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RECOMMENDATION OF THE SUPERVISOR
TO THE PHD THESIS

VIBRATIONS AND STABILITY OF HETEROGENEOUS
CURVED BEAMS

by Lészlo Péter Kiss

As is well known curved structural elements have been used successfully in various engi-
neering applications for their favorable load carrying capabilities. One can mention, without
striving for completeness, arch bridges or stiffeners in roof- and shell structures etc. With
technology developing and production volumes increasing it is gradually getting cheaper to
manufacture heterogeneous or inhomogeneous curved beams, such as composites, laminates,
sandwich structures. The thesis by Laszlo Péter Kiss is aimed to solve some (altogether
three) fundamental problems concerning the mechanical behavior of heterogeneous curved
beams.

The first objective is a generalization of some classical results valid for homogeneous
materials. These investigations have yielded some elementary relationships that can be used
to determine the stress state in the heterogeneous curved beam by hand made calculations.
The second objective is to develop a new nonlinear model for non-strictly shallow curved
beams from the principle of virtual work. This model makes it possible to determine the
critical load both for symmetric snap-through and antisymmetric bifurcation buckling if the
heterogeneous curved beam is subjected to a central load at the crown point. Pinned-pinned,
fixed-fixed and elastically restrained beams are considered. The third objective is to clarify
what effect the central load has on the frequency spectrum of the heterogeneous curved
beam. The solution is based on reducing the corresponding eigenvalue problems to those
governed by Fredholm integral equation systems.

The thesis systematically deals with the three problems and does its best to find ap-
propriate solutions. The numerical results were determined by developing and successfully
running three programs which were coded in Fortan 90. This work needed a great care but
Laszlo Péter Kiss solved this issue successfully.

As a scientific supervisor I should emphasize that Laszlo Péter Kiss is a hard working
and diligent young man who did his work paying careful attention to every detail. The
results achieved have been published regularly (four papers have come out and one paper is
accepted) by fulfilling the requirements of the Istvan Salyi Doctoral School for publications
in this way.

The thesis presents the research work an its results in a clear and well-arranged manner:
the numerous figures provide a further help for the reader to understand what effect the
various parameters have on the results (critical loads and natural frequencies). In accordance
with the three objectives the three statements in the summary can be regarded as a short
synopsis of the most important results.

Gyorgy Szeidl, DSc

Biikkszentkereszt, 27 April 2015 Professor Emeritus
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Nomenclature

Here the most important and most commonly used notations are gathered in alphabetical
order. Although each notation is described in the text when first used, this Nomenclature
might come handy at times.

Latin symbols:

A A cross-sectional area, segment area (see Figure 2.3),
A, A, E-weighted areas,
Acr E-weighted reduced area,
A;, B, matrices in the representation
of the Green function matrix (j = 1,2, 3,4),
Ce E-weighted centroid of the cross-section,
€, ey, e orthogonal unit vectors,
E(n,¢) Young’s modulus,
E Green-Lagrange strain tensor,
EY nonlinear part of the Green-Lagrange strain tensor,
EL linear part of the Green-Lagrange strain tensor,
fns [t distributed forces in the directions (, &,
G shear modulus of elasticity,
G Green function matrix,
Gij the ij-th element of the Green function matrix (7,7 = 1,2),
H Heaviside function,
Te E-weighted radius of gyration,
I.r E-weighted reduced moment of inertia,
I, E-weighted moment of inertia with respect to the axis 7,
I, moment of inertia with respect to the axis 7,
ki, ke, Ey each one is a torsional spring stiffness,
K~y shear correction factor,
by, L, lengths of a straight beam, rod,
m, m geometric-material parameters, m = Afef: 5 = + 1,

Mhpet, Mhom

M

N

PC> P§
PChet; PC hom

parameters for heterogeneous and homogeneous beams,

bending moment,

axial force,

concentrated vertical and horizontal external forces,

critical loads for heterogeneous and homogeneous curved beams,
critical dimensionless load,

P dimensionless load,

(]

P coefficient matrix (i = 1,2, 3,4),

Qer E-weighted reduced first moment,

Qen, Q’e77 E-weighted first moment of the cross-section or its segment A’,
S arc coordinate,

S dimensionless spring stiffness,

S the second Piola-Kirchhoff stress tensor,

t time,

u displacement vector,

Uy, Uy, W, displacements of the centerline in the directions &, 1, C,
U total strain energy,
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total strain energy from shearing,

strain energy from shearing per unit length,

dimensionless displacements in the directions &, (,
dimensionless displacement increment amplitudes,

shear force,

dimensionless displacement of the crown point,

the column vector that contains the displacement amplitudes.

Greek symbols:

zbor]
(G

eigenfrequency,

the 7-th natural frequency of straight beams,

the 7-th natural frequency of heterogeneous curved beams,
the i-th eigenfrequency of loaded heterogeneous curved beams,
angle distortion,

axial strain,

linearized axial strain on the (F-weighted) centerline,
nonlinear axial strain on the (F-weighted) centerline,

critical axial strain,

¢ coordinate of the neutral axis,

¢ coordinate of the cross-section segment A’

semi-vertex angle of the curved beam,

included angle of the curved beam,

curvature change on the centerline,

modified slenderness,

eigenvalue, proportional to the square of the eigenfrequencies,
Poisson ratio,

coordinate axes of the applied curvilinear coordinate-system,
average density of the cross-section,

initial radius of the (E weighted) centerline,

radius of the neutral axis,

normal stress,

shear stresses,

angle coordinate,

parameter, x? = 1 — me,, if me < 1, otherwise y? = me,, — 1
tensor of infinitesimal rotations,

rigid body rotation on the centerline about the axis 7,

angle coordinate.

Further notational conventions:

(.)®
2,
L)
(...)

the i-th derivative with respect to the angle coordinate,
denotes the increments of some physical quantities,

denotes the quantities that belong to the buckled equilibrium,
denotes virtual quantities,

Hamilton operator.
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CHAPTER 1

Preliminaries & Aims

1.1. Heterogeneous curved beams

Curved (circular, parabolic, sinusoidal, shallow, deep, etc.) beams are widespread used in
various practical engineering applications for their favourable load carrying capabilities. We
mention, for instance, arch bridges and their role as stiffeners in roof- and shell structures.
Moreover, they can have vital functions as machine parts: like crane hooks or clampers.

Beams are said to be curved when the so-called centerline (or centroidal axis) has an
initial curvature. For circular beams this curvature is apparently constant.

In many applications, for geometrical reasons, curved beams are more suitable than
straight ones. Let us see a simple example. If we consider a straight and a curved beam —
both loaded in the middle — then the straight member is subject to shear and bending while
the curved beam is besides under compression. This latter kind of stress is generally the
most preferred one and, for this property, the load carrying capabilities improve with less
deformations. Therefore, in many cases, curved beams better withstand loads.

With technology developing and production volumes increasing it is gradually getting
cheaper and cheaper to manufacture nonhomogeneous (heterogeneous or inhomogeneous)
curved beams, such as composites, laminates, sandwich structures, etc. The benefits of such
structural members can be the reduced weight, improved corrosion, fatigue and chemicals
resistance and higher strength. Thus, there is a continuous need to develop appropriate
mechanical models predicting the behavior of these members under loading.

¢ N ¢

F L
E2 C(—) »T’
IC=C, -1 fC C
1]
o E(()

E oo%ooo

1 0000000

\

FIGURE 1.1. Some possible nonhomogeneous symmetric cross-sections.

A class of inhomogeneity (heterogeneity) this thesis aims to deal with is called cross-
sectional inhomogeneity. It means that the material parameters, like Young’s modulus F
and the Poisson ratio v can be functions of the cross-sectional coordinates 7, assuming
that the symmetry relations E(n,() = E(—n,() and v(n,({) = v(—n,() are satisfied. The
material distribution can be continuous, or constant over each segment of the cross-section.
In Figure 1.1 point C' denotes the geometrical center, and C, is the E-weighted centroid. For
circular beams with cross-sectional inhomogeneity, I intend to deal with three mechanical
issues as detailed in the forthcoming.
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1.2. Stresses in curved beams

The mechanical behaviour of curved beams has been a topic of interest since the 19"
century. The very first related source — found by the author — is a book by Bresse |1]. He
managed to establish relations between the displacement field and the axial force and bending
moment. Winkler [2] was the first to propose a formula for the normal stress distribution in
curved beams. Meanwhile, Grashof is known for introducing an equilibrium method for the
calculation of the shear stress [3|. The early results and many additional citations are well
collected in the scientific works [4,5,6,7].

Curved beams are still subject to intense interest by scientist. On the one hand because
of their important role and advantageous properties in various structures and on the other
hand due to the spread of nonhomogeneous members.

Well-known formulae for the stress distributions, the deflections of homogeneous straight
and curved beams under concentrated and distributed loads can nowadays be found in a
bunch of scientific works (books, articles, lecture notes) — see, e.g. [8,9,10,11,12,13,14,15|.
Interestingly, it seems that the relation for the normal stress distribution by Winkler is
attributed to Grashof in Hungarian textbooks — see, for instance, [8,12,13] on contrary
to [16] by Timoshenko. The reason for this misuse might be due to the results achieved by
Grashof for cylindrical shells.

There are also some recent and at the same time relevant results which are worthy of
mentioning here. A common thing of these is the assumption of a linearly elastic, isotropic
constitutive equation.

Tolf [17] analytically investigates stresses in bent curved beams made of fibre-reinforced
plastic. He finds that the homogeneous model approximates the stresses quite well indeed.
Ascione and Fraternali [18] use a penalty-technique for curved laminated Timoshenko beams,
including warping effects. They have developed a finite element technique to obtain the
stresses. Segura and Armengaud [19] propose simple analytical formulae for the normal and
shearing stresses under bending loads. The normal stress distribution due to the bending
moment and axial force is hyperbolic over the cross-section. In addition, the authors have
extended Bredt’s formula for composite curved beams in order to obtain the shear stresses.
Venkatarman and Sankar [20] contribute to the static analysis of straight sandwich beams
with functionally graded core using the Euler-Bernoulli hypothesis. Young’s modulus varies
exponentially over the beam thickness. Aimin [21] determines the shear stresses in curved
composite beams after deriving the governing integral equations. In this way not only the
equilibrium equations but also the boundary conditions are satisfied. Ecsedi and Dluhi
[22] analyse the static bending problem of nonhomogeneous non-shear deformable circular
beams and rings. Daouadji et al. [23] investigate functionally graded straight cantilever
beams (Young’s modulus varies continuously through the thickness) from the aspect of a
stress function approach. Ecsedi and Lengyel |24| consider two-layered elastic circular Euler-
Bernoulli beams with weak shear connection (interlayer slip) and provide exact solutions to
the displacement and stress fields.

Using the core idea of cross-sectional inhomogeneity [8,25] it is my

OBJECTIVE 1 to generalize some classical results valid for homogeneous materials in
simple closed-form. These investigations would lead to the following results:

— Generalization of two elementary relationships (valid for homogeneous curved beams),
that provide the normal stress caused by an axial force and a bending moment, for
curved beams with cross-sectional inhomogeneity.

— Setting up a further formula for computing the shearing stress.

— In addition, a formula for the shear correction factor should also be derived.



DOI: 10.14750/ME.2016.008
Preliminaries & Aims 3

— The new results for the stresses should be compared with finite element (FE) com-
putations.

1.3. Stability issues of curved beams

As buckling of beams is a common way of failure in engineering applications, it has
been an important subject to investigations for quite a while. The pioneer of this field
is Buler who, in 1757, published his well-known formula for the critical (buckling) load
of straight bars under compression [26]|. Since then, a vast amount of novel models have
been established. These analytical /numerical investigations include in-plane/out-of-plane,
static/dynamic, elastic/elasto-plastic stability of shear-deformable/non-shear-deformable
shallow/deep circular/sinusoidal/ parabolic homogeneous/heterogeneous isotropic/anisotro-
pic 1D/3D curved beams/arches with stiff/elastic supports under concentrated/distributed
time-independent /dependent loads. A suitable collection of some relevant results can be
found in recent textbooks [27,28,29,30|.

The foremost models concerning the static elastic stability of curved beams were based
on the inextensibility of the centerline — see, e.g. article [31] by Hurlbrink, who managed
to determine the critical pressure of clamped beams. Then Chwalla and Kollbrunner made
a huge progress [32] as they showed that the extensibility of the centerline should be ac-
counted, otherwise the mechanical models can significantly overestimate the critical load.
An extract of the most important results achieved before the 1960s is gathered in book [33]
by Timoshenko.

Stability issues got in the spotlight during the 1960s. Book [34]| by Bolotin, among
many other topics, is devoted to the dynamic stability of elastic systems involving, e.g.
(curved) beams. In [35], Schreyer and Masur provide exact analytical solution for a fixed-
fixed shallow arch with rectangular cross-section. Papers [36,37| by DaDeppo are devoted
to the determination of the critical load of deep circular beams, which are subjected to a
vertical force. Assuming an inextensible centerline, it is shown that quadratic terms should
be accounted in the analysis. Papers [38,39]| by Dym are concerned with the buckling and
post-buckling behaviour of pinned shallow arches under dead pressure using a continuum
model. A summary of these results is also published in book [40]. Thesis [41] by Szeidl
uses analytical methods to determine the Green function matrices of extensible pinned and
fixed circular beams and, moreover, determines not only the natural frequencies but also
the critical loads if the beams are subjected to a radial dead load whose Fourier series is
known. As regards the dynamic behaviour of curved beams survey papers [6,7,42| provide
an adequate collection.

There have also been many attempts to tackle the stability problem using a finite element
(FE) algorithm under various assumptions — see, e.g. [43,44,45,46|. Although higher-order
curvature terms are not included into these models, the authors assume that the membrane
strain is a quadratic function of the rotation field, while the bending moment is linear in terms
of the generalized displacements. Dawe [47| approximates deep and shallow arches using
the theory of shallow members. More strain-displacement hypotheses are tested (Vlasov,
Marguerre) as well as multiple curved elements. A conclusion is that the use of shallow
elements for deep arches might result in substantial errors. Fifth-order polynomials seem
to provide excellent results even for a sole element. His subsequent work |48] is based on
the deep-arch theory for the approximation. Loula et al. [49] use the Hellinger-Reissner
variational principle and introduce the so-called mixed Petrov-Galjorkin FEM for shear-
deformable circular beams. A benefit of this technique is that there is no membrane or shear
locking. Flores and Godoy [50] discretise 3D continuums to determine the critical load both
for limit point and bifurcation buckling. Pi et al. [51] develop a nonlinear model which is
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based on finite rotations. They account for the pre-buckling deformations which — according
to the authors — happen to be significant.

Palazotto et al. |52, 53| assume large displacements and rotations and compare five
models for the stability of straight and curved beams. Paper [54| by Szabo is devoted, among
others, to the issue of how to incorporate the fact that the body considered (a circular ring)
can have a rigid body motion into the stability investigations. Rajasekaran [55] deals with
the stability and vibrations of curved beams with a new differential transformation element
method: instead of one sixth-order differential equation the author solves six first-order
equations.

In the open literature from the recent past, interestingly, there can scarcely be found
account for elastic supports. However, as structural members are often connected to each
other and they provide elastic restraints, it is worth including these effects. The rotational
restraints or those obstructing the displacements can hugely affect the critical load |56,57|.
Plaut accounts for stiffening elastic supports in [58]. Yang and Tong [59] consider horizontal
elastic supports and a vertically distributed uniform load when investigating arches with a
linear model.

Nowadays, Pi, Bradford and their co-authors have been contributing to the stability of
homogeneous (mainly shallow) arches through thoroughly investigating their new geomet-
rically nonlinear model. Pi et al. have evaluated it for various loads (distributed, concen-
trated) and boundary conditions (pinned, fixed, elastic supports, mixed supports, etc.) —
see |56,57,60,61,62,63,64|. Some of these articles also involve investigations concerning the
post-buckling behaviour. The authors have drawn the conclusion that both the pre-buckling
deformations and the nonlinearities have substantial effect on the permissible load. Progress
has also been made in the dynamic stability of shallow arches [65,66,67]. In the previous
articles the loading is a sudden concentrated or distributed force. The core idea is based on
the method of conservation of energy. It has turned out that the dynamic critical load is
always lower than the static.

A common thing of the previously cited works is the assumption of a homogeneous
material. Shafiee et al. [68], among other topics, study functionally graded (FGM) curved
beams from the aspect of in- and out-of-plane buckling behaviour. The linear model leads
to an eigenvalue problem. Kim and Chaudhuri [69] consider the post-buckling behaviour
of laminated thin shallow arches under a concentrated load at the crown point with the
aid of the Rayleigh-Ritz method. The infinitesimal rotations are nonlinear as in most of the
formerly mentioned articles. Xi et al. [70] assume FGM arches (the material composition can
vary in the direction of the thickness) under uniformly distributed radial follower load and
geometric nonlinearities to tackle the stability issue. Article [71] by Vo and Thai is devoted
to the stability and vibrations of composite beams using a refined shear deformation theory.
Parabolic variation of shear strains through the depth of the beam is assumed. Fraternali
et al. 72| have developed a geometrically nonlinear FE model to investigate the stability
and post-buckling behaviour of composite curved beams. The rotations and shear strains
are moderately large and the material is bimodular. Bateni and Eslami [73] use the same
kinematical hypotheses as in [61] but the arch is made of FGM — the material composition
follows the Voight-rule of mixture.

On the basis of this overview, no examinations have been carried out concerning the
stability problem of circular beams under the assumption of cross-sectional inhomogeneity.

Within the frames of what has been written above my

OBJECTIVE 2 is summarized in the following two items.

— I intend develop a new nonlinear model for non-strictly shallow curved beams from
the principle of virtual work. It is aimed to be more accurate than, e.g. [61,74] and
should be applicable to cross-sectional inhomogeneity as well.
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— I aim to evaluate the new model for pinned-pinned, fixed-fixed and rotationally re-
strained supports provided that the beam is subjected to a central concentrated load
at the crown point. This would involve the determination of the critical loads both
for symmetric snap-through and antisymmetric bifurcation buckling. At the same
time the typical buckling ranges and its endpoints are also sought. Comparison of
the results with those available in the literature and with the Abaqus commercial FE
software is also an objective.

1.4. Vibrations of curved beams

The first source (found by the author) in relation with the free vibrations of curved beams
is article |75] by Den Hartog, published in 1928. Further notable contributions in the middle
of the last century were devoted to this topic in [76,77,78,79]. All these works assume the
inextensibility of the centerline.

Szeidl in his PhD thesis [41] investigates how the extensibility of the centerline can affect
the free vibrations of planar circular beams under a constant radial load. The applied theory
is linear. The author obtains solutions using numerical procedures. One of these is based
on the Green function matrix. With this in hand, the related boundary value problem is
transformed to a problem governed by Fredholm integral equations. Three important survey
papers were devoted to the vibrations of curved beams during the 1980-90s: |6] by Markus
and Nanasi, [42]| by Laura and Maurizi, and |7] by Chidamparam and Leissa.

Qatu and Elsharkawy provide exact solutions to the free vibrations of laminated deep
arches in [80|. Kang et al. [81] determine the frequencies (eigenvalues) for the in-plane
and out-of-plane vibrations of circular Timoshenko arches. Both rotatory inertia and shear
deformations are accounted. The differential quadrature method is used to get the solu-
tions. Tiifek¢i and Arpaci [82] managed to gain exact analytical solutions for the in-plane
free harmonic vibrations of circular arches. The authors account for the extensibility of
the centerline and also for the transverse shear and rotatory inertia effects. Krishnan and
Suresh [83] developed a shear-deformable FE model to tackle the problem. When there
is a constant vertical distributed load, article |[84] by Huang presents some solutions. Pa-
per [85] by Kanga et al. takes point discontinuities, like elastic supports and masses, into
account when dealing with the free vibrations. Ecsedi and Dluhi [22] analyse some dynamic
features of non-homogeneous simply supported curved beams and closed rings. Here the
kinematical hypothesis is formally different but mathematically equivalent to that I use in
the forthcoming investigations.

Article [86] by Lawther is also worthy of mentioning as it tackles the problem of how a
pre-stressed state of a body can influence its natural frequencies. He concludes that for multi-
parameter problems the eigenvalue of the related solution is described by interaction curves
in an eigenvalue space and every such eigenvalue solution has an associated eigenvector.
If all points on a curve have the same eigenvector it means that the curve is actually a
straight line. Ozturk [87] presents a FE model for the free planar vibrations of curved
beams. The model is derived from cantilever beams, which are under a vertical force at
the free end by fixing it after the deformations. Elastic foundations are taken into account
by Calim [88]. Hajianmaleki and Qatu [89] consider laminated curved beams. Survey
paper [90] by the previous two authors reviews the recent past with many citations included.
Kovéacs |91] deals with the vibrations of layered arches assuming the possibility of both
perfect and even imperfect bonding between any two nearby layers. Wu et al. [92| obtain
exact solutions (determine the zeros of the frequency determinant) when the curved element
carries concentrated elements, including mass moments and inertias. Article [93] by Juna
et al. is devoted to the free vibrations of laminated curved beams using the trigonometric
shear deformation theory. The dynamic stiffness matrix is obtained from the exact solutions
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of the related differential equations. This paper is in fact the sequel of [94]| which deals with
straight beams. Nowadays, the dynamic behaviour of FGM straight and curved beams are
also of increasing interest — see, e.g. |95,96,97,98,99|.

Overall, in the open literature there are few solutions devoted to the vibrations of beams
using the Green function. Here we mention some of these. Szeidl et al. [100]| determine
the natural frequencies of pinned and fixed circular arches under a distributed load using
this technique. Kelemen [101] extends the former investigations. She provides the natural
frequencies as a function of a constant distributed load. Abu-Hilal [102] investigates the dy-
namic response of prismatic damped straight Euler-Bernoulli beams subjected to distributed
and concentrated loads. The author obtains exact solutions. Li et al. [L03] investigate the
forced vibrations of straight (Timoshenko) beams. The beam is under a time harmonic con-
centrated load. Damping effects at the ends are taken into account. There are also some
further attempts to investigate the dynamic behaviour of structures (response under periodic
loads, displacements, etc.). Lueschen and Bergman [104] investigate uniform Timoshenko
beams after providing the exact expression of the corresponding Green function. Foda and
Abduljabbar [105| and Mehri et al. [106] determine the deflections and present parametric
studies of a straight beam under the effect of a moving mass. Kukla and Zamojska [107]
deal with the free vibrations of stepped beams. It seems, however, to be an open issue how
a central concentrated load affects the in-plane vibrations of heterogeneous circular beams
if they are pinned-pinned or fixed-fixed at the endpoints.

Within the frames of what has been mentioned above

OBJECTIVE 3 is related to the in-plane vibrations of loaded circular beams with cross-
sectional inhomogeneity. In details, my goals are

— to derive those boundary value problems which can make it clear how a radial load
affects the natural frequencies of pinned and fixed beams,

— to construct the Green function matrix for pinned-pinned and fixed-fixed beams by
taking into account that the central load at the crown point can either be compressive
or tensile (four Green function matrices are to be determined),

— to reduce the eigenvalue problems set up for the natural frequencies (which depend
on the load) to eigenvalue problems governed by homogeneous Fredholm integral
equation systems (four integral equation systems should be established),

— to replace these eigenvalue problems with algebraic ones and to solve them numeri-
cally,

— to clarify how the vertical force at the crown point affects the frequencies of the
vibrations (if there is no concentrated force, it is expected to get back the results
valid for the free vibrations),

— to verify some results by FEM or by experimental studies.
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CHAPTER 2

Stresses in heterogeneous circular beams

2.1. Kinematical hypothesis

The investigations are carried out in the orthogonal curvilinear coordinate system that is
shown in Figure 2.1. Lagrangian description is applied throughout this thesis. It is assumed
that (a) each cross-section is uniform and symmetric with respect to the axis ¢ [consequently,
the beam is symmetric to the coordinate plane (£ = s,()]; (b) the E-weighted first moment
of the cross-section with respect to the axis n — this quantity is denoted by ()., — is equal to
7Z€ero:

Qen:/AE(n,C)CdAzo (2.1.1)

and (¢) Young’s modulus £ and the Poisson ratio v are functions of the coordinates 7, ¢ in
such a way that £ = E(n,() = E(—n,() and v = v(n,() = v(—n,() — this distribution is
called cross-sectional inhomogeneity [25]. The axis £ = s intersects the plane of the cross-
section in the point C,, which is referred to as the E-weighted center of the cross-section (in
contrast to the point C', which is the geometrical center of the cross-section).

The coordinate line £ = s is the F-weighted centerline (or centerline in short) of the
curved beam and s is the arc coordinate.

For the sake of later considerations we shall introduce the concepts of the E-weighted
area (tensile stiffness) and moment of inertia (bending stiffness) with respect to the axis #:

Ae:/AE(n,C) dA Ien:/AE(n,() C2dA (2.1.2)

These notions have previously been introduced for straight beams in paper [25]| by Baksa
and Ecsedi.

FIGURE 2.1. The coordinate system and the E-weighted centerline.

The orthogonal unit vectors e¢(s), e, and ec(s) of the coordinate lines &, 7 and ¢ are
shown in Figure 2.1. Let p, be the constant radius of the E-weighted centerline in the initial
configuration. It is easy to check that e¢(s), and e.(s) satisfy the relations

d 1 d 1
f = —Eeg , % = Eeg and e x e; = e, = constant . (2.1.3)
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The symbol x denotes the vector product, while the Hamilton operator V assumes the form

po O
st a T ac
We further assume that (a) the cross-section has a translation and a rigid body rotation
about the axis 7, i.e. it remains a plane surface during the deformations and (b) the deformed

centerline remains perpendicular to the cross-section (Euler-Bernoulli theory). Under these
conditions

(2.1.4)

u = U, + YoyCes = woec + (Uo + Yoy ()es (2.1.5)
is the displacement field of the cross-section, in which u, = u.e¢ + w,e¢ and ¥ = ,,e, are
the displacement vector and the rotation on the E-weighted centerline, respectively. As is
well-known the cross-product

1
P = —§(u x V) (2.1.6)
yields the rigid body rotation. Thus

1 po O 0 0
Yleo = Yoney = — 9 (woee + (1o + Yonl)ee) x (po +(Os ¢ * " " a_CeC> (=0 -
1 u, dw,
=5\ 5 e a7

is the rotation on the centerline, that is

u, dw,
on = — — . 2.1.8
¢ m po dS ( a)
It is the only nonzero coordinate in the antisymmetric tensor of infinitesimal rotations ¥:
1
T =5oV-Vou), y=1tyl=o=1vo=ec ¥ e, ve=1vo=1t=1vy=0.
(2.1.8b)
Further, we have the curvature change in the form
dtbon d /dw, u,
2 = gy = —— - 2. 2.1.
ds : ds ( ds Po) (218
With the diadic product
po O 0 0
uoV = [wOeC—i-(uo—l—wonC)eg] o ( O—l—C% g—i-&—nen—i-a—CeC) —
_ Po duo Wo dqvbon
e (G e ecoeer

in hand we get the axial strain in the linearized Green-Lagrange strain tensor E* as

1
ge = eg-EL-egzeg-E(uov—l-vou)-eg:

Po  (du, w, diby, > Po
= 24 2y = Eoe + CRy) . 2.1.10
po+C(dS Po dsc po+C( e+ Gro) ( )
Here q
Uy W,
Cog = 5£’g:o T s Z (2.1.11)

is the axial strain on the E-weighted centerline.
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Some so-called E-weighted reduced quantities like the reduced area, first moment and
moment of inertia are defined by the following relations

_ Po — Po - . 2
Acr = /A pot ¢4, Qen = /A oA o /4 O sz(ﬁm

We shall now clarify how these are related to A., Q, and I.,. Using the power series of the
fraction p,/ (p, + ¢) we have

2
A= | (1 LT > B4 = [ Eoda- - [ B.0cda -
A ;,_/ po;,_/

pO po
Ae Qen
= A, — Qen _ A, (2.1.13a)
Po
¢ ¢
QeR:/ 1——+—2—... CE(U,C)dAg
A o o)
1 2 Ier] [en
= [ CEMm,Q)dA— — [ CE(n,Q)dA=Qey — — = —— (2.1.13b)
A . pO\A , Po Po
Qen 8
and )
Iep = / <1 _L + % — ) CE(n,()dA =1, (2.1.13c)
A pO po

because (), = 0 — see (2.1.1). For homogeneous beams we shall use the notations AE, Q,F
and I, E instead of A., Q, and I,,.

2.2. Formulae for the normal stress distribution

2.2.1. Generalization of the Grashof formula. It is clear that the axial force and
the bending moment are

N:/O'gdA, M:/CO'SdA (221)
A A

In the sequel we shall assume that the inequality o¢ > 0,,, o concerning the normal stresses
in the second Piola-Kirchhoff stress tensor S holds. Thus, equation o = E(n, {)e¢ is Hooke’s
law. Upon substitution of Hooke’s law and then equation (2.1.10) into (2.2.1); we have

Po Po
N =¢, / En,)dA+ HO/ Em,()(dA = e,e Acr + KoQer - 2.2.2a
£Ap0_|_< (n,¢) W PetC (n,¢)¢ ¢ AeR Qer ( )

As for the bending moment, in a similar way, we obtain

Po Po 2
M=¢, E(n,)(dA + I{O/ E(n, dA = c,eQur + Kolor . 2.2.2b
[ P B Ak, [ P B0, OCAA = eQunt uln . (22:20)

After solving equation system (2.2.2) we get c,¢ and &, in terms of the inner axial force N
and bending moment M:

1 1
ot = =3 MQ R — NI R) Ko = —5 7
. gR - AERIGR ( ‘ ‘ ) ’ (25R - ACRIER
Let us now insert these solutions into equation (2.1.10). In this way we get the ’exact’ axial
strain as a function of N and M in such a way that

_ P 1 B B B
= po+C Acrlor — Q2 [(Ier = CQer) N = M (Qer — CAcr)] - (2.2.4)

(NQer — MAcg) . (2.2.3)
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With the former expression in hand we can rewrite the formula for the normal stress:

o 1
P p+§ A rl.r — 2R [(IeR o CQeR) N — M(QeR - CAeR)] .
e (2.2.5)

In the sequel an attempt is made to simplify (2.2.5). Concerning the denominator, the
following approximation holds

2 1 12 11,
AeR]eR <1 - —eR) ~ AeRIeR (1 Y d ) - AeR]eR (1 ) & ) x~ AeRIeR

o¢ = E(n,()ee = E(n, ()

]eRAeR PO AeR]eR ,00 AeR
(2.2.6)
since
1 1
j R S——
7 2 A
Owing to this result we can equivalently rewrite formula (2.2.4) in the form
Po 1
~ Ier — er) N —M eR — Ae =
&¢ o+ C Apln [(Ier — CQcr) (Qer — CAcr))
e o N e o
:(1—§QR> P +(— Qer +<> Po M (2.2.7)
IeR Po T C AeR AeR]eR IeR Po T C
Recalling approximations (2.1.13) one can easily accept the validity of equations
. 11, 1 1 o M M
Qer [ Ll 11 »p ~ . (2.2.8)
IeR Po [eR Po Po Po + C AeR PerR

Substituting now the last two expressions into (2.2.7) and then the strain into Hooke’s law,
we arrive at

N, M M s g). (2.2.9)

oe = E(n, -— + +

¢ (77 C) (AeR perR ]eR Po + C
This equation can be considered as the generalization of the Grashof (Winkler) formula,
which is valid only for homogeneous curved beams. It can be compared with, e.g. (10.10)

in [13]:
N M M p,
= — — . 2.2.10
7t (A+POA+]Rpo+C<> ( )

2.2.2. The normal stress under pure bending. English textbooks often contain a
formula for the normal stress under the assumption of pure bending — see, for instance,
equation (4.71) p. 224 in [11]. Our aim is to generalize the cited equation for heterogeneous
circular beams. Figure 2.2 displays the cross-section and the geometrical meaning of some
notational conventions: (, is the coordinate of the neutral axis with radius p,, and the radius
of an arbitrary point P on the cross-section with coordinate ¢ is r (r = p, + (). For pure
bending — based on the exact equation (2.2.5) —

Po 1
o =F 7’],C CAeR_QeR M 2.2.11
¢ ( )po =+ CAeR[eR - zR ( ) ( )
is the stress distribution. We intend to manipulate it into a similar form as published in [11].
The comparison will be carried out on page 12.
As a first step we shall determine the location of the neutral axis, where o, = 0. Based
on (2.2.11) its location can be obtained from

QeR = Co AeR 5 (2212)
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r=po+¢

FIGURE 2.2. Some geometrical notations over the cross-section.
or which is the same from equation

QeR - (po + Co - po) AeR = (ﬁo - po) AeR = perR - PerR . (2213)
Therefore
D, = Qer Po (2.2.14)
AeR

is the radius sought. Upon substitution of A.z and Q.r from (2.1.12) this radius assumes
the form

fA WCCLdA [ E0.Q)¢tdA + g2 [, Ba9qa

ﬁo po
L E(n,()dA oo, B
_ p_lo fA E(%C)C%"d/l —+ Po fA E(::C)dA -
: fAMdA a
[ B2qa 4 p, [, 2 nch I, [ UCC_i_pE(Zg)}dA
_ [ = [, B29dA =
CLE@O[E+2]da S EmC [f,jfg}dA [ B0
s foEadas [ EbOa

If the modulus F is constant the above equation coincides with formula (4.66) in [11].
We proceed with the determination of the normal stress. With equation (2.2.14), the
term in parentheses in (2.2.11) can be rewritten:

CAeR - QeR = (T‘ - po) AeR + PerR - ﬁerR - (’I" - ﬁo) AeR . (2215)

Taking the inequality A.pl.r > Q75 into consideration and substituting back the previous
term into equation (2.2.11) we obtain

7= E(n, - MP- (r —7,) (2.2.16)
eR

One ultimate question is how to transform the quotient p,/I.r into a more favourable form.
All the necessary transformation steps are detailed hereinafter

e = [ B.0%¢an = [ B.0p o ecaa -

_ T=Porqa = A— 2L pda =
[ Bw.n Lo = g, [ B.0A= [ B0.Os0 =
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_ _ oL _ 2 s [ E0Q 4
—m@m'AEWKMOO'pJWL—;@AEWKMA+%%; dA =

r

,
0
E 3
=—£&+£/ WKMA:&(@_@):
A r Po
74'0
— 2
— Ap] (? - 1) — Aepi(u) = -ALeg, . (2217)
pO pO o
If we introduce the notation e = —(, and substitute the result obtained into formula (2.2.16)
we arrive at the
M r—>p
= F - 9 2.2.18
oe=EmC) -, ( )

final form of the normal stress. This equation is the extension of formula (4.71) p. 224
in [11] for beams with cross-sectional inhomogeneity. The formula cited is

M r—p,
O'SZT A €

if we use our notations and coordinate system.

(2.2.19)

2.3. Formula for the shear stress

The next goal is to derive closed-form solution for the calculation of the shear stress. Equi-
librium equations will be used for this purpose. This approach results in a relatively simple
formula, however, it has the drawback that the kinematical equations are not completely
satisfied. The basic concept is well known from the theory of straight beams: we divide a
short portion of the beam into two parts and then analyse the equilibrium conditions of one
part.

FIGURE 2.3. The investigated portion of the beam.

Consider Figure 2.3 which shows a finite portion of the curved beam with cross-sectional
inhomogeneity. The left cross-section with arc coordinate sg is fixed and the coordinate
s > sp of the right cross-section is regarded as a parameter. We shall use the following
assumptions:

(1) the shear stresses T¢ = T,¢c€, + T¢ceec on the line ¢ = ¢ = constant intersect each
other in one point which coincides with the intersection point of the tangents to the
contour of the cross-section at ¢ = ¢ = constant. Consequently, 7,¢(1) = —7e(—7),
which means that 7,¢(n) is an odd function of 7.

(2) The shear stress 7 is constant if ( = constant.
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(3) The bending moment M and the shear force V; are related to each other via equilib-
rium condition
— = -V 2.3.1
P ¢ (2.3.1)
(4) The normal stress o¢ can be calculated from equation (2.2.9), for which, we assume
N = 0 — there is no axial force in the cross-section.

For calculating the shear stress 7. let us consider the part of the beam with outlines
drawn in thick in Figure 2.3. It is bounded by the marked endfaces A%, A’, the cylinder

with radius p, —l—CA and the lateral surface. By assumption the lateral surface is unloaded.
The equilibrium equation for the considered portion is of the form

[ et raa= [ @ s rgan= [P Greerne—o.

(2.3.2)
If we take into account that the shear stress —7¢-(()eg(s) is constant on the cylindrical
surface with radius p, + (, and the fact that

p": Co(E)de = dA

is the surface element then it follows that the last integral in (2.3.2) is the resultant of the
shear stresses.

Let us differentiate equation (2.3.2) with respect to s. After that (a) substitute (2.1.3)
for the derivatives of the unit vectors e; and e; (b) take into account that (i) the integral
over A’; is constant therefore its derivative is zero; (ii) 7,¢ is an odd function of 7, therefore
its integral is zero; (iii) the derivative of an integral with respect to the upper limit is the
integrand itself. The former thoughts lead to

/ dagegdA / eCdA—f— / Tpe€pd A+
—_————

=0
dTC Tee Po + CA 2
b (et o) aa - 2L OrOects) 0.
If we now dot multiply throughout by e we obtain
d o+ C s .
/ ﬁdA / %dA L : Co(E)rec () = 0. (2.3.3)

Let enax be the distance between the top of the cross-section and the point C.,. ?his Ais
always less than p, for curved beams. The area A’ can be given as the product v({)h((),
where h(C) is less than ey,,. Consequently,

) 1. . . h +
// %d/l = Eh(C)v(C)Tsc(C) , /()f) <1

is an upper limit for the second integral in (2.3.3). Really, if we take into account that the
shear stress is taken on the line f (instead of being taken at inner points of A’) we can readily
check the validity of the previous statement. On the basis of this estimation, the second term
in (2.3.3) can be neglected if we compare it to the third one. Omitting this term results in
the equation

I

~

d o -
[ aa= 2O (234)
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for the calculation of the shear stress ng(f). After some rearrangements we obtain the
average value
. Po 1 do
TEC(C) = T Al d—gdA
po+Cu(¢) Jar ds
Upon substitution of the normal stress from (2.2.9) — given that N = 0 — we have

N Po 1 d M M p,
Tec(C) = ot e /A P { (7, ¢) (PerR + ]eRPo+<C>:| dA . (2.3.6)

A further transformation yields

po 1 dM (E(n,C) Em,Q)  po
po+Co(C) ds PoAer Ier  po+¢

po 1 dM 1 < I.p
po+év(5) ds I.r pOPgAeR A

Introducing the notations

(2.3.5)

7ec(C) = C) dA =

B O+ [ Lo cE, <>dA) -

_ Ier . / I
Be - P%AeR’ Qen / (7) C) +C ) Ae - // E(T/7C)d*’4 (237>
and recalling (2.3.1) we get the
=P Ve A+ Q) 2.3.8
T{C(C) IOO + CA [eR’U(é> (pO/Be e Qen) ( )

formula for the averaged shear stress. This result is the generalization of the classical formula
valid for curved beams made of homogeneous material — see pp. 358-359 in [13].

2.3.1. The shear correction factor. If we determine the shear stress distribution over
the cross-section using the constitutive equation, then we find it to be constant. However,
physically, it is not right: when the shear stress is calculated from equilibrium equations
then the distribution is parabolic. The shear correction factor is the ratio of the two energies
that belong to the two different stress distributions. We now assume that the material
distribution depends on the coordinate ¢ only. It is also a hypothesis that the total strain
energy from shearing is

UT:—/ ec(C dV— //( —) 7548 dAds (2.3.9)

where L is the length of the centerhne G(C) is the shear modulus which can be calculated
from the relation E(¢) = 2G(¢) [1 + (C)] and v denotes the Poisson ratio. The strain energy
stored in a unit length is therefore

= C) Tlo” _l(ﬁf 11 (0B Q)
UT—Q/A(HPO) co =55 /41+;iG(C) o A (2.3.10)

given that 7 is inserted here from (2.3.8). Moreover, utilizing

P (Ows e S
7“‘”“_[,%%(05 po)+(1 )M

which is the angle distortion on the cross-section, we can rewrite (2.3.10) as

U, = %/A (1 + é) Tec(Q)vec(C)dA =
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1 ow, U, ¢ 2 A 1

== - — 1—(= o dA ~ —=Viyeeo. (2.3.11

2/A [( 96 p0> + ( (pa) )wn]Tsc(C) 5Veveco- | )

~ve¢ (0)=7¢¢ o=constant

This expression shows that we neglect the term (C/po)2 when it is compared to the unit.
Comparison of formulae (2.3.10) and (2.3.11) yields

1 L(VEN [ po 1 (pfeAit QL)
-V o= T4 : dA’
5 Ve 2 (IeR> /ApoJrCG(C) v(¢)?

from which we get

[2
Vi = —Yeco ch = —Yec 0 Dy 2.3.12
C = —Vec L (poﬁeA'EJngn)sz Yec o Py ( )
A po+¢ G(Q) v(¢)?
where ,
I h
h., = e and K, =-— 1 2.3.13
! po_ _1 _ (poﬁeA/@JrQlﬁn)QdA ! fA G(O dA ( )

A pot¢ G(Q) v(¢)?
Here k., is referred to as the shear correction factor. From (2.3.13), after some minor ma-
nipulations — £ and G are constant, p, — co and [, is zero — we get, the formula

Iy
A fA #dz‘l
valid for straight beams (I, = [, (*dA; Q) = [, (dA). It only depends on the cross-sectional
properties. Finally, we remark that

V=, [ GOdAx, (2.3.15)

is applicable both for homogeneous straight and for heterogeneous curved beams.

2.4. Curvature change and strain energy

In this section [the radius of curvature]| {the location of a point} on the FE-weighted
centerline before and after deformation are denoted by [p, and p,| {P, and P,}. The angle
of the tangent of the centerline at P, and the horizontal axis is noted by v,. Its change
during deformation is 9, — the rigid body rotation. The calculation of the curvature change
is based on Figure 2.4 which shows all the quantities mentioned.

FIGURE 2.4. The curvature change on the centerline.

The infinitesimal arc element ds, on the centerline before deformation changes to ds. It
is clear that
ds — ds,

2.4.1
s, (2.4.1)

ot =
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is the axial strain on the centerline. Consequently,

ds, = —35 (2.4.2)
1+ Eot
Using the above equation we can establish a formula for the curvature change:
11 d@Wo+voy)  dthy  d(tho +vo)  dts dipoy di,
—_—— —_— = —_ = —_ 1 o == —_— o€ 1 - 243
Po  Po ds ds, ds ds (1+ €oc) ds “ot ds ( )
Here
dibo di, di, 1
0_:0_1 o 20_20_‘ 244
St gy T Sot g, (1 Gae) e = foe (2.4.4)
Comparison of equations (2.1.8), (2.4.3) and (2.4.4) yields
1 1 1
— — — =Ko —Eot— - (2.4.5)
Po  Po Po

Substituting r, from (2.2.3) and taking into account that in the present case N = 0 and
QER < Acrler, we have

11 M Qer MAcg MA,r M

— = — = | Aer + — o~ 5 =

Po Po eR AeRIeR Po AeR]eR - QeR AeRIeR ]eR

~0
that is

1 1 M
oo (2.4.6)
Po  Po ler

Now we proceed with the determination of the strain energy stored in the beam. It is not
too difficult to check using equation (2.4.6) that the angle change di due to the bending
moment is

_%_dso ds ds M

dp = — ~ 2= s 2.4.7
Po Po Po Po IeR ( )
As a result
1 1 M?
dU = = Mdy = - d 2.4.8
S My = 5 7.0 (2.4.8)

is the work done by the bending moment exerted on an infinitesimal portion of the beam.
After integration
2
po L[
2 ), Lr
is the strain energy stored in the beam. We have derived this formula assuming ds = ds,,.
The parts of the strain energy due to the axial and shear forces were neglected.

ds (2.4.9)

2.5. Numerical examples

2.5.1. Example 1. Figure 2.5 shows the cross-section of the circular beam. It is sub-
jected to pure bending by a moment M = M e, , M = 100 Nm. The geometric dimensions
are all given in Figure 2.5. The lower part of the beam is made of steel and the upper
part is made of aluminium. The corresponding material parameters are E; = 2.1 - 10° MPa
and FEy = 7-10* MPa. Our aim is to depict graphically the normal stress distribution as
a function of ( using the three formulae derived in the previous sections. This allows us
to compare the various results. It would also be interesting to check the difference between
these formulae regarding the radius of the neutral axis.
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aluminium

F1GURE 2.5. Cross-section of Example 1.

First, we determine the ordinate z¢ of the E-weighted centerline in the coordinate system
yz. Since the E-weighted first moment of the cross-section with respect to the axis 7 is zero,
the following equation holds

Qen = Qey - ZCAe =0. (251)
Here Q). is the F-weighted first moment of the cross-section to the axis y defined by

Quy = / E(n, ¢)=dA.

Consequently,
Qey F1 %Al + Ey (b1 + %1) Ay
< A Ey Ay + Ep Ay . ( )
In the knowledge of 2z one can easily read off from Figure 2.5 that
(f =—z2c=-—12mm, ( =4mm, ¢ =20mm. (2.5.3)

Before computing the stresses sought, we shall set up appropriate formulae for the F-weighted
geometrical quantities Acg, Qer, Ie; and I.g. Recalling equation (2.1.12); we can write

_ [ petC—¢ _ P S R S
AER—/[: e E(n,()ad{-/AE(n,C)dA Ela/c— po-l-CdC E2a/<k Po-l-CdC_

Ae
= Ac= B [ = poln (¢4 po)ll = Eaa [¢ = poln (¢ + Pl =
= A1 B+ AyEy +a [(Ez — ) G + Ei¢ — E2C2+} +
+ap, [(Br — Ba)In (G + po) — By In (& + po) + Baln (&G +po)] - (2.5.4)
Regarding the F-weighted reduced first moment of the cross-section, equation (2.1.12), yields

C2E<U7C)ad£ — _/%adg —
12

_ Po‘|‘€_€ _ o
QeR_/ o+ C E(”’andc_g_fi Po+ ¢ o+ C

=0

= —Fia E (G)? = Cupo + P21 (po + i) — % (Cf)2 + (i po— paln (po + Cf)] -
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— Esa B (&) = Gpo+p2n (po +C5) — % (Gr)? + Gupo — P21 (po + Ck)} . (2.5.5)

Using the parallel axis theorem, we can determine I, as

I, = / B, OCdA— B [ aa+m [ caa—
A

Ay Ao
ab? b\ abj by

el G (PR B2 (b = 2o+ 2 . (25,
1 (zc 5 ) aby 7 by — z¢ 5 aby (2.5.6)

Therefore, recalling (2.1.12)3 and utilizing equation (2.5.6) we can establish a formula for
the E-weighted reduced moment of inertia:

=E + Es

o= [ Pcpgoaa= [ Pt 0aa — 1,

1UA2 po+< A;UA, pO+C
_/AlUAQ ,oo<+ (B, QdA = Ly ta(Br—Fa) <Ckp3 — 56 o =3I (o + G) + 5 (gk)3> _

1 1
- (-5 6+ 3 G G A () ) -
1 1
b (3(G) - 5@ ot G- A ) - 57

Substituting now a, by, by, po, A1, E1, As, Es, (i, ¢; and ¢ into equations (2.5.4)-(2.5.7)
we obtain the following numerical values:

A, =14336-10° N, A.p =1.4477-10° N, Q.p = —1.1588-10° Nmm

2.5.8
I, = 9.9396 - 10° Nmm®, I = 9.5024 - 10° Nmm”. (25.8)

To illustrate the significant effect of heterogeneity, we now provide the former quantities
for a homogeneous steel

A, =2150-108N, A.p =2.288-10° N, Q.p = —2.179 - 10° Nmm
I, = 1.835-10" Nmm?, I.p = 1.874-10'"° Nmm?

and aluminium

A, =T7.168 10" N, A.p =7.626-10" N, Q.p = —7.264 - 10" Nmm
I, = 6.116 - 10° Nmm?, I.p = 6.247 - 10° Nmm?®

section. These quantities can vary in a rather wide interval.

With these results we can compute the normal stress o¢ using the three derived ex-
pressions. Eq. (2.2.5) is the ’exact’ formula under the applied displacement and stress
hypotheses, (2.2.9) is the generalization of the Grashof formula and (2.2.18) is the general-
ization of the formula that can be found in English textbooks on Strength of Materials. The
computational results are presented graphically in Figure 2.6. Finite element computational
result is also provided. It was obtained using Abaqus 6.12.
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FIGURE 2.6. Normal stress distribution for Example 1.

For the Abaqus models of the two-layered (Example 1) and sandwich beams (Example 2
and 3 — see later), one of the beam endfaces was always fixed and the other was subjected to
a [shear force| or a {bending moment} applied at a so-called reference point in the software
(it coincides with the FE-weighted centroid) using kinematic coupling between the point and
the endfaces of the layers. The layers of the beams were perfectly tied together at their
overlapping surfaces. The central angle was chosen to be 180°. The [shear stress| {normal
stress} distributions were drawn along the axis  in a cross-section being [3.6°] {90°} away
from the loaded endface. 20-node 3D elements were applied and the Static, General Step.

As regards Figure 2.6 the symbols representing the exact solution, the solution obtained
from (2.2.9) and the solution calculated with equation (2.2.18) are drawn in blue, red and
green, respectively. The Abaqus outcomes are drawn in brown. Overall, the differences are
minor between the four models.

As for the ordinate of the neutral axis, by setting o¢(¢) = 0, Eqgs. (2.2.5), (2.2.9) and
(2.2.18) yield —0.800 mm, —0.777 mm and —0.785 mm, respectively. We note that the last
result is exactly the same as the value that can be obtained from (2.2.14).

2.5.2. Example 2. In practise, beams with sandwich structure are commonly used. For
this reason we investigate the normal stress distribution in a doubly-symmetric cross-section
under pure bending. The faces are made of steel and the core is aluminium — the material
parameters are therefore the same as in the previous example. Let the bending moment M
be 8 - 10° Nmm — see Figure 2.7 for more data.

Due to the horizontal symmetry in the material distribution, the centroid and the E-
weighted centroid coincide — i.e. zo = 30 mm. With this in hand, the following data can be
read off from Figure 2.7:

Cu=-30mm; (,=-20mm; (,=20mm; (3 =30mm. (2.5.9)
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aluminium C3u
C §2u M
b, = 40 mm d b4 ﬁ/n
lu
I Cu |ze
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FI1GURE 2.7. Cross-section of Example 2.

In the forthcoming, we provide some formulae valid for such sandwich cross-sections.
These expressions are originated from equations (2.1.2) and (2.1.12).
The E-weighted area (tensile stiffness) is

Ae - 2E1A1 + EQAQ, (2510)

while

Acp = 2B, Ay + Ex Ay — Eva[—Cu + poIn (po + Cu)] + (Er — E3) apoIn (po + Cru) — Cru) —

- Ela [C?)u — Po ln (po + CSU) - C2u + Po hl (po + CZu)] - EQCL [C2u — Po hl (po + CQu)] (2511)
yields the E-weighted reduced area. Furthermore, the E-weighted reduced first moment can
be obtained upon substitution into the formula

1 2
QeR = _aEl (Cllpo - _C%l - pg In (:00 + Cll)) - aEl <_<3upo + ﬁ + P?) In (po + CSu)) -

2 2
Clzu 2 C22u 2
—a (El - EQ) 7 - Clupo + Py In (po + Clu) + CQupo - 7 — P In (po + £2u)
(2.5.12)
The E-weighted moment of inertia (bending stiffness) follows from the parallel axis theorem
as
ab? b\ ab}
I, =2E; 1—21 + (z(; - 5) aby | + Fy [1—22} : (2.5.13)
and finally
ab? b1\’ ab}
I.r = 2F; 1—21 + <Zc — §1> aby| + Es [1—22} —

C12lpo o Ci)l
3

2 g??upo + Ciau

; ; — 3 (po + Gu) | —

—ab, l—Cuﬂi + + o210 (po + Cu) + Gup? —

o B — E 2_<12up0 @_ 31
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3
— Cauply — % + oI (po + Cou)| (2:5.14)

C3uPo

M

provides the F-weighted reduced moment of inertia. The numerical values of these quantities
for the chosen example are listed below:

A, =28-10°N, A.p=2.803376-10° N, Q.p = —2.025676-10° Nmm,
I, =1.213333 - 10" Nmm? I.p = 1.215406- 10" Nmm?. (2.5.15)

30 o
s
A~
,,/‘
20 & l/‘
¢
¢
¢
£
0+ #
“
~
Il o
[ I I I U. I T I 1 Gg
-45 -35 -25 -15 50705 15 25 35 45
/‘/
A0
£ A Eq. (229)
a —a Eq. (2.25)
/ ! -20 Eq. (2.2.17)
X Abaqus
// aqus
- 30

F1GURE 2.8. Normal stress distribution for Example 2.

Based on these formulae the normal stress distribution can be calculated using equations
(2.2.5), (2.2.9) and (2.2.18) as shown in Figure 2.8. One can conclude that the correlation
between the cited formulae and the commercial finite element software calculations are very
good yet again.

The almost identical coordinates of the neutral axis according to the corresponding for-
mulae are —0.7226; —0.7216 and —0.722 6 mm, respectively.

2.5.3. Example 3. All the data are the same as in the previous subsection, but this
time the beam is under a shear force V; with magnitude 5 - 10* N. For more details see
Figure 2.9. Let the related Poisson ratios be v; = 1, = 0.3. Upon substitution of p, and
(2.5.15)9 5 into (2.3.7); we have

B, =1.204307 - 1073,
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FIGURE 2.9. Cross-section of Example 3.
Moreover, if ¢ € [—30; —20] then
: ¢ .
A, = 210 000 - 40 - / d¢ = 8 400 000¢ + 252 000 000

—-30

and

¢
Q., = 210 000 - 40 / 600¢ d¢ =

50 600 + ¢
=5.04-10°C — 3.024 - 10" In (600 + é) +1.934 040 - 10'3,

therefore the shear stress distribution (2.3.8) in the bottom layer happens to be described
by the formula

.~ 6170.776882 . )
eo(6) = — L2002 (5. 046 069¢ + 1.934 058 - 10* — 3.024 - 10° In (600 n c)) .

600 4 ¢
(2.5.16)
If ¢ € [—20,20] then

, 30
Al =210000 - 40 /

20

20
d¢ + 70000 - 40 - / d¢ = 140000 000 — 2800 000¢,
¢

in addition to this

, 307600 - ¢ 27600 -
= 210000 - 40 - d 70000 - 40 - d¢ =
en /20 (600+<> ot /< (600+c) ¢

= —6.445542 - 102 — 1.68 - 10°C + 1.008 - 10" In (600 + é)

consequently,

. 6170. 776 832

eel§) = = [—6. 445441 - 10° — 1.682023¢ + 1.008 - 10° In (600 + C)}

(2.5.17)
is the sought function in the aluminium core.
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In the uppermost layer é’ € [20, 30], so we can write
/ 30 ~
A, = 210000 - 40 - / d¢ = 252000 000 — 8400 000¢,
¢

further

600 + ¢
— —1.934065 - 10" — 5.04 - 10°C + 3.024 - 10" In (600 + é) Nmm .

30 .
Q;nzzloooo.zio/ (600 C)dcz
¢

As a result we have the shear stress as

6170.776882

: (-1. 934047 - 10* — 5.046 069 - ¢ + 3.024 - 10° In (600 + c)) .
600 + C

(2.5.18)
The distribution 7¢.({) over the cross-section is plotted in Figure 2.10. There is quite a
good correlation with Abaqus.

Tec() = —

éf 30
—e— Equns. (2.5.16-18)
X Abaqus

204

104

T

-10 |

-20

-30

X

FIGURE 2.10.  Shear stress distribution for Example 3.

2.5.3.1. The shear correction factor. As a first step, let us substitute the known quantities
into formula (2.3.13);. Here we take the following points into consideration: (a) v(() is now
equal to the a width of the rectangular cross-section; (b) the shear modulus G(() is constant
in each of the intervals ¢ € [—30; —20], ¢ € [—20; 20], and ¢ € [20;30] and (c) properties
A Q;n are continuous in each of the intervals. Thus, it follows that the denominator of
(2.3.13); is equal to

’ 7 \2
po 1 (pOBEAe + Qen) 1 /_20 pO / / 2
- dA = LA+ Q) d
/ Po + C G U2 Gla —30 Po + C (p /6 + Q T]) C+
30

1 20 P, ’ / 2 1 1% / ’ 2
2 oBeA d¢ + — ° oBe A d¢ =
tam | L (A Q) e g [ (A Q) G

=2.392438-10™. (2.5.19)




DOI: 10.14750/ME.2016.008
Stresses in heterogeneous circular beams 24

Inserting it back to (2.3.13); yields

I? 1.215406 - 10M)?
h, = R _ | 14> =6.174502 - 10".
po 1 (poBetir@l,)’  2.392438-10

potC G v2
The dimensionless (and material dependent) shear correction factor x, can be calculated
using the definition (2.3.13), therefore, it is now
h., h., 6.174502 - 107
R~ = = —
7 [GdA  Gia fjﬂo d¢ + Goa ffgo d¢ + Gra f;)o ¢ 1.076923 - 108

This figure is about the 69% of the solution valid for a homogeneous rectangular cross-section.
So, obviously, heterogeneity can have a huge effect on this property as well.

= 0.573 346.

2.6. Summary of the results achieved in Section 2

The first objective was to provide formulae for the determination of the stress state
in heterogeneous curved beams by generalizing the formulae valid for homogeneous curved
beams. It involves the expressions of the normal stress and shear stress. An expression for
the shear correction factor was also provided. The most important results are as follows:

1. I have derived an exact and two approximative relationships that provide the normal
stress caused by an axial force and a bending moment in curved beams with cross-
sectional inhomogeneity. The latter two are generalizations of well-known relation-
ships valid for homogeneous curved beams. A further formula has been established
for computing the shearing stress.

2. In addition, a formula for the shear correction factor has also been derived. The
results obtained by the relationships set up for the stresses were compared with the
computations. A good agreement was found between the different models.
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CHAPTER 3

In-plane elastic stability of heterogeneous shallow circular beams

3.1. Fundamental assumptions

3.1.1. General relations regarding the pre-buckling state. All the geometrical
conditions, hypotheses and kinematical relations mentioned previously in Section 2.1 hold.
However, some physical quantities will be addressed in a more accurate manner.

For the forthcoming shallow planar circular beam model we maintain the validity of the
Euler-Bernoulli beam theory —i.e. the cross-sections remain plane and perpendicular to the
deformed centerline. The novelty in this chapter is that the Green-Lagrange strain tensor
FE is now not linearized, thus

E=E"+EY, EL:%(uOV+VOu), EN:%(Vou)-(ro). (3.1.1)

Here ET is the linear part and E¥ is the nonlinear part of the strain tensor.
Moreover, we assume that the tensor of infinitesimal rotations ¥ — see (2.1.8b) — is the
dominant when that is compared to the linear strains and the strain-rotation product:

BN = (Vou) (woV) = (B + @) (B* 4 @) =

1 1 1
:E(EL-EL+WT-EL+EL-&.D+WT-W)zﬁwT-W:EW-J/T. (3.1.2)

This assumption is generally accepted in the literature when modelling beams — see, e.g.
[73,74,108]. The superscript 7 stands for the transpose of a tensor (or vector). Based on
the former hypothesis

1 1 1 1
8§:e£§(ro+Vou)e5—|—e£§(vagp) -egz 1+ 1§ (€O£+CHO>+§1/J§T] (313)
Po
is the axial strain at an arbitrary point on the cross-section while the nonlinear strain on
the centerline is

1
85‘(:0 =&m = Eo¢ + 51/}277 . (314)

Based on equations (2.1.8)-(2.1.11) we remind the reader that p, is the initial radius of the
centerline, €,¢, Vo, and s, are the linearized strain; the rotation and the curvature on the
centerline.

Bradford et al. in their model assume that

1 d?w
~1; o= — : 3.1.5
1+ pﬁ o n ds? ( )
thus, with our notations, the strain according to them is
1, du, w, d?w, 1 [(dw, 2
— e, ot R~ 2 2 - 3.1.6
= <€£+C"i—i_Zq’/}O" d5+po Cd52+2(ds) ( )

— see equation (1) and (2) in [61]. We remark that equation (3.1.3) is more accurate (due
to the presence of the quadratic term) than equation (2.1.10) in Chapter 2.

25



DOI: 10.14750/ME.2016.008
In-plane elastic stability of heterogeneous shallow circular beams 26

This time we again assume that the corresponding elements of the second Piola-Kirchhoff
stress tensor S satisfy the inequality o¢ > 0,, 0. Consequently, Hooke’s law o, = E (1), ()e¢
is the constitutive equation. In the knowledge of the stresses we can determine the inner
forces in the pre-buckling equilibrium configuration. Making use of Hooke’s law, the kine-
matic equations (3.1.3), (3.1.4) and utilizing then the notations (2.1.12), (2.1.13) we get the
axial force as

o o 1
N:/EegdA:/E P dAsong/E cp dAno+/EdA—w§n:
A A A A 2
NG (& 7 W—/

po+ ¢ po+¢
Acr~Ae QeR:*% Ae
1 2 1 2 1677 Ie”]
= A6R805 + QeR’fo + Ae_won ~ Ae 805 + —¢on — — Ry = Aeéfm — —Kp - (317)
2 2 o Po
—_——
Em

As regards the bending moment a similar line of thought yields

1 1
M:/AEE:éCdA:/AE(H—C(gog‘f—cl‘io)‘i‘éwzn)CdAI

Po
:/E ¢ dAeong/E ¢ dAmﬁ/EgdAlwg _
A 1+< 4 14+ < A 27
Po Po N—
~~ ~~ Q(’n:O

len ]eRNIP
~_ €N =len
QeR— po

I, (du, w, d [dw, u, 2w, w,
_ e (Lo Wo) 4D Mo}y (CWo W) gy
Po (ds i po) “ds ( ds po) - ( a5 /ﬂ) (@.18)

o

In the sequel we assume the validity of the inequality A.p?/I., > 1, or which is the same

that
A p? Acp? Po\’ 4 I.
o _ 1 =~ o ) _— e e = —7] . 319
Ien [en ie e ! Ae ( )

Here i, is the E-weighted radius of gyration and m is a parameter of the geometry and
material. In the knowledge of the previous formulae one can check — see Appendix A.1.1 for
details — that

L, (A p? M M
:—;<i—1)€m——%1465m——:
Po I Po Po

en
du, w, 1 dw, 2
—+ 2+ (- Fw

ds Po 2 ds

T +?) . (3.1.10)

o

Contrarily, it is worth pointing out that — with our notations — the recent shallow beam
model for homogeneous material (E = constant) by Bradford et al. assume that

du w 1 /dw,\> d?w
— 4+ 24+ = ° : M=-1,—>. d.11
ds+po+2<ds)]’ T ds? (3 )

N=A.ec, =A.

For the validity see equations (12) and (11) in [61]. The improvements implied to our new
model are now easily noticeable.

For practical reasons it is sometimes worthy of changing derivatives with respect to the
arc coordinate s to derivatives with respect to the angle coordinate ¢. For the sake of brevity,
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the following notational convention is introduced:
d*(...)  1d*(...) 1
ds® pnodem o pn

(.)"™ nez. (3.1.12)

3.1.2. General relations for the post-buckling state. First, we introduce a new
notational convention. Quantities denoted by an asterisk are measured in the post-buckling
equilibrium state while the change (increment) between the pre- and post-buckling equilib-
rium is denoted by a subscript ,. (The change from the initial configuration to the pre-
buckling state is not denoted by any specific symbol.) Based on this rule, a similar line of
thought as that applied in the previous subsection yields the increment in the kinematic
relations. This means that for the rotation field and the change of curvature we have

wy o dw) Uyt ue  d(w, 4 W) Upp AWy

P U AW, — oy + Vory s Doy = —2 — , (3.1.13

won Po ds Po ds ¢ K - d] nb ¢ "t Po ds ( a)
de 1 du*  d2w* 1 duy  d?w,

o= Wor _ Ldug Pwg tob € Wb (3.1.13b)

ds  p, ds ds? a po ds ds?

According to (3.1.4) we obtain the expression of the ’exact’ strain after buckling in the form

T C (g5 + CRy) + 5 (V5,)” = < [0 + €ocb + C (Ko + Kob)| + : (Yo + Yonp)? =
Po Po
_ 1 1 2 1,
= 1+p% <€OE+CHO)+§<won> +—1+pc_o (8O£b+CKOb)+wonw0ﬁb+iwonb_gé"i_g{b
(3.1.14)
where
1 1 9 1
fe0 = 1—C <€O§b + CKOb) t ¢on¢onb + §¢0775 = 1 ¢ (60517 + C’fob) + 77Z)on¢077b ) (3115&)
t —
duo Wy 1
Eoth = dsb ; b . Emb = Eeblc=0 = Eotb + Yonlonp + 51[}(%,71, > o+ Yonons - (3.1.15b)

Notice that the quadratic term in the rotation increment is ignored since the validity of the
inequality 0.5@/}3711, L Yoythonp is assumed. It is in accord with some earlier works, e.g. |[56,61]
where

1 dug, 1w — dw, dwyy
=1 and e, = €oep + VorWonp =~ + .
1+p_<o b b+ YonWons ds Po ds ds

(3.1.16)

We proceed with the expressions for the inner axial force and bending moment. Recalling
equations (3.1.7)-(3.1.8) valid for the pre-buckling state we can write

v [ Egaa= [k (% CRNCIEE wznf) AA = Aurel+ Quar+ Aug (4,
A A I+ > 2 2

Po
(3.1.17)
which is formally identical to (3.1.7). Substituting here the kinematic relations (3.1.15) and
assuming again the validity of equations (2.1.13) we obtain

1 I, I
]\/W< = Ae (Eog —+ 5 (won)Q) — p—n/io -+ Ae (5055 + wonwonb) — p—n/-f,ob =N + Nb . (3118)

o

The formula for the axial force increment is further manipulated as detailed under (A.1.2).
The final nonlinear form is

L. L.
N, — p_;memb n p—;] (wfj) + wob) . (3.1.19)
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It can be checked with ease by recalling (3.1.8) that

. dzw: w dPw, w, APwyy Wy
M == —[en ( d52 + p_g) — _167) (@ + p_g> _1677 <W + p2 ) - M + Mb (3120)

o

-

My,

is the bending moment in the post-buckling equilibrium. With regard to equations (3.1.9)
and (3.1.20), it follows from (3.1.19) that

L, [ Ap? M, M,
N, == (i — 1) ey — —2 A2 Ay — —2 (3.1.21)
Po \ ley Po Po

For these increments similar observations can be made as those detailed in relation with
equation (3.1.11) when comparing it to the model by Bradford et al.

3.2. Governing equations

3.2.1. Equilibrium conditions in the pre-buckling state. Figure 3.1 shows the cen-
terline of the beam in the initial configuration (continuous line) as well as in the pre-buckling
equilibrium state (dashed line) assuming symmetrical loading and support conditions. The
beam is supported by rotationally restrained pins at both ends. These restraints — which
are modelled as torsional springs — have a spring stiffness (k.,)|k,,| at the (left) [right| end.
The loading can consist of the distributed force f = f;e¢ + f,e, and the concentrated force
P¢. The former one is directed downwards and is exerted at the crown point. The included
angle of the curved member is 2. For the pre-buckling equilibrium state

/‘/0'5(555 dV = _PC 5w0’3:0 - kﬁyéwonéwonls(_ﬁ) - k’yrwonéwon|s(ﬁ) + /c (fnéwo + ft6u0> ds

(3.2.1)
is the principle of virtual work, where the virtual (kinematically admissible) quantities are
preceded by a symbol 4.

FIGURE 3.1. The investigated rotationally restrained beam.

Based on this principle one can find the equilibrium conditions, the dynamic boundary
conditions (BCs) as well as the continuity and discontinuity conditions. Details are provided
in Appendix A.1.2. With regard to the arbitrariness of the virtual quantities du,, dw, and
0%on, we have the equilibrium equations

dN 1 |dM M d |[dM M N
(N = — S (v 2 _ _
d5+p0|:d$ < +p0)¢on}+ﬂ 0 ds[ds ( +po>¢on} p0+fn .
(3.2.2)
the dynamic boundary conditions
dM M
N = — = ( N+ — | 9, =0, 2.
|S(ﬂ) v l ds < " Po) v n} s(£0) ’ (3:2:32)
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(M = kytbon) |y gy = 0, (M + kyrthon)| 9y = 0 (3.2.3b)

and the discontinuity condition

dMm M dMm M
WY R (Y ) hme e
[ ds ( Po " s=+0 ds Po / s=—0 ‘ ( )
The geometrical boundary conditions can assume the form

3.2.2. Equilibrium equations in terms of the displacements. In the sequel we
focus on the stability problem of beams under a central concentrated force Pr. It means
that the distributed load is removed. Our aim is to express the equilibrium equations in
terms of the displacements. As for (3.2.2),, first, let us plug in relation (3.1.10) for the axial
compressive force. Consequently, two terms vanish. What remains is

d 1
e (Aeem) — o (Acem¥on) =0. (3.2.5)

It can be assumed with a good accuracy that the quadratic product &,,1,, can be neglected
when it is compared to the first term [56]. Accordingly

de, - déog .
ds — ds
holds for the pre-buckling equilibrium. Hence, (depending on which theory is applied) the
nonlinear/linearized strain on the centerline is constant.
Some further transformations are as well required on equation (3.2.2),. These are detailed
in Appendix A.1.4. Here the final form, on which the stability investigations will be based
is presented:

0 —  &m ey, = constant (3.2.6)

W+ (2 —mep) WP + (1 —mep) W, = —me,, . (3.2.7)
The new notation W, = w,/p, is referred to as the dimensionless normal displacement. For

the sake of brevity, we introduce the parameter

X° =1—mep,. (3.2.8)
In this way relation (3.2.7) can equivalently be rewritten as
WD+ (P + 1) W +2W, = x> - 1. (3.2.9)

This result is comparable with what Bradford et al. have used in their recent series of articles
on stability problems of shallow arches — see, e.g. equation (14) in [62|, which, with our

notations, can be expressed as
WO+ (2 -DWP =y>—1. (3.2.10)

o

The effects of our keeping the additional terms will be evaluated later in Section 3.5.

3.2.3. The principle of virtual work after the loss of stability. The principle of
virtual work for the buckled configuration assumes the form

/ og0eg AV = =P owg| g + P dugl g — midgow, | _ — miigoug| o —
\%4

— 3y = R U+ [ (00 0 s (2.)
where 52 o2
w ur
= = 212
w, atz ) U, 8t2 (3 )

are the second time derivatives of the displacements.
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Here it is assumed that the stability loss is a dynamical process characterized by a mass
m placed at the crown point of the beam (where the concentrated force acts). In other words,
the effect of the mass distribution on the centerline is modelled by this concentrated mass.
So far, we have made no restriction concerning the loads — they can be dead, or follower
ones. However, we will assume a dead load later. Apart from these changes (3.2.11) formally
coincides with (3.2.1).

Based on the detailed manipulations of Appendix A.1.3 it can be shown that the arbi-
trariness of the virtual quantities yields the post-buckling equations

ON, 1 oM, 1 M 1 M,
b+— b - — (N+_> wonb__ (Nb+ b) wonb—i_ftb:()a (32133)
ds  p, Os Po Po Po Po

0*M, N, 0 M + M, M,
b2 |:<N+Nb + A) ¢onb+ <Nb+ pb> 1/1017:| +fnb =0. (3213b)

] o

Moreover
oM, M+ M M,
T (N Ny =) Conp — | Np+ =2 ) oy - (3.2.14a)
Js Po Po s=—0
8Mb M + Mb Mb 82wob
— — | N+ N+ ——— | Yoyp — | N o Pryl._,=0,
0%u,
Nb|5:_0 — Nb’5:+0+P§b+m 6t2b :O (3214b)
s=0
are the discontinuity conditions at the crown point and
Nb‘s(iﬁ) =0 ) (Mb + k’yrwonb)ys(ﬁ) =0 ; (Mb - k’yfwonb)ls(_ﬁ) =0 >
oM, M + M, M,
b (N Ny =) o — ( No+ =2 ) ooy =0 (3.2.15)
Js o Po s(£9)

are the dynamic boundary conditions.
Depending on the supports and loading applied, geometrical conditions such as

Uobls:,O — uob’S:+0 y wOb’s:—O == wob‘3:+0 5 wonb|5:_0 - wonb|5:+0 5 (3216)

Uob‘s(iﬁ) = 07 wOb‘(iﬂ) = 07 ¢077b’s(:|:19) =0 (3217)

should be fulfilled instead of the corresponding boundary and discontinuity conditions.

3.2.4. Post-buckling equilibrium equations in terms of the displacements. As-
sume now — as in Subsection 3.2.2 — that there is only a dead load P exerted at the
crown point of the beam and there is no concentrated mass m at its point of application:
fob = fto = Peyy = Prp = m = 0. Observe that the structure of equilibrium equation (3.2.13a)
is very similar to that of (3.2.2);. The exception is the last but one term in (3.2.13a) as it does
not appear in the pre-buckling relation. However, that can be neglected since that product
is quadratic in the increments. Therefore, repeating now the line of thought presented in
Subsection 3.2.2 for the increments yields

d

1
- Ae mb) — Ae m¥o - —=
dS ( € b) po ( € 1/} Ub) 0 = dS dS

it can be neglected

de b de b
mbo kb g Emb = Eocp = constant .

(3.2.18)
Thus, the change in the axial strain is constant both for the nonlinear model and for the
linear one.
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Appendix A.1.5 is devoted to the detailed manipulations on equilibrium equation (3.2.13b).
The resultant relation of these is

W 4 (2 = me )W + (1 — men) W, = —menmp + menp(WS + W,) (3.2.19)

which follows from (A.1.23). The new notation W, = wy/p, is the dimensionless displace-
ment increment. Recalling (3.2.8) we have

Wy + (6 + VWS + X Wy = meg, [-1+ (WP +W,)] . (3.2.20)
If we compare it with equation (39) in [62] by Bradford et al., that is
WS+ (¢ = DWE = mem (1+ WD), (3.2.21)

the differences are easily noticeable.

3.3. Solutions for the pre-buckling state

3.3.1. General solution. In Section 3.2.2 we have derived differential equations (3.2.6)
and (3.2.9), which describe the equilibrium of the beam prior to buckling. Because of the
discontinuity in the shear force, the closed-form solution that satisfies the pre-buckling equi-
librium is sought separately on the left [WW,, = W, if p € [—9, 0]] and on the right {W,, = W,
if ¢ € [0,7]} half-beam:

21 A: A
W,, = XX2 + Ajcosp + Aysing — X—jcosxgp— X—;lsinxgp , (3.3.1a)
2_ B B
W,, = XX2 +Blcosg0+Bgsin<p—X—;’cosxap—x—;lsinxgo. (3.3.1b)
Here A; and B; (i = 1,...,4) are undetermined integration constants. These can be deter-

mined by using the boundary and continuity (discontinuity) conditions.

Three fundamental symmetric support arrangements will be investigated: when the beam
is (a) pinned-pinned (k,, = ky, = 0), (b) fixed-fixed (k,, = k,¢ — 00) and (c) rotationally
restrained by means of uniform torsional springs (k,, = k,¢). The most important common
property of these follows from the fact that the geometry, the loading and the supports are
all symmetric in terms of ¢, therefore the pre-buckling radial (dimensionless) displacement
is an even function of the angle coordinate: W,(¢) = W,(—¢). As a consequence, in what
follows, it is sufficient to consider, e.g. a right half-beam model.

3.3.2. Pinned-pinned beams. As regards the boundary conditions at the crown point,
the tangential displacement and the rotation are zero and there is a

FIGURE 3.2. The simplified model of a pinned-pinned beam.
jump in the shear force with a magnitude P, /2. Moreover, the displacement and the bending
moment are zero at the right pin-support. These boundary conditions are all gathered in
Table 3.1, even in terms of the displacements.
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TABLE 3.1. Boundary conditions for the pinned-pinned right half-beam.

Boundary conditions Boundary conditions in terms of W,
Crown point ‘ Right end Crown point ‘ Right end
_ —of| wi) =0 | Wi, =0
Yol g =0 Wol,_y =0 - | o=
_dM &} —o | Ml _.=0|l Lw® Ll wd o —
[ ds T 2 ot | p—o en omt0 2 o

When expressing the boundary conditions with the aid of the general solution valid for the
right half-beam, we arrive at the system of linear equations

0 X 0 —1 Ay 0
0 0 0 1 I N ot B _ Ferod
cost  sind —% cos xv —é sin 1 As | | = XQ;l ’ T2 I,
—costY —sind cos v sin yv Ay OX
(3.3.2)
Here P is a dimensionless force. Observe that the solutions
1 tand P P 1 P P
Al =— - —=A Ajp— Ay = — = Agy—
1 cosd X210 11+ 1279 2 19 27 533
1 y tan x0 P P x P P o
’ cosyd x2—1 19 3t IV I ) 2

are decomposed into the sum of two parts depending on whether these are proportional to
the loading (A;) or not (A;1). Now the closed form solution for the whole beam can be
constructed with the use of the function

H(p) = {_1 z i 8 | (3.3.4)

—1 A
W, = X—2+A11cosgp— X—?;lcosxgo—l—

A

A
+ (A12 cos p + AgH sinp — —322 cos xp — —, H sin Xgp) (3.3.5)
X X

<9

is the dimensionless radial displacement. Recalling (2.1.8a) we get the rotation field

oy = Uy = W = — WV =

~

) . . . P
= D sin g + Dgy sin x¢ + (D12 8in @ + Dag cos ¢ + Dag sin x + Dy cos xp) 7 (3.3.6a)

Here and in the sequel we assume that the tangential displacement has a negligible effect on
the rotation field of shallow beams [61], [108|. The newly introduced nonzero constants D;;
i,7 €[1,2,3,4] are defined by
Dyy=An, Dip=An, Dp=-AnH, D3 = _@7 D3y = —@, Dyp = A42H-
X X X
(3.3.6b)
We remark that for fixed-fixed and rotationally restrained shallow circular beams equations
(3.3.5) and (3.3.6) are also valid, though the value of the constants differ.

The following line of thought is also proper for all three investigated support arrange-
ments. As equilibrium equation (3.2.6) yields that the axial strain (3.1.4); is constant on
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the centerline, let us calculate the mathematical average of this quantity. According to the
linear theory we thus have

I 1 s 1 /7 1Y P
ot = 9 ; 505(90)d90 = 9 Uo|0 + 9 . Wodp = 9 ; Wodp = Iy + Ilwg . (3'3'7)

Although the above equation is linear in P, it is nonlinear in €0¢ due to the presence of x —
see the definition under (3.2.8). We remark that the integrals I,,, and I, are presented in
closed form in Appendix A.1.6. Equation (3.3.7) can be rearranged so that

~

P
T+ Tow = g = 0. (3.3.8)

If we now consider the strain according to the nonlinear theory, the mathematical average
of (3.1.4) is given by

. . N\ 2
LY I 1 P P P
Em = 5/0 Em(p)dep = 5/0 <€o§+§¢3n) d90:]ow+]1w5+fow+f1¢§+fzw 5
(3.3.9)
or which is the same
121p (5) + ([1w + [11/)) 5 + <[ow + [01/) - €m> = O . (3310)

This is a more accurate quadratic relationship between the external load and the axial strain.
The constants I,y , 114 and Iy, for pinned-pinned support are gathered in Appendix A.1.6.

We hereby note that the former integrals were computed numerically by using the sub-
routine DQDAG from the IMSL Library [109] when using a self-made Fortran 90 code to find
solutions. After performing some tests, we have come to the conclusion that the accuracy
of this routine turns out to be more than sufficient with its maximum error being less than
1077,

3.3.3. Fixed-fixed beams. Compared to pinned-pinned members, one boundary con-
dition is changed at the right support of the half-beam model. This time the rotation is zero
if ¢ =1 — we refer to Table 3.2.

FIGURE 3.3. The simplified model of a fixed-fixed beam.
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TABLE 3.2. Boundary conditions for the fixed-fixed right half-beam.

Boundary conditions Boundary conditions
Crown point Right end Crown point Right end
_ _ Wi =0 | W,|,_y=0
¢0U|<p:+0 =0 W0|go:19 =0 =10 |¢:19
_ dM P _ _ LW _ P (1) _
ds lp=40 + QC =0 ¢0W’<p:19 =0 MZW =10 2 =1 0
Consequently, after recalling solution (3.3.1a) we get the equation system
0 X 0 ~1 A 0
0 0 0 1 Ay || Py
cos ¥ sin —% cos v _x_12 sin xv As | _%{;1 (3.3.11)
—xsind  yxcosd sin xv/ — cos xV Ay 0

for the determination of the integration constants. From here we obtain

~

A = L-x sin x4+ = (cos v cos xU+x sin ¥ si 19—1)75 =An+A P (3.3.12a)
1= Dy mx D(l—xz) XV XSy s x g 11 12197 -9
1 P P x P P
A2 = X2 — 15 = Aggg 5 A4 - X2 _ 15 - A4257 (3312b)
. . R

Az = ) (1—x%)sind + ﬁ (x — sin® sin v} — x cos ¥ cos x¥) % = A3z + Agzg,

(3.3.12¢)
where

D = x cos¥ sin x¥ — sin ¥ cos xv . (3.3.12d)

It means that we can now establish the displacement and rotation fields for the whole beam
in the same way as in (3.3.5), (3.3.6). On the basis of (3.3.7) and (3.3.9), calculating the
mathematical average of the strain yields either

~

[lwg + [ow - 50{ - 0 5 (3313)
or
121/, (5) + (Ilw + [11/J) 5 + (Iow + Iow - gm) = O . (3314)

As regards the values of the integrals I,,, [1, and I,y , 1y, l2y, we refer the reader to
Appendix A.1.6. Keep in mind however, that the constants A;, Ay, A3 and A, are now
given by (3.3.12). Therefore the values of D;; in (3.3.6b) also differ from those valid for
pinned-pinned beams.

3.3.4. Rotationally-restrained beams. The appropriately chosen half-beam model
is shown in Figure 3.4, while the boundary conditions are gathered in Table 3.3.

FIGURE 3.4. The simplified model of a rotationally restrained beam.
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For the sake of brevity, it is practical to introduce the constant

S = p;—k”, (3.3.15)

en
which is the dimensionless spring stiffness. The greater § is, the greater the restraining
moment the springs exert on the beam.

TABLE 3.3. Boundary conditions for the rotationally restrained right half-beam.

Boundary conditions Boundary conditions in terms of W,
Crown point ‘ Right end Crown point ‘ Right end
(1) _ _
Yonly_ o =0 Wol,_y =0 Wo o 0 Wolp—y =0
Cam , Pe B B ®) P @) ) ’ :
[ as T2 L;:Jro =0 | [M+kyoyll,_y =0 LenWo o=+0 2 {WO +SWo J =9 0
Here we get the following system of equations for Ay, ..., Ay:
cos sin v — —Coigﬂ — —Sir;gﬂ Ay 1;%‘2
—costy—8sin Scostt—sind cosxz?—i—%sinxﬁ sinxﬁ—fcosxﬁ As 0
0 -1 0 % Ay £
(3.3.16)

Let us introduce the constant
Co= (x> —1) cos¥cos xt) — S (sin v cos xt — x cos ¥ sin o)) (3.3.17)
thus, the solution to (3.3.16) satisfies the boundary conditions if

~

1—x? ) in yv
A= Ay 4 Pa, = L= xD) (ecosxd + Ssinxd) |
U XC()
(1—XQ)sim?cosX?S‘—S(cosﬁcosxﬁ+xsinﬁsinx19—1)75
+ o 5. (33.18a)
PP . PP
A= ———=Ap—; Ay=—"7——=Ap— 3.1
2= 21 2y A=)y 427 (3.3.18b)
A3:A31+2A32: cosz?+831n19+
9 —Co
Y [(x2 = 1) cos¥sin y9 — S (sin ¥ sin 0 + y cos ¥ cos y9 — x)] P
n e = (33180)

If [S = 0] {S — oo} we get back the results valid for [pinned-pinned (3.3.3)] and {fixed-fixed
(3.3.12)} beams.

The radial displacement for the whole rotationally restrained beam is given by (3.3.5),
while (3.3.6) provides the rotation field, given that the relevant A;; constants are substituted.
Averaging the strain again yields a formula which is formally the same as (3.3.10). The
related coefficients Iy, [1w, Loy, 114 and Iy, are listed in Appendix A.1.6.

3.4. Possible solutions for the post-buckling state

3.4.1. General solution. After substituting the pre-buckling solution (3.3.5) into the
right side of equation (3.2.20) we get

1—x2 1
ngl) + (1 + XQ)WO(bQ) + Wy = —mem XQX (1 o + Az cos xp + Agsin Xgo) . (34.1)
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We remind the reader that the post-buckling axial strain on the E-weighted centerline is
constant (3.2.18) and it can therefore be calculated as

I 1 1 ¥ L
Emb = 20 » (Uo(b) + Wop + ¢onb¢on) de = 29 Uo|Zy + 2 /_19 (Wob + Yonpthon) dp =
I L

(Wob + (Uob - W§,}>) (U, — W§1>))d<p (Wob + WO(,})WO“)> dp . (3.4.2)

20/ 29 ),
It is clear that the rotation v,, ~ ~W is an odd function of . Due to the symmetry
properties of the loading and the supports, there are two basically different cases to be dealt
with. If, by assumption, W, is an odd function of ¢, then the above integral vanishes: ¢,,,
is equal to zero. Otherwise, when — by hypothesis — W, is an even function ¢, the strain
increment is a nonzero constant. We remark that these observations are naturally valid for
homogeneous beams as well [61,65]. Consequently: (a) if ,,, = 0 the differential equation
that governs the problem of antisymmetric (or bifurcation) buckling is homogeneous and,
according to (3.4.1), it takes the form

Wy + (1L + X)W + W, =0, (3.4.3)

while (b) if €,,, = constant # 0 we have to solve equation (3.2.20) (or which is the same
equation (3.4.1)) keeping in mind that the buckled shape of the beam is symmetric. The
latter phenomenon is called snap-through or limit-point buckling. To better understand, the
two possibilities are illustrated in Figure 3.5 where a continuous line represents the centerline
of the beam in the initial configuration, the dashed line is the symmetric pre-buckling shape,
while the dotted line is the buckled (a) antisymmetric, (b) symmetric shape of the centerline.
Although the figure in question shows rotational restraints, the shapes are valid for pinned-
pinned and fixed-fixed shallow curved beams as well.

FIGURE 3.5. Possible (a) antisymmetric and (b) symmetric buckling shapes.

The general solution to the homogeneous differential equation (3.4.3) assumes the form
Wop(p) = Ficos o + Fysinp + Fysin xp + Fy cos xp, (3.4.4)
meanwhile the displacement field satisfying differential equation (3.4.1) is sought as

Wop(p) = C cos +Cy sin p+Cj sin xp-+Cy cos xp— TT;i?b (% + Azpsin xyp — Agpcos Xgp) :
(3.4.5)
Here C; and F; are undetermined integration constants. It is important to mention that after
buckling, every physical quantity is continuous through the interval ¢ € [—; ] because there
is no increment in the loading.
The newly introduced concepts, like bifurcation and limit-point buckling will further be
illustrated in Subsubsection 3.5.1.3.
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3.4.2. Pinned-pinned beams — antisymmetric buckling. The boundary conditions
in terms of the displacement increments are gathered in Table 3.4.

TABLE 3.4. Boundary conditions for pinned-pinned beams when &,,, = 0.

Boundary conditions
Left end \ Right end
Wop (0) |so=—19 =0 | W () ‘tpzﬂ =0
Wi o) =0| W) =0

After substituting the solution (3.4.4) into the former boundary conditions we arrive at
the homogeneous system of linear equations:

costd 0 0 cos v F 0
0 sind siny? 0 |l |0

cost 0 0 x? cos x Fs | |0 (3.4.6)
0 sind x?sin 0 Fy 0

Nontrivial solution is obtained when the determinant of the coefficient matrix vanishes:
D = (1 —x)*(1+x)? sinxv cos xv cos® sint =0 . (3.4.7)

Recalling the notation x? = 1 — me,, we can come to the following conclusions: (a) if
1 —x = 0 then y = 1, consequently ¢,, = 0; (b) if 1+ y = 0 then xy = —1 and so ¢, > 0; (c)
if sin x¥ = 0 then x = 7/¥ and (d) if cos y¢) = 0 then x = 7/29. We remark that the first
two cases have no physical sense. For solution (d) we get that W, () = Ej cos 554 which
is a contradiction as for symmetric buckled shapes ¢,,;, # 0. These thoughts mean that the
lowest critical axial strain for bifurcation buckling is

Em = % (1-x%) = % [1 — (#) 2] , where W) =m7. (3.4.8)

If we now substitute solution (c) back into equation system (3.4.6) it can be checked that
F) = F, = F, = 0 and consequently, it follows from (3.4.4) that

Wo(¢) = F3sin %gp (3.4.9)

is the buckled antisymmetric shape of the beam with the unknown amplitude parameter Fj.
Note that if we neglect the effect of the angle of rotation on the axial strain then we shall
change the notation &, to €.

3.4.3. Pinned-pinned beams — symmetric buckling. When solving differential
equation (3.4.1) it is sufficient to deal with a half beam model again. Choosing the right-
half beam and relying on a similar concept as introduced in Subsection 3.3.2, the boundary
conditions are presented in Table 3.5.

TABLE 3.5. Boundary conditions for pinned-pinned beams when ¢,,, # 0.
Boundary conditions
Crown point \ Right end

W ()] _ =0 | War () o= =0

W ()| =0 WS ()

=0
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Upon substitution of solution (3.4.5) into the boundary conditions we arrive at the inhomo-
geneous system of linear equations

0 —2X3 —2X4 0 Cl
0 —2x —2y* 0 Cy |
cos v sin ¥ sin xv cos xv Cs |
2x%cosd 2x%sind 2x*sinyd 2x* cos x1 Cy
Ay
3A4
= MEmp 1 (3.4.10)

2x3

Az (x0sin x9 — 2 cos x) — Ay (2sin x9) + Py cos x)

L (% + As¥ sin yt — Ay¥ cos X19>

which can be solved in closed-form — the constants C; are presented in Appendix A.1.7. The
decomposition of the resultant coefficients into two parts — one independent of P and the
other depending linearly on P — is also carried out there in such a way that

Ci = emp (Cu + Ci25> ;=14 (3.4.11)

The forthcoming thoughts are valid for all three support arrangements. The solution

to W, for the whole beam can now be reconstructed using the previous constants — see
equations (A.1.37)-(A.1.38) for further details — as

Wop = €mp [(é{)l + C’H Cos  + 6'41 cos Xy + C’5lg0 sin Xgp) +

+

SNV

(C’lg cos Y + CyoH sin ©+ CoH sin X + Clys cOS X + C’5gg0 sin xp + C’ﬁchp coS X(p)] .

(3.4.12)

In the knowledge of the radial displacement we can determine the rotation increment:

— Yonp ~ Wo(l}) = Emb {Kn sin ¢ + Ky sin x¢ + Ks1¢ cos xp+

+ (Ki2sin ¢ + Kap cos ¢ + Ksp cos x¢ + Ky sin xp + Kz cos xp + Keapsin xp) 51 :
(3.4.13)

where the new constants K;; are defined by (A.1.41). If we neglect the effect of the tangential
displacement on the angle of rotation — this assumption is the same as that the in papers
[66, 74| — we can rewrite equation (3.4.2) in the form

1 Y
Emb = 5/0 (Wob + W§1>W§;)) do . (3.4.14)
Application of the linearized theory would result in
1 /Y
Eogb = —/ Wob d(p . (3415)
U Jo

If we now substitute (3.3.6), (3.4.12) and (3.4.13) into equation (3.4.14), we can observe that
the strain increment vanishes. Further performing the integrations we have

. N2
P 2
+ | [+ =1+ (-) I3

P
1= [l + 5102

v v
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or what is the same

L\ 2 R
P P
I3 <5> + o2 + I12] 51 Hor + T — 1] =0 ; i eR. (3.4.16)

Here the constants Iy; and [y follow from the first integral — and at the same time from the
linear theory — in (3.4.14), while the coefficients I1;, 12 and I;3 are from the second one.
We can therefore remark that establishment of closed-form solutions to the integrals is again
possible. Some details are gathered in Appendix A.1.8. We also remark that we have used
the same IMSL subroutine as before to compute numerically the value of each integral in
order to determine the critical load.

3.4.4. Fixed-fixed beams — antisymmetric buckling. Substitute solution (3.4.4)
for the displacement increment W, into the boundary conditions presented in Table 3.6.

TABLE 3.6. Boundary conditions for fixed-fixed beams when ¢,,, = 0.
Boundary conditions

Left support | Right support

W0b|tp=7’l9 =0 Wob|4p:19 =0

T I
== =1

Then nontrivial solution of the equation system

cos .0 ‘ 0 cos xv F 0
0w veoms 0 || 5|70 (3.4.17)
sind 0 0 X sin xv Fy 0
exists when the characteristic determinant is set to zero:
D = (xsind cos x¥ — cos ¥ sin x1¥) (sin ¥ cos xv) — x cos ¥ sin xv¥) = 0. (3.4.18)
Vanishing of the first factor results in
X tan ¥ = tan y¢ , (3.4.19)

to which the solution can be approximated with a good accuracy by the polynomial

XU =90 =0...1.5) = 4.493419972 + 8.585 048 966 - 103 + 3. 717 588 695 - 102>+
+ 5.594 338 754 - 1029 — 3.056 068 806 - 10~ %0* + 8.717756 418 - 10739° . (3.4.20)

Graphical illustration of this result is presented in Figure 3.6. It can easily be shown that
an antisymmetric buckling shape is related to this solution with Fy = F; = 0 and F;, =
— F3sin x/ sin ¥, thus

< ,19
Wy, = Fy (sin XY — bl? Xﬂ sin gp) : (3.4.21)
sin
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FIGURE 3.6. Antisymmetric solution for fixed-fixed beams.
Hence, the critical strain is

em= —(1-y) = & [1 _ (@)1 . (3.4.22)

m m
If we consider the second term in (3.4.18), that is sin ¥ cos xv) — x cos ¥ sin ¢} = 0 then
YU = 3.14159265 — 0.219 240 52869 + 1.558 063 6149* — 2.391 954 053093+
+ 1.895 751 9109* — 0.441333 77179, if o €[0,1.6] (3.4.23)

is the solution and the corresponding beam shape is of the form

sin ¢

W = F1 (coscp — - Cos X(p) .
X sin y o

This function is symmetric in ¢. So it is a contradiction.

3.4.5. Fixed-fixed beams — solution for symmetric buckling. To tackle this type
of buckling — based on what has been mentioned in Subsection 3.4.3 — let us recall solution
(3.4.5) which is now paired with the boundary conditions gathered in Table 3.7.

TABLE 3.7. Boundary conditions for fixed-fixed beams when ¢,,;, # 0 .

Boundary conditions
Crown point \ Right end
W (@) =0 Wap () lom =0
Wy (w)( =0 WYy (so)‘ =0
Thus, we obtain the following inhomogeneous system of linear equations:
0 1 X 0 4
0 1 b 0 Cy |
cos?  sind sin x cos YU Cs |
sin —cos?¥ —ycosxd xsinyv Cy
_Ag
3
_ih
2x
= me,, . . (3.4.24
MEmb ﬁ ()—2( + A3z sin xt — Ay cos X19> (3 )
2‘47‘5 (cos x — x¥sin x) — 2’4733 (sin x9 + x1 cos xV)



DOI: 10.14750/ME.2016.008
In-plane elastic stability of heterogeneous shallow circular beams 41

The solutions for C; are presented in Appendix A.1.7. To get the load-strain relationship we
have to repeat the steps detailed after equation (3.4.11).

3.4.6. Rotationally restrained beams — antisymmetric buckling. The general
solution to the homogeneous equilibrium equation (3.4.3) is paired with the homogeneous
BCs gathered in Table 3.8.

TABLE 3.8. Boundary conditions for rotationally restrained beams: ¢,,, = 0.

Boundary conditions
Left end \ Right end
Wob|ap:—19 =0 Wob|<p:19 =0
_w® (1) ) _ @) 1) ‘ _
( w@ 4 s ) =0 (Wob +swi ) =0

Upon substitution of solution (3.4.4) into the boundary conditions we obtain

cos —sind — sin xv cos xU
cos v sin ¢ sin xv cos xv
—costY — Ssind Scosd —sind  x (Scosxd — xsinxv) —x (xcosxd + Ssin xv)
cost + Ssintd  Scost? —sind  x (Scosx — xsinxd) x (xcosxv + Ssinxv)

F 0
B _|o
=0 | G42)
Fy 0

for which system the characteristic determinant is

D = [(XQ - 1) sin ¥ sin yv + S (cos ¥ sin v — Xsinﬁcosxﬁ)} .
. [(X2 — 1) cos ) cos x¥ + S (y cos ¥ sin x¥ — sin ¥ cos Xﬂ)} =0. (3.4.26)

Vanishing of the first factor results in the transcendental equation

Sy tan
S+ (x%2—1)tan?

= tan xv. (3.4.27)

Some numerical solutions for § = xJ in terms of ¢ are plotted in Figure 3.7.
Recalling (3.2.8) we get the critical strain for antisymmetric buckling:

€m=1_X2:l[1_(M)2

m m U

(3.4.28)

If we now substitute solution (3.4.27) back into the boundary conditions it follows that
Fy = Fy =0 and F, = —Fj3sin y¢/sind. Consequently, after recalling the general solution
(3.4.4) we obtain that the shape of the beam is indeed antisymmetric:

N .
W) = F3 (sin XY — s;?nxﬁ sin gp) = I3 (sin ggp — zigsin gp) : (3.4.29)
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FIGURE 3.7. Some solutions to §(J, x,S).
Vanishing of the second factor in (3.4.26) yields

(x* = 1)+ S (xtan yd — tan¥) = 0. (3.4.30)

After solving the above equation for J = x¢, we find that a symmetric buckling shape is
obtained for the radial displacement with F, = F3 = 0 and F; = Fj cos x99/ cos ¥:

/19 ~ ~
Wop(p) = Fy (COS Xp — CCOS;E Cos go) =Fy (cos %gp - Zzzg Cos g0> : (3.4.31)

3.4.7. Rotationally restrained beams — symmetric buckling. As the buckled
shape is now symmetric the BCs collected in Table 3.9 are valid for the right half-beam.

TABLE 3.9. Boundary conditions for rotationally restrained beams: &,,, # 0.

Boundary conditions
Crown point \ Right end
wdl =0 Wop| e = 0
=0
wPl =o| WP rsw)| =0
©=0 =1

Upon substitution of solution (3.4.5) into the boundary conditions, we get the equation
system

cos ¥ sin ¢ sin x cos xv Ch
—cos?—Ssin? Scost? —sind  x (Scosxd — xsinx?d) —x (xcosx?+ Ssinxd) Co
3 4 = MEmp
0 2x 2x 0 Cs
0 2x 2y 0 Cy
ﬁ (% + A3 sin x99 — A9 cos Xﬁ)
A: ¥ sin x99 s x 9 S sin x99 Sv 9 A S cos x¥ sin x ¥ ¥ cos x99 SS9 sin xv
<A (et eomxd  Sgexd  Sheaxd) A (Sgmd sl ded _ Stgaxd) | (g g 30)
ZA,
—3A4

The solutions are gathered in Appendix A.1.7, just as for the other supports.
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3.5. Computational results

Symmetrically supported shallow circular beams can buckle in an antisymmetric mode
(with no strain increment) and in a symmetric mode when the length of the centerline
changes. In this section the outcomes of the new nonlinear model are compared to the
results derived and presented in [56] and [61] by Bradford et al. The cited authors have
found that their results for shallow circular arches agree well with finite element calculations
using the commercial software Abaqus and the finite element model published in [51]. As
our new model has less neglects — we remind the reader to equations (3.2.9)-(3.2.10) and
(3.2.20)-(3.2.21) —, we expect more accurate results regarding the permissible loads and a
better approximation for non-shallow beams, i.e. when ¢ € [0.8;1.5]. To facilitate the
evaluations and comparisons — following the footsteps of Bradford et al. by recalling (3.1.9)
— let us introduce

2
Ny [APogr g = Poge (3.5.1)

I, e

which is the modified slenderness ratio of the beam.

When investigating the in-plane stability of circular shallow beams, altogether, five ranges
of interest can be found. The order of the ranges and its geometrical endpoints depend on
the supports and the geometry. It is possible that there is

e no buckling;

e only antisymmetric buckling can happen;

e only symmetric buckling can occur;

e both symmetric and antisymmetric buckling is possible and the antisymmetric shape
is the dominant;

e both symmetric and antisymmetric buckling is possible and the symmetric shape is
the dominant.

Now let us overview how one can find the typical endpoints of these characteristic ranges
through the example of pinned-pinned beams. This line of thought is implicitly applicable to
all the other support arrangements as well. The lower limit for antisymmetric buckling can
be determined from the condition that the discriminant of the quadratic polynomial (3.3.10)
should be a positive number when substituting the lowest antisymmetric solution (3.4.8) for
the strain (or what is the same, for y). Thus,

[(Tw + T1y)? = ALy (T + Loy — )] |oes =0 (3.5.2)
If this equation is zero we have the desired endpoint and if it is greater than zero we get the
corresponding critical (buckling) load P directly from (3.3.10).

The lower endpoint of symmetric buckling is obtained in the following steps: (a) we set
the angle coordinate to zero in (3.3.5) to get the displacement of the crown point; then (b)
we substitute here equation (3.3.10) for the dimensionless load and finally (c) we take the
lowest symmetric solution from (3.4.7). The condition to get the desired limit is that the
displacement should be real.

In certain cases it happens that both the critical strain and the critical load P are equal
for symmetric and antisymmetric buckling. It means that when evaluating the antisymmetric
and symmetric buckling loads against the geometry we find that these two curves intersect
each other. Regarding the critical behaviour of beams, this intersection point generally
implies a switch between the symmetric and antisymmetric buckling modes. For a more
illustrative explanation see Subsubsection 3.5.1.3. This intersection point can be found by
plugging the lowest antisymmetric solution x9 = m — which is at the same time equal to the
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lowest symmetric solution — into the post-buckling relationship (3.4.16). Consequently

[113 (%) + (I(]Q + 112) g + (]01 + ]11 — 1)] =0. (353)

m,J,x9=&

For some fixed-fixed and rotationally restrained beams we experience that there is an
upper limit for antisymmetric buckling. It is found when (3.3.10) becomes zero for certain
critical strains. Therefore the discriminant

(L + Liy)? = 4Ly (Lo + Loy — €m) =0 (3.5.4)

vanishes again.

3.5.1. Pinned-pinned beams. As regards the behaviour of pinned-pinned circular
beams there are four typical ranges in the following order [61,110]:

e no buckling expected;

e only symmetric (or limit point) buckling can occur;

e both symmetric and antisymmetric buckling is possible, but the previous one is the
dominant;

e both symmetric and antisymmetric buckling is possible, but the former one is the
dominant.

The geometrical limits for the ranges are functions of the slenderness as A = A(m). Beams,
whose slenderness ratio is sufficiently small, do not buckle. Increasing the value of A opens the
possibility of symmetric (limit point) buckling. Further raising A yields that, theoretically,
both symmetric and antisymmetric (bifurcation) buckling can occur. However, it will later
be shown that meanwhile in the third typical buckling range the symmetric shape is the
dominant; in the fourth one antisymmetric buckling happens first.

In Table 3.10 the typical endpoints are gathered for four magnitudes of m.

TABLE 3.10.  Geometrical limits for the buckling modes — pinned-pinned beams.

m 103 10*
A < 3.80 A < 3.87 no buckling
380 < A<790 3.87T<A<7.96 limit point only
7.90 < A <9.68 7.96 < A <10.05 Dbifurcation point after limit point
A > 9.68 A > 10.05 bifurcation point before limit point
m 10° 108
A < 3.89 A <3.90 no buckling
3.89 < A< T7.97 3.90< A< 7.98 limit point only
797 < A <10.18 7.98 < XA <10.22 bifurcation point after limit point
A > 10.18 A > 10.22 bifurcation point before limit point

In the forthcoming, the approximate polynomials defining the boundaries of all the no-
table intervals are provided and compared to the m-independent results by Bradford et al.
These figures are

3.9031 4+ 8.14 - 10 ®m — 3.05/m"" if m € [10%10%]

11.3-10° 357
A(m) = e = T 38974714 9.1725- 107 m — 5.295 - 107 m? if m € [10% 107

3.91 in  [61]p.714.
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These polynomials are plotted in Figure 3.8. The new model is close to the results by
Bradford et al. The greatest relative difference is 2.6% when m = 1000. It has turned out
that the upper limit value for the two models are only 0.01 away.

A 3.92 4
3.9
3.88 4
3.86 4
. —— New model
3.844 — Bradford et al.
3.82 -
3-8 T T T T T T T T T 1 m
100,000 300,000 500,000 700,000 900,000
0 200,000 400,000 600,000 800,000 1,000,000

FIGURE 3.8. The lower limit for symmetric buckling — pinned-pinned beams.

Moving on now to the lower geometrical limit for antisymmetric buckling, we have

7.9756 4 5.4 -10""m — 2.15/m"® if m € [10%10%]
Am) =< 797144 1.33- 10 ®m — 118.14/m — 6.636 - 10" m? if m € [10*; 10
7.96 in [61] p. 714.

These relationships are drawn in Figure 3.9. Accordingly, the minor differences between the
models can easily be noticed.

7.08 -
A

7.97- ﬁ/
7.96

7.95 4

7.94 -

— New model

7.93 1 —— Bradford et al.

7.92 -
7.91 -

7.9 .

200,000 400,000 600,000 800,000 1,000,000 m

100,000 300,000 500,000 700,000 900,000

FIGURE 3.9. The lower limit for antisymmetric buckling — pinned-pinned beams.

For pinned-pinned shallow circular beams it happens that there is an intersection point
of the symmetric and antisymmetric buckling curves when both the critical loads and strains
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coincide. The equation of the fitting curve — see Figure 3.10 — is

—271/m +9.923 +2.84-10°m — 1.2 - 107 m? if m € [10%10%]
7.162-106 2144 .
A(m) = — - +10.2003 +7.7-10 % m — 4.549 - 10" m? if m e [10% 10°]
m m
9.8 in [61]p. T14.

The limit value for our solution is A ~ 10.23. This is again close but different by 4% from
the limit for the earlier model [61].

i 10.25
10.15 4
10.05 4 —— New model
—— Bradford et al.
9.95
9.85
9.75
965 T T T T T T T T T 1
100,000 300,000 500,000 700,000 900,000
0 200,000 400,000 600,000 800,000 1,000,000

FIGURE 3.10. The intersection point — pinned-pinned beams.

3.5.1.1. Antisymmetric bifurcation buckling. Pinned-pinned shallow beams may buckle in
an antisymmetric (bifurcation) mode with no strain increment. The loss of stability occurs
when the lowest antisymmetric critical strain level, or what is the same, y1# = 7 is reached —
we remind the reader to Subsection 3.4.2. Evaluating equation (3.3.10) under this condition
yields the critical (dimensionless) load P in terms of the geometry. Computational results
for four magnitudes of m are presented and compared to [61] in Figure 3.11.

In the surroundings of the lower limit, independently of m, the two models agree well.
The figure also shows that, in both cases, the computational results tend to a certain value
as the semi-vertex angle ¢ increases. These limits are rather far, though. In general, the
differences in the dimensionless force between the models are slightly greater if m is smaller.
In short, the new model usually returns lower permissible loads meaning that the previous
one tends to overestimate the load such structural members can bear.

Comparing the models for strictly shallow members (¢ <~ 7/4), the greatest difference
regarding the critical dimensionless load is A ~ 4.9% at ¥ = 7/4 ~ 0.78, m = 10°. For
deeper beams, at ¥ = 1.15 it is 10.5% and it can reach up to 20.5% at 9 = 1.5.

It must be mentioned that equation (59) in [61] is said to approximate well the critical
load given that ¥ > m/4. This statement is confirmed with finite element computations.
Unfortunately, it is not clarified how and under what assumptions this formula was obtained.
At the same time, we have plotted this relation — see the magenta dashed line in Figure 3.11.
This function turns out to be dependent on the angle only. In relation to this solution, the
new model yields greater critical loads between 0.78...1.23 in ¢. After the intersection at
¥ ~ 1.23 — where the permissible loads happen to be the same — this tendency changes. At
¢ = 1.5 the difference is about 16%.
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FIGURE 3.11. Antisymmetric buckling loads for pinned-pinned beams.

3.5.1.2. Symmetric snap-through buckling. Concerning symmetric buckling we have equa-
tion (3.3.10) which is always valid prior to buckling until the moment of the loss of stability;
and equation (3.4.16). The latter one was derived assuming a symmetric buckled shape.
This time there are two unknowns: the critical strain and critical load. To get these we
need to solve the cited two nonlinear relations simultaneously. To tackle this mathematical
problem, we have used the subroutine DNEQNF from the IMSL Library [109] under Fortran
90 programming language.

P
. /
6
5
—— New model, m = 1 000
4 —— New model, m = 3 000
—— New model, m = 10 000
. —— New model, m = 100 000
3 —— New model, m = 1 000 000
2
1 | 3
0 0.25 0.5 0.75 1 1.25 1.5

F1GURE 3.12. Symmetric buckling loads for pinned-pinned beams.

Regarding the computational results, which are provided in Figure 3.12, one can clearly
see that as we increase the value of m, the corresponding curves move horizontally to the
left. The curves are independent of m with a good accuracy above ¢ ~ 1.25.
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FIGURE 3.13. Symmetric buckling loads — comparison of the models.

The new model can, again, be compared to that by Bradford et al. However, results
in [61] are only available within that range, where symmetric buckling is the dominant. The
related curves are plotted between these characteristic endpoints in Figure 3.13. This time
the previous model generally underestimates the permissible load. The greatest differences
can be experienced around ¢ € [0.5;0.55], when m = 1000, that is 7 to 9%. This result is
quite considerable given that the whole interval is only 0.205 wide along the abscissa.

1.8+
gcrit, sym
gcrir, anti
1.6
1.4
1.2
—m =1 000
14 —m= 3 000
——m= 10 000
0.8 —m= 100 000
——m= 1 000 000
0-6 I 1 I I 1 1 9
0 0.25 0.5 0.75 1 1.25 1.5

FIGURE 3.14. Critical symmetric and antisymmetric strains — pinned-pinned beams.

It is also worthy to check how the lowest critical strain for symmetric (it sym) and
antisymmetric (€. anii) buckling relates to each other — see Figure 3.14 for the details.
When the rate on the ordinate reaches 1, there is a switch between the buckling modes.
Prior to this, the critical strain for antisymmetric buckling is lower. After the switch, this
tendency changes.

Finite element verifications. Some control finite element (FE) computations were carried
out to verify the new model using the commercial finite element software Abaqus 6.7 and
Adina 8.9. The tested cross-section is rectangular: the width is 0.01 [m] and the height
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is 0.005[m]. Young’s modulus is 2 - 10! [Pa]. In Abaqus we have used 3-node quadratic
Timoshenko beam elements (B22) and the Static,Riks step; while in Adina 2-node beam
elements and the Collapse Analysis have been chosen. The numerical results for symmetric
buckling are gathered in Table 3.11. All the geometries are picked from the range in which
— according to our model — this buckling mode dominates. As it turns out, the results of the
new model coincide quite well with those of Abaqus and Adina. Moreover, in this comparison
these outcomes are more accurate than the results of [61]. The maximum difference between
our model and the FE figures is only 4.3%.

TABLE 3.11.  Comparison with FE calculations — pinned-pinned beams.

m A 7DNew model 7)Bradford etal. PAbaqus PAdina
1000  4.56 1.63 1.62 1.68 1.7
1 000 5.84 2.09 2.02 2.11 2.12
1 000 7.76 3.03 2.8 2.97 3
1 000 8.72 3.5 3.28 3.43 3.49
1 000 9.36 3.87 3.62 3.72 3.82
1 000 000 4.48 1.66 1.6 1.66 1.66
1 000 000 5.44 1.95 1.88 1.95 1.95
1 000 000 7.36 2.77 2.62 2.77 2.77
1 000 000 9.6 3.86 3.76 3.87 3.86

When trying to carry out some control calculations for antisymmetric buckling, we have
found that it is possible with both software via introducing initial geometric imperfections
to the model using the first (antisymmetric) buckling mode of the beams obtained from
eigenvalue (and eigenshape) extraction. Regarding the magnitude of the imperfection (a
number the normalized displacements of the eigenshapes are multiplied by) we have found
no exact rule but only some vague recommendations in the Abaqus manual [111]. Neither
could we find any relevant information in the related scientific articles, even though they
present FE calculations — see, e.g. [61,74|. While performing some tests, we have found that
the results are heavily affected by the imperfection magnitude. Since the current work is
not intended to deal with the imperfection sensitivity of beams, such investigations are not
included.

3.5.1.3. Load-crown point displacement and load-strain ratios. To better understand the
behaviour of circular beams, we have drawn the four possible primary equilibrium path
types through the example when m is 100000. In Figure 3.15 for four different slender-
nesses, the dimensionless concentrated force P is plotted against the dimensionless (vertical)
displacement W,c of the crown point. The former quantity is obtained upon dividing the
displacement by the initial rise of the circular beam. Consequently,

WO|§0:U
1 — cos?!

When A = 3.5 (¢ ~ 0.105), the slope of the path is always positive, so there is no
buckling. When A is 6.6 (¢ ~ 0.144), only symmetric limit point buckling can occur, where
it is indicated in the figure. At this notable point 9P /0W,o = 0. If A = 8.8 () ~ 0.166), a
bifurcation point appears but on the descending (unstable) branch of the deflection curve.
Thus, the critical behaviour is still represented by the preceding limit point. Finally, if
A =11.1 (9 ~ 0.187), the bifurcation point is located before the limit point, so antisymmetric
buckling is expected first. When A ~ 10.18 (¢ ~ 0.179) the limit- and bifurcation points in
relation with the critical behaviour coincide. These four ranges are in a complete accord with
Section 3.5.1, and follow each other in this same order for any investigated m. Furthermore,
these results show a really good correlation with Abaqus as illustrated.

WOC:’

. (3.5.5)
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FIGURE 3.15. Load-displacement curves for pinned-pinned beams.
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FIGURE 3.16.  Dimensionless load — strain/critical strain ratio (pinned beams).

Figure 3.16 shows how the dimensionless load varies with the ratio &,,/€cit anti for the same
geometries as before. When A\ = 3.5, there are two different values of P, which only occur
once for any possible strain level. When A is 6.6, starting from the origin we can see two
points, where the tangent is zero [375/5(8m/€cm anti) = 0]. As indicated, symmetric snap-
through buckling relates to the upper point. The critical antisymmetric strain is, obviously,
not reached for these first two geometries. However, when A\ = 8.8, we experience that the
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path crosses the ratio 1 in the abscissa but before that, there is a limit point. Thus, still
the former one governs. Finally, for A = 11.1, the bifurcation point comes first and therefore
an antisymmetric buckled shape is expected beforehand. It is also worth pointing out that
independently of A, one branch always starts from the origin while the other one begins
around P(\) ~ 2.9...3.1. At P ~ 1/2 and ¥ ~ 0.248, the related branches intersect each
other.

3.5.2. Fixed-fixed beams. The behaviour of fixed-fixed beams [112] shows some no-
table differences compared to pinned-pinned members. For beams whose m < 21 148 there
are two ranges of interest, in which there is

e no buckling or
e symmetric buckling only.

However, beyond this limit, there are four ranges regarding the buckling behaviour. It is
possible that there is

e no buckling;

e only symmetric buckling can occur;

e both symmetric and antisymmetric buckling can happen, but the previous one is the
dominant;

e only symmetric buckling can occur (the bifurcation point vanishes).

So we can see that the symmetric buckling shape is the only real possibility throughout,
while for pinned-pinned structural members the dominant mode was antisymmetric. The
limits for each range are again functions of the slenderness as it is shown in the forthcoming.
Bradford et al. [61] have found three ranges, when evaluating their model — the first three
ranges in the previous enumeration.

The typical endpoints for four magnitudes of m are provided in Table 3.12.

TABLE 3.12.  Buckling mode limits for fixed-fixed beams.
m 10° 10
A<11.61 A<11.15 no buckling
A>11.61 A > 11.15 limit point only

m 2.5-10% 105 109
A<11.12 A <11.06 A <11.02 no buckling
1112 < A <B3.77 11.06 < A <4260 11.02< <394 limit point only
53.77 < A < 86.33 42.60 < A <206.13 39.4 < A <672.15 bifurcation p. after limit p.
A > 86.33 A > 206.13 A > 672.15 limit point only

The approximative polynomials for the range boundaries are gathered hereinafter and
are compared with the previous model. The lower limit for symmetric buckling is

—1.74-10° 608

—— +— 411186 —4.8-10°m +5.2-10"""'m? if m € [10%5 - 10"
m m
— {2530
A(m) S 4110363 - 8.7-10m if m € [5-10% 109
m
11.07 in [61] p. 717.

Overall, the two models are quite close in this respect. The maximum difference is 5.3%
when m = 1000.
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FIGURE 3.17. The lower limit for symmetric buckling — fixed-fixed beams.

As we find no upper limit for symmetric buckling as long as ¥ € [0;1.5], we now move
on to the lower limit for antisymmetric buckling, that is

(2.4-10* 1 ,
% 0.085 - m? + 64.144 if m € [21148;40000]
314000
+39446-10"%m if m € [40000; 100 000]
A(m) = m
300000
+39.64 —5.5-10""m if m € [100000; 1000 000]
m
38.15 in [61] p. 716.

Meanwhile, for Bradford et al. the result is valid for any m, in our model antisymmetric
buckling is only possible when m > 21148. The difference to the earlier model is huge for
small m-s: at the beginning it is 70% and it is still 11.2% if m = 100000. The limit values,
though, are only 3.2% away. If we recall the results for pinned-pinned beams (see Figure
3.9), these numbers are considerable.

2 66
62

58

New model
Bradford et al.

46

42 -

38 ; ; ; ‘ ‘ ‘ . m
0 100,000 200,000 300,000 400,000 500,000 600,000 700,000 800,000 900,000 1,000,000

FIGURE 3.18. The lower limit for antisymmetric buckling — fixed-fixed beams.
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Finally, the upper limit for antisymmetric buckling is approximated via the functions

3.323-10%7
—90.3 —2.27-10"*m — " + 3.187m"* if m € [21148;10)
A(m) = m?20
—10.1 — 2.628 - 10~°m + 0.617m ! if m € [10°;10).

Bradford et al. have not mentioned the possibility of this limit. In this model, it varies
considerably with m. Altogether, we can mention that, according to the new model, no
antisymmetric buckling is expected first for fixed-fixed circular beams: the symmetric shape
is always the dominant. We further remark that we have found no intersection point for the
symmetric and antisymmetric buckling curves.

) 700
600 -
500

400 4

300

New model

200

100

m

0 T T T T T
0 100,000 200,000 300,000 400,000 500,000 600,000 700,000 800,000 900,000 1,000,000

FIGURE 3.19. The upper limit for antisymmetric buckling — fixed-fixed beams.

3.5.2.1. Antisymmetric bifurcation buckling. Figure 3.20 reveals how the critical dimen-
sionless load varies with the geometry when the critical strain (3.4.20) is substituted into
(3.3.14). The results are compared to Figure 6 in [61]. Meanwhile the solution by Bradford
et al. tends to a certain value (P ~ 6.95), our curves always have different limits which are
reached after a steep decrease as ) increases. If both 1/m and ¥ are sufficiently small, the
outcomes of both models seem to be rather close. However, a distinction of up to 10.3%

7) 7 --""'_'_'.'.':":':'-_-‘:‘:E‘:‘:‘.!!liiiaiiininnnn--
6.8
6.6
6.4
6.2 New model, m = 25 000
New model, m = 50 000
6 New model, m = 100 000
5.8 New model, m =250 000
New model, m = 1 000 000
5.6 Bradford et al., m = 25 000
Bradford et al., m = 50 000
54 Bradford et al., m = 100 000
5.9 Bradford et al., m = 250 000
Bradford et al., m = 1 000 000
5 ' w 9
0 0.25 0.5 0.75 1 1.25 1.5

FIGURE 3.20. Antisymmetric buckling loads for fixed-fixed beams.
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is possible in the critical dimensionless loads if, e.g. ¥ ~ 0.807 and m = 100000. When
m is smaller (25000), the differences are greater even from the lower endpoint. From our
results it can clearly be seen that the (theoretical) possibility of antisymmetric bifurcation
buckling is the own of shallow fixed-fixed circular beams only: around ¥(m) ~ 0.73...0.85
a real solution vanishes. When m < 21148 we find no real solution at all. To briefly sum
up, the new model always results in lower buckling loads.

3.5.2.2. Symmetric buckling. To deal with the problem of symmetric buckling, we need to
solve equations (3.3.14) and (3.4.16) together, when the constants for fixed-fixed beams are
substituted. The numerical results are provided graphically in Figure 3.21. Unfortunately,
we can only make a comparison with a restriction that A < 100 since Bradford et al. have
not published results beyond this limit.

P 8
7.5 /
N A
6.5
6
New model, m =
5.5 New model, m = 10 000
New model, m = 100 000
5 New model, m = 1 000 000
--------- Bradford et al., m = 1 000
15 Bradford et al., m = 10 000
e Bradford et al., m = 100 000
PR I N (R e Bradford et al., m = 1 000 000
0 0.25 0.5 0.75 1 1.25 1.5

F1GURE 3.21. Symmetric buckling loads for fixed-fixed beams.

It is visible that if the angle is sufficiently great the new model yields approximately the same
critical load, independently of m. It is also clear that around the lower limit

0.95 -
0.9- —
0.85
0.8
0.75
0.7
0.65 -
0.6
0.55-
0.5

0.45 T T T
0 0.25 0.5 0.75 1 1.25 1.5

gcrit, sym

crit, anti

9

FIGURE 3.22. Critical symmetric and antisymmetric strains — fixed-fixed beams.

for symmetric buckling the two models generally predict very similar results, though the
lower m is the greater the differences are. When m = 1000, the characteristics of the curves
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by both models are very similar, otherwise there is quite a substantial distinction after a
while in 9. The greatest difference is experienced when m = 10° and 9 ~ 0.316, that is 7.2%.
For greater central angles we would expect even greater differences. When the central angles
are smaller, the model by Bradford et al. generally predicts lower critical loads than ours
but then this tendency changes. The exception is m = 1000 when the new model always
returns greater permissible loads in the plotted range.

When comparing the critical strains for symmetric and antisymmetric buckling in Figure
3.22, we can again confirm that symmetric buckled shape is the only possibility.

Finite element verifications. Using the same software and settings as for pinned-pinned
beams, some finite element control calculations were again carried out for symmetric buck-
ling. The results can be seen in Table 3.13. The correlation of the figures is absolutely

TABLE 3.13.  Comparison with FE calculations — fixed-fixed beams.

m A PhNew model PBradfordetal. PAbaqus PAdina

1 000 13 5.30 5.17 5.09 5.35

1 000 16 5.76 5.50 5.50 5.69

1 000 23 6.53 6.15 6.29 6.70

1 000 35 7.09 6.80 6.99 7.36

1 000 44 7.29 7.00 7.29 7.62

1 000 54 7.46 7.20 7.53 7.81

1 000 63.4 7.62 7.38 7.71 7.97

1 000 000 13 5.14 5.17 5.14 5.15
1 000 000 23 6.36 6.15 6.42 6.37
1 000 000 &4 7.32 7.69 7.37 7.36
1 000 000 285 7.40 n.a. 7.47 7.49
1 000 000 612 7.42 n.a. 7.6 7.59
1 000 000 1090 7.46 n.a. 7.72 7.73
1 000 000 1868 7.64 n.a. 7.98 8.00

favourable. The maximum difference compared to the Abaqus results is +4.7% and it is
—4.5% for Adina. These extreme values were experienced for deep beams. It suggests that
the new model is indeed appropriate to predict the critical load of fixed-fixed circular deep
beams with a good accuracy as long as 9 < 1.5.

3.5.2.3. Load-crown point displacement and load-strain ratio graphs. Figure 3.23 presents
the four possible primary equilibrium path types for beams with m > 21148 and the two
characteristic modes when m < 21148. First, let us see the two common types. Beams
with small A — e.g. 9.5 — do not buckle. Increasing the slenderness ratio (A = 17.5) results
in the appearance of a limit point. Thus, symmetric snap-through buckling can occur for
both picked magnitudes of m. The next two modes are relevant only when m > 21148. If
A(m = 100000) = 47, there is a bifurcation point on the descending (unstable) branch of
the load-deflection curve, so still the symmetric shape governs. If A\(m = 100000) = 210,
then the bifurcation point vanishes. What remains is a limit point. The results, regarding
the first stabile branches until the first limit point show an excellent correlation with finite
element results — see the dashed lines in the relevant figure.
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FIGURE 3.23. Load - displacement curves — fixed-fixed beams.

The typical dimensionless load - strain ratio graphs are shown separately for m > 21 148
and m < 21148 in Figure 3.24 and 3.25, respectively. First, let m = 100000 and A = 9.5.
There are two possible values of P and each occurs once. If we change X\ to 17.5 the two
branches have an intersection and further, on that branch starting from the origin we find a
point where 9P [O0(em/€crit anti) = 0. This point relates to symmetric snap-through buckling.
It is the only option as €.,/ anti s always less than 1. Increasing the slenderness to 47, it
can be seen that the critical antisymmetric strain is reached, i.e. antisymmetric buckling is
also possible. However, this point can be found after the limit point, so still the symmetric
shape is the dominant. Finally, when A\ = 210, we find that the intersection point of the
two branches are considerably further in the abscissa, compared to the previous curves and
(partly for this reason) the bifurcation point vanishes.
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Decreasing m to 10000 — see Figure 3.25 — there are two characteristic types. In terms of
physical sense, these coincide with the first two cases of the previous paragraph. Increasing
the slenderness above 17.5 would never result in the appearance of a bifurcation point: the
ratio 1 on the horizontal axis is never reached.

€ Antisymmetric buckling
O  Symmetric buckling
.—"'-'O“~~
- ’_o—
,7// \\ 1y
-
///
\~
\\..\ T~ _\ -l
Trr— .
4 b /
2 ~— ~
’/ ~—~— -
3 d
9 /// ............ 1=35
; / A=17.5
11 ———A=47
/ ----- -1=210 Em
0 ‘, gcrit, anti
0 0.2 0.4 0.6 0.8 1
FIGURE 3.24.  Dimensionless load-strain graph types, m > 21 148.
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.
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FIGURE 3.25.  Dimensionless load-strain graph types, m < 21 148.

We remark that A and m have a considerable effect on where the upper branch commences
on the ordinate if €,, = 0. The intersection point of the branches is also a function of these
quantities. However, the physically possible (lower) branches always start from the origin.

3.5.3. Rotationally restrained beams. In the present subsection beams with rota-
tional end-restraints are investigated and evaluated [113]. Such beams will be compared to
pinned-pinned (S = 0) and fixed-fixed (§ — o0) structural members to demonstrate the
effect of the dimensionless spring stiffness — see (3.3.15). We remark that the model seems
to be valid for both limits: we always get back the same results as in the preceding sections.
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Altogether, there are five intervals of interest. For certain geometries and spring stiff-
nesses, it is possible that there is

e no buckling;

e only symmetric buckling can occur;

e both symmetric and antisymmetric buckling is possible, but the previous one is the
dominant;

e both symmetric and antisymmetric buckling is possible and the former one governs;

e symmetric buckling is the only possibility as the bifurcation point vanishes.

First, the effect of the dimensionless spring stiffness S on the endpoints of the typical
ranges is studied. The dark red dashed lines are only added lines to the forthcoming figures
with no physical meaning. Choosing m to be 1000, Figure 3.26 shows the effects of the
dimensionless spring stiffness on the buckling ranges in terms of the semi-vertex angle. The
evaluation is always carried out along a visionary vertical line, i.e. assuming a fixed § in
the forthcoming diagrams. If S = 0, we get back the same results (buckling modes and
endpoints) as for pinned-pinned beams. Thus, below ¢ = 0.347, there is no buckling —
such range is always denoted by (I). Then, up until ¥ = 0.5, only symmetric buckling can
occur (IT). Even though the possibility of antisymmetric buckling appears after a further
increase in ¥, the symmetric shape is the dominant (/1) as long as the intersection point of
the symmetric and antisymmetric buckling curves is reached at ¥ = 0.553. After that, the
critical strain for antisymmetric buckling is always lower, therefore it is the governing mode

(IV).

4.2 7.6
|
0.994 - ! 1 9
I, Lower limit for symmetric buckling
| Lower limit for antisymmetric buckling 0.9
0.871-7-7-~ Intersection for the buckling curves
1 0.7
I
0.606—Tff———mmmmm e 0.6
0.553-
0.500- 0.5
I1
I
A 04
0.347-
T T T T T T T T S
0 10 20 30 40 50 60 70 80 90 100

FIGURE 3.26. Typical buckling ranges in terms of S — m = 1 000.

Apart from the range endpoints, there are no other remarkable differences as long as
S <4.2. Passing this value results in the disappearance of the intersection point. It means
that the antisymmetric buckling point is always located on the unstable branch of the primary
equilibrium path. The next important limit is S = 7.6 since above that, even the possibility
of antisymmetric buckling vanishes. It can also be observed that as & — oo, i.e. the beam
is fixed, the switch between no buckling and symmetric buckling approaches to ¥ = 0.606.
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FIGURE 3.28. Typical buckling ranges in terms of S —m = 100 000.



DOI: 10.14750/ME.2016.008
In-plane elastic stability of heterogeneous shallow circular beams 60

The behaviour of beams with m = 10000 is very similar to the previous description
— see Figure 3.27. Now an intersection point exists until S < 6.6 and a lower limit for
antisymmetric buckling can be found as long as § < 33.3. Consequently, these two endpoints
show an increase in S due to an increase in m. It is also a noticeable property that increasing
m yields a decrease in all the typical range endpoints expressed in 1.

The results are a little more complex for m = 100000 as it is revealed in Figure 3.28.
This time there exists an upper limit for antisymmetric buckling above S(¢ < 1.5) = 2.8.
Therefore, if S € [0;2.8], given that the angle is sufficiently small, there is no buckling
(I). It is followed by the range of symmetric buckling only (I7). Then the possibility of
antisymmetric buckling appears but only after symmetric buckling (/17). After that, the
antisymmetric shape governs throughout. However, between 2.8...11.2 in §, after range
(IV), the symmetric shape becomes again the dominant (I1), since the possibility of anti-
symmetric buckling vanishes. After S = 11.2, the intersection point also vanishes, so above
range (I) the symmetric shape governs.

The relevant curves for m = 1000 000 are plotted in Figure 3.29. These follow each other
very similarly to m = 100000. As can be seen, an increase in m results in a slight increase
in the upper limit for antisymmetric buckling and a decrease in all other limits in .

9 . 0.2
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IT Lower limit for antisymmetric buckling
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1.
68 === 0.819
0.6
v 1T
0.4-
0.2 o L e — 0.198
. 0.105
I
0 T T T T T T T I S
0 10 20 30 40 50 60 70 80 90 100

F1GURE 3.29. Typical buckling ranges in terms of S — m = 1000 000.
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3.5.3.1. Antisymmetric and symmetric buckling. In the sequel the governing (critical)
buckling loads are drawn for four magnitudes of m as functions of the semi-vertex angle. In
each of these graphs, curves are presented for S = 0 (pinned-pinned beam); S = 10% (fixed-
fixed beam with a very good accuracy) and S = 1 (rotationally restrained beam). When both
symmetric (drawn with fine dashed lines in the corresponding figures) and antisymmetric
(drawn using continuous lines) shape is possible only the dominant kind is plotted. The
evaluation procedure is the same as that detailed at the very beginning of Section 3.5.

In Figure 3.30, m is chosen to be 1000. The lower limits for symmetric buckling are
IS = 0) = 0.346; 9(S = 1) = 0.371 and ¥(S = 10?°) = 0.606. This buckling mode is the
dominant for fixed-fixed beams throughout the whole interval. As for the other two cases,
an intersection point can be found at J(S = 0) = 0.553 and J(S = 1) = 0.590. Therefore,
beyond these points, antisymmetric buckling governs. It can be observed that increasing
the value of S results that the lower limit for symmetric buckling and the intersection point
moves right in this diagram with increasing related buckling loads. It is also clear that
rotationally restrained beams can bear such loading levels, which are always between the
critical loads for pinned-pinned and fixed-fixed beams. Above 9 ~ 0.7, it is quite a notable
range in P so account for such restraints seems inevitable.

8

P

---------- Symmetric buckling, S =10%
Symmetric buckling, S=1
. —— Antisymmetric buckling, S=1
9 i —— Antisymmetric buckling, S =0 4
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FIGURE 3.30. Buckling loads versus the semi-vertex angle when m = 1000.

8
7) ..............................
T
6-
5
4
P Symmetric buckling, S=10%
3 3.5 Symmetric buckling, S=1
e ——— Antisymmetric buckling, S=1
; 2.5 ——— Antisymmetric buckling, $=0
24 ---------- Symmetric buckling, S=0
15 r ,
0.2 0.25 0.3 0.35 0.4
1 T T T T T T 19

=

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.1 1.2 1.3 1.4 1.5

FIGURE 3.31. Buckling loads versus the semi-vertex angle when m = 10 000.
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Setting m to 10000 yields the results shown in Figure 3.31. Now the lower endpoints of
symmetric buckling are ¥(S = 0) = 0.196; 9(S = 1) = 0.205 and J(S = 10%°) = 0.334. It
means that an increase in m returns a decrease in this limit. The intersection point increases
in the angle with the spring stiffness: J(S = 0) = 0.317; 9(S = 1) = 0.328. It is also clear
that the symmetric buckling curves of the two least stiff supports (for which § = 0 and
S = 1) run quite close for smaller angles. The critical load for any S is generally greater
this time compared to the results when m = 1000.

In Figure 3.32, m is picked to be 100000. The curves representing symmetric buckling
for § = 0 and § = 1 and its endpoints almost coincide — there are hardly any noticeable
differences, so they could even be treated together. The lower limit for symmetric buckling,
anyway, further decreases: 9(S = 0) = 0.111; 9(S = 1) = 0.113 and J(S = 10?°) = 0.187.
At the same time, the intersection point occurs at (S = 0) = 0.179; J(S = 1) = 0.182. The
symmetric buckling curves are again closer to each other and the lower endpoint of all the
curves are closer to the origin.
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FIGURE 3.32. Buckling loads versus the semi-vertex angle when m = 100 000.
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FIGURE 3.33. Buckling loads versus the semi-vertex angle when m = 1000 000.

With m = 1000000, we find that ¥(S = 0) = 0.062; 9(S = 1) = 0.063 and J(S = 10%°) =
0.105 are the lower limits for symmetric buckling and J(S = 0) = 0.101; J(S = 1) = 0.102
give the intersection point. Thus, again, when & is 0 and 1, these figures are the same with



DOI: 10.14750/ME.2016.008
In-plane elastic stability of heterogeneous shallow circular beams 63

a good accuracy. Generally, the differences compared to m = 100000 are not that relevant
when moving from m = 1000 to m = 10 000.

To sum up the outcomes, it is obvious from the former figures that the presence of the
springs can have a considerable effect on the buckling load. Just to pick an illustrative
example, if m = 1000000 and ¥ = 1, the critical dimensionless load P can vary between 5.4
and 7.5. This interval becomes even greater, when 1 is greater.

Finite element verifications. The results for symmetric buckling are again verified by FE
computations using Abaqus and the same settings as mentioned in Subsubsection 3.5.1.1. It
can be seen that the greatest differences (4.4%) are experienced when m = 10° and ¥ = 1.366,
so predictions for not so shallow beams seem to be really good. The new model, anyway,
generally yields lower permissible loads except for when m = 103 and 9 = 0.641.

TABLE 3.14.  Some control FE results regarding the symmetric buckling loads.
S m U PAbaqus PNGW model
0/10/10*° 10° 0.641 4.98/5.03/5.09 5.23/5.26/5.29
0/10/10*° 10° 1.052 6.78/6.83/6.99 6.70/6.86 /7.09
0/10/10%*° 10° 1.416 7.48/7.51/7.71 7.36/7.43/7.62
0/100/10%*° 105 0.289 6.75/7.20/7.38 6.69/7.14/7.32
0/10/10*° 10° 0.782 6.98/7.18 /7.52 6.76/6.99 /7.42
0/10/10*° 10° 1.366 7.58/7.70/7.98 7.26/7.39/7.64

3.5.3.2. The primary equilibrium paths and the load-strain relationships. On the horizon-
tal axis in Figure 3.34, the dimensionless displacement of the crown point W,¢ is plotted
against the dimensionless load P for beams with m = 100 000.
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FIGURE 3.34. Dimensionless crown point displacement versus dimensionless
load, m = 100 000.
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There are four central angles picked to represent the different path types of rotationally
restrained beams when & = 1 and 15. These are compared with results valid for pinned-
pinned and fixed-fixed beams. Finite element computations are also provided using fine
dashed lines. When 9 = 0.113, the slope is always positive and there is neither limit point
nor bifurcation point for the spring supported beams. This is also true for the fixed-fixed
beam with, of course, less displacement under the same load. However, for the pin-supported
member there is a limit point. Increasing ¥} to 0.16 results in the appearance of a limit point
for all but the fixed beam. The corresponding critical loads increase together with §. The
fixed-fixed beam still has a positive tangent throughout but its curve generally runs closer to
the others up until the first limit point on the curves for the restrained beams. At 9 = 0.17,
there is a bifurcation point but on the descending branch of the corresponding curve for
the pinned-pinned and restrained beams. Finally, for ¥ = 0.2, there is a limit point in all
four curves. These points are really close to each other as well as all the whole first stable
branches. This time and above this central angle, the two picked rotationally restrained and
pinned-pinned beams buckle antisymmetrically first, as the bifurcation point is located on
the stable branch. Meanwhile, fixed-fixed beams can still buckle symmetrically only. The
Abaqus computations confirm the validity of the outcomes.

For § = 1 the load-strain curves are drawn in Figure 3.35. When ¢ = 0.113, there are
two different branches to which always a different P belongs. If ¥ = 0.16, the branches
intersect each other and a limit point also appears meaning that symmetric snap-through
buckling can occur. However, the ratio €.,/ critanti = 1 1S not reached. Increasing ¥ to
0.17, we experience that a bifurcation point appears after the limit point. Finally, if ¢
is equal to or greater than 0.2, the bifurcation point comes prior to the limit point: the
antisymmetric buckling shape dominates for such shallow circular beams under a central
load. It is also a remarkable property that every time there are two branches. The first one
always starts at the origin. There is an intersection point of the two corresponding branches
around €,,/&m critanti = 0.27, where the loading level is P~ 1.75.

p o B
P ¢ Antisymmetric buckling L - \\\
4 0 Symmetric buckling //" \\
. &\\
\\
\\
\\
\
| Em
\‘ | Eerit, and
14— 8=0.113 o \
9-0.16 ~
— 9 = 0.17 \~~\ }
20 —9-02 e /
~. \~-\ ’/
g T -
0 0.2 04 0.6 0.8 1 1.2 1.4 1.6 1.8

FiGUuRrE 3.35. Typical load-strain relationships for m = 100 000.

3.6. The effect of heterogeneity on the buckling load

We now demonstrate how heterogeneity can affect the buckling load of bilayered beams
with rectangular cross-section, given that only the material composition is varied — the overall
geometry remains unchanged. As can be seen from Figure 3.36, the upper layer has a Young’s
modulus F; and a height b;. The height is a parameter: b; € [0,b]. When b; = 0, the beam
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is homogeneous with a Young’s modulus F,. In this case, the heterogeneity parameter is
always denoted by myey, and the radius of the E-weighted centerline is p, pom. (If by = b,
the homogeneous cross-section has a Young’s modulus F;.) For any other (and obviously
heterogeneous) distributions, in this section, we use the notations mpe; and py pet-

FIGURE 3.36. The investigated bilayered cross-section.
Recalling (2.1.13) and (3.1.9), we would like to find out how the ratio

Mhet _ AeInE2 Po het ?
mhom(bl = 0) AE2Ien

3.6.1
Po hom ( )

is related to the material distribution. It turns out that this fraction is a function of the
quotients p,/b, b1/b and E,/F; for this simple rectangular cross-section. The first, and
otherwise dominant term on the right side of the former expression depends only on the
ratios Ey/F; and by /b — see the definitions (2.1.13). Some possible solutions are plotted
in Figure 3.37. On the account of heterogeneity, we can see an up to 55% difference when
Ey/E; = 5. Tt is also clear that when b/b; = 0.5, the coherent curves intersect each other
and the maxima of these are also the same. It means that the plotted ratio is obviously
independent of whether the upper or the lower layer has a greater Young’s modulus. The
quotient Fy/E; only affects at what rate of b/b; the maximum is reached.

1.6
Aely E./E, = 5
AI@TI 1.5 4-"_’ --------- hON EQ/El =4
5- E./E; = 3
____________ Ey/E; =
14- E,/E, = 1
Eg/El = 1/2
"""""" Eg/El = 1/3
L R 21— EE i b~ G B B N U DA E,/E) = 1/4
"""""" EQ/EI = 1/5
1.2 =
1.1 _ "'l' ."“‘ "’,"’ 9:‘:\:.“‘
0.9 \“/
R X by
0.8 = T T T T T T T b
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FIGURE 3.37. The first term in (3.6.1).
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The second term in (3.6.1) further depends on the ratio pynom/b. For the rates 10, 50
and 100, the results are plotted in Figure 3.38. It can be seen that this term has a much
less considerable effect — at most £4%, when ponom/b = 10. For the other two picked
ratios it is always less than 1%. So for most geometries and material distributions the ratio
(Po et/ Po nhom)? can be considered to be 1 with a good accuracy.

[Pm(bl) T 1.04 - [pm(bl) T 1.008

Po hom P
1.034 o hom 1.006 -
1.02 1.004
1.014 2 1.002—.'
d
1 1
0.99 4 0.998 |
0.98 0.996 -
0.97 0.994
0.96 +————————————F————— b1 0992 4+—————————F—— b1
0 010203040506070809 1 b 0 0.10203040506070809 1 b
|: Pone(b1) :|2 1.004 5 "_.-::: ...... Lo bom
P o hom 1.003 - ."f ........ :::\ T =100
Lo F -
PARS 'S
Lo Q5 E,/E, = 4
1001 :' ~t\ Eg/El - 3
15 Es/E| =2
EQ/EI =1
0.999 Ey/E; =1/2
el ONT—M— E,/E; =1/3
09981 TN S e E,/E, = 1/4
09974 0 N ST EQ/EI = 1/5
) b
0.996 21
b

0 010203040506070809 1

FIGURE 3.38. The second term in (3.6.1).

To sum up, the ratio mype;/Mmuom is always the product of the previous two matching
figures. Here we plot this quotient for p,nom/b = 10 — see Figure 3.39.

ne O R N R s
Mhom o hom _

150 75 10

1.4

....... 3=
by N

0.8 - | | | | ! : |

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FIGURE 3.39. Variation of (3.6.1) because of the heterogeneity.
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As it can therefore be seen, due to the heterogeneity, the maxima in the rates of m are
as follows:

® mhet/mhom = 1.500 at bl/b = 0405,

mhet/mhom = 1.397 at bl/b = 03757
mhet/mhom = 1.284 at bl/b = 03377
mhet/mhom = 1.155 at bl/b = 02857

Mihet/Mbom = 1.183 at by /b = 0.689,
et/ Mhom = 1.335 at by /b = 0.646,
Mot /Miom = 1.468 at by /b = 0.609,
et/ Mhom = 1.589 at by /b = 0.580,

if EQ/El = 4;
if Bo/E =1/2;

3.6.1. Numerical example. Let us insist on the former bilayered rectangular cross-
section. We choose a pinned-pinned circular beam with Ey/F; = 4. The following mpom
values are tested: 1.2-10%; 1.08-10% 1.0008-10%; 10°. We would like to find out how hetero-
geneity affects the critical load through the variation of the parameter m. Investigations are
carried out until the maxima of the parameter mye is reached, while gradually increasing
the ratio b1 /b — see the preceding figures. All the results are shown graphically in Figure
3.40. For every picked central angle only the dominant buckling mode is evaluated. When it
is a symmetric shape, the corresponding curve is fine dashed. When it is an antisymmetric
shape (it is the more general thanks to the pinned supports), then the curve is continuous.
Since the interval of symmetric buckling for pinned-pinned beams is quite narrow as shown
in Figure 3.13, there are generally one or at most two samples picked from this range.

P'Jhcl I Mhom = 1200 Pg het Ly Mpom = 10 800
P; hom 0.95 4 Pg hom 0.95 4
0.9 0.9+
0.85 0.85
0.8 0.8+
0.754 0.75
0.7 0.7
0.654 0.65 | =-meeme 3 =10.25
. . 9=20.6
. 0.6 :
0.6 91
0.55 1 m 055+ 9-14 Mt
0.5 T T T T T T T 1 ﬁ 0.5 T I 1 I i I ! Miom
1 105 1.1 1.15 1.2 1.25 1.3 1.351.397 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.42
Py \ Mrom = 100 800 Pg het 1 Mhom = 106
- P =
PC hom 0.95 ¢hom  0.95
0.9+ 0.9
0.85 - 0.85
0.8+ 0.8+
0.75 0.75
0.7+ === 9=0.15 0.7+
9=0.2
0.65 0.65
9=0.6 O‘f
0.6+ 9-1 64
0554+ — 9=1.4 Mot 0.55 Mit
0.5 T T T T T - Mpom 0.5 T 1 Mpom
1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.428 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1431
FIGURE 3.40. The effect of the heterogeneity on the critical load.

Overall, we can conclude that heterogeneity has a really massive effect on the buckling load,
independently of the magnitude of the tested m-s. This can even be 50% for antisymmetric
case and 41% for symmetric buckling. It is also a conclusion that, for every sample, the semi-
vertex angle ¢ does not really have an impact on the plotted ratios: the related curves usually
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coincide for the majority of the interval. We can as well observe the fact that increasing the
value of myey, results in a slight increase in the maxima of the ratio myet/mpom measured
along the abscissa.

3.7. Summary of the results achieved in Section 3

I have investigated the in-plane elastic static stability of circular beams with cross-
sectional inhomogeneity provided that the beams are subjected to a vertical force at the
crown point. The most important results are as follows:

1. T have derived a new model both for the pre-buckling radial displacements and for
the post-buckling radial displacements — in the later case both for symmetric and
asymmetric buckling. Cross-sectional inhomogeneity is implied in these equations via
the parameter m. The equations and therefore the model I have established are more
accurate than those solved by Bradford et al. [56,61] for homogeneous material.

2. Though I have neglected the effect of the tangential displacement on the angle of
rotation — most papers like [56,61,73, 74| also utilize this assumption — the results
for the critical loads seem to be be more accurate than those published in [56,61]
thanks to the less neglects. Further, the results happen to approximate well the
critical behaviour of not strictly shallow circular beams.

3. Solutions are provided for (a) pinned-pinned, (b) fixed-fixed and (c) rotationally
restrained beams. For each case, I have determined what characters the stability loss
can have: no buckling, limit point buckling, bifurcation buckling after limit point
buckling, bifurcation buckling precedes limit point buckling. The endpoints of the
corresponding intervals are not constant in A (as in the previous models) but depend
on the parameter m.

4. Comparisons have been made with previous results and commercial FE computations
as well. These confirm that the results of the novel model are indeed more accurate
than the earlier results. For small central angles the differences are, in general, smaller
than for greater central angles.

5. Cross-sectional inhomogeneity can have a significant effect on the critical load as the
provided simple example shows.
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CHAPTER 4

In-plane vibrations of loaded heterogeneous deep circular beams

4.1. Introductory remarks

In this chapter we investigate the in-plane vibrations of deep circular beams under a
constant concentrated vertical load, which is exerted at the crown point. For such problem,
according to the reviewed literature, there are no preceding scientific works. We aim to
find out how we can account for the effect of the concentrated load. A further goal is
to demonstrate the effects of heterogeneity on the frequency spectrum. The forthcoming
method implies the Green function matrix and requires the application of a geometrically
linear model. But contrary to the preceding stability model, the effects of the tangential
displacement on the rotation field are not neglected. Since we remain within the frames of
the linear theory, there is a need for some simplifications compared to the stability model of
Chapter 3.

4.1.1. Equations of the static equilibrium. On the basis of the previous chapter
only the most important relations are gathered here. The first one of these is that the axial

FIGURE 4.1. A circular deep beam under compression.
strain is approximated linearly, i.e. the square of the rotation field wzn is dropped compared
to (3.1.3), consequently

dw, du, d2wo

du, n W, y U,
- on = — — 7 Ko = —7—
ds  p,0 7" p,  ds pods  ds?

(4.1.1)

¢ (€oe + CRo) 5 Eoe =

L+
But this time the effect of the tangential displacement on the rotations will be kept to
better approximate the the behaviour of deep curved beams. The constitutive equation is
unchanged meaning that Hooke’s law yields

I, M dPw, | w,
M I Ap? Ap?
N+ = = ey, with m=—2 1o =Po (4.1.2b)
Po PZ Ien Ley

These formulae are the same as (3.1.7), (3.1.8) and (3.1.10) given that we swap &, for €.

69
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The equilibrium equations and the (dis)continuity conditions in terms of N and M —
obtained from the principle of virtual work — are also unchanged and are shown under
(3.2.2)-(3.2.4) for rotationally restrained beams. What comes next are the expressions of the
equilibrium equations

el {d—M— (N+%> %n] y—
ds  po | ds Po

d [dM M N
Y Vi = =
ds { ds < " p0> @Don} Po =0

in which N and M should be given in terms of the kinematic quantities using (4.1.2). In
this way, from (4.1.3); we get

(4.1.3)

1., de, 1.
p_:m d; - p—gmgogwon + fi =0, (4.1.4)

where the product e,¢1,, — being quadratic in the displacements — can be neglected when it
is compared to the other terms. Thus, we find that

deog _ ) Po
_ — U@ L — __Fo 4.1.5
s €0t o t W, ml., Ji ( )
where the following notations are applied:
o o d"(...
Uozu_’ Wozw_, (.. = () neZ. (4.1.6)
Po Po depm

If the density of the distributed forces in the tangential direction f; is zero, i.e. there is only
a radial load on the beam, then

E€0¢ = constant. (4.1.7)
The manipulations on (4.1.3), are detailed in Appendix A.2.1. The result is
3
W 4 (2 = mee) W + [L4+m (1 — epe)] W, +mUY = Ip—o - (4.1.8)
en

To sum up, when the distributed forces do not vanish we arrive at the system of DEs

001U, (4>+ —m 0 U, (2)+
0o 1||w, 0 2—meg || W,

0 —m U, (1) 0 0 U, (0) B ,
+{m 0 :|[Wo:| +|:0 1+m(1—505)}[W0} :]_e77|:fn:| (419)

If the distributed forces are equal to zero and the beam is subjected to a compressive force
at the crown point then the static equilibrium is governed by

WO 4 (14 x2) WP + 2w = o, (4.1.10)
or equivalently by
U© + (1) UD 1+ 202 =0, (11.11)
where
X' =1—mey, since meg <1. (4.1.12)

Here the strain is due to the concentrated force F.

It is also possible that the concentrated force is directed upwards, i.e. it causes a positive
strain. There are two cases: (a) if me,e < 1 then the previous three relations hold; (b) if the
former relation is not valid then y? is redefined by

x? =mee — 1, provided that me, > 1. (4.1.13)
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Thus, the static equilibrium is governed by
W 4+ (1= WP — 2w = o, (4.1.14)

or equivalently by

4.1.2. Equations of the vibrations. In accordance with the notational conventions
introduced in Subsection 3.1.2, the increments in the various quantities are still distinguished
by a subscript ,. Now these increments are related to the time-dependent vibrations [w,, =
Wop(8,1); Uoh = Uep(S,t) — t denotes the time|. Here we gather the most important linearized
formulae based on the subsection cited.

As regards the axial strain and the rotation field, recalling (3.1.14), we have

auob Wob
Eep ] p£ (50511 + Cﬁob) y  Eogb = 99 P , (4.1.16&)
Uopb aU)ob 1 auob 82U}ob
oy = 2 gy = — % . 4.1.16b
Yont Po ds ot Po 0S 0s? ( )
Hooke’s law for the increments (3.1.17)-(3.1.21) yields
[en Mb 82U)ob Wob Mb [en
Ny, = p—gmgoéb — Py , M, = _[677 (W + pg ., Np+ ) = p—gm&)fb. (4117)
At the same time the equations of motion
0 M, 1 M
= <Nb+ b) - — (N—l——) lbonb—i-ftbzo, (4.1.18&)
aS po (o] pO
O*M, N, 0O M M,
_ T (N 2y, N on| & fup =0 4.1.18b
8s2  po GSK +po)w"b+(b+po)¢"}+fb ( )

formally coincide with (3.2.13) given that the quadratic terms in the increments are neglected.
As we are now dealing with the vibrations, the increments in the distributed forces are forces
of inertia

82u b 8211) b
= —pA—22, wb = —PaA—"22, 4.1.19
) Pall=5s b Pal=52 ( )
where p, is the average density of the cross-section:
1
Pa = Z/ p(n,¢)dA (4.1.20)
A

If we repeat the same procedure as that leading to (3.2.18) but on (4.1.18a) we have

Ie déogb 1 Ie
p—;m s — Ep_gmgogwm'b + ftb =0. (4.1.21)

Moreover, after neglecting the second (quadratic term), we arrive at

3
—m (Uéf) + Wiﬁ) - [p—o . (4.1.22)
en
The manipulations performed on (4.1.18b) are detailed in Appendix A.2.2. The result is
3
W+ (2 = meoe) WS + [+ m (1 — )] Wiy + mUS) = IP_O b - (4.1.23)
en

Consequently, the two governing equations in matrix form are

001 U, (4>+ —m 0 U, (2)+
0 1 W 0 2—mey Wop
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1) ) 5
0 —m Uob 0 0 Uob _ & ftb
+ |i m 0 :| |i Wob :| + |: 01 +m (1 — 805) 1 |: Wob :| - [en |: fnb :| . (4124)

Under the assumption of harmonic vibrations

~

Un(,t) = Uyy(ip) sin ot and Wop(p,t) = Wep(p) sin ot (4.1.25)

with Uob and Wob denoting the amplitudes. The corresponding relations for these latter
quantities follow from (4.1.24) as

0 0] T, (4)+ m 0 0, (2)+
01 Wob 0 2—m50§ Wob
W

P y 2
M ~ (0) .
0 —m Uob 0 0 Uob B Uob
+{m 0 }{Wob] +{0 1+m(1—50£)1{ﬁ/0b] —A[ Aob‘| (4.1.26)
——_— —— R o
P 2 —
in which iy
A= pa ]po o’ (4.1.27)

is the unknown eigenvalue and « is the eigenfrequency sought. The influence of the direction
and the magnitude of the concentrated load P is incorporated into this model via the strain
€0¢, while the heterogeneity is present through the eigenvalue A(p,, I.,) and the parameter
m(Ae, Ley, po)-

If the beam is unloaded there is no initial strain in it: €, = 0. Then we get back those
equations which govern the free vibrations [41,100|:

0 0 [ 0w ™ [-m 0][0s1" [0 —m][0n]",
0 11|, 0o 2|, mo 0 ||,

N (0) ~
0 0 Uob o Uob
+{O m‘f‘l}{Wob} A|:Wob:|. (4.1.28)

Depending on the supports of the beam, the system (4.1.26) or (4.1.28) is associated with
appropriate homogeneous boundary conditions so that together these constitute eigenvalue
problems. The left side of these systems can briefly be rewritten in the form

4 2 1 0
Ky (¢),ce] = Py® + Py® + Py + Py® . (4.1.29)

In the sequel, two support arrangements will be exposed to further investigations. The
boundary conditions for pinned-pinned beams (k., = k., = 0) are
— WP =o. (4.1.30a)

Uob
+ +

= ob
v +9

Thus, the displacements and the bending moment (4.1.17), are all zero at both ends. For
fixed-fixed members (k,; k,, — o0) the third condition is related to the end-rotations
(4.1.16)3:

I 574 CY)
- Wob

=0. 4.1.30b
» ( )

+v

= Wy
+9

Uob

4.2. Solutions to the homogeneous parts

4.2.1. The static equilibrium. As we have pointed out in Subsection 4.1.1, there are
two possible cases to deal with.
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4.2.1.1. If me,e < 1. Solutions to the dimensionless displacements W, and U, in (4.1.10)
and (4.1.11) with the integration constants T;, i = 1,2,... are sought as

W, =—Ty — Ty cosp + Tysinyp — xT5cos xe + xTgsin xp , (4.2.1)

U, =Trp — /Wo (¢)de = Ty + Thp + Tysin o + Ty cos o + Ty sin xo + Ty cos xp . (4.2.2)

The constant part of W, and the linear part of U, should satisfy the equilibrium equation
(4.1.8) when f,, = 0. This condition provides the connection between the coefficients T, and

A

TQI
[1+m (1= eoe)] W, + mUY = —Ty [1 +m (1 —eg¢)] +mTy =0 (4.2.3)

from where

A 1—}—777,(1—605)

Ty = T, . (4.2.4)

m

4.2.1.2. If meye > 1. In most cases when the concentrated force is directed upwards the
general solutions of (4.1.14) and (4.1.15) are

W, = —S5 — S3cosp + Sysinp — x S5 cosh yp — Sy sinh x¢ , (4.2.5a)

U, = Sy + Sy + Sysin @ + Sy cos p + x S5 sinh yp + Sgx cosh xyp ,  S; € R. (4.2.5Db)
The connection between Sy and S, is obtained from the same condition as previously, thus
(14 m (1= coe)] Wy +mUY = — [T+ m (1 — £0¢)] So +mSy = 0 (4.2.6)
from which
s LT+m(l—eq)

Sy = S, . (4.2.7)
m

4.2.2. The increments. Let us determine the solutions for the homogeneous parts of
equations (4.1.26):

v +wl =o, (4.2.8)
W 425 + W, +m (U(EZ) + Wob> — ey (Wob + ij)) = 0. (4.2.9)
After deriving the second equation with respect to the angle coordinate we have

W 4o ® Wl 4 om (U(ff) + W(,})) — My (W(j) + Wf”) ~0. (4.2.10)

~~

=0
Substituting here now (4.2.8); we obtain

D 2 D) e (LD 4 W) = 089 2080 0 4 e (058 + 0) =0
(4.2.11)

or more concisely

Wo(f) + (2 — meye) WO(,?) + (1 — meye) WO(;) = Ué,?) + (2 — meye) U(E;" + (1 — mege) Uéf) =0.
(4.2.12)
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4.2.2.1. Solution when me,e < 1. This inequality applies to all beams under compression
because the strain is a negative number as the concentrated force is directed downwards.
However, the inequality also holds for some beams under tension (when the force is directed
upwards). Therefore, with the notation

X =1—mey (4.2.13)
the related differential equations assume the forms

W+ G+ 1) W + 2w =09 + (142 U + 208 =0. (4.2.14)

(o]

It is not too difficult to check that the solutions for the dimensionless amplitudes are
W,y = —Jy — Jscos © + Jysinp — xJ5cos xp + xJg sin ¢ ; (4.2.15)

and
Uy = Jop + Ji + Jssin g + Jy cos ¢ + J5 sin o + Jg cos x¢ (4.2.16)

in which the constants Jo and J, are not independent since the corresponding solutions
should satisfy both (4.2.8) and (4.2.9). The first equation is identically satisfied. As regards
the second one, the linear part of U,, and the constant part of W,, should satisfy it, therefore
it follows from the relation

O

Wob +m (U(;) + Wob) — msofVVob =—J+m <j2 — J2> + m&ogJQ =0 (4.2.17)

that

A 1 1—
JQ = + m( 605) JQ == MJQ . (4218)

m

4.2.2.2. Solution when me,e > 1. This time the beam is always in tension, because then
€o¢ > 0. Let us now denote

X' =mee — 1. (4.2.19)

The differential equations to deal with are
Wo' + (1= X)Wy =Wy = U + (1-x°) Uy = x*U) = 0. (4.2.20)
As it can be observed, the solutions are slightly different compared to Subsubsection 4.2.2.1:

A

Wo = —Lo — Lycos @ + Lysinp — xLs cosh xo — Lgx sinh x| (4.2.21a)

Uy =Ly + ﬁggo + Lysing + Lycos + xLssinh xyo + Lgy coshyp , L; € R, (4.2.21b)
Th(; connection between L, and {:2 is obtained again from the condition that the linear part
of U,, and the constant part of W, should satisfy equation (4.2.9), consequently

[14m (1= eoe)] Wop + mUSY = = [14+m (1 — coe)] Ly + mLy = 0. (4.2.22)

As a result we get that

R T
Ly = +m£n fo) 1) - ML, (4.2.23)

It turns out to be formally the same as (4.2.18).
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4.3. The Green function matrix
The theoretical background for the solution of the eigenvalue problems in question is sum-

4
marized here on the basis of [41]. Since the matrix P is non-invertible in (4.1.29), the cited

system is degenerated. We are now dealing with the inhomogeneous differential equations

Kly().eocl = 3 Pp)y®(p) =1(¢),  P(p) =0, (4.3.1)

where r(yp) is a prescribed inhomogeneity. The boundary conditions — we remind the reader
to equations (4.1.30a), (4.1.30b) — are

Up(—0) =0, Wo(=9) =0, WP (=0)=0 | Unp®) =0, Wu®) =0, W) =0

(4.3.2)

and

Up(—0) =0, Wop(=9) =0, W (=0)=0 | Up(®) =0, Weu) =0, W0 =0
(4.3.3)

for pinned-pinned and fixed-fixed beams, respectively. Equations (4.3.1)-(4.3.2) and (4.3.1)-
(4.3.3) constitute two boundary value problems.

Solution to the homogeneous differential equations K[y| = 0 depends on the definition
of x?. Exactly as beforehand, there are two possibilities:

o | 1 —mey ) Mmeee < 1
X = { Mmege — 1 if Meqe > 1. (4.34)

The solution to y can be expressed in the form

4
N Yo ey 4.3.
Y [Z (2><2)J(2><2)J] (231) ! ( 3 5a)

where — based on (4.2.15)-(4.2.16) — the general solutions to the differential equations are
v _[cosgp O]’ Y2_{—s1ng0 O], v _[ CoS X Mcp} 7 Y4_[—smxg0 1] ,

sing 0 cosep 0 xsinxy —1 xcosxp O
(4.35b)
if meye < 1. Recalling (4.2.21) it can be seen that Y3 and Y, are different when me,e > 1,
that is
| coshxp Moy | —sinhyp 1
Yy = { xsinhyp -1 |’ Ya= xcoshyp 0| ° (4.3.5¢)

In equation (4.3.5a), C; are arbitrary constant matrices and e is an arbitrary column matrix.
Solutions to the boundary value problems (4.3.1)-(4.3.2) and (4.3.1)-(4.3.3) are sought in the
form

0
Gu(e ) Gra(e,¥) }

= [ Glp,Y)r(v)dy, G(p,9) = ’ ’ , 4.3.6

i) = [ Glountan, Gl = | Gt} Gee) (136)

where G(p,1) is the Green function matrix. The physical sense of this matrix is shown
in Figure 4.2. When the beam, which is pre-loaded by the force F, is further loaded by
a concentrated dimensionless unit force in the tangential /normal direction at ), the Green
function matrix returns the response of the structural element, that is the dimensionless

tangential /normal displacement at ¢. The green and blue arrows belong together in the
related figure.
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FIGURE 4.2. The physical sense of the Green function matrix.
The Green function matrix is defined by the following four properties [41]:

1. It is a continuous function of the angle coordinates ¢ and v in both of the triangular
ranges - < o <Y <vand -9 <Y < p < 9.
The functions {G11(p, ¥), G12(@, 1)} [Ga1(p, V), Gaa(p, ¥)] are {2 times} [4 times]
differentiable with respect to . Moreover, the derivatives

0 G(Soa 77Z}) — G(”)(QO, ¢> K = 1’ 2 ; (437&)
o
0"Ga;(p, 1) (k) ;
—820“ = G2j (907 ¢) k=1,...,4; 7=12 (4.3.7b)

are continuous in ¢ and .
2. Let ¢ be fixed in [0, J]. Despite the fact that the functions and the derivatives

G, 1), G (o,0), G (o) k=1,2,3; G (p, ) K=1,2 (4.3.8a)

are continuous in the whole range, the derivatives Ggll)(gp, ) and Gg)(ap,w) have a
jump at ¢ = 1, that is

i [ M :
lli% [Gn (p+e0)—Gilp—e, SO)} = 1/Pu(p), (4.3.8b)
4
lim [Gé?é)(so +e,0) = G (9 — <, 90)] = 1/Pxn(e). (4.3.8¢)

3. Let a denote an arbitrary constant vector. For a fixed ¢ € [—9,], the vector
G(¢p,?)a — as a function of ¢ (¢ # 1) — should satisfy the homogeneous differential
equations K [G(p,¥)a] =0 .

4. The vector G(p,¥)a, as a function of ¢, should satisfy the boundary conditions
(4.3.2) or (4.3.3).

In addition, there is one unique Green function matrix to any given boundary value
problem [41]. If the Green function matrix exists — it is proven in [41] — then the vector
(4.3.6) satisfies the differential equation (4.3.1) and the boundary conditions (4.3.2) or (4.3.3).

Consider now the differential equations written briefly in the form

Kly] = Ay ; (4.3.9)

where K[y]| is given by (4.1.29) and A is the eigenvalue sought — see (4.1.27). The ordinary
differential equations (4.3.9) are associated with homogeneous boundary conditions — see
(4.3.2) or (4.3.3) — and as it has already been mentioned, together they constitute boundary
value problems, which are now, in fact, eigenvalue problems.

The vectors a’ (¢) = [a1(p)|az(¢)] and b (p) = [b1(¢)|ba(p)] are comparison vectors if
they are different from zero, satisfy the boundary conditions and are differentiable as many
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times as required. Both eigenvalue problems (4.3.9)-(4.3.2) and (4.3.9)-(4.3.3) are self-adjoint
because the product

9
(a,b)M:/ a’Kbdy (4.3.10)
—

is commutative, i.e. (a,b)y = (b,a)y,. Due to the this property the Green function matrix
is cross-symmetric: G(p,1) = GT (¢, ¢).

4.4. Numerical solution to the eigenvalue problems

Making use of (4.3.6), each of the eigenvalue problems (4.3.9)-(4.3.2) and (4.3.9)-(4.3.3) can
be replaced by a homogeneous system of integral equations of the form

—A / Gl )y (4.4.1)

Numerical solution to this eigenvalue problem can be sought by quadrature methods [114].
Consider the integral formula

_ / oW dv =Y wo() v el-0.9]. (1.4.2)

where () is a vector and the weights w; are known. Having utilized the latter equation,
we obtain from (4.4.1) that

ij (0. )7 (W) =3(p)  T=1/A ;€ [-0,9] (4.4.3)

is the solution, which yields an approximate eigenvalue A = 1 /U and a corresponding ap-
proximate eigenfunction y(¢). After setting ¢ to ¢; (i =0,1,2,...,n) we have

ijG(wi, VY (W) =iy () T=1/A ;€ [—0,9], (4.4.4)

or what is the same, a system in the form
GDY =iy, (4.4.5)
where G = [G(¢;,1);)] is symmetric if the problem is self-adjoint. Further
D = diag(wo, wo|wy, w1 . .. |wy,, w,)

and Y7 = [T (o)|¥7 (¢1)] ... [§7 ()], After solving the generalized algebraic eigenvalue
problem (4.4.5) we have the approximate eigenvalues A, and eigenvectors ),, while the
corresponding eigenfunction is obtained from a substitution into (4.4.3):

ij (0, )y (1Y) r=0,1,2,....,n. (4.4.6)

Divide the range [—1, 9] into equldlstant subintervals of length A and apply the integration
formula to each subinterval. By repeating the line of thought leading to (4.4.6), one can
readily show that the algebraic eigenvalue problem obtained has the same structure as (4.4.6).

It is also possible to consider the system of integral equations (4.4.1) as if it were a
boundary integral equation and apply isoparametric approximation on the subintervals, i.e.
over the elements. If this is the case, one can approximate the eigenfunction on the e-th
element (on the e-th subinterval which is mapped onto the range v € [—1, 1] and is denoted
by £.) by

€

y = Ni(7)y; + No(9)y, + Na(7)ys; . (4.4.7)
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where quadratic local approximation is assumed. Here N; = diag(N;), Ny = 0.5v(y —
1), Ny =1—12, N3 = 0.5y(y 4+ 1) and y, is the value of the eigenfunction y(p) at the
left endpoint, the midpoint and the right endpoint of the e-th element, respectively. Upon
substitution of the approximation (4.4.7) into (4.4.1) we have

Npe ;}'1
AZ G (o, ) [IN, (V)N (NN (V)]dy |y, | (4.4.8)
Y3

in which, ng. is the number of elements (subintervals). Using equation (4.4.8) as a point of
departure and repeating the line of thought leading to (4.4.5), we again find an algebraic
eigenvalue problem.

4.5. Construction of the Green function matrices

4.5.1. The structure of the Green function matrix. Recalling the third property
of the definition from Section 4.3, equation (4.3.6) and the general solution (4.3.5a); the
Green function matrix can be expressed in the form [41]

ZY )+ B;(v)] , (4.5.1)

(2><2)

where the sign is [positive|(negative) if [ < ¢](¢ > 9). The matrices Y;, A; and B, are
partitioned in the following way

J J
Y1 Y 1 Y,
v, = | om e % { YJ; }, (4.5.2a)
Yo Yo - 2
(2x2)
;l 134 Aq A ljg é B., B.
A= jll j12 — [\f/ 32 . B, = j11 j12 _ \i-l/ \1_2/ (4.5.2b)
Ay Aoy (2x1)  (2x1) By, By (2x1)  (2x1)

Observe that Y, Yjo are row matrices while Aj;, Aj, and Bj;, Bjs are column matrices.
Keep in mind that Y3 and Y, are different for the two cases considered, i.e. when me, < 1.

4.5.2. The Green function matrix when me,s < 1. We commence with the deter-
mination of the matrices B, which can be calculated by utilizing the second property of the
definition. It is related to the (dis)continuity conditions (4.3.8) in Section 4.3. Thus, there
are two equation systems to be solved. The first system can be constructed by fulfilling the

relations
Zj 1YJ1BJ1
Z; 1YJ2B31
Z Y, (1) B
- _
1
Zj:l ng : le
1 2
Zj:l Yjé : le
> Y8 By
L J
given that we use the angle coordinate 1) when expressmg Y. If we recall (4.3.1) and (4.3. 5b)

0
0

2 —1

PH) (4.5.3)
0

0

0

it can easily be seen that PH = —m. Since Y12 = Y22 = 0 for 7 = 1, 2; the quantities 321

and Bm are set to zero.
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The other system to be dealt with is quite similar:
[ > YiBj i 0 |
> -1 YjBijo 0
> Y1 B _ 8 (15.4)
0

4 1
Zj:l Yj% ; Bj?
4 2
Zj:l sz : Bj2
3

4
Zj:l Yjé Bj?

4 j j 1 2
Here Py = 1. Since §J/12 = 11/22 = 0 for j = 1,2; the quantities B9y and Bgo are also set
to zero. According to equations (4.5.3) and (4.5.4), the matrices B, are independent of the
boundary conditions.
For the sake of brevity, we introduce the following notational conventions for the nonzero

coefficients
1 2 3 3 4 4
CI,:BM, b:Blia C:Bli, d:BQi, 6:Bli7 f:B2z s 7 = 1,2 (455)
If i = 1 we have the system
cosy —sin cosxy¥ My —sinyy 17T al 0 T
sin ) cos Y xsinyy  —1 xcosxy 0 b 0
—siny —cosy —xsinxyyy M —xcosxy 0 c ﬁ (4.5.6)
cosy —sintY  xZcos x 0 —x%sinyy 0 d 0 -
—siny —cosy —x3sinyv 0 —x3cosxy 0 e 0
| —cosy siny  —x* cos xv 0 Yisinyy 0] | f | | 0
The solutions are
1 2 sine 2 Y2 cos
TP T T A - Mim LA A My T
3 sin xy 3
=By =-— , d=By=————"—, 4.5.7b
T T - ) (1 - M)m 2790 - M)m (4:5.7b)
4 cos X 4 My
T T -1 - Mm f =B 2m (1 — M) ( )
If + = 2, then
costy —siny cos xv M —sinyy 17 [ al [0 7
sin vy cos xsinyy —1 xcosxy O b 0
—sinty —costY —xsinyy M —yxcosxy 0 c 0 (4.5.8)
cost —siney  x%cosxv 0 —x2sinyy 0 d 0 -
—siny —costy  —x3sin v 0 —x3cosxy 0 e 0
| —costp  siny —x*cosyy 0 xisinyy 0] [ f. [ -1
is the equation system for the unknowns and the solutions assume the forms
1 cos Y 2 sin ¢ 3 cos XY
TR Ty ST R T O ol
3 4 sin y 4 1
d= By =0 =Bp=——>""— =By = —. 4.5.9
22 ) € 1275 1— )2’ / 22 1 ( )
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4.5.2.1. Constants for pinned-pinned supports. We now move on to the matrices A ; which

can be determined if we recall the fourth property of the Green function matrix. First, let
12

a’ = [1]0] and thus, set Ay; Ag; to zero. The latter choice is because of the structure of
Y, and Ys,. The boundary conditions (4.3.2) yield the following equation system:

- 4 - - 4 -
Zj4:1 Yl g Ajly =21 Yl Baly
Xij:l Yiil,—g Ajil, 23‘4:1 Yjil,—y Bily
Zj4:1 Yol g Ajily =201 Yl Bal,
Zj:l Yj2|<p:q9 Aj1|¢ - Zj:l Yj2| = Bj1|¢ : (4'5'10)
4 2 1 2
Zj:l Y]('z)‘ . Aj1|¢ _ijl Y§2)T<p—’l9 Bj1|w
4 2 4 2)
i Z]‘:l Y]('Z) o= Aj1|¢ i | Zj:l YJ(Q b Bj1|¢ i
12
Second, let @’ = [0]1] and set Ajy; Ay to zero for similar reasons as before. Then the
boundary conditions determine that the system to be dealt with is
Y - - 4 -
Zj4:1 Yiil,—y Ajly, =21 Y,y Bl
Zﬁzl Yiil,—g Ajl, 21-4:1 Yjil,—y Bizly
Zj4:1 Yiol,_—y Ajoly =2 =1 Yiel,——y Bial,
Dot Yjoloy Aply, | = | 2o Yielo—y Bjpl, |- (4.5.11)
4 2 4 2
> ic1 Y§2)‘ L, Ay — 2 im1 Y§2)T __, Baly
4 (2) 4 ()
i Zj:l Yj2 - Aj2|¢ i i Zj:l sz - Bj2|¢ ]

Consequently, the unknown nonzero matrix elements are

1 2 3 3 4 4
Ali(d))a A11(¢)7 Alz(w)v A21(¢>7 Alz(¢)7 A2z<1/}) 1= 172; ¢ € [_19719] .

This time both systems can be expressed simultaneously (with the zero columns removed)
as

S -
Ay
[ cosV sin ¢ cosxv —Muv sinyd? 17 f{ '
costy —sind cosy?d ~ Mv —sinyd 1 5 L
—sind  costY —xsin xv -1 xcosxv 0 Ay |
sint  cost X sin xv -1 xcosxty 0 ;’1 N
sind —cosd?  x3sinyv 0 —x3cosxd 0 L
| —sind —cos?¥ —x3sin x? 0 —x3cosyd 0] | Ay
4
| Agi

[ —acost — bsind — ccos x¥ + dMY — esin xv — f 7]
acosv — bsin + ccos xv + dM1 — esin xy + f
asin — bcosv + cx sin xv + d — ex cos xv

- asiny + bcos ¥ + cx sin x99 — d 4 ex cos xv - (45.12)
—asind + bcos v — cx? sin yv + ex? cos ¥
i —asind — bcosy — ex? sin yv — ex? cos yV i
With the constants
Cip = (1 — x?)sind, Cia = x (1 —x?)siny? ,
11 ( X ) 12 X( X ) X (4.5.13)

D11 = cos ¥ sin xy9 — x> sind cos yt) — Myd (1 — XQ) cos 1 cos xv
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the solutions are gathered hereinafter:

}112-: ! [b(l— )cosﬁ+dx],
Cu

2 ax?® cosd cos xt — ax? (1 — x?) M sind cos xv + asind sin xv + cx® + x> f cos xv

A i = I
' Dy
3 1
Ay =—— (d —ex (1 — Xz) cosxz?) ,
Cio
3 1
Agi = 5 (1 —x?) x (acos x¥ + ccos ¥ + f cosd cos x¥) ,
11
4
Ay = D (a+c( )Mxﬁcosﬁsmxﬁ—i—c(x smﬁsmxﬁ+cosz9¢osx19) + fcosﬁ)
11
4 1
Ay = —5—— (bx (1 — x?) sin x¢ — dMIx (1 — x?) sin ¥ sin x0 + dx* cos ¥ sin y9—
Ciosind

—dsin ¥ cos x4+ ex sin — ex®sin 19) . (4.5.14)

4.5.2.2. Constants for fized-fived supports. Only the last two equations need be changed
in (4.5.10) and (4.5.11) because of the different boundary conditions (4.3.3). These rows in
question are now

4
1
3 YJ(?)‘so Al = Z Y, ‘ . Bjil, . (4.5.152)
j=1
4 4
1 1
>y Al = Sy B, (4.5.15b)
j=1 j=1
and
4
1 1
Z Yj2( )‘ L Aj2|1/’ = Z Y]Q( )‘ _ Bj2|1/’7 (4516&)
j=1 j:l
4
1
3 Yﬂ( | Anl, = Z Y, Bl (4.5.16b)
j=1
As a result, we obtain the following system:
- -
Ay
[ cos?  sind cosxty —Muv sinyd 17 jl ‘
costy —sind cosyd ~ Mv —sinyd 1 3 L
—sind  cos?¥ —ysinxd -1 xcosxv 0 Ay |
sind  cos?  ysinyd -1 xcosxd 0 jzl o
cost?  sind  x?cos ¥ 0  x%sinyd 0 L
costy —sind  x?cos v 0 —x%sinxd 0] | Ay
4
| Ay |

[ —acost — bsint — ccos x + dMI —esin x — f ]
acosv — bsint + ccos xv + dM1 — esin x + f
_ asin® — bcosv + cx sin xv + d — ex cos xv (4.5.17)
asind + bcos v + ¢y sin xv — d + ey cos xv ' o
—acost — bsind — ex? cos x — ex? sin v
acost — bsind + cx? cos x¥) — ex? sin x
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Let us introduce the constants

Cs1 = (1 — Xz) sin ¥ sin 9 + Mx9 (x cos ¥ sin x) — sin ¥ cos xo) ,

4.5.18
D31 = xsin ) cos xv) — cos ¥ sin y ( )

with which we can simplify the solutions to (4.5.17) into these forms:

1 1
Ay = D [b (sind sin x + x cos ¥ cos xU) — dx cos xv + exz] ,
31
/24 aMx (x sind sin x9 + cos 9 cos x9) + [fx* — a (1 — x?) cos d] sin xytI + cM x>
19 — 5
Cs1

3
Ay =—

[b+ ex (xsindsin x4+ cos ) cos x¥) — dcos V]
Dsi1x
3 1
Ay = o [a (1 — XQ) sin xv + ¢y (1 — X2) sind — fx (x cos?sin yv — sim?cosxﬁ)} ,
31

—1

4
12 — 631

[aMV + cMxd (x cos ¥ cos xU + sind sin x0) + ¢ (1 — x*) sind cos xd + fsind] ,

4 1
Ay = Dy [b(1 = x?) cos x¥ + dMxd (x sin ¥ cos xi — cos ¥ sin x1) —
31

—d (1 — XQ) cos ¥ cos xV + ex (1 — Xz) cos 19] . (4.5.19)

4.5.3. The Green function matrix when me, > 1. If we repeat the line of thought
leading to (4.5.6) we can easily determine the coefficients in the matrices B;. Obviously, we
shall now use (4.3.5¢) for Y3 and Y,. When ¢ = 1, from the system of linear equations

costyy —siny cosh yv» Mu sinhxy 17T al 0 7
sin 1) cosy  —xsinhyy —1 —xcoshyy 0 b 0
—siny —cosvy xsinhyy M x cosh xyyp 0 c | ﬁ (4.5.20)
cosy —siny —x2coshxy 0 —x%sinhyy 0 dl | 0 "
—siny —cosy —x3sinh x) 0 —x3coshyy 0 e 0
| —cosy sinyy —x*cosh yv 0 —x*sinhyy 0] L f | | 0
we obtain the solutions
1 X2 sin 2 Y2 cos 1)
= B = — R b = B = — ,
T ) (- Mm T2 - Mym
3 sinh y 3 1
=By =— d=By=————— 4.5.21
T T (- Mym TTT0-Mym (4.5:21)
4 cosh x¢ 4 My
T N I+ A -M)m f=Bn 2(1—M)m
If i =2
costY —siny cosh yvp Mu sinhyy 17T a’ [0
sin cosyp —xsinhyy —1 —xcoshyy O b 0
—sinty —cosy xsinhyy M x cosh xy 0 c| 0 (4.5.22)
cost) —sinty —x?coshyy 0 —x2sinhyy 0 d| | 0 "
—siny —cosy —x3sinh 0 —x%coshyy 0 e 0
| —costp  siny  —x*cosh xv 0 —x*sinhyy 0] | f [ -1
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is the equation system to be solved — compare it with (4.5.8) — and the solutions are

1 cos 2 sin 3 cosh
a2312:—¢2’ 523122——¢2, C=B12=—sz27
2 (14 x?) 2(1+x?) 2(1+x%)x
3 4 sinh x 4 1
22 ) € 12 22 (1+x2) f 22 12
(4.5.23)

4.5.3.1. Constants for pinned-pinned supports. Similarly as in Subsubsection 4.5.2.1 the
boundary conditions (4.1.30a) are used to determine the constants in A; . With these in
hand we arrive at the equation system

-y
Ay
cos sin ¥ cosh ¢y — My —sinh yd 17 jl .
cost? —sind coshxyv My sinh y¢ 1 3 L
—sind  cost x sinh xv —1 —xcoshyxd 0 Ay |
sin  costy  —yxsinh x¢ —1 —xcoshyxd 0 1?21 a
sint —cos?  x3sinh xo 0 —x3coshyd 0 4 2
| —sind —cos? —x3sinh xo 0 —x3coshyd 0] | Ay
4
[ A

[ —acost — bsind — ccosh x¥ + dM1 + esinh xy9 — f ]
acos v — bsin ¥ 4 c cosh x¥ + dM1 + esinh xv + f
asind — bcos v — ¢y sinh xv + d + ey cosh xv

- asin + bcos v — ¢y sinh x99 — d — ex cosh xv - (45.24)
—asind + bcos 9 — cx? sinh Y9 + ex?® cosh x9
| —asinty — beos ) — cx® sinh x99 — ex? cosh x i
Making use of the notations
Co1 = (1 + XQ) sint, Coo =% (1 + XQ) sinh xv , (4.5.25)
Doy = — cos ¥ sinh y — x> sin ) cosh Y + My (1 + XQ) cos 1 cosh yv o
1 4
the solutions for Ay;,..., Ay are
! 1 2 2
Ay = 5 [b(1+x?) cos? —dx?]
Cn
jl  (axPcos¥ + adx (1 + x*) Msind + fx?) cosh x¥) — asin d sinh ¥ + cx®
1i — D22 )
3 1
Ay = o (d+ex (1+x?) cosh x?) ,
Cao
5 X 2
Ay = D (1 + X ) (acosh x0 + ccos v + f cos ) cosh x19) |
22
jl o a-— c (14 x?) My cos 9 sinh xv + ¢ (x3 sin ¥ sinh x + cos ¥ cosh x1) + f cos ¥
1e — DQQ )

4

Ag = R (bX (1 + X2) sinh y9 — dMvy (1 + X2) sin ¥ sinh 9 — dx* cos ¥ sinh Y9+

29 SIN

+dsin ¥ cosh y© + ey (1 + X2) sin 19) . (4.5.26)
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4.5.3.2. Constants for fized-fized supports. For the matrices A, the boundary conditions
(4.1.30b) yield the equation system upon repeating the steps leading to (4.5.17). Conse-
quently

-
Ay
cos?  sind cosh xyvy — M4 —sinh yd 17 jl '
costy —sind coshyd  Mv sinh yv 1 5 L
—sinY  cos? x sinh ¢ —1 —xcoshyv 0 Au |
sini  cost¥  —ysinh xv —1 —xcoshyd 0 ;’1 o
cos?  sind —x?coshyd 0 x%sinhyd 0 L
costy —sind —yx?2coshyd 0 —x?%sinhyd 0| | Ay
4
[ Ay

[ —acost — bsiny — ccosh xy + dM + esinh xd — f 7]
acos? — bsind + ccosh x¥ + dMV + esinh xv + f
asiny — bcosv — cx sinh x¥ + d + ex cosh x

- asin 4+ bcos v — ¢y sinh xv — d — ex cosh x » (45.27)
—acos ) — bsin + cx? cosh 9 — ex? sinh y1
acost — bsind — cx? cosh v — ex? sinh x9 i
from where with the constants
Ci = — (1+ x*) sin¥sinh x9 + x M40 (x cos ¥ sinh x9 + sin ¥ cosh x0) ; (4.5.28)
D1 = x sind cosh 9 — cos ¥ sinh yv o
the closed form solutions are
1 1
Ay = o (b (sin ¥ sinh v 4+ x cos ¥ cosh x¥) — dx cosh xv — X26) ,
41
2 aMIy (x sin ) sinh x9) — cos ¥ cosh x9) + [a (1 + x?) cos? + fx?]sinh xv + cMIx?

Ai: )
! Can

3 1
Ay = (b4 ex (x sind sinh xv — cos ¥ cosh xv) — dcos | ,

Dax
1:2121' = Cizu [a (1 + XQ) sinh x9 + ¢y (1 + X2) sin® + fx (x cos ¥ sinh xv + sin ¥ cosh Xz?)] ,
jlh- __ aM — eMix (x cos Y cosh xd) + sin ) sinh x) + [e (1 + x?) cosh v + f] sinﬁ;
Ca
jl?i - (_b (1 + XQ) cosh xt + dMx¥ (x sin ¥ cosh yt# — cos ¢ sinh o) +

Dy x
+d (1 + Xz) cos ¥ cosh xv + ey (1 + Xz) cos 19) . (4.5.29)

4.6. The load-strain relationships

It is vital to be aware of how the loading affects the strain on the centerline. In practise,
the loading is the known quantity. However, our formulation involves the axial strain €,¢ as
parameter. Because the model is linear, the effects the deformations have on the equilibrium

state can be neglected with a good accuracy |[41|. We can establish the desired e, = €4¢ (75>

relationship on the basis of the system (4.1.9) given that we set f,, = fi = €, = 0 in the
equation cited. Solution for the dimensionless displacements are sought separately on the
left and right half beam due to the discontinuity in the shear force as

U,(p=—=19..0) = O1cosp — Ogsinp + O3 (pcosp —sinp) + Oy (m+ 1) p+
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+ O5 (—cosp — @siny) + Og
W, (p = —1...0) = Oy sinp + Os cos ¢ + Ozpsin p — Oym + Osp cos @ ,

Uy,(p=0..0) = Rycosp — Rysingp + R (pcosp —sing) + Ry (m+ 1) p+
+ Rs (—cosp — psing) + Rg ,
W, (¢ =0..0) = Rysinp + Rycosp + Rypsinp — Rym + Rspcosp, Oy R; € R. (4.6.1)
Therefore, the strain is
coe =UV +W,=0,=R, . (4.6.2)

4.6.1. Pinned-pinned beams. The related differential equations (4.1.9) are associated
with the boundary conditions

Uol sy = Wolpy = M|y =0 (4.6.3a)
and the continuity (discontinuity) conditions
U |50—70 U ‘(p +0 W ‘(p—f(] W ’(p +0 » won‘w——o w0n|tp +0
dM dM
Moo= Nlmyo Ml g= M, S M py
p=—0 " =40 © 0 =40 ds om0 ds 0
(4.6.3b)

prescribed at the crown point. Here, all physical quantities are known in terms of the
displacements — see (4.1.1)-(4.1.2b). The altogether twelve conditions are detailed and the
equation system is constructed in Appendix A.2.3. Based on these results, the load-strain
relationship is

P Ysin® ¥ — 2cosvsin? 9 + ¥sin ) cos? ¥ + 2 cos2 ) — 2 cosd V)

. 4.6.4
T m (9sin® ¥ — 3sind cos ¥ + 30 cos? ¥) + 20 cos® I ( )
The strain ¢ is [negative| (positive) if the dimensionless force
5 _ Peps?
4.6.5
P=L (4.6.5)

is [negative| (positive).

4.6.2. Fixed-fixed beams. Following a similar line of thought as in the previous sub-
section, for fixed-fixed beams, the load-strain relationship is

505:—2 (1—005‘19)(s1n19—19) . (4.6.6)
V9 (1 +m) [0+ sind cos ] — 2msin®

For the details see Appendix A.2.3.

4.7. The critical strain

The critical strain is also important to be aware of. At this value the beam under
compression loses its stability. It can be obtained for a given support arrangement if we
solve the eigenvalue problem defined by equations (4.1.24) with the right side set to zero
(the heterogeneous beam is in static equilibrium under the action of the force exerted at the
crown point — there is no load increment). The eigenvalue is x* = 1 —me,¢ because buckling
can only occur when e, < 0. The solutions happen to be the same as (4.2.15), (4.2.16)
except for the hat symbols, that is

Wep = —Jo — J3cosp + Jysinp — xJ5 cos xp + xJgsin xp ; (4.7.1)
Up = Moo+ Jy + J3sinp + Jycos p + J5sin yp + Jg cos xo . (4.7.2)
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4.7.1. Pinned-pinned beams. To obtain the critical strain we shall use the solutions
(4.7.1)-(4.7.2), which should be substituted into the boundary conditions

Usb| g = Wopl g = WO(I?) o 0. (4.7.3)
In this way we get the following homogeneous system of linear equations:
1 — My —sind  costy  —sinyd cosxy 1T J1] [0 7]
1 M9P  sind  cosd sin yv cos xv Jo 0
0 1 cost  sind  ycosxd  xsinyxv Js | |0 (4.7.4)
0 1 cost —sint ycosyxd —xsiny Jo ! |0 o
0 0 cost?  sind  x3cosxd x>sin Js 0
L 0 0 cost —sind x3cosxd —x3sinxd | L Js . L 0

The determinant ® of the coefficient matrix vanishes at the nontrivial solution, therefore

D=0=x(x—1)(x+1) (sin?sin x?) -
. (sin YU cos ¥ — x> cos xU sin ¥ + x> M cos 1 cos ) — x M1 cos x¥ cos 19) . (4.7.5)
This condition yields five possibilities:
x=1, x =—1, x =0, sin yd =0,
sin ¥ cos ¥ — x° cos xysin ¥ — Y3 M cos x¥ cos ) + y M1 cos xi) cos ) = 0 . (4.7.6)

Since the critical strain is a negative number, the first three roots have no physical sense.
From the fourth condition it follows that

XV = +jm, j=12...,
which means that xv = 7 is the lowest reasonable root. The corresponding eigenfunctions
satisfy the relations W, (p) = —We(—¢); Un(p) = Usp(—¢p) . Consequently
1, ., 1 [ /m\2
of crit — T -1)=—— (_> —1 4.7.7
oo = =2 (¢ = 1) === | (5)" -] (1.7.7)

is the critical strain. This result is the same as that obtained in relation with the stability
problem of shallow beams — compare it with (3.4.8).

4.7.2. Fixed-fixed beams. The critical strain can be obtained similarly as for pinned-
pinned beams. For fixed-fixed structural members

Ussl g = Wanlg = Wy)| | =0 (4.7.8)
are the boundary conditions, which lead to the homogeneous equation system
[0 1 costy —sind  ycosxv —xsinyd | [ Ji ] [0 7
0 1 cost  sind X cos XV X sin x¢ Jo 0
0 0 sint  cos?  xZsinyd  x?cosxv J3 | |0 (4.7.9)
0 0 —sind cos?¥d —xZsinyd x?%cosyd Jo|l |0 o
1 My  sind  costd sin v cos v Js5 0
L1 — MY —sind cos? — sin xv cos U | Js | | 0 |

Nontrivial solutions exist if the determinant ® of the coefficient matrix vanishes, that is, if
D =0= —8x(—cos¥sin ¥ + x sind cos xt}) X
x (=x?sind sin xv 4+ x> M4 cos ¥ sin i) — M (sind cos x¥) x + sindsin x) . (4.7.10)
Consequently, there are three possibilities:

x =0, X sin ¥ cos x©) = cos ¥ sin x4, (4.7.11)
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sin x9 (Y’ M0 cos ¥ + sin ) = sin) (Mdx cos x¥ + x*sin x9) . (4.7.12)

Equation (4.7.11), provides the lowest physically possible solution for xv. After dividing
throughout by cosJy cos v we get

X tan ¥ = tan xv . (4.7.13)

This equation is the same as (3.4.19) set up for the stability investigations of shallow beams.
The approximative polynomials satisfying the above relation with a good accuracy are

X9 = gg(¥ =0...1.5) = 4493419972 + 8.585048 966 - 10> + 3. 717 588 695 - 10~ 19+
+5.594 338 754 - 107%9* — 3.056 068 806 - 10~ 9* + 8.717 756 418 - 10%09° | (4.7.14a)

9 = gg(¥=15...7) =8.267582130 — 9.756 084 003 ¥ + 10.135 036 093 > —
— 5.340762 360 9° + 1.848 589 184 9* — 0.497 142450 9*° . (4.7.14b)

Figure 4.3 confirms that the approximative results (see the orange symbols) are indeed
accurate enough compared to the ’exact’ solution (blue continuous line).

x93 6.4
6.2-

6-

5.8-
5.6 -

5.4

5.2

5
1.8
4.6
4.4

FIGURE 4.3. The solution gg(¢) for fixed deep circular beams.

It means that the critical strain

Cotaric = —— {(%*)2 - 1} (4.7.15)

m

can be given in the same structure as in (3.4.22). However, this time the polynomial is valid
for greater central angles as well.

4.8. Computational results

Based on the previously reviewed algorithm, a program was developed in Fortran90 lan-
guage using the DGVCRG subroutine from the IMSL library |[109] to compute the eigenvalues
(eigenfrequencies).

To validate the model and the code, we have checked whether the solutions for the free
vibrations (|ee¢| = |€ogerit - 107°| 2 0) coincide with previous results for homogeneous beams
from the literature [41,100] given that the parameter m has the same value. To do so,
first, let us overview some well-known achievements. The i-th eigenfrequency for the free
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transverse vibrations of homogeneous straight beams [100] is

Cz' char 2

of = Jhchar (4.8.1)
PA g2
T,E'b

where C; char denotes constants which depend on the supports and the ordinal number of the

frequency sought (see Table 4.1) and moreover ¢, is the length of the beam. The extension
of the former relation for cross-sectional inhomogeneity is [115]

Ci char 2

af = Sl (4.8.2)
paA€2
Toy b

TABLE 4.1. The values of C; char [116].

1=1|1=21=3|1=4

Pinned-pinned beams 1 4 9 16
Fixed-fixed beams | 2.266 | 6.243 | 12.23 | 20.25

If we recall and rearrange equations (4.1.26)-(4.1.27) with e,¢ ~ 0, then

Ai [en
Pa AP,

(4.8.3)

O = Qjfree =

provides the i-th natural (unloaded) frequency for curved beams. Thus, the quotient of the
previous two formulae is

VA;

paA 2
T P —

i © 02/
Ci,charz_ = ;7 - \/_ . (484)

* T 2

pa A
I

en

&

This relation expresses the ratio of the natural frequencies of curved and straight beams with
the same length (¢, = p,¥ = p,209) and same material composition, i.e. it is valid not only
for homogeneous materials but also for cross-sectional inhomogeneity.

Moving on now to the free longitudinal vibrations of homogeneous fixed-fixed rods, the

natural frequencies assume the form [100|

Kic ar E
= = (4.8.5)
l, p

where the constant K;uqar = 4; (i = 1,2,3,...); £, is the length of the rod and p is the
density of the cross-section. If we recall equation (4.8.3) for homogeneous material, we
can compare this result to that valid for the free vibrations of curved beams (given that
|leoe| = |€og crit - 107°] =~ 0 when calculating the eigenvalues A;) in such a way that

O free 1 19
Kic ar~ - = - Az . 4.8.6
h Q; VAL xn ( )
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4.8.1. Results for unloaded pinned-pinned beams. In Figure 4.4 the ratio (4.8.4)
is plotted in terms of the central angle ¥ of the circular beam. The following values of m
were picked: 750, 1000, 1300, 1750, 2400, 3400, 5000, 7500, 12000, 20000, 35000,
60 000, 100000 and 200 000.

The (comparable) outcomes are identical to those of [41] valid for homogeneous beams.
Thus, it turns out that the ratios of the odd frequencies do not depend on m. Another
important property is that there can be experienced a frequency shift: in terms of magnitude,
the first/third frequency becomes the second/fourth one if the central angle is sufficiently
great.

a;
ichar (Z;-k

25

[va)l

FIGURE 4.4. Vibrations of pinned-pinned circular beams when €, ~ 0.

A few finite element control calculations were carried out to check the results. In Abaqus 6.7
we have used the Linear Perturbation, Frequency step. The model consisted of B22 (3-node
Timoshenko beam) elements. Further, we chose F = 2 - 10! Pa and p = 7800 kg/m?’. The
frequency ratios of the new model (; New mode1) and Abaqus (@ Apaqus) are gathered in Tables
4.2 and 4.3. There is generally a very good agreement.
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TABLE 4.2. FE verifications, p,/b = 10; m = 1 200.

9 &1 New model 2 New model 3 New model ¥4 New model

Q1 Abaqus Q2 Abaqus Q3 Abaqus Q4 Abaqus
0.5 1.001 1.053 1.109 1.179
1 1.014 1.029 1.004 1.053
1.5 1.007 1.014 1.028 1.006
2 1.004 1.008 1.014 1.022
2.5 1.003 1.005 1.010 1.015

TABLE 4.3. FE verifications, p,/b = 30 ,m = 10 800.

9 (1 New model &2 New model Q3 New model 4 New model

a1 Abaqus Q2 Abaqus Q'3 Abaqus Q4 Abaqus
0.5 1.006 1.010 1.005 1.025
1 1.002 1.004 1.007 1.011
1.5 1.001 1.002 1.003 1.006
2 1.000 1.001 1.002 1.003
2.5 1.000 1.001 1.002 1.003
3 1.001 1.001 1.001 1.002

Some further comparisons with the results presented in Tables 5 and 8 in [82] are provided
hereinafter assuming a rectangular cross-section (A = 0.01 m?; I,, = 8.33-107% m*) and that
E =2-10" Pa, p, = 7800 kg/m?. In Table 4.4, 2¢ = /2 while in Table 4.5, it is 2¢ = 7.

TABLE 4.4. Comparison of the eigenfrequencies, 29 = 7/2, pinned supports.

m Ref. [117] Ref. [82] col. 1 Ref. [82] col. 2 Ref. [82] col. 5 New model
10 000 g 38.38 38.38 38.42 38.28 38.41
10 000 ao 89.57 89.56 90.46 89.08 89.77
10 000 a3 171.42 171.41 172.17 169.75 172.18
10 000 oy 244.96 244.94 269.26 243.05 245.82
2500 o 152.93 152.93 153.7 151.45 153.48
2500 a9 343.01 342.76 361.85 336.46 345.31
2500 a3 9552.15 552.17 688.7 549.84 552.28
2500 oy 675.71 675.83 1077.01 651.82 685.38

TABLE 4.5. Comparison of the eigenfrequencies, 29 = 7, pinned supports.

m Ref. [117] Ref. [82] col. 1 Ref. [82] col. 2 Ref. [82] col. 5 New model

10 000 oy 6.33 6.33 6.33 6.32 6.33

10 000 o 19.31 19.31 19.33 19.28 19.32
10 000 a3 38.98 38.97 39.02 38.87 39.05
10 000 a4 63.53 63.53 63.71 63.29 63.79
2500 ag 25.28 25.28 25.31 25.21 25.3

2500 o9 77.01 76.99 77.31 76.57 77.18
2500 a3 155.24 155.25 156.09 153.75 155.96
2500 ag4  251.86 251.82 254.83 248.12 253.81

Tiifekgi and Arpaci [82] have checked their numerical results under various assumptions. In
the next two tables, the notation Ref. [82] col. 1 denotes that the authors have accounted
axial extension and rotatory inertia effects as in [117]. Further, Ref. [82] col. 2 notes that
both these effects are neglected, meanwhile in the column named Ref. [82] col. 5, results by
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the most accurate model are shown: not only axial and transverse shear extension effects but
also rotatory inertia effects are considered. After comparing the outcomes one can conclude
that the correlation, even with the model using the least neglects, is really good.

The quotient (4.8.6) is plotted in Figure 4.5 for i = 1,2. According to the computational
results, these ratios do not depend on the parameter m and its value are equal to 1 or 2 if
the central angle is small enough.

i
ichar&_i
2.5
2 I S S e St A AR
1.5
e
1+ + — b= = - -+
+ Results a,/a,
0.5 - —  Fitting curve i=1
X Results 2a,/d,
—---  Fitting curve i=2
' 3

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

FIGURE 4.5. Results for pinned-pinned beams, when ¢, ~ 0.

4.8.2. Results for loaded pinned-pinned beams. Now the effect of the central con-
centrated load on the frequencies is analysed. In this subsection let «; be the i-th natural
frequency of the loaded circular beam while the unloaded (natural) frequencies are denoted
by A free-

Figure 4.6 represents the quotient a3 /a3 ;... — the subscript 2 is in accord with Figure 4.4
— against the quotient |e,¢/€o¢ erit| for beams under compression and tension. The frequencies
a9 and aipee are the lowest eigenfrequencies of the vibrations above the limit

J(m) ~ —0.1425 + 2.7 - 10"%m + 10700/m?* + 5.04/m°? | m € [10*;10%] . (4.8.7)
, 2
a2
(az free ) 18
1.6
1.4
1.2
+ Results — compressive force
=" - - —- Fitting curve — compressive f.
0.8 T~ — X Results — tensile force
~— — — Fitting curve — tensile f.
0.6 i
~~ ~
-
04 i -
0.2 e g
0 Tt — oé
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 | Zo&erit

FIGURE 4.6. Results for the two loading cases of pinned-pinned beams.

The tested values of the related parameters are as follows: m = {10% 10% 10°}; J =
{0.2;0.4;0.6;1;1.6; 2; 3;4;5; 6} and |ep¢ /€0 crie] = {107°;0.1;0.2;...;0.9;0.99}. In addition to
the fact that the results are independent of m and ¢, the plotted relationships are linear
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with a very good accuracy — i.e. the frequencies under [compression| <tension> happen to
[decrease| <increase> linearly. The polynomials

2

22— 1.00046 — 1.000 ggfecl Eoe <0, (4.8.8)
Q5 free Eot crit
2
22— 1.000661286 + 0.999915 profeel Eoc > 0 (4.8.9)
Q3 free Eo¢ crit

fit well on these results. This achievement is basically the same as the well-known result
that is valid for pinned-pinned straight beams if they are subjected to an axial force — see
for instance [86)].

4.8.3. Results for unloaded fixed-fixed beams. The quotient (4.8.4) is plotted in
Figure 4.7 against the central angle. Once more, the picked values of m are 750, 1000, 1300,
1750, 2400,3400, 5000, 7500, 12000, 20000, 35000, 60000, 100000 and 200000. The
curves run similarly as for pinned-pinned beams and the properties are also the same. The
quotients are generally greater for the same parameters meaning that the fixed ends provide
stiffer supports.

Gi
i char a;*
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25
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FIGURE 4.7. Results for fixed-fixed beams when €, >~ 0.
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There were some experiments carried out by some kind colleagues in Romania to deter-
mine the first natural frequency of four specimens. I would like to express my gratitude to
them. The method is detailed in |[118]. The tested beams with rectangular cross-section
are made of steel: E ~ 2.10' Pa. All the other parameters are gathered in Table 4.6.
The measured frequencies are denoted by aqpeas. We can see that both the new model and
Abaqus yield really close results to the experiments.

TABLE 4.6. Unloaded frequencies — comparison with measurements.

m 9 A 0o 1 New model 1 Abaqus
Q1 Meas. Q1 Meas.
(-] [l [mm?  [mm] -] -]
98 523 46 29.7-4.8 434.9 1.099 1.097
84 984 43.1 25-5.5 462.9 1.050 1.047
77961 369 295-5 403 1.046 1.041
281 169 31.17 25.6-3.1 474.5 1.070 1.068

Some additional Abaqus computations were as well carried out. The settings were the same
as mentioned in relation with pinned-pinned beams and the consequences also hold. The
results are gathered in Tables 4.7 and 4.8.

TABLE 4.7. FE verifications, fixed-fixed beams, m = 1200, p,/b = 10.

19 1 New model Q2 New model Q'3 New model (4 New model

(1 Abaqus Q9 Abaqus '3 Abaqus Q4 Abaqus
0.5 1.019 1.115 1.193 1.314
1 1.031 1.037 1.021 1.075
1.5 1.014 1.025 1.039 1.037
2 1.008 1.015 1.022 1.032
2.5 0.971 1.010 1.015 1.022

TABLE 4.8. FE verifications, fixed-fixed beams, m = 10800, p,/b = 30.

9 Q1 New model &2 New model ¥3 New model ¥4 New model

(1 Abaqus Q9 Abaqus 3 Abaqus Q4 Abaqus
0.5 1.014 1.007 1.018 1.039
1 1.004 1.006 1.010 1.014
1.5 1.002 1.003 1.006 1.009
2 1.001 1.002 1.003 1.005
2.5 1.000 1.001 1.002 1.004
3 1.000 1.001 1.002 1.004

Recalling the results gathered in Tables 1 and 4 in [82], we can make some additional
comparisons as shown in Tables 4.9 and 4.10. All the data are the same as for pinned-pinned
beams. The agreement is good yet again.
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TABLE 4.9. Comparison of the eigenfrequencies, 29 = 7/2, fixed supports.

Ref. [117] Ref. [82] col. 1 Ref. [82] col. 2 Ref. [82] col. 5 New model

m
10 000 o 63.07 63.06 63.16 62.62 63.1
10 000 117.22 117.19 120.76 115.85 117.5
10 000 a3 217.13 217.08 218.41 213.28 218.2
10 000 ay 249.26 345.21 322.26 247.96 249.8
2500 oy 251 251 252.66 244.24 251.89
2500 as  399.68 399.65 483.04 390.09 401.16
2500 a3 613.25 613.33 873.64 600.7 617.25
2500 oy 847.24 847.07 1289.06 795.82 859.02
TABLE 4.10. Comparison of the eigenfrequencies, 219 = m, fixed supports.

m Ref. [117] Ref. [82] col. 1 Ref. [82] col. 2 Ref. [82] col. 5 New model
10 000 oap 12.23 12.23 12.24 12.21 12.24
10 000 «vs 26.89 26.89 26.95 26.80 26.92
10 000 a3 49.93 49.93 50.03 49.70 50.07
10 000 oy 76.43 76.44 76.84 75.95 76.85
2500 oy 48.87 48.86 48.96 48.51 48.9
2500 as  106.85 106.85 107.78 105.53 107.1
2500 a3  198.57 198.51 200.13 194.94 199.5
2500 a4  299.61 299.59 307.37 292.46 302.13

The quotients (4.8.6) for i = 1,2 are plotted in Figure 4.8. With a good accuracy, these
ratios do not depend on the parameter m and are equal to 1 and 2, respectively if the central

angle is small enough.

a;
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FIGURE 4.8. Comparison with vibrating rods when e, ~ 0.

4.8.4. Results for loaded fixed-fixed beams. When the effect of the central con-
centrated load is accounted — keeping the same notations as in Subsection 4.8.2 — we have
found that while the numerical results for the frequency quotient (ag/ao free>2 show some
noticeable dependency on the central angle, they are insensible to the parameter m. The
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tested values are the same as for the other support arrangement. The results are presented
graphically in Figure 4.9.

We can conclude that when the beam is under compression and 9 € [0.2; 5], the results
are approximated with a good accuracy by the continuous black curve in the corresponding
figure. The equation of that approximative polynomial is

2 2
( a2 ) — 0.999 354 — 0.916 924 |—% | — 0.077 732 | % (4.8.10)
Q9 free Eo¢ crit €o¢ crit
When 9 = 6 we had better use
2 2
( @2 ) — 0.994 622 — 0.611 192|—% | — 0.352 049 | % (4.8.11)
Q9 free Eo¢ crit €o¢ crit

It therefore means that the approximations are more reasonable with quadratic functions
instead of linear ones.

The case of tension seems a bit more complicated as the central angle has a greater
influence on the frequency quotients. The equations of the fitting curves in Figure 4.9 are

2

2
( @2 ) = 0.994 252 + 0.968 480 | —%—| +0.012 209 |[—%—| | if J=02; (4.8.12)
Q3 free Eot crit Eot crit
(0% 2 15 15 2 =
( 2 ) = 0.998 414 4+ 0.971 007 | —=—| — 0.058 161 | —%—| | if 9 =3; (4.8.13)
Q2 free €o¢ crit €o¢ crit
N 2 c e |2 _
( 2 ) = 1.000 444 + 0.874 756 |—%—| — 0.051 986 | —=—| ,if d=5; (4.8.14)
Q9 free €o¢ crit €o¢ crit
an \2 c e |2 _
( 2 ) = 1.000 926 + 0.679 926 | —=—| — 0.088 723 |—%—| | if 9 =6. (4.8.15)
Q9 free 50{ crit 50{ crit

The frequencies ay and s e are the lowest frequencies above the limit

J(m) =~ —0.159+8.874-10"° m—2.99-10" " m?>+6.448/m®* | m € [7.5-10%2-10°] . (4.8.16)
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FIGURE 4.9. Results for the two loading cases of fixed-fixed beams.
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4.8.5. The effect of heterogeneity on the frequency spectrum. Here we investi-
gate how the frequencies can change due to the inhomogeneity. We consider a functionally
graded material composition. The material properties, i. e. Young’s modulus £ = E({) and

¢

Zc

Po

FIGURE 4.10. A functionally graded rectangular cross-section.

the density p are distributed along the axis z (or {) of the rectangular cross-section in Figure
4.10 according to a similar power law rule as in [73,95,98|:

z k 2z k

B() = (Bn=E) (3) + B pl)=(om—0 (3) +pe. (4.8.17)

Here the subscripts . and ,,, refer to the ceramic and metal constituents of the material and
the exhibitor £ € R. In this example we choose an aluminium oxide Al,Os and aluminium

constitution, therefore

K Kk
& . pm=2.707-1076 -8

mm?’ mm?
The value of the index k will be increased gradually from 0 by 0.5 until 5. If £ = 0, the
cross-section is homogeneous aluminium and the typical quantities will be distinguished by
a subscript pom. Otherwise, the subscript pe; is in command. (When k& — oo the whole
cross-section is Al;O3 with a thin aluminium layer at z = b.) In Figures 4.11 and 4.12 we
show the distribution of £ and p along the height of the cross-section accordingly with the
power law.

E,=3810"MPa ; E,, = 7-10* MPa ; p, = 3.8-107° . (4.8.18)

zlb 1
0.9-
0.8-
0.7-
0.6
0.5-
0.4- — k=0 — k=05
) — k=1 k=1.5
03 — k=2 — k=25
0.2- k=3 — k=35
ol k=4 — k=45
’ k=5
0

50,000 100,000 150,000 200,000 250,000 300,000 350,000 400,000

FIGURE 4.11. Variation of Young’s modulus over the height of the cross-
section.
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0
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FIGURE 4.12. Variation of the density over the height of the cross-section.

Similarly as done in Section 3.6, we now plot some typical distributions along the axis z
(or ¢). The parameter m consists of two parts just as in (3.6.1):

Mhet _ AeIn Po het ?
mhom(k = O) Alen

4.8.19
Po hom ( )

Recalling formulae (2.1.12)-(2.1.13¢), (4.8.17), (4.8.18) and Figure 4.10, the physical quan-
tities we need for the current example assume the forms

k
E (¢) = (70 000 — 380 000) (C Jl: Zc) +380 000 (4.8.20a)
b N
Qcy = / EzdA = a/ [((70 000 — 380 000) (g) + 380 000) z] dz (4.8.20D)
A 0

' 2\ Q.
A, = / EdA = a/ [(70 000 — 380 000) (7> + 380 000] dz | 20 = 2 (4.8.20¢)

A 0 b A,

(b—2c) k
I, = /A ECdA=a / [((70 000 — 380 000) <sz> + 380 000) 42] d¢.  (4.8.20d)

—2Zc

The first term on the right side of (4.8.19) depends only on k as can be seen from Figure
4.13. The maximum is reached at £ = 2, that is ~ 1.218.

Aelr] 1.25-
AL,
1.2-
1.15
1.1
1.05-
1 : k
0 0.5 1 1.5 2 2.5 3 3.5 1 1.5 5

FIGURE 4.13. The first factor in (4.8.19) against k.
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The second factor is, moreover, function of the ratio p,/b. Some possible solutions with
the approximative polynomials are plotted in Figure 4.14.

»Y
»yY
»yY
ILVL

1
I: Pohet :|2 h
Po hom

Po o /b = 160

0.96 > Do /b = 80
A pohom/b =40
Porom /b =20
0.95 Do /b = 10
B P hom /b=5
0.94 k
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

FIGURE 4.14. The second factor in (4.8.19) against k.

Therefore, the product (4.8.19) itself in terms of k and p,/b is shown in Figure 4.15.

et .95
Mhom
1.2
1.15
1.1 — Poton /b =160
—puhom/b: 80
7 pohom/b =40
Potom /0 = 20
1.05 - Pt /b = 10
_polmm/b: 5
1 T T T T T T 1 k
0 0.5 1 1.5 2 2.5 3 3.5 1 4.5 5

FIGURE 4.15. The parameter m (4.8.19) against k.

4.8.5.1. Free vibrations. Now let us see how the inhomogeneity can affect the first four
natural frequencies of pinned-pinned circular beams. We choose myen, = 1200 and p,/b = 10,
therefore the maximum of the quotient mypeq/Mpom is >~ 1.196 at & = 2. The picked semi-
vertex angles are ¥ = (0.2; 0.4; 0.8; 1.6). We remind the reader to the fact that not only
the parameter m but also the average density and the E-weighted moment of inertia have
influence on the frequency spectrum — see equations (4.1.27) and (4.1.26). The computational
results are plotted in Figure 4.16.
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FIGURE 4.16. The change in the frequencies due to the inhomogeneity.

Generally we can conclude that there are significant differences because of the inhomo-
geneity. When 9 = 0.2, all four frequencies change in a similar way and in the order from
the first one to the fourth one. Interestingly, when ¢ = 0.4, only the second, third and
fourth frequencies change almost exactly the same way. Increasing the semi-vertex angle to
0.8, we again experience a new tendency: the even frequencies are affected the mostly by
the material composition. On the bottom right diagram the curves coincide with a good
accuracy.

4.8.5.2. Loaded vibrations. Let myom(k = 0) = 10800 and p,/b = 30. P, is always
the critical load of the homogeneous pinned-pinned beam — its value further depends on the
central angle. We would like to briefly show how the the first four frequencies change for
k =0.5; 1; 2.5 and 5 given that the load is unchanged and at the same time proportional to
the critical load of the homogeneous beam.

First, we investigate the case when ¥ = 0.2. The quotient P,/ P ¢ is [positive| (negative)
when the beam is under [compression| (tension). The beam is unloaded if this ratio is zero.
The results for eight different load values in relation with the first four natural frequencies
are gathered in Tables 4.11-4.14.

After observing these tables, one can conclude that the inhomogeneity affects more the
frequencies under compression than in tension. The greatest influence of the load is always
on the first frequency and the least is on the fourth one. It is also a common property
that the corresponding frequency quotients are closest to 1 when the tensile force is the
greatest. From the top to the bottom of any column, the numbers increase gradually. Both
the inhomogeneity and the loading can have a huge influence on the frequencies.
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TABLE 4.11. Results when £ = 0.5 and ¢ = 0.2.

PC 1 het (k = 05) Q9 het, (k} = 05) Q'3 het (k = 05) Q4 het (k = 05)
Prret  @ihom (k=0) 2hom (k=0) a3hom (k=0) Q4nom (k=0)

—0.8 1.238 1.230 1.308 1.347
—-0.6 1.273 1.260 1.329 1.362
—-0.4 1.318 1.298 1.353 1.377
—-0.2 1.377 1.346 1.380 1.394
0.0 1.462 1.411 1.412 1.412
0.2 1.591 1.503 1.448 1.432
0.4 1.817 1.645 1.491 1.453
0.6 2.339 1.898 1.543 1.477
0.8 3.264 2.508 1.606 1.502

TABLE 4.12. Results when £ =1 and ¥ = 0.2.

PC Q1 het (/{ = 10) Q9 het (k = 10) Q'3 het (k = 10) Q4 het (k = 10)
Peret @ihom (K=0)  a2nhom (k=0) a3nom (F=0)  a4nom (k=0)

—0.8 1.318 1.289 1.385 1.435
—0.6 1.363 1.326 1.411 1.453
—-0.4 1.420 1.373 1.441 1.472
-0.2 1.497 1.433 1.474 1.492
0.0 1.604 1.512 1.513 1.515
0.2 1.766 1.624 1.557 1.539
0.4 2.046 1.796 1.609 1.566
0.6 2.681 2.097 1.672 1.594
0.8 3.782 2.813 1.749 1.625

TABLE 4.13. Results when £ = 2.5 and ¢ = 0.2.

P( Q1 het (kj = 2.5) Q9 het, (k‘ = 2.5) Q'3 het (]{J = 2.5) Q4 het (kj = 2.5)
P{ ref &1 hom (k = O) Q&2 hom (k = O) Q3 hom (k = O) &4 hom (k = O)

—-0.8 1.402 1.364 1.484 1.545
—0.6 1.458 1.41 1.516 1.567
—-0.4 1.53 1.468 1.552 1.59
-0.2 1.624 1.541 1.593 1.616
0.0 1.755 1.639 1.64 1.643
0.2 1.952 1.776 1.694 1.673
0.4 2.287 1.983 1.758 1.705
0.6 3.304 2.342 1.834 1.74

0.8 5.230 3.186 1.926 1.778
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TABLE 4.14. Results when £ =5 and ¥ = 0.2.

P< Q1 het (k‘ = 5.0) Q9 het (k‘ = 5.0) Q'3 het (k = 5.0) Q4 het (k‘ = 5.0)
Peref  @inom (K=0)  az2nom (k=0) a3nom (k=0) a4nom (k=0)

—-0.8 1.446 1.421 1.557 1.626
—0.6 1.509 1.474 1.594 1.651
—-0.4 1.588 1.54 1.634 1.677
-0.2 1.692 1.623 1.681 1.706
0.0 1.835 1.733 1.734 1.736
0.2 2.049 1.887 1.795 1.769
0.4 2.413 2.118 1.867 1.805
0.6 4.117 2.517 1.951 1.844
0.8 7.109 3.447 2.054 1.885

Similar tendencies but with less significant differences are experienced for such semi-
vertex angles when ¥ = 0.5 as it turns out from Tables 4.15-4.18. Altogether, there is sill at
least 22.6% distinction between the related frequencies. None of the ratios go below 1.

TABLE 4.15. Results when k& = 0.5 and 9 = 0.5.

PC 1 het (k = 05) Q2 het, (k = 05) Q'3 het (k = 05) Q4 het (k = 05)
Prret  @ihom (k=0) 2hom (k=0) a3hom (k=0) @4nom (k=0)

—0.8 1.226 1.368 1.399 1.346
—-0.6 1.256 1.379 1.415 1.360
—-0.4 1.295 1.392 1.431 1.376
-0.2 1.344 1.409 1.446 1.393
0.0 1.411 1.431 1.462 1.411
0.2 1.505 1.459 1.475 1.431
0.4 1.650 1.494 1.488 1.453
0.6 1.908 1.539 1.500 1.477
0.8 2.528 1.596 1.512 1.503

TABLE 4.16. Results when £ =1 and ¥ = 0.5.

PC 1 het (k = 10) Q9 het (k = ].0) Q'3 het (k = 10) Q4 het (k = 10)
PC ref Q1 hom (k = O) Q2 hom (k = O) Q'3 hom (k = O) Q4 hom (k = O)

—0.8 1.282 1.467 1.525 1.432
—0.6 1.321 1.480 1.546 1.450
—-0.4 1.369 1.497 1.565 1.469
—-0.2 1.430 1.518 1.585 1.491
0.0 1.512 1.545 1.604 1.513
0.2 1.627 1.579 1.622 1.537
0.4 1.803 1.622 1.639 1.564
0.6 2.111 1.676 1.654 1.593

0.8 2.840 1.745 1.669 1.625
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TABLE 4.17.  Results when k£ = 2.5 and v = 0.5.

P< Q1 het (k‘ = 2.5) Q9 het (k‘ = 2.5) Q'3 het (k = 2.5) Q4 het (k‘ = 2.5)

Prret  @1ihom (k=0)  2pom (k=0) a3nom (k=0)  a4pom (k=0)
—-0.8 1.357 1.581 1.663 1.542
—0.6 1.405 1.598 1.685 1.564
—-04 1.464 1.62 1.712 1.587
—0.2 1.539 1.646 1.734 1.613
0.0 1.638 1.68 1.756 1.64
0.2 1.779 1.722 1.778 1.669
0.4 1.988 1.773 1.799 1.701
0.6 2.354 1.839 1.817 1.736
0.8 3.21 1.921 1.835 1.777

TABLE 4.18.  Results when & =5 and ¢ = 0.5.

PC Q1 het (k’ = 50) Q92 het (k‘ = 50) Q'3 het (k = 50) Q4 het (k’ = 50)

P{ ref @1 hom (k' = O) &2 hom (k = 0) @3 hom (k = 0) @4 hom (k' = O)
—0.8 1.416 1.657 1.735 1.624
—-0.6 1.47 1.677 1.76 1.648
—0.4 1.537 1.701 1.787 1.675
—0.2 1.621 1.733 1.81 1.705
0.0 1.733 1.77 1.836 1.734
0.2 1.888 1.817 1.859 1.768
0.4 2.122 1.875 1.881 1.803
0.6 2.526 1.948 1.9 1.842
0.8 3.468 2.039 1.919 1.887

Tables 4.19-4.22 are filled with results under the assumption that ¥ = 1. When k£ = 0.5, the
load magnitude and direction do not have a real effect on the frequencies. In this respect

the other three tables are more informative.

TABLE 4.19.  Results when £ = 0.5 and ¥ = 1.

Pg Q1 het (k‘ = 0.5) Q9 het (k‘ = 0.5) Q'3 het (k} = 0.5) Q4 het (k‘ = 0.5)

Prret @ihom (E=0)  a2nhom (k=0) a3pnom (E=0)  a4nom (k=0)
—0.8 1.404 1.408 1.409 1.412
—0.6 1.405 1.408 1.409 1.412
—0.4 1.407 1.409 1.410 1.412
—0.2 1.408 1.410 1.410 1.412
0.0 1.411 1.411 1.411 1.413
0.2 1.414 1.412 1.412 1.413
0.4 1.421 1.414 1.412 1.413
0.6 1.433 1.416 1.413 1.414
0.8 1.469 1.419 1.414 1.414
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TABLE 4.20. Results when £ =1 and ¥ = 1.

P( Q1 het (kj = 1.0) Q9 het, (k‘ = 1.0) Q'3 het (]42 = 1.0) Q4 het (kj = 1.0)
P{ ref &1 hom (k = O) Q2 hom (k = O) Q3 hom (k = O) &4 hom (k = O)

-0.8 1.168 1.330 1.401 1.443
—0.6 1.229 1.368 1.426 1.460
—-0.4 1.302 1.411 1.453 1.478
-0.2 1.328 1.430 1.466 1.486
0.0 1.512 1.513 1.512 1.515
0.2 1.675 1.574 1.545 1.535
0.4 1.933 1.652 1.584 1.558
0.6 2.345 1.735 1.622 1.580
0.8 3.284 1.834 1.664 1.604

TABLE 4.21. Results when £ = 2.5 and J = 1.

PC Q1 het (k’ = 2.5) Q2 het (k‘ = 2.5) Q'3 het (k = 2.5) Q4 het (k’ = 2.5)
PC ref Q1 hom (k' = O) Q2 hom (k = 0) Q'3 hom (k = 0) Q4 hom (k' = O)

—0.8 1.257 1.436 1.517 1.563
—0.6 1.326 1.479 1.544 1.582
—-0.4 1.405 1.527 1.574 1.601
-0.2 1.507 1.59 1.605 1.622
0.0 1.639 1.639 1.639 1.643
0.2 1.819 1.707 1.676 1.665
0.4 2.085 1.791 1.714 1.688
0.6 2.533 1.878 1.757 1.713
0.8 3.554 1.987 1.803 1.738

TABLE 4.22. Results when £ =5 and ¥ = 1.

PC Q1 het (k = 50) Q2 het (k’ = 50) ('3 het (k = 50) Q4 het (k = 50)
P{ ref Q1 hom (k = O) Q2 hom (k = O) Q'3 hom (k = 0) Q4 hom (k = O)

-0.8 1.324 1.516 1.602 1.651
—0.6 1.397 1.563 1.631 1.672
—-0.4 1.483 1.614 1.664 1.692
-0.2 1.592 1.669 1.697 1.714
0.0 1.732 1.734 1.733 1.737
0.2 1.926 1.806 1.772 1.76
0.4 2.207 1.891 1.814 1.786
0.6 2.703 1.988 1.859 1.811
0.8 3.772 2.104 1.908 1.84

4.8.5.3. Finite element computations. For the forthcoming finite element computations
we have used the same P, loads in [N| both for the new model and for Abaqus. The tested
geometry: a = b = 10 mm, p,/b = 30, and the material is aluminium (k = 0 — see the
material properties beforehand). P, denotes the critical load of the pinned-pinned beam
according to (4.6.4) and (4.7.7). In Abaqus we have combined the Static, General and the
Linear Perturbation, Frequency steps with B22 beam elements.

This comparison holds two vital basic differences we should mention. The first one is
that the load-strain relationship is not known for Abaqus. The next one is the fact that the
commercial software can only account for the load using a geometrically nonlinear model
regarding the pre-stressing step. As a consequence, we expect more distinct results between
the models as the load is increased. Despite all these remarks, some simple comparisons for
¥ = 0.2; 0.5; 1 are provided in Tables 4.23-4.25.
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TABLE 4.23.  Results when v = 0.2.

P ¢ 1 New model 2 New model 3 New model '3 New model
PC ref Q1 Abaqus Q92 Abaqus Q'3 Abaqus Q'3 Abaqus
—0.8 0.815 1.132 1.136 1.321
—0.6 0.820 1.106 1.120 1.292
—-0.4 0.835 1.080 1.105 1.265
—0.2 0.876 1.055 1.090 1.237

0.0 1.001 1.037 1.079 1.213

0.2 1.575 1.018 1.071 1.198

0.4 0.666 0.779 0.965 1.164
TABLE 4.24.  Results when v = 0.5.

PC Q1 New model Q2 New model (Y3 New model ~(¥3 New model
PC ref Q1 Abaqus X2 Abaqus Q'3 Abaqus Q3 Abaqus
—0.8 1.009 0.857 1.162 1.021
—0.6 1.008 0.879 1.137 1.021
—0.4 1.007 0.913 1.097 1.022
—0.2 1.006 0.956 1.054 1.023

0.0 1.006 1.010 1.004 1.025

0.2 1.008 1.083 0.947 1.029

0.4 1.013 1.186 0.881 1.036

0.6 1.031 1.347 0.804 1.047
TABLE 4.25.  Results when 9 = 1.

PC Q1 New model Q2 New model (Y3 New model (Y3 New model
PC ref A1 Abaqus Q2 Abaqus Q'3 Abaqus A3 Abaqus
—0.8 1.218 1.084 1.063 1.059
—0.6 1.175 1.066 1.050 1.047
—0.4 1.126 1.047 1.036 1.035
—0.2 1.069 1.027 1.022 1.023

0 1.002 1.004 0.996 1.011
0.2 0.921 0.979 0.991 0.998
0.4 0.821 0.952 0.964 0.986
0.6 0.690 0.923 0.958 0.974

In general these three tables show that the models coincide really well for unloaded beams.
Further, the differences are less when the force is a tensile one. The first frequencies seem to
be the furthest from each other between the two models regarding the whole loading range.
When the amplitude of the load is greater, the differences as well become greater as expected
in advance. Altogether, the correlation is quite good between Pr/Pr.es € (—0.8,...,0.4).

4.9. Summary of the results achieved in Section 4

I have investigated the vibrations of curved beams with cross-sectional inhomogeneity,
subjected to a vertical force at the crown point. The most important results are as follows:

1. T have derived the governing equations of those boundary value problems which make
it possible to determine how a radial load affects the natural frequencies. For pinned-
pinned and fixed-fixed beams I have determined the Green function matrices assum-
ing that the beam is prestressed by a central load. When computing these matrices
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I had to take into account that the system of ordinary differential equations that
govern the problem is degenerated.

2. Making use of the Green function matrices, I have reduced the self-adjoint eigenvalue
problems set up for the eigenfrequencies to eigenvalue problems governed by homo-
geneous Fredholm integral equation systems — four homogenous Fredholm integral
equation systems have been established. These integral equations can directly be
used for those dead loads, which result in a constant, otherwise either negative or
positive axial strain on the FE-weighted centerline. I have replaced these eigenvalue
problems with algebraic ones and solved them numerically.

3. It has turned out that the square of the quotient of the second loaded and unloaded
natural frequencies depends almost linearly on the axial strain-critical strain ratio
and is actually independent of the curved beam geometry and material inhomogene-
ity for pinned-pinned beams. The relations for fixed-fixed beams are more dependent
on the central angle and are rather quadratic. In the knowledge of the load-strain
relationship we can determine the strain due to the load, and then the natural fre-
quencies of the loaded structure. If the strain is zero, we get back those results which
are valid for the free vibrations.

4. In some cases, the numerical results are verified by commercial finite element calcu-
lations and experiments as well. According to these, it turns out that the numerical
model approximates the eigenfrequencies with a good accuracy.



DOI: 10.14750/ME.2016.008

CHAPTER 5

Outline

I remark that the text in this chapter coincides more or less with the text of the Synopsis.
The author’s aim to provide a summary in this way is twofold. First of all, I intend to give
the reader the opportunity to briefly survey the preliminaries and objectives of this work:
what methodologies have been used during the solution, what results have been attained
and finally, what my future research plans are. Secondly, I might be wrong but I think that
it is worthy to add such a summary to the main text since the related, though, separate
Synopsis will probably be preserved with less probability.

5.1. Preliminaries

As regards the preliminaries I again point out that in recent decades, curved beams have
been widely used in numerous engineering applications as load carrying members. Let us just
think about arch bridges, roof structures or stiffeners in the aerospace or marine industry.
Scientists and designers are always being interested in the mechanical behaviour (stresses,
displacements, load carrying capabilities, etc.) of such structural elements to prevent fail-
ure (e.g.: yielding, buckling, self-excited vibrations) under given loads and circumstances.
Therefore, there are a number of books, articles and other scientific works delivering rele-
vant results, see, e.g., [8,13,22] for calculating the stresses, [41,61,73| for stability problems
and [41,82,91]| as regards the issue of vibrations.

Nowadays not only homogeneous members but inhomogeneous or heterogeneous ones are
also getting more and more widespread. These beams can have more advantageous properties
compared to homogeneous ones, such as reduced weight; improved corrosion, fatigue and
chemical resistance and higher strength. A class of nonhomogeneous material composition
is the so-called cross-sectional inhomogeneity. It means that the material parameters — say,
Young’s modulus E or the Poisson ratio v — have symmetric distribution with respect to the
cross-sectional axis (. This distribution is either continuous or constant over each segment
(layer). Some illustrative examples are shown in Figure 5.1. In this way it

FIiGURE 5.1. The concept of cross-sectional inhomogeneity.

is possible to simply model composites, multilayered or functionally graded materials. For
planar, elastic, isotropic circular beams of this kind, I intend to focus on three mechanical
issues: stresses, stability and vibrations.

106



DOI: 10.14750/ME.2016.008
Outline 107

5.1.1. Some mechanical issues of circular beams. As regards the mechanical be-
haviour of curved beams, investigations began in the 19"" century. The foremost load-
displacement relationship was established by Bresse (1854). Winkler was the first to derive
a formula for the normal stress distribution (1858) and Grashof is known for developing an
equilibrium method (1878) for the calculation of the shear stresses. These results are well
collected in the works [8,11].

The interest is still live, as new models for different loading cases, geometries, and even
for nonhomogeneous materials are continuously being published. For instance, Ascione and
Fraternali [18] use the finite element method to obtain solutions for the stresses in per-
fectly bonded layered curved beams. They assume that each layer is a Timoshenko beam.
They compute interlaminar, normal and shear stresses as well. Segura and Armengaud [19]
propose simple analytical solutions for the normal and shearing stress distributions in com-
posites under bending loads. The normal stress distribution due to the bending moment
and the axial force is hyperbolic over the cross-section. The authors have also managed to
extend Bredt’s formula for composite curved beams to get the shear stresses. Article [25] by
Baksa and Ecsedi provides formulae for the stress distributions in straight beams with cross-
sectional inhomogeneity under pure bending. Book [8] by Kozék and Szeidl also deserves
mentioning as it presents how to derive the stresses in straight beams with cross-sectional
inhomogeneity and also gathers formulae for the stress distributions in homogeneous curved
beams. According to the literature review, it seems that curved beams with cross-sectional
inhomogeneity have not yet been investigated.

Another popular topic is the buckling behaviour of beams. In 1757, Euler derived his
well-known formula for the critical (buckling) load of straight bars under compression. Con-
sidering the behaviour of curved members, stability investigations began much later: around
the beginning of the 19" century. The early literature ignored the extensibility of the center-
line — see, e.g., [31] by Hurlbrink. Then Chwalla and Kollbrunner [32] showed that account
for the axial strain can notably affect the critical load. After the 1950s, work became more
intensive. Szeidl in his PhD thesis [41] determines the critical load of circular beams under
radial dead load given that the Fourier series of the load is known. Paper [36] by DaDeppo
and Schmidt provides solution to the buckling load of deep circular beams whose loading is
a vertical force. The authors have shown that quadratic terms should be accounted in the
analysis.

When dealing with shallow circular beams Pi, Bradford et al. have pointed out [51,61]
that account even for the pre-buckling deformations is likewise essential not to overestimate
the permissible load. The authors have been intensively investigating the stability of homo-
geneous (shallow and deep) arches using their analytical model, which accounts for all the
above mentioned properties. Nonlinearities are considered through the square of the infin-
itesimal rotations. The authors have evaluated their model for various loads (distributed,
concentrated) and boundary conditions (pinned, fixed, elastic supports, mixed supports,
etc.). Bateni et al. [73] use the same kinematical hypotheses as presented in [61] to analyse
shallow arches under a concentrated load. However, their model is valid for functionally
graded materials.

The vibrations of curved beams has been a field of interest as of the 1920s. Den Hartog
was the first to investigate the free vibrations of such structural elements (1928). Early but
still notable contributions — assuming the inextensibility of the centerline — were provided
in [76,78].

Szeidl in his PhD thesis [41] investigates how the extensibility of the centerline can
change the eigenfrequencies of the free vibrations of planar circular beams under a constant
radial load. The author achieves results using the Green function matrix, with what, the
related boundary value problem is transformed to a problem governed by Fredholm integral
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equations. Kang et al. [81] obtain the frequencies (eigenvalues) for the in- and out-of-plane
vibrations of circular Timoshenko arches given that rotatory inertia and shear deformations
are accounted. Tiifekci and Arpaci [82| managed to gain exact analytical solutions for the
in-plane free harmonic vibrations of circular arches. The authors account for the extensibility
of the centerline and also for the transverse shear and rotatory inertia effects. Kovacs [91]
deals with layered arches assuming the possibility of both perfect and even imperfect bonding
between any two nearby layers.

In the reviewed literature there are some sources, which use the Green function to tackle
some dynamic issues. Szeidl et al. [100]| determine the natural frequencies of pinned and
fixed circular arches using this technique. Kelemen [101] extends the former model. She
computes the natural frequencies as functions of a constant distributed radial load. Li et
al. [103| consider the forced vibrations of straight Timoshenko beams when these are under
a time harmonic concentrated load. Damping effects at the ends are accounted.

5.2. Objectives

Based on the reviewed open literature, the main objectives of the candidate are related
to cross-sectional inhomogeneity and are detailed in the forthcoming.

Objective 1: Generalization of some classical results valid for homogeneous materials. These

investigations are aimed to lead to the following results:

— Generalization of two elementary relationships (valid for homogeneous curved beams)
— that provide the normal stress caused by an axial force and a bending moment —
for curved beams with cross-sectional inhomogeneity.

— Setting up a further formula for computing the shear stress.

— In addition, a formula for the shear correction factor is also to be derived.

— The results obtained for the stresses should be compared with those obtained by
finite element computations.

Objective 2: On the basis of the literature overview, no investigations have been carried out
concerning the stability problem of (shallow) circular beams under the assumption of
cross-sectional inhomogeneity. Within the frames of what has been mentioned above,
Objective 2 is summarized in the following items.

— I intend develop a new nonlinear model for non-strictly shallow curved beams from
the principle of virtual work. Tt is aimed to be more accurate than those presented
in [61,74] and should be applicable to cross-sectional inhomogeneity as well.

— I would like to evaluate the new model for pinned-pinned, fixed-fixed and rotationally
restrained supports provided that the beam is subjected to a central load at the crown
point. This would involve the determination of the critical load both for symmetric
snap-through and antisymmetric bifurcation buckling.

— At the same time, the typical buckling ranges and its endpoints are also of interest.

— Comparison of the results with those available in the literature and with the Abaqus
commercial finite element software should also be performed.

Objective 3: is related to the in-plane vibrations of loaded circular beams with cross-
sectional inhomogeneity. I intend
— to derive those boundary value problems, which can make it clear how a radial
load affects the natural frequencies of pinned-pinned and fixed-fixed beams,
— to construct the corresponding Green function matrices by taking into account
that the central load at the crown point can either be compressive or tensile
(four Green function matrices are to be determined),
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— to reduce the eigenvalue problems set up for the natural frequencies (which
depend on the load) to eigenvalue problems governed by homogeneous Fredholm
integral equation systems (four systems should be established),

— to replace these eigenvalue problems with algebraic ones and to solve them nu-
merically,

— to clarify how the vertical force at the crown point affects the frequencies of the
vibrations (when this load is removed, I have to get back the results valid for
free vibrations),

— to verify some results by Abaqus and/or experiments.

5.3. Investigations performed

While establishing the mechanical models, the validity of the following common hypothe-
ses were considered:

— there is cross-sectional inhomogeneity,

— the displacements and deformations are sufficiently small,

— the beam models are one-dimensional,

— the (E-weighted) centerline remains in its own plane,

— the curved beam has uniform cross-section and constant initial radius,

— the cross-section is symmetric,

— the classical single-layer theory applies,

— the magnitude of the normal stress o¢ is much greater than that of the stress com-
ponents o, and o.

When deriving simple closed-form solutions for the normal stress distribution, the validity
of the Euler-Bernoulli theory is assumed. Such loads that cause bending action and axial
strain can be applied (with shearing effects neglected). First, an ’exact’ formula is derived.
Then further transformations and simplifications lead to the generalized form of the Grashof
(Winkler) formula. Accordingly, the bending moment has a constant and hyperbolic effect
on the normal stress distribution while the axial force causes constant stress. A further
achievement is another formula for the normal stress and for the location of the neutral axis
in the case of pure bending — both are dependent on the material composition.

The shear stresses are obtained by using equilibrium equations for a portion of the beam
(i.e. the kinematical relations are not completely satisfied). The result is the extension
of Grashof’s equilibrium method for cross-sectional inhomogeneity. The advantage of this
procedure is the relatively simple outcome. Moreover, a formula is proposed for the shear
correction factor.

The static stability model is based on the Euler-Bernoulli hypothesis. The kinematical as-
sumption contains a quadratic term, that is, the square of the infinitesimal rotations. Given
that the investigated structural element is primarily a shallow arch, the effect of the tangen-
tial displacements on the former quantity is neglected. As the pre-buckling deformations are
substantial, the change in the equilibrium state due to the deformations is accounted. The
governing equilibrium equations under concentrated and distributed loads for non-uniform
rotational end restraints are established using the principle of virtual work. However, solu-
tion is calculated only when there is a concentrated dead load exerted at the crown point.
Due to the symmetry properties, a half-beam model is examined. The nonlinear axial strain
on the centerline is constant under these conditions. In this way, a fourth-order ordinary dif-
ferential equation governs the problem mathematically, which can be solved in closed-form.
The former statements are valid even for the incremental quantities, which are measured
after the loss of stability.
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Semi-analytical evaluations are carried out for symmetrically supported pinned, fixed
and rotationally restrained circular beams. These evaluations, on the one hand, include
the determination of the pre-buckling equilibrium in terms of the material, geometry and
loading. On the other hand, it is also pointed out that there are two possible buckling modes:
antisymmetric bifurcation buckling with no strain increment and symmetric snap-through
mode with a changing centerline length. The related critical strains and therefore the critical
loads are determined in terms of the geometry. It is found that there are beams for which
there is no buckling. As for the others it is also sought which of the two buckling modes
dominates in terms of the geometry.

For pinned beams, mostly antisymmetric buckling can be expected. However, for fixed
ones the symmetric type governs. When the spring stiffness of the supports are (equal to
zero) [tend to infinity| we get back the solutions valid for (pinned) [fixed| beams. To better
understand the behaviour of the members, the primary equilibrium paths are also plotted for
each typical buckling range. Commercial finite element computations and comparison with
the literature indicate that the results can be considered as valid for all checked supports
and even for not strictly shallow arches. Simple numerical examples show that material
heterogeneity can have a significant impact on the permissible loads, therefore account for
this property seems inevitable.

The vibration analysis is based on linearized strains and the Euler-Bernoulli hypothesis.
At the same time, the effect of the tangential displacements on the rigid body rotations are
kept so that the results are applicable for deep arches as well. The natural frequencies are
sought and that how a central concentrated load changes these frequencies. The equilibrium
equations are derived from the principle of virtual work for a beam under concentrated and
distributed loads. The strain the concentrated load causes is constant on the centerline. The
pre-buckling (initial) equilibrium is governed by ordinary differential equations.

As for the dynamic part of the issue, the forces of inertia are accounted and undamped
time harmonic vibrations are considered. The derivations lead to an eigenvalue problem
where the square of the eigenfrequencies are proportional to these eigenvalues. Solutions are
sought for those cases when the central vertical concentrated force causes compression and
tension.

The Green function matrix is constructed in closed-form for both loading cases of pinned
and fixed beams. The application of this technique requires linear ordinary differential
equations with closed-form general solutions and self-adjoint eigenvalue problems. With
the corresponding Green functions in hand, each eigenvalue problem governed by ordinary
differential equations and the corresponding boundary conditions can be replaced by homo-
geneous Fredholm integral equations and following the procedure presented in [41], they can
numerically be reduced to algebraic equation systems (eigenvalue problems).

When dealing with the vibrations, we must also be aware of the critical load because if
this limit is reached, buckling occurs. So the critical (bifurcation) loads are also determined.
Since in practise, the load is the known quantity and the model has the strain as parameter,
a unique relationship between these quantities is provided.

Results are evaluated both for the free and loaded vibrations and are compared with the
literature and commercial finite element software computations. Moreover, colleagues from
Romania contributed with some measurements for the free vibrations of fixed beams. Thanks
to their efforts it became possible to compare some numerical results also with experiments
to confirm the validity of the model.

Regarding the outcomes, the quotients of the even unloaded frequencies of curved and
straight beams with the same length and material only depend on the central angle and
the supports, while the odd ones are also functions of the cross-sectional geometry and
material distribution. It turns out that for pinned beams the quotient of the square of the
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second loaded and unloaded frequencies (increase) [decrease| almost linearly under (tension)
[compression| in terms of the strain-critical strain ratio and the central angle, geometry
and material do not affect these relations. The experiences are similar but more likely
quadratic and more dependent on the geometry for fixed members. The effect of the material
composition on the frequencies is illustrated through simple numerical examples.

5.4. Summary of the novel results

The first objective was to provide simple formulae for calculating the stress state of
heterogeneous curved beams by generalizing the formulae valid for homogeneous curved
beams. These involved the expressions of the normal stress and shear stress. The shear
correction factor was also determined. The most important results are gathered in

STATEMENT 1.

l.a. I have derived an exact and two approximative relationships that provide the normal
stress caused by an axial force and a bending moment in curved beams with cross-
sectional inhomogeneity. The latter two are generalizations of well-known relation-
ships valid for homogeneous curved beams. A further formula has been established
for computing the shearing stress.

1.b. In addition, a formula for the shear correction factor has also been derived. The
results obtained by the relationships set up for the stresses are compared with finite
element computations. A good agreement is found between the different models.

As regards the corresponding publications see references {8}, {12} and {19} in Section
5.8. Though the title is the same for {12} and {19}, the former is more detailed.

STATEMENT 2.
I have investigated the in-plane elastic static stability of circular beams with cross-sectional
inhomogeneity provided that the beam is subjected to a vertical force at the crown point.

2.a. I have derived a new model both for the pre-buckling and post-buckling radial dis-
placements - in the later case both for symmetric and antisymmetric buckling. Cross-
sectional inhomogeneity is implied in these equations via the parameter m (which is
a function of the E-weighted radius of gyration and the radius of curvature). The
equations I have established are more accurate than those recently set up by Bradford
et al. in [56,61] for homogeneous and by Bateni and Eslami [73] for functionally
graded material. Though I neglected the effect of the tangential displacements on
the angle of rotation, papers [56,61] also apply this assumption. Altogether, as the
new model uses less neglects, the results for the critical load are more accurate than
those published in the formerly cited works.

2.b. Solutions are provided for (a) pinned-pinned, (b) fixed-fixed and (c) rotationally
restrained beams. For each case I have determined what character the stability loss
can have: no buckling, limit point buckling, bifurcation buckling after limit point
buckling, bifurcation buckling precedes limit point buckling. The endpoints of the
corresponding intervals are not constant in the modified slenderness A as in the
previous models but further depend on the parameter m (on the E-weighted radius
of gyration and the radius of curvature).

2.c. Comparisons have been made with previous results and finite element computations
as well. These prove that the results obtained are applicable also for not strictly
shallow beams, up until the semi-vertex angle v is not greater than 1.5. For small
central angles the differences between the models are, in general, smaller than for
greater central angles.
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2.d.

Cross-sectional inhomogeneity can have a serious effect on the critical load. This is
proven via a simple example.

As regards the corresponding publications see references {2}, {3}, {5}, {10}, {11}, {13}-
{18} and {20} in Section 5.8.

STATEMENT 3.
I have investigated the vibrations of circular beams with cross-sectional inhomogeneity, sub-
jected to a vertical force at the crown point.

3.a.

3.b.

3.d.

I have derived the governing equations of those boundary value problems which make
it possible to determine how a radial load affects the natural frequencies. For pinned-
pinned and fixed-fixed beams I have determined the Green function matrices assum-
ing that the beam is prestressed by a central load. When computing these matrices
I had to take into account that the system of ordinary differential equations that
govern the problem is degenerated.

Making use of the Green function matrices, I have reduced the self-adjoint eigenvalue
problems set up for the eigenfrequencies to eigenvalue problems governed by homo-
geneous Fredholm integral equation systems — four homogenous Fredholm integral
equation systems have been established. These integral equations can directly be
used for those dead loads, which result in a constant, otherwise either negative or
positive axial strain on the E-weighted centerline. I have replaced these eigenvalue
problems with algebraic ones and solved them numerically.

It has turned out that the square of the quotient of the second loaded and unloaded
natural frequencies depends almost linearly on the axial strain-critical strain ratio
and is actually independent of the curved beam geometry and material inhomogene-
ity for pinned-pinned beams. The relations for fixed-fixed beams are more dependent
on the central angle and are rather quadratic. In the knowledge of the load-strain
relationship we can determine the strain due to the load, and then the natural fre-
quencies of the loaded structure. If the strain is zero, we get back those results which
are valid for the free vibrations.

In some cases, the numerical results are verified by commercial finite element calcu-
lations and experiments as well. According to these, it turns out that the numerical
model approximates the eigenfrequencies with a good accuracy.

As regards the corresponding publications see references {1}, {4}, {6}, {7}, {9}, {11} and
{20} in Section 5.8.

5.5. Magyar nyelvii Osszefoglalé (Summary in Hungarian)

FIGURE 5.2. Neéhany példa keresztmetszeti inhomogenitasra.

Napjainkban igen elterjed a gorbiilt kozépvonali rudak alkalmazasa mérnoki szerkezetek-
ben. Gondoljunk példaul az ivelt kialakitasa hidszerkezetekre, tetGszerkezetekre, vagy példaul
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repiilégépek egyes merevit§ elemeire. Az ilyen rudak mechanikai viselkedésének leirasa-
val a XIX. szazadtol kezd6dGen szamos kutatod foglalkozott. Az ujabbnal-ujabb modellek
mind egyre pontosabban és altaldnosabban irjak le ezen szerkezeti elemek viselkedését, gy
mint a fesziiltségek eloszlasat 8, 13,25, a rudak stabilitasat |22, 24, 41|, vagy épp rezgé-
seit [6,41,91,101,116]. Az el6z6, teljesség igénye nélkiil 6sszegytijtott irodalmi hivatkozasok
mind magyar szerz6k munkai.

Ma méar nem csak homogén, hanem heterogén, vagy inhomogén anyagi gorbe rudak
legyartasara is egyre gazdasagosabb lehetGség nyilik, elGsegitve ezek terjedését. Az ilyen
kialakitast rudak olyan el6nyos tulajdonsagokkal rendelkezhetnek homogén tarsaikkal szem-
ben, mint példaul a kisebb témeg, magasabb szilardsag, vagy a jobb korrozidallosag. Kereszt-
metszeti inhomogenitasnak nevezziik azt a fajta anyagi heterogenitést, amikor az anyag-
jellemzGk, tgy, mint a rugalmassagi modulusz E, vagy a Poisson tényez6 v csak a kereszt-
metszeti koordinataktol fliggenek, tovabbé a keresztmetszet ( tengelyére vonatkozdan szim-
metrikus eloszlastuak. Az eloszlas lehet folytonos, vagy szakaszonként folytonos. Néhany
példat szemléltet az 5.2 abra.

A fent emlitett tulajdonsagokkal rendelkezé korivalaka rudakkal kapcsolatban a jelen
dolgozat harom teriileten ért el 0j eredményeket. Ezeket foglaljuk most réviden Gssze.

Szamos modell késziilt, amelyek a fesziiltségeloszlas szamitasara nyujtanak viszonylag
egyszerd, zart alaku képleteket. Ugyanakkor az attekintett irodalomban nem talidltam olyan
modellt, amely keresztmetszeti inhomogenitast goérbe rudakban kialakulo fesziiltségek el-
oszlasara iranyulo, egyszert kézi szamitasokra alkalmas képleteket mutatnanak be. Ehhez
kapcsolédoan az Gj eredmények:

— levezettem egy egzakt és altalanositottam ét, homogén anyagi gorbe rudra vonatkozo
normélfesziiltségi képletet keresztmetszeti inhomogenitas esetére, amennyiben a ter-
helés raderd és/vagy hajlitonyomaték.

— Levezettem a nyirofesziiltség szamitasara egy Osszefiiggést egyensilyi egyenletekbdl.

— A nyirasi korrekcios tényezére is felallitottam egy formulat.

— A fesziiltségek eloszlédsat az emlitett tulajdonsigi rudakra ellenériztem az Abaqus
kereskedelmi végeselemes szoftver szamitasaival és jo egyezést taldltam a tesztelt
geometriaknéal.

Keresztmetszeti inhomogenitési koérivalaku sikgérbe rudak rugalmas, statikai stabilitasra
vonatkozoan

— levezettem egy 11j modellt, ami pontosabb és altalanosabb az irodalomban megtalal-
hato, alig néhany évvel ezelsttinél [56,61].

— A modell segitségével mind az antiszimmetrikus bifurkacios, mind a szimmetrikus,
atpattanas forméjaban bekovetkezd kihajlas jellemezhets, amennyiben a terhelés a
koronapontban miikods fiiggsleges iranyt erd, a tamaszok pedig szimmetrikusak: két
végén csukloval megtamasztott, befogott, illetve spiralrugéoval megfogott rudakkal
foglalkoztam.

— Meghataroztam a kritikus terhelések értékét és a jellemzé kihajlasi tartomanyokat is
a geometria és a tdmaszok fiiggvényében.

— Habér az érintiranyt elmozdulasok hatasat elhanyagoltam a szdgelfordulas szami-
tasanal (lapos rudaknal ez szokasos feltevés), ennek ellenére a modell nem csak szi-
gortian véve lapos rudaknal kozeliti jol a megengedhets terhelést. Ezt tamasztjak ala
korabbi irodalmi eredmények és az Abaqus szoftver szamitasai is.

Keresztmetszeti inhomogenitési korivalaka sikgorbe rudak rezgéseivel kapcsolatban

— levezettem azokat a peremérték-feladatokat, amelyek megoldésaval meghatarozhatok
a rad sajatfrekvenciai.
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— Két végén csukloval megtdmasztott, illetve befogott rudakra meghataroztam zart

alakban a Green-féle fiiggvénymatrixokat, amelyek segitségével lehetGség nyilik meg-
vizsgélni a koronapontban miikddé koncentralt terhelés frekvenciaspektrumra gyako-
rolt hatasat.

A Green-féle fliggvénymatrixok segitségével az onadjungalt sajatértékfeladatokat ho-
mogén Fredholm integralegyenlet-rendszerrel kifejezhetd feladatokra vezettem vissza.
Ezeket a sajatérték-feladatokat algebrai egyenletrendszerré alakitva megoldottam.
Az eredmények szerint amennyiben a terhelés huzo/nyomoéers, a méasodik terhelt
frekvencidk és a szabadrezgésekhez tartozo méasodik frekvencidk négyzetének hanya-
dosa csuklos rudaknal igen jo kozelitéssel linearisan fiigg a nyulas/kritikus nyulas
hényadostol és fiiggetlen a geometriatol. Befogott rudaknal nagyobb a geometria
befolyasa erre a jellemzére és ez a kapcsolat inkabb kvadratikus.

Amennyiben a terhel§ koncentralt erg zérus, vagyis nulla a kézépvonal nytlésa, visz-
szakapom a szabadrezgésekhez tartozo sajatfrekvenciakat.

Abaqus szamitasok, korabbi irodalmi eredményekkel valo Gsszevetés, illetve néhany
mérési eredmény igazolja az eljarast és az eredmények helyességét.

A Biralé Bizottsag altal elfogadott tézisek

1. TEz1s

1.a.

Levezettem egy egzakt és két kozelit§ Osszefiiggést a normélfesziiltség szdmitasara
amennyiben a keresztmetszeti inhomogenitast gorbe rid terhelése raders és hajlito-
nyomaték. A két kozelité modell jol ismert, homogén esetre vonatkozé Osszefiiggések
altalanositésai. Szarmaztattam egy tovabbi formulat a nyirdfesziiltség szamitasara.

1.b. Ezeken feliil a nyirasi korrekcios tényezére is felirtam egy Osszefiiggést. A fesziilt-
ségeloszlasokra kapott 1j képletek eredményeit Osszehasonlitottam néhany végese-
lemes szamitassal. Jo egyezés tapasztalhato.

2. TEzIS

Keresztmetszeti inhomogenitasa sikgorbe rudak rugalmas stabilitasat vizsgaltam, ameny-
nyiben a rad terhelése koronaponti koncentralt, fiiggleges iranyd merev erd.

2.a.

2.b.

Levezettem egy 1j modellt keresztmetszeti inhomogenitast korivalaki rudak stabili-
tasanak vizsgalatara. Ez mind a stabilitasvesztés el6tti, mind az azt kovets (szimmet-
rikus, vagy antiszimmetrikus) egyensulyi helyzetet pontosabban kozeliti a korabbi,
homogén [56,61], vagy funkcionalisan gradiens anyagra érvényes [73| irodalmi model-
leknél. Béar elhanyagoltam a tangenciélis iranyt elmozduldsok hatasat a forgasokra
— a [56, 61| cikkek szintén élnek ezzel a feltevéssel — Gsszességében az 1) modell
kevesebb egyszertisitést alkalmaz, kovetkezésképp a kritikus terhelésekre vonatkozo
eredmények (Osszefiiggések) pontosabbak, mint a kordbbi munkak eredményei.
Kiértékeltem a modellt (a) két végén csukloval megtamasztott; (b) két végén befogott;
(c) két végén spirdlrugoval megtamasztott rudakra. Meghataroztam a lehetséges sta-
bilitasi tartoményokat (nincs stabilitasvesztés, szimmetrikus/antiszimmetrikus sta-
bilitasvesztés a dominéns). A jellemz§ tartoméanyok hatarai nem allanddak a A
modositott karcsiisagi tényez6ben, mint a korabban is emlitett modelleknél, hanem
fliggenek az m paramétertsl is, tehat az E-vel stulyozott inerciasugartol és a gorbiileti
sugartol is.

Osszehasonlitasokat végeztem korabbi modellekkel és végeselemes szamitasokkal. Ezek
alapjan a modell nem csak szigortian véve lapos rudaknal kozeliti jol a megengedhetd
terhelést, hanem egészen harom radian nyilasszogig. A korabbi modellel szemben
kisebbek az eltérések, ha kisebb a nyilasszog.
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2.d. A keresztmetszeti inhomogenitasnak jelentds hatésa lehet a kritikus terhelésre — ezt
az allitast egyszerd szampéldaval illusztraltam.

3. TEzIs
Keresztmetszeti inhomogenitasi gérbe rudak rezgéseit is vizsgaltam, amennyiben korona-
ponti koncentralt, fiigg6leges iranyt erd a terhelés.

3.a. Olyan onadjungalt sajatérték-feladatokat vezettem le, amelyek megoldasaval meg-
hatarozhat6 hogyan befolyasolja a sajatfrekvencidkat a radialis terhelés. Csuklos
és befogott radra egyarant meghataroztam a Green-féle fliggvénymaétrixokat feltéve,
hogy a rid el van terhelve egy koronaponti koncentralt erével. Itt figyelembe kellett
venni, hogy a kozonséges differencidlegyenletek elfajulok.

3.b. A Green-féle fiiggvénymatrixokkal az onadjungalt sajatérték-feladatokat homogén
Fredholm integralegyenletekre vezettem vissza, amikbdl a sajatfrekvencidkat meg-
hataroztam. Ez 0sszesen négy, homogén Fredholm integralegyenlet-rendszert jelent.
Az integralegyenletek minden olyan merev (konzervativ) terhelésre hasznalhatok,
amelyekre nézve allandd a kdzépvonal menti fajlagos nytlas — ez lehet akar pozitiv,
akar negativ elGjeli mennyiség. A sajatérték-feladatokat algebrai egyenletrendszerrel
helyettesitettem és numerikusan megoldottam.

3.c. A maésodik terhelt és terheletlen frekvencidk négyzetének hanyadosa jo kozelités-
sel linearisan fiigg a kozépvonal nyulasa/kritikus nyulas hanyadostol és fiiggetlen a
geometriatol, valamint az anyagi Osszetételt6l csuklos rudaknél. Befogott esetben
ugyanakkor a kapcsolat inkdbb kvadratikus és a nyilasszognek érezhetd befolyésa van
az eredményekre. A terhelés-nyilas kapcsolat ismeretében meghatarozhaté az adott
er6hoz tartozo nytulas értéke és igy a terhelt rad sajatfrekvenciai. Ha zérus a nyiilas,
visszakapjuk a szabadrezgésekhez tartozo frekvencidkat.

3.d. A numerikus szamitasi eredményeket néhany esetben végeselemes szamitasokkal és
kisérleti eredményekkel is Osszevetettem. Ezek alapjan a modell jol kozeliti a frekven-
ciakat.

5.6. Possible application of the results

The results achieved can be applied to homogeneous or heterogeneous circular beams as
structural elements to predict the behaviour (possible failure regarding the stresses, stability
and vibrations) of the members under given circumstances. With new and improved models
continuously being made, it is possible to gain more and more accurate results and thus,
reduce uncertainties and save costs.

Some of the results could be harnessed in the education as nowadays nonhomogeneous
materials are gradually gathering ground. Primarily, I am thinking about the simple closed-
form solutions for the normal and shear stress distributions in circular beams with cross-
sectional inhomogeneity. Moreover, a simplified form of the stability model could as well be
included in the curriculum to broaden the student’s view of the phenomenon of buckling,
which is many times restricted to classical Euler column.

Moreover, the models and solutions obtained could be used for benchmark purposes to
verify other models.

5.7. Future research

Based on the presented models, several additional improvements and generalizations
could be made. In the simplest way, by changing the loading and/or the supports — even
considering not symmetric conditions, or three-hinged beams — so that the investigations
could be extended even more. Research is in progress for the vibration model when the
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beam is pinned at the left end and is fixed at the right end and there are equal rotational
end restraints.

Keeping the hypotheses of the presented stability model, an interesting question is how
the buckling loads, buckling shapes and the typical ranges change if the beam is subjected to
a radial or vertical load at a point, other than the crown point. The post-buckling behaviour
might also be worthy of dealing with and moreover, the dynamic behaviour could also be
modeled some way. It would also be desirable to develop a one-dimensional finite element
model, taking finite strains and/or rotations into account when dealing with the stability
problem.

But such questions could as well be arisen how to harness the experiences of presented
models to tackle some issues of curved but not circular beams, out-of plane problems, bi-
modular materials, to account for shear deformations, interlayer slip, etc.

It would also be satisfying to verify the results with experiments. Concerning this idea,
there is an ongoing cooperation with some generous colleagues of the Transilvania University
of Brasov.
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APPENDIX A

Detailed manipulations

A.1l. The long formal transformations of Chapter 3

A.1.1. Formulae for the axial force. Making use of the kinematic relation (3.1.4) and the
inequality (3.1.9) we can manipulate (3.1.7) into a more favourable form:

du, I, d /dw U,
N:Ae o Wo den o Yo} _
(G o avh) + 20 (5 - )

Em

y A.p? du, w, d%w, 1,
= — o _ 1 o _ — Ae =
I [( Iey ds e Po T ds? + P " 2¢077

Iey [ [ Acp? 1
= p—g [( I’OO - 1> (ugl) + wo) +w? + wo} + 51/}3,7146 =
o en

I, Aep? 1 Aep? 1.
_ Zen o _1 ((1) ) () 4 | + =92 o _ 1412 ~

3 K Iy Uy’ + Wo | +wy” 4w | + 21/1077 Ty + 2

zAISngfl

Iey <A6p2 > <1 1 1 I M
~ — 2 -1 —(u((,)—i—wo)%—f 2 +—n(wg2)+wo):Aesm——. A1l

pg Ie?] Po 21/} g = pg Po ( )

M

Em
Po

A similar line of thought for the increment in the axial force Np results in

1 1, 1 1,
Nb:Ae (5o§b+¢onwonb + 2¢3¢;b> %"Qob—Ae <5o£b+¢onwonb+2¢§nb> +% <w(()§) - US)) =
o

o
1 I 2 1 I I

= Ae <50§b + wonwonb =+ wgnb> + Lg (w(()b) - E)b)> + %wob - %wob =
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pg IETI o
I, (Acp? I

~ =L < efo _ 1) |:Ea§b + <¢on¢onb + %nb)] 8;7 (w((j;) + wob) =
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1 1,
= i;memb + Lg (wg)) + w0b> . (A1.2)
Po Po

A.1.2. Transformation of the principle of virtual work — pre-buckling state. Substi-
tuting the corresponding kinematical quantities into the principle of virtual work (3.2.1) and taking

av = <1 + C) dsdA (A.1.3)

Po

the relation

into account, which provides the infinitesimal volume element, the left side of the principle can be
rewritten as

/Vagaggdv—/[:A<1+/i>a

dAds =

1 d5 o 5 o d6 O
: ( U, N w . Yon
14+ > ds Po ds

) + Yoy 0%on
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:/ {/ oedA <d5u0 + 5%) / Coe 4a80%en / <1 + C) oe dAoy <5u0 - d6w0> } ds =
£ UJa ds ds A Po Po ds
déuo dw, ddvo, ou, dow,
- Ly (e ) e (e o (G =) o

where the formulae (3.1.7)-(3.1.8) for the inner forces have also been taken into account. Applying
now the integration by parts theorem and performing some arrangements we obtain the following
equation:

dN N
/ ocbeedV = —/ —du,ds — Néuo\ 9+ Néuo\ / —Sw,ds—
1% c ds £ Po
1 dM M M M M
—/ —d—duods / d ———dw,ds — d—&wo + d—éwo — d—éwo +
r Po ds ds? ds s(—py s _o ds s=40
d 1 M
+ E6wo + Moyl .9y — Mthon] sy +/ o (N + > Yondueds+
s(9) L Po o
d M M
+/ — [(N + ) 1/}07,] dweds + (N + ) Yon W, -
r ds Po Po s(—v)
M M M
- <N + > Yondwo + (N + ) Yon 0w - (N + ) Yondwo (A.1.5)
Po s=—0 Po s=+0 Po s(9)

Notice that ||s=—o|(|s=+0) denotes the [left|(right) side limit for the expression that precedes the
symbol |. If we set (A.1.5) equal to the right side of (3.2.1) we finally get

dN 1 dM 1 M
c\ds pods Po Po
&M N d M
- 4 o T N [0 n (5 Od -
/E<d32 Po d8< +p>w"+f>w ’
M M M M
— L - | N+ — 17[}017 dw, + d N+ — 1?[}077 0w,
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- N(sUO‘s(—ﬁ) + NauO‘s(ﬁ) + (M + kwwon)’s(ﬁ) 5¢on‘5(§) B (M - k'yfwon)‘s(_ﬁ) 51#077‘3(719) =0.
(A.1.6)

A.1.3. Transformation of the principle of virtual work — post-buckling state. Ex-
panding the quantities denoted by an asterisk in (3.2.11) and using the decompositions presented
in the first paragraph of Subsection 3.1.2, we obtain

/V (O’g + O’gb) 5851; dV = — (PC + Pgb) 6w0b|s:0 + Pgb 6u0b‘s:0 —
_ mwob5w0b|3:0 - mﬂobéuob’5:0 - kwﬁ (won + Q/)on b) 6wonb|s(,g) - k;'yr (won + 77Z)o77b) 6'¢onb|s(19) +
+ /C [(fn + fnb) 5wob + (ft + ftb) (5uob] ds . (Al?)

The kinematical quantities in the pre-buckling state are assumed to be known at this stage of the
investigations. Therefore, the corresponding variations are all equal to zero. Recalling formulae
(3.1.13a)-(3.1.15), for the virtual rotation and strain we can write

OUop B ddw,p
Po ds

51/}277 = 5¢onb = (AlS)

and moreover
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After substituting (3.2.1) and (A.1.9), we can rewrite the principle of virtual work (A.1.7) in the
form

0= —/ O'g(sc?é\gdv - / Uﬁb(segb dv — / 051)58?1) dv — PCb 5w0b|5:0 + be 5u0b\S:0 —
\% 1% 1%
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+/ (fapdwop + fipduop) ds.  (A.1.10)
L

The first three integrals require some further manipulations which are based on the integration by
parts and are detailed in the forthcoming:
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M,
(Nb+ P >¢On(5wob (A.1.12)
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The third integral is formally the same as the first one if we change o¢ to o¢y, therefore

0 do
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As a summary of these manipulations, the principle of virtual work (A.1.7), or what is the same,
equation (3.2.11) can finally be rewritten as
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A.1.4. The pre-buckling equilibrium in terms of the displacements. It follows from
equation (3.2.2)2 that

M d M M\ dv N
— Yoy — N — |- N =)y ZzFem 2T 0. A1.15
ds? v "ds ( * o) < + p0> ds Po ( )

Substitute here now equations (3.1.8) and (3.1.10) which express the inner forces as functions of
the displacements. The first and third terms in (A.1.15) require no further manipulation at this
point. The second one, however, vanishes — see (3.1.10) and (3.2.6). As for the fourth one, some
transformations need to be performed:
2

N ésm—% = %Aeposm— %2 = Ien mem + — Len <w(()2)+wo> :

Po Po Po Po Ien Po po po
Consequently, the equilibrium condition (A.1.15) can now be rewritten as
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If we multiply this formula by (—p2/ Ien) we get
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- (“’54) + “’52)) + pomem (¢§37) + 1) + (wff) + wo) —0. (A.116)

If we now substitute 1, from (2.1.8) and u'V from (3.1.4) into the term poe, <1 + 1&&17)), we arrive
at the following result:

1 1 1
PoEm (1 + ¢£}7)) = PoEm |:1 + — (Ugl) — w(()Q)):| =PoEm |:1 + ; <p05m —w, — 51/)37190 _ w(()2)>:| ~
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~ poem(l+em) — em (wo + w((,Q)) R PoEm — Em (wgz) + wo) . (A117)
~1

Plugging it back into (A.1.16) we find that the pre-buckling displacement w, should satisfy the

differential equation

wg4) + 2wg2) +w, — me, <w£2) + w0> = —MPoEm.- (A.1.18)
A.1.5. The post-buckling equilibrium in terms of the displacements. We assume there

are no distributed forces. From the comparison of equations (3.1.10) and (3.2.6) as well as (3.1.21)
and (3.2.18) we get that

d M d M,
N+—1]=0 — ([ Np+— ) =
ds < " po) 7 ds < 0t 0>
Thus, equation (3.2.13b) has the form
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where we have neglected the quadratic terms in the increments. With regard to the last two terms,
some transformations with the aid of (3.1.9) and (3.1.10) should be carried out. The first one of
these is

Aegm dq;z)on b <5m dwon b

dwonb - dwon
g5 T Aeemb— =M L temgo | (A.1.20)

Substitute now M, from (3.1.20), N, from (3.1.19) (while again utilizing (3.1.20)) into (A.1.19) and
take equation (3.1.9) into account. In this way we have

I 1. I Iy,
if (w((fé) + wf,?) + — 4 (wgb) + wob> + m—nsmb +m=—=l smwonb m— Embdl () — 0. (A.1.21)
P Po Po Po P

o

Let us multiply the former expression by p2/ I.,. After some minor arrangements we obtain

wly) 4+ 20+ wop + mpozn (1465 ) +mposmtrly), = 0. (A.1.22)

Now repeat the line of thought leading to (A.1.17) — by formally changing &, to &,,;, — to arrive at
1
MPoEmb (1 + 1/1517)) >~ MPoEmpb [1 — p— (w((?) + woﬂ = MPoEmp — MEmMY (wf) + wo) .

o

In a similar way (with the omission of the unit) the previous procedure can be applied as well to
the last term in (A.1.22):

mpof‘:mwonb = —mey ( wg,) + wob) .
Altogether

w(()?;) + (2 —mep) w((ﬂz)) + (1 = mem) Wob = —MPoEmp + MEmp (w((?) + wo> (A.1.23)

is the post-buckling equilibrium equation in terms of the displacements.
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A.1.6. Computation of the pre-buckling strain. For any support arrangement substitu-
tion of W, from (3.3.5) into (3.3.7) results in

I LT[ (x2-1 A
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0 X X Y v
where
29 — 9+ Aj1x2sind) — Asq sin yo
Iow:X(X + Ay ?sind) 318 7 (A.1.24a)
Ix3
Aqax3 si Asox3 (1 — — Asysi A -1
I, — 12X° sind + Ao x” ( cos 1) 39 sin xv + Ay (cos xv ) (A.1.24D)

Ix3

To calculate the nonlinear strain we need the square of the rotation field from (3.3.6), that is

12
. . ) . P
1/1377 >~ | D11sing + D3y sin xp + (D12 sin ¢ + Dag cos ¢ + Dag sin x¢ + Dya cos x¢) ,ﬁ] =

. . . . P
= 2(D11sin@ + D3y sin xp) (D12 sin ¢ + Dag cos ¢ + Dsa sin x¢ + Dyg cos ) 5—&—

A\ 2
. . . . P
+ (D11 8in ¢ + D3j sin Xg0)2 + (D128in ¢ + Dag cos ¢ + D3a sin xp + Dy cos Xgo)2 (19> .

(A.1.25)
Accordingly, we can now determine the constants in (3.3.9), which are
1 71 P P\’
2
e dp=Ty+ Ly +1y [ 2] . A1.26
19/0 5Von (9)dp = Loy + L1y + 2w<19> ( )
Here
loo = g [ (Dus (sime) + Dy (s s = o
o = — sin in = —-
v =599 A 11 14 31 X¥ ¥ 80y

8D11D31x

Z—1) (cos ¥ sin x¥ — x sin® cos x¥) + D3y [20x — (sin 2x09)]

(A.127)

. {D%lx [209 — sin 209 +

and

1 9
Ly = 3 / (D11 sin ¢ + D3j sin xp) (D12 sin g + Daa cos ¢ + D3 sin xp + Dya cos xp) do =
0
D31D12
J(x*—1)

(x — x cos ¥ cos x¥ — sin ¥ sin xJ) +

D1 D
= ﬁ (cos ¥ cos x¥ + xsin¥sin x — 1) + (cos¥sin x — x sin ¥ cos x) +
Y2 —
D31 D
I (x*—1)
D31 D39 1 sin 1 cos xv n D11D1o 1 sin ¥ cos Y n
2 Ix 2 Y

_l’_

D11Dos . 4 D11D32
9 4 2182
29 sin +19(X2—1)

Moving on now to Iy in (A.1.26) it is worth decomposing the integrand in question into four parts:

D31 D
(cos ¥ sin x — x sin¥ cos x) + ;9 2 sin® x0 . (A.1.28)
X

1Y . .
Iy = 79 / (D12 sin @ + Doy cos ¢ + Dsg sin xp + Dya cos X@)Q dp =
0
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1 . . .
=25 / (D12 sin @ + Doy cos ¢ + Dsg sin xp + Dya cos xp) Digsin ¢ dp+
0
1 9

+ 29 (D12 sin @ + Doy cos ¢ + Dsg sin xp + Dya cos xp) Dag cos ¢ dp+
0

17 . : :
+ 29 (D12 sin ¢ + Dag cos ¢ + Dsasin x + Dys cos ) D3z sin xe deo+
0

1 J
+ 29 / (D12 sin @ + Dy cos ¢ + Dsa sin x¢ + Dyo cos x¢) Dya cos xe dp =
0
= Ioya + Ioyp + Ioyc + Ioyp - (A.1.29)

The first term in this sum is
1 7
Iyya = 29 / (D12 sin@ + Doy cos ¢ + Dsg sin x¢ + Dya cos xp) Digsine dp =
0

D
- Wl_zxz) {D12 (1 = x?) [20 = sin 20] + Dy (1 = x?) [1 — cos 20] +

+ 4D35 (x sind cos x¥ — cos ¥ sin x¥) +4Dy2 [1 — cos ¥ cos x¥ — xsindsin xv]} . (A.1.30a)

The second one can briefly be expressed as

1 0
Layp = 20 (D12 sin ¢ + Dag cos ¢ + D3z sin x@ + Dz cos x¢) Daa cos p dp =
0
—Day ) ) |
= W {D12 (X - 1) (cos 20 — 1) — Dag (X _ 1) (sin 20 + 20) +

+4D33 [x (cos x¥) cos ¥ + (sin x¥) sind — x| +
+4Dys [(cos x9) sin — x (sin x¥) cos 9]} . (A.1.30b)

Moreover, for the third part, the integration yields

1 Y
Iryyo = 29 / (D12sin ¢ + Dag cos ¢ + Dsasin x¢ + Dya cos xp) D3z sin xp dp =
0
_ D3y
8x? (1 - x?)
+ 4 Do x [(sin x¥) sin ¥ + x (cos x) cos ¥ — x| +
+Ds (1 — XQ) [20x — sin2x9] + Daa (1 — XQ) [1—cos2xd]} (A.1.30c)

{4D12x [x (cos x¥) sin ) — (sin x¥#) cos V] +

and finally, for the the last one we have

1 v
Iyyp = 29 / (D12sin ¢ + Dag cos ¢ + Dsg sin x¢ + Dyo cos x¢) Dyo cos xp dp =
0
— _ D
8Ux (x* — 1)
+ 4 D99 x [x (sin x) cos ¥ — (cos x¥) sin ] + 2D35 (X2 - 1) sin? Y9+
+2Dygs (x* — 1) [x9 + (sin x¥) cos x9]} . (A.1.30d)

{4D12x [(cos x¥) cos ¥ + x (sin x¥) sin® — 1] +

A.1.7. Manipulations on the displacement increment. Pinned-pinned beams. Consider-
ing pinned-pinned beams the solution to the equation system (3.4.10) is
—Azcos xU + Ag (xsind —sinxv) — 1

X2 (x%2 — 1) cos? ’
A4 (3)(2 - 1) A4
— s, 03 = —MEmp 9
x(x? - 1) ot -1)

Cl = —MEmp (A.1.31a)

CQ = MEmp (A.1.31b)
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% [19 (1 - XQ) sin xv + 2y cos Xlﬂ As+ (1 - XQ) [sin ¢ — Iy cos x| Ag + 2
2x* (x2 — 1) cos x '

Cy = —memp
(A.1.31c¢)

It is preferable to decompose each of these coefficients into two parts: one proportional to the
loading and the other not. Recalling and substituting here A3 and A4 for pinned-pinned beams
from (3.3.3), after some arrangements, we obtain that

A 941 A 9 — A ind — sin xv) P 5 ., F
C1 = emp (m( 31 COS XV + o 32508 X 12 (xsin PHIX )P> = Emb <C11+012P) ;

X2 —1) x2cos? (x2—1)x2cos? 9 )
(A.1.32a)
Ap P . P (1-3x2) A P . P
Co MM T I x 0 empCo2 g, O3 = empm=; ThZ_1) v empCs2 g (A.1.32b)
. . P 2+ Az [Xﬁ (1 - XQ) sin x1 + 2x? cos Xﬁ]
Ci=emp <C41 + 04219> = EmpMm 2% (1 — x2) cos X0 +
N Embm? As [x9 (1 — x?) sin x0 + 2x? cos xU] + Asa (x* — 1) (x¥ cos x9 — sin x0) (A1320)
) 2x4 (1 — x?) cos xv
with the new constants defined by
A Aszqcosxt + 1 A Aszg cos x¥ — Aga (x sind — sin x0))
Ci = Cio = A.1.33
=M (x2—1)cos?d’ 12 =m X% (x2 — 1) cos? ’ ( 2)
A Ayo A (1—3x?) As
— =m-— = A.1.33b
Ca2 m oE—1) Cso=m O —1) (A.1.33b)
. 2+ Asix [9 (1 — x?) sin x0 + 2x cos xV]
O — A133
a=m 2x* (1 — x?) cos x¥ ’ ( 2
Cry — mA32X [19 (1 — X2) sin x¥ + 2 cos Xﬂ] + Ayo (X2 — 1) (x¥ cos x¥ — sin x1¥) (A133d)

2x* (1 — x?) cos xv
Fized-fixed beams. Proceeding with the problem of fixed-fixed beams, the solution to the system
(3.4.24) can preferably be expressed as

C1 = —% {2 (X2 — 1) sin x¥ + As (X2 — 1) [sin x9 cos x9 + Ix] +
+Ay [3)(2 — 2y (sin ) sin x + (1 — XQ) cos? x1¥ — 2x? (cos 1) cos ¥ — 1} } , (A.1.34a)
Ay 32 -1
= _— = - Ay—FF——— A.1.34
C mEmb LT C3 = —memp A=) (A.1.34D)
Cy MEmb 2 {As [{(1 - x?) [9x cos x¥ — sin x¥] + 2x? (sin x¥9) } sin 9+

T 2D (1-
+ (2)(3 cos Y9 — 9y 2 (1 - X2) sin Xﬁ) cos? — 2X3] + 2 (X2 — 1) sin 9+
+A3 (X2 - 1) [X (9 sin 9 4 cos 9) sin x + 9x? cos ¥ cos Xﬂ] } . (A.1.34¢)

It is practical again to decompose the constants A; and C; into the usual two parts. Recalling
(3.3.12) we can write

. ., P 1 : :
Ci =éemp (C’n + 012ﬁ> = 5mbm2X73D [2sin x¥ + A3z1 (cos x¥ sin x¥ + Ix)] —

1 2 .
— gmbmm {As5 (x* — 1) [(cos x¥) sin x¥ + Ix] +

|

+Ag2 [3X2 — 23 (sin ) sin o + (1- X2) cos? x9 — 2x? (cos 1) cos ¥ — 1]} (A.1.35a)

)
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—mAg P . P m (3x% — 1) P . P
_ o mexrm ), P (a1
Ca2 = emb 097 =emCnyg,  C3=enm Dot (1= 2) 42 empCaz iy, (A.1.35b)
Cy = Emb G 1 {—2sin9 — Ag1 [x (Isind + cos9) sin xd + 9x? cos ¥ cos X9} +
1 2 . 2/ . .
+ EmbmW{A42 [[(1 ¢ ) (Fx cos x¥ — sin x}) + 2x“ (sin Xﬁ)] sin 9+
+ (2X3 cos Y9 — Uy > (1 — Xz) sin Xﬁ) cost — 2X3] +
2 . . 2 75 ~ ~ 75
+ Ass (X — 1) [X (9 sin® + cos ) sin x + ¥x* cos ¥ cos Xﬁ] }5 =emp | Ca1 + 0425 ,
(A.1.35¢)

where the values of C’ij can be read off easily.
Rotationally restrained beams. The solution to the corresponding system (3.4.32) happens to be

Ci =¢emp (Cn + C’1219> =

= gmb% {As1 [x cos? x9 4 0.58 (9 + cos xI sin x¥)]| + (x cos xd + Ssinxd) } +

m

— 2 Ass (1= x?) [2x cos® xI ¥ s 0 sin 0
+5mb2X3(1_X2)CO{ 32 (1= x?) [2x cos® x¥ + S (Ix + cos x¥sin x¥)| +

+ Ay [QX (1 - X2) (sin x — x sin ) cos x4

A 75 mAas 75 2 75 Agom (3X2 - 1) 75
— —_— —_——— e _— = - A.l-
Cy Emb02219 Em 2 1)y 0 Cs Emb03219 o AT —x2) 0 (A.1.36D)
Cy=¢cmp 041 + é42£ = Emb+ {2 (1 — XQ) (00819 + Ssinz?) +
C 2x* (x* = 1) Co
+ A3y (X2 —1) cos? [x (¥ (X2 — 1) sin x — 2x cos x9) —Sx ((1 + 9 tand) sin x + x cos xV)] } +

P m .
mbgm {As, (X2 — 1) cosd [x (¢ (X2 — 1) sin x¥ — 2x cos x¥) —
—Sx ((1 4+ Jtan ) sin x0I + xv cos xI)] + Aa2 [(X2 -1)(1-
+8 (2x* (1—cos ¥ cos x9) + (x*—

+e

X2) (¥x cos x¥ — sin ) cos ¥+
1) Ix [sin ¥ cos x¥ — x cos ¥ sin x¥] + (1 —3X2) sin ¥ sin Xﬁ)] } .
(A.1.36¢)

It can be checked that if [S = 0] {S — oo} we get back the results valid for [pinned-pinned| and

{fixed-fixed} beams.

The displacement and rotation after buckling. From now on what is written is valid for all

support arrangements. To be able to rewrite the solution W, in a favourable form, the particular
solution Wey,, in (3.4.5) is manipulated so that

m (2
Wobp = ~Emby 3 ( + Azpsinxp — chosxcp)

. m  Azim . (
=&mb |71 — -
X4 2X3

=Emb

P
9

P
9

Co1 + Cs1psin xo + (C’szso sin y¢ + Ceap cos XSO) , (A.1.37a)
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where
A m . Aszim - Aszom R Agom
— — —_ — = — - = 5 A]. b
Co - Cs1 R Cs2 R 62= 53 (A.1.37b)

Altogether, the solution for the whole beam is sought as

2
Wy = C cos o+ CoH sin p + C3 H sin x¢ + Cy cos xp — embzm—?) < + Aspsin xp — AgH pcos Xgo)
X" \X

or more practically, the displacement field is

Wob = €mp {C’m + 6'11 cos p + 041 cos X + C'5lcp sin xyp+

A A : A . A A . A P
+ (C’u cos ¢ + CaoH sin p + C30H sin xp + Cyo cos xp + Csap sin xp + CgaH @ cos X(p) r

(A.1.38)

As regards the expression of the rotation, it is the derivative of the former relation, therefore
— Yonb WO(;) = Emb [—én sin g + <é51 - 6'41x) sin xp + C’51xg0 cos xp+

+ (—C’lg sin ¢ + C’QQH cos @ + (é’ggx + é@z) Hcosxp + (C’g,g — C’4gx) sin xp+

. . . P
+Csaxpcos xp — Ceo H xp sin Xap) r (A.1.39)
or what is the same
— Yonp = WO(;) = €mp [K118in @ + Ky1 sin x¢ + K519 cos xp+
+ (Ki2sin @ + Kag cos ¢ + K32 cos xp + K42 sin xp+
, P
+ K520 cos xp + Kgapsin xp) iR (A.1.40)
with
Ky =—Ci, Ky = Cs1 — Cuix, K51 = Csix, Kiz = —Cha, Koy = Oy H ,
Kip = CyoHx + CeoH Ky = Cs9 — Ciax, K2 = Crax, Kgz = —Ceax H .
(A.1.41)

A.1.8. The averaged strain increment. We aim to detail the integrals Iy1, lo2, 111, 112, 113
introduced in Subsection 3.4.3 under (3.4.16). Recalling the formula for the averaged axial strain
we have two terms to deal with:

1 [? P
/ Wopde = emp |Loz— + o1 ; (A.1.42a)
9 ) 9
L7 P\ P
= / Wy Wilde = ey |3 | = | + She+ | - (A.1.42b)
9 Jo 9 9

Starting with the first one let us integrate that part of the displacement increment which does not
contain the loading P. Therefore, it follows that

1 (%4 . A A
I = 3 / (001 + C11 cos ¢ + Cyg cos xp + Cs1psin X@) de =
0

1 . . . .
- [XQ (00119 + Oy sin 19) + Crysin x9 + Cs; (sin xd) — y0 cos Xﬂ)} . (A.1.43)

Integrating the remainder of the displacement increment yields
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1 (Y. A A A A . -
Ipo = 3 / (012 cos ¢ + Cg sin p + Cso sin xp + Cyo cos xp + Crap sin xp + Cgap cos xgo) dp =
0

= W [X2 (ém sin? + (1 — cos ) 022) + Cio sin XU + (cos x — 1) Coat

+x ((1 — cos x¥) Cs9 + Cya sin X9 — Cis20 cos X + Ce2¥ sin Xﬁ)} . (A.1.43b)

Observe that Ip; and Iy are the only integrals that appear when the linearized theory is considered.
In this way we get the

102% +In =1 (A.1.44)

linear relation for P.
As for the second integral in (A.1.42) let us recall formulae (3.4.13) and (3.3.6a) providing the

rotations and then separate the terms depending on the power of 75/79:
1 1Y 1
19/0 @bonwonbdw ~ 19/0 (_Wél)) (_Wo(b)) d(p =
1 [0
= _Embﬁ/o [(Kll sin ¢ + K41 sin x¢ + K51 ¢ cos x¢) +

+5 (K2 sin ¢ + Ko cos ¢ + K39 cos xo + Kyosin x¢ + Ksap cos x¢ + Kgop sin Xgo)] .

D1 sin ¢ + D3y sin x¢ + (D12 8in ¢ + Dag cos ¢ + Do sin xp + Dygg cos xp) 19] dp =

I . . . .
= —Cmby / [(K11sin @ 4+ Ky1 sin x¢ + K51 @ cos x¢) (D11 sin g + D3y sin xp) +
0

~

: : : : P
+ (K1 sing + Ka sin xp + Ks1 9 cos xp) (Dizsing + Dag cos ¢ + Dgasin xp + Daa cos xyp) 5“‘

+ (K12 8in @ + Kog cos ¢ + K3y cos x + Kazsin xp + Ksap cos x¢ + Keapsin xp) -

A

. . P
- (D11 sing + D3y sin x) 5—%
+ (K2 sin @ + Ko cos ¢ + Ksg cos xp + Kyosin x + Ks2¢ cos x¢ + Kgapsin xp) -

N\ 2
. . P
- (D12 8in ¢ + Dag cos ¢ + D3asin xp + Dygg cos xp) () de,

Y
in which
1 U
Iy = -5 (K71 sing + Ky sin xp + K1 pcos xp) (D11 sing + D3y sinxp)de ,  (A.1.45a)
0
1 0
hy=—5 (D11sing + D3y sinxep) -
0

- (K128in ¢ + Koo cos ¢ + Ksa cos xp + Ko sin xyp + Ksap cos xp + Kegapsin x) dp—

1 9
- / (K11 sin o+ Ky sin xp+ K51 ¢ cos xg) (D12 sin o+ Dag cos o+ Dsa sin xp + Dy cos xp) de,
0
(A.1.45b)
1 )
I3 = —3 / (D12 sin ¢ + Dag cos ¢ + Dsa sin x¢ + Dy cos x¢) -
0

- (K2 sin ¢ + Kag cos ¢ + K33 cos x + Kyosin x¢ + Ksap cos xp + Keapsin xp)de . (A.1.45¢)
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Counstruction of closed-form solutions to these is feasible. However, it is not worth dealing with these
since — as it turns out — the applied Fortran subroutine and other tested mathematical softwares like
Maple 16 or Scientific Work Place 5.5 can cope with these integrals easily and accurately enough.
A.2. Some additional transformations for Chapter 4
A.2.1. The static equilibrium. Substitution of (4.1.2) into (4.1.3)2 yields
a2 [d*w, w, Iy d%w, w, Iy Iy d

—Iep— — | - = — | — —mege — — MEpe— =0 (A21
"ds? < as? " p%) 2\ tz) T e T gt I (8.2.1)

which, after some arrangements, leads to

4
w((,4) + 2w§2) + Wo + PoMege + pomaogwg},) = ;—0 n (A.2.2)
en
or equivalently to
3
W& 4+ 2W ) + W, + meye (1 +UD - WO(2)> - Ifiofn . (A.2.3)
en
If the distributed force f,, is zero then
W@ + 2w + W, +m (UgU + Wo) + M (UO<1> - W§2>) ~0. (A.2.4)
Equation (A.2.3) can be rewritten using (4.1.1)
ce =UMN +W, — UM =cpe —W,, (A.2.5)
thus
o3
WD+ 20D 4 W, 4 mege + meoe (g = Wo = WD) = 2 fo
en
3
WY 4 2W P £ W, + mege (1 + £5¢) — mege (Wo + W§2)> = f—“ - (A.2.6)
en
If we assume that 1+ £,¢ ~ 1 then finally we have
3
Wb 42w+ W, +m (Uo(l) + Wo) — Mg (Wo + W§2)) = Loy
I,
3
W + (2 = meog) W + 1+ m (1 — eog)] Wo + mUSY) = %0 fo o (A2
en

Equilibrium equations (4.1.5) and (A.2.7) are now gathered in matrix form:

001l U, ‘4)+ -m 0 U, (2)+
01| w, 0 2—mege | | W,

0 —m 1T U, 1Y o 0 U, 1 g3 ¢
Rl | R I A S 0 LA A

When the distributed forces are zero we can utilize
v +wih = =0 - UP=-wd (A.2.9)
on the first derivative of (A.2.4). As a consequence, we can eliminate either U,
W + 20D £ W+ mege (UD = W) = W 420 4+ WD — mege (W + W) =
W 1+ (2 — meoe) W + (1 = mege) WD = WS + 1+ A W + 2w =0 (A.2.10)

or W,
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given that
X2 =1—mep, if meee<1. (A.2.12)

A.2.2. Equations of the vibrations. Substituting relations (4.1.17) into (4.1.18)5, after some
arrangements we get

4
<w£;‘;) + wg?) + (wg) + wob) + Mmpo€og 1/)((”17)1, + mpo <5o§b - (%gb%n)(l)) = %fnb , (A2.13)
~—_— en

quadratic term

where the underset quadratic term can be neglected with a good accuracy. Some further ma-
(1)

nipulations are need to be carried out in the latter formula taking into account that (a) Vo =

ug}))/po - wgz)/po and (b) u(? = PoEoch — Wop, therefore

O

4
(w((j)) + wﬁ?) + (w(()i) + wob> + meoe (posogb — Wep — wﬁ?) + MpPoEoch = f;fnb, (A.2.14)

or what is the same

4
4
(wz()b) + “’g))) + (w(()i) + wob) — MéEo¢ <wob + wfj)) + mpococy (1 4 o) = f—ofnb ) (A.2.15)
en
Here we can apply the inequality €o¢p, > €¢peoe, thus
4
(w((é) + wﬁ?) + (wg,) + wob> + MpPoEogh — MEp¢ (wob + wgi)) = Ip—" nb - (A.2.16)
en

Introducing the dimensionless displacements leads to

O

(WS + W) + (W4 W) +m (US) + Woy) = mege (Wan+ W) = fg Fu. (A2.17)
en

So the governing equations in terms of the dimensionless displacement increments are

3
—m (U + W) = 22 (A.2.18)
en
3
WS + (2= meog) W)+ [1+m (1= co0)] Wap +mUS) = 2= foy (A.2.19)
en

We repeat these relations in matrix form:

0 01 U, (4)+ —m 0 U (2)+
0 1 Wop 0 2—mey Wob

) (0) 3
0 —m Uob 0 0 Uob _ Po fuo
o ]l i [l ] =[] ae

A.2.3. The load-strain relationship. Substituting the solution (4.6.1) into (4.6.3b) yields
01 —05+0¢ —Ri1 + R5s — Rg = 0,
Oy — Oym — Ry + Rym = 0,
014+ 05— Ry —R; =0,
—024+04(m+1)+ Ry — Ry (m—+1) =0,
—09 4203+ Ry — 2R3 =0,
(po)* P _
Iy,

which are indeed the (dis)continuity conditions and are independent of the supports.
For pinned-pinned beams the boundary conditions (4.6.3a) are

O1cosV + Ozsin? 4+ O3 (= cos Y +sind) — Og (m + 1) 9 + O5 (— cos¥ — Isind) + Og = 0,
O1sin® + Oz cos ¥ + O3 (2cos ¥ — Isinvd) — Os (—2sind) — Y cos ) = 0,

—01 —305+ Ry +3R5 — 0, (A.2.21)
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—01sin? + Oy cos ¥ + Ozt¥sin} — Oym — Os1 cos ¥ = 0,
Ricos? — Rosin® + Rz (Ycost? —sind) + Ry (m+ 1) 9 + Rs (—cos — Isind) + Rg = 0,
—Rysind — Rycosd + R3 (2cos? — ¥sind) — Ry (2sind + J cos ) = 0,
Risind + Ry cos? + Rgt¥sint — Rym + Rgt cos9 = 0. (A.2.22)
For fixed-fixed beams they are slightly different:
O1cos¥ + Ogsint + O3 (=¥ cos ¥ + sind) — Og (m + 1) ¥ + O5 (— cos¥ — ¥sindd) + Og = 0,
01 cosV 4 Ozsin® + O3 (—sind — ¥ cos ) + Os (cos ¥ — PIsindd) = 0,
—0O1sin?d 4+ Os cos ¥ + Oz sint — Ogm — O350 cos ¥ = 0,
Ry costY — Rosint + Rz (Ycosy —sindd) + Ry (m + 1) 9 + Rs (—cosv — ¥sind) + Rg = 0,
RicosY — Rosin® + R3 (sind 4+ ¥ cos ) + Rs (cos ¥ — ¥sind) = 0,
Risind + Ry cos?d + Rg¥sind — Rym + Rs¥costd =0 . (A.2.23)
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