
efficiently, and not analysis.

FSTs [De la Higuera, 2010] that will be explored in Subsection 2.2.2 are also asym-
metric, since the states are built up in such a way that the input words are treated as
the base form and the output channel will contain the transformed inflected form.

The TASR model [Shalonova and Flach, 2007] that will be presented in details
in Subsection 2.2.3 has a tree representation of suffix rules that is built up using
the characters of the base form. Therefore such a tree cannot handle backwards
transformation, only forwards transformation.

There are some models that were proposed for solving the opposite problem.
Linguistica [Lee and Goldsmith, 2016] (explored in Subsection 2.1.5), as well as the
Morfessor model [Creutz and Lagus, 2002], the MORSEL model [Lignos, 2010] and
the MorphoChain model [Narasimhan et al., 2015] (explored in Subsection 2.2.4) can
be used for segmentation.

Hunmorph-Ocamorph [Trón et al., 2005], Hunmorph-Foma [Hulden, 2009], Hu-
mor [Prószéky and Tihanyi, 1993] and Hunspell [Pirinen et al., 2010] are morpho-
logical analyzers (more details in Subsection 2.2.6), while the already introduced
Porter stemmer [Porter, 1980] can only be used for stemming purposes.

Some of these models including FSTs and TASR can be extended to be used for
both forwards and backwards transformation of a single affix type. If the original
training word pair set is reversed, then the trained model will be able to handle
backwards transformation. This means that if we use two transducers or two trees,
one built using the original training data and the other one built using the reversed
training data,1 then theoretically we will be able to handle both directions.

1We can always generate the reversed training data if we swap the base and inflected forms in the
training data set. This means that instead of (apple, apples), we use (apples, apple) to train the the affix
type of plural form.

DOI: 10.14750/ME.2022.020

Chapter 2. Survey of the Current Models 14

Symmetric Models

Symmetric models are very rare in literature, probably because usually the new
models are proposed to solve a unidirectional morphological problem.

Some of these models (including FST or TASR) are easy to extend for the bidirec-
tional case. In case of a simple dictionary based system, it is also possible to achieve
the same using a bidirectional mapping.

2.1.4 Granularity of Analysis

Analysis models can be also categorized based on how complete their response is.
Some models return the intermediate words and the lemma with the affix types and
part of speech, while other models can only segment the input words and cannot
handle changing base forms. Regarding the base form, lemmatization models can
determine the grammatically correct root form, while stemmers can only drop the
affix characters.

Morphological Analysis

Lemming [Müller et al., 2015] is the first log-linear model that handles both mor-
phological analysis and lemmatization. It works on the token level and is able to
lemmatize unknown word forms, without the need of providing morphological dic-
tionaries or external analyzers.

The morphological analyzers of Subsection 2.2.6 also return a relatively granular
response, containing the grammatically correct lemma, its part of speech and the
affix types found in the input word.

Segmentation

Linguistica [Lee and Goldsmith, 2016], that will be introduced in Subsection 2.1.5,
as well as Morfessor [Creutz and Lagus, 2002], MORSEL [Lignos, 2010] and Mor-
phoChain [Narasimhan et al., 2015] (introduced in Subsection 2.2.4) are a few popu-
lar unsupervised segmentation models. Their common feature is that they concen-
trate on affix boundaries and use statistical methods to determine the highest prob-
ability segmentation of the given word set. However, they are unaware of the affix
types of the language, and moreover they cannot handle base form transformations
like vowel or consonant gradations.

Lemmatization

Lemmatization models can return the grammatically correct root form of the given
word even if its base form was modified by the applied affix types.

The previously mentioned single-affix models are capable of detecting base form
transformations, including dictionaries, FSTs [De la Higuera, 2010] and the TASR
model [Shalonova and Flach, 2007]. The FST model will be explored in details in
Subsection 2.2.2, while Subsection 2.2.3 will introduce the TASR model.

Hunmorph-Ocamorph [Trón et al., 2005], Hunmorph-Foma [Hulden, 2009], Hu-
mor [Prószéky and Tihanyi, 1993] and Hunspell [Pirinen et al., 2010] can also be men-
tioned as lemmatization tools, because if they can analyze the given word, they also
return its lemma. They will be detailed in Subsection 2.2.6.

DOI: 10.14750/ME.2022.020

Chapter 2. Survey of the Current Models 15

Stemming

Stemmers differ from lemmatizers in that they cannot recognize base form trans-
formations, so they can only identify the affix substrings and drop their characters
from the word. The Porter stemmer [Porter, 1980] is one of the most famous exam-
ples, also adapted for the Hungarian language [Tordai and de Rijke, 2006].

2.1.5 Machine Learning Capabilities

Nowadays the emphasis is transposed from supervised models towards unsuper-
vised and semi-supervised models that require less and less input knowledge and
preprocessed data. However, there also exist models whose knowledge base is built
up by human experts in a non-automated way.

Non-Automated Training

In case of non-automated training, the model is built by human experts, thus the
model construction method includes no automated steps.

Historically, the first models were built like this. Dictionaries and even the rules
of the Porter stemmer [Porter, 1980] are part of this category.

However, later supervised methods emerged that could build the knowledge
base from preprocessed data in an automated way.

Supervised Training

Supervised models require a training data set consisting of records that match a fixed
set of constraints. The big disadvantage of supervised models is that this training
data needs to be created somehow, usually in a non-automated way.

The FST [De la Higuera, 2010] and TASR [Shalonova and Flach, 2007] models for
instance (as we can read in Subsection 2.2.2 and Subsection 2.2.3) require a word pair
set that demonstrate the transformations of a single affix type of the target language.
From such a word pair set they can build the appropriate transducer and tree, re-
spectively, that can later be used during either inflection generation or morphologi-
cal analysis.

[Ahlberg et al., 2015] leverages complete inflection tables of the target language,
and generalizes them into more compact paradigms, i.e. rule patterns. During inflec-
tion, the original inflection tables are reconstructed for the previously unseen input
base words. The pattern matching algorithm is based on the longest common subse-
quence method, and a support vector machine (SVM) is used for classification dur-
ing the inflection table reconstruction. This model was tested with several languages
and performed relatively well. However, for its training, complete inflection tables
had to be constructed manually. A similar model is presented in [Hulden, 2014],
that leverages the Foma [Hulden, 2009] framework to find the longest common sub-
strings.

[Cotterell et al., 2015] uses a special version of CRF, the semi-Markov CRF. The
advantage of the proposed model called Chipmunk is that it can not only segment
words, but it also has a wide variety of labels and explicitly models morphotactics.
This means that unlike most other segmentation tools, this one uses labeled morpho-
logical segmentation, providing more information in its output. The model provides
both the lemma and the stem of the input words, as well as their affix types and their
related substrings.

DOI: 10.14750/ME.2022.020

Chapter 2. Survey of the Current Models 16

Unsupervised Training

Linguistica was one of the major unsupervised segmentation models originally de-
veloped around the millenium [Goldsmith, 2001]. Its functionality grew gradually
over the years: at first, stemming was the main problem it wanted to solve, then
the identification of suffixes and prefixes. The cutting of suffixes happens in a re-
cursive fashion: first, the last suffix candidates are cut, then the remaining stems are
processed again. From the training word set, after the cutting phase, so-called sig-
natures are generated that describe the possible transformations of the words falling
into the category of the signature. For example, NULL.ed.ing.s means that words
can be extended with the -ed, -ing and -s suffixes. The main concept of the learning
method behind Linguistica is the minimum description length (MDL), where the
goal is to find the most compact description of the trained model and the data it de-
scribes using information theory principles. The trained model itself contains three
major components: the list of stems, the list of affixes and the list of signatures that
determine which stems can appear together with which affixes.

The original publication mentioned several future plans, including the identifica-
tion of related stems (allomorphs) and compounds, as well as the grouping of related
signatures into so-called paradigms for performance reasons. Some of these plans
have been implemented in later versions [Goldsmith, 2006]. However, the main de-
ficiency of the model itself is that it was not tested using languages with complex
morphology such as Hungarian or Finnish, as the goal was to develop a model for
the more widely studied European languages. The evaluation included English,
French, German, Spanish, Italian, Dutch, Latin and Russian. The results show that
the accuracy was around 70%, but if the incorrect results of words that could not be
reconstructed from the training data are omitted, the accuracy increases to 80%.

The most recent version of Linguistica at the time of writing is Linguistica 5
[Lee and Goldsmith, 2016] that is a complete rewrite of the older C/C++ based en-
gine in Python. The main benefit of the latest version besides the several improve-
ments in its model is that it can function both as a graphical user interface that is
easy to use and as a library, serving higher-level client applications.

The Paramorph model [Snover and Brent, 2003] is designed for concatenative
morphology. It assumes that words consist of stems and suffixes, but contains no
morphological ambiguity handling, does not support multiple interpretations of the
same word and does not distinguish between derivational and inflectional affixes.
The learning algorithm is based on statistical computation and has no knowledge
about the target language. The main components of the model are a generative prob-
ability model and a two-phase search algorithm, consisting of a hill-climbing and a
direct search phase. The evaluation was done for the English and Polish languages,
comparing the results with Linguistica [Goldsmith, 2001]. However, determining
the accuracy of a segmentation ignores the affix boundaries, and only checks the
generated stems. Also, Linguistica proved to be significantly faster, and it reached
higher accuracy in case of larger word sets.

Since the birth of Linguistica, there have been several other models that were
built upon it. One of them is [Goldwater and Johnson, 2004] that uses the output
segmentation of Linguistica and adds new components to the resulting model. The
major added value is the introduction of phonological rules that consist of a trans-
formation, e.g. ε → e or y → ied, and a context. The context is a simple string
containing four characters, XtytyfXf where Xi holds the information if the charac-
ter is a vowel, a consonant or a word-end symbol, and yi is an arbitrary concrete
character. The t index denotes the stem, while the f index denotes the suffix. These

DOI: 10.14750/ME.2022.020

Chapter 2. Survey of the Current Models 17

rules are generated from the segmentation output of Linguistica in an unsupervised
manner.

[Soricut and Och, 2015] presents a rather original segmentation model compared
to the other MDL based ones. It treats words as n-dimensional vectors in vec-
tor space and tries to find the transformations among them. The resulting trained
model can be visualized as a graph, where the nodes are the words and the edges are
the transformations among the words. The transformation rules are in the form of
type:from:to. For example, the rule suffix:ε:ed describes the past tense of many English
words. Evaluation was performed on various languages including English, Ger-
man, French, Spanish, Romanian, Arabic and Uzbek, and accuracy reached around
80-90%.

Semi-Supervised Training

Minimally supervised models are getting more and more attention lately, due to
the fact that they only require a smaller set of annotated training data and a larger
unannotated data set [Ruokolainen et al., 2016].

[Tepper and Xia, 2010] proposes a model that extends and tries to improve the
Morfessor Categories-MAP model by incorporating a small amount of manually
created morphological rules. The resulting method can not only provide the seg-
mentation of the input words, but also their surface-level components. After the
preprocessing takes place using Morfessor, a word-resegmantion stage is executed
that fine-tunes the original segmentation. The two main steps can be executed mul-
tiple times after each other incrementally. The proposed model was tested using the
English and Turkish languages, but only reached 75-80% of F-score at most.

In [Ruokolainen et al., 2014], a new CRF-based semi-supervised model is pro-
posed that differs from its predecessors in that it does not rely on only annotated
data. The advantage of the training algorithm is that it can consume a large number
of unannotated data and also take into account a smaller number of gold standard
data. During segmentation, the characters of the input words are categorized as the
beginning of a multicharacter morph (B), middle of a multi-character morph (M)
and the single character morph (S) categories using a linear-chain CRF model dis-
tribution. The unannotated data is processed using the Morfessor model and then
its output is converted and incorporated into the knowledge base of the proposed
model. Evaluation using the MorphoChallenge 2009/2010 data set showed that the
F-score reached about 80-90% for the English, Finnish and Turkish languages.

In [Faruqui et al., 2015], a model of inflection generation is presented as a se-
quence to sequence transducer. The model uses a recurrent neural network model
and combines supervised learning with the processing of a larger unannotated data.
Originally such models were used for machine translation of sentences, but this pro-
posed model adapts the NN based learning algorithm for learning inflection rules.
The experiments show that the model can reach more than 90% of accuracy for data
sets containing German, Finnish, Spanish, Dutch, French and Czech examples.

In [Cotterell et al., 2015], a labeled semi-supervised morphological segmentation
(LMS) engine is presented, that explicitly models morphotactics. The engine, that
uses a rich label set, can be used for morphological segmentation, stemming and
morphological tag classification. A probabilistic CRF model is used internally to
determine the corresponding labels in the input words.

[Müller and Schütze, 2015] compare four variants of semi-supervised morpho-
logical tagging models: word-feature cooccurrence matrix with singular value de-
composition, statistical language model for word clusters, CW embedding based on

DOI: 10.14750/ME.2022.020

Chapter 2. Survey of the Current Models 18

neural network and accumulated tag counts format. The paper includes six different
languages for evaluation. As a conclusion, the statistical language model outper-
formed the others in all tasks and for all languages. Another summarizing compar-
ison study was published in [Ruokolainen et al., 2016]. This paper involved three
main methods: the Morfessor method family, the adaptor grammar framework and
the CRF approach. Similarly to the previously mentioned comparison, the statistical,
CRF-based method proved to be the most efficient here as well.

A sequence to sequence transducer based inflection generation model was pub-
lished in [Faruqui et al., 2015], that transforms its input characters to a sequence of
output characters, representing the inflected form. The training set contains word
pairs of the lemmas and inflected forms, but unlabeled data is also added to the
training set. The experiments show that the model achieves better or comparable
results to state of the art methods.

Another interesting problem in morphology is the so-called morphological rein-
flection problem, that means that the input word is an inflected form, and the goal is
to generate another inflected form. This problem has been solved using a character
based encoder-decoder recurrent neural network [Kann and Schütze, 2017] among
others. The proposed method uses a probabilistic log-likelihood model. According
to the presented experiments, the loss of performance for reducing the training data
varies a lot between languages and using 4 times more unlabeled examples mostly
obtains the highest accuracy.

Semi-supervised training models are similar to active learning, which is a spe-
cial case of machine learning, where during the training phase, the training algo-
rithm will interactively ask the user to provide annotations for some selected train-
ing records. The main difference between the above introduced semi-supervised
models and the active learning method is that the above models are completely of-
fline, meaning that no interaction is necessary. The advantage of this aspect is that
human interaction does not slow down the training phase.

2.2 Main Baseline Morphology Models

In this section I describe the main baseline models that I will use in the comparisons
of the subsequent chapters. Note that two-level morphology is only included for
historical reasons and it is the only model that will not be used later.

2.2.1 Two-Level Morphology

One of the first general morphology models for morphologically complex languages
was the two-level morphology model [Koskenniemi, 1983], that resides somewhere
in between morphology and phonology. Since this is historically the first complete
framework, I introduce its base concepts in this section, despite the models proposed
in this dissertation follow different routes of morphology representation.

The main idea behind two-level morphology from which it got its name, is that
words are represented on two related levels: the surface level contains the written
form of the words, while the lexical level contains the morphological structure. The
model uses a dictionary of valid lemmas and morpheme categories, as well as finite
state transducers (FSTs) as the transformation engine, often combined into just one
transducer. While the dictionaries contain language specific knowledge, the FST is
language independent, and thus two-level morphology can be adapted easily for

DOI: 10.14750/ME.2022.020

Chapter 2. Survey of the Current Models 19

several languages. The proposed model is usable for both directions, i.e. both for
inflection generation and morphological analysis.

The main building blocks of the model are two-level rules that have several pos-
sible forms. The basic structure of a two-level rule is: CP OP LC −RC, where

• CP is the correspondence part, i.e. a concrete or abstract character pair of the
two levels.

• OP is the operator that indicates the relation of CP and the context.
• LC is the left context, while RC is the right context.
Elementary rules have the following subtypes:
• Context restriction rules (CP ⇒ LC − RC) define an environment where a

given correspondence can occur. This form means that CP can only occur if it
is enclosed by the given context.

• Surface coercion rules (CP ⇐ LC −RC) define that for any pairs that have the
same lexical character as CP , the surface character must be the same as in CP
within the given context.

Elementary rules can also be combined into more complex composite rules. For
example the rule CP ⇔ LC −RC combines the above two elementary rules.

At the time of the first publication, the FSTs had to be created manually, which
was a non-trivial task to do. Later, different two-level rule compilers were created
that could generate the FSTs from two-level rules, but these rules still had to be
created by human experts.

Theron and Cloete [Theron and Cloete, 1997] proposed an easier method to gen-
erate the rule set from word pairs based on edit-distance similarities of the base and
inflected forms. The algorithm learns the two-level transformation rules, calculating
the string edit difference between each source-target pair and determining the edit
sequences as a minimal acyclic finite state automaton. The goal is to have two-level
rules whose context is long enough to uniquely identify the transformation position,
but not too long to be overspecified. To acquire optimal two-level rules, a directed
acyclic graph is used.

One of the main issues related to the two-level morphology model is the com-
putation complexity of the implementations. It was shown that it is inefficient to
work with complex morphological constraints [Barton, 1986], if there are complex
dependencies among the different morphemes.

2.2.2 Finite State Transducer (FST)

Finite state transducers (FSTs) can be built from a set of word pairs, and are often
used to learn string transformations [De la Higuera, 2010].

The theory of FSTs are related to the theory of finite state automata (FSAs). An
FSA is a 〈Σ, Q, qε, δ, F 〉 structure, where

• Σ is the alphabet,
• Q is a finite set of states,
• qε ∈ Q is the start state,
• δ : Q× Σ→ Q is the state transition function and
• F ⊆ Q is the set of final states.
A sample FSA can be seen in Figure 2.3. The automaton has 3 states and its

alphabet contains 2 characters: Q = {qε, q1, qF } and Σ = {a, b}. The input string aabb
is recognized by the automaton, but baaba is rejected, as the automaton stops in a
non-final state qε.

String transformations can be modeled as transductions. A transduction is a
t ⊆ Σ∗ ×Γ∗ relation, t = {(s1, s2) | s1 ∈ Σ∗, s2 ∈ Γ∗}where s1 is the input word and

DOI: 10.14750/ME.2022.020

Chapter 2. Survey of the Current Models 20

q
1

a

b a

q
F

ba

b

q
ε

FIGURE 2.3: A sample finite state automaton

s2 is the output word, while Σ is the input alphabet and Γ is the output alphabet.
Such transductions can be learnt by transducers, that have several subtypes.

A rational transducer is a 〈Q,Σ,Γ, qε, E〉 structure, where
• Q is the finite set of states,
• Σ and Γ are the input and output alphabets, respectively,
• qε ∈ Q is the unique start state and
• E ⊆ Q× Σ∗ × Γ∗ ×Q is the finite set of transitions.
The addition on top of an automaton is the two alphabets and the transition

function E that outputs a string besides changing the state.
A sequential transducer constraints E further so that it is E ⊂ Q × Σ × Γ∗ × Q

and ∀ (q, a, u, q′) , (q, a, v, q′′) ∈ E ⇒ u = v ∧ q′ = q′′. This basically means that the
transducer becomes deterministic.

A subsequential transducer is a 〈Q,Σ,Γ, qε, E, σ〉 structure such that the first 5
components make up a sequential transducer and σ : Q → Γ∗ is a total function,
which adds outputs to the ending states of the processing. Internal states do not
output strings.

q
a
 : 1

a :: ε

b :: 01

b :: 1 a :: 0

q
ε
 : ε

FIGURE 2.4: A sample onward subsequential transducer

A transducer is onward if ∀q ∈ Q, a ∈ Σ : lcp ({u | (q, a, u, q′) ∈ E} ∪ {σ (q)}) = ε
where lcp returns the longest common prefix of the given word set and ε is the empty
string.

Figure 2.4 displays a simple onward subsequential transducer with two states
Q = {qε, qa}, using the input alphabet Σ = {a, b} and the output alphabet Γ = {0, 1}.
For the input string aabba, the FST will output 00111 and change its state from qε to
qa, qa, qε, qε, qa.

Originally, FSTs had been created manually by human experts, but nowadays
automated training methods can be used as well. One way of building an FST from

DOI: 10.14750/ME.2022.020

Chapter 2. Survey of the Current Models 21

a word pair set is the onward subsequential transducer inference algorithm (OS-
TIA) [Oncina et al., 1993, Oncina, 1998]. The training algorithm starts with building
a prefix tree transducer containing states for every input word prefix. Every edge
outputs an empty string, and every state outputs an output word form or a special
character that does not exist in the output alphabet. Then, every character of the
output is moved as close to the start state as possible, creating an equivalent on-
ward prefix-tree transducer. Finally, since this transducer might contain hundreds
or thousands of states, a complex recursive algorithm is used to merge certain states
to get a minimal transducer.

One disadvantage of FSTs is that they cannot really generalize, they only act
as compact dictionaries, returning the correct inflected form for known base forms
[Mohri, 1997].

2.2.3 Tree of Aligned Suffix Rules (TASR)

The tree of aligned suffix rules (TASR) [Shalonova and Flach, 2007] is a very efficient
model for learning the transformation rules from a training word pair set. The basic
building blocks of TASR are the suffix rules.

A suffix rule is an LS → RS transformation where LS is the left-hand suffix and
RS is the right-hand suffix. The LS → RS suffix rule is aligned with the LS′ → RS′

suffix rule if two words (w1, w2) and two prefixes (s, s′) exist such thatw1 = s+LS =
s′+LS′ and w2 = s+RS = s′+RS′. The frequency of a suffix rule is the number of

word pairs in the training set that the rule matches. The child suffix rule LS → RS
is subsumed by the parent suffix rule LS′ → RS′ if there exists a character c such
that LS = c+ LS′ and RS = c+RS′.

The goal of the training algorithm of TASR is to extract the suffix rules from the
training word pair set and build a tree from the extracted rules using the following
constraints:

• In the root, |LS|must be minimal, thus it is usually the empty string ε.
• The winning rule of a node has the highest frequency and is not subsumed by

its parent rule.
• For every child node, LS′ = c + LS where c ∈ Σ is a character and LS is the

left-hand suffix of the parent rule.

ma → mák

a → ák e → ék

ε → k

FIGURE 2.5: A sample tree of aligned suffix rules

DOI: 10.14750/ME.2022.020

Chapter 2. Survey of the Current Models 22

This tree building algorithm can be executed quickly and easily, as described in
one of my previous publications [9]. The excerpt of a resulting TASR tree can be seen
in Figure 2.5.

During inflection generation, we must search for the closest matching pattern
in the tree in a bottom-up fashion, and if we find a match, we must execute the
transformation. For the input word alma (apple), we find the rule ma → mák and the
output will be the correct plural form almák. For words of the training set, the exact
word pair will be found in a leaf, while for previously unseen words, a generalized
rule will be found with the longest matching substring.

TASR is a quick and efficient transformation engine that can learn suffix rules
easily and even generalize the learnt rules. However, its disadvantage is that for affix
types that contain prefix and circumfix rules as well (such as Hungarian preverbs or
superlative), it cannot be used.

2.2.4 Unsupervised Segmentation Models

Morfessor [Creutz and Lagus, 2005a] is a segmentation model originally published
in 2005. Since then, many publications have emerged that improved or extended
it, such as MORSEL [Lignos et al., 2009] or MorphoChain [Narasimhan et al., 2015]
that will be introduced in the following subsections.

Morfessor 2.0

Morfessor is an unsupervised and semi-supervised word segmentation method fam-
ily consisting of concrete models like Morfessor Baseline, Morfessor Baseline-Freq-
Length, Morfessor CategoriesML and Morfessor Categories-MAP.

The first public version of Morfessor Baseline [Creutz and Lagus, 2005b] was im-
plemented in Perl and evaluated against Linguistica 5 [Lee and Goldsmith, 2016].
The main difference between these two models is that while Linguistica assumes
that a word consists of a stem and at most one suffix (or prefix) and uses recursion
for generalization, Morfessor has no upper limit on the number of prefixes and suf-
fixes.

The main building blocks of words according to the Morfessor Baseline model
are atoms (characters), constructions (morphemes) and compounds (words). The
main goal of the training algorithm is to find the constructions (morphemes) from a
given training word set. The process of replacing compounds with constructions is
called tokenization.

Originally two cost functions were introduced [Creutz and Lagus, 2002]: the min-
imum description length (MDL) based learning and the maximum likelihood based
learning. In case of MDL, the training process uses recursive segmentation, incre-
mentally trying to add new morphs to the lexicon. As this method might lead to a
local optimum, the model includes a so-called dreaming phase where the already
processed words are processed again in random order. The maximum likelihood
based learning is not recursive but linear, and starts with an initial random segmen-
tation. If the model encounters rare morphs or a morph chain consisting of one-
character morphs, it rejects them. The evaluation showed that for both Finnish and
English words, the MDL based learning method was the best, producing the high-
est accuracy and smallest morph lexicon. Linguistica 5 generated a larger morph
lexicon and was significantly worse for Finnish data than Morfessor. However, for
English it produced better results, due to the simpler morphology of the language.

DOI: 10.14750/ME.2022.020

Chapter 2. Survey of the Current Models 23

There have been several model variants such as Morfessor Categories-MAP or
Morfessor Categories-ML [Creutz and Lagus, 2005a] that tried to alter the learning
and search processes for higher F-score in case of highly agglutinative languages
such as Finnish.

In 2013 the original Morfessor Baseline model has been reworked and improved
[Virpioja et al., 2013]. The new Morfessor 2.02 was implemented in Python, using
an easy to use command-line and library interface. Besides the more modern archi-
tecture, Morfessor 2.0 improves the original Morfessor 1.0 Baseline by supporting
training speed-up using random skips, semi-supervised training, online training,
etc.

The semi-supervised training aspect of Morfessor 2.0 means that the model can
receive a smaller sized annotated and a larger sized unannotated data, and it can
tune the internal parameters of the learning algorithm to achieve the best possible
results using the two data sets. This means that the training can happen without
annotated data (unsupervised mode), but adding just a few annotated examples can
improve the trained model significantly. The semi-supervised mode was not part
of the original Morfessor release, and was introduced by [Kohonen et al., 2010]. The
main idea of this mode is to define two additional weight parameters, one for the
likelihood of the unannotated data and one for the likelihood of the annotated data.

Morfessor FlatCat is a later addition of the Morfessor method family, that uses an
HMM based architecture, supporting both unsupervised and semi-supervised learn-
ing, but cannot reach the score of Morfessor Categories-MAP [Grönroos et al., 2014].

One can find several publications that tried to improve Morfessor over the years.
[Poon et al., 2009] for example uses a log-linear model and reduces F1 error by 11%
as opposed to Morfessor Categories-MAP for the Arabic language. The base con-
cept of the model is also MDL, but it differs from other methods in that it uses two
priors, both favoring fewer morpheme types and fewer morpheme tokens during
segmentation. The log-linear model can incorporate gold segmentation as well, and
thus can be used in fully supervised and semi-supervised modes.

Lately, artificial intelligence is also frequently used in combination with Morfes-
sor based models, such as in the proposed model of [Luong et al., 2013], where a
context-sensitive morphological recurrent neural network was used alongside Mor-
fessor.

MORSEL

MORSEL3 [Lignos et al., 2009] is based on the base and transforms model originally
published by Chan and Yang [Chan and Yang, 2008]. According to that, a word con-
sists of a base and a transform. The base is not the stem, but the most frequent form
of the morphologically related words. The transform defines the rule that needs to
be applied to produce a derived form from the base. A transform is given as an
affix pair (s1, s2) where s1 needs to be removed from the base and s2 needs to be
appended.

During the training phase, the words of the training set are initially added to the
set of unmodeled words, then they get processed one by one. A processed word
can be moved to the set of bases or the set of derived words, while also storing the
appropriate transform. This way, at the end of the training phase, the transforms
will form word chains, starting from a base and then connecting one or multiple
derived forms.

2https://github.com/aalto-speech/morfessor
3https://github.com/ConstantineLignos/MORSEL

DOI: 10.14750/ME.2022.020

https://github.com/aalto-speech/morfessor
https://github.com/ConstantineLignos/MORSEL

Chapter 2. Survey of the Current Models 24

The MORSEL method improves the original base and transforms model in sev-
eral points, including:

• It can handle multiple decompositions of a word.
• It supports compounding. (Later improved in [Lignos, 2010].)
• It can determine how many learning iterations are needed.
Evaluation was executed using English and German data of MorphoChallenge

2009. In case of English, the results were better (higher F-measure of 58% and faster
learning of 92 minutes), while in case of the German data set that contained more
than 1.2 million records, learning took 375 minutes and the F-measure was only 33%.

In [Lignos, 2010], the MORSEL model was improved using better compounding
strategies and introducing base inference, that means that even if a base is not in-
cluded in the training set, the model infers it if it should exist based on the rest of
the training data. This way, the results for German, Finnish and Turkish improved
compared to the previous version.

MorphoChain

The MorphoChain method4 [Narasimhan et al., 2015] incorporates semantic infor-
mation as well into the segmentation learning process besides orthographical pat-
terns.

From the training corpus, the MorphoChain model builds morphological chains
that start from a base form and continue in inflected forms containing either prefixes
or suffixes. Unlike Morfessor, MorphoChain also supports more complex transfor-
mations besides simple concatenative morphological rules. The different forms in
a chain are stored in parent-child relationships, where the child is derived from the
parent. Base forms do not have parents.

For the learning process, a log-linear model is used to predict the appropriate
chains. The advantage of this log-linear model is that multiple features can be in-
corporated into the prediction. These features are represented by a feature vector
φ : W × Z → Rd and a corresponding weight vector θ ∈ Rd, where W is the set of
words and Z is the set of candidates for words.

The MorphoChain model was evaluated using the Arabic, Turkish and Finnish
languages, comparing it with other similar models including some Morfessor vari-
ants. Turkish and Finnish are agglutinative languages, and for them MorphoChain
outperformed the other models by a small margin.

In [Bergmanis and Goldwater, 2017], an improved model is proposed that adapts
the unsupervised MorphoChain system to provide morphological analysis that can
abstract over spelling differences in functionally similar morphemes. Based on the
presented test results, the proposed model outperforms both MorphoChain and
MORSEL, and performs similarly to Morfessor.

2.2.5 SIGMORPHON

Lately, the state of the art morphology models are gathered by SIGMORPHON, the
Special Interest Group on Computational Morphology and Phonology.5 The training
and test data is provided by them, and anyone can solve the announced tasks using
any technique. The best achievements are summarized by their annual publication.

In this section I introduce those models that have been published as part of SIG-
MORPHON proceedings and also have their source code available online.

4https://github.com/karthikncode/MorphoChain
5https://sigmorphon.github.io

DOI: 10.14750/ME.2022.020

https://github.com/karthikncode/MorphoChain
https://sigmorphon.github.io

Chapter 2. Survey of the Current Models 25

SIGMORPHON 2016

SIGMORPHON 2016 [Cotterell et al., 2016] was the last shared task publication that
still included some models not applying artificial intelligence.

The Helsinki 2016 model6 [Östling, 2016] used a one dimensional residual net-
work architecture with constant size across layers, followed by either one or zero
gated recurrent unit layer. The output vector of each residual layer is combined
with the vector of the previous layer by addition, which means that the output is the
sum of the input and the output of each layer.

Dropout was also used for regularization, with a dropout factor of 50%. The
morphological features of the target form are concatenated to the 128-dimensional
character embeddings at the top convolutional layer. Decoding is done by choos-
ing the single most probable symbol at each letter position, according to the final
softmax layer.

SIGMORPHON 2017

Since SIGMORPHON 2017 [Cotterell et al., 2017], the main emphasis of the shared
tasks moved towards low-resource evaluation, and the resulting models all included
some kind of AI based algorithms.

The UF 2017 method7 [Zhu et al., 2017] models the morphological reinflection
problem using an encoder-decoder architecture. For an input word, every charac-
ter is encoded through a bidirectional gated recurrent unit network. Another GRU
network is deployed as a decoder to generate the inflected word forms.

The UTNII 2017 model8 [Senuma and Aizawa, 2017] is also based on the sequence
to sequence model. In its basic form, the sequence to sequence model consists of
two recurrent neural networks, the encoder and the decoder. After the encoder is
fed with a sequence of input symbols, the hidden layer of the encoder is used as an
input to the decoder, and finally the decoder emits a sequence of output symbols.

With the submitted configuration, UTNII 2017 was second in the high-resource
scenarios, but unfortunately, in the medium-resource scenarios it only performed
similarly to the baseline method, and in low-resource scenarios, it was the worst
submitted model.

SIGMORPHON 2018

SIGMORPHON 2018 [Cotterell et al., 2018] increased the training and evaluation
data size, and also brought in sentential context, which is out of the scope of this
disseration.

The Hamburg 2018 model9 [Schröder et al., 2018] introduces the concept of string
transducer actions called patches. The resulting model is a language-agnostic net-
work model that aims to reduce the number of learnt edit operations by introducing
equivalence classes over graphical features of individual characters.

The IITBHU 2018 model10 [Sharma et al., 2018] uses a pointer-generator network
to mitigate the problem of copying many characters between word forms. This net-
work architecture also helps in dealing with unknown characters. The lemma and
the morphosyntactic tags are encoded by two separate encoders. While decoding,

6https://github.com/robertostling/sigmorphon2016-system
7https://github.com/valdersoul/conll2017/tree/master/dl
8https://github.com/hajimes/conll2017-system
9https://gitlab.com/nats/sigmorphon18

10https://github.com/abhishek0318/conll-sigmorphon-2018

DOI: 10.14750/ME.2022.020

https://github.com/robertostling/sigmorphon2016-system
https://github.com/valdersoul/conll2017/tree/master/dl
https://github.com/hajimes/conll2017-system
https://gitlab.com/nats/sigmorphon18
https://github.com/abhishek0318/conll-sigmorphon-2018

Chapter 2. Survey of the Current Models 26

the decoder reads relevant parts of the lemma and the tags using attention mecha-
nism. Compared to other similarly performing systems, this model is trained end-
to-end, does not require data augmentation techniques, and uses soft attention over
hard monotonic attention, making the resulting system more flexible.

The MSU 2018 model11 [Sorokin, 2018] aimed to improve the accuracy in medium
and low resource scenarios by explicitly equipping the decoder with the information
from the character-based language model, however the advantage was not clear.

Since 2019 [McCarthy et al., 2019], the focus of SIGMORPHON shifted to crosslin-
gual tasks and contextual analysis using sentences, which are not the scope of this
dissertation.

2.2.6 Morphological Analyzers for the Hungarian Language

Morphological analyzers exist for most languages, including Hungarian. In the fol-
lowing subsections I introduce four of the most popular tools.

Hunmorph-Ocamorph

Hunmorph-Ocamorph [Trón et al., 2005] is a pioneer morphological analyzer for the
Hungarian language, that is part of the Szószablya project [Halácsy et al., 2003], de-
veloped by the Budapest University of Technology and Economics. The tool itself
is called Hunmorph, but since there is an Ocamorph and a Foma based analyzer
with the same name, I will call them Hunmorph-Ocamorph and Hunmorph-Foma,
respectively.

The analyzer engine was designed in a way that is totally language independent.
The dictionary for the Hungarian language is called Morphdb.hu [Trón et al., 2006],
and stores lexical records with different affix flags. Both Hunmorph-Ocamorph and
Morphdb.hu are open-source and can be downloaded from the project page.12

The output of Hunmorph-Ocamorph contains the lemma, its part of speech and
the found affix type tokens in the word. For the word tollakat, which is the plural
form and accusative case of the Hungarian word toll (pen), the output is:

toll/NOUN〈PLUR〉〈CAS〈ACC〉〉

To preserve disk and memory space, the dictionary records contain general rules
that cover the regular inflected forms and a list of irregular forms.

The transformation rules in the database have two main categories:
• Morphosyntactically active rules add something (a morpheme) to the root.
• Filter rules modify the previously existing form, changing for instance the

vowel length.
Each of these rules are connected to different features of the words. If the as-

sociated features of a rule can be found in the input word, then the transformation
rule is applied. Note that the rules can be used in both directions, however, the
Hunmorph-Ocamorph tool only supports morphological analysis.

Hunmorph-Foma

The foundation of the Hunmorph-Foma morphological analyzer is the Foma open-
source finite-state toolkit [Hulden, 2009], which was originally the open-source im-
plementation of the lexc/xfst grammatical analyzer of the Xerox laboratory.

11https://github.com/AlexeySorokin/Sigmorphon2018SharedTask
12http://mokk.bme.hu/en/resources/hunmorph

DOI: 10.14750/ME.2022.020

https://github.com/AlexeySorokin/Sigmorphon2018SharedTask
http://mokk.bme.hu/en/resources/hunmorph

Chapter 2. Survey of the Current Models 27

The main difference between Hunmorph-Foma and Hunmorph-Ocamorph other
than their framework is the different affix type token systems they use. Therefore its
output is slightly different, but contains the same pieces of information:

toll+Noun+Plur+Acc

Hunmorph-Foma is also open-source, and states in an introductory readme file
on its Github page13 that it is better than Hunmorph-Ocamorph, as it is based on a
broader corpus, has lower memory consumption and is overall faster.

Humor

Humor [Prószéky and Tihanyi, 1993, Prószéky and Kis, 1999] (High-speed Unifica-
tion MORphology) is a closed-source morphological analyzer implementation de-
veloped by MorphoLogic.14 Unlike the other examined tools, only a DLL is present,
the internal implementation details are not visible to us.

Humor is a rule based system, similarly to the previous two tools, but it was
originally developed for Hungarian only, its engine is not language independent.

During the processing of an input word, the analyzer engine tries to break up
the word to morphs, validates the connections of neighboring morphs and checks
the validity of the full morphological context. The neighborhood validation is done
using morpheme features, similarly to other morphological analyzers. If the tool
finds that two neighboring morphemes have mutually exclusive features, then the
morphological structure is marked invalid and dropped.

Besides the morphological structure of the word, Humor also provides the affix
boundaries:

toll[FN]+ak[PL]+at[ACC]

If the lexical and surface forms are different, the tool also returns both of them.
[Prószéky and Novák, 2005] used the formalism of Humor and an improved,

non-redundant database format to create a lemmatizer and a morphological gen-
erator for Uralic languages.

Hunspell

Hunspell15 is an open-source spell checker of popular applications like LibreOffice,
OpenOffice.org, Mozilla Firefox, Mozilla Thunderbird and Google Chrome. Its base
framework was published in [Pirinen et al., 2010]. Although it is mainly used for
spell checking, it has other use cases as well, including morphological analysis.

Similarly to Hunmorph-Ocamorph, the language database consists of two files:
a dictionary containing lemmas and an affix database with the possible affix tokens,
features and transformation rules.

The output of Hunspell is much different than the previous three tools:

tollakat st:toll po:noun ts:PLUR ts:NOM is:PLUR is:ACC
13https://github.com/r0ller/hunmorph-foma
14https://www.morphologic.hu
15https://hunspell.github.io

DOI: 10.14750/ME.2022.020

https://github.com/r0ller/hunmorph-foma
https://www.morphologic.hu
https://hunspell.github.io

Chapter 2. Survey of the Current Models 28

2.3 Conclusion

In this chapter I summarized the main morphology models that can be found in
literature, and categorized them according to multiple dimensions, including:

• Knowledge representation: dictionary based, rule based, statistical and AI
based models

• Scope: single-affix and multi-affix models
• Symmetry: asymmetric and symmetric models
• Granularity of analysis: morphological analysis, segmentation, lemmatization

and stemming models
• Machine learning capabilities: non-automated, supervised, unsupervised and

semi-supervised training
Some of the models were explored in details as part of separate sections:
• Two-level morphology in Subsection 2.2.1
• FSTs in Subsection 2.2.2
• TASR in Subsection 2.2.3
• Morfessor, MORSEL and MorphoChain in Subsection 2.2.4
• SIGMORPHON models (Helsinki 2016, UF 2017, UTNII 2017, Hamburg 2018,

IITBHU 2018, MSU 2018) in Subsection 2.2.5
• Morphological analyzers for the Hungarian language including Hunmorph-

Ocamorph, Hunmorph-Foma, Humor and Hunspell in Subsection 2.2.6
Those models that were examined in their own sections will be used as baseline

models in the upcoming chapters (except for two-level morphology). Table 2.1 con-
tains these models according to their main characteristics. An asterisk (*) marks the
unsupervised and semi-supervised models.

TABLE 2.1: Categorization of the baseline morphology models

Dictionary Rule Statistical & AI

Si
ng

le

M
ul

ti

Si
ng

le

M
ul

ti

Si
ng

le

M
ul

ti

Infl.
Asymm. FST TASR Two-Level SIGMORPHON*
Symm. Target

Analysis
Asymm.

Hunmorph
Humor

Hunspell
Symm. Target

Segm.
Asymm. Porter

Morfessor*
MORSEL*

MorphoChain*
Symm.

As we can see, FSTs and TASR are single-affix asymmetric inflection models,
while the analyzers are multi-affix asymmetric analysis tools. FSTs store the con-
tent of dictionaries in a compact way, while the others are rule based systems. On
the other hand, Morfessor, MORSEL and MorphoChain are unsupervised multi-
affix asymmetric statistical segmentation models, and the SIGMORPHON models
are used for inflection generation.

The goal of my research is to propose a novel morphology model that can solve
both the inflection generation and morphological analysis problems in a multi-affix,

DOI: 10.14750/ME.2022.020

Chapter 2. Survey of the Current Models 29

symmetric manner. My goal is also to create a rule model that can be efficiently
applied for agglutinative languages like Hungarian.

In Chapter 4 I will propose efficient single-affix transformation engine models.
Then in Chapter 5 I will propose a higher-level multi-affix model that will be able to
manage affix type chains as well in a multi-affix environment, handling all the affix
types of the target language.

DOI: 10.14750/ME.2022.020

30

Chapter 3

The Analysis of Existing
Hungarian Morphological
Analyzers

Since the target language of my research is Hungarian, in this chapter I analyze four
popular morphological analyzers for the Hungarian language:

• Hunmorph-Ocamorph [Trón et al., 2005, Trón et al., 2006],1

• Hunmorph-Foma,2

• Humor [Prószéky and Tihanyi, 1993, Prószéky and Kis, 1999] and
• Hunspell.3

The main question that needs to be answered is which one is worth using as a
baseline method, which one is the best among them.

It is important to note that only a few similar publications can be found in lit-
erature that compare Hungarian analyzers with each other, but in most cases, these
publications only examine the stemming accuracy of the models.

For example, [Endrédy, 2015] calculates an error value for every word in the test
corpus, using overstemming and understemming indices. Another paper compares
the above four analyzers [Endrédy and Novák, 2015], as well as the Porter stemmer
[Porter, 1980], its Hungarian adaptation [Porter, 2001, Tordai and de Rijke, 2006] and
some Apache Lucene [McCandless et al., 2010] modules like KStem, Porter, English-
Minimal, Stempel and Morfologik. The used metrics include the number of words
that the analyzers could process, how good the first answer was for each stemmer
and how usable the other possible answers were compared to each other.

In contrast, my goal is to also examine the token systems of the morphological
analyzers, and how well they can analyze the input words. To remain objective, in
Section 3.1 I introduce some formulae that I will use during the comparison of the
four analyzers and that are based on measurable values regarding the analyzers and
their annotation token systems, including:

1. What are the main differences of the analyzer outputs and token systems? Are
there morphosyntactic tags that are only recognized by one analyzer and not
others, or most of these tags are present in the token system of all the analyz-
ers?

2. How many words are recognized by each analyzer?
3. How many words are there whose morphological structure is determined equiv-

alently among the different analyzers?

1http://mokk.bme.hu/en/resources/hunmorph
2https://github.com/r0ller/hunmorph-foma
3https://hunspell.github.io

DOI: 10.14750/ME.2022.020

http://mokk.bme.hu/en/resources/hunmorph
https://github.com/r0ller/hunmorph-foma
https://hunspell.github.io

Chapter 3. The Analysis of Existing Hungarian Morphological Analyzers 31

I introduce similarity and distance formulae for the examined morphological an-
alyzers. The distances are also visualized in 2D Euclidean space. I use a Hungarian
corpus collected from the Internet for the analysis. The automated generation pro-
cess of this corpus is described later in Section 7.1.

The analysis of the measured values can be found in Section 3.2. Section 3.3
summarizes the results of this chapter.

3.1 Similarity and Distance of Morphological Analyzers

Formally, letW denote the set of words in the test corpus, w ∈W . The set of lemmas
is a subset of the set of words: w̄ ∈ W̄ ⊂W .

A morphological analyzer is formally a mapping denoted byA, that maps words
to pairs containing a lemma and a list of morphosyntactic tags:

A : W →
{(
w̄,
〈
TA
〉)}

(3.1)

The set of all the morphosyntactic tags related to the analyzer A will be denoted
by TA. For convenience, l (A (w)) will denote the set of all the possible lemmas of the
input word, while t (A (w)) will denote the set of all the possible token lists provided
by the morphological analyzer A for the input word w.

The set of recognized words by the morphological analyzer A is denoted by

WA = {w ∈W | |A (w)| > 0} (3.2)

We can also calculate the recognition ratio of WA in the whole corpus:

νA =

∣∣WA
∣∣

|W |
(3.3)

The recognition similarity is based on the number of recognized words of a mor-
phological analyzer pair:

SRAi,Aj
=

∣∣WAi ∩WAj
∣∣∣∣WAi ∪WAj
∣∣ (3.4)

This can easily be converted to a distance value between the two morphological
analyzers:

DR
Ai,Aj

=
1

SRAi,Aj

(3.5)

Remark 3.1 (The limits of the recognition similarity and distance). From Equation 3.4
we can see that 0 ≤ SRAi,Aj

≤ 1. If WAi ∩WAj = ∅, then the similarity will be 0, while if
WAi = WAj , then the similarity will be 1.

Since the recognition distance is the multiplicative inverse of the recognition similarity,
its value is between 1 and infinity. The minimum value occurs if the similarity is 1.

From this remark, we can see that the recognition distance (and the forthcoming distance
measurements) are not real distances, they only point out the similarities and differences of
morphological analyzers. However, since in practice we do not tend to compare identical
analyzers (and no two morphological analyzers can be treated equal), this does not mean a
real problem. If we still wanted to mitigate this issue, we could simply subtract 1 from the
distance value.

To measure the similarity of the annotation token systems and equivalence of
the examined morphological analyzers, we first need to define a mapping among

DOI: 10.14750/ME.2022.020

Chapter 3. The Analysis of Existing Hungarian Morphological Analyzers 32

the annotation token systems. The mapping function that converts the annotation
tokens of Ai to those of Aj is denoted by mAi,Aj . Using such a mapping, it is easy to
convert morphosyntactic tags in a list, one by one:

mAi,Aj

(〈
TAi

1 , . . . , TAi
n

〉)
=
〈
mAi,Aj

(
TAi

1

)
, . . . ,mAi,Aj

(
TAi
n

)〉
(3.6)

Note that 〈〉 denotes an ordered list of elements here.
The mapping mAi,Aj operator is perfect if for every word that is recognized by

both analyzers, there is at least one output pair provided by Ai and one output pair
provided byAj for which the given lemmas are the same and the mapping maps the
token list provided by Ai to the token list provided by Aj . Usually it is impossible
to define a perfect mapping between the annotation tokens of two morphological
analyzers, since there might be tokens in one system that does not exist in the other
one. For the evaluation of the four analyzers, I created a mapping that can be found
in Appendix A.

Using this mapping, we can compare the recognized tokens of the morphological
analyzers by calculating the token similarity:

STAi,Aj ,mAi,Aj
=

∣∣{TAi | ∃TAj : mAi,Aj

(
TAi

)
= TAj

}∣∣
|TAi |

(3.7)

The token distance between two analyzers can be calculated using the following
formula:

DT
Ai,Aj ,mAi,Aj

=
1

STAi,Aj ,mAi,Aj

(3.8)

The mapping similarity denotes how many words result in equivalent annota-
tion tokens between two morphological analyzers based on a mapping:

SMAi,Aj ,mAi,Aj
=

∣∣{w ∈WAi ∪WAj |
∣∣mAi,Aj (t (Ai (w))) ∩ t (Aj (w))

∣∣ > 0
}∣∣∣∣WAi ∪WAj

∣∣ (3.9)

Using the mapping similarity, we can calculate the mapping distance:

DM
Ai,Aj ,mAi,Aj

=
1

SMAi,Aj ,mAi,Aj

(3.10)

Using the above distance definitions, we can calculate a cumulative distance
among the analyzers using the following formula:

DC
Ai,Aj ,mAi,Aj

= DR
Ai,Aj

+DT
Ai,Aj ,mAi,Aj

+DM
Ai,Aj ,mAi,Aj

(3.11)

3.2 Analyzing the Similarities and Differences of the Mor-
phological Analyzers

In this section, I present the calculated values of the recognition, token and map-
ping similarity, as well as the recognition, token, mapping and cumulative distance.
The distances will also be visualized using 2D Cartesian coordinate systems. These
coordinate systems were generated using a dimension reduction based projection
technique. Therefore the coordinates of the points in the diagrams are not exact,
they are only approximations that reflect the calculated distance values.

DOI: 10.14750/ME.2022.020

Chapter 3. The Analysis of Existing Hungarian Morphological Analyzers 33

The data source of the calculation is a Hungarian corpus that was generated from
Hungarian free texts collected from the Internet, as described later in Section 7.1. The
mapping used during the measurements is the one provided in Appendix A.

3.2.1 Comparison of the Annotation Token Systems

Table 3.1 contains the token similarity and distance values among the examined mor-
phological analyzers, using the notations of the previous section.

TABLE 3.1: Token similarity
(
ST
Ai,Aj ,mAi,Aj

)
and distance(

DT
Ai,Aj ,mAi,Aj

)
values among the morphological analyzers

Ai Aj ST
Ai,Aj ,mAi,Aj

DT
Ai,Aj ,mAi,Aj

Hunmorph-Ocamorph Hunmorph-Foma 0.4855 2.0598
Hunmorph-Ocamorph Humor 0.4309 2.3208
Hunmorph-Ocamorph Hunspell 0.5749 1.7394
Hunmorph-Foma Humor 0.5253 1.9036
Hunmorph-Foma Hunspell 0.5856 1.7075
Humor Hunspell 0.4623 2.1630

Figure 3.1 visualizes the approximation of these distance values in 2D space.
From this image, we can see that the token system of the four analyzers are differ-
ent from each other, since they all have approximately the same distance from each
other.

0.0

0.5

1.0

1.5

2.0

−1 0 1 2

X axis

Y
 a

x
is

Hunmorph−Ocamorph

Hunmorph−Foma

Humor

Hunspell

FIGURE 3.1: Visualizing the annotation token system distances

3.2.2 Recognition Statistics

Table 3.2 contains the number of recognized words by each examined morpholog-
ical analyzer, and their recognition ratios. The total number of unique words was
3,852,592. From the table, it can be seen that Hunmorph-Foma recognized the most

DOI: 10.14750/ME.2022.020

Chapter 3. The Analysis of Existing Hungarian Morphological Analyzers 34

TABLE 3.2: The number of recognized words
(∣∣WAi

∣∣) and the ratio
of recognized words

(
νAi
)

for each morphological analyzer

Ai

∣∣WAi
∣∣ νAi

Hunmorph-Ocamorph 2,515,570 65.30%
Hunmorph-Foma 3,154,529 81.88%
Humor 823,531 21.38%
Hunspell 99,441 2.58%

words from the test corpus, while Humor and Hunspell performed significantly
worse.

We can also examine how many words are recognized by only one morphological
analyzer, by morphological analyzer pairs, three morphological analyzers and all
of the examined morphological analyzers. First, Table 3.3 contains the number of
words recognized by only one morphological analyzer.

Hunspell has the lowest number here as well, meaning that the number of words
that are only recognized by Hunspell and not the other analyzers is the lowest.

TABLE 3.3: The number of words recognized by only one
morphological analyzer

A Words recognized by onlyA

Hunmorph-Ocamorph 159,651
Hunmorph-Foma 723,968
Humor 387,380
Hunspell 16,256

In Table 3.4, we can see how many commonly recognized words there are be-
tween the morphological analyzer pairs. As we can see, Hunmorph-Ocamorph and
Hunmorph-Foma are the most similar to each other, while Hunspell is the most dif-
ferent from the other three analyzers.

TABLE 3.4: The number of words recognized by exactly two
morphological analyzers

Hunmorph-Ocamorph Hunmorph-Foma Humor

Hunmorph-Foma 1,997,989 - -
Humor 12,132 69,705 -
Hunspell 748 16,262 7,610

Table 3.5 contains the commonly recognized words among exactly three mor-
phological analyzers.

It is not surprising that the first row has the highest value, since Hunmorph-
Ocamorph and Hunmorph-Foma are the most similar to each other, while Hunspell
has the least common elements with the other models.

Finally, the number of words recognized by all the four morphological analyzers
is 8,612.

Figure 3.2 display the Venn diagram of the three strongest morphological ana-
lyzers, namely Hunmorph-Ocamorph, Hunmorph-Foma and Humor.

DOI: 10.14750/ME.2022.020

Chapter 3. The Analysis of Existing Hungarian Morphological Analyzers 35

TABLE 3.5: The number of words recognized by exactly three
morphological analyzers

Morphological analyzers Recognized words

Hunmorph-Ocamorph, Hunmorph-Foma, Humor 336,339
Hunmorph-Ocamorph, Hunmorph-Foma, Hunspell 48,200
Hunmorph-Ocamorph, Humor, Hunspell 99
Hunmorph-Foma, Humor, Hunspell 1,654

Based on the above statistics, Hunmorph-Foma seemed to be the best alternative,
but after some detailed examination, I found that in some cases it could not return
the valid lemma. A simple example is the word (merengők, mereng+Adj+Plur) which
is the plural of meditative in Hungarian. According to the morphological structure
provided by Hunmorph-Foma, the lemma is mereng (meditate) which is in reality a
verb, but according to the provided annotation tokens, it is an adjective, which is
incorrect.

FomaOcamorph

Humor

344,951

1,997,989

12,231 71,359

740,230160,399

394,990

FIGURE 3.2: Venn diagram of the number of recognized words for the
three strongest morphological analyzers

Another problem with Hunmorph-Foma was the handling of adjective deriva-
tion. A sample response is (legeslegszebbik, legeslegszép+Adj+Mid+Ik) which is the su-
persuperlative designative form of the word nice in Hungarian. This structure sug-
gests that the lemma is legeslegszép which is in reality not a meaningful Hungarian
word, but rather a semi-inflected form of the real root form szép (nice). Hunmorph-
Ocamorph can recognize this fact and produce the correct lemma.

Table 3.6 shows the recognition similarity and distance values for all the exam-
ined morphological analyzer pairs.

Figure 3.3 visualizes the approximation of these distance values. Hunmorph-
Ocamorph and Hunmorph-Foma are very close to each other, while Hunspell is
very far away from the other three morphological analyzers.

DOI: 10.14750/ME.2022.020

Chapter 3. The Analysis of Existing Hungarian Morphological Analyzers 36

TABLE 3.6: Recognition similarity
(
SR
Ai,Aj

)
and distance

(
DR

Ai,Aj

)
values among the morphological analyzers

Ai Aj SR
Ai,Aj

DR
Ai,Aj

Hunmorph-Ocamorph Hunmorph-Foma 0.4132 2.4201
Hunmorph-Ocamorph Humor 0.1070 9.3485
Hunmorph-Ocamorph Hunspell 0.0220 45.3530
Hunmorph-Foma Humor 0.0898 11.1373
Hunmorph-Foma Hunspell 0.0177 56.4347
Humor Hunspell 0.0195 51.3475

−40

−30

−20

−10

0

−30 −20 −10 0 10

X axis

Y
 a

x
is

Hunmorph−Ocamorph

Hunmorph−Foma

Humor

Hunspell

FIGURE 3.3: Visualizing the recognition distances

3.2.3 Mapping Among the Examined Morphological Analyzers

The mapping similarity and distance values among the morphological analyzer pairs
can be seen in Table 3.7.

TABLE 3.7: Mapping similarity
(
SM
Ai,Aj ,mAi,Aj

)
and distance(

DM
Ai,Aj ,mAi,Aj

)
values among the morphological analyzers

Ai Aj SM
Ai,Aj ,mAi,Aj

DM
Ai,Aj ,mAi,Aj

Hunmorph-Ocamorph Hunmorph-Foma 0.7759 1.2887
Hunmorph-Ocamorph Humor 0.9188 1.0883
Hunmorph-Ocamorph Hunspell 0.7969 1.2549
Hunmorph-Foma Humor 0.8727 1.1458
Hunmorph-Foma Hunspell 0.4497 2.2237
Humor Hunspell 0.7372 1.3564

Figure 3.4 displays these distance values in 2D space. The reason why the ana-
lyzers are far from each other is that Humor and Hunspell recognize far less words

DOI: 10.14750/ME.2022.020

Chapter 3. The Analysis of Existing Hungarian Morphological Analyzers 37

than Hunmorph-Ocamorph and Hunmorph-Foma, while Hunmorph-Foma has a
couple of problems as described in the previous subsection.

−0.5

0.0

0.5

1.0

1.5

0.00 0.25 0.50 0.75 1.00

X axis

Y
 a

x
is

Hunmorph−Ocamorph

Hunmorph−Foma

Humor

Hunspell

FIGURE 3.4: Visualizing the mapping distances

3.2.4 Cumulative Distance

The cumulative distance is the sum of the recognition, token and mapping distances.
Figure 3.5 displays the cumulative distances in 2D space, while the exact distance
values can be seen in Table 3.8.

All in all we can see that Hunspell is far away from the remaining three mor-
phological analyzers. Hunmorph-Ocamorph and Hunmorph-Foma are the closest,
while Humor is close to the two Hunmorph based systems, preceding Hunspell by
far.

Since Hunmorph-Ocamorph and Hunmorph-Foma recognized the most words
from the data set and they are closest to each other regarding the cumulative dis-
tance, they seem to be the best morphological analyzers among the four tools. Con-
sidering the problems of Hunmorph-Foma described earlier, I chose Hunmorph-
Ocamorph as the baseline model for the proposed models described in later chap-
ters.

TABLE 3.8: Cumulative distance
(
DC

Ai,Aj ,mAi,Aj

)
values among the

morphological analyzers

Ai Aj DC
Ai,Aj ,mAi,Aj

Hunmorph-Ocamorph Hunmorph-Foma 5.7686
Hunmorph-Ocamorph Humor 12.7576
Hunmorph-Ocamorph Hunspell 48.3473
Hunmorph-Foma Humor 14.1867
Hunmorph-Foma Hunspell 60.3659
Humor Hunspell 54.8669

DOI: 10.14750/ME.2022.020

Chapter 3. The Analysis of Existing Hungarian Morphological Analyzers 38

−40

−20

0

−10 −5 0 5 10 15

X axis

Y
 a

x
is

Hunmorph−Ocamorph

Hunmorph−Foma

Humor

Hunspell

FIGURE 3.5: Visualizing the cumulative distances

3.3 Conclusion

In this chapter I analyzed four popular morphological analyzers for the Hungarian
language, namely Hunmorph-Ocamorph, Hunmorph-Foma, Humor and Hunspell.
The main question that I wanted to answer is which one of them is the best, which
one is worth using in later chapters as a baseline model.

To remain objective, I introduced several formulae: the recognition similarity
that measures the number of recognized words, the token similarity that measures
the similarity of the annotation token systems of these analyzers, and finally the
mapping similarity that measures how many words are analyzed equivalently by
the analyzers. Each similarity value can be converted to a distance value: the recog-
nition, token and mapping distance. Finally, I also introduced a cumulative distance
that incorporates all the above distance values into a single measure.

From the tables and figures of the previous section we can see that Hunmorph-
Ocamorph and Hunmorph-Foma are the two best morphological analyzers, as both
Humor and Hunspell are far from them regarding all of the distance values. Al-
though Hunmorph-Foma seems better in some respects, there are several words
in the test corpus that it cannot handle correctly. Therefore I chose Hunmorph-
Ocamorph to use in later chapters.

Thesis 1 [1]
I have designed and implemented a new method to compare, analyze, evaluate and
rank morphological analyzers. This method is based on novel formulae to calculate
similarity and distance values among the different analyzers, including the recog-
nition similarity, token similarity, mapping similarity; as well as the recognition
distance, token distance, mapping distance and cumulative distance. I applied this
analysis method on four popular morphological analyzers of the Hungarian lan-
guage, namely Hunmorph-Ocamorph, Hunmorph-Foma, Humor and Hunspell. For
the evaluation, I created a token mapping among these analyzers as well. Based
on the performed evaluation, Hunmorph-Ocamorph proved to be the most usable
model among the four analyzers.

DOI: 10.14750/ME.2022.020

39

Chapter 4

Single-Affix Transformation
Engine Model

In this chapter I propose two novel single-affix transformation engine models that
can learn inflection rules from a provided training word pair set to solve the single-
affix inflection generation problem.

The first model, presented in Section 4.1 stores its rules in a lattice structure.
Its rule model is more complex, containing abstract transformation steps and in-
dices that identify the changing position in the words. During the training phase,
an improved Levenshtein distance based algorithm is used to identify the changing
substrings. To build this lattice, I propose 3 different builder algorithms.

The second model called ASTRA (Atomic String Transformation Rule Assem-
bler), presented in Section 4.2 has a simpler rule model that focuses on simple string
transformations. Besides the transformation context, the rules contain only a chang-
ing substring and a replacement string. These rules are stored in a set or a prefix
tree. The advantage of ASTRA over the lattice based model is that it is truly symmet-
ric, thus its rules can be used during both inflection generation and morphological
analysis. Moreover, its rule generation process is faster due to the simpler storage
structure.

Section 4.3 contains all the performed experiments. In this section I evaluate the
average training and search time, the average size and the average accuracy of all the
presented model variants, comparing these metrics with those of a simple dictionary,
an FST and the TASR model. As we will see, the generalization capability of ASTRA
is outstanding among these models.

4.1 Lattice Based Model

The main concept behind the proposed lattice based transformation engine model is
to treat inflection generation as a classification problem. The transformation rules
extracted from the training data set contain both the context of the grammatical
transformations and their elementary transformation steps. This way, if we find a
transformation rule in the knowledge base whose context is close to the input word,
we can apply its transformation steps on the input to generate the inflected form.

These transformation rules are stored in a lattice structure based on parent-child
relationships. Storing the rules in a lattice has several benefits: it speeds up the
search time later and makes it easier to gather the most general transformation rules
of the target affix type. For example we can easily see from a generated lattice that
the most general rule of the Hungarian accusative case is to insert a ’t’ character at
the end of the word.

DOI: 10.14750/ME.2022.020

Chapter 4. Single-Affix Transformation Engine Model 40

4.1.1 The Theory of Formal Concept Analysis

The roots of formal concept analysis (FCA) [Ganter and Wille, 2012] originate from
the applied lattice and order theory [Birkhoff, 1940], as well as the theory of Galois
connections [Ore, 1944].

Binary relations and set theory form the basis of FCA [Grätzer, 2003]. A binary
relation ≤ on the set M is a set of pairs (m,n) where m,n ∈ M . The ≤ relation is
called an order relation if it is

• reflexive: m ≤ m,
• antisymmetric: if m ≤ n and n ≤ m then m = n, and
• transitive: if m ≤ n and n ≤ o then m ≤ o.
An ordered set is a pair (M,≤) where M is a set and ≤ is an order relation.
An important concept in lattice theory is the neighborhood of nodes. Ifm,n ∈M

and m < n while @o ∈ M such that m < o < n, then m is called the lower neighbor
of n, and n is called the upper neighbor of m.

Let (M,≤) be an ordered set and A ⊆ M . In this case, m ∈ M is a lower (or
upper) bound of A if for every a ∈ A, m ≤ a (or m ≥ a). Among all the lower
bounds, the largest is called the infimum (denoted by

∧
A), while among all the

upper bounds, the smallest one is called the supremum (denoted by
∨
A).

Example 4.1 (Infimum and supremum). If M is the lattice in Figure 4.1 and A ⊆ M
contains the nodes a, b, c, e, f and g, then a and 1 are upper bounds of A, a being its
supremum. Likewise, 0 is a lower bound and the infimum of A.

Definition 4.1 (Lattice). An ordered set M = (M,≤) is a lattice if any two elements
m,n ∈M has a supremum m ∨ n and an infimum m ∧ n.

1

a

b

c

d

e

f g

0

FIGURE 4.1: A sample lattice

DOI: 10.14750/ME.2022.020

Chapter 4. Single-Affix Transformation Engine Model 41

Lattices can be visualized using Hasse diagrams, where each node is represented
by a circle, and neighbors are connected with lines. Upper neighbors are displayed
higher, lower neighbors are displayed lower. One such lattice can be seen in Fig-
ure 4.1.

Definition 4.2 (Complete lattice). M is a complete lattice if for any A ⊆ M subset, the
supremum

∨
A and the infimum

∧
A exist.

In a complete lattice,
∨
M is called the unit element (denoted by 1), while

∧
M

is called the zero element (denoted by 0). The upper neighbors of the zero node are
called atoms, while the lower neighbors of the unit node are called coatoms.

A chain in a lattice contains nodes that are all comparable with each other, i.e.
it is a subset A ⊆ M where m ≤ n or m ≥ n, ∀m,n ∈ A. Those nodes that are
incomparable with each other form an antichain. The size of a lattice can be defined
using its width (the size of its maximal antichain) and height (the size of its longest
chain minus one).

Example 4.2 (Lattice width and height). The lattice in Figure 4.1 has a width of 4 and a
height of 5. One of its longest chain contains the nodes 1, a, b, c, f and 0, while its longest
antichain contains d, e, f and g.

In FCA, the set of attributes common to the objects in A ⊆ G is defined as A′ =
{m ∈M | gIm, ∀g ∈ A}. Similarly, the set of objects which have all the attributes in
B ⊆M is defined as B′ = {g ∈ G | gIm, ∀m ∈ B}.

Definition 4.3 (Formal concept). (A,B) is a formal concept of the context (G,M, I) if
A ⊆ G, B ⊆ M , A′ = B and B′ = A where G is a set of objects, M is a set of attributes, I
is the relation between objects and attributes, A is called the extent and B is called the intent
of the concept (A,B).

Definition 4.4 (Concept lattice). The concept lattice of a formal context (G,M, I) is the set
of all formal concepts of (G,M, I), together with the partial order (A1, B1) ≤ (A2, B2) ⇔
A1 ⊆ A2 ⇔ B1 ⊇ B2.

One of the first proposals that applied concept lattice theory to solve the clas-
sification problem is [Zhao and Yao, 2006]. In this model, one of the attributes is
marked as the class label. A classification rule describes the dependency among the
class label and the other attributes. Each classification rule has a confidence value
between 0 and 1. The higher the confidence of a rule is, the more accurate the rule
is. If the confidence value is 1, the rule is said to be consistent. It can be seen that the
confidence value of an ancestor rule cannot be higher than any of its descendants.
The goal of the model is to find the most general matching consistent concept.

4.1.2 Levenshtein Distance Based Transformation Rule Generation

To identify the changing substrings in the base words and the necessary steps to
form the inflected word forms, I use the Levenshtein distance [Levenshtein, 1966] or
edit distance that helps in quantifying the difference, and minimize the required edit
steps between two strings.

Unit Cost Model for Levenshtein Distance Calculation

The base concept of using the Levenshtein distance to identify the changing sub-
strings is that we can generate elementary transformation steps (character additions,

DOI: 10.14750/ME.2022.020

Chapter 4. Single-Affix Transformation Engine Model 42

deletions and replacements) that yield the inflected word form from the base form.
Each transformation step has a cost, and the sum of these costs needs to be mini-
mized. The goal is to find the transformation rule having minimal cost.

Let Σ be the alphabet of non-empty characters, c ∈ Σ. The empty character will
be denoted by ∅. A transformation step can be formalized as

δL ∈ Σ ∪ {∅} × Σ ∪ {∅} (4.1)

Transformation steps have four different categories: character addition, character
removal, invariant replacement (the character is left as is) and character replacement.
These categories will be denoted as:

δL+ = (∅, c)
δL− = (c, ∅)
δL= = (c, c)

δL6= =
(
c, c′
) (4.2)

where c, c′ ∈ Σ are arbitrary characters, c 6= c′.
These elementary transformation steps can be organized into a transformation

path ∆L =
〈
δLi
〉

that shows how to transform the base form into the inflected form.1

Each transformation step has an associated cost on this path (cost
(
δL
)
). According

to the original Levenshtein distance calculation formulae, only the invariant replace-
ment has a 0 cost, all the others have a cost of 1:

cost
(
δL=
)

= 0

cost
(
δL+
)

= cost
(
δL−
)

= cost
(
δL6=
)

= 1
(4.3)

The total cost of the path is the sum of the costs of its steps, this is the metric that
needs to be minimized:

min
∆L

∑
δL∈∆L

cost
(
δL
)

(4.4)

Example 4.3 (Levenshtein matrix). In Figure 4.2 we can see two optimal Levenshtein
matrices for the Hungarian word pair (alma, almát), the base form and accusative case of
apple in Hungarian.

On the left side, the first 3 characters are left untouched, then the ’a’ is replaced with an
’á’, finally an extra ’t’ character is appended to the word. On the right side, we can see that
the same cost can be achieved by first inserting the ’á’ character, then replacing the ’a’ with a
’t’.

As we can see in Figure 4.2, the original cost function may lead to several trans-
formation paths for which the total cost is optimal (in this case, the optimal cost is
2). Although the algorithm cannot distinguish among these solutions, Hungarian
speakers will likely to choose the left matrix as the correct one.

Improved Cost Function

To reduce the number of optimal transformation paths, a new cost function is intro-
duced that results in a more fine-grained cost distribution. The intuition behind the
improved cost function is that historically the grammatical rules of the Hungarian

1Throughout the dissertation, the 〈xi〉ni=1 formalism means a list of elements where the order of
elements is fixed. If the ordering is not defined, the usual {xi}ni=1 set formalism is used.

DOI: 10.14750/ME.2022.020

Chapter 4. Single-Affix Transformation Engine Model 43

a

l

m

a

a l m á t

a

l

m

a

a l m á t

FIGURE 4.2: Two possible Levenshtein matrices with optimal cost for
the Hungarian word pair (alma, almát)

language had been formed according to phonetic attributes, i.e. those rules are more
usual that do not require us to pronounce sounds that are phonetically far from each
other.

TABLE 4.1: Hungarian vowel attributes

Horizontal Tongue Position
Front Back

Vertical Tongue Position

Close ü ű i í u ú
Middle ö ő (é) o ó

Semi-Open e é* a á*
Open (á)

Length

Sh
or

t

Lo
ng

Sh
or

t

Lo
ng

Sh
or

t

Lo
ng

Sh
or

t

Lo
ng

Lip Shape

R
ou

nd
ed

U
nr

ou
nd

ed

R
ou

nd
ed

U
nr

ou
nd

ed

The Hungarian language has four main phonetic attributes for vowels (Table 4.1)
and four for consonants (Table 4.2). In case of vowels, I made a minor change
that I marked with asterisks (*), namely the characters ’á’ and ’é’ were moved next
to their short counterparts. The abbreviations in case of consonant attributes in
Table 4.2 are the following: Fricative (Fric), Laterial-Fricative (Lat-Fric), Lateral-
Approximative (Lat-App), Voiced (V), Unvoiced (U), Labio-Dental (Labio-Dent) and
Dental-Alveolar (Dent-Alv).

Based on these phonetic attributes, the improved cost function will return the
number of changing attribute values. For example, the cost of a character insertion
or deletion will be equal to the number of attributes in the inserted or deleted char-
acter, but in case of replacement, the cost will be often less than the total number of
attributes.

Example 4.4 (Improved Levenshtein cost function). Returning to Figure 4.2, we can see
that using the new, improved cost function, replacing an ’a’ character with ’á’ only changes
the length of the vowel, so the cost of this step is 1. On the other hand, replacing ’a’ with
’t’ will change every attribute, making the cost equal to 8. Inserting an ’á’ or a ’t’ character

DOI: 10.14750/ME.2022.020

Chapter 4. Single-Affix Transformation Engine Model 44

TABLE 4.2: Hungarian consonant attributes

Way of production
Plosive Fric Lat-Fric Lat-App Trill

Voice V U V U V U V V

Pl
ac

e
of

pr
od

uc
ti

on Bilabial m b p
Labio-Dent v f
Dent-Alv n d t z sz dz c l r
Dental-

Postalveolar
zs s dzs cs

Palatal ny gy ty j
Velar g k

Glottal h

Position of uvula
N

as
al

Oral

has a cost of 4, so the total cost of the right matrix is 4 + 8 = 12, while the total cost of the
left matrix is 1 + 4 = 5. This means that the new cost function will be able to distinguish
between these two cases and will correctly choose the intuitive solution.

4.1.3 The Lattice Rule Model

The transformation rules extracted from the training word pair set have the follow-
ing structure:

RL =
(
αL, σL, ωL, ηLf , η

L
b ,∆

L
)

(4.5)

where
• αL ∈ Σ∗ is the prefix of the rule, containing the characters before the changing

substring,
• σL ∈ Σ∗ is the core of the rule, i.e. the changing substring,
• ωL ∈ Σ∗ is the postfix of the rule, containing the characters after the changing

substring,
• ηLf is the front index of the rule context occurrence in the source word from

its beginning (i.e. if ηLf = 1 then the first occurence of the context must be
transformed from the beginning of the source word),

• ηLb is the back index of the rule context occurrence in the source word from its
end (i.e. if ηLb = 1 then the first occurence of the context must be transformed
from the end of the source word), and

• ∆L =
〈
δLi
〉

is a list of elementary transformation steps on the core, δLi ⊆ Σ ∪
{∅} × Σ ∪ {∅}.

The context of a rule is the concatenation of its prefix, core and postfix compo-
nents: γ

(
RL
)

= αL + σL + ωL.

Example 4.5 (Lattice rules). Let us have (xabyxabyz, xabyxcdwyz) as an artificial word
pair. We can create multiple rules that will cover this word pair, two of them can be seen in
Table 4.3.

To build a complete lattice from the generated rules that can also generalize, we
need to also generate all the rule intersections. The parent-child relationship among
the rules is defined by the IsSubsetOf operator. To define these two operators, let

DOI: 10.14750/ME.2022.020

Chapter 4. Single-Affix Transformation Engine Model 45

TABLE 4.3: Sample lattice rules for the artificial word pair
(xabyxabyz, xabyxcdwyz)

αL σL ωL ηLf ηLb ∆L

RL
1 x ab y 2 1 a→ c b→ d + w

RL
2 byx ab yz 1 1 – a + c b→ d + w

us have two rules:

RL1 =
(
αL1 , σ

L
1 , ω

L
1 , η

L
f1, η

L
b1,
〈
δL1i
〉)

RL2 =
(
αL2 , σ

L
2 , ω

L
2 , η

L
f2, η

L
b2,
〈
δL2j

〉) (4.6)

The intersection of these two rules is a new rule whose components are calcu-
lated by intersecting the original components using different methods:

RL1 ∩RL2 = (αL1 ∩← αL2 , σ
L
1 ∩↔ σL2 , ω

L
1 ∩→ ωL2 ,

ηLf1 ∩̄ ηLf2, η
L
b1 ∩̄ ηLb2,

〈
δL1i
〉
∩↔

〈
δL2j

〉
)

(4.7)

The intersection of two characters c, c′ ∈ Σ ∪ {∅} is:

c ∩ c′ =

{
∅ if c 6= c′

c otherwise
(4.8)

Let s ∈ Σk, s′ ∈ Σl be two strings. The full intersection operation that is used for
the core intersection will only return a string if all the characters can be intersected
and the two strings are of the same length, otherwise the intersection will be the
empty string ε:

s ∩↔ s′ =

{
ε if k 6= l or ∃i index (1 ≤ i ≤ k) such that si ∩ s′i = ∅
s1 ∩ s′1 + . . .+ sk ∩ s′k otherwise

(4.9)

For the postfix components, we use a different intersection operator that starts
from the left side of the two substrings and intersects each character pair while this
character level intersection can be performed:

s ∩→ s′ = s1 ∩ s′1 + . . . sm ∩ s′m (4.10)

where m ≤ min {k, l} and ∀i index (1 ≤ i ≤ m): si ∩ s′i 6= ∅. Also, sm+1 ∩ s′m+1 = ∅
or |s| = m or |s′| = m.

The prefix components are intersected in the inverse way: we start from the right
side of the substrings and intersect each character pair while the aligned characters
have an intersection. This is the same as if we reversed the strings, intersected them
using ∩→ and reversed the result back:

s ∩← s′ =
(
s−1 ∩→ s′

−1
)−1

(4.11)

Position indices are intersected using the ∩̄ operator that only produces an out-
put if the appropriate indices of the two input rules are equal, otherwise the output

DOI: 10.14750/ME.2022.020

Chapter 4. Single-Affix Transformation Engine Model 46

will be empty. In case of two indices i and i′:

i ∩̄ i′ =

{
i if i = i′

− otherwise
(4.12)

The transformation lists are intersected similarly to the core strings: if the two
transformation lists are equal, then the output rule will have the same list, otherwise
the intersection cannot be calculated.

Summarizing the different intersection operators, the intersection of two rules
cannot be calculated if any of the following cases apply:

• αL1 ∩← αL2 = ε and σL1 ∩↔ σL2 = ε and ωL1 ∩→ ωL2 = ε
• ηLf1 ∩̄ ηLf2 = − and ηLb1 ∩̄ ηLb2 = −
•
〈
δL1i
〉
∩↔

〈
δL2j

〉
= 〈〉

The IsSubsetOf operator (RL1 ⊆ RL2) plays an important role in determining
the parent-child relationships among the rules. This operator can be defined simi-
larly to the intersection operator, but instead of stopping if an intersection does not
exist, we return false, meaning that RL1 6⊆ RL2 .

Example 4.6 (Intersection, IsSubsetOf). Table 4.4 contains a simple example for the
intersection operation. It can also be seen that RL1 ∩ RL2 ⊂ RL1 and RL1 ∩ RL2 ⊂ RL2 , as
expected.

TABLE 4.4: Sample rule intersection

αL σL ωL ηLf ηLb ∆L

RL
1 aei abc dfg 3 2 – a b→ b c→ l

RL
2 ei abc di 3 1 – a b→ b c→ l

RL
1 ∩RL

2 ei abc d 3 – – a b→ b c→ l

4.1.4 Lattice Builder Algorithms

The training data of the lattice builder algorithm is a set I = {(wl, wr)} containing
word pairs from the set of meaningful words of the target language W = {w} ⊂ Σ∗.

Using the Levenshtein distance based rule generation process, we can identify
the changing substrings in the base words. From the generated transformation
paths, first we remove the invariant replacements from the beginning and the end
of the list, because they do not hold additional information.

The responsibility of the lattice builder algorithms is to build a lattice from these
generated rules.

Complete Lattice Builder

To build a complete lattice from the generated rules, we need to generate all the
intersection rules as well. Then, based on the parent-child relationships determined
by the IsSubsetOf operator, we insert these rules into an empty lattice.

The structure of the resulting lattice will be similar to the sample lattice in Fig-
ure 4.3.

We distinguish the following main node categories:
• Zero (0) node: the infimum of the lattice, containing no transformation rule.

DOI: 10.14750/ME.2022.020

Chapter 4. Single-Affix Transformation Engine Model 47

A

.

.

1

M

0

MM

C C C C

A

I III

G G

M M

FIGURE 4.3: The structure of a sample lattice

• Atomic (A) nodes: the upper neighbors of the zero node, usually containing
the rules generated directly from the training data set.

• Consistent (C) nodes: nodes containing consistent rule intersections. These
rules are special because if we apply them on an arbitrary input word, the
result will be the same as if we used any of their descendants.

• Maximal (M) consistent nodes: special consistent nodes that only have incon-
sistent ancestors, i.e. they are the top-level consistent nodes in the lattice.

• Inconsistent (I) nodes: they contain transformation rules whose confidence is
low, thus they are usually used only for orientation purposes during node
searching.

• General (G) node(s): one or more lower neighbors of the unit node, containing
the most general rules that describe the training data set. For example in case
of Hungarian accusative case this rule would be something like ”insert a ’t’ at
the end of the word”.

• Unit (1) node: the supremum of the lattice, containing no transformation rule.
The disadvantage of the complete lattice builder is that the resulting lattice can

be very huge because of the large number of intersections.

Consistent Lattice Builder

One way to reduce the lattice size is to eliminate every inconsistent node. Since these
nodes contain rules that are usually not used to produce an inflected form (unless
they do not have any matching descendants), they can be dropped without losing

DOI: 10.14750/ME.2022.020

Chapter 4. Single-Affix Transformation Engine Model 48

much information. This way the maximal consistent nodes of the complete lattice
will be the coatoms of the reduced consistent lattice.

There are two cases that the modified algorithm needs to take care of:
1. If a rule intersection is immediately inconsistent, it does not need to be inserted

into the lattice.
2. If a previously inserted consistent node becomes inconsistent after inserting

new descendants/ancestors, it needs to be removed from the lattice.
Proposition 4.1 summarizes when the consistency of a node may change.

Proposition 4.1. The consistency of a node can only change if it is initially consistent and
a new consistent descendant is inserted into the lattice. In other cases, consistency cannot
change.

Proof. Let n denote an arbitrary node whose consistency is in question. We have to
check the following cases:

• If n is inconsistent and we insert a new inconsistent node, consistency cannot
change. If the new node is an ancestor of n, it does not influence its consis-
tency, and if it is a descendant or they are not comparable, it does not influence
consistency either, as n is already inconsistent and it cannot become consistent.

• If n is inconsistent and the new node is consistent, the same things apply, be-
cause the new node will be either not comparable with n or it will be its new
descendant.

• If n is consistent and we insert a new inconsistent node, it will definitely be a
new ancestor of n if they are comparable, since an inconsistent node is more
general than a consistent one, thus consistency of n cannot change.

• If n is consistent and the new node is also consistent, there can be three cases
if they are comparable:

– If the new node is an ancestor, nmust remain consistent, since at least one
of its ancestors is consistent.

– If the new node is a descendant and its transformation list can be inter-
sected with the transformation list of n, consistency cannot change.

– However, if the new node is a descendant and the transformation lists
cannot be intersected, it means that there is at least one word pair in the
training data set for which the rule of n and the rule of the new node will
yield different results, therefore n becomes inconsistent.

Minimal Lattice Builder

During inflection generation, the most general consistent rule must be found in the
lattice whose context matches the input word. This means that the non-maximal
consistent nodes are never accessed. Figure 4.4 demonstrates why: the red node is
inconsistent,2 because there are several different transformations among its descen-
dants; while the yellow node is consistent, since all of its descendants result in the
same output.

Therefore, to reduce the lattice size, we can eliminate all the non-maximal con-
sistent nodes. Since the maximal consistent nodes are retained, the inconsistent
rules are not dropped either, which means that the appropriate matching rule can
be found more quickly than scanning all the maximal consistent nodes linearly.

The minimal lattice builder has two phases:
2For inconsistent nodes, the stored list of transformation steps is chosen from the child nodes, using

the node with the highest relative frequency.

DOI: 10.14750/ME.2022.020

Chapter 4. Single-Affix Transformation Engine Model 49

a → ák

e → ék a → ák

a → ák

a → ák

FIGURE 4.4: A sample maximal consistent node

1. It builds a temporary consistent lattice using the consistent lattice builder al-
gorithm.

2. It takes the coatoms (the children of the root) of the temporary lattice and
builds a complete lattice from them using the complete lattice builder algo-
rithm.

This way the resulting lattice will only contain the maximal consistent nodes of
the original complete lattice, and it will also contain all their intersections.

4.1.5 Inflection Generation

After the lattice is built and an input word is provided whose inflected form should
be produced, the model needs to find a matching rule in the lattice whose context
is contained by the input word. The search algorithm starts at the unit node and
always chooses a child node whose rule still matches the input word. If no matching
child rule can be found, or we found a consistent node, the search process can stop.
If no consistent matching rule is found, we can still try to apply the lowest matching
rule on the input word.

The proposed lattice based model is unfortunately not symmetric, which means
that it can be used either during inflection generation or morphological analysis. If
we want to use the model during analysis, the training word pairs must be reversed
so that the model can learn how to produce the base forms from the inflected forms.

4.2 Atomic String Transformation Rule Assembler (ASTRA)

The Atomic String Transformation Rule Assember (ASTRA) model has a more com-
pact rule model than the one introduced in the previous section. The main charac-
teristics of ASTRA are:

• its atomic rule model that makes ASTRA truly symmetric,
• its simplified set or prefix tree based storage structure, and
• its fast rule selection method during inflection generation and morphological

analysis.

DOI: 10.14750/ME.2022.020

Chapter 4. Single-Affix Transformation Engine Model 50

4.2.1 The ASTRA Rule Model

Compared to the lattice based model, ASTRA has a more compact rule model that
only contains the context of the transformation, the changing substring and the re-
placement string. In this sense, ASTRA is similar to TASR, but is capable of model-
ing prefix, postfix and infix transformations as well. Since these rules model simple
atomic string transformations in the words, I call them atomic rules.

By relying solely on the context and not position indices, we avoid cases where
the rules cannot be applied on the input word due to colliding indices. This way, if
the rule context is found in the input word as a substring, the atomic rule is guaran-
teed to be applicable.

The atomic rules have the following structure:

RA =
(
αA, σA, τA, ωA

)
(4.13)

where
• αA is the prefix substring, i.e. some characters before the changing substring

in the base word form,
• σA is the changing substring, i.e. the characters that need to be replaced in the

base word form,
• τA is the replacement string, i.e. the characters that need to replace σA in the

base word form, and
• ωA is the postfix substring, i.e. some characters after the changing substring in

the base word form.
During inflection generation, if the model finds an appropriate atomic rule that

needs to be applied on the input base word form, the context of the atomic rule must
be identified in the word, then σA must be replaced with τA. The context of the rule
is γ

(
RA
)

= αA + σA + ωA.

Example 4.7 (Atomic rules). Let us have (xabyxabyz, xabyxcdwyz) as an artificial word
pair. We can create multiple rules that will cover this word pair, two of them can be seen in
Table 4.5.

TABLE 4.5: Sample atomic rules for the artificial word pair
(xabyxabyz, xabyxcdwyz)

αA σA τA ωA

RA
1 x ab cdw y

RA
2 byx ab cdw yz

As we can see, the rules do not contain any information on position. Also, the
transformation is not modeled using elementary steps, but instead a replacement
string is provided. Among the two atomic rules in Example 4.7, only RA2 is unam-
biguous, since RA1 matches two positions in the base word form. Having ambiguous
rules in the rule base is a problem, so the training algorithm must make sure that the
extracted atomic rules are not ambiguous.

4.2.2 The Training Method of ASTRA

Since word-starting and word-ending transformations are very frequent, I introduce
two new characters to mark the start ($) and end (#) of the words. These two special
characters will help later to determine if the required transformation should occur

DOI: 10.14750/ME.2022.020

Chapter 4. Single-Affix Transformation Engine Model 51

at the beginning or at the end of the word. If any of them is part of the context of an
atomic rule, the rule cannot be ambiguous. The special characters are not part of the
original Σ alphabet. The extended alphabet will be denoted by Σ̆ = Σ ∪ {$,#}.

The goal of the training method of ASTRA is to generate and store atomic rules
from the I = {(wl, wr)} training word pair set. As a first step, the training method
will extend all the word pairs with the special characters.

The word extension operator will be denoted by µ: if w = w1 . . . wk is a word,
then µ (w) = $w1 . . . wk#. The inverse operator will remove the special character
from the input word, i.e. if w̆ = $w1 . . . wk# is an extended word, then µ−1 (w̆) =
w1 . . . wk.

After the extended word pairs are generated, we split them to matching seg-
ments:

w̆l = ψ1
l . . . ψ

k
l

w̆r = ψ1
r . . . ψ

k
r

(4.14)

Here, ψil and ψir are substrings of the extended words w̆l and w̆r. If ψil = ψir for
an index i, then we call the segment at index i an invariant segment. Otherwise, it
is called a variant segment. In a segment decomposition, variant and invariant seg-
ments are alternating, and each invariant segment must contain at least 1 character.

There are several valid segment decompositions for each extended word pair,
and the training method tries to select the optimal one that correctly isolates the
appropriate transformations in the words. The main idea behind this segment de-
composition selection is to find the longest aligned invariant segments, and use the
remaining variant segments in the decomposition to generate the atomic rules. The
fitness function that is used by the training method quantifies the goodness value of
the invariant segments:

λ1 ·
1

indexmax − indexmin
+ λ2 ·

∣∣ψil ∣∣ (4.15)

This formula states that the fitness value is inverse proportionate with the in-
dex difference of the two substrings within their words, and proportionate with
their lengths. λ1 and λ2 are parameters of the training method, while indexmax and
indexmin denote the maximum and minimum indices within the words where the
segment components appear.

Example 4.8 (Segment decomposition). One valid segment decomposition for the word
pair (dob, ledobott), that means throw and threw down, can be seen in Table 4.6. The middle
segment is invariant, while the first and last ones are variant segments.

TABLE 4.6: Sample segment decomposition for the word pair
(dob, ledobott)

i ψi
l ψi

r

1 $ $le
2 dob dob
3 # ott#

For a variant segment ψil → ψir, several atomic rules are generated. The first
generated rule whose prefix and postfix components are empty, is called the core

DOI: 10.14750/ME.2022.020

Chapter 4. Single-Affix Transformation Engine Model 52

atomic rule. This means that the core atomic rule is a RAi0 =
(
αAi0, σ

A
i0, τ

A
i0 , ω

A
i0

)
where∣∣αAi0∣∣ =

∣∣ωAi0∣∣ = 0, σAi0 = ψil and τAi0 = ψir.
The subsequent rules are extended on the left and right sides by one character

at a time. Let us assume that
∑i−1

j=1

∣∣∣ψjl ∣∣∣ = n,
∑k

j=i+1

∣∣∣ψjl ∣∣∣ = m and
∣∣ψil ∣∣ = l. In this

case, the extended rules are RAij =
(
αAij , σ

A
ij , τ

A
ij , ω

A
ij

)
with the following components

(∀j, 1 ≤ j ≤ min {n,m}):

αAij = w̆l [n+ 1− j, n]

σAij = ψil

τAij = ψir

ωAij = w̆l [n+ l + 1, n+ l + j]

(4.16)

Here, w [i, j] denotes the substring of w from the ith to the jth character.
However, not all of these atomic rules can be stored in the rule base, because

some of them could be ambiguous. Therefore only those rules are retained whose
contexts appear only once in the base form of the word. Formally, if there are two
indices i1 and i2 such that the following conditions apply:

1 ≤ i1 ≤ |w̆l|
1 ≤ i2 ≤ |w̆l|
i1 6= i2

w̆l
[
i1, i1 +

∣∣γ (RAij)∣∣] = γ
(
RAij
)

w̆l
[
i2, i2 +

∣∣γ (RAij)∣∣] = γ
(
RAij
)

(4.17)

then the extended atomic rule RAij is dropped from the rule base due to ambiguity.

Example 4.9 (Atomic rules covering a circumfix). For the word pair of Example 4.8, the
following atomic rules can be generated:

• (ε, $, $le, ε)
• (ε, $, $le, d)
• (ε, $, $le, do)
• (ε, $, $le, dob)

• (ε, $, $le, dob#)
• (ε, #, ott#, ε)
• (b, #, ott#, ε)
• (ob, #, ott#, ε)

• (dob, #, ott#, ε)
• ($dob, #, ott#, ε)

The generated and retained atomic rules are stored in so-called rule groups. A
rule group is denoted by ΓA, and it contains all the atomic rules with the same con-
text. This means that ∀RAi , RAj ∈ ΓA, γ

(
RAi
)

= γ
(
RAj

)
. The context of the rule

group is equal to the context of its atomic rules and is denoted by γ
(
ΓA
)
.

The ASTRA model can also organize these rule groups in a prefix tree to speed
up the search process. If no prefix tree is used, the rules can be processed in parallel,
too. These modes will also be examined in Section 4.3.

Example 4.10 (Rule groups). For the atomic rules in Example 4.9, we can produce 9 differ-
ent rule groups, each containing a single atomic rule except for the rule group with context
$dob# that contains both (ε, $, $le, dob#) and ($dob, #, ott#, ε).

We can easily see that the training of this model is incremental: if a new word
pair set is trained, some new atomic rules will be generated, and they will be inserted
into existing or new rule groups. Compared to the lattice based model, this requires
much less checks and overhead than inserting new nodes into the lattice.

DOI: 10.14750/ME.2022.020

Chapter 4. Single-Affix Transformation Engine Model 53

4.2.3 Inflection Generation

The goal during inflection generation is to find some atomic rules in the rule base
that match the input word, and apply their transformations on the input. The first
step is to extend the input word with the $ and # characters.

In order to find the best atomic rules for the input word, the ASTRA model uses
a fitness function that determines how good an atomic rule is for an input extended
word:

f
(
RA | w̆

)
=

∣∣γ (RA)∣∣
|w̆|

· θ
(
γ
(
RA
)
, w̆
)

(4.18)

where the θ function returns how similar the rule context is to the input word. This
function can be implemented in different ways, the current implementation simply
returns 1 if γ

(
RA
)
⊆ w̆, and 0 otherwise.

Example 4.11 (Fitness value calculation). Let us have two rule groups, the first contain-
ing the atomic ruleRA1 = (ε, a#, i#, ε), while the other one containingRA2 = (d, a#, i#, ε).
If the input word is w̆ = $ddda#, then

f
(
RA1 | w̆

)
=

|a#|
|$ddda#|

· 1 =
1

3

f
(
RA2 | w̆

)
=
|da#|
|$ddda#|

· 1 =
1

2

(4.19)

As f
(
RA2 | w̆

)
is the larger value, RA2 will be chosen for the transformation.

Using the fitness function based atomic rule search, we can find the n best atomic
rules that match the input word. The next step is to sort them based on their fitness
values in a descending order, and start applying the rules on the input word. During
inflection generation, this means that we search for γ

(
RA
)

in the base form, then
replace σA with τA.

Sometimes there are several overlapping matching rules that would modify the
same part of the word. In these cases, only the first rule is applied from the sorted
rule list, since it has the highest fitness value. The other subsequent rules are omit-
ted.

When all the found atomic rules have been applied, we remove the $ and #
from the result and return it. Since there might be several valid inflected forms of
the same word, we also retry the inflection generation process for a preconfigured
times, always dropping the rule with the highest fitness value so that less probable
rules can also participate. The model then assigns a weight to the output words. The
calculation method of this weight can be implemented in several different ways, for
example by returning the average of the fitness values of the applied rules.

Proposition 4.2. If (wl, wr) is included in the training word pair set, then for the input
word wl, wr will be among the returned inflected forms.3

Proof. During the training phase, the segmentation step will identify the changing
substrings, i.e. the variant segments in the word pair. What needs to be shown is
that among the generated and retained atomic rules, the one with the highest fitness
value will be the one whose context is the word itself.

Based on Equation 4.18, the fitness value will be 0 if the atomic rule context is not
contained by the input word. This case can be omitted, since γ

(
RA
)

= w̆l, and the θ
function will return 1.

3This proposition is also true for morphological analysis.

DOI: 10.14750/ME.2022.020

Chapter 4. Single-Affix Transformation Engine Model 54

The left component is |R
A|
|w̆l| = |w̆l|

|w̆l| = 1. Since the fitness value must be between
0 and 1, this value is the maximal fitness value. As RA will be among the matching
atomic rules, it will be definitely applied on the input word.

4.2.4 Morphological Analysis

Since ASTRA is a truly symmetric model, its atomic rules are capable of both gen-
erating inflected word forms from base forms and base forms from inflected word
forms. The only difference is the way we apply the atomic rules.

During inflection, αA+σA+ωA must be searched in the input word, then σA must
be replaced with τA. On the other hand, during morphological analysis, αA+τA+ωA

must be searched in the input word, and τA must be replaced with σA.
Of course, the rule groups and the prefix tree (if we use one) are required to

be present for both inflection generation and morphological analysis, but the set
of rule groups and the prefix tree are also symmetric, meaning that although they
have to be present in memory, when we serialize them to disk, we can omit the
reversed structures and only store the rule groups and the prefix tree for inflection
generation. During loading ASTRA from disk, both directions can be reconstructed
from the inflection generation version.

It is also important to note that the atomic rule objects only exist once in mem-
ory, and the rule groups only reference them, meaning that having two sets of rule
groups does not mean a big overhead, it is only proportionate with the number of
rule groups.

4.3 Experiments

In this section I evaluate the lattice based model and ASTRA, including the complete,
consistent and minimal lattice builders, as well as the the sequential and parallel
ASTRA and ASTRA with prefix tree.

These models are compared with a simple dictionary based system, the FST im-
plementation of Lucene4 and a custom TASR implementation.5

The examined metrics include:
• Average training time: how much time does it take to train the examined mod-

els
• Average size: the number of entries in the dictionary, states in FST, nodes in

the lattice and rules in ASTRA
• Average search time: how much time does it take to transform an input word

using the examined models
• Average accuracy: the percentage of correctly transformed words

– using pre-trained evaluation word pairs (expected to reach 100%)6

– using disjoint training and evaluation word pair sets
For the performed tests, I select a random training data set containing 10,000

word pairs of Hungarian accusative case,7 and use 100, 200, . . . , 10,000 word pairs
from this set to train the models, gradually extending the size of the training word

4https://lucene.apache.org
5Included in the Morpher framework that can be found on Github: https://github.com/

szgabsz91/morpher
6Normally, morphology models are evaluated using disjoint training and evaluation data sets. I also

perform evaluation using this separation, but I also check whether the proposed models can correctly
inflect already trained words.

7The generation process of the training and evaluation data is described in Section 7.1.

DOI: 10.14750/ME.2022.020

https://lucene.apache.org
https://github.com/szgabsz91/morpher
https://github.com/szgabsz91/morpher

Chapter 4. Single-Affix Transformation Engine Model 55

pair set. This means that 100 tests are performed for each model. The number of
evaluation word pairs is always 10,000. In case of using pre-trained evaluation word
pairs, these 10,000 evaluation word pairs are the same as the randomly selected word
pair set, thus the models are expected to eventually reach 100% accuracy. Otherwise,
the 10,000 training word pairs and the 10,000 evaluation word pairs are disjoint.

The experiments are repeated 5 times, and the average metric values are calcu-
lated. The test machine is a Machbook Pro with 3.1 GHz Intel Core i7 CPU and 16
GB memory in all cases.

4.3.1 Average Training Time

Figure 4.5 displays the average training time of the models in seconds, using log-
arithmic scale on the y axis. We can see that the training time of the lattice based
model is the highest. Among them, the complete lattice builder is the quickest
with about 330 seconds after using 10,000 training word pairs. The consistent lattice
builder follows with about 406 seconds, because it needs to check node consistency
and alter the lattice incrementally during the training phase. Finally, the minimal
lattice builder takes about 503 seconds, because of its two-phase nature.

10
−2

10
−1

10
0

10
1

10
2

 0

 1,000

 2,000

 3,000

 4,000

 5,000

 6,000

 7,000

 8,000

 9,000

10,000

Number of training word pairs

A
ve

ra
g

e
 t

ra
in

in
g

 t
im

e
 [

s
] ASTRA

ASTRA with prefix tree

Complete lattice

Consistent lattice

Minimal lattice

TASR

FST

Dictionary

FIGURE 4.5: The average training time of the single-affix
transformation engine models

The TASR model has a steep curve, similarly to the lattice model. It reaches 79
seconds using the largest training word pair set. The remaining models have less
steep curves. The ASTRA model without the prefix tree can be trained in about 237
ms, while it reaches about 472 ms if we also organize the rule groups in a prefix tree.

The FST implementation of Lucene became the second best model regarding its
training time, with about 125 ms, while storing the word pairs in a simple dictionary

DOI: 10.14750/ME.2022.020

Chapter 4. Single-Affix Transformation Engine Model 56

takes about 10 ms. However, the last two models have much worse generalization
capability, as we will see later.

4.3.2 Average Size

In Figure 4.6 we can see the average size of the built data structures. The dictio-
nary shows a totally linear line, only words with several inflected forms can distort
this linearity. Using 10,000 training word pairs, the dictionary had 9,978 entries be-
cause of that. Although FSTs act similarly as dictionaries, the FST implementation
of Lucene had much more states, namely 20,541.

The TASR model generated several rules for each training word pair, that is why
it has an even steeper curve, reaching 55,849 rules when using 10,000 training word
pairs. The training method of ASTRA identified even more changing substrings in
the base word forms, therefore its size reaches the highest value: 65,894 atomic rules.

 0

10,000

20,000

30,000

40,000

50,000

60,000

 0

 1,000

 2,000

 3,000

 4,000

 5,000

 6,000

 7,000

 8,000

 9,000

10,000

Number of training word pairs

A
ve

ra
g

e
 s

iz
e

ASTRA

Complete lattice

Consistent lattice

Minimal lattice

TASR

FST

Dictionary

FIGURE 4.6: The average size of the single-affix
transformation engine models

As for the lattices, their size was way below the size of the FST model. The com-
plete lattice builder produced 14,404 nodes, while the consistent lattice builder was
not far behind with 14,072 nodes. This is interesting because as it turned out, there
were not so many inconsistent nodes in the complete lattice, thus eliminating them
did not mean a significant size reduction. The minimal lattice builder produced the
smallest node set, with only 2,412 nodes.

4.3.3 Average Search Time

Figure 4.7 displays the average search time of the examined models in seconds, using
logarithmic scale on the y axis.

DOI: 10.14750/ME.2022.020

Chapter 4. Single-Affix Transformation Engine Model 57

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

 0

 1,000

 2,000

 3,000

 4,000

 5,000

 6,000

 7,000

 8,000

 9,000

10,000

Number of training word pairs

A
ve

ra
g

e
 s

e
a

rc
h

 t
im

e
 [

s
]

Sequential ASTRA

Parallel ASTRA

ASTRA with prefix tree

Complete lattice

Consistent lattice

Minimal lattice

TASR

FST

Dictionary

FIGURE 4.7: The average search time of the single-affix
transformation engine models

The java.util.HashMap based dictionary implementation can return the in-
flected word forms in nearly constant time, reaching about 232 ns using 10,000 word
pairs. The FST implementation of Lucene is similarly quick, with 1.5 µs.

Among the different lattice variants, the consistent lattice produces the worst
average search time with about 220 µs, since this model variant uses linear search
among the coatoms, as discussed earlier. The complete lattice reaches about 73 µs,
however, the minimal lattice produces the best search time with 43 µs.

The slowest model variant is the sequential ASTRA, because the atomic rules are
processed sequentially. Using parallel processing, we can improve the 15 ms average
response time of the sequential model variant to about 2 ms. This is very similar but
slightly better than TASR, the latter one reaching about 1.5 ms.

Using a prefix tree to store the rule groups improves the search time of ASTRA
dramatically, reaching about 32 µs, even beating the best lattice based model variant.

4.3.4 Average Accuracy

Figure 4.8 displays the average accuracy of the models when the training data set is
the subset of the evaluation data set. Since the last test included the same word pairs
for training and evaluation, the accuracy reached almost 100%, as expected. There
were a couple of failing words due to some words having multiple inflected forms.

However, we can also see that the generalization capabilities of TASR and espe-
cially ASTRA are much better than those of the lattice based model, since they reach
95% much more quickly. The different lattices are very similar, but overall we can
say that the minimal lattice is the best among them, then comes the complete lattice
and finally the consistent one. The FST and dictionary implementations are not part

DOI: 10.14750/ME.2022.020

Chapter 4. Single-Affix Transformation Engine Model 58

75%

80%

85%

90%

95%

100%

 0

 1,000

 2,000

 3,000

 4,000

 5,000

 6,000

 7,000

 8,000

 9,000

10,000

Number of training word pairs

A
ve

ra
g

e
 a

c
c
u

ra
c
y
 [

%
]

ASTRA

Complete lattice

Consistent lattice

Minimal lattice

TASR

FIGURE 4.8: The average accuracy of the single-affix transformation
engine models using subsets of the evaluation word pair set

for training

of the figure, but they would show a totally linear line, increasing from 0% to about
100%, since they cannot generalize at all.

Figure 4.9 shows a similar picture: when using disjoint training and evaluation
data sets, the ASTRA and TASR models are again on top of the graph. ASTRA
reaches 94.06%, while the best result of TASR is 93.79%.

The lines of the three lattices are a bit lower. The accuracy of the minimal lattice
is 88.23%, then comes the complete lattice with 88.02%, and finally the consistent
lattice reaches 87.57%.

Since the FST and the dictionary can only inflect the pretrained words correctly,
they are not displayed on the chart, as they would show a constant 0%.

4.4 Conclusion

In this chapter I proposed two novel single-affix transformation engine models that
can learn inflection rules from a provided training word pair set.

The first model (Section 4.1) has a more complex rule structure and stores its
rules in a lattice structure. The changing substrings in the words are identified using
an improved Levenshtein cost function. I presented three lattice builder methods:
the complete, consistent and minimal lattice builder algorithms.

The second model called Atomic String Transformation Rule Assembler or AS-
TRA (Section 4.2) has a more compact, position independent rule structure that con-
centrates on simple string transformations. The rules are stored in either a set or a
prefix tree. During inflection, the best matching non-overlapping rules are selected
using a fitness function, and these rules are applied on the input word one by one.

DOI: 10.14750/ME.2022.020

Chapter 4. Single-Affix Transformation Engine Model 59

75%

80%

85%

90%

95%

 0

 1,000

 2,000

 3,000

 4,000

 5,000

 6,000

 7,000

 8,000

 9,000

10,000

Number of training word pairs

A
ve

ra
g

e
 a

c
c
u

ra
c
y
 [

%
]

ASTRA

Complete lattice

Consistent lattice

Minimal lattice

TASR

FIGURE 4.9: The average accuracy of the single-affix transformation
engine models using disjoint training and evaluation word pair sets

The rule model of this method is symmetric, meaning that the same rules can be
used during morphological analysis as well.

Evaluation results (Section 4.3) show that the lattice based model has the most
compact rule base, while the ASTRA model has an outstanding average accuracy,
training and search time, even though its size is the largest. Only the FST and dic-
tionary implementations beat it regarding training time and search time, but their
generalization capability is far worse. The examined metrics are summarized by
Table 4.7.

Thesis 2 [2] [3] [9] [10] [11] [12] [13] [14] [15] [16]
I have proposed two novel single-affix transformation engine models that can learn
inflection rules from a provided set of training word pairs. The first one is a lattice
based model that has a more complex, position dependent rule structure, and stores
its rules in a lattice. The second model called ASTRA describes inflection as a set of
simple string transformations, omitting the position indices from its rule model.
The atomic rules are stored in either a set or a prefix tree based data structure.
Both models apply pattern matching during the rule search process. I performed
the evaluation of the proposed models, showing that while the lattice based model
can achieve minimal storage size, the ASTRA model has an outstanding accuracy
for previously unseen words (about 94%), beating the examined baseline models in-
cluding TASR, FST and a dictionary implementation.

DOI: 10.14750/ME.2022.020

Chapter 4. Single-Affix Transformation Engine Model 60

TABLE 4.7: Summary of the measured metrics using 10,000 training
word pairs and a disjoint evaluation word pair set

Model Training time Size Search time Accuracy

Sequential ASTRA
237 ms

65,894
15 ms

94.06%Parallel ASTRA 2 ms

ASTRA with prefix tree 472 ms 32 µs

Complete lattice 330 s 14,404 73 µs 88.03%

Consistent lattice 406 s 14,072 220 µs 87.57%

Minimal lattice 503 s 2,412 43 µs 88.23%

TASR 79 s 55,849 1.5 ms 93.79%

FST 125 ms 20,541 1.5 µs 0%

Dictionary 10 ms 9,978 232 ns 0%

DOI: 10.14750/ME.2022.020

61

Chapter 5

Multi-Affix Morphology Model

In this chapter I propose a novel multi-affix morphology model called Morpher that
can learn the inflection rules of the target language (including all of its affix types),
generate inflected word forms from lemmas and affix type sets, and analyze inflected
word forms.

In Section 5.1 I introduce the high-level view of the Morpher model, including
its main components and their responsibilities.

Section 5.2 contains the necessary formal model to describe concatenative mor-
phology, and it introduces the main features of the Hungarian language that the
proposed model needs to take care of.

Section 5.3 is about the training phase of Morpher, i.e. how it learns the inflection
rules of all the affix types of the target language, how it calculates the conditional
probabilities of affix type chains and how it stores the valid lemmas and parts of
speech.

In Section 5.4 I define the necessary operators that make it possible to generate
inflected word forms from a given lemma and the set of required affix types.

In Section 5.5, we can read about the operators related to morphological analysis
and why this direction is more complex than generating inflected word forms.

Experimental results are summarized in Section 5.6, comparing Morpher with
six SIGMORPHON models, three unsupervised segmentation models, and two an-
alyzer models. Results confirm that Morpher has an outstanding average accuracy
and generalization capability.

5.1 Architecture of the Proposed Model

The proposed Morpher model has three main components, as demonstrated in Fig-
ure 5.1.

• Transformation engines: low-level inflection rule extraction models that are
capable of learning the transformations of a single affix type based on a set of
training word pairs.

• Probability store: the set of conditional probabilities among all the known affix
types of the target language. These probabilities are calculated dynamically
during the training phase and updated whenever a new training record is re-
ceived.

• Lemma store: the store of lemmas and their associated parts of speech.
Morpher coordinates the work of these components to solve the inflection gen-

eration and morphological analysis problems in a multi-affix environment in the
following way:

• During the training phase (detailed in Section 5.3), Morpher

DOI: 10.14750/ME.2022.020

Chapter 5. Multi-Affix Morphology Model 62

T � � � � � � � � ! " � �

E � # " � $ �

M��%&$�

P��'�'"("!)

S!��$

L$ �

S!��$

. . .

FIGURE 5.1: The main components of the Morpher model

– creates a separate transformation engine instance for each affix type found
in the training data set,

– trains the transformation engine instances using dynamically deduced
training word pair sets derived from the original training data of Mor-
pher,

– calculates the conditional probabilities of all the valid affix type chains,
and

– stores the found lemmas and their associated parts of speech.
• During inflection generation (detailed in Section 5.4), Morpher

– determines all the valid orders of the given affix types based on the pre-
viously calculated conditional probabilities of the affix type chains,

– has the appropriate transformation engine instances transform the input
lemma one by one to produce both the intermediate word forms and the
final inflected word form,

– calculates an aggregated weight for each response it can produce to see
how confident the model is in the results, and

– returns the part(s) of speech, intermediate word form(s) and final in-
flected form(s), sorting the responses by their aggregated weights in a
descending order.

• During morphological analysis (detailed in Section 5.5), Morpher
– determines which affix types might appear in the received inflected word

form,
– has the appropriate transformation engine instances transform the input

inflected form backwards one by one to produce both the intermediate
word forms and the final lemma,

– calculates an aggregated weight for each response it can produce to see
how confident the model is in the results, and

– returns the found affix type(s), intermediate word form(s), part(s) of speech
and final lemma(s), sorting the responses by their aggregated weights in
a descending order.

As we will see, there are some words in Hungarian that can have several possible
lemmas, parts of speech or even inflected forms generated using the same affix type.

DOI: 10.14750/ME.2022.020

Chapter 5. Multi-Affix Morphology Model 63

To handle these edge cases, Morpher has been designed in a way that it can return
multiple responses during both inflection generation and morphological analysis.
During evaluation, I will also point out how many responses Morpher produced in
average, and what the average index of the correct response was, as these metrics
become extremely important when dealing with multiple results.

The key component in learning inflection rules is the set of transformation en-
gines. These engines can be implemented using any morphology model that is capa-
ble of learning single-affix transformation rules from a training word pair set. Practi-
cally, during the evaluation of Morpher, I will use ASTRA as the transformation en-
gine implementation, as this model performed exceptionally well as demonstrated
by the experiments in Section 4.3.

5.2 The Formal Model of Concatenative Morphology

In concatenative morphology, the semantic meaning of words is altered by adding
affixes to them. (In Hungarian, this means mainly appending or prepending.) This
process is called inflection.

The basis of the target language vocabulary is the set of lemmas, i.e. the gram-
matically correct root word forms. To distinguish between the set of words (lemmas
and inflected forms) and the set of lemmas, words will be denoted by w ∈W , while
lemmas will be denoted by w̄ ∈ W̄ ⊂W . The main difference between a lemma and
an inflected word form is that inflected words contain at least one affix.

In simpler cases, the affix is a substring of the word. In more complex cases, how-
ever, an affix can also alter the base form of the word. In the Hungarian language we
can find several examples for these complex cases. Affixes can be grouped into affix
types that determine how the affixes change the meaning of the base form. Affix
types will be denoted by T ∈ T.

Lemmas are associated with one or more parts of speech that indicate their syn-
tactic role in the sentences. The part of speech of a word can be changed by deriva-
tional affix types, for instance the word write is a verb, while writing is a noun. Be-
sides determining the syntactic function of the word, parts of speech also limit the
set of affix types that can be applied on the word. Parts of speech will be denoted by
T̄ ∈ T̄.

For convenience, let us also define the following projection operators:
• λ : W → 2W̄ maps a word to its possible lemmas,
• L : W̄ → 2T̄ maps a lemma to its possible parts of speech, while
• ϕ : W → {〈T1, . . . , Tk〉} maps a word to its possible affix type lists that can be

found in it.
In later sections, I will use these operators when I only care about the possible

lemmas of a word form, the possible associated parts of speech of a lemma or the
possible affix type list found in an inflected word.

Although it is not frequent in Hungarian, there are cases where a word form
has several different lemmas and even several different affix type lists, which means
that the proposed model needs to be able to return several responses. Similarly,
generating an inflected word form using an affix type might result in several pos-
sible responses. Figure 5.2 shows an example of the Hungarian word oszlat that is
the causative inflected form of the lemmas oszol and oszlik that both mean decay.
The word has two possible lemmas and two possible inflected forms based on the
subjunctive-imperative affix type: oszlasson and oszlassék.1

1Archaic word form denoted by the same morphosyntactic tag

DOI: 10.14750/ME.2022.020

Chapter 5. Multi-Affix Morphology Model 64

oszol

oszlik

oszlat

oszlasson

oszlassék

Causative
Subjunctive

Imperative

FIGURE 5.2: Multiple lemmas and inflected word forms of
the same Hungarian word

Affix types have valid and invalid orders that are defined by the language itself:
some affix types can follow each other in a word, others cannot. This adjacency
relation will be denoted by Ti → Tj , meaning that Tj can be added to a word whose
last affix type is Ti. Parts of speech also participate in this adjacency relation. For
example in Hungarian, past tense can only be applied on verbs and not nouns; or
accusative case can come after plural, but not vice versa.

Remark 5.1. In concatenative morphology, every inflected word form is reachable starting
from a lemma, applying a number of affix types. This means that the inflected words of a
language form a directed graph where only the lemmas have no incoming edges. Formally,
∀w ∈W \ W̄ : ∃w̄ ∈ W̄ and ∃T1, . . . , Tk ∈ T (k ≥ 1) such that the word w contains the k
affix types, ∀i index (1 ≤ i ≤ k − 1) : Ti → Ti+1, Ti produces the input word form of Ti+1

and w is produced by Tk. This relationship is denoted by w̄ ⇒ w.
Although this is a trivial statement, we can also prove it formally, using the previ-

ously introduced notations. Let us assume indirectly that there is at least one word wk ∈
W \ W̄ such that @w̄ ∈ W̄ for which w̄ ⇒ wk. Let us assume that wk has k affix

types T1, . . . Tk (k ≥ 1). Let us apply the inverse transformation of these affix types in
reversed order on wk, producing a word chain consisting of wk, wk−1, . . . , w1, w0, where wi
(0 ≤ i ≤ k − 1) is produced by applying the inverse transformation of the affix type Ti+1 on
wi+1. We can easily see that the last word in this chain is a lemma

(
w0 ∈ W̄

)
, since it does

not have any affix types. This is a contradiction, meaning that the original statement about
reachability is true.

Remark 5.2. In formal language theory, a formal language can be defined as the set of words
that can be formed using the rules of a formal grammar. Similarly, the above remark states
that all the words of a natural language can be formed using a lemma and a set of affix types.

In this sense, we can say that the vocabulary of a language forms a directed graph
where the nodes are the word forms, the edges represent the applied affix types, and
the lemma nodes do not have any incoming edges.

If w̄ ⇒ w, then using the previously introduced projection operators, it is also
true that w̄ ∈ λ (w).

5.3 The Training Phase of Morpher

The training data of the Morpher model is a T =
{(
w, w̄, T̄ , 〈Ti〉

)}
set, where

• w is an inflected word form,
• w̄ is the lemma of w,
• T̄ is the part of speech of w̄ and

DOI: 10.14750/ME.2022.020

Chapter 5. Multi-Affix Morphology Model 65

• 〈Ti〉 is the list of affix types found in w.
During the training phase, Morpher first builds and trains a separate transfor-

mation engine instance ET for each affix type T in the training data T, to learn its
inflection rules.

To learn these rules, the transformation engine ET needs to receive a set of word
pairs (wl, wr) demonstrating the characteristics of T . This means that there exists a w̄
lemma such that w̄ ∈ λ (wl)∩λ (wr) and if 〈T1, . . . , Tk〉 ∈ ϕ (wl) then 〈T1, . . . , Tk, T 〉 ∈
ϕ (wr). From such training data, ET can deduce the appropriate inflection rules.

During inflection generation and morphological analysis, Morpher also needs to
know the valid affix type chains of the target language and their conditional prob-
abilities so that it can decide which transformation engine should be used and in
what order.

Definition 5.1 (Affix type chain conditional probability). M is a function that can de-
termine the conditional probability of an affix type chain:

M
(
T̄0, T1, . . . , Ti

)
=

{
P
(
T̄0

)
if i = 0

P
(
T̄0

)
·
∏i
j=1 P

(
Tj | T̄0, T1, . . . , Tj−1

)
if i = 1, 2, . . .

(5.1)

Morpher can calculate the conditional probabilities using relative frequencies:

P
(
Tn | T̄0, T1, . . . , Tn−1

)
=
P
(
T̄0 ∩ T1 ∩ . . . ∩ Tn−1 ∩ Tn

)
P
(
T̄0 ∩ T1 ∩ . . . ∩ Tn−1

) =

=

∣∣{w ∈W | 〈T̄0, T1, . . . , Tn
〉
∈ ϕ (w)

}∣∣∣∣{w ∈W | 〈T̄0, T1, . . . , Tn−1

〉
∈ ϕ (w)

}∣∣
(5.2)

The probability of the part of speech T̄ is

P
(
T̄
)

=

∣∣{w ∈W | ∃w̄ ∈ λ (w) , T̄ ∈ L (w̄)
}∣∣

|W |
(5.3)

Of course in practice, only a subset of W will be available for relative frequency
calculation, those words that are part of the training data T.

If M returns 0 for an affix type chain, it means that at least one affix type in the
chain cannot come after its predecessors, or formally there is at least one j index
(1 ≤ j ≤ i) such that Tj−1 6→ Tj .

For morphological analysis, the conditional probabilities of reversed affix type
chains (denoted by M−1 (Ti, Ti−1, . . . , Ti−j+1, Ti−j) where 0 ≤ j ≤ i) are calculated
similarly, but in reversed order in the affix type chain: starting from the last affix
type and moving towards the part of speech.

Finally, the lemmas and their associated parts of speech are also extracted from
the training data set. Remembering these items will help Morpher during both in-
flection generation and morphological analysis:

• During inflection generation, Morpher will know the part(s) of speech of the
input lemma, and thus will be able to determine what the first affix type can
be.

• During morphological analysis, Morpher will know when it can stop due to
having found a grammatically correct root form of the input word, and it will
know its associated part(s) of speech.

DOI: 10.14750/ME.2022.020

Chapter 5. Multi-Affix Morphology Model 66

5.4 Performing Inflection Generation Using Morpher

In this section, I define the inflection generation operator of Morpher. However,
since Morpher orchestrates a set of single-affix transformation engine instances, let
us first define the forward conversion operator of these lower-level transformation
engines.

Definition 5.2 (Forward conversion operator). The forward conversion operator of the
transformation engine instance ET is a multi-valued function denoted by FCET . The range
of this operator is a set of word sets, where each set consists of words that have the same
lemma as the input word and the same affix type list, except for the additional last affix
type (T). Formally, for every w ∈ domain

(
FCET

)
word in the domain of this operator,

FCET (w) = {w1, . . . wl} such that for all i indices (1 ≤ i ≤ l) the following conditions
apply:

• All of the possible lemmas of the input word are also the lemmas of the output words:
λ (w) ⊆ λ (wi).

• The output words have the same m affix types as the input word, and they append T
to the end of the list: 〈T1, . . . Tm 〉 ∈ ϕ (w)⇒ 〈T1, . . . Tm, T 〉 ∈ ϕ (wi).

In the domain of FCET , every word w is either a lemma or can be reached from a lemma.
Formally, w ∈ W̄ or ∃w̄0 ∈ W̄ , T̄0 ∈ T̄ and T1, . . . , Tk ∈ T such that the following
conditions apply:

• w is reachable from w̄0: w̄0 ⇒ w,
• w̄0 ∈ λ (w) is a possible lemma of the w input word,
• T̄0 ∈ L (w̄0) is a possible part of speech of the w̄0 lemma, P

(
T̄0

)
> 0,

• the affix type chain containing k + 2 elements is valid starting from the part of speech
T̄0, i.e. M

(
T̄0, T1, . . . , Tk, T

)
> 0, and

• the input word can be found in the output of the kth transformation:

w ∈
⋃

S∈range
(
FCETk

)S (5.4)

With this definition in mind, I can now specify the inflection operator of the
Morpher model. This operator has two inputs: a lemma and a set of affix types. The
goal is to generate the appropriate inflected word form(s) of the input lemma that
contain all the given affix types in a valid order. The input does not specify the order
of the provided affix types, this must be determined by Morpher. The result is a set
of responses, containing

• the part of speech of the given lemma,
• the intermediate word forms with their associated affix types,
• the final inflected word form and
• the aggregated weight of the response that acts as a confidence value.

Definition 5.3 (Inflection operator). The inflection operator of the Morpher model is a
multi-valued function

I : W̄ × {Ti}mi=1 →
〈(

T̄i0 ,
〈
SIij

〉m
j=1

, ϑi

)〉n
i=1

(5.5)

where
SIij =

(
Tij , FC

ETij
(
wij−1

))
(5.6)

The building blocks of the above definition are the following:

DOI: 10.14750/ME.2022.020

Chapter 5. Multi-Affix Morphology Model 67

• The input contains the lemma w̄0 ∈ W̄ and an unordered set of m affix types.
• The output contains a set of n responses where for every i index (1 ≤ i ≤ n):

– T̄i0 ∈ L (w̄0) is a valid part of speech of the input word,
– Ti1 , . . . , Tim is a valid permutation of the input affix types T1, . . . , Tm, i.e.

M
(
T̄i0 , Ti1 , . . . , Tim

)
> 0,

– the intermediate and final inflected word forms are generated using the
forward conversion operator of the appropriate transformation engine in-
stances, and for every step, the output word form will be the input of
the next transformation engine instance, or formally for every j index

(1 ≤ j ≤ m): wij ∈ FC
ETij

(
wij−1

)
,

– each step produces at least one output word, otherwise the whole re-

sponse is dropped:
∣∣∣FCETij

(
wij−1

)∣∣∣ > 0 for every j index (1 ≤ j ≤ m),

– the final output of I is the inflected form FCETim

(
wim−1

)
, and

– the aggregated weights of the given responses are in descending order,
i.e. for every i index (1 ≤ i ≤ n− 1), ϑi ≥ ϑi+1.

If the model cannot determine the valid order of the provided affix types, there
will be no responses (n = 0). Otherwise, Morpher will provide n > 0 responses
sorted by their aggregated weights (ϑi) in descending order.

The aggregated weight of a response can be calculated in different ways. One
possible implementation is to multiply the weights of the steps on the affix type
chain. The weight of a single step can be the multiplication of the weight of the
output word and the conditional probability of its affix type. Since the conditional
probabilities are low due to the large size of the training data set, I scale them into
the [0, 1] interval.

Example 5.1 (Inflection generation). Let us say we would like to inflect the Hungar-
ian word alma (apple) using the accusative case and plural form. Based on an appro-
priate training set, the engine can determine that the correct order of these affix types is
〈plural, accusative case〉. The plural form of alma is almák and its accusative case is almákat.
The part of speech of alma is noun. If the appropriate probabilities are P (noun) = 2

3 ,
P (plural | noun) = 1

2 and P (accusative case | noun, plural) = 1
2 , then

M (noun, plural, accusative case) =
2

3
· 1

2
· 1

2
=

1

6

5.5 Performing Morphological Analysis Using Morpher

Similarly to the previous section, let us first define the backward conversion oper-
ator of the transformation engine model, since it will be used by Morpher during
morphological analysis.

Definition 5.4 (Backward conversion operator). The backward conversion operator of
the transformation engine instance ET is a multi-valued function denoted by BCET . Every
word in the domain of BCET can be found somewhere in the range of FCET , or formally

∀w ∈ domain
(
BCET

)
: w ∈

⋃
S∈range(FCET)

S (5.7)

The output of BCET for the word w is a word set BCET (w) = {w1, . . . wl} where each
output word can be found in the domain of FCET such that

DOI: 10.14750/ME.2022.020

Chapter 5. Multi-Affix Morphology Model 68

• all of the possible lemmas of the output words are also possible lemmas of the input
word: λ (wi) ⊆ λ (w), and

• the input word has the same m affix types as the output words, and it appends T to
the end of the list: 〈T1, . . . Tm, T 〉 ∈ ϕ (w)⇒ 〈T1, . . . Tm〉 ∈ ϕ (wi).

Using this definition, the morphological analysis operator of the Morpher model
can also be specified. This operator only receives an inflected word form as its input.
The goal of the model is to identify all the affix types in this word until it finds the
lemma(s) and associated part(s) of speech. The result is a set of responses, containing

• the list of affix types found in the input word,
• the intermediate word forms between the lemma and the input word form,
• the lemma,
• the part of speech of the lemma and
• the aggregated weight of the response that acts as a confidence value.

Definition 5.5 (Morphological analysis operator). The morphological analysis operator
of the Morpher model is a multi-valued function

A : W →
〈(〈

SAij

〉1

j=mi

, T̄i0 , ϑi

)〉n
i=1

(5.8)

where
SAij =

(
Tij , BC

ETij
(
wij
))

(5.9)

The following conditions apply on the defined morphological analysis operator:
• The input is an inflected word form w ∈W .
• The output contains a set of n responses where for every i index (1 ≤ i ≤ n):

– Timi
, . . . , Ti1 , T̄i0 is a valid reversed affix type chain, meaning that all con-

ditional probabilities are positive: M−1
(
Timi

, . . . , Ti1 , T̄i0
)
> 0,

– the first word in the chain is the input (wimi
= w) and each consecu-

tive word is an intermediate word form that is generated by applying the
backward conversion operator of the appropriate transformation engine

instance, i.e. for every j index (0 ≤ j ≤ mi − 1): wij ∈ BC
ETij+1

(
wij+1

)
,

– each step produces at least one output, otherwise the whole response is

dropped:
∣∣∣BCETij

(
wij
)∣∣∣ > 0 for every j index (1 ≤ j ≤ mi),

– w̄i0 ∈ BC
ETi1 (wi1) ∩ λ (w) is the lemma of the input word,

– T̄i0 ∈ L (w̄i0) is the part of speech of the lemma, and
– the aggregated weights of the given responses are in descending order,

i.e. for every i index (1 ≤ i ≤ n− 1), ϑi ≥ ϑi+1.
If the model cannot analyze the input word due to not finding a valid lemma or

not being able to continue the recursive affix type chain extension, the output will
be empty (n = 0). Otherwise, Morpher will provide n > 0 responses sorted by their
aggregated weights (ϑi) in descending order.

One big difference that makes morphological analysis more difficult than inflec-
tion generation is that we do not know in advance the set of affix types that appear in
the input word. Therefore Morpher needs to check much more possibilities during
morphological analysis, which means a higher computational complexity. If Mor-
pher already processed the affix types

〈
Timi

, . . . , Tij
〉
, then the set of affix types that

need to be checked as part of the next step is
{
T |M−1

(
Timi

, . . . , Tij , T
)
> 0
}

.

Example 5.2 (Morphological analysis). Let us say we want to morphologically analyze
the Hungarian word rendeltetésem (my function). One possible response that Morpher gives

DOI: 10.14750/ME.2022.020

Chapter 5. Multi-Affix Morphology Model 69

us is that the lemma is rendeltetés (function) whose only affix type is the possessor 1st person
〈POSS 〈1〉〉. However, based on the training data, it can also further expand this lemma:
rendel (to order), rendeltet (causative form), rendeltetés (attributive form). Although this is
a semantically incorrect chain, the induced rules can yield this response, too, but only with a
lower aggregated weight. From this example, we can see that Morpher does not take semantic
features into account, so it may provide invalid responses, too. However, these responses are
all logical based on the generated rule set, i.e. the training data set.

5.6 Experimental Results

In this section I evaluate the capabilities of the Morpher model, comparing it with
state of the art multi-affix morphology models, including six SIGMORPHON mod-
els (Helsinki 2016,2 UF 2017,3 UTNII 2017,4 Hamburg 2018,5 IITBHU 20186 and MSU
20187), three unsupervised segmentation models (Morfessor 2.0,8 MORSEL9 and
MorphoChain10), as well as the analyzer models called Lemming11 and Hunmorph-
Ocamorph.12

The examined metrics include:
• Average training time: how much time does it take to train the examined mod-

els
• Average size: the file size of the exported knowledge base
• Average inflection and analysis time: how much time does it take to inflect or

morphologically analyze a word
• Average accuracy: the percentage of correctly inflected and analyzed words
• Average number of responses: how many responses Morpher returns in aver-

age
• Average index of the expected response: in average, what is the index of the

expected result in the provided list of responses
Some baseline models are not used in all of the evaluation tests. For example

although Lemming is a popular morphological analyzer, during its evaluation, I
realized that for some reason it does not return the lemma as it should. Therefore
this model is not included in the charts, only its average accuracy is mentioned.
Hunmorph-Ocamorph is only part of the size comparison, as it had been used to
generate the training data. The SIGMORPHON models usually have a CPU and
a GPU mode, and since their evaluation was executed only on CPU, they are not
included in any execution time comparisons. Finally, MorphoChain is also missing
from the comparisons, because it failed with an OutOfMemoryError above 50,000
training items.

Besides measuring the above metrics, I also compared the generalization capa-
bilities of the evaluated models, i.e. how well they can handle artificial words that
mimic the transformation rules of an existing affix type.

2https://github.com/robertostling/sigmorphon2016-system
3https://github.com/valdersoul/conll2017
4https://github.com/hajimes/conll2017-system
5https://gitlab.com/nats/sigmorphon18
6https://github.com/abhishek0318/conll-sigmorphon-2018
7https://github.com/AlexeySorokin/Sigmorphon2018SharedTask
8https://github.com/aalto-speech/morfessor
9https://github.com/ConstantineLignos/MORSEL

10https://github.com/karthikncode/MorphoChain
11http://cistern.cis.lmu.de/lemming
12http://mokk.bme.hu/en/resources/hunmorph

DOI: 10.14750/ME.2022.020

https://github.com/robertostling/sigmorphon2016-system
https://github.com/valdersoul/conll2017
https://github.com/hajimes/conll2017-system
https://gitlab.com/nats/sigmorphon18
https://github.com/abhishek0318/conll-sigmorphon-2018
https://github.com/AlexeySorokin/Sigmorphon2018SharedTask
https://github.com/aalto-speech/morfessor
https://github.com/ConstantineLignos/MORSEL
https://github.com/karthikncode/MorphoChain
http://cistern.cis.lmu.de/lemming
http://mokk.bme.hu/en/resources/hunmorph

Chapter 5. Multi-Affix Morphology Model 70

All the tests are performed using a custom pre-generated training and evaluation
data set.13 In the final experiment, I train and evaluate Morpher using the data sets
provided by SIGMORPHON.

The evaluation process is similar to that of Section 4.3, only the data volumes are
larger: I select 100,000 random training items containing randomly sized affix type
chains of every affix type, and use 10,000; 20,000; . . . ; 100,000 records from this set to
train the models, gradually extending the training set size. This means that 10 tests
are performed for each model. The number of evaluation items is always 10,000; and
this set is always disjoint with the training data set. The experiments are repeated 5
times and the average metric values are calculated.

The test machine is a Macbook Pro with a 3.1 GHz Intel Core i7 CPU and 16 GB
of memory.

5.6.1 Average Training Time

Figure 5.3 displays the average training time in seconds, with logarithmic scale on
the y axis. Besides Morpher, only Morfessor 2.0 and MORSEL are included in the
chart, since MorphoChain failed above 50,000 training items with an OutOfMemory-
Error and the SIGMORPHON models were tested only on CPU and not on GPU, so
their training took much longer.

10
0

10
1

10
2

 10,000

 20,000

 30,000

 40,000

 50,000

 60,000

 70,000

 80,000

 90,000

100,000

Number of training items

A
ve

ra
g

e
 t

ra
in

in
g

 t
im

e
 [

s
]

Morpher

Morfessor 2.0

MORSEL

FIGURE 5.3: The average training time of the multi-affix
morphology models

Using 100,000 training items, Morfessor 2.0 took 6 minutes to be trained, thus it
was the slowest model. The average training time of Morpher was about 3.9 sec-
onds, while MORSEL finished after about 1.9 seconds. However, MORSEL is only a
segmentation model, so its knowledge base is probably much simpler.

13The data generation process is detailed in Section 7.1.

DOI: 10.14750/ME.2022.020

Chapter 5. Multi-Affix Morphology Model 71

5.6.2 Average Size

The average size of the models has been measured by exporting their knowledge
bases in an external file and checking the size of the exported file. Only Hamburg
2016 and MORSEL do not appear in Table 5.1, because they do not support exporting
their knowledge base out of the box.

Morpher is only the 5th model regarding average size after training 100,000 train-
ing items, with 8.5 MB. IITBHU 2018 (8.3 MB), UF 2017 (4.5 MB), Morfessor 2.0 (3.5
MB) and MSU 2018 (1.5 MB) have a smaller knowledge base than the proposed
model. On the other hand, Hunmorph-Ocamorph that had been used to generate
the training and evaluation data sets, has a knowledge base of 22.7 MB. The exported
file of Helsinki 2016 is almost 7 times bigger (58.3 MB), and the biggest knowledge
base relates to UTNII 2017 with 92.4 MB that is more than 10 times bigger than the
file size of Morpher.

For the serialization of Morpher, the protocol buffer data format is used. Ac-
cording to the official Google documentation,14 ”protocol buffers are a flexible, efficient,
automated mechanism for serializing structured data – think XML, but smaller, faster, and
simpler”.

TABLE 5.1: The average file size of the exported knowledge bases

Model File size

UTNII 2017 92.4 MB
Helsinki 2016 58.3 MB
Hunmorph-Ocamorph 22.7 MB
Morpher 8.5 MB
IITBHU 2018 8.3 MB
UF 2017 4.5 MB
Morfessor 2.0 3.5 MB
MSU 2018 1.5 MB

5.6.3 Average Inflection and Analysis Time

Figure 5.4 displays the average evaluation time of the examined models in millisec-
onds, with logarithmic scale on the y axis. The chart includes the average inflection
and analysis time of Morpher, as well as the average segmentation time of Morfessor
2.0 and MORSEL. MorphoChain is not included because it failed above 50,000 train-
ing items with an OutOfMemoryError, and the SIGMORPHON models were tested
only on CPU and not on GPU, so their average evaluation time was much higher.

As we can see, the average inflection and analysis times of Morpher differ by
orders of magnitude, due to the higher computational complexity of the A opera-
tor. While inflection took only about 2.4 milliseconds after training the model with
100,000 training items, morphological analysis took about 2.4 seconds in average.

Although Morfessor 2.0 and MORSEL can only segment the input words, my
evaluation shows that they performed segmentation in about 6 minutes and 1.9 sec-
onds, respectively. This means that Morfessor 2.0 became the slowest model during
this experiment, while Morpher could analyze the input words in about the same
time as MORSEL segmented them, despite morphological analysis being a more
complex problem. However, it can be seen that the analysis curve of Morpher is

14https://developers.google.com/protocol-buffers/docs/overview

DOI: 10.14750/ME.2022.020

Chapter 5. Multi-Affix Morphology Model 72

10
0

10
2

10
4

 10,000

 20,000

 30,000

 40,000

 50,000

 60,000

 70,000

 80,000

 90,000

100,000

Number of training items

A
ve

ra
g

e
 e

va
lu

a
ti
o

n
 t

im
e

 [
m

s
]

Morpher (inflection)

Morpher (analysis)

Morfessor 2.0

MORSEL

FIGURE 5.4: The average evaluation time of the multi-affix
morphology models

steeper, meaning that further extending the training data set would benefit MORSEL
in the long run.

5.6.4 Average Accuracy

Figure 5.5 displays the average accuracy of the examined morphology models. As
we can see, Morpher has the highest value on the chart, about 97.38%. The closest
baseline models include IITBHU 2018 (93.41%) and MSU 2018 (93.26%). The re-
maining SIGMORPHON models did not reach 90%: Helsinki 2016 achieved 79.23%,
UTNII 2017 inflected 88.02% of words correctly, UF 2017 reached 86.32% of average
accuracy, and the weakest model became Hamburg 2018 with 69.32%.

As for the segmentation models, they had very poor results. The average accu-
racy of Morfessor 2.0 became 62.64%, while the result of MORSEL was only 20.11%,
even though I only checked if the provided segment lengths matched the correct
segmentation of the words, since Hungarian inflection rules often transform even
the base form.

I also examined the Lemming morphological analyzer model, however, it had a
very low accuracy of about 53%. Moreover, only the affix types were returned by
this model, the lemma was not provided, even though Lemming should lemmatize
the input words as well.

In case of Morpher, I also measured other metrics besides the average accuracy,
since the model can return multiple responses for a single input. The average num-
ber of responses means how many responses are given in average for an inflection
or analysis task. This metric became about 5.4 for morphological analysis and 37 for

DOI: 10.14750/ME.2022.020

Chapter 5. Multi-Affix Morphology Model 73

0%

25%

50%

75%

100%

 10,000

 20,000

 30,000

 40,000

 50,000

 60,000

 70,000

 80,000

 90,000

100,000

Number of training items

A
ve

ra
g

e
 a

c
c
u

ra
c
y
 [

%
]

Morpher

Helsinki 2016

UF 2017

UTNII 2017

Hamburg 2018

IITBHU 2018

MSU 2018

Morfessor 2.0

MORSEL

FIGURE 5.5: The average accuracy of the multi-affix
morphology models

inflection generation after training the model using 100,000 training items. The dif-
ference might be because during morphological analysis, Morpher will omit every
response that does not result in a valid lemma, while this restriction is not present
for inflection generation.

Since Morpher can provide multiple responses during inflection generation and
morphological analysis, it is important to note that if we restrict the number of re-
sponses, the accuracy of the model will degrade. In this case, the best-performing
SIGMORPHON models will outperform Morpher. I also analyzed the incorrect re-
sponses of Morpher, and found that in many cases, those responses that came before
the expected one were not incorrect, just less frequent in spoken language, or had a
different semantic meaning. It is important to understand that the evaluation data
set was selected randomly from an automatically generated data set, which means
that there could be other correct responses, too, besides the expected response found
in the evaluation data set.

Because of this, another interesting metric is the average index of the expected
response, meaning at which index was the expected response provided by Morpher.
Optimally, this metric should be 1, i.e. the first response is the expected one, and
the others (if any) have a lower aggregated weight. This metric was 1.5 for inflection
generation and 2.4 for morphological analysis after training 100,000 items. As we can
see, although Morpher gave significantly more results during inflection generation,
the expected response almost always had one of the highest aggregated weights.
Based on this observation, we could further optimize the model so that it throws
away every response with a low aggregated weight. This way the number of re-
sponses could be reduced, while retaining the expected (correct) response.

DOI: 10.14750/ME.2022.020

Chapter 5. Multi-Affix Morphology Model 74

5.6.5 Generalization Capabilities

During evaluation, I also tried to measure the generalization capabilities of the ex-
amined models, so that we can see which models can learn the main features of
the transformation rules and apply them on artificial words that did not appear in
the training data set. For this evaluation, I generated 100 random artificial words
containing 3-6 real Hungarian syllables extracted from meaningful words. These
syllables were selected and combined randomly. Then, these artificial words were
inflected manually, imitating the transformation rules of Hungarian accusative case.
These generated words and their inflected forms included items like

• abajkasztell→ abajkasztellt,
• medarkónunkgótpüf → medarkónunkgótpüföt and
• öldberczerinc→ öldberczerincet.
These artificial word pairs were used to evaluate the generalization capabilities

of the examined models. Table 5.2 summarizes the accuracy values.

TABLE 5.2: The accuracy of the multi-affix morphology models using
100 artificial words imitating the inflection rules of

Hungarian accusative case

Model Accuracy

Morpher 95%
Hunmorph-Ocamorph 89%
Morfessor 2.0 80%
Helsinki 2016 41%
UF 2017 0%
UTNII 2017 0%
Hamburg 2018 0%
IITBHU 2018 0%
MSU 2018 0%
MORSEL 0%

As we can see, most of the SIGMORPHON models could not handle these arti-
ficial words correctly, except for Helsinki 2016 that achieved only 41% of accuracy.
Among the segmentation models, MORSEL could not handle this experiment either,
however, Morfessor 2.0 reached 80%. Hunmorph-Ocamorph could analyze 89% of
these artificial words correctly, but the best model became Morpher with 95%. This
shows that Morpher has an exceptional generalization capability: after training the
model with 100,000 real training items, it could analyze even these artificial, mean-
ingless words.

5.6.6 Cross-Validation with the SIGMORPHON Data Sets

According to the comparison of included models published by SIGMORPHON, in
2017 the best models were CLUZH and LMU [Cotterell et al., 2017], reaching about
86%, while the winner in 2018 was the UZH model [Cotterell et al., 2018], achiev-
ing about 87% of accuracy. However, their evaluation had been performed using
their own data sets, so these results are not comparable with my results on average
accuracy.

Therefore I also evaluated Morpher directly using the SIGMORPHON data sets.
The main difference between my data sets and those provided by SIGMORPHON is

DOI: 10.14750/ME.2022.020

Chapter 5. Multi-Affix Morphology Model 75

that since 2017, SIGMORPHON has been publishing three different data sets per lan-
guage: one normal data set and two others whose data size is significantly smaller.
That is a huge challenge for the models, and it is very frequent that a model reaches
high percentages for the normal data set and fails for the other two.

TABLE 5.3: The accuracy of the Morpher model using the data sets
provided by SIGMORPHON

Data set Accuracy

SIGMORPHON 2016 98.03%
SIGMORPHON 2017 low 49.64%
SIGMORPHON 2017 medium 54.40%
SIGMORPHON 2017 high 95.14%
SIGMORPHON 2018 low 53.69%
SIGMORPHON 2018 medium 59.92%
SIGMORPHON 2018 high 95.43%

Since my research goal does not include supporting low-resource scenarios, I ex-
pected Morpher to perform worse in these cases. As we can see in Table 5.3, Morpher
performed exceptionally well for the normal data sets, though: 98.03% for SIGMOR-
PHON 2016, 95.14% for SIGMORPHON 2017 and 95.43% for SIGMORPHON 2018.
For the medium-resource and low-resource scenarios, about 50-60% of accuracy was
achieved.

5.7 Conclusion

In this chapter I proposed the novel Morpher model to solve the multi-affix inflection
generation and morphological analysis problems.

Morpher can be trained using records containing an inflected word form, its
lemma, its part of speech and the list of affix types found in the word. From this
training data, Morpher can deduce word pairs that demonstrate the transformation
rules of each affix type in the target language, calculate the conditional probabilities
of all the valid affix type chains and store the lemmas and their parts of speech. To
learn the inflection rules of the affix types, Morpher uses a separate ASTRA model
instance for each affix type, trained with the appropriate deduced word pairs.

After introducing the main architecture of Morpher, the main features of concate-
native morphology and the process of training, inflection generation and morpho-
logical analysis in a formal way, I presented the experimental results of the proposed
model. Morpher was compared with state of the art morphology models including
six SIGMORPHON models (Helsinki 2016, UF 2017, UTNII 2017, Hamburg 2018,
IITBHU 2018 and MSU 2018), three unsupervised segmentation models (Morfessor
2.0, MORSEL and MorphoChain), and two analyzer models called Lemming and
Hunmorph-Ocamorph.

The measured metrics confirm that Morpher has an exceptional accuracy and
generalization capability, and it can be trained and used in acceptable times. The
main results using 100,000 training items are summarized by Table 5.4.

The average training time of Morpher was 3.9 seconds, its average inflection
time was 2.4 ms, while its average morphological analysis time was 2.4 seconds.
Among those baseline models that I could include in the comparison, these metrics
are acceptable.

DOI: 10.14750/ME.2022.020

Chapter 5. Multi-Affix Morphology Model 76

TABLE 5.4: Summary of the measured metrics using
100,000 training items

Model Size Accuracy

Morpher 8.5 MB 97.38%

Helsinki 2016 58.3 MB 79.23%

UF 2017 4.5 MB 86.32%

UTNII 2017 92.4 MB 88.02%

Hamburg 2018 – 69.32%

IITBHU 2018 8.3 MB 93.41%

MSU 2018 1.5 MB 93.26%

Morfessor 2.0 3.5 MB 62.64%

MORSEL – 20.11%

Lemming – 53%

Hunmorph-Ocamorph 22.7 MB –

Morpher provided 37 responses for inflection generation and 5.4 responses for
morphological analysis in average, but the higher first value can also be reduced
by modifying the minimum aggregated weight parameter of the model so that it
eliminates all the responses whose weight is lower than this value. The expected
response had an average index of 1.5 in case of inflection generation and 2.4 in case of
morphological analysis, meaning that the expected correct response almost always
had one of the highest aggregated weights in the response list.

I measured the generalization capability in an experiment where I expected the
models to be able to correctly handle 100 artificial words, inflected manually imi-
tating the transformation rules of Hungarian accusative case. In this scenario, Mor-
pher achieved an accuracy of 95%, while others could not solve the problem at all,
or reached only 89% at most.

I also performed cross-validation using the SIGMORPHON data sets. In the
high-resource scenarios, Morpher achieved about 95% that is better than the win-
ner models of 2017 and 2018 that only reached 86-87%.

Thesis 3 [3] [4]
I have proposed a novel multi-affix morphology model called Morpher that can
solve the inflection generation and morphological analysis problems, handling all
the affix types of the target language. The main feature of the proposed Morpher
model is that it builds a separate transformation engine instance for each affix
type, and it takes the conditional probabilities of the affix type chains into account
during inflection generation and morphological analysis. During the evaluation of
Morpher I used the ASTRA model to train the transformation engines. The experi-
ments confirmed the outstanding generalization capabilities and accuracy of Mor-
pher, comparing it with state of the art models including 6 SIGMORPHON models,
3 unsupervised segmentation models and 2 analyzer models.

DOI: 10.14750/ME.2022.020

77

Chapter 6

Complexity Analysis and
Optimization of the Morpher and
ASTRA Models

The generalization capabilities and accuracy of the Morpher model seem to be prom-
ising, demonstrated by Section 5.6. However, the average inflection time and espe-
cially the average analysis time could be reduced to make the model more usable
from the viepoint of industrial applications.

In this chapter I perform the space and time complexity analysis of the Mor-
pher and ASTRA models and propose three optimization techniques to reduce their
knowledge base and thus make inflection generation and morphological analysis
faster. Using optimization, the Morpher model will be able to execute these opera-
tions in acceptable, finite time even after training the model with millions of training
items.

The space and time complexity analysis is part of Section 6.1, where I analyze
the space requirements of the components in Morpher and the time complexity of
the steps of its training phase, as well as its inflection generation and morphological
analysis operations.

Section 6.2 is about three optimization techniques that can be applied to reduce
the rule base of each ASTRA transformation engine instance. The first one elimi-
nates redundant rules, the second one limits the context length of the retained atomic
rules, while the third one uses rule attributes such as support and word frequency
to drop weaker or less frequent atomic rules. These techniques are controlled using
newly introduced model parameters.

In Section 6.3 I empirically analyze the optimization parameters to find the op-
timal configuration for the experiments of Section 5.6. My goal is to eliminate most
atomic rules without degrading the average accuracy.

The evaluation of the optimization techniques is in Section 6.4. First, I re-execute
the experiments of the previous chapter using the optimal parameter configuration
comparing the new results with those of Section 5.6. Then, I also perform evaluation
using 3 million training items to see how well the optimized model can be used
with such big training data volumes. Without the newly introduced optimization
techniques, the original Morpher model could not handle such data sets at all.

6.1 Complexity Analysis

6.1.1 Space Complexity

Considering the architecture of the proposed Morpher model as described by Sec-
tion 5.1, the following list highlights the main components that contribute to the

DOI: 10.14750/ME.2022.020

Chapter 6. Complexity Analysis and Optimization of Morpher and ASTRA 78

memory and disk space requirements of the model:
• the conditional probabilities of the affix type chains,
• the valid lemmas of the target language and their possible parts of speech and
• the transformation engine instances, including the stored atomic rules in AS-

TRA.
In the following paragraphs, I analyze the approximate cost of these components.
All the necessary information is extracted from the training data set of Morpher,

i.e. T =
{(
w, w̄0, T̄0, 〈Ti〉ki=1

)}
.

Based on this training data set, the number of conditional probability values is
equal to the number of valid affix type chains:

Θ
(∣∣{(T̄0, T1, . . . , Tk

)
|M

(
T̄0, T1, . . . , Tk

)
> 0
}∣∣) (6.1)

This formula describes the values for forwards affix type chains, but similarly,
backwards affix type chain conditional probabilities must also be calculated using
M−1.

In the test data1 used for the evaluation of the proposed models, there are 35,954
different affix type chains. The longest affix type chains contain 9 affix types, while
the median of the affix type chain lengths is 5. If we analyzed languages with less
complex morphology, these numbers would be much lower.

The size of the lemma database is very language dependent, therefore we cannot
formulate exact approximations on it. A rough upper limit of the lemma database
size can be approximated with the number of training items at most. In the worst
case, every word in the training data set has different lemmas, and as such, the size
complexity isO (|T|). The number of lemmas in the generated test data set is 121,846.
Similarly, the worst case scenario for the associated parts of speech of a single lemma
is if the word can be associated with all the possible affix types of the target language:
O
(
T̄
)
.

The number of transformation engines is equal to the number of affix types in the
target language, so the space complexity here is Θ (|T|). In the generated test data
set, there are 321 affix types and 12 parts of speech. If the transformation engines are
implemented using the ASTRA model, then in each ASTRA instance, there will be
a number of stored atomic rules. This metric needs to be understood well, because
eliminating unnecessary atomic rules can reduce the average inflection time and the
average analysis time significantly.

The number of generated atomic rules depends on the number of deduced word
pairs from the original T training data set. In the worst case, the number of deduced
word pairs is equal to |T|. This means that we can find a preceding word form for
each inflected word in T. Formally, the number of deduced training word pairs for
the transformation engine ET can be approximated with

O
(∣∣∣{(w, w̄0, T̄0, 〈Ti〉ki=1

)
∈ T | Tk = T

}∣∣∣) (6.2)

where k is the number of affix types in the word w. Let us denote the set of deduced
word pairs demonstrating the transformation rules of the affix type T by W 2

ET
=

{(wil, wir)}. Equation 6.2 approximates the upper size limit of this word pair set.
For every deduced word pair, we generate several atomic rules. Let us exam-

ine the approximation of the number of generated atomic rules for the word pair
(wl, wr). This approximation is max (|wl| , |wr|) −

∣∣σA∣∣, where σA is the changing

1Section 7.1 describes the data generation process in details.

DOI: 10.14750/ME.2022.020

Chapter 6. Complexity Analysis and Optimization of Morpher and ASTRA 79

substring component of the generated atomic rules. For the whole transformation
engine ET , the approximation of the generated atomic rules is

O

(∣∣W 2
ET

∣∣ ·max
j

(
max (|wjl| , |wjr|)−

∣∣σAj ∣∣)) (6.3)

where the j index refers to the word pair for which the right component is maximal.

6.1.2 Time Complexity

The training phase of the Morpher model consists of three main parts:
• steps with O (1) time complexity like storing the lemmas and their possible

parts of speech,
• deducing training word pairs from T for each affix type and
• generating atomic rules from the deduced training word pairs for each affix

type.
Deducing training word pairs from T generally has a O

(
|T|2

)
time complex-

ity, because every possible item pair must be found that contain adjacent word
forms based on their affix type chains. However, this can be optimized by not
checking all the other items for each training item, only those that have the same
lemma. This will result in the same deduced word pair set, since no word pairs
can be generated from training item pairs having different lemmas. Thus, the ap-
proximation of deducing training word pairs for the lemma w̄ can be reduced to
O
(∣∣∣{(w, w̄0, T̄0, 〈Ti〉ki=1

)
∈ T | w̄0 = w̄

}∣∣∣).
For those training items that have only one affix type, the appropriate training

word pair can be deduced in O (1) time, since it contains the base form (w̄0) and the
inflected form (w), and thus there is no need to search additional training items.

For every training word pair, we first have to find the variant segment, i.e. the
changing substring component of the core atomic rule. For the word pair (wl, wr)
this can be done in O (max (|wl| , |wr|)) time. Generating all the necessary atomic
rules just means to extend the context with one character from the left and right
sides at a time. This means that the generation time can be approximated with the
number of generated atomic rules (see Equation 6.3). Based on these observations,
the whole generation process can be done in O

(
max (|wjl| , |wjr|)−

∣∣∣σAj ∣∣∣) time per
word pair.

Let us analyze the time complexity of inflection generation. The first task to be
solved is to generate all the valid affix type chains containing the input k affix types.
In worst case, this can be done in at most O (k!) steps, if all the possible affix type
permutations are valid. For every possible permutation, we need to go through
the affix type chain and perform the transformation operation of the appropriate
transformation engine. We assume that applying an atomic rule on a word and
checking if an atomic rule matches a word can be done in constant time, so at every
affix type the generation of the inflected forms can be approximated with the number
of atomic rules: O

(∣∣{RA}∣∣). This will be the same as Equation 6.3.
As for morphological analysis, the provided input does not contain any infor-

mation about the number of affix types found in the input word. Morpher will not
know which affix types to test either. In the worst case, the input word will contain
O (|T|) affix types, but in practice the concrete number will be significantly lower.
At every step, the number of atomic rules to process and potentially apply can be
approximated with Equation 6.3. The average analysis time can get high quickly,

DOI: 10.14750/ME.2022.020

Chapter 6. Complexity Analysis and Optimization of Morpher and ASTRA 80

because after every processed affix type, Morpher needs to test all those affix types
that can appear before the lastly processed one. In worst case, the number of such
affix types is |T|−1, i.e. all the remaining affix types. This means that morphological
analysis can be performed in exponential time, roughly in O

(
|T||T|

)
time at most.

6.2 Optimization Techniques

In this section, I propose new optimization techniques to reduce the number of re-
tained atomic rules during the training phase of the ASTRA instances. Although
there are other possible ways of optimization, this way I expect to make inflection
generation and morphological analysis significantly faster. However, it is also im-
portant to drop rules in such a way that we keep the average accuracy high. An-
other goal is to keep the average number of responses and the average index of the
expected response relatively low.

6.2.1 Eliminating the Redundant Atomic Rules

The main concept behind this optimization technique is to drop the redundant atomic
rules that are covered by other rules in the rule base.

Definition 6.1 (Redundant atomic rule). The atomic rule RAi =
(
αAi , σ

A
i , τ

A
i , ω

A
i

)
is a

redundant rule if and only if there exists another RAj =
(
αAj , σ

A
j , τ

A
j , ω

A
j

)
atomic rule in

the rule base such that γ
(
RAj

)
⊆ γ

(
RAi
)
, σAi = σAj and τAi = τAj . In this case we say RAi

is covered by RAj .

Example 6.1 (Redundant atomic rule). Let us take a look at two rules: RA1 = (alm, a, át,
#) and RA2 = (ε, a, át, #). The contexts of these rules are γ

(
RA1
)

= alma# and γ
(
RA2
)

=
a#, respectively. If both rules are in the rule base, we can say that RA1 is redundant, since
γ
(
RA2
)
⊆ γ

(
RA1
)

and their transformations are also the same (σA1 = σA2 and τA1 = τA2), i.e.
RA1 is covered by RA2 .

Example 6.2 (Non-redundant atomic rule). If RA3 = (toll, ε, at, #) and RA4 = (l, ε, t, #)
are part of the same rule base, they do not cover each other. Although l# = γ

(
RA4
)
⊆ γ

(
RA3
)

= toll#, RA3 is not redundant, because the transformations are different: τA3 = at, while τA4
= t.

The elimination of redundant rules can be performed during the training phase
of each ASTRA instance, there is no need for additional operations. For the word
pair (wil, wir), ASTRA would generate the atomic rules RAi0, R

A
i1, . . . , R

A
iki

, where RAi0
is the core atomic rule with minimal context, while the others are the extended
atomic rules. The atomic rules with shorter contexts are more general, while rules
with longer contexts are more specific.

In order to reduce the number of generated atomic rules per word pair (ki at
most), I introduce a new parameter pmax that identifies the maximum number of
atomic rules to generate for each word pair. Using this new optimization parameter,
ASTRA will only store the atomic rules RAi0, R

A
i1, . . . , R

A
ili

for the word pair (wl, wr),
where li = min (pmax, ki). Those atomic rules that have a longer context than RAili are
simply omitted.

Proposition 6.1. Using pmax = 1, storing only RAi0 for each (wil, wir) training word pair
and dropping the other RAi1, . . . , R

A
iki

results in the same rule base as if we generated every
possible atomic rule and then dropped all the redundant atomic rules.

DOI: 10.14750/ME.2022.020

Chapter 6. Complexity Analysis and Optimization of Morpher and ASTRA 81

Proof. According to Definition 6.1, an atomic rule RAi =
(
αAi , σ

A
i , τ

A
i , ω

A
i

)
is redun-

dant if and only if there exists another atomic rule RAj =
(
αAj , σ

A
j , τ

A
j , ω

A
j

)
such that

γ
(
RAj

)
⊆ γ

(
RAi
)
, σAi = σAj and τAi = τAj .

Let us assume indirectly that by executing the first part of the proposition, there
remains at least one redundant atomic rule R̃A =

(
α̃A, σ̃A, τ̃A, ω̃A

)
. This means that

there is at least one other atomic rule RA =
(
αA, σA, τA, ωA

)
such that γ

(
R̃A
)
⊆

γ
(
RA
)
, σ̃A = σA and τ̃A = τA.

From these formulae, we can see that γ
(
R̃A
)

= α̃A+ σ̃A+ ω̃A ⊆ αA+σA+ωA =

γ
(
RA
)

and since σ̃A = σA, we can see that α̃A + σA + ω̃A ⊆ αA + σA + ωA.
This means that

∣∣α̃A + σA + ω̃A
∣∣ ≤ ∣∣αA + σA + ωA

∣∣. There are two cases to check:
• If

∣∣α̃A + σA + ω̃A
∣∣ =

∣∣αA + σA + ωA
∣∣, it means that R̃A = RA (as all the compo-

nents are equal due to both rules being core atomic rules because of pmax = 1),
so R̃A is a non-redundant item in the rule database.

• If
∣∣α̃A + σA + ω̃A

∣∣ < ∣∣αA + σA + ωA
∣∣, then we can easily see that since both R̃A

and RA are core atomic rules, from the definition of core atomic rules,
∣∣α̃A∣∣ =∣∣ω̃A∣∣ =

∣∣αA∣∣ =
∣∣ωA∣∣ = 0. This means that

∣∣σA∣∣ < ∣∣σA∣∣, which is a contradiction.

Using the pmax optimization parameter, the space and time complexity of Mor-
pher gets simplified. For the transformation engine instance ET , the number of gen-
erated atomic rules becomes

O

(∣∣W 2
ET

∣∣ ·min

(
pmax,max

j

(
max (|wjl| , |wjr|)−

∣∣σAj ∣∣))) (6.4)

which means, no matter how many atomic rules could be generated per word pair,
the model only generates pmax at most.

If pmax = 1, this formula gets simplified even more: O
(∣∣∣W 2

ET

∣∣∣).

6.2.2 Limiting the Generalization Factor

The potential problem with pmax optimization, especially using pmax = 1 is that the
Morpher model may overgeneralize due to only retaining atomic rules with very
short contexts. This means that during inflection generation and morphological
analysis, the ASTRA instances will not be able to distinguish among the possible
output word forms, their confidence values will be the same for all responses. There-
fore, the number of responses will increase and the index of expected response will
become random.

In order to avoid this overgeneralization effect, I introduce another optimization
parameter called pgen. This parameter identifies the minimum context length of the
generated atomic rules, i.e. for every retained atomic rule,

∣∣γ (RA)∣∣ ≥ pgen. Those
atomic rules that do not match this condition are omitted during the training phase
and not stored in the rule base.

The pgen and pmax optimization parameters can be used together: pmax limits the
generated and retained set of atomic rules from above, omitting the rules with longer
contexts, while pgen does the same thing from below, omitting the rules with shorter
contexts. By applying both of them, we can retain a slice of all the possible atomic
rules per word pair. For example, pmax = 2 and pgen = 3 will retain rules whose con-
text contains at least three characters, but only two of these rules per each word pair.

DOI: 10.14750/ME.2022.020

Chapter 6. Complexity Analysis and Optimization of Morpher and ASTRA 82

This way, we drop the most general rules (
∣∣γ (RA)∣∣ = 1 and

∣∣γ (RA)∣∣ = 2), as well as
the most specific rules where

∣∣γ (RA)∣∣ ≥ 2 + 3 = 5 in case of suffix rules. Choosing
the right combination of pmax and pgen is important so that the model can eliminate
the most atomic rules while maintaining a relatively high average accuracy.

Using the pgen optimization parameter, the space and time complexity of Mor-
pher gets simplified, similarly to pmax. However, the modified formula is not as
clear as in the previous subsection. The number of generated atomic rules for the
transformation engine instance ET can be approximated with:

O

(∣∣W 2
ET

∣∣ ·max
j

(
max (|wjl| , |wjr|)−

∣∣σAj ∣∣)−Υpgen

)
(6.5)

where Υpgen denotes the minimum number of generated atomic rules that have a
context shorter than pgen.

Asymptotically, this means that in the worst case, no reduction occurs, if all the
generated atomic rules have a context at least as long as pgen.

6.2.3 Indirect Noise Reduction

Unlike the pmax and pgen optimization parameters, we can also use global informa-
tion for atomic rule reduction, thus performing an indirect noise reduction: those
atomic rules that are not strong enough based on some metrics, are dropped from
the rule base.

One such metric is the so-called support value, that means how many word
pairs there are in the set of deduced training word pairs that the generated atomic
rule matches. Those atomic rules that are generated from more word pairs become
stronger. When the training algorithm finds that a generated atomic rule is already
stored in the rule base, it increases its support value.

Another metric is the word frequency, that also contains information about the
data source of T. In Section 7.1 we can read about the training data generation pro-
cess. The data source of this data generation was documents on the internet, con-
taining free texts. The frequency of a word is the number of its occurrences in these
free texts. The word frequency of an atomic rule is the sum of frequencies of the
words it matches.

Based on these metrics, I introduce two new optimization parameters: psupp and
pfreq. Using these optimization parameters, every atomic rule will be dropped from
the rule base whose support or word frequency is lower than psupp and pfreq, respec-
tively. In Section 6.3 we will see which one of these parameters achieve better size
reduction.

The space and time complexity of Morpher will be simplified using these op-
timization parameters, but the scale of this simplification cannot be approximated
formally, since it highly depends on the training data quality.

6.3 Empirical Analysis of the Optimization Parameters

In this section, I empirically analyze the three optimization techniques using 100,000
random training items to decide how much rule base elimination can be achieved
using them, and how some of the previously measured metrics such as the average
accuracy, the average number of responses and the average index of the expected
response change based on the number of retained atomic rules.

DOI: 10.14750/ME.2022.020

Chapter 6. Complexity Analysis and Optimization of Morpher and ASTRA 83

First, let us analyze psupp and pgen. In Figure 6.1 we can see the average accuracy
based on the number of retained atomic rules, with logarithmic scale on the x axis.
On the right side of the diagram, no reduction took place and the total number of
generated atomic rules was 578,497. As we move towards the left side, the number
of retained atomic rules decreases. The chart contains three lines.

The lowest line is for random elimination, where I drop the atomic rules ran-
domly from the generated rule base. We can see that the average accuracy is reduced
dramatically, because no rule properties are taken into account while choosing the
rules to be eliminated.

The other two lines are for the support and word frequency based optimization
techniques. These two lines are very close to each other, and as I start to eliminate
the atomic rules with the lowest support values and word frequencies, the average
accuracy does not start to significantly reduce until the number of retained atomic
rules drops below about 10,000 (marked with a vertical line). This means that even
for about 1.73% of the original rule base, the average accuracy is still around 93%.

0%

25%

50%

75%

100%

1,000 10,000 100,000

Number of retained atomic rules

A
ve

ra
g

e
 a

c
c
u

ra
c
y
 [

%
]

Support

Word frequency

Random elimination

FIGURE 6.1: The average accuracy based on the number of retained
atomic rules using psupp and pfreq optimization

We can also see from the figure that the support value based optimization pro-
vides a slightly higher average accuracy than the word frequency based optimiza-
tion.

In Figure 6.2 we can see the average number of responses (left side) and the
average index of the expected response (right side). Based on these charts, we can
see that eliminating the unnecessary atomic rules has a positive impact on these
metrics. Retaining 10,000 atomic rules, the average number of responses during
inflection decreases from 37 to about 8.4 in case of the support value optimization
and 8.6 in case of the word frequency based optimization. However, the average

DOI: 10.14750/ME.2022.020

Chapter 6. Complexity Analysis and Optimization of Morpher and ASTRA 84

0

10

20

30

1,000 10,000 100,000

Number of retained atomic rules

A
ve

ra
g

e
 n

u
m

b
e

r
o

f
re

s
p

o
n

s
e

s

Support Word frequency

(A) Average number of responses

1.0

1.5

2.0

2.5

1,000 10,000 100,000

Number of retained atomic rules

A
v
g

.
e
x
p

e
c
te

d
 r

e
s
p

o
n

s
e

 i
n

d
e
x

Support Word frequency

(B) Average expected response index

FIGURE 6.2: The average number of responses and the average
index of the expected response based on the number of retained

atomic rules using psupp and pfreq optimization

index of the expected response slightly increases to about 1.7 and 1.8 from 1.5, which
are still acceptable.

Figure 6.3 displays the histogram of the atomic rules based on their support val-
ues and word frequencies. As we can see, choosing a relatively low support or word
frequency threshold will eliminate the majority of the atomic rules.

10

1,000

100,000

0 300 600 900

Support

N
u

m
b

e
r

o
f

a
to

m
ic

 r
u

le
s

(A) Based on support

10

1,000

100,000

0 5,000 10,000 15,000

Word frequency

N
u

m
b

e
r

o
f

a
to

m
ic

 r
u

le
s

(B) Based on word frequency

FIGURE 6.3: The histogram of the number of atomic rules based on
their support values and word frequencies

In Table 6.1 I collected some of the (pgen, pmax) parameter combinations and the
resulting metric values. From the table it is obvious that (pgen = 1, pmax = 1) is not
an optimal configuration, since the model overgeneralizes: both the number of re-
sponses and the index of the expected response become the highest, while the av-
erage accuracy also drops to about 85.78%. Those rows that produce an acceptable
average accuracy and a relatively low number of responses, do not eliminate many
atomic rules, so psupp and pfreq seem to have better results.

The (pgen = 2, pmax ∈ {4, 5}) configurations seem to be almost equal if not better
than psupp = 10, but they resulted in slower inflection and analysis times. Since
the psupp based optimization also gets rid of the too specific rules (as the support
values of the covered atomic rules are additive), it seems like using the support
value instead of the number of retained atomic rules per word pair gives a better
rule base to work with.

DOI: 10.14750/ME.2022.020

Chapter 6. Complexity Analysis and Optimization of Morpher and ASTRA 85

TABLE 6.1: The average number of retained atomic rules, correctness
ratio, number of responses and expected response index using differ-

ent (pgen, pmax) combinations

pgen pmax Rules Accuracy Responses Response index

- - 578,497 96.19% 37.11 1.53

1 1 5,019 85.78% 126.01 31.94
1 2 16,923 92.62% 114.34 7.34
1 3 46,506 94.89% 89.45 2.44
1 4 103,533 96.17% 56.23 1.60
1 5 175,334 96.18% 41.78 1.54

2 1 10,501 91.91% 10.92 5.42
2 2 36,186 92.62% 9.71 2.05
2 3 90,710 94.02% 6.47 1.47
2 4 161,132 94.28% 4.60 1.39
2 5 238,879 94.29% 4.04 1.39

3 5 302,497 82.57% 1.60 1.25

6.4 Evaluation

This section consists of two parts. In Subsection 6.4.1 I evaluate the winning op-
timization parameter (psupp = 10) and compare its results with the results of the
unoptimized Morpher model in Section 5.6. I use the same metrics, training and
evaluation data sizes and evaluation methodology.

I also wanted to evaluate (pgen = 1, pmax = 1) but it proved to be unacceptably
slow using bigger training data sets, due to the decreased information of the system.

In Subsection 6.4.2 I use a training data set of 500,000; 1,000,000; . . . ; 3,000,000
training items to see how well the optimized Morpher model scales. I measure the
same metrics as before: the average training time, size, inflection time, analysis time,
accuracy, number of responses and index of the expected response.

The test machine is a Macbook Pro with a 3.1 GHz Intel Core i7 processor and 16
GB of memory.

6.4.1 Comparison with the Baseline Morpher Model

Average Training Time

In Figure 6.4 we can see the average training time of the baseline (unoptimized) and
the optimizied Morpher model using psupp = 10. The chart shows that using 100,000
training items, the optimization parameter reduced the average training time from
about 3.9 seconds to about 2.9 seconds. The cause of this might be that less atomic
rules need to be managed and stored.

Average Size

The average size of the unoptimized and the optimized Morpher model is displayed
in Figure 6.5. Since I only reduced the rule base size, the average number of atomic
rules is measured, and due to the big differences, I use logarithmic scale on the y
axis.

DOI: 10.14750/ME.2022.020

Chapter 6. Complexity Analysis and Optimization of Morpher and ASTRA 86

1.0

2.0

3.0

4.0

 10,000

 20,000

 30,000

 40,000

 50,000

 60,000

 70,000

 80,000

 90,000

100,000

Number of training items

A
ve

ra
g

e
 t

ra
in

in
g

 t
im

e
 [

s
]

Baseline Morpher

Optimized Morpher

FIGURE 6.4: The average training time of the baseline and
the optimized Morpher model

10
3

10
4

10
5

 10,000

 20,000

 30,000

 40,000

 50,000

 60,000

 70,000

 80,000

 90,000

100,000

Number of training items

A
ve

ra
g

e
 n

u
m

b
e

r
o

f
a

to
m

ic
 r

u
le

s

Baseline Morpher

Optimized Morpher

FIGURE 6.5: The average size of the baseline and
the optimized Morpher model

DOI: 10.14750/ME.2022.020

Chapter 6. Complexity Analysis and Optimization of Morpher and ASTRA 87

Using 100,000 training items, the optimized Morpher model retained only 10,291
atomic rules, compared to the 578,497 rules of the baseline model. This means that
the optimized model contains only about 1.78% of the complete rule base.

The file size of the model is also reduced from 8.5 MB to 5.2 MB. The reduction
in file size is less, since the exported file also contains the lemmas and conditional
probabilities besides the atomic rules.

Average Inflection and Analysis Time

Figure 6.6 is about the average inflection time and the average morphological anal-
ysis time of the baseline and the optimized Morpher model, using logarithmic scale
on the y axis.

We can see that for both operations, applying the psupp = 10 optimization param-
eter has a positive effect. The average inflection time became 0.7 milliseconds from
2.4 milliseconds, while the average analysis time became 21.75 milliseconds from 2.4
seconds.

10
0

10
1

10
2

10
3

 10,000

 20,000

 30,000

 40,000

 50,000

 60,000

 70,000

 80,000

 90,000

100,000

Number of training items

A
ve

ra
g

e
 e

va
lu

a
ti
o

n
 t

im
e

 [
m

s
]

Baseline Morpher (inflection)

Baseline Morpher (analysis)

Optimized Morpher (inflection)

Optimized Morpher (analysis)

FIGURE 6.6: The average inflection time and the average analysis
time of the baseline and the optimized Morpher model

This means an almost 70% reduction in average inflection time and an about
99.1% reduction in case of the average analysis time.

Another interesting observation is that the lines of the optimized metrics are less
steep, meaning that the differences would increase if we further increased the train-
ing data set size.

DOI: 10.14750/ME.2022.020

Chapter 6. Complexity Analysis and Optimization of Morpher and ASTRA 88

50%

60%

70%

80%

90%

100%

 10,000

 20,000

 30,000

 40,000

 50,000

 60,000

 70,000

 80,000

 90,000

100,000

Number of training items

A
ve

ra
g

e
 a

c
c
u

ra
c
y
 [

%
]

Baseline Morpher

Optimized Morpher

FIGURE 6.7: The average accuracy of the baseline and
the optimized Morpher model

Average Accuracy

Figure 6.7 displays the average accuracy differences between the baseline and the
optimized Morpher model. Unfortunately, performing a psupp based atomic rule
base reduction will reduce the overall average accuracy, too, but the resulting aver-
age accuracy using 100,000 training items is still about 93.01% which is acceptable.
And although the unoptimized model performs better, we can see that the curves
still increase, meaning that increasing the size of the training data set will result in
higher values.

Using 100,000 training items, the average number of responses is reduced from
37 to 9.8 in case of inflection (which means an almost 75% reduction) and from 5.4
to 3.4 in case of morphological analysis (about 37% reduction).

As for the average index of the expected response, it increased a bit in case of
inflection, from 1.5 to about 1.9, and stayed around 2.4 in case of morphological
analysis.

6.4.2 Using Big Training Data Volumes

Average Training Time

Figure 6.8 shows the average training time of the optimized Morpher model us-
ing psupp = 10 and big training data volumes. As we can see, the average training
time increases roughly linearly, reaching about 74.61 seconds using 3 million train-
ing items.

DOI: 10.14750/ME.2022.020

Chapter 6. Complexity Analysis and Optimization of Morpher and ASTRA 89

20

40

60

0.5 M 1 M 1.5 M 2 M 2.5 M 3 M

Number of training items

A
ve

ra
g

e
 t

ra
in

in
g

 t
im

e
 [

s
]

FIGURE 6.8: The average training time of the optimized Morpher
model using big training data volumes

Average Size

In Figure 6.9 we can see the number of generated atomic rules of the optimized
Morpher model. Similarly to the average training time, the number of atomic rules
also increases about linearly. Using 3 million training items, there are 255,867 atomic
rules generated by Morpher. The file size of the exported knowledge base is 5.5 MB.

50,000

100,000

150,000

200,000

250,000

0.5 M 1 M 1.5 M 2 M 2.5 M 3 M

Number of training items

A
ve

ra
g

e
 n

u
m

b
e

r
o

f
a

to
m

ic
 r

u
le

s

FIGURE 6.9: The average number of atomic rules of the optimized
Morpher model using big training data volumes

Average Inflection and Analysis Time

Figure 6.10 displays the average inflection time (left side) and the average analysis
time (right side) of the optimized Morpher model. The two operations still differ
by orders of magnitude, but the scale of the increase, as well as the values are lower

DOI: 10.14750/ME.2022.020

Chapter 6. Complexity Analysis and Optimization of Morpher and ASTRA 90

1.00

1.50

2.00

2.50

3.00

0.5 M 1 M 1.5 M 2 M 2.5 M 3 M

Number of training items

A
v
e

ra
g

e
 i
n

fl
e

c
ti
o

n
 t

im
e

 [
m

s
]

(A) Average inflection time

0.0

5.0

10.0

0.5 M 1 M 1.5 M 2 M 2.5 M 3 M

Number of training items

A
ve

ra
g

e
 a

n
a

ly
s
is

 t
im

e
 [

s
]

(B) Average analysis time

FIGURE 6.10: The average inflection and analysis time of the
optimized Morpher model using big training data volumes

than before. (Without any optimizations, Morpher would not be able to handle these
operations in acceptable, finite time in case of big training data sets.)

After training Morpher with 3 million training items, inflection took about 3.3
milliseconds in average, while morphological analysis took about 13.3 seconds. This
is a higher value, but we can still say that the model could finish the analysis in finite
time, which is a big step forward, compared to the results of the unoptimized model.

Average Accuracy

In Figure 6.11 we can see the average accuracy of the optimized Morpher model us-
ing big training data volumes. Even though using 100,000 training items the average
accuracy seemed to drop off a couple of percents, further increasing the size of the
training data set we can see an increase between 96.22% and 98.11%. However, the
average accuracy seems to be plateauing around this value, beyond about 1 million
training items.

96.5%

97.0%

97.5%

98.0%

0.5 M 1 M 1.5 M 2 M 2.5 M 3 M

Number of training items

A
ve

ra
g

e
 a

c
c
u

ra
c
y
 [

%
]

FIGURE 6.11: The average accuracy of the optimized Morpher model
using big training data volumes

DOI: 10.14750/ME.2022.020

Chapter 6. Complexity Analysis and Optimization of Morpher and ASTRA 91

5

10

15

20

25

30

0.5 M 1 M 1.5 M 2 M 2.5 M 3 M

Number of training items

A
ve

ra
g

e
 n

u
m

b
e

r
o

f
re

s
p

o
n

s
e

s

Inflection Analysis

(A) Average number of responses

1.6

2.0

2.4

0.5 M 1 M 1.5 M 2 M 2.5 M 3 M

Number of training items

A
v
g

.
e
x
p

e
c
te

d
 r

e
s
p

o
n

s
e

 i
n

d
e
x

Inflection Analysis

(B) Average expected response index

FIGURE 6.12: The average number of responses and the average
index of the expected response of the optimized Morpher model

using big training data volumes

Figure 6.12 shows the average number of responses (left side) and the average
index of the expected response (right side). In the left chart, we can see that the
final value of the average number of responses is about 31.1 for inflection and 7.8
for morphological analysis. This means that even using such huge training data
sets, this metric will be lower in case of inflection than for the unoptimized Morpher
model using 100,000 training items (37).

In the right-side image we can see that the average index of the expected re-
sponse became about 1.2 in case of inflection and 2.5 in case of morphological analy-
sis. This means that while using 3 million training items, the correct response almost
always had one of the highest aggregated weights in the list provided by Morpher.

6.5 Conclusion

In this chapter I performed the space complexity analysis of the main components of
the Morpher model, including ASTRA, as well as the time complexity analysis of the
main steps of the training phase, inflection generation and morphological analysis
operations of the model.

After analyzing the space and time complexity of Morpher, I proposed three op-
timization techniques to reduce the atomic rule base:

• Redundant atomic rule elimination (pmax): eliminates the atomic rules that
make the rule base more redundant

• Limiting the generalization factor (pgen): eliminates the atomic rules that po-
tentially contribute to the overgeneralization effect

• Indirect noise reduction (psupp and pfreq): eliminates the weaker atomic rules
whose support value or word frequency is lower than a given threshold

Analyzing these optimization parameters using up to 100,000 training items, it
turned out that the psupp = 10 model configuration achieved the best results: its
average accuracy remained high, while the model still provided its responses con-
fidently, despite its rule base decreased to about the 1.78% of the original rule base.
Table 6.2 summarizes the differences of the metrics using psupp optimization and
100,000 training items.

Although the optimization made the model usable with up to 3 million training
items, from the resulting evaluation data we can see that above 1 million there is no

DOI: 10.14750/ME.2022.020

Chapter 6. Complexity Analysis and Optimization of Morpher and ASTRA 92

real benefit of further expanding the size of the training data set. Table 6.3 contains
the metric values of the optimized Morpher model using 1 million training items.

TABLE 6.2: Summary of the measured metrics of the baseline and the
optimized Morpher model using 100,000 training items

Metric Baseline psupp = 10 Difference Improvement?

Training time 3.9 s 2.9 s −25.64%

Rules 578,497 10,291 −98.22%

Knowledge base 8.5 MB 5.2 MB −38.82%

Inflection time 2.4 ms 0.7 ms −70.83%

Analysis time 2.4 s 21.75 ms −99.09%

Accuracy 97.38% 93.01% −4.49%

Inflection responses 37 9.8 −73.51%

Analysis responses 5.4 3.4 −37.04%

Inflection index 1.5 1.9 +26.67%

Analysis index 2.4 2.4 +0%

TABLE 6.3: Summary of the measured metrics of the optimized Mor-
pher model using 1 million training items

Metric Value

Training time 18.1 s

Rules 88,005

Knowledge base 3.9 MB

Inflection time 1.03 ms

Analysis time 0.2 s

Accuracy 97.45%

Inflection responses 24.8

Analysis responses 5.47

Inflection index 1.52

Analysis index 2.62

DOI: 10.14750/ME.2022.020

Chapter 6. Complexity Analysis and Optimization of Morpher and ASTRA 93

Thesis 4 [3] [4] [5]
I have performed the space and time complexity analysis of the Morpher and AS-
TRA models. After analyzing the required space of the model components and the
required time of the training phase, inflection generation and morphological analy-
sis operations, I have proposed three optimization techniques that aim to reduce the
rule base of the model and thus decrease the average inflection and analysis times.
Evaluation shows that using the same amount of training data, the number of re-
tained rules dropped from 578,497 to 10,291, the average inflection time decreased
from 2.4 ms to 0.7 ms, and the average analysis time was reduced from 2.4 s to 21.75
ms, while the average accuracy remained 93.01%. Finally I evaluated the optimized
Morpher model using up to 3 million training items, and both inflection genera-
tion and morphological analysis could be performed in acceptable, finite time, even
though the unoptimized original model could not handle such big training data vol-
umes at all.

DOI: 10.14750/ME.2022.020

94

Chapter 7

The Reference Implementation
of the Morpher Ecosystem

In this chapter I describe the training and evaluation data generation process (Sec-
tion 7.1) and the implementation of the Morpher framework, the Morpher API and
the Morpher client (Section 7.2).

7.1 The Training and Evaluation Data Generation Process

To generate large volumes of training and evaluation data for the evaluation of the
Morpher framework, I first collected PDF documents from the website of the Hun-
garian Electric Library,1 and extracted every unique word out of these documents.
To speed up the word extraction process, I used Java parallel streams to process each
page of the website in parallel. For the PDF document processing, I used the iText
Java library.2 The number of collected documents was 16,250; while the number of
the extracted word candidates was 13,345,903.

For the morphological analysis of these word candidates, I used Hunmorph-
Ocamorph, that resulted in 4,423,882 different morphological structures for 2,515,570
unique word forms. The provided morphological structures include the lemma, part
of speech and morphosyntactic tags.

Since I used Hunmorph-Ocamorph to generate the training and evaluation data
sets, the knowledge base of the proposed model is a subset of that of the source
model. This is not a problem, because the goal of this research project was to ex-
periment with more compact data structures and alternative learning methods that
can extract the necessary information in a more optimized way, reaching a higher
generalization factor. To achieve these goals, using Hunmorph-Ocamorph I could
generate large amounts of data in an automated way.

The data set of records containing an inflected word form, a lemma, a part of
speech and a list of affix type tags was sufficient to evaluate Morpher itself, since it
can deduce training word pairs for the transformation engine instances internally.
However, evaluating the single-affix transformation engine models required appro-
priate word pair sets demonstrating the transformation rules of each Hungarian af-
fix type. In the experiments, I chose the Hungarian accusative case to evaluate these
models.

The algorithm I used to generate the word pairs is basically the same that I ported
to the training model of Morpher, as described by Section 5.3. The algorithm has the
following main steps:

1. Group the records based on their lemmas.

1https://mek.oszk.hu
2https://itextpdf.com

DOI: 10.14750/ME.2022.020

https://mek.oszk.hu
https://itextpdf.com

Chapter 7. The Reference Implementation of the Morpher Ecosystem 95

2. Process each group, starting from the word containing the most affix types.
3. If two records are found that have the same lemma and the same affix types,

except that the first record has an extra affix type at the end of the list, generate
a word pair from the two inflected word forms.

4. If a record is found that has only one affix, generate a word pair containing its
lemma and its inflected form.

FIGURE 7.1: The visualization of the valid affix type chains in the
Hungarian language based on the generated data set

Example 7.1 (Generating word pairs). Let us take the following responses of Hunmorph:3

1. almák→ alma/NOUN〈PLUR〉
2. labdák→ labda/NOUN〈PLUR〉
3. almákat→ alma/NOUN〈PLUR〉〈CAS〈ACC〉〉
4. labdát→ labda/NOUN〈CAS〈ACC〉〉
3The responses relate to the inflected forms of alma (apple) and labda (ball).

DOI: 10.14750/ME.2022.020

Chapter 7. The Reference Implementation of the Morpher Ecosystem 96

5. almát→ alma/NOUN〈CAS〈ACC〉〉
After grouping, items 1, 3 and 5 will be part of the same group, while items 2 and 4 will

be in the other group.
Since the item 1, 2, 4 and 5 only contain one affix type, we can directly generate word

pairs from them: (alma, almák) and (labda, labdák) for plural, as well as (labda, labdát) and
(alma, almát) for accusative case.

From item 3, we can only generate a word pair if we find a record whose lemma is also
alma, and that only contains the affix type 〈PLUR〉. Fortunately, item 1 is exactly such
a record, so we can use its inflected form as the base form of the new word pair: (almák,
almákat) for accusative case.

The total number of generated word pairs was 3,625,036. The whole generated
data set is stored on Github.4

The complexity of the Hungarian affix type system can be seen in Figure 7.1,
where I visualize all the valid affix type chains based on the generated data. Each dot
in the figure is an affix type, and the edges denote their adjacency. There are 35,954
different affix type chains, the longest ones containing 9 affix types. The median of
the affix type chain lengths is 5.

7.2 The Layers of the Morpher Ecosystem

The implemented Morpher ecosystem consists of several projects:
• The Morpher framework (Subsection 7.2.1) is a Java based framework that im-

plements the Morpher model, including the transformation engine models.
• The Morpher API (Subsection 7.2.2) is a server-side Spring Boot based REST

API that publishes the inflection generation and morphological analysis oper-
ations of a pre-trained Morpher engine instance.

• The Morpher client (Subsection 7.2.3) is a React and React Native based web
and mobile client application that provides user interface for inflection gen-
eration and morphological analysis, consuming the Morpher REST API end-
points.

The Morpher ecosystem has a client-server architecture, as displayed in Fig-
ure 7.2: the client application can run in a web browser or on a mobile phone, and
connects to the Morpher API that uses the Morpher framework and loads a pre-
trained model file during initialization.

7.2.1 Morpher Framework

The Morpher framework is a modular morphology framework that can solve the
inflection generation and morphological analysis problems. The framework can be
found on Github,5 and the compiled binaries are published on jcenter6 and Maven
Central.7

The programming platform of the Morpher framework is Java version 17 as of
writing, that provides a module system that Morpher utilizes, as well as the possi-
bility to process large collections in parallel using parallel streams. The serialization
and deserialization of the objects are performed using protocol buffers.8

4https://github.com/szgabsz91/morpher-data
5https://github.com/szgabsz91/morpher
6https://bintray.com/search?query=morpher
7https://search.maven.org/search?q=morpher
8https://developers.google.com/protocol-buffers

DOI: 10.14750/ME.2022.020

https://github.com/szgabsz91/morpher-data
https://github.com/szgabsz91/morpher
https://bintray.com/search?query=morpher
https://search.maven.org/search?q=morpher
https://developers.google.com/protocol-buffers

Chapter 7. The Reference Implementation of the Morpher Ecosystem 97

Morpher API

Framework Model File

Client

Server

FIGURE 7.2: The architecture of the Morpher ecosystem

Morpher Core

The Morpher Core submodule forms the basis of the Morpher model. It contains
• converter interfaces for converting objects to and from protocol buffers,
• serialization and deserialization related interfaces,
• I/O related classes to load from and save to disk,
• simple POJO classes to model affix types, corpora, words, word pairs, etc., and
• utility classes to retrieve service instances from the Java module system based

on custom qualifiers.

Morpher Transformation Engines

There are five pre-implemented transformation engines in the Morpher framework
repository:

• the dictionary based transformation engine that uses standard Java HashMaps,
• the FST based transformation engine that uses the Lucene9 FST implementa-

tion,
• the TASR based transformation engine that uses a custom TASR implementa-

tion,
• the lattice based transformation engine that implements the model introduced

in Section 4.1, and
• the ASTRA based transformation engine that implements the model intro-

duced in Section 4.2.
All of these transformation engine implementations implement the same API.

In the morpher-transformation-engine-api submodule there is an interface
called IBidirectionalTransformationEngine, that lists all the required oper-
ations of the transformation engines. The most important methods can be seen in
Listing 1.

The IAbstractTransformationEngineFactory interface is a link between
the previous interface and the Java module system. Using the ServiceLoader

9https://lucene.apache.org

DOI: 10.14750/ME.2022.020

https://lucene.apache.org

Chapter 7. The Reference Implementation of the Morpher Ecosystem 98

Listing 1 The IBidirectionalTransformationEngine interface

public interface IBidirectionalTransformationEngine {

AffixType getAffixType();

int size();

void learn(TrainingSet trainingSet);

Optional<TransformationEngineResponse> transform(Word w);

Optional<TransformationEngineResponse> transformBack(Word w);

}

class provided by Java, it is very easy to retrieve an abstract transformation engine
factory instance, that can then supply the bidirectional transformation engine in-
stance based on the provided configuration parameter values. This way the trans-
formation engine implementation class can be hidden from the outer world.

Morpher Language Handlers

The language dependent components of the Morpher engine are organized into their
own submodules. The ILanguageHandler interface provides methods to

• learn affix type chains,
• calculate the conditional probabilities of the affix type chains,
• learn lemmas, and
• determine the next affix type candidates during inflection generation and mor-

phological analysis.
There is currently only one language handler implementation that is based on

Hunmorph-Ocamorph. This service instance is provided by the Java module sys-
tem, similarly to the transformation engine implementations.

Morpher Engines

There are currently two Morpher engine implementations: one is totally based on
Hunmorph-Ocamorph and thus can only analyze the input words, while the other
one implements the Morpher model of Chapter 5.

The main methods of the IMorpherEngine interface can be seen in Listing 2:
it can learn the morphological specialties of a language from several data structures
(corpora, preanalyzed training items containing every information or maps contain-
ing lemmas and their parts of speech), then it can inflect and analyze words, and
return the supported affix types of the language.

Instantiating a Morpher engine instance can be easily done using the Java mod-
ule system. We only need to provide the unique qualifier of the transformation en-
gine implementation to use, its configuration parameters, and the unique qualifier of
the language handler implementation to use. The related Java code (that extensively
uses the builder design pattern) can be seen in Listing 3.

Listing 4 shows the Java code that we can use to have the Morpher engine in-
stance learn, inflect and analyze.

DOI: 10.14750/ME.2022.020

Chapter 7. The Reference Implementation of the Morpher Ecosystem 99

Listing 2 The IMorpherEngine interface

public interface IMorpherEngine {

void learn(Corpus corpus);

void learn(PreanalyzedTrainingItems trainingItems);

void learn(LemmaMap lemmaMap);

List<MorpherEngineResponse> inflect(InflectionInput input);

List<MorpherEngineResponse> analyze(AnalysisInput input);

List<AffixType> getSupportedAffixTypes();

}

Listing 3 Creating the Morpher engine instance

var serviceProvider = new ServiceProvider(
clazz -> ServiceLoader.load(clazz).stream()

);
var config = new ASTRATransformationEngineConfiguration.Builder()

.searcherType(SearcherType.PARALLEL)

.build();
var engine = new MorpherEngineBuilder<>()

.serviceProvider(serviceProvider)

.transformationEngineQualifier(
IASTRATransformationEngine.QUALIFIER

)
.transformationEngineConfiguration(config)
.languageHandlerQualifier(IHunmorphLanguageHandler.QUALIFIER)
.build();

Listing 4 Using the Morpher engine instance

engine.learn(Corpus.of(Word.of("almát")));

var inflectionInputWord = Word.of("alma");
var inflectionInputAffixTypes = Set.of(AffixType.of("<CAS<ACC>>"));
var inflectionInput = new InflectionInput(

inflectionInputWord,
inflectionInputAffixTypes

);
var inflectionResponses = engine.inflect(inflectionInput);

var analysisInputWord = Word.of("almát");
var analysisInput = AnalysisInput.of(analysisInputWord);
var analysisResponses = engine.analyze(analysisInput);

DOI: 10.14750/ME.2022.020

Chapter 7. The Reference Implementation of the Morpher Ecosystem 100

7.2.2 Morpher API

Since the Morpher framework is developed in Java, it can be consumed by Java
applications easily. However, integration can become quite complex using other
ecosystems like .NET or Node.js.

This is why I created the Morpher API,10 that is a Spring Boot based REST API
application, publishing the inflection generation and morphological analysis opera-
tions of a pre-trained Morpher engine instance over the HTTP protocol.

This web application has three main REST endpoints:
• .../affix-types: returns the list of supported affix types of the underlying

Morpher engine instance
• .../inflect?input&affix-types: inflects the given lemma using the

provided comma-separated set of affix types
• .../analyze?input: analyzes the provided word
The web application is published as a Docker image.11

10https://github.com/szgabsz91/morpher-api
11https://hub.docker.com/r/szgabsz91/morpher-api

FIGURE 7.3: The Morpher web client

DOI: 10.14750/ME.2022.020

https://github.com/szgabsz91/morpher-api
https://hub.docker.com/r/szgabsz91/morpher-api

Chapter 7. The Reference Implementation of the Morpher Ecosystem 101

7.2.3 Morpher Client

The Morpher client application12 is a React and React Native based client applica-
tion, containing three submodules managed by Lerna:13

• shared: shared module that contains i18n related code, localized labels, ser-
vices to dispatch HTTP requests and common assets

• web: the web application developed using React
• mobile: the mobile application developed using React Native that can run on

both Android and iOS devices

FIGURE 7.4: The Morpher mobile client

12https://github.com/szgabsz91/morpher-client
13https://lerna.js.org

DOI: 10.14750/ME.2022.020

https://github.com/szgabsz91/morpher-client
https://lerna.js.org

Chapter 7. The Reference Implementation of the Morpher Ecosystem 102

The client application consumes the REST endpoints of the Morpher API, and
provides user interface for the inflection generation and morphological analysis op-
erations.

In the web client, the responses are displayed in an accordion. The header con-
tains the input and output, as well as the aggregated weight in the form of a pro-
gressbar. In case of morphological analysis, the number of affix types found in the
input word is also displayed. After the user opens a row, its steps are displayed in a
table. In case of inflection generation, the part of speech is contained by the first row,
while in case of morphological analysis, it is the last row in the table. In Figure 7.3
we can see a sample screenshot of the web based morphological analysis page.

The mobile client is slightly different in that the responses and the table of steps
are displayed in separate screens instead of in an accordion to support smaller screen
sizes. A sample morphological analysis workflow can be seen in Figure 7.4.

The web client is published as a Docker image.14 The production build is served
by NGINX.15 The published Docker image can be used alongside the Morpher API
Docker image using Docker Compose.16

7.3 Conclusion

In this chapter I described the automated training and evaluation data generation
process (Section 7.1), as well as the layers of the Morpher ecosystem (Section 7.2).

The data source of the automated training and evaluation data generation pro-
cess was the website of the Hungarian Electric Library, from where I first down-
loaded PDF documents, then parsed them and extracted the unique word candi-
dates out of them. These word candidates have been processed using Hunmorph-
Ocamorph to get a set of morphologically analyzed words. From these records, I
finally generated word pairs for each Hungarian affix type for the evaluation of the
single-affix transformation engine models. The total number of morphological struc-
tures was almost 4.5 million, from which I could generate more than 3.5 million word
pairs in total.

The implementation of the Morpher framework, the Morpher REST API and the
Morpher client application can be found on Github. The built binaries of the Mor-
pher framework are published on jcenter and Maven Central, while the Morpher
API and the Morpher client application are published as Docker images on Docker
Hub. The Morpher framework and the Morpher API are developed in Java using
modularization features extensively, while the Morpher client application is written
using React and React Native.

The proposed Morpher model can be used by higher-level grammatical models
such as syntactic analyzers or free text processing frameworks. Thanks to the Mor-
pher API project, inflection generation and morphological analysis can be invoked
from virtually any programming environments.

Thesis 5 [1] [3] [4] [5] [8]
I have developed the reference implementation of the Morpher ecosystem, that con-
sists of several layers such as the Morpher multi-affix morphology model and the
single-affix transformation engine models including the lattice based model and AS-
TRA. I have also developed a Spring Boot based Morpher REST API, so that the

14https://hub.docker.com/r/szgabsz91/morpher-client
15https://www.nginx.com
16https://docs.docker.com/compose

DOI: 10.14750/ME.2022.020

https://hub.docker.com/r/szgabsz91/morpher-client
https://www.nginx.com
https://docs.docker.com/compose

Chapter 7. The Reference Implementation of the Morpher Ecosystem 103

Morpher framework can be consumed more easily from different software environ-
ments. To provide web and mobile user interfaces for inflection generation and mor-
phological analysis, I have developed the Morpher client application using React
and React Native. For training and evaluation purposes, I have also implemented
an automated method to generate large training and evaluation data sets for the
Hungarian language, resulting in more than 4.4 million morphological structures,
covering more than 2.5 million unique word forms. The source code of these projects
can be found on Github, while the binaries are published to jcenter and Maven Cen-
tral, and the Docker images are published to Docker Hub.

DOI: 10.14750/ME.2022.020

104

Chapter 8

Conclusion

8.1 Contribution

In this dissertation I presented my contribution in the automated learning of in-
flection generation and morphological analysis. The proposed models use classical
pattern matching based methods instead of artificial intelligence.

The problem is approached on two levels: first, I proposed two single-affix trans-
formation engine models, then the multi-affix morphology model called Morpher.
The responsibility of the single-affix transformation engine models is to learn the
transformation rules of a single affix type from a provided set of training word pair
set. On the other hand, the Morpher model coordinates the work of several trans-
formation engine model instances (one for each affix type of the target language) to
solve the inflection generation and morphological analysis problems, handling all
the affix types of the target language. The proposed models were evaluated using
Hungarian training and evaluation data sets, comparing them with state of the art
morphology models from the literature, many of which use some kind of neural
network architecture.

The novel scientific results can be summarized by the following five theses.

Thesis 1 [1]
I have designed and implemented a new method to compare, analyze, evaluate and
rank morphological analyzers. This method is based on novel formulae to calculate
similarity and distance values among the different analyzers, including the recog-
nition similarity, token similarity, mapping similarity; as well as the recognition
distance, token distance, mapping distance and cumulative distance. I applied this
analysis method on four popular morphological analyzers of the Hungarian lan-
guage, namely Hunmorph-Ocamorph, Hunmorph-Foma, Humor and Hunspell. For
the evaluation, I created a token mapping among these analyzers as well. Based
on the performed evaluation, Hunmorph-Ocamorph proved to be the most usable
model among the four analyzers.

Thesis 2 [2] [3] [9] [10] [11] [12] [13] [14] [15] [16]
I have proposed two novel single-affix transformation engine models that can learn
inflection rules from a provided set of training word pairs. The first one is a lattice
based model that has a more complex, position dependent rule structure, and stores
its rules in a lattice. The second model called ASTRA describes inflection as a set of
simple string transformations, omitting the position indices from its rule model.
The atomic rules are stored in either a set or a prefix tree based data structure.
Both models apply pattern matching during the rule search process. I performed

DOI: 10.14750/ME.2022.020

Chapter 8. Conclusion 105

the evaluation of the proposed models, showing that while the lattice based model
can achieve minimal storage size, the ASTRA model has an outstanding accuracy
for previously unseen words (about 94%), beating the examined baseline models in-
cluding TASR, FST and a dictionary implementation.

Thesis 3 [3] [4]
I have proposed a novel multi-affix morphology model called Morpher that can
solve the inflection generation and morphological analysis problems, handling all
the affix types of the target language. The main feature of the proposed Morpher
model is that it builds a separate transformation engine instance for each affix
type, and it takes the conditional probabilities of the affix type chains into account
during inflection generation and morphological analysis. During the evaluation of
Morpher I used the ASTRA model to train the transformation engines. The experi-
ments confirmed the outstanding generalization capabilities and accuracy of Mor-
pher, comparing it with state of the art models including 6 SIGMORPHON models,
3 unsupervised segmentation models and 2 analyzer models.

Thesis 4 [3] [4] [5]
I have performed the space and time complexity analysis of the Morpher and AS-
TRA models. After analyzing the required space of the model components and the
required time of the training phase, inflection generation and morphological analy-
sis operations, I have proposed three optimization techniques that aim to reduce the
rule base of the model and thus decrease the average inflection and analysis times.
Evaluation shows that using the same amount of training data, the number of re-
tained rules dropped from 578,497 to 10,291, the average inflection time decreased
from 2.4 ms to 0.7 ms, and the average analysis time was reduced from 2.4 s to 21.75
ms, while the average accuracy remained 93.01%. Finally I evaluated the optimized
Morpher model using up to 3 million training items, and both inflection genera-
tion and morphological analysis could be performed in acceptable, finite time, even
though the unoptimized original model could not handle such big training data vol-
umes at all.

Thesis 5 [1] [3] [4] [5] [8]
I have developed the reference implementation of the Morpher ecosystem, that con-
sists of several layers such as the Morpher multi-affix morphology model and the
single-affix transformation engine models including the lattice based model and AS-
TRA. I have also developed a Spring Boot based Morpher REST API, so that the
Morpher framework can be consumed more easily from different software environ-
ments. To provide web and mobile user interfaces for inflection generation and mor-
phological analysis, I have developed the Morpher client application using React
and React Native. For training and evaluation purposes, I have also implemented
an automated method to generate large training and evaluation data sets for the
Hungarian language, resulting in more than 4.4 million morphological structures,
covering more than 2.5 million unique word forms. The source code of these projects
can be found on Github, while the binaries are published to jcenter and Maven Cen-
tral, and the Docker images are published to Docker Hub.

DOI: 10.14750/ME.2022.020

Chapter 8. Conclusion 106

8.2 Future work

There are several future development possibilities that have been identified during
the development of the proposed models.

Two improvements that could be introduced relatively easily is to be able to in-
flect already inflected word forms, not just lemmas; and to be able to handle those
affix type chains that contain the same affix type multiple times, e.g. in the Hungar-
ian word igazságosság (~justice). The first improvement would make Morpher more
generic, while the second one would increase the number of word forms Morpher
could handle.

To further optimize the Morpher model, artificial intelligence could be integrated
to decrease the number of affix types to evaluate recursively during morphological
analysis. For example, a neural network could be trained to provide some affix type
candidates for the last affix type in a given word, and thus Morpher could drop the
less probable affix type branches during analysis.

Another optimization option would be to use some kind of parallel processing
platform. One such platform is Hadoop that I had already experimented with [6,
7], but maybe for this type of problem it would not be the best option, since the
processing of affix types in an affix type chain is not independent from each other.

Although the current experiments have all been performed using the Hungarian
language, the Morpher model could actually be extended to other languages as well.
For this, new language handler implementations should be created, implementing
the necessary API. For the Hungarian language, the Hunmorph-Ocamorph integra-
tion could be eliminated by making this layer more intelligent.

If there existed several language handler implementations, separate Morpher en-
gine instances could be trained for the supported languages. These instances could
be wrapped in a higher-level structure that we could call a Morpher system. Actu-
ally, in the Github repository, a simple Morpher system implementation is already
implemented. It contains a a map of Morpher engines, each one associated with a
language. During inflection generation and morphological analysis, the input not
only contains the input word and affix types, but also the target language.

As an improvement, the Morpher system could be implemented in a way such
that the internal Morpher engine instances are not totally isolated from each other.
For example, the Morpher system could associate the valid lemmas of each language
with concepts, connecting the words of the different engine instances. This way, the
input could contain that the lemma to be inflected should be alma, the affix type
should be plural, and the target language of the output should be English. The
inflection response thus could contain the output word apples.

Morpher could also be extended to support languages that are not in the same
language category as Hungarian. Languages that have a simpler morphology and
use auxiliary words to modify the base meaning of their words, could also be sup-
ported. Morpher could return several words instead of a single inflected word form.
As an example, if the input lemma is table, the required affix type is supressive case
and the target language is English, then the output could be on the table.

Morpher is also capable of supporting higher-level grammatical models such as
syntactic analyzers or free text processing frameworks. In the future, such higher-
level models will be able to use Morpher to morphologically analyze input words,
thus retrieving and incorporating morphological information of these words to solve
higher-level grammatical problems.

DOI: 10.14750/ME.2022.020

107

Appendix A

Mapping of the Examined
Annotation Token Systems

TABLE A.1: POS categories

Description Ocamorph Foma Humor Hunspell Sample

Adjective /ADJ Adj [MN] adj
boldog
(happy)

Adverb /ADV Adv [HA] adv
itt
(here)

Article /ART - - det_indef
egy
(a/an)

Conjunction /CONJ Con [KOT] con
vagy
(or)

Determiner /DET Det [DET] det_def
ez
(this)

Noun /NOUN Noun [FN] noun
alma
(apple)

Numeral /NUM Num [SZN] adj_num
egy
(one)

Onomatopoeic /ONO - - -
vau
(woof)

Postposition /POSTP Post [NU] post
iránt
(towards)

Preposition /PREP - - -
mint
(as)

Utterance
Interjection /UTT-INT Sentint [ISZ] sentint

kukucs
(peek-a-boo)

Verb /VERB Verb [IGE] vrb
megy
(go)

TABLE A.2: Noun features

Description Ocamorph Foma Humor Hunspell Sample

Plural 〈PLUR〉 Plur [PL] PLUR
barátok
(friends)

Plural
familiar
possessed

〈PLUR〈FAM〉〉 Fam - ék*
baráték
(group of
friends)

Possessor
1st person
singular
singular

〈POSS〈1〉〉 Posss1s [PSe1]
POSS_
SG_1

barátom
(my
friend)

Continued on next page

DOI: 10.14750/ME.2022.020

Appendix A. Mapping of the Examined Annotation Token Systems 108

Table A.2 – continued from previous page
Description Ocamorph Foma Humor Hunspell Sample
Possessor
2nd person
singular
singular

〈POSS〈2〉〉 Posss2s [PSe2]
POSS_
SG_2

barátod
(your
friend)

Possessor
3rd person
singular
singular

〈POSS〉 Posss3s [PSe3]
POSS_
SG_3

barátja
(her
friend)

Possessor
1st person
plural
singular

〈POSS〈1〉〈PLUR〉〉 Possp1s [PSt1]
POSS_
PL_1

barátunk
(our
friend)

Possessor
2nd person
plural
singular

〈POSS〈2〉〈PLUR〉〉 Possp2s [PSt2]
POSS_
PL_2

barátotok
(your
friend)

Possessor
3rd person
plural
singular

〈POSS〈PLUR〉〉 Possp3s [PSt3]
POSS_
PL_3

barátuk
(their
friend)

Possessor
1st person
singular
plural

〈PLUR〉
〈POSS〈1〉〉 Posss1p [PSe1i] -

barátaim
(my
friends)

Possessor
2nd person
singular
plural

〈PLUR〉
〈POSS〈2〉〉 Posss2p [PSe2i] -

barátaid
(your
friends)

Possessor
3rd person
singular
plural

〈PLUR〉
〈POSS〉 Posss3p [PSe3i] -

barátai
(her
friends)

Possessor
1st person
plural
plural

〈PLUR〉
〈POSS〈1〉〈PLUR〉〉 Possp1p [PSt1i] -

barátaink
(our
friends)

Possessor
2nd person
plural
plural

〈PLUR〉
〈POSS〈2〉〈PLUR〉〉 Possp2p [PSt2i] -

barátaitok
(your
friends)

Possessor
3rd person
plural
plural

〈PLUR〉
〈POSS〈PLUR〉〉 Possp3p [PSt3i] -

barátaik
(their
friends)

Possessed
singular 〈ANP〉 Gens [POS]

POSS-
ESSEE

baráté
(friend’s)

Possessed
plural 〈ANP〈PLUR〉〉 Genpl [POSi] -

barátéi
(friend’s
things)

Accusative 〈CAS〈ACC〉〉 Acc [ACC] ACC
almát
(the apple)

Dative 〈CAS〈DAT〉〉 Dat [DAT] DAT
almának
(to the
apple)

Instrumental 〈CAS〈INS〉〉 Ins [INS] INSTR

almával
(with
the
apple)

Continued on next page

DOI: 10.14750/ME.2022.020

Appendix A. Mapping of the Examined Annotation Token Systems 109

Table A.2 – continued from previous page
Description Ocamorph Foma Humor Hunspell Sample

Causative 〈CAS〈CAU〉〉 Cau - CAUS
almáért
(for the
apple)

Translative 〈CAS〈TRA〉〉 Fac - TRANS
almává
(into
apple)

Supressive 〈CAS〈SUE〉〉 Sup [SUP] SUE
almán
(on the
apple)

Sublative 〈CAS〈SBL〉〉 Sub [SUB] SBL

almára
(onto
the
apple)

Delative 〈CAS〈DEL〉〉 Del - DEL

almáról
(from
top of
the apple)

Inessive 〈CAS〈INE〉〉 Ine [INE] INE
almában
(in the
apple)

Elative 〈CAS〈ELA〉〉 Ela - ELA

almából
(from
inside
of the
apple)

Illative 〈CAS〈ILL〉〉 Ill [ILL] ILL
almába
(into the
apple)

Adessive 〈CAS〈ADE〉〉 Ade - ADE
almánál
(by the
apple)

Allative 〈CAS〈ALL〉〉 All [ALL] ALL
almához
(to the
apple)

Ablative 〈CAS〈ABL〉〉 Abl - ABL
almától
(from the
apple)

Temporal 〈CAS〈TEM〉〉 Tem [TEM] TEMP
hatkor
(at six)

Terminative 〈CAS〈TER〉〉 Ter [TER] TERM
almáig
(to the
apple)

Formative 〈CAS〈FOR〉〉 For - FORM
almaként
(as an
apple)

Essive 〈CAS〈ESS〉〉 Ess [ESS] ESS
almául
(as an
apple)

TABLE A.3: Verb features

Description Ocamorph Foma Humor Hunspell Sample
(run)

Modal 〈MODAL〉 Pot [_HAT] hat* futhat
Continued on next page

DOI: 10.14750/ME.2022.020

Appendix A. Mapping of the Examined Annotation Token Systems 110

Table A.3 – continued from previous page

Description Ocamorph Foma Humor Hunspell Sample
(run)

Subjunctive
Imperative
1st person
singular
indefinite

〈SUBJUNC-IMP〉
〈PERS〈1〉〉

Conj
Indef
Sg1

[Pe1]

SUBJ/
IMPER_
INDEF_
SG_1

fussak

Subjunctive
Imperative
2nd person
singular
indefinite

〈SUBJUNC-IMP〉
〈PERS〈2〉〉

Conj
Indef
Sg2

[Pe2]

SUBJ/
IMPER_
INDEF_
SG_2

fuss

Subjunctive
Imperative
3rd person
singular
indefinite

〈SUBJUNC-IMP〉
Conj
Indef
Sg3

[Pe3]

SUBJ/
IMPER_
INDEF_
SG_3

fusson

Subjunctive
Imperative
1st person
plural
indefinite

〈SUBJUNC-IMP〉
〈PERS〈1〉〉
〈PLUR〉

Conj
Indef
Pl1

[Pt1]

SUBJ/
IMPER_
INDEF_
PL_1

fussunk

Subjunctive
Imperative
2nd person
plural
indefinite

〈SUBJUNC-IMP〉
〈PERS〈2〉〉
〈PLUR〉

Conj
Indef
Pl2

[Pt2]

SUBJ/
IMPER_
INDEF_
PL_2

fussatok

Subjunctive
Imperative
3rd person
plural
indefinite

〈SUBJUNC-IMP〉
〈PLUR〉

Conj
Indef
Pl3

[Pt3]

SUBJ/
IMPER_
INDEF_
PL_3

fussanak

Subjunctive
Imperative
1st person
singular
definite

〈SUBJUNC-IMP〉
〈PERS〈1〉〉
〈DEF〉

Conj
Def
Sg1

[TPe1]

SUBJ/
IMPER_
DEF_
SG_1

fussam

Subjunctive
Imperative
1st person
singular
2nd person
object

〈SUBJUNC-IMP〉
〈PERS〈1〈OBJ〈2〉〉〉〉

Conj
Def
Sg12

[IPe1]

SUBJ/
IMPER_
SG_1_
OBJ_2

fussalak

Subjunctive
Imperative
2nd person
singular
definite

〈SUBJUNC-IMP〉
〈PERS〈2〉〉
〈DEF〉

Conj
Def
Sg2

[TPe2]

SUBJ/
IMPER_
DEF_
SG_2

fusd

Subjunctive
Imperative
3rd person
singular
definite

〈SUBJUNC-IMP〉
〈DEF〉

Conj
Def
Sg3

[TPe3]

SUBJ/
IMPER_
DEF_
SG_3

fussa

Subjunctive
Imperative
1st person
plural
definite

〈SUBJUNC-IMP〉
〈PERS〈1〉〉
〈PLUR〉
〈DEF〉

Conj
Def
Pl1

-

SUBJ/
IMPER_
DEF_
PL_1

fussuk

Continued on next page

DOI: 10.14750/ME.2022.020

Appendix A. Mapping of the Examined Annotation Token Systems 111

Table A.3 – continued from previous page

Description Ocamorph Foma Humor Hunspell Sample
(run)

Subjunctive
Imperative
2nd person
plural
definite

〈SUBJUNC-IMP〉
〈PERS〈2〉〉
〈PLUR〉
〈DEF〉

Conj
Def
Pl2

-

SUBJ/
IMPER_
DEF_
PL_2

fussátok

Subjunctive
Imperative
3rd person
plural
definite

〈SUBJUNC-IMP〉
〈PLUR〉
〈DEF〉

Conj
Def
Pl3

-

SUBJ/
IMPER_
DEF_
PL_3

fussák

Conditional
1st person
singular
indefinite

〈COND〉
〈PERS〈1〉〉

Cond
Indef
Sg1

-

PRES_
COND_
INDEF_
SG_1

futnék

Conditional
2nd person
singular
indefinite

〈COND〉
〈PERS〈2〉〉

Cond
Indef
Sg2

-

PRES_
COND_
INDEF_
SG_2

futnál

Conditional
3rd person
singular
indefinite

〈COND〉
Cond
Indef
Sg3

-

PRES_
COND_
INDEF_
SG_3

futna

Conditional
1st person
plural
indefinite

〈COND〉
〈PERS〈1〉〉
〈PLUR〉

Cond
Indef
Pl1

-

PRES_
COND_
INDEF_
PL_1

futnánk

Conditional
2nd person
plural
indefinite

〈COND〉
〈PERS〈2〉〉
〈PLUR〉

Cond
Indef
Pl2

-

PRES_
COND_
INDEF_
PL_2

futnátok

Conditional
3rd person
plural
indefinite

〈COND〉
〈PLUR〉

Cond
Indef
Pl3

-

PRES_
COND_
INDEF_
PL_3

futnának

Conditional
1st person
singular
definite

〈COND〉
〈PERS〈1〉〉
〈DEF〉

Cond
Def
Sg1

-

PRES_
COND_
DEF_
SG_1

futnám

Conditional
1st person
singular
2nd person
object

〈COND〉
〈PERS〈1〈OBJ〈2〉〉〉〉

Cond
Def
Sg12

-

PRES_
COND_
SG_1_
OBJ_2

futnálak

Conditional
2nd person
singular
definite

〈COND〉
〈PERS〈2〉〉
〈DEF〉

Cond
Def
Sg2

-

PRES_
COND_
DEF_
SG_2

futnád

Conditional
3rd person
singular
definite

〈COND〉
〈DEF〉

Cond
Def
Sg3

-

PRES_
COND_
DEF_
SG_3

futná

Conditional
1st person
plural
definite

〈COND〉
〈PERS〈1〉〉
〈PLUR〉
〈DEF〉

Cond
Def
Pl1

-

PRES_
COND_
DEF_
PL_1

futnánk

Continued on next page

DOI: 10.14750/ME.2022.020

Appendix A. Mapping of the Examined Annotation Token Systems 112

Table A.3 – continued from previous page

Description Ocamorph Foma Humor Hunspell Sample
(run)

Conditional
2nd person
plural
definite

〈COND〉
〈PERS〈2〉〉
〈PLUR〉
〈DEF〉

Cond
Def
Pl2

-

PRES_
COND_
DEF_
PL_2

futnátok

Conditional
3rd person
plural
definite

〈COND〉
〈PLUR〉
〈DEF〉

Cond
Def
Pl3

-

PRES_
COND_
DEF_
PL_3

futnák

Past
1st person
singular
indefinite

〈PAST〉
〈PERS〈1〉〉

Past
Indef
Sg1

[Me1]

PAST_
INDIC_
INDEF_
SG_1

futottam

Past
2nd person
singular
indefinite

〈PAST〉
〈PERS〈2〉〉

Past
Indef
Sg2

-

PAST_
INDIC_
INDEF_
SG_2

futottál

Past
3rd person
singular
indefinite

〈PAST〉
Past
Indef
Sg3

[Me3]

PAST_
INDIC_
INDEF_
SG_3

futott

Past
1st person
plural
indefinite

〈PAST〉
〈PERS〈1〉〉
〈PLUR〉

Past
Indef
Pl1

[Mt1]

PAST_
INDIC_
INDEF_
PL_1

futottunk

Past
2nd person
plural
indefinite

〈PAST〉
〈PERS〈2〉〉
〈PLUR〉

Past
Indef
Pl2

[Mt2]

PAST_
INDIC_
INDEF_
PL_2

futottatok

Past
3rd person
plural
indefinite

〈PAST〉
〈PLUR〉

Past
Indef
Pl3

[Mt3]

PAST_
INDIC_
INDEF_
PL_3

futottak

Past
1st person
singular
definite

〈PAST〉
〈PERS〈1〉〉
〈DEF〉

Past
Def
Sg1

[TMe1]

PAST_
INDIC_
DEF_
SG_1

futottam

Past
2nd person
singular
definite

〈PAST〉
〈PERS〈2〉〉
〈DEF〉

Past
Def
Sg2

[TMe2]

PAST_
INDIC_
DEF_
SG_2

futottad

Past
1st person
singular
2nd person
object

〈PAST〉
〈PERS〈1〈OBJ〈2〉〉〉〉

Past
Def
Sg12

[IMe1]

PAST_
INDIC_
SG_1_
OBJ_2

futottalak

Past
3rd person
singular
definite

〈PAST〉
〈DEF〉

Past
Def
Sg3

[TMe3]

PAST_
INDIC_
DEF_
SG_3

futotta

Past
1st person
plural
definite

〈PAST〉
〈PERS〈1〉〉
〈PLUR〉
〈DEF〉

Past
Def
Pl1

[TMt1]

PAST_
INDIC_
DEF_
PL_1

futottuk

Past
2nd person
plural
definite

〈PAST〉
〈PERS〈2〉〉
〈PLUR〉
〈DEF〉

Past
Def
Pl2

-

PAST_
INDIC_
DEF_
PL_2

futottátok

Continued on next page

DOI: 10.14750/ME.2022.020

Appendix A. Mapping of the Examined Annotation Token Systems 113

Table A.3 – continued from previous page

Description Ocamorph Foma Humor Hunspell Sample
(run)

Past
3rd person
plural
definite

〈PAST〉
〈PLUR〉
〈DEF〉

Past
Def
Pl3

-

PAST_
INDIC_
DEF_
PL_3

futották

1st person
singular
indefinite

〈PERS〈1〉〉 Indef
Sg1 [e1] SG_1 futok

1st person
singular
2nd person
object

〈PERS〈1〈OBJ〈2〉〉〉〉 Indef
Sg12 [Ie1]

PRES_
INDIC_
SG_1_
OBJ_2

futlak

2nd person
singular
indefinite

〈PERS〈2〉〉 Indef
Sg2 [e2] SG_2 futsz

3rd person
singular
indefinite

〈PERS〉 Indef
Sg3 [e3] SG_3 fut

1st person
plural
indefinite

〈PERS〈1〉〉
〈PLUR〉

Indef
Pl1 [t1] PL_1 futunk

2nd person
plural
indefinite

〈PERS〈2〉〉
〈PLUR〉

Indef
Pl2 [t2] PL_2 futtok

3rd person
plural
indefinite

〈VPLUR〉 Indef
Pl3 [t3] PL_3 futnak

1st person
singular
definitive

〈PERS〈1〉〉
〈DEF〉

Def
Sg1 [Te1]

PRES_
INDIC_
DEF_
SG_1

futom

2nd person
singular
definitive

〈PERS〈2〉〉
〈DEF〉

Def
Sg2 [Te2]

PRES_
INDIC_
DEF_
SG_2

futod

3rd person
singular
definitive

〈DEF〉 Def
Sg3 [Te3]

PRES_
INDIC_
DEF_
SG_3

futja

1st person
plural
definitive

〈PERS〈1〉〉
〈PLUR〉
〈DEF〉

Def
Pl1 [Tt1]

PRES_
INDIC_
DEF_
PL_1

futjuk

2nd person
plural
definitive

〈PERS〈2〉〉
〈PLUR〉
〈DEF〉

Def
Pl2 [Tt2]

PRES_
INDIC_
DEF_
PL_2

futjátok

3rd person
plural
definitive

〈PLUR〉
〈DEF〉

Def
Pl3 [Tt3]

PRES_
INDIC_
DEF_
PL_3

futják

Infinitive 〈INF〉 Inf [INF] ni*
futni
(to)

Infinitive
1st person
singular

〈INF〉
〈PERS〈1〉〉 Inf11 [INRe1]

INF_
SG_1 futnom

Infinitive
2nd person
singular

〈INF〉
〈PERS〈2〉〉 Inf12 [INRe2]

INF_
SG_2 futnod

Continued on next page

DOI: 10.14750/ME.2022.020

Appendix A. Mapping of the Examined Annotation Token Systems 114

Table A.3 – continued from previous page

Description Ocamorph Foma Humor Hunspell Sample
(run)

Infinitive
3rd person
singular

〈INF〉
〈PERS〉 Inf13 [INRe3]

INF_
SG_3 futnia

Infinitive
1st person
plural

〈INF〉
〈PERS〈1〉〉
〈PLUR〉

Inf21 [INRt1]
INF_
PL_1 futnunk

Infinitive
2nd person
plural

〈INF〉
〈PERS〈2〉〉
〈PLUR〉

Inf22 [INRt2]
INF_
PL_2 futnotok

Infinitive
3rd person
plural

〈INF〉
〈PERS〉
〈PLUR〉

Inf23 [INRt3]
INF_
PL_3 futniuk

TABLE A.4: Noun derivations

Description Ocamorph Foma Humor Hunspell Sample
Regular
activity [REG_ACT] - [_MIGY] -

hülyéskedik
(fools around)

Abstract [ABSTRACT] - - ság*
jóság
(goodness)

Mrs [MRS] - - né*
királyné
(queen)

Diminutive [DIMIN] - [_DIM] csk*
lányka
(girlie)

Attributive [ATTRIB] - [_SKEP] s*
rituálés
(ritual)

Metonymical
attributive

[MET_
ATTRIB] - [_IKEP] i*

politikai
(political)

Metonymical
attributive
manner

[MET_
ATTRIB]
[MANNER]

- [_ILAG] lag*
politikailag
(politically)

Inalienable
attributive

[INAL_
ATTRIB] - - jú*

korú
(aging)

Negative
attributive

[NEG_
ATTRIB] - [_FFOSZT] -

kedvtelen
(moody)

Type 1 [TYPE1] - - szerű*
újszerű
(novel)

Type 2 [TYPE2] - - féle*
jóféle
(good kind)

Type 3 [TYPE3] - - -
bárminemű
(anykind)

Type 4 [TYPE4] - [_FAJTA] fajta*
fajta
(breed)

Type
rank

[TYPE_
RANK]

- - -
másodrangú
(second-rate)

Negative
attributive
2

[NEG_
ATTRIB2] - - mentes*

cukormentes
(sugar-free)

Locative
inessive [LOC_INE] - [_BELI] beli*

stílusbeli
(stylistic)

Quantity [QUANTITY] - [_MER] nyi*
országnyi
(country-wise)

Essivus
formalis [ESS_FOR] Forp - képpen*

szükségképpen
(necessarily)

Continued on next page

DOI: 10.14750/ME.2022.020

Appendix A. Mapping of the Examined Annotation Token Systems 115

Table A.4 – continued from previous page
Description Ocamorph Foma Humor Hunspell Sample

Comitative [COM] Soc [_SOC] stul*
kamatostul
(with interest)

Period 1 [PERIOD1] Dis - nként*
óránként
(per hour)

Period 2 [PERIOD2] - [_NTA] -
hetente
(weekly)

Activity [ACT] - [_FIT] z*
tapétáz
(decorate)

Activity 2 [ACT2] - [_FIL] -
szomszédol
(visits the
neighbors)

TABLE A.5: Verb derivations

Description Ocamorph Foma Humor Hunspell Sample

Frequentative [FREQ] - - nék*
futhatnék
(urge
to run)

Medial [MEDIAL] - - ódik*
íródik
(being
written)

Causative [CAUS] Imper [_MUV] tat*
csináltat
(have it
done)

Desiderative [DESID] Rep [_GYAK] gat*
írogat
(wishes
to write)

Adverbial
participle [PART] - [_HIN] va*

írva
(written)

Perfect
adverbial
participle

[PERF_
PART] Advan - ván*

írván
(while
writing)

Imperfect
adjectival
participle

[IMPERF_
PART] - - ó*

író
(writer)

Future
adjectival
participle

[FUT_
PART] - - andó*

írandó
(to be
written)

Negative
perfect
adjectival
participle

[NEG_
PERF_
PART]

- [_IFOSZT] talan*
íratlan
(unwritten)

Gerund [GERUND] - - ás*
írás
(writing)

Negative
modal
adjectival
participle

[NEG_
MODAL_
PART]

-
[_HAT-
ATLAN]

hatatlan_*
írhatatlan
(unwritable)

Modal
adjectival
participle

[MODAL_
PART] - - ható*

írható
(writable)

DOI: 10.14750/ME.2022.020

Appendix A. Mapping of the Examined Annotation Token Systems 116

TABLE A.6: Adjective derivations

Description Ocamorph Foma Humor Hunspell Sample

Comparative [COMPAR] Mid [_FOK] bb*
jobb
(better)

Superlative [SUPERLAT] -
[FF]
[_FOK]

leg*
legjobb
(best)

Supersuperlative
[SUPER
SUPERLAT] - - legesleg*

legesleg-
jobb
(best
of all)

Comparative
designative

[COMPAR_
DESIGN]

-
[_FOK]
[_KIEM]

bbik*
jobbik
(better
one)

Superlative
designative

[SUPERLAT_
DESIGN]

-
[FF]
[_FOK]
[_KIEM]

-
legjobbik
(best of
them)

Supersuperlative
designative

[SUPER
SUPERLAT_
DESIGN]

- - -

legesleg-
jobbik
(best of
them)

Manner [MANNER] - [_ESSMOD] an*
egyszerűen
(easily)

Intransitive
resultative

[INTRANS_
RESULT] - [_MI] odik*

erősödik
(getting
stronger)

Transitive
resultative

[TRANS_
RESULT] - - sít*

erősít
(streng-
then)

TABLE A.7: Numeral derivations

Description Ocamorph Foma Humor Hunspell Sample
Multiplicative
iterative

[MULTIPL-
ITER] Tmp - -

hatszor
(six times)

Iterative
attributive

[ITER_
ATTRIB]

Tmp
Iadj [_MUL] -

egyszeri
(onefold)

Multiplicative
attributive

[MULTIPL_
ATTRIB]

Tmp
Kas - szor*

egyszeres
(single)

Multiplicative [MULTIPL] - [_SZORTA] szorta*
hatszorta
(six-time)

Aggregative [AGGREG] - [_ESSNUM] -
ketten
(two of)

Fractional [FRACT] Par [_TORT] d*
harmincad
(thirtieth)

Ordinal [ORD]
Par
Ik [_SORSZ] dik*

harmadik
(third)

Ordinal
iterative

[ORD-
ITER] ParTmp - -

harmadszor
(thirdly)

Ordinal
iterative
accomplished

[ORD-
ITER-
ACCOMPL]

Par
Tmp
Sub

- -
harmadszorra
(for the
third time)

Date [DATE] - [_DATUM] dika*
hatodika
(sixth of)

DOI: 10.14750/ME.2022.020

Appendix A. Mapping of the Examined Annotation Token Systems 117

TABLE A.8: POSTP categories

Ocamorph Foma Humor Hunspell Sample

〈POSTP〈ALÁ〉〉 - - POSTP(alá)
ezalá
(below)

〈POSTP〈ALATT〉〉 - - -
ezalatt
(under)

〈POSTP〈ALÓL〉〉 - - -
ezalól
(from below)

〈POSTP〈ÁLTAL〉〉 - - -
ezáltal
(by)

〈POSTP〈ELÉ〉〉 - - POSTP(elé)
ezelé
(before)

〈POSTP〈ELÉBE〉〉 - - -
ezelébe
(before)

〈POSTP〈ELLEN〉〉 - - -
ezellen
(against)

〈POSTP〈ELLENÉRE〉〉 - - -
ezellenére
(despite)

〈POSTP〈ELŐL〉〉 - - -
ezelől
(from before)

〈POSTP〈ELŐTT〉〉 - - -
ezelőtt
(before)

〈POSTP〈FELETT〉〉 - - -
efelett
(above)

〈POSTP〈FELÉ〉〉 - - -
efelé
(above)

〈POSTP〈FELŐL〉〉 - - -
efelől
(from above)

〈POSTP〈FELÜL〉〉 - - -
efelül
(furthermore)

〈POSTP〈FÖLÉ〉〉 - - -
efölé
(above)

〈POSTP〈FÖLIBE〉〉 - - -
efölibe
(above)

〈POSTP〈FÖLÜL〉〉 - - -
efölül
(above)

〈POSTP〈HELYETT〉〉 - - -
ehelyett
(instead of)

〈POSTP〈IRÁNT〉〉 - - -
eziránt
(towards)

〈POSTP〈KÖRÉ〉〉 - - -
eköré
(around)

〈POSTP〈KÖRÖTT〉〉 - - -
ekörött
(around)

〈POSTP〈KÖRÜL〉〉 - - -
ekörül
(around)

〈POSTP〈KÖZBEN〉〉 - - -
eközben
(during)

〈POSTP〈KÖZÉ〉〉 - - -
eközé
(among)

〈POSTP〈KÖZIBE〉〉 - - -
eközibe
(among)

〈POSTP〈KÖZÖTT〉〉 - - -
eközött
(among)

〈POSTP〈KÖZÜL〉〉 - - -
eközül
(of)

〈POSTP〈LÉTÉRE〉〉 - - -
létemre
(being)

Continued on next page

DOI: 10.14750/ME.2022.020

Appendix A. Mapping of the Examined Annotation Token Systems 118

Table A.8 – continued from previous page
Ocamorph Foma Humor Hunspell Sample

〈POSTP〈MELLETT〉〉 - - -
emellett
(besides)

〈POSTP〈MELLÉ〉〉 - - -
emellé
(besides)

〈POSTP〈MELLŐL〉〉 - - -
emellől
(from besides)

〈POSTP〈MIATT〉〉 - - -
emiatt
(due to)

〈POSTP〈MÖGÉ〉〉 - - -
emögé
(behind)

〈POSTP〈MÖGÖTT〉〉 - - POSTP(mögött)
emögött
(behind)

〈POSTP〈MÖGÜL〉〉 - - -
emögül
(from behind)

〈POSTP〈NÉLKÜL〉〉 - - -
enélkül
(without)

〈POSTP〈ÓTA〉〉 - - -
azóta
(since)

〈POSTP〈RÉSZÉRE〉〉 - - -
részére
(for)

〈POSTP〈RÉSZÉRŐL〉〉 - - -
részéről
(from your
part)

〈POSTP〈SZÁMÁRA〉〉 - - -
számára
(for)

〈POSTP〈SZERINT〉〉 - - POSTP(szerint)
eszerint
(according to)

〈POSTP〈UTÁN〉〉 - - -
ezután
(after)

〈POSTP〈VÉGBŐL〉〉 - - -
evégből
(due to)

〈POSTP〈VÉGETT〉〉 - - -
evégett
(due to)

〈POSTP〈VÉGRE〉〉 - - -
evégre
(due to)

DOI: 10.14750/ME.2022.020

119

Author’s Publications

[1] Gábor Szabó and László Kovács. Benchmarking morphological analyzers for
the Hungarian language. In Annales Mathematicae et Informaticae, volume 49,
pages 141–166. Eszterházy Károly University Institute of Mathematics and In-
formatics, 2018. Q3. SJR: 0.157.

[2] G. Szabó and L. Kovács. Lattice based morphological rule induction. Acta
Universitatis Apulensis, (53): 93–110, 2018.

[3] László Kovács and Gábor Szabó. String transformation based morphology
learning. Informatica, 43 (4): 467–476, December 2019. Q4. SJR: 0.178.

[4] Gábor Szabó and László Kovács. Automated learning of hungarian morphol-
ogy for inflection generation and morphological analysis. Indonesian Journal of
Electrical Engineering and Informatics (IJEEI), 8 (4): 746–756, December 2020. Q4.
SJR: 0.168.

[5] Gábor Szabó and László Kovács. Optimization of the Morpher morphology
engine using knowledge base reduction techniques. Computing and Informatics,
38 (4): 963–985, 2019. Q3. SJR: 0.217. Impact Factor: 0.524.

[6] László Kovács and Gábor Szabó. Utilizing Apache Hadoop in clique detection
methods. Production Systems and Information Engineering, 7: 43–53, 2015.

[7] László Kovács and Gábor Szabó. Conceptualization with incremental Bron-
Kerbosch algorithm in big data architecture. Acta Polytechnica Hungarica, 13 (2),
2016. Q2. SJR: 0.298. Impact Factor: 1.219. Independent citations: 7.

[8] Gábor Szabó. Efficient method for training set generation in morphological
analysis. In Doktoranduszok Fóruma - Gépészmérnöki és Informatikai Kar szekcióki-
adványa, November 2014.

[9] G. Szabó and L. Kovács. Efficiency analysis of inflection rule induction. In
Proceedings of the 2015 16th International Carpathian Control Conference (ICCC),
pages 521–525, May 2015.

[10] Gábor Szabó. Grammatical rule generation strategies for concept lattice based
inflection systems. In Doktoranduszok Fóruma - Gépészmérnöki és Informatikai Kar
szekciókiadványa, pages 5–10, November 2015.

[11] László Kovács and Gábor Szabó. String transformation approach for morpheme
rule induction. Procedia Technology, 22: 854–861, 2016.

[12] Gábor Szabó. Edit distance based grammatical rule generation using an im-
proved cost function. In The Publications of the MultiScience - XXX. micro-
CAD International Multidisciplinary Scientific Conference, pages 1–8, University
of Miskolc, Hungary, April 2016.

DOI: 10.14750/ME.2022.020

AUTHOR’S PUBLICATIONS 120

[13] Gábor Szabó. Lattice-based ruleset representation for morpheme analysis.
In Doktoranduszok Fóruma - Gépészmérnöki és Informatikai Kar szekciókiadványa,
November 2016.

[14] László Kovács and Szabó Gábor. Generalization of string transformation rules
using optimized concept lattice construction method. Procedia Engineering, 181:
604–611, 2017. SJR: 0.286. Independent citations: 1.

[15] Gábor Szabó. Morphological models for natural languages. In XX. Tavaszi Szél
Konferencia 2017, March 2017.

[16] Gábor Szabó. Computational models for morphology. In The Publications of the
MultiScience - XXXI. microCAD International Multidisciplinary Scientific Confer-
ence, pages 1–8, University of Miskolc, Hungary, April 2017.

DOI: 10.14750/ME.2022.020

121

References

[Ahlberg et al., 2015] Ahlberg, M., Forsberg, M., and Hulden, M. (2015). Paradigm
classification in supervised learning of morphology. In Proceedings of the 2015 Con-
ference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pages 1024–1029.

[Aisha and Sun, 2009] Aisha, B. and Sun, M. (2009). A Uyghur morpheme analysis
method based on conditional random fields. Int. J. of Asian Lang. Proc., 19:69–84.

[Akmajian et al., 2017] Akmajian, A., Farmer, A. K., Bickmore, L., Demers, R. A.,
and Harnish, R. M. (2017). Linguistics: An introduction to language and communica-
tion. MIT press.

[Barton, 1986] Barton, G. E. (1986). Computational complexity in two-level mor-
phology. In Proceedings of the 24th annual meeting on Association for Computational
Linguistics, pages 53–59. Association for Computational Linguistics.

[Bauer, 2003] Bauer, L. (2003). Introducing linguistic morphology.

[Bergmanis and Goldwater, 2017] Bergmanis, T. and Goldwater, S. (2017). From seg-
mentation to analyses: A probabilistic model for unsupervised morphology in-
duction. In Proceedings of the 15th Conference of the European Chapter of the Associ-
ation for Computational Linguistics: Volume 1, Long Papers, pages 337–346. Associa-
tion for Computational Linguistics.

[Birkhoff, 1940] Birkhoff, G. (1940). Lattice theory, volume 25. American Mathemat-
ical Soc.

[Booij, 2012] Booij, G. (2012). The grammar of words: An introduction to linguistic mor-
phology. Oxford University Press.

[Chan and Yang, 2008] Chan, E. and Yang, C. D. (2008). Structures and distributions
in morphology learning. University of Pennsylvania, Philadelphia, PA.

[Clark, 2001] Clark, A. (2001). Learning morphology with pair hidden Markov mod-
els. In ACL (Companion Volume), pages 55–60. Citeseer.

[Cotterell et al., 2018] Cotterell, R., Kirov, C., Sylak-Glassman, J., Walther, G., Vy-
lomova, E., McCarthy, A. D., Kann, K., Mielke, S., Nicolai, G., Silfverberg, M.,
Yarowsky, D., Eisner, J., and Hulden, M. (2018). The CoNLL–SIGMORPHON 2018
shared task: Universal morphological reinflection. In Proceedings of the CoNLL–
SIGMORPHON 2018 Shared Task: Universal Morphological Reinflection, pages 1–27,
Brussels. Association for Computational Linguistics.

[Cotterell et al., 2017] Cotterell, R., Kirov, C., Sylak-Glassman, J., Walther, G., Vylo-
mova, E., Xia, P., Faruqui, M., Kübler, S., Yarowsky, D., Eisner, J., and Hulden, M.
(2017). CoNLL-SIGMORPHON 2017 shared task: Universal morphological rein-
flection in 52 languages. In Proceedings of the CoNLL SIGMORPHON 2017 Shared

DOI: 10.14750/ME.2022.020

REFERENCES 122

Task: Universal Morphological Reinflection, pages 1–30, Vancouver. Association for
Computational Linguistics.

[Cotterell et al., 2016] Cotterell, R., Kirov, C., Sylak-Glassman, J., Yarowsky, D., Eis-
ner, J., and Hulden, M. (2016). The SIGMORPHON 2016 shared task — Morpho-
logical reinflection. In Proceedings of the 2016 Meeting of SIGMORPHON, Berlin,
Germany. Association for Computational Linguistics.

[Cotterell et al., 2015] Cotterell, R., Müller, T., Fraser, A., and Schütze, H. (2015). La-
beled morphological segmentation with semi-Markov models. In Proceedings of
the Nineteenth Conference on Computational Natural Language Learning, pages 164–
174.

[Creutz and Lagus, 2002] Creutz, M. and Lagus, K. (2002). Unsupervised discovery
of morphemes. In Proceedings of the ACL-02 workshop on Morphological and phono-
logical learning-Volume 6, pages 21–30. Association for Computational Linguistics.

[Creutz and Lagus, 2004] Creutz, M. and Lagus, K. (2004). Induction of a simple
morphology for highly-inflecting languages. In Proceedings of the 7th Meeting of the
ACL Special Interest Group in Computational Phonology: Current Themes in Computa-
tional Phonology and Morphology, SIGMorPhon ’04, pages 43–51, Stroudsburg, PA,
USA. Association for Computational Linguistics.

[Creutz and Lagus, 2005a] Creutz, M. and Lagus, K. (2005a). Inducing the morpho-
logical lexicon of a natural language from unannotated text. In Proceedings of the
International and Interdisciplinary Conference on Adaptive Knowledge Representation
and Reasoning (AKRR’05), volume 1, pages 51–59.

[Creutz and Lagus, 2005b] Creutz, M. and Lagus, K. (2005b). Unsupervised morpheme
segmentation and morphology induction from text corpora using Morfessor 1.0. Helsinki
University of Technology Helsinki.

[Csendes et al., 2004] Csendes, D., Csirik, J., and Gyimóthy, T. (2004). The Szeged
Corpus: A POS tagged and syntactically annotated Hungarian natural language
corpus. In International Conference on Text, Speech and Dialogue, pages 41–47.
Springer.

[De la Higuera, 2010] De la Higuera, C. (2010). Grammatical inference: Learning au-
tomata and grammars. Cambridge University Press.

[Endrédy, 2015] Endrédy, I. (2015). Corpus based evaluation of stemmers. In Vetu-
lani, Z. and Mariani, J., editors, 7th Language & Technology Conference: Human Lan-
guage Technologies as a Challenge for Computer Science and Linguistics. Poznań: Uni-
wersytet im. Adama Mickiewicza w Poznaniu, Poznań: Uniwersytet im. Adama
Mickiewicza w Poznaniu.

[Endrédy and Novák, 2015] Endrédy, I. and Novák, A. (2015). Szótövesítő pro-
gramok összehasonlítása és alkalmazásaik. Alkalmazott Nyelvtudomány, 15:7–27.

[Faruqui et al., 2015] Faruqui, M., Tsvetkov, Y., Neubig, G., and Dyer, C. (2015). Mor-
phological inflection generation using character sequence to sequence learning.
arXiv preprint arXiv:1512.06110.

[Ganter and Wille, 2012] Ganter, B. and Wille, R. (2012). Formal concept analysis:
Mathematical foundations. Springer Science & Business Media.

DOI: 10.14750/ME.2022.020

REFERENCES 123

[Gelbukh et al., 2004] Gelbukh, A., Alexandrov, M., and Han, S.-Y. (2004). Detecting
inflection patterns in natural language by minimization of morphological model.
In Iberoamerican Congress on Pattern Recognition, pages 432–438. Springer.

[Gelbukh and Sidorov, 2003] Gelbukh, A. and Sidorov, G. (2003). Approach to con-
struction of automatic morphological analysis systems for inflective languages
with little effort. volume 2588, pages 215–220.

[Goldsmith, 2001] Goldsmith, J. (2001). Unsupervised learning of the morphology
of a natural language. Computational Linguistics, 27(2):153–198.

[Goldsmith, 2006] Goldsmith, J. (2006). An algorithm for the unsupervised learning
of morphology. Natural language engineering, 12(4):353–371.

[Goldwater and Johnson, 2004] Goldwater, S. and Johnson, M. (2004). Priors in
Bayesian learning of phonological rules. In Proceedings of the 7th Meeting of the
ACL Special Interest Group in Computational Phonology: Current Themes in Compu-
tational Phonology and Morphology, pages 35–42. Association for Computational
Linguistics.

[Grätzer, 2003] Grätzer, G. (2003). General Lattice Theory. Birkhäuser Verlag.

[Grönroos et al., 2014] Grönroos, S.-A., Virpioja, S., Smit, P., and Kurimo, M.
(2014). Morfessor FlatCat: An HMM-based method for unsupervised and semi-
supervised learning of morphology. In Proceedings of COLING 2014, the 25th Inter-
national Conference on Computational Linguistics: Technical Papers, pages 1177–1185.

[Gruber, 1993] Gruber, T. R. (1993). A translation approach to portable ontology
specifications. Knowledge acquisition, 5(2):199–220.

[Hajič, 1988] Hajič, J. (1988). Formal morphology. In Proceedings of the 12th Conference
on Computational Linguistics - Volume 1, COLING ’88, pages 222–224, Stroudsburg,
PA, USA. Association for Computational Linguistics.

[Halácsy et al., 2003] Halácsy, P., Kornai, A., Németh, L., Rung, A., and Szakadát, I.
(2003). A Szószablya projekt. In Alexin, Z. and Csendes, D., editors, I. Magyar
Számítógépes Nyelvészeti Konferencia előadásai, pages 298–299.

[Hulden, 2009] Hulden, M. (2009). Foma: A finite-state compiler and library. In
Proceedings of the 12th Conference of the European Chapter of the Association for Com-
putational Linguistics: Demonstrations Session, pages 29–32. Association for Com-
putational Linguistics.

[Hulden, 2014] Hulden, M. (2014). Generalizing inflection tables into paradigms
with finite state operations. In Proceedings of the 2014 Joint Meeting of SIGMOR-
PHON and SIGFSM, pages 29–36.

[Kann and Schütze, 2017] Kann, K. and Schütze, H. (2017). Unlabeled data for mor-
phological generation with character-based sequence-to-sequence models. In Pro-
ceedings of the First Workshop on Subword and Character Level Models in NLP, pages
76–81, Copenhagen, Denmark. Association for Computational Linguistics.

[Kohonen et al., 2010] Kohonen, O., Virpioja, S., and Lagus, K. (2010). Semi-
supervised learning of concatenative morphology. In Proceedings of the 11th Meet-
ing of the ACL Special Interest Group on Computational Morphology and Phonology,
pages 78–86. Association for Computational Linguistics.

DOI: 10.14750/ME.2022.020

REFERENCES 124

[Koskenniemi, 1983] Koskenniemi, K. (1983). Two-level morphology: A general com-
putational model for word-form recognition and production, volume 11. University of
Helsinki, Department of General Linguistics Helsinki.

[Lafferty et al., 2001] Lafferty, J., McCallum, A., and Pereira, F. C. (2001). Condi-
tional random fields: Probabilistic models for segmenting and labeling sequence
data.

[Lee and Goldsmith, 2016] Lee, J. L. and Goldsmith, J. A. (2016). Linguistica 5: Un-
supervised learning of linguistic structure. In Proceedings of the 2016 Conference
of the North American Chapter of the Association for Computational Linguistics, pages
22–26, San Diego, California. Association for Computational Linguistics.

[Levenshtein, 1966] Levenshtein, V. I. (1966). Binary codes capable of correcting
deletions, insertions and reversals. Soviet Physics Doklady, 10:707.

[Lignos, 2010] Lignos, C. (2010). Learning from unseen data. In Kurimo, M., Virpi-
oja, S., and Turunen, V. T., editors, Proceedings of the Morpho Challenge 2010 Work-
shop, pages 35–38, Helsinki, Finland. Aalto University School of Science and Tech-
nology.

[Lignos et al., 2009] Lignos, C., Chan, E., Marcus, M. P., and Yang, C. (2009). A rule-
based unsupervised morphology learning framework. In CLEF (Working Notes).

[Luong et al., 2013] Luong, T., Socher, R., and Manning, C. (2013). Better word rep-
resentations with recursive neural networks for morphology. In Proceedings of the
Seventeenth Conference on Computational Natural Language Learning, pages 104–113.

[McCandless et al., 2010] McCandless, M., Hatcher, E., Gospodnetić, O., and
Gospodnetić, O. (2010). Lucene in action, volume 2. Manning Greenwich.

[McCarthy et al., 2019] McCarthy, A. D., Vylomova, E., Wu, S., Malaviya, C., Wolf-
Sonkin, L., Nicolai, G., Kirov, C., Silfverberg, M., Mielke, S. J., Heinz, J., Cotterell,
R., and Hulden, M. (2019). The SIGMORPHON 2019 shared task: Morphological
analysis in context and cross-lingual transfer for inflection. In Proceedings of the
16th Workshop on Computational Research in Phonetics, Phonology, and Morphology,
pages 229–244, Florence, Italy. Association for Computational Linguistics.

[Meyer, 2009] Meyer, C. F. (2009). Introducing English linguistics. Cambridge Univer-
sity Press.

[Miháltz et al., 2008] Miháltz, M., Hatvani, C., Kuti, J., Szarvas, G., Csirik, J.,
Prószéky, G., and Váradi, T. (2008). Methods and results of the Hungarian Word-
Net project. In Proceedings of the Fourth Global WordNet Conference. GWC, pages
387–405.

[Miller, 1998] Miller, G. (1998). WordNet: An electronic lexical database. MIT press.

[Mohri, 1997] Mohri, M. (1997). Finite-state transducers in language and speech
processing. Computational linguistics, 23(2):269–311.

[Müller et al., 2015] Müller, T., Cotterell, R., Fraser, A., and Schütze, H. (2015). Joint
lemmatization and morphological tagging with lemming. In Proceedings of the
2015 Conference on Empirical Methods in Natural Language Processing, pages 2268–
2274.

DOI: 10.14750/ME.2022.020

REFERENCES 125

[Müller and Schütze, 2015] Müller, T. and Schütze, H. (2015). Robust morpholog-
ical tagging with word representations. In Proceedings of the 2015 Conference of
the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, pages 526–536, Denver, Colorado. Association for Compu-
tational Linguistics.

[Narasimhan et al., 2015] Narasimhan, K., Barzilay, R., and Jaakkola, T. (2015). An
unsupervised method for uncovering morphological chains. Transactions of the
Association for Computational Linguistics, 3:157–167.

[Oncina, 1998] Oncina, J. (1998). The data driven approach applied to the OS-
TIA algorithm. In International Colloquium on Grammatical Inference, pages 50–56.
Springer.

[Oncina et al., 1993] Oncina, J., García, P., and Vidal, E. (1993). Learning subsequen-
tial transducers for pattern recognition interpretation tasks. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 15(5):448–458.

[Ore, 1944] Ore, O. (1944). Galois connexions. Transactions of the American Mathemat-
ical Society, 55(3):493–513.

[Östling, 2016] Östling, R. (2016). Morphological reinflection with convolutional
neural networks. In Proceedings of the 14th SIGMORPHON Workshop on Compu-
tational Research in Phonetics, Phonology, and Morphology, pages 23–26, Berlin, Ger-
many. Association for Computational Linguistics.

[Pirinen et al., 2010] Pirinen, T., Lindén, K., et al. (2010). Creating and weighting
hunspell dictionaries as finite-state automata. Investigationes Linguisticae (Online
Edition).

[Poon et al., 2009] Poon, H., Cherry, C., and Toutanova, K. (2009). Unsupervised
morphological segmentation with log-linear models. In Proceedings of Human Lan-
guage Technologies: The 2009 Annual Conference of the North American Chapter of the
Association for Computational Linguistics, pages 209–217. Association for Computa-
tional Linguistics.

[Porter, 1980] Porter, M. F. (1980). An algorithm for suffix stripping. Program,
14(3):130–137.

[Porter, 2001] Porter, M. F. (2001). Snowball: A language for stemming algorithms.

[Prószéky and Kis, 1999] Prószéky, G. and Kis, B. (1999). A unification-based ap-
proach to morpho-syntactic parsing of agglutinative and other (highly) inflec-
tional languages. In Proceedings of the 37th annual meeting of the Association for
Computational Linguistics on Computational Linguistics, pages 261–268. Association
for Computational Linguistics.

[Prószéky and Novák, 2005] Prószéky, G. and Novák, A. (2005). Computational
morphologies for small Uralic languages. In Inquiries into Words, Constraints and
Contexts Festschrift in the Honour of Kimmo Koskenniemi on his 60th Birthday, pages
116–125. Gummerus Printing, Saarijärvi/CSLI Publications, Stanford.

[Prószéky and Tihanyi, 1993] Prószéky, G. and Tihanyi, L. (1993). Humor: High-
speed unification morphology and its applications for agglutinative languages.
La tribune des industries de la langue, 10:28–29.

DOI: 10.14750/ME.2022.020

REFERENCES 126

[Ruokolainen et al., 2016] Ruokolainen, T., Kohonen, O., Sirts, K., Grönroos, S.-A.,
Kurimo, M., and Virpioja, S. (2016). A comparative study of minimally supervised
morphological segmentation. Computational Linguistics, 42(1):91–120.

[Ruokolainen et al., 2014] Ruokolainen, T., Kohonen, O., Virpioja, S., et al. (2014).
Painless semi-supervised morphological segmentation using conditional random
fields. In Proceedings of the 14th Conference of the European Chapter of the Association
for Computational Linguistics, volume 2: Short Papers, pages 84–89.

[Satta and Henderson, 1997] Satta, G. and Henderson, J. C. (1997). String transfor-
mation learning. In Proceedings of the eighth conference on European chapter of the
Association for Computational Linguistics, pages 444–451. Association for Computa-
tional Linguistics.

[Schröder et al., 2018] Schröder, F., Kamlot, M., Billing, G., and Köhn, A. (2018).
Finding the way from ä to a: Sub-character morphological inflection for the SIG-
MORPHON 2018 shared task. In Proceedings of the CoNLL–SIGMORPHON 2018
Shared Task: Universal Morphological Reinflection, pages 76–85, Brussels. Associa-
tion for Computational Linguistics.

[Senuma and Aizawa, 2017] Senuma, H. and Aizawa, A. (2017). Seq2seq for mor-
phological reinflection: When deep learning fails. In Proceedings of the CoNLL SIG-
MORPHON 2017 Shared Task: Universal Morphological Reinflection, pages 100–109,
Vancouver. Association for Computational Linguistics.

[Shalonova and Flach, 2007] Shalonova, K. and Flach, P. (2007). Morphology learn-
ing using tree of aligned suffix rules. In ICML Workshop: Challenges and Applica-
tions of Grammar Induction.

[Sharma et al., 2018] Sharma, A., Katrapati, G., and Sharma, D. M. (2018).
IIT(BHU)–IIITH at CoNLL–SIGMORPHON 2018 shared task on universal mor-
phological reinflection. In Proceedings of the CoNLL–SIGMORPHON 2018 Shared
Task: Universal Morphological Reinflection, pages 105–111, Brussels. Association for
Computational Linguistics.

[Snover and Brent, 2003] Snover, M. G. and Brent, M. R. (2003). A probabilistic
model for learning concatenative morphology. In Advances in Neural Information
Processing Systems, pages 1537–1544.

[Soricut and Och, 2015] Soricut, R. and Och, F. (2015). Unsupervised morphology
induction using word embeddings. In Proceedings of the 2015 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language
Technologies, pages 1627–1637.

[Sorokin, 2018] Sorokin, A. (2018). What can we gain from language models for
morphological inflection? In Proceedings of the CoNLL–SIGMORPHON 2018 Shared
Task: Universal Morphological Reinflection, pages 99–104, Brussels. Association for
Computational Linguistics.

[Tepper and Xia, 2010] Tepper, M. and Xia, F. (2010). Inducing morphemes us-
ing light knowledge. ACM Transactions on Asian Language Information Processing
(TALIP), 9(1):3.

[Theron and Cloete, 1997] Theron, P. and Cloete, I. (1997). Automatic acquisition of
two-level morphological rules. In Proceedings of the fifth conference on Applied natu-
ral language processing, pages 103–110. Association for Computational Linguistics.

DOI: 10.14750/ME.2022.020

REFERENCES 127

[Tordai and de Rijke, 2006] Tordai, A. and de Rijke, M. (2006). Four stemmers and
a funeral: Stemming in Hungarian at CLEF 2005, pages 179–186. Springer Berlin
Heidelberg, Berlin, Heidelberg.

[Tóth and Kovács, 2014] Tóth, Z. and Kovács, L. (2014). Induction of inflection rules
with classification and associative memory for Hungarian language. Scientific
Bulletin of the Petru Maior University of Targu Mures, 11(2).

[Trón et al., 2006] Trón, V., Halácsy, P., Rebrus, P., Rung, A., Vajda, P., and Simon, E.
(2006). Morphdb.hu: Hungarian lexical database and morphological grammar. In
LREC, pages 1670–1673. Citeseer.

[Trón et al., 2005] Trón, V., Kornai, A., Gyepesi, G., Németh, L., Halácsy, P., and
Varga, D. (2005). Hunmorph: Open source word analysis. In Proceedings of the
Workshop on Software, pages 77–85. Association for Computational Linguistics.

[Virpioja et al., 2013] Virpioja, S., Smit, P., Grönroos, S.-A., and Kurimo, M. (2013).
Morfessor 2.0: Python implementation and extensions for Morfessor Baseline.
Technical report.

[Zhao and Yao, 2006] Zhao, Y. and Yao, Y. (2006). Classification based on logical
concept analysis. In Conference of the Canadian Society for Computational Studies of
Intelligence, pages 419–430. Springer.

[Zhu et al., 2017] Zhu, Q., Li, Y., and Li, X. (2017). Character sequence-to-sequence
model with global attention for universal morphological reinflection. In Proceed-
ings of the CoNLL SIGMORPHON 2017 Shared Task: Universal Morphological Rein-
flection, pages 85–89, Vancouver. Association for Computational Linguistics.

DOI: 10.14750/ME.2022.020

	Declaration of Authorship
	Recommendation
	Summary
	Összefoglalás
	Acknowledgements
	Contents
	List of Notations
	List of Abbreviations
	List of Figures
	List of Tables
	Introduction
	Problem domain
	Natural Language Categorization
	Historical Language Families
	Linguistic Categories
	Morphological Language Classes

	Research Goals
	Dissertation Guide

	Survey of the Current Models
	Categorization of the Existing Morphology Models
	Knowledge Representation
	Dictionary Based Systems
	Rule Based Systems
	Statistical Methods
	Artificial Intelligence Based Methods

	Scope
	Single-Affix Models
	Multi-Affix Models

	Symmetry
	Asymmetric Models
	Symmetric Models

	Granularity of Analysis
	Morphological Analysis
	Segmentation
	Lemmatization
	Stemming

	Machine Learning Capabilities
	Non-Automated Training
	Supervised Training
	Unsupervised Training
	Semi-Supervised Training

	Main Baseline Morphology Models
	Two-Level Morphology
	Finite State Transducer (FST)
	Tree of Aligned Suffix Rules (TASR)
	Unsupervised Segmentation Models
	Morfessor 2.0
	MORSEL
	MorphoChain

	SIGMORPHON
	SIGMORPHON 2016
	SIGMORPHON 2017
	SIGMORPHON 2018

	Morphological Analyzers for the Hungarian Language
	Hunmorph-Ocamorph
	Hunmorph-Foma
	Humor
	Hunspell

	Conclusion

	The Analysis of Existing Hungarian Morphological Analyzers
	Similarity and Distance of Morphological Analyzers
	Analyzing the Similarities and Differences of the Morphological Analyzers
	Comparison of the Annotation Token Systems
	Recognition Statistics
	Mapping Among the Examined Morphological Analyzers
	Cumulative Distance

	Conclusion

	Single-Affix Transformation Engine Model
	Lattice Based Model
	The Theory of Formal Concept Analysis
	Levenshtein Distance Based Transformation Rule Generation
	Unit Cost Model for Levenshtein Distance Calculation
	Improved Cost Function

	The Lattice Rule Model
	Lattice Builder Algorithms
	Complete Lattice Builder
	Consistent Lattice Builder
	Minimal Lattice Builder

	Inflection Generation

	Atomic String Transformation Rule Assembler (ASTRA)
	The ASTRA Rule Model
	The Training Method of ASTRA
	Inflection Generation
	Morphological Analysis

	Experiments
	Average Training Time
	Average Size
	Average Search Time
	Average Accuracy

	Conclusion

	Multi-Affix Morphology Model
	Architecture of the Proposed Model
	The Formal Model of Concatenative Morphology
	The Training Phase of Morpher
	Performing Inflection Generation Using Morpher
	Performing Morphological Analysis Using Morpher
	Experimental Results
	Average Training Time
	Average Size
	Average Inflection and Analysis Time
	Average Accuracy
	Generalization Capabilities
	Cross-Validation with the SIGMORPHON Data Sets

	Conclusion

	Complexity Analysis and Optimization of Morpher and ASTRA
	Complexity Analysis
	Space Complexity
	Time Complexity

	Optimization Techniques
	Eliminating the Redundant Atomic Rules
	Limiting the Generalization Factor
	Indirect Noise Reduction

	Empirical Analysis of the Optimization Parameters
	Evaluation
	Comparison with the Baseline Morpher Model
	Average Training Time
	Average Size
	Average Inflection and Analysis Time
	Average Accuracy

	Using Big Training Data Volumes
	Average Training Time
	Average Size
	Average Inflection and Analysis Time
	Average Accuracy

	Conclusion

	The Reference Implementation of the Morpher Ecosystem
	The Training and Evaluation Data Generation Process
	The Layers of the Morpher Ecosystem
	Morpher Framework
	Morpher Core
	Morpher Transformation Engines
	Morpher Language Handlers
	Morpher Engines

	Morpher API
	Morpher Client

	Conclusion

	Conclusion
	Contribution
	Future work

	Mapping of the Examined Annotation Token Systems
	Author's Publications
	References

