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As is well known curved structural elements have been used successfully in various engi-
neering applications for their favorable load carrying capabilities. One can mention, without
striving for completeness, arch bridges or sti�eners in roof- and shell structures etc. With
technology developing and production volumes increasing it is gradually getting cheaper to
manufacture heterogeneous or inhomogeneous curved beams, such as composites, laminates,
sandwich structures. The thesis by László Péter Kiss is aimed to solve some (altogether
three) fundamental problems concerning the mechanical behavior of heterogeneous curved
beams.

The �rst objective is a generalization of some classical results valid for homogeneous
materials. These investigations have yielded some elementary relationships that can be used
to determine the stress state in the heterogeneous curved beam by hand made calculations.
The second objective is to develop a new nonlinear model for non-strictly shallow curved
beams from the principle of virtual work. This model makes it possible to determine the
critical load both for symmetric snap-through and antisymmetric bifurcation buckling if the
heterogeneous curved beam is subjected to a central load at the crown point. Pinned-pinned,
�xed-�xed and elastically restrained beams are considered. The third objective is to clarify
what e�ect the central load has on the frequency spectrum of the heterogeneous curved
beam. The solution is based on reducing the corresponding eigenvalue problems to those
governed by Fredholm integral equation systems.

The thesis systematically deals with the three problems and does its best to �nd ap-
propriate solutions. The numerical results were determined by developing and successfully
running three programs which were coded in Fortan 90. This work needed a great care but
László Péter Kiss solved this issue successfully.

As a scienti�c supervisor I should emphasize that László Péter Kiss is a hard working
and diligent young man who did his work paying careful attention to every detail. The
results achieved have been published regularly (four papers have come out and one paper is
accepted) by ful�lling the requirements of the István Sályi Doctoral School for publications
in this way.

The thesis presents the research work an its results in a clear and well-arranged manner:
the numerous �gures provide a further help for the reader to understand what e�ect the
various parameters have on the results (critical loads and natural frequencies). In accordance
with the three objectives the three statements in the summary can be regarded as a short
synopsis of the most important results.

Bükkszentkereszt, 27 April 2015
György Szeidl, DSc
Professor Emeritus

DOI: 10.14750/ME.2016.008



Contents

Nomenclature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IV

1. Preliminaries & Aims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1. Heterogeneous curved beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2. Stresses in curved beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3. Stability issues of curved beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4. Vibrations of curved beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2. Stresses in heterogeneous circular beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1. Kinematical hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2. Formulae for the normal stress distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.1. Generalization of the Grashof formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2. The normal stress under pure bending . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3. Formula for the shear stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.1. The shear correction factor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4. Curvature change and strain energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5. Numerical examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5.1. Example 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5.2. Example 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5.3. Example 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5.3.1. The shear correction factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.6. Summary of the results achieved in Section 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3. In-plane elastic stability of heterogeneous shallow circular beams . . . . . . . . . . . . . . . . . . 25
3.1. Fundamental assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.1. General relations regarding the pre-buckling state . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.2. General relations for the post-buckling state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2. Governing equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.1. Equilibrium conditions in the pre-buckling state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.2. Equilibrium equations in terms of the displacements . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.3. The principle of virtual work after the loss of stability . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.4. Post-buckling equilibrium equations in terms of the displacements . . . . . . . . . . . 30
3.3. Solutions for the pre-buckling state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3.1. General solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3.2. Pinned-pinned beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3.3. Fixed-�xed beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3.4. Rotationally-restrained beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.4. Possible solutions for the post-buckling state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4.1. General solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4.2. Pinned-pinned beams � antisymmetric buckling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.4.3. Pinned-pinned beams � symmetric buckling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.4.4. Fixed-�xed beams � antisymmetric buckling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4.5. Fixed-�xed beams � solution for symmetric buckling. . . . . . . . . . . . . . . . . . . . . . . . . 40

I

DOI: 10.14750/ME.2016.008



Contents II

3.4.6. Rotationally restrained beams � antisymmetric buckling . . . . . . . . . . . . . . . . . . . . . 41
3.4.7. Rotationally restrained beams � symmetric buckling . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.5. Computational results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.5.1. Pinned-pinned beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.5.1.1. Antisymmetric bifurcation buckling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.5.1.2. Symmetric snap-through buckling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.5.1.3. Load-crown point displacement and load-strain ratios . . . . . . . . . . . . . . . . . . . . . . 49
3.5.2. Fixed-�xed beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.5.2.1. Antisymmetric bifurcation buckling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.5.2.2. Symmetric buckling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.5.2.3. Load-crown point displacement and load-strain ratio graphs . . . . . . . . . . . . . . . 55
3.5.3. Rotationally restrained beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.5.3.1. Antisymmetric and symmetric buckling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.5.3.2. The primary equilibrium paths and the load-strain relationships . . . . . . . . . . . 63
3.6. The e�ect of heterogeneity on the buckling load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.6.1. Numerical example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.7. Summary of the results achieved in Section 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4. In-plane vibrations of loaded heterogeneous deep circular beams . . . . . . . . . . . . . . . . . . . 69
4.1. Introductory remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.1.1. Equations of the static equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.1.2. Equations of the vibrations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.2. Solutions to the homogeneous parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.2.1. The static equilibrium. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.2.1.1. If mεoξ < 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.2.1.2. If mεoξ > 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.2.2. The increments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.2.2.1. Solution when mεoξ < 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.2.2.2. Solution when mεoξ > 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.3. The Green function matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.4. Numerical solution to the eigenvalue problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.5. Construction of the Green function matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.5.1. The structure of the Green function matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.5.2. The Green function matrix when mεoξ < 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.5.2.1. Constants for pinned-pinned supports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.5.2.2. Constants for �xed-�xed supports. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.5.3. The Green function matrix when mεoξ > 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.5.3.1. Constants for pinned-pinned supports. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.5.3.2. Constants for �xed-�xed supports. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.6. The load-strain relationships . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.6.1. Pinned-pinned beams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.6.2. Fixed-�xed beams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.7. The critical strain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.7.1. Pinned-pinned beams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.7.2. Fixed-�xed beams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.8. Computational results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.8.1. Results for unloaded pinned-pinned beams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.8.2. Results for loaded pinned-pinned beams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.8.3. Results for unloaded �xed-�xed beams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.8.4. Results for loaded �xed-�xed beams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

DOI: 10.14750/ME.2016.008



Contents III

4.8.5. The e�ect of heterogeneity on the frequency spectrum . . . . . . . . . . . . . . . . . . . . . . . 96
4.8.5.1. Free vibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.8.5.2. Loaded vibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.8.5.3. Finite element computations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.9. Summary of the results achieved in Section 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5. Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.1. Preliminaries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.1.1. Some mechanical issues of circular beams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.2. Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.3. Investigations performed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.4. Summary of the novel results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.5. Magyar nyelv¶ összefoglaló (Summary in Hungarian) . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.6. Possible application of the results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.7. Future research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.8. Related publications by the author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Appendix A. Detailed manipulations 118
A.1. The long formal transformations of Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
A.1.1. Formulae for the axial force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
A.1.2. Transformation of the principle of virtual work � pre-buckling state . . . . . . . . . 118
A.1.3. Transformation of the principle of virtual work � post-buckling state . . . . . . . . 119
A.1.4. The pre-buckling equilibrium in terms of the displacements . . . . . . . . . . . . . . . . . 121
A.1.5. The post-buckling equilibrium in terms of the displacements . . . . . . . . . . . . . . . . 122
A.1.6. Computation of the pre-buckling strain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
A.1.7. Manipulations on the displacement increment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
A.1.8. The averaged strain increment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
A.2. Some additional transformations for Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
A.2.1. The static equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
A.2.2. Equations of the vibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
A.2.3. The load-strain relationship. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
A.2.3.1. The equation system for pinned-pinned beams in Subsection 4.6.1 . . . . . . . . . 132
A.2.3.2. The equation system for �xed-�xed beams in Subsection 4.6.2 . . . . . . . . . . . . . 133

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

DOI: 10.14750/ME.2016.008



Nomenclature

Here the most important and most commonly used notations are gathered in alphabetical
order. Although each notation is described in the text when �rst used, this Nomenclature
might come handy at times.

Latin symbols:

A ,A
′

cross-sectional area, segment area (see Figure 2.3),
Ae, A

′
e E-weighted areas,

AeR E-weighted reduced area,
Aj,Bj matrices in the representation

of the Green function matrix (j = 1, 2, 3, 4),
Ce E-weighted centroid of the cross-section,
eξ, eη, eζ orthogonal unit vectors,
E(η, ζ) Young's modulus,
E Green-Lagrange strain tensor,
EN nonlinear part of the Green-Lagrange strain tensor,
EL linear part of the Green-Lagrange strain tensor,
fn, ft distributed forces in the directions ζ, ξ,
G shear modulus of elasticity,
G Green function matrix,
Gij the ij-th element of the Green function matrix (i, j = 1, 2),
H Heaviside function,
ie E-weighted radius of gyration,
IeR E-weighted reduced moment of inertia,
Ieη E-weighted moment of inertia with respect to the axis η,
Iη moment of inertia with respect to the axis η,
kγl, kγr, kγ each one is a torsional spring sti�ness,
κγ shear correction factor,
`b, `r lengths of a straight beam, rod,
m, m̃ geometric-material parameters, m = Aeρ2o

Ieη
= m̃+ 1,

mhet, mhom parameters for heterogeneous and homogeneous beams,
M bending moment,
N axial force,
Pζ , Pξ concentrated vertical and horizontal external forces,
Pζ het, Pζ hom critical loads for heterogeneous and homogeneous curved beams,
P critical dimensionless load,
P̂ dimensionless load,
i

P coe�cient matrix (i = 1, 2, 3, 4),
QeR E-weighted reduced �rst moment,
Qeη, Q

′
eη E-weighted �rst moment of the cross-section or its segment A ′,

s arc coordinate,
S dimensionless spring sti�ness,
S the second Piola-Kirchho� stress tensor,
t time,
u displacement vector,
uo, vo, wo displacements of the centerline in the directions ξ, η, ζ,
U total strain energy,
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UT total strain energy from shearing,
Uτ strain energy from shearing per unit length,
Uo, Wo dimensionless displacements in the directions ξ, ζ,
Ûob, Ŵob dimensionless displacement increment amplitudes,
Vζ shear force,
WoC dimensionless displacement of the crown point,
y the column vector that contains the displacement amplitudes.

Greek symbols:

α eigenfrequency,
α∗i the i-th natural frequency of straight beams,
αi free the i-th natural frequency of heterogeneous curved beams,
αi the i-th eigenfrequency of loaded heterogeneous curved beams,
γξζ angle distortion,
εξ axial strain,
εoξ linearized axial strain on the (E-weighted) centerline,
εm nonlinear axial strain on the (E-weighted) centerline,
εoξ crit critical axial strain,
ζo = −e ζ coordinate of the neutral axis,
ζ̂ ζ coordinate of the cross-section segment A′,
ϑ semi-vertex angle of the curved beam,
ϑ̄ included angle of the curved beam,
κo curvature change on the centerline,
λ modi�ed slenderness,
Λ eigenvalue, proportional to the square of the eigenfrequencies,
ν Poisson ratio,
ξ, η, ζ coordinate axes of the applied curvilinear coordinate-system,
ρa average density of the cross-section,
ρo initial radius of the (E weighted) centerline,
ρ̄o radius of the neutral axis,
σξ normal stress,
τηξ, τζξ shear stresses,
ϕ angle coordinate,
χ2 parameter, χ2 = 1−mεm if mε < 1, otherwise χ2 = mεm − 1
Ψ tensor of in�nitesimal rotations,
ψoη rigid body rotation on the centerline about the axis η,
ψ angle coordinate.

Further notational conventions:

(...)(i) the i-th derivative with respect to the angle coordinate,
(...)b denotes the increments of some physical quantities,
(...)∗ denotes the quantities that belong to the buckled equilibrium,
δ (...) denotes virtual quantities,
O Hamilton operator.
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CHAPTER 1

Preliminaries & Aims

1.1. Heterogeneous curved beams

Curved (circular, parabolic, sinusoidal, shallow, deep, etc.) beams are widespread used in
various practical engineering applications for their favourable load carrying capabilities. We
mention, for instance, arch bridges and their role as sti�eners in roof- and shell structures.
Moreover, they can have vital functions as machine parts: like crane hooks or clampers.

Beams are said to be curved when the so-called centerline (or centroidal axis) has an
initial curvature. For circular beams this curvature is apparently constant.

In many applications, for geometrical reasons, curved beams are more suitable than
straight ones. Let us see a simple example. If we consider a straight and a curved beam �
both loaded in the middle � then the straight member is subject to shear and bending while
the curved beam is besides under compression. This latter kind of stress is generally the
most preferred one and, for this property, the load carrying capabilities improve with less
deformations. Therefore, in many cases, curved beams better withstand loads.

With technology developing and production volumes increasing it is gradually getting
cheaper and cheaper to manufacture nonhomogeneous (heterogeneous or inhomogeneous)
curved beams, such as composites, laminates, sandwich structures, etc. The bene�ts of such
structural members can be the reduced weight, improved corrosion, fatigue and chemicals
resistance and higher strength. Thus, there is a continuous need to develop appropriate
mechanical models predicting the behavior of these members under loading.

Figure 1.1. Some possible nonhomogeneous symmetric cross-sections.

A class of inhomogeneity (heterogeneity) this thesis aims to deal with is called cross-
sectional inhomogeneity. It means that the material parameters, like Young's modulus E
and the Poisson ratio ν can be functions of the cross-sectional coordinates η, ζ assuming
that the symmetry relations E(η, ζ) = E(−η, ζ) and ν(η, ζ) = ν(−η, ζ) are satis�ed. The
material distribution can be continuous, or constant over each segment of the cross-section.
In Figure 1.1 point C denotes the geometrical center, and Ce is the E-weighted centroid. For
circular beams with cross-sectional inhomogeneity, I intend to deal with three mechanical
issues as detailed in the forthcoming.

1
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Preliminaries & Aims 2

1.2. Stresses in curved beams

The mechanical behaviour of curved beams has been a topic of interest since the 19th

century. The very �rst related source � found by the author � is a book by Bresse [1]. He
managed to establish relations between the displacement �eld and the axial force and bending
moment. Winkler [2] was the �rst to propose a formula for the normal stress distribution in
curved beams. Meanwhile, Grashof is known for introducing an equilibrium method for the
calculation of the shear stress [3]. The early results and many additional citations are well
collected in the scienti�c works [4,5,6,7].

Curved beams are still subject to intense interest by scientist. On the one hand because
of their important role and advantageous properties in various structures and on the other
hand due to the spread of nonhomogeneous members.

Well-known formulae for the stress distributions, the de�ections of homogeneous straight
and curved beams under concentrated and distributed loads can nowadays be found in a
bunch of scienti�c works (books, articles, lecture notes) � see, e.g. [8,9,10,11,12,13,14,15].
Interestingly, it seems that the relation for the normal stress distribution by Winkler is
attributed to Grashof in Hungarian textbooks � see, for instance, [8, 12, 13] on contrary
to [16] by Timoshenko. The reason for this misuse might be due to the results achieved by
Grashof for cylindrical shells.

There are also some recent and at the same time relevant results which are worthy of
mentioning here. A common thing of these is the assumption of a linearly elastic, isotropic
constitutive equation.

Tolf [17] analytically investigates stresses in bent curved beams made of �bre-reinforced
plastic. He �nds that the homogeneous model approximates the stresses quite well indeed.
Ascione and Fraternali [18] use a penalty-technique for curved laminated Timoshenko beams,
including warping e�ects. They have developed a �nite element technique to obtain the
stresses. Segura and Armengaud [19] propose simple analytical formulae for the normal and
shearing stresses under bending loads. The normal stress distribution due to the bending
moment and axial force is hyperbolic over the cross-section. In addition, the authors have
extended Bredt's formula for composite curved beams in order to obtain the shear stresses.
Venkatarman and Sankar [20] contribute to the static analysis of straight sandwich beams
with functionally graded core using the Euler-Bernoulli hypothesis. Young's modulus varies
exponentially over the beam thickness. Aimin [21] determines the shear stresses in curved
composite beams after deriving the governing integral equations. In this way not only the
equilibrium equations but also the boundary conditions are satis�ed. Ecsedi and Dluhi
[22] analyse the static bending problem of nonhomogeneous non-shear deformable circular
beams and rings. Daouadji et al. [23] investigate functionally graded straight cantilever
beams (Young's modulus varies continuously through the thickness) from the aspect of a
stress function approach. Ecsedi and Lengyel [24] consider two-layered elastic circular Euler-
Bernoulli beams with weak shear connection (interlayer slip) and provide exact solutions to
the displacement and stress �elds.

Using the core idea of cross-sectional inhomogeneity [8,25] it is my
Objective 1 to generalize some classical results valid for homogeneous materials in

simple closed-form. These investigations would lead to the following results:

� Generalization of two elementary relationships (valid for homogeneous curved beams),
that provide the normal stress caused by an axial force and a bending moment, for
curved beams with cross-sectional inhomogeneity.

� Setting up a further formula for computing the shearing stress.
� In addition, a formula for the shear correction factor should also be derived.
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Preliminaries & Aims 3

� The new results for the stresses should be compared with �nite element (FE) com-
putations.

1.3. Stability issues of curved beams

As buckling of beams is a common way of failure in engineering applications, it has
been an important subject to investigations for quite a while. The pioneer of this �eld
is Euler who, in 1757, published his well-known formula for the critical (buckling) load
of straight bars under compression [26]. Since then, a vast amount of novel models have
been established. These analytical/numerical investigations include in-plane/out-of-plane,
static/dynamic, elastic/elasto-plastic stability of shear-deformable/non-shear-deformable
shallow/deep circular/sinusoidal/ parabolic homogeneous/heterogeneous isotropic/anisotro-
pic 1D/3D curved beams/arches with sti�/elastic supports under concentrated/distributed
time-independent/dependent loads. A suitable collection of some relevant results can be
found in recent textbooks [27,28,29,30].

The foremost models concerning the static elastic stability of curved beams were based
on the inextensibility of the centerline � see, e.g. article [31] by Hurlbrink, who managed
to determine the critical pressure of clamped beams. Then Chwalla and Kollbrunner made
a huge progress [32] as they showed that the extensibility of the centerline should be ac-
counted, otherwise the mechanical models can signi�cantly overestimate the critical load.
An extract of the most important results achieved before the 1960s is gathered in book [33]
by Timoshenko.

Stability issues got in the spotlight during the 1960s. Book [34] by Bolotin, among
many other topics, is devoted to the dynamic stability of elastic systems involving, e.g.
(curved) beams. In [35], Schreyer and Masur provide exact analytical solution for a �xed-
�xed shallow arch with rectangular cross-section. Papers [36,37] by DaDeppo are devoted
to the determination of the critical load of deep circular beams, which are subjected to a
vertical force. Assuming an inextensible centerline, it is shown that quadratic terms should
be accounted in the analysis. Papers [38,39] by Dym are concerned with the buckling and
post-buckling behaviour of pinned shallow arches under dead pressure using a continuum
model. A summary of these results is also published in book [40]. Thesis [41] by Szeidl
uses analytical methods to determine the Green function matrices of extensible pinned and
�xed circular beams and, moreover, determines not only the natural frequencies but also
the critical loads if the beams are subjected to a radial dead load whose Fourier series is
known. As regards the dynamic behaviour of curved beams survey papers [6,7,42] provide
an adequate collection.

There have also been many attempts to tackle the stability problem using a �nite element
(FE) algorithm under various assumptions � see, e.g. [43,44,45,46]. Although higher-order
curvature terms are not included into these models, the authors assume that the membrane
strain is a quadratic function of the rotation �eld, while the bending moment is linear in terms
of the generalized displacements. Dawe [47] approximates deep and shallow arches using
the theory of shallow members. More strain-displacement hypotheses are tested (Vlasov,
Marguerre) as well as multiple curved elements. A conclusion is that the use of shallow
elements for deep arches might result in substantial errors. Fifth-order polynomials seem
to provide excellent results even for a sole element. His subsequent work [48] is based on
the deep-arch theory for the approximation. Loula et al. [49] use the Hellinger-Reissner
variational principle and introduce the so-called mixed Petrov-Galjorkin FEM for shear-
deformable circular beams. A bene�t of this technique is that there is no membrane or shear
locking. Flores and Godoy [50] discretise 3D continuums to determine the critical load both
for limit point and bifurcation buckling. Pi et al. [51] develop a nonlinear model which is
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Preliminaries & Aims 4

based on �nite rotations. They account for the pre-buckling deformations which � according
to the authors � happen to be signi�cant.

Palazotto et al. [52, 53] assume large displacements and rotations and compare �ve
models for the stability of straight and curved beams. Paper [54] by Szabó is devoted, among
others, to the issue of how to incorporate the fact that the body considered (a circular ring)
can have a rigid body motion into the stability investigations. Rajasekaran [55] deals with
the stability and vibrations of curved beams with a new di�erential transformation element
method: instead of one sixth-order di�erential equation the author solves six �rst-order
equations.

In the open literature from the recent past, interestingly, there can scarcely be found
account for elastic supports. However, as structural members are often connected to each
other and they provide elastic restraints, it is worth including these e�ects. The rotational
restraints or those obstructing the displacements can hugely a�ect the critical load [56,57].
Plaut accounts for sti�ening elastic supports in [58]. Yang and Tong [59] consider horizontal
elastic supports and a vertically distributed uniform load when investigating arches with a
linear model.

Nowadays, Pi, Bradford and their co-authors have been contributing to the stability of
homogeneous (mainly shallow) arches through thoroughly investigating their new geomet-
rically nonlinear model. Pi et al. have evaluated it for various loads (distributed, concen-
trated) and boundary conditions (pinned, �xed, elastic supports, mixed supports, etc.) �
see [56,57,60,61,62,63,64]. Some of these articles also involve investigations concerning the
post-buckling behaviour. The authors have drawn the conclusion that both the pre-buckling
deformations and the nonlinearities have substantial e�ect on the permissible load. Progress
has also been made in the dynamic stability of shallow arches [65,66,67]. In the previous
articles the loading is a sudden concentrated or distributed force. The core idea is based on
the method of conservation of energy. It has turned out that the dynamic critical load is
always lower than the static.

A common thing of the previously cited works is the assumption of a homogeneous
material. Sha�ee et al. [68], among other topics, study functionally graded (FGM) curved
beams from the aspect of in- and out-of-plane buckling behaviour. The linear model leads
to an eigenvalue problem. Kim and Chaudhuri [69] consider the post-buckling behaviour
of laminated thin shallow arches under a concentrated load at the crown point with the
aid of the Rayleigh-Ritz method. The in�nitesimal rotations are nonlinear as in most of the
formerly mentioned articles. Xi et al. [70] assume FGM arches (the material composition can
vary in the direction of the thickness) under uniformly distributed radial follower load and
geometric nonlinearities to tackle the stability issue. Article [71] by Vo and Thai is devoted
to the stability and vibrations of composite beams using a re�ned shear deformation theory.
Parabolic variation of shear strains through the depth of the beam is assumed. Fraternali
et al. [72] have developed a geometrically nonlinear FE model to investigate the stability
and post-buckling behaviour of composite curved beams. The rotations and shear strains
are moderately large and the material is bimodular. Bateni and Eslami [73] use the same
kinematical hypotheses as in [61] but the arch is made of FGM � the material composition
follows the Voight-rule of mixture.

On the basis of this overview, no examinations have been carried out concerning the
stability problem of circular beams under the assumption of cross-sectional inhomogeneity.

Within the frames of what has been written above my
Objective 2 is summarized in the following two items.

� I intend develop a new nonlinear model for non-strictly shallow curved beams from
the principle of virtual work. It is aimed to be more accurate than, e.g. [61,74] and
should be applicable to cross-sectional inhomogeneity as well.
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� I aim to evaluate the new model for pinned-pinned, �xed-�xed and rotationally re-
strained supports provided that the beam is subjected to a central concentrated load
at the crown point. This would involve the determination of the critical loads both
for symmetric snap-through and antisymmetric bifurcation buckling. At the same
time the typical buckling ranges and its endpoints are also sought. Comparison of
the results with those available in the literature and with the Abaqus commercial FE
software is also an objective.

1.4. Vibrations of curved beams

The �rst source (found by the author) in relation with the free vibrations of curved beams
is article [75] by Den Hartog, published in 1928. Further notable contributions in the middle
of the last century were devoted to this topic in [76,77,78,79]. All these works assume the
inextensibility of the centerline.

Szeidl in his PhD thesis [41] investigates how the extensibility of the centerline can a�ect
the free vibrations of planar circular beams under a constant radial load. The applied theory
is linear. The author obtains solutions using numerical procedures. One of these is based
on the Green function matrix. With this in hand, the related boundary value problem is
transformed to a problem governed by Fredholm integral equations. Three important survey
papers were devoted to the vibrations of curved beams during the 1980-90s: [6] by Márkus
and Nánási, [42] by Laura and Maurizi, and [7] by Chidamparam and Leissa.

Qatu and Elsharkawy provide exact solutions to the free vibrations of laminated deep
arches in [80]. Kang et al. [81] determine the frequencies (eigenvalues) for the in-plane
and out-of-plane vibrations of circular Timoshenko arches. Both rotatory inertia and shear
deformations are accounted. The di�erential quadrature method is used to get the solu-
tions. Tüfekçi and Arpaci [82] managed to gain exact analytical solutions for the in-plane
free harmonic vibrations of circular arches. The authors account for the extensibility of
the centerline and also for the transverse shear and rotatory inertia e�ects. Krishnan and
Suresh [83] developed a shear-deformable FE model to tackle the problem. When there
is a constant vertical distributed load, article [84] by Huang presents some solutions. Pa-
per [85] by Kanga et al. takes point discontinuities, like elastic supports and masses, into
account when dealing with the free vibrations. Ecsedi and Dluhi [22] analyse some dynamic
features of non-homogeneous simply supported curved beams and closed rings. Here the
kinematical hypothesis is formally di�erent but mathematically equivalent to that I use in
the forthcoming investigations.

Article [86] by Lawther is also worthy of mentioning as it tackles the problem of how a
pre-stressed state of a body can in�uence its natural frequencies. He concludes that for multi-
parameter problems the eigenvalue of the related solution is described by interaction curves
in an eigenvalue space and every such eigenvalue solution has an associated eigenvector.
If all points on a curve have the same eigenvector it means that the curve is actually a
straight line. Ozturk [87] presents a FE model for the free planar vibrations of curved
beams. The model is derived from cantilever beams, which are under a vertical force at
the free end by �xing it after the deformations. Elastic foundations are taken into account
by Çalim [88]. Hajianmaleki and Qatu [89] consider laminated curved beams. Survey
paper [90] by the previous two authors reviews the recent past with many citations included.
Kovács [91] deals with the vibrations of layered arches assuming the possibility of both
perfect and even imperfect bonding between any two nearby layers. Wu et al. [92] obtain
exact solutions (determine the zeros of the frequency determinant) when the curved element
carries concentrated elements, including mass moments and inertias. Article [93] by Juna
et al. is devoted to the free vibrations of laminated curved beams using the trigonometric
shear deformation theory. The dynamic sti�ness matrix is obtained from the exact solutions
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of the related di�erential equations. This paper is in fact the sequel of [94] which deals with
straight beams. Nowadays, the dynamic behaviour of FGM straight and curved beams are
also of increasing interest � see, e.g. [95,96,97,98,99].

Overall, in the open literature there are few solutions devoted to the vibrations of beams
using the Green function. Here we mention some of these. Szeidl et al. [100] determine
the natural frequencies of pinned and �xed circular arches under a distributed load using
this technique. Kelemen [101] extends the former investigations. She provides the natural
frequencies as a function of a constant distributed load. Abu-Hilal [102] investigates the dy-
namic response of prismatic damped straight Euler-Bernoulli beams subjected to distributed
and concentrated loads. The author obtains exact solutions. Li et al. [103] investigate the
forced vibrations of straight (Timoshenko) beams. The beam is under a time harmonic con-
centrated load. Damping e�ects at the ends are taken into account. There are also some
further attempts to investigate the dynamic behaviour of structures (response under periodic
loads, displacements, etc.). Lueschen and Bergman [104] investigate uniform Timoshenko
beams after providing the exact expression of the corresponding Green function. Foda and
Abduljabbar [105] and Mehri et al. [106] determine the de�ections and present parametric
studies of a straight beam under the e�ect of a moving mass. Kukla and Zamojska [107]
deal with the free vibrations of stepped beams. It seems, however, to be an open issue how
a central concentrated load a�ects the in-plane vibrations of heterogeneous circular beams
if they are pinned-pinned or �xed-�xed at the endpoints.

Within the frames of what has been mentioned above
Objective 3 is related to the in-plane vibrations of loaded circular beams with cross-

sectional inhomogeneity. In details, my goals are
� to derive those boundary value problems which can make it clear how a radial load
a�ects the natural frequencies of pinned and �xed beams,

� to construct the Green function matrix for pinned-pinned and �xed-�xed beams by
taking into account that the central load at the crown point can either be compressive
or tensile (four Green function matrices are to be determined),

� to reduce the eigenvalue problems set up for the natural frequencies (which depend
on the load) to eigenvalue problems governed by homogeneous Fredholm integral
equation systems (four integral equation systems should be established),

� to replace these eigenvalue problems with algebraic ones and to solve them numeri-
cally,

� to clarify how the vertical force at the crown point a�ects the frequencies of the
vibrations (if there is no concentrated force, it is expected to get back the results
valid for the free vibrations),

� to verify some results by FEM or by experimental studies.
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CHAPTER 2

Stresses in heterogeneous circular beams

2.1. Kinematical hypothesis

The investigations are carried out in the orthogonal curvilinear coordinate system that is
shown in Figure 2.1. Lagrangian description is applied throughout this thesis. It is assumed
that (a) each cross-section is uniform and symmetric with respect to the axis ζ [consequently,
the beam is symmetric to the coordinate plane (ξ = s, ζ)]; (b) the E-weighted �rst moment
of the cross-section with respect to the axis η � this quantity is denoted by Qeη � is equal to
zero:

Qeη =

∫
A

E(η, ζ) ζ dA = 0 (2.1.1)

and (c) Young's modulus E and the Poisson ratio ν are functions of the coordinates η, ζ in
such a way that E = E(η, ζ) = E(−η, ζ) and ν = ν(η, ζ) = ν(−η, ζ) � this distribution is
called cross-sectional inhomogeneity [25]. The axis ξ = s intersects the plane of the cross-
section in the point Ce, which is referred to as the E-weighted center of the cross-section (in
contrast to the point C, which is the geometrical center of the cross-section).

The coordinate line ξ = s is the E-weighted centerline (or centerline in short) of the
curved beam and s is the arc coordinate.

For the sake of later considerations we shall introduce the concepts of the E-weighted
area (tensile sti�ness) and moment of inertia (bending sti�ness) with respect to the axis η:

Ae =

∫
A

E(η, ζ) dA , Ieη =

∫
A

E(η, ζ) ζ2dA . (2.1.2)

These notions have previously been introduced for straight beams in paper [25] by Baksa
and Ecsedi.

Figure 2.1. The coordinate system and the E-weighted centerline.

The orthogonal unit vectors eξ(s), eη and eζ(s) of the coordinate lines ξ, η and ζ are
shown in Figure 2.1. Let ρo be the constant radius of the E-weighted centerline in the initial
con�guration. It is easy to check that eξ(s), and eζ(s) satisfy the relations

deξ
ds

= − 1

ρo
eζ ,

deζ
ds

=
1

ρo
eξ and eζ × eξ = eη = constant . (2.1.3)

7
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The symbol × denotes the vector product, while the Hamilton operator ∇ assumes the form

∇ =
ρo

ρo + ζ

∂

∂s
eξ +

∂

∂η
eη +

∂

∂ζ
eζ . (2.1.4)

We further assume that (a) the cross-section has a translation and a rigid body rotation
about the axis η, i.e. it remains a plane surface during the deformations and (b) the deformed
centerline remains perpendicular to the cross-section (Euler-Bernoulli theory). Under these
conditions

u = uo + ψoηζeξ = woeζ + (uo + ψoηζ)eξ (2.1.5)

is the displacement �eld of the cross-section, in which uo = uoeξ + woeζ and ψ = ψoηeη are
the displacement vector and the rotation on the E-weighted centerline, respectively. As is
well-known the cross-product

ψ = −1

2
(u×∇) (2.1.6)

yields the rigid body rotation. Thus

ψ|ζ=0 = ψoηeη = − 1

2
(woeζ + (uo + ψoηζ)eξ)×

(
ρo

ρo + ζ

∂

∂s
eξ +

∂

∂η
eη +

∂

∂ζ
eζ

)∣∣∣∣
ζ=0

=

=
1

2

[(
uo
ρo
− dwo

ds

)
+ ψoη

]
eη (2.1.7)

is the rotation on the centerline, that is

ψoη =
uo
ρo
− dwo

ds
. (2.1.8a)

It is the only nonzero coordinate in the antisymmetric tensor of in�nitesimal rotations Ψ :

Ψ =
1

2
(u ◦ ∇ −∇ ◦ u) , ψη = ψη|ζ=0 = ψoη = eξ · Ψ · eη , ψξ = ψoξ = ψζ = ψoζ = 0.

(2.1.8b)
Further, we have the curvature change in the form

dψoη
ds

= κo = − d

ds

(
dwo
ds
− uo
ρo

)
. (2.1.8c)

With the diadic product

u ◦ ∇ = [woeζ + (uo + ψoηζ) eξ] ◦
(

ρo
ρo + ζ

∂

∂s
eξ +

∂

∂η
eη +

∂

∂ζ
eζ

)
=

=
ρo

ρo + ζ

(
duo
ds

+
wo
ρo

+ ζ
dψoη
ds

)
eξ ◦ eξ+

+ ψoηeξ ◦ eζ +

(
ρo

ρo + ζ

dwo
ds
− uo + ζψoη

ρo + ζ

)
eζ ◦ eξ + ((...)) (2.1.9)

in hand we get the axial strain in the linearized Green-Lagrange strain tensor EL as

εξ = eξ ·EL · eξ = eξ ·
1

2
(u ◦ ∇+∇ ◦ u) · eξ =

=
ρo

ρo + ζ

(
duo
ds

+
wo
ρo

+
dψoη
ds

ζ

)
=

ρo
ρo + ζ

(εoξ + ζκo) . (2.1.10)

Here

εoξ = εξ|ζ=0 =
duo
ds

+
wo
ρo

(2.1.11)

is the axial strain on the E-weighted centerline.
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Some so-called E-weighted reduced quantities like the reduced area, �rst moment and
moment of inertia are de�ned by the following relations

AeR =

∫
A

ρo
ρo + ζ

E(η, ζ)dA , QeR =

∫
A

ρo
ρo + ζ

E(η, ζ)ζdA , IeR =

∫
A

ρo
ρo + ζ

E(η, ζ)ζ2dA.

(2.1.12)

We shall now clarify how these are related to Ae, Qeη and Ieη. Using the power series of the
fraction ρo/ (ρo + ζ) we have

AeR =

∫
A

(
1− ζ

ρo
+
ζ2

ρ2
o

− ...
)
E(η, ζ)dA ∼=

∫
A

E(η, ζ)dA︸ ︷︷ ︸
Ae

− 1

ρo

∫
A

E(η, ζ)ζdA︸ ︷︷ ︸
Qeη

=

= Ae −
Qeη

ρo
= Ae , (2.1.13a)

QeR =

∫
A

(
1− ζ

ρo
+
ζ2

ρ2
o

− ...
)
ζE(η, ζ)dA ∼=

∼=
∫
A

ζE(η, ζ)dA︸ ︷︷ ︸
Qeη

− 1

ρo

∫
A

ζ2E(η, ζ)dA︸ ︷︷ ︸
Ieη

= Qeη −
Ieη
ρo

= −Ieη
ρo

(2.1.13b)

and

IeR =

∫
A

(
1− ζ

ρo
+
ζ2

ρ2
o

− ...
)
ζ2E(η, ζ)dA ∼= Ieη (2.1.13c)

because Qeη = 0 � see (2.1.1). For homogeneous beams we shall use the notations AE, QηE
and IηE instead of Ae, Qeη and Ieη.

2.2. Formulae for the normal stress distribution

2.2.1. Generalization of the Grashof formula. It is clear that the axial force and
the bending moment are

N =

∫
A

σξdA , M =

∫
A

ζσξdA . (2.2.1)

In the sequel we shall assume that the inequality σξ � ση, σζ concerning the normal stresses
in the second Piola-Kirchho� stress tensor S holds. Thus, equation σξ = E(η, ζ)εξ is Hooke's
law. Upon substitution of Hooke's law and then equation (2.1.10) into (2.2.1)1 we have

N = εoξ

∫
A

ρo
ρo + ζ

E(η, ζ)dA+ κo

∫
A

ρo
ρo + ζ

E(η, ζ)ζdA = εoξAeR + κoQeR . (2.2.2a)

As for the bending moment, in a similar way, we obtain

M = εoξ

∫
A

ρo
ρo + ζ

E(η, ζ)ζdA+ κo

∫
A

ρo
ρo + ζ

E(η, ζ)ζ2dA = εoξQeR + κoIeR . (2.2.2b)

After solving equation system (2.2.2) we get εoξ and κo in terms of the inner axial force N
and bending moment M :

εoξ =
1

Q2
eR − AeRIeR

(MQeR −NIeR) , κo =
1

Q2
eR − AeRIeR

(NQeR −MAeR) . (2.2.3)

Let us now insert these solutions into equation (2.1.10). In this way we get the 'exact' axial
strain as a function of N and M in such a way that

εξ =
ρo

ρo + ζ

1

AeRIeR −Q2
eR

[(IeR − ζQeR)N −M (QeR − ζAeR)] . (2.2.4)
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With the former expression in hand we can rewrite the formula for the normal stress:

σξ = E(η, ζ)εξ = E(η, ζ)
ρo

ρo + ζ

1

AeRIeR −Q2
eR

[(IeR − ζQeR)N −M (QeR − ζAeR)] .

(2.2.5)
In the sequel an attempt is made to simplify (2.2.5). Concerning the denominator, the

following approximation holds

AeRIeR

(
1− Q2

eR

IeRAeR

)
' AeRIeR

(
1− 1

ρ2
o

I2
eη

AeRIeR

)
= AeRIeR

(
1− 1

ρ2
o

Ieη
AeR

)
' AeRIeR

(2.2.6)
since

1� 1

ρ2
o

Ieη
AeR

.

Owing to this result we can equivalently rewrite formula (2.2.4) in the form

εξ ≈
ρo

ρo + ζ

1

AeRIeR
[(IeR − ζQeR)N −M (QeR − ζAeR)] =

=

(
1− ζQeR

IeR

)
ρo

ρo + ζ

N

AeR
+

(
− QeR

AeRIeR
+

ζ

IeR

)
ρo

ρo + ζ
M . (2.2.7)

Recalling approximations (2.1.13) one can easily accept the validity of equations

QeR

IeR
' − 1

ρo

Ieη
IeR
' − 1

ρo
,

1

ρo

ρo
ρo + ζ

M

AeR
' M

ρoAeR
. (2.2.8)

Substituting now the last two expressions into (2.2.7) and then the strain into Hooke's law,
we arrive at

σξ = E(η, ζ)

(
N

AeR
+

M

ρoAeR
+
M

IeR

ρo
ρo + ζ

ζ

)
. (2.2.9)

This equation can be considered as the generalization of the Grashof (Winkler) formula,
which is valid only for homogeneous curved beams. It can be compared with, e.g. (10.10)
in [13]:

σξ =

(
N

A
+

M

ρoA
+
M

IR

ρo
ρo + ζ

ζ

)
. (2.2.10)

2.2.2. The normal stress under pure bending. English textbooks often contain a
formula for the normal stress under the assumption of pure bending � see, for instance,
equation (4.71) p. 224 in [11]. Our aim is to generalize the cited equation for heterogeneous
circular beams. Figure 2.2 displays the cross-section and the geometrical meaning of some
notational conventions: ζo is the coordinate of the neutral axis with radius ρo, and the radius
of an arbitrary point P on the cross-section with coordinate ζ is r (r = ρo + ζ). For pure
bending � based on the exact equation (2.2.5) �

σξ = E(η, ζ)
ρo

ρo + ζ

1

AeRIeR −Q2
eR

(ζAeR −QeR)M (2.2.11)

is the stress distribution. We intend to manipulate it into a similar form as published in [11].
The comparison will be carried out on page 12.

As a �rst step we shall determine the location of the neutral axis, where σξ = 0. Based
on (2.2.11) its location can be obtained from

QeR = ζoAeR , (2.2.12)
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Figure 2.2. Some geometrical notations over the cross-section.

or which is the same from equation

QeR = (ρo + ζo − ρo)AeR = (ρo − ρo)AeR = ρoAeR − ρoAeR . (2.2.13)

Therefore

ρo =
QeR

AeR
+ ρo (2.2.14)

is the radius sought. Upon substitution of AeR and QeR from (2.1.12) this radius assumes
the form

ρo = ρo +

∫
A
E(η, ζ)ζ ρo

r
dA∫

A
ρo
r
E(η, ζ)dA

=

∫
A
E(η, ζ)ζ ρo

r
dA+ ρ2

o

∫
A
E(η,ζ)
r

dA

ρo
∫
A
E(η,ζ)
r

dA
=

=

1
ρo

∫
A
E(η, ζ)ζ ρo

r
dA+ ρo

∫
A
E(η,ζ)
r

dA∫
A
E(η,ζ)
r

dA
=

=

∫
A
E(η,ζ)ζ

r
dA+ ρo

∫
A
E(η,ζ)
r

dA∫
A
E(η,ζ)
r

dA
=

∫
A

[
E(η,ζ)ζ

r
+ ρo

E(η,ζ)
r

]
dA∫

A
E(η,ζ)
r

dA
=

=

∫
A
E(η, ζ)

[
ζ
r

+ ρo
r

]
dA∫

A
E(η,ζ)
r

dA
=

∫
A
E(η, ζ)

[
ζ+ρo
ρo+ζ

]
dA∫

A
E(η,ζ)
r

dA
=

∫
A
E(η, ζ)dA∫
A
E(η,ζ)
r

dA
.

If the modulus E is constant the above equation coincides with formula (4.66) in [11].
We proceed with the determination of the normal stress. With equation (2.2.14), the

term in parentheses in (2.2.11) can be rewritten:

ζAeR −QeR = (r − ρo)AeR + ρoAeR − ρoAeR = (r − ρo)AeR . (2.2.15)

Taking the inequality AeRIeR � Q2
eR into consideration and substituting back the previous

term into equation (2.2.11) we obtain

σξ = E(η, ζ)
1

r
M

ρo
IeR

(r − ρo) . (2.2.16)

One ultimate question is how to transform the quotient ρo/IeR into a more favourable form.
All the necessary transformation steps are detailed hereinafter

IeR =

∫
A

E(η, ζ)
ρo
r
ζ2dA =

∫
A

E(η, ζ)ρo
ρo + ζ − ρo

r
ζdA =

=

∫
A

E(η, ζ)ρo
r − ρo
r

ζdA = ρo

∫
A

E(η, ζ)ζdA−
∫
A

E(η, ζ)ρ2
o

1

r
(r − ρo)dA =
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= ρoQeη︸ ︷︷ ︸
0

−
∫
A

E(η, ζ)ρ2
o

1

r
(r − ρo)dA = −ρ2

o

∫
A

E(η, ζ)dA+ ρ3
o

∫
A

E(η, ζ)

r
dA =

= −ρ2
oAe + ρ3

o

∫
A

E(η, ζ)

r
dA = Ae

(
ρ3
o

ρo
− ρ2

o

)
=

= Aeρ
2
o

(
ρo
ρo
− 1

)
= Aeρ

2
o

( −ζo︷ ︸︸ ︷
ρo − ρo
ρo

)
= −Ae

ρ2
o

ρo
ζo . (2.2.17)

If we introduce the notation e = −ζo and substitute the result obtained into formula (2.2.16)
we arrive at the

σξ = E(η, ζ)
M

r

r − ρo
Ae e

(2.2.18)

�nal form of the normal stress. This equation is the extension of formula (4.71) p. 224
in [11] for beams with cross-sectional inhomogeneity. The formula cited is

σξ =
M

r

r − ρo
A

e (2.2.19)

if we use our notations and coordinate system.

2.3. Formula for the shear stress

The next goal is to derive closed-form solution for the calculation of the shear stress. Equi-
librium equations will be used for this purpose. This approach results in a relatively simple
formula, however, it has the drawback that the kinematical equations are not completely
satis�ed. The basic concept is well known from the theory of straight beams: we divide a
short portion of the beam into two parts and then analyse the equilibrium conditions of one
part.

Figure 2.3. The investigated portion of the beam.

Consider Figure 2.3 which shows a �nite portion of the curved beam with cross-sectional
inhomogeneity. The left cross-section with arc coordinate sB is �xed and the coordinate
s > sB of the right cross-section is regarded as a parameter. We shall use the following
assumptions:

(1) the shear stresses τ ξ = τηξeη + τζξeζ on the line ζ = ζ̂ = constant intersect each
other in one point which coincides with the intersection point of the tangents to the
contour of the cross-section at ζ = ζ̂ = constant. Consequently, τηξ(η) = −τηξ(−η),
which means that τηξ(η) is an odd function of η.

(2) The shear stress τζξ is constant if ζ = constant.
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(3) The bending moment M and the shear force Vζ are related to each other via equilib-
rium condition

dM

ds
= −Vζ . (2.3.1)

(4) The normal stress σξ can be calculated from equation (2.2.9), for which, we assume
N = 0 � there is no axial force in the cross-section.

For calculating the shear stress τζξ let us consider the part of the beam with outlines
drawn in thick in Figure 2.3. It is bounded by the marked endfaces A′B, A

′, the cylinder
with radius ρo + ζ̂ and the lateral surface. By assumption the lateral surface is unloaded.

The equilibrium equation for the considered portion is of the form∫
A′

(σξeξ(ξ) + τ ξ) dA−
∫
A′B

(σξeξ(ξ) + τ ξ) dA−
∫ s

sB

ρo + ζ̂

ρo
v(ζ̂)τξζ(ζ̂)eξ(ξ)dξ = 0 .

(2.3.2)
If we take into account that the shear stress −τξζ(ζ̂)eξ(s) is constant on the cylindrical
surface with radius ρo + ζ̂, and the fact that

ρo + ζ̂

ρo
v(ζ̂)dξ = dA

is the surface element then it follows that the last integral in (2.3.2) is the resultant of the
shear stresses.

Let us di�erentiate equation (2.3.2) with respect to s. After that (a) substitute (2.1.3)
for the derivatives of the unit vectors eξ and eζ ; (b) take into account that (i) the integral
over A′B is constant therefore its derivative is zero; (ii) τηξ is an odd function of η, therefore
its integral is zero; (iii) the derivative of an integral with respect to the upper limit is the
integrand itself. The former thoughts lead to∫

A′

dσξ
ds

eξdA−
∫
A′

σξ
ρo

eζdA+
d

ds

∫
A′
τηξeηdA︸ ︷︷ ︸

=0

+

+

∫
A′

(
dτζξ
ds

eζ +
τζξ
ρo

eξ

)
dA− ρo + ζ̂

ρo
v(ζ̂)τξζ(ζ̂)eζ(s) = 0 .

If we now dot multiply throughout by eξ we obtain∫
A′

dσξ
ds

dA+

∫
A′

τζξ
ρo

dA− ρo + ζ̂

ρo
v(ζ̂)τξζ(ζ̂) = 0 . (2.3.3)

Let emax be the distance between the top of the cross-section and the point Ce. This is
always less than ρo for curved beams. The area A′ can be given as the product v(ζ̂)h(ζ̂),
where h(ζ̂) is less than emax. Consequently,∫

A′

τζξ (η, ζ)

ρo
dA ' 1

ρo
h(ζ̂)v(ζ̂)τξζ(ζ̂) ,

h(ζ̂)

ρo
� 1

is an upper limit for the second integral in (2.3.3). Really, if we take into account that the
shear stress is taken on the line ζ̂ (instead of being taken at inner points of A′) we can readily
check the validity of the previous statement. On the basis of this estimation, the second term
in (2.3.3) can be neglected if we compare it to the third one. Omitting this term results in
the equation ∫

A′

dσξ
ds

dA =
ρo + ζ̂

ρo
v(ζ̂)τξζ(ζ̂) (2.3.4)
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for the calculation of the shear stress τξζ(ζ̂). After some rearrangements we obtain the
average value

τξζ(ζ̂) =
ρo

ρo + ζ̂

1

v(ζ̂)

∫
A′

dσξ
ds

dA . (2.3.5)

Upon substitution of the normal stress from (2.2.9) � given that N = 0 � we have

τξζ(ζ̂) =
ρo

ρo + ζ̂

1

v(ζ̂)

∫
A′

d

ds

[
E(η, ζ)

(
M

ρoAeR
+
M

IeR

ρo
ρo + ζ

ζ

)]
dA . (2.3.6)

A further transformation yields

τξζ(ζ̂) =
ρo

ρo + ζ̂

1

v(ζ̂)

dM

ds

∫
A′

(
E(η, ζ)

ρoAeR
+
E(η, ζ)

IeR

ρo
ρo + ζ

ζ

)
dA =

=
ρo

ρo + ζ̂

1

v(ζ̂)

dM

ds

1

IeR

(
ρo

IeR
ρ2
oAeR

∫
A′
E(η, ζ)dA+

∫
A′

ρo
ρo + ζ

ζE(η, ζ)dA

)
.

Introducing the notations

βe =
IeR
ρ2
oAeR

; Q′eη =

∫
A′
E(η, ζ)

ρo
ρo + ζ

ζdA, A′e =

∫
A′
E(η, ζ)dA (2.3.7)

and recalling (2.3.1) we get the

τξζ(ζ̂) = − ρo

ρo + ζ̂

Vζ

IeR v(ζ̂)

(
ρoβeA

′
e +Q′eη

)
(2.3.8)

formula for the averaged shear stress. This result is the generalization of the classical formula
valid for curved beams made of homogeneous material � see pp. 358-359 in [13].

2.3.1. The shear correction factor. If we determine the shear stress distribution over
the cross-section using the constitutive equation, then we �nd it to be constant. However,
physically, it is not right: when the shear stress is calculated from equilibrium equations
then the distribution is parabolic. The shear correction factor is the ratio of the two energies
that belong to the two di�erent stress distributions. We now assume that the material
distribution depends on the coordinate ζ only. It is also a hypothesis that the total strain
energy from shearing is

UT =
1

2

∫
V

τξζ(ζ)2

G(ζ)
dV =

1

2

∫
L

∫
A

(
1 +

ζ

ρo

)
τξζ(ζ)2

G(ζ)
dAds , (2.3.9)

where L is the length of the centerline; G(ζ) is the shear modulus which can be calculated
from the relation E(ζ) = 2G(ζ) [1 + ν(ζ)] and ν denotes the Poisson ratio. The strain energy
stored in a unit length is therefore

Uτ =
1

2

∫
A

(
1 +

ζ

ρo

)
τξζ(ζ)2

G(ζ)
dA =

1

2

(
Vζ
IeR

)2 ∫
A

1

1 + ζ
ρo

1

G(ζ)

(
ρoβeA

′
e +Q′eη

)2

v(ζ)2
dA (2.3.10)

given that τξζ is inserted here from (2.3.8). Moreover, utilizing

γξζ = γζξ =

[
ρo

ρo + ζ

(
∂wo
∂ξ
− uo
ρo

)
+

(
1− ζ

ρo

)
ψoη

]
which is the angle distortion on the cross-section, we can rewrite (2.3.10) as

Uτ =
1

2

∫
A

(
1 +

ζ

ρo

)
τξζ(ζ)γξζ(ζ)dA =
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=
1

2

∫
A

[(
∂wo
∂ξ
− uo
ρo

)
+

(
1−

(
ζ

ρo

)2
)
ψoη

]
︸ ︷︷ ︸

'γξζ(0)=γξζ o=constant

τξζ(ζ̂)dA ≈ −1

2
Vζγξζ o . (2.3.11)

This expression shows that we neglect the term (ζ/ρo)
2 when it is compared to the unit.

Comparison of formulae (2.3.10) and (2.3.11) yields

1

2
Vζγξζ o = −1

2

(
Vζ
IeR

)2 ∫
A

ρo
ρo + ζ

1

G(ζ)

(
ρoβeA

′
e +Q′eη

)2

v(ζ̂)2
dA ,

from which we get

Vζ = −γξζ o
I2
eR∫

A
ρo
ρo+ζ

1
G(ζ)

(ρoβeA′e+Q′eη)
2

v(ζ)2
dA

= −γξζ o hγ , (2.3.12)

where

hγ =
I2
eR∫

A
ρo
ρo+ζ

1
G(ζ)

(ρoβeA′e+Q′eη)
2

v(ζ)2
dA

and κγ =
hγ∫

A
G(ζ) dA

. (2.3.13)

Here κγ is referred to as the shear correction factor. From (2.3.13)2 after some minor ma-
nipulations � E and G are constant, ρo →∞ and βe is zero � we get the formula

κγ =
I2
η

A
∫
A

(Q′η)
2

v(ζ)2
dA

(2.3.14)

valid for straight beams (Iη =
∫
A
ζ2dA; Q′η =

∫
A
ζdA). It only depends on the cross-sectional

properties. Finally, we remark that

Vζ = −γξζo
∫
G(ζ)dAκγ (2.3.15)

is applicable both for homogeneous straight and for heterogeneous curved beams.

2.4. Curvature change and strain energy

In this section [the radius of curvature] {the location of a point} on the E-weighted
centerline before and after deformation are denoted by [ρo and ρ̃o] {Po and P̃o}. The angle
of the tangent of the centerline at Po and the horizontal axis is noted by ψo. Its change
during deformation is ψoη � the rigid body rotation. The calculation of the curvature change
is based on Figure 2.4 which shows all the quantities mentioned.

Figure 2.4. The curvature change on the centerline.

The in�nitesimal arc element dso on the centerline before deformation changes to ds. It
is clear that

εoξ =
ds− dso

dso
(2.4.1)
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is the axial strain on the centerline. Consequently,

dso =
ds

1 + εoξ
. (2.4.2)

Using the above equation we can establish a formula for the curvature change:

1

ρ̃o
− 1

ρo
=

d (ψo + ψoη)

ds
− dψo

dso
=

d(ψo + ψoη)

ds
− dψo

ds
(1 + εoξ) =

dψoη
ds
− εoξ

dψo
ds

. (2.4.3)

Here

εoξ
dψo
ds

= εoξ
dψo
dso

(1 + εoξ) ' εoξ
dψo
dso

= εoξ
1

ρo
. (2.4.4)

Comparison of equations (2.1.8), (2.4.3) and (2.4.4) yields

1

ρ̃o
− 1

ρo
= κo − εoξ

1

ρo
. (2.4.5)

Substituting κo from (2.2.3) and taking into account that in the present case N = 0 and
Q2
eR � AeRIeR, we have

1

ρ̃o
− 1

ρo
= − M

Q2
eR − AeRIeR

(
AeR +

QeR

ρ̃o︸︷︷︸
≈0

)
' MAeR
AeRIeR −Q2

eR

' MAeR
AeRIeR

=
M

IeR

that is
1

ρ̃o
− 1

ρo
=

M

IeR
. (2.4.6)

Now we proceed with the determination of the strain energy stored in the beam. It is not
too di�cult to check using equation (2.4.6) that the angle change dψ due to the bending
moment is

dψ =
ds

ρ̃o
− dso

ρo
' ds

ρ̃o
− ds

ρo
=

M

IeR
ds . (2.4.7)

As a result

dU =
1

2
Mdψ =

1

2

M2

IeR
ds (2.4.8)

is the work done by the bending moment exerted on an in�nitesimal portion of the beam.
After integration

U =
1

2

∫
L

M2

IeR
ds (2.4.9)

is the strain energy stored in the beam. We have derived this formula assuming ds = dso.
The parts of the strain energy due to the axial and shear forces were neglected.

2.5. Numerical examples

2.5.1. Example 1. Figure 2.5 shows the cross-section of the circular beam. It is sub-
jected to pure bending by a moment M = M eη ,M = 100 Nm. The geometric dimensions
are all given in Figure 2.5. The lower part of the beam is made of steel and the upper
part is made of aluminium. The corresponding material parameters are E1 = 2.1 · 105 MPa
and E2 = 7 · 104 MPa. Our aim is to depict graphically the normal stress distribution as
a function of ζ using the three formulae derived in the previous sections. This allows us
to compare the various results. It would also be interesting to check the di�erence between
these formulae regarding the radius of the neutral axis.
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Figure 2.5. Cross-section of Example 1.

First, we determine the ordinate zC of the E-weighted centerline in the coordinate system
yz. Since the E-weighted �rst moment of the cross-section with respect to the axis η is zero,
the following equation holds

Qeη = Qey − zCAe = 0 . (2.5.1)

Here Qey is the E-weighted �rst moment of the cross-section to the axis y de�ned by

Qey =

∫
A

E(η, ζ)zdA.

Consequently,

zC =
Qey

Ae
=
E1

b1
2
A1 + E2

(
b1 + b1

2

)
A2

E1A1 + E2A2

= 12 mm. (2.5.2)

In the knowledge of zC one can easily read o� from Figure 2.5 that

ζ−1 = −zC = −12 mm, ζk = 4 mm, ζ+
2 = 20 mm. (2.5.3)

Before computing the stresses sought, we shall set up appropriate formulae for the E-weighted
geometrical quantities AeR, QeR, Ieη and IeR. Recalling equation (2.1.12)1 we can write

AeR =

∫
L

ρo + ζ − ζ
ρo + ζ

E(η, ζ)adζ =

∫
A

E(η, ζ) dA︸ ︷︷ ︸
Ae

−E1a

∫ ζk

ζ−1

ζ

ρo + ζ
dζ−E2a

∫ ζ+2

ζk

ζ

ρo + ζ
dζ =

= Ae − E1a [ζ − ρo ln (ζ + ρo)]|ζkζ−1 − E2a [ζ − ρo ln (ζ + ρo)]|
ζ+2
ζk

=

= A1E1 + A2E2 + a
[
(E2 − E1) ζk + E1ζ

−
1 − E2ζ

+
2

]
+

+ aρo
[
(E1 − E2) ln (ζk + ρo)− E1 ln

(
ζ−1 + ρo

)
+ E2 ln

(
ζ+

2 + ρo
)]

. (2.5.4)

Regarding the E-weighted reduced �rst moment of the cross-section, equation (2.1.12)2 yields

QeR =

∫
ρo + ζ − ζ
ρo + ζ

E(η, ζ)ζadζ = Qeη︸︷︷︸
=0

−
∫
ζ2E(η, ζ)

ρo + ζ
adζ = −

∫
ζ2E(η, ζ)

ρo + ζ
adζ =

= −E1a

[
1

2
(ζk)

2 − ζkρo + ρ2
o ln (ρo + ζk)−

1

2

(
ζ−1
)2

+ ζ−1 ρo − ρ2
o ln
(
ρo + ζ−1

)]
−
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− E2a

[
1

2

(
ζ+

2

)2 − ζ+
2 ρo + ρ2

o ln
(
ρo + ζ+

2

)
− 1

2
(ζk)

2 + ζkρo − ρ2
o ln (ρo + ζk)

]
. (2.5.5)

Using the parallel axis theorem, we can determine Ieη as

Ieη =

∫
A

E(η, ζ)ζ2dA = E1

∫
A1

ζ2dA+ E2

∫
A2

ζ2dA =

= E1

[
ab3

1

12
+

(
zC −

b1

2

)2

ab1

]
+ E2

[
ab3

2

12
+

(
b1 − zC +

b2

2

)2

ab2

]
. (2.5.6)

Therefore, recalling (2.1.12)3 and utilizing equation (2.5.6) we can establish a formula for
the E-weighted reduced moment of inertia:

IeR =

∫
A1∪A2

ρo
ρo + ζ

ζ2E(η, ζ)dA =

∫
A1∪A2

ρo + ζ − ζ
ρo + ζ

ζ2E(η, ζ)dA = Ieη−

−
∫
A1∪A2

ζ3

ρo + ζ
E(η, ζ)dA = Ieη+a(E2−E1)

(
ζkρ

2
o −

1

2
(ζk)

2 ρo − ρ3
o ln (ρo + ζk) +

1

3
(ζk)

3

)
−

− E1a

(
−1

3

(
ζ−1
)3

+
1

2

(
ζ−1
)2
ρo − ζ−1 ρ2

o + ρ3
o ln
(
ρo + ζ−1

))
−

− aE2

(
1

3

(
ζ+

2

)3 − 1

2

(
ζ+

2

)2
ρo + ζ+

2 ρ
2
o − ρ3

o ln
(
ρo + ζ+

2

))
. (2.5.7)

Substituting now a, b1, b2, ρo, A1, E1, A2, E2, ζk, ζ
−
1 and ζ+

2 into equations (2.5.4)-(2.5.7)
we obtain the following numerical values:

Ae = 1.4336 · 108 N , AeR = 1.4477 · 108 N , QeR = −1.1588 · 108 Nmm ,

Ieη = 9.9396 · 109 Nmm2 , IeR = 9.5024 · 109 Nmm2.
(2.5.8)

To illustrate the signi�cant e�ect of heterogeneity, we now provide the former quantities
for a homogeneous steel

Ae = 2.150 · 108 N , AeR = 2.288 · 108 N , QeR = −2.179 · 108 Nmm ,

Ieη = 1.835 · 1010 Nmm2 , IeR = 1.874 · 1010 Nmm2

and aluminium

Ae = 7.168 · 107 N , AeR = 7.626 · 107 N , QeR = −7.264 · 107 Nmm ,

Ieη = 6.116 · 109 Nmm2 , IeR = 6.247 · 109 Nmm2

section. These quantities can vary in a rather wide interval.
With these results we can compute the normal stress σξ using the three derived ex-

pressions. Eq. (2.2.5) is the 'exact' formula under the applied displacement and stress
hypotheses, (2.2.9) is the generalization of the Grashof formula and (2.2.18) is the general-
ization of the formula that can be found in English textbooks on Strength of Materials. The
computational results are presented graphically in Figure 2.6. Finite element computational
result is also provided. It was obtained using Abaqus 6.12.

DOI: 10.14750/ME.2016.008



Stresses in heterogeneous circular beams 19

Figure 2.6. Normal stress distribution for Example 1.

For the Abaqus models of the two-layered (Example 1) and sandwich beams (Example 2
and 3 � see later), one of the beam endfaces was always �xed and the other was subjected to
a [shear force] or a {bending moment} applied at a so-called reference point in the software
(it coincides with the E-weighted centroid) using kinematic coupling between the point and
the endfaces of the layers. The layers of the beams were perfectly tied together at their
overlapping surfaces. The central angle was chosen to be 180◦. The [shear stress] {normal
stress} distributions were drawn along the axis ζ in a cross-section being [3.6◦] {90◦} away
from the loaded endface. 20-node 3D elements were applied and the Static, General Step.

As regards Figure 2.6 the symbols representing the exact solution, the solution obtained
from (2.2.9) and the solution calculated with equation (2.2.18) are drawn in blue, red and
green, respectively. The Abaqus outcomes are drawn in brown. Overall, the di�erences are
minor between the four models.

As for the ordinate of the neutral axis, by setting σξ(ζ) = 0, Eqs. (2.2.5), (2.2.9) and
(2.2.18) yield −0.800 mm, −0.777 mm and −0.785 mm, respectively. We note that the last
result is exactly the same as the value that can be obtained from (2.2.14).

2.5.2. Example 2. In practise, beams with sandwich structure are commonly used. For
this reason we investigate the normal stress distribution in a doubly-symmetric cross-section
under pure bending. The faces are made of steel and the core is aluminium � the material
parameters are therefore the same as in the previous example. Let the bending moment M
be 8 · 105 Nmm � see Figure 2.7 for more data.

Due to the horizontal symmetry in the material distribution, the centroid and the E-
weighted centroid coincide � i.e. zC = 30 mm. With this in hand, the following data can be
read o� from Figure 2.7:

ζ1l = −30 mm ; ζ1u = −20 mm ; ζ2u = 20 mm ; ζ3u = 30 mm . (2.5.9)
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Figure 2.7. Cross-section of Example 2.

In the forthcoming, we provide some formulae valid for such sandwich cross-sections.
These expressions are originated from equations (2.1.2) and (2.1.12).

The E-weighted area (tensile sti�ness) is

Ae = 2E1A1 + E2A2, (2.5.10)

while

AeR = 2E1A1 + E2A2 − E1a [−ζ1l + ρo ln (ρo + ζ1l)] + (E1 − E2) a [ρo ln (ρo + ζ1u)− ζ1u]−
− E1a [ζ3u − ρo ln (ρo + ζ3u)− ζ2u + ρo ln (ρo + ζ2u)]− E2a [ζ2u − ρo ln (ρo + ζ2u)] (2.5.11)

yields the E-weighted reduced area. Furthermore, the E-weighted reduced �rst moment can
be obtained upon substitution into the formula

QeR = −aE1

(
ζ1lρo −

1

2
ζ2

1l − ρ2
o ln (ρo + ζ1l)

)
− aE1

(
−ζ3uρo +

ζ2
3u

2
+ ρ2

o ln (ρo + ζ3u)

)
−

− a (E1 − E2)

(
ζ2

1u

2
− ζ1uρo + ρ2

o ln (ρo + ζ1u) + ζ2uρo −
ζ2

2u

2
− ρ2

o ln (ρo + ζ2u)

)
.

(2.5.12)

The E-weighted moment of inertia (bending sti�ness) follows from the parallel axis theorem
as

Ieη = 2E1

[
ab3

1

12
+

(
zC −

b1

2

)2

ab1

]
+ E2

[
ab3

2

12

]
, (2.5.13)

and �nally

IeR = 2E1

[
ab3

1

12
+

(
zC −

b1

2

)2

ab1

]
+ E2

[
ab3

2

12

]
−

− aE1

[
−ζ1lρ

2
o +

ζ2
1lρo
2
− ζ3

1l

3
+ ρ3

o ln (ρo + ζ1l) + ζ3uρ
2
o −

ζ2
3uρo
2

+
ζ3

3u

3
− ρ3

o ln (ρo + ζ3u)

]
−

− a (E1 − E2)

[
ζ1uρ

2
o −

ζ2
1uρo
2

+
ζ3

1u

3
− ρ3

o ln (ρo + ζ1u) +
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+
ζ2

2uρo
2
− ζ2uρ

2
o −

ζ3
2u

3
+ ρ3

o ln (ρo + ζ2u)

]
(2.5.14)

provides the E-weighted reduced moment of inertia. The numerical values of these quantities
for the chosen example are listed below:

Ae = 2.8 · 108 N, AeR = 2. 803 376 · 108 N, QeR = −2. 025 676 · 108 Nmm,

Ieη = 1. 213 333 · 1011 Nmm2, IeR = 1. 215 406 · 1011 Nmm2. (2.5.15)

Figure 2.8. Normal stress distribution for Example 2.

Based on these formulae the normal stress distribution can be calculated using equations
(2.2.5), (2.2.9) and (2.2.18) as shown in Figure 2.8. One can conclude that the correlation
between the cited formulae and the commercial �nite element software calculations are very
good yet again.

The almost identical coordinates of the neutral axis according to the corresponding for-
mulae are −0.722 6; −0.721 6 and −0.722 6 mm, respectively.

2.5.3. Example 3. All the data are the same as in the previous subsection, but this
time the beam is under a shear force Vζ with magnitude 5 · 104N . For more details see
Figure 2.9. Let the related Poisson ratios be ν1 = ν2 = 0.3. Upon substitution of ρo and
(2.5.15)2,5 into (2.3.7)1 we have

βe = 1.204 307 · 10−3.
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Figure 2.9. Cross-section of Example 3.

Moreover, if ζ̂ ∈ [−30;−20] then

A
′

e = 210 000 · 40 ·
∫ ζ̂

−30

dζ = 8 400 000ζ̂ + 252 000 000

and

Q
′

eη = 210 000 · 40 ·
∫ ζ̂

−30

600ζ

600 + ζ
dζ =

= 5.04 · 109ζ̂ − 3.024 · 1012 ln
(

600 + ζ̂
)

+ 1. 934 040 · 1013,

therefore the shear stress distribution (2.3.8) in the bottom layer happens to be described
by the formula

τξζ(ζ̂) = −6170. 776 882

600 + ζ̂
·
(

5. 046 069ζ̂ + 1. 934 058 · 104 − 3.024 · 103 ln
(

600 + ζ̂
))

.

(2.5.16)
If ζ̂ ∈ [−20, 20] then

A
′

e = 210 000 · 40 ·
∫ 30

20

dζ + 70000 · 40 ·
∫ 20

ζ̂

dζ = 140 000 000− 2800 000ζ̂ ,

in addition to this

Q
′

eη = 210 000 · 40 ·
∫ 30

20

(
600 · ζ
600 + ζ

)
dζ + 70000 · 40 ·

∫ 20

ζ̂

(
600 · ζ
600 + ζ

)
dζ =

= −6. 445 542 · 1012 − 1.68 · 109ζ̂ + 1.008 · 1012 ln
(

600 + ζ̂
)

consequently,

τξζ(ζ̂) = −6170. 776 882

600 + ζ̂
·
[
−6. 445 441 · 103 − 1. 682 023ζ̂ + 1.008 · 103 ln

(
600 + ζ̂

)]
(2.5.17)

is the sought function in the aluminium core.
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In the uppermost layer ζ̂ ∈ [20, 30], so we can write

A
′

e = 210 000 · 40 ·
∫ 30

ζ̂

dζ = 252 000 000− 8 400 000ζ̂ ,

further

Q
′

eη = 210 000 · 40

∫ 30

ζ̂

(
600 · ζ
600 + ζ

)
dζ =

= −1. 934 065 · 1013 − 5.04 · 109ζ̂ + 3.024 · 1012 ln
(

600 + ζ̂
)
Nmm .

As a result we have the shear stress as

τξζ(ζ̂) = −6170. 776 882

600 + ζ̂
·
(
−1. 934 047 · 104 − 5. 046 069 · ζ̂ + 3.024 · 103 ln

(
600 + ζ̂

))
.

(2.5.18)
The distribution τξζ(ζ̂) over the cross-section is plotted in Figure 2.10. There is quite a

good correlation with Abaqus.

Figure 2.10. Shear stress distribution for Example 3.

2.5.3.1. The shear correction factor. As a �rst step, let us substitute the known quantities
into formula (2.3.13)1. Here we take the following points into consideration: (a) v(ζ) is now
equal to the a width of the rectangular cross-section; (b) the shear modulus G(ζ) is constant
in each of the intervals ζ̂ ∈ [−30;−20], ζ̂ ∈ [−20; 20], and ζ̂ ∈ [20; 30] and (c) properties
A
′
e, Q

′
eη are continuous in each of the intervals. Thus, it follows that the denominator of

(2.3.13)1 is equal to

∫
ρo

ρo + ζ

1

G

(
ρoβeA

′
e +Q

′
eη

)2

v2
dA =

1

G1a

∫ −20

−30

ρo
ρo + ζ

(
ρoβeA

′

e +Q
′

eη

)2

dζ+

+
1

G2a

∫ 20

−20

ρo
ρo + ζ

(
ρoβeA

′

e +Q
′

eη

)2

dζ +
1

G1a

∫ 30

20

ρo
ρo + ζ

(
ρoβeA

′

e +Q
′

eη

)2

dζ =

= 2. 392 438 · 1014. (2.5.19)
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Inserting it back to (2.3.13)1 yields

hγ =
I2
eR∫

ρo
ρo+ζ

1
G

(ρoβeA′e+Q′eη)
2

v2
dA

=
(1. 215 406 · 1011)

2

2. 392 438 · 1014
= 6. 174 502 · 107.

The dimensionless (and material dependent) shear correction factor κγ can be calculated
using the de�nition (2.3.13)2 therefore, it is now

κγ =
hγ∫
GdA

=
hγ

G1a
∫ −20

−30
dζ +G2a

∫ 20

−20
dζ +G1a

∫ 30

20
dζ

=
6. 174 502 · 107

1. 076 923 · 108
= 0.573 346.

This �gure is about the 69% of the solution valid for a homogeneous rectangular cross-section.
So, obviously, heterogeneity can have a huge e�ect on this property as well.

2.6. Summary of the results achieved in Section 2

The �rst objective was to provide formulae for the determination of the stress state
in heterogeneous curved beams by generalizing the formulae valid for homogeneous curved
beams. It involves the expressions of the normal stress and shear stress. An expression for
the shear correction factor was also provided. The most important results are as follows:

1. I have derived an exact and two approximative relationships that provide the normal
stress caused by an axial force and a bending moment in curved beams with cross-
sectional inhomogeneity. The latter two are generalizations of well-known relation-
ships valid for homogeneous curved beams. A further formula has been established
for computing the shearing stress.

2. In addition, a formula for the shear correction factor has also been derived. The
results obtained by the relationships set up for the stresses were compared with the
computations. A good agreement was found between the di�erent models.
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CHAPTER 3

In-plane elastic stability of heterogeneous shallow circular beams

3.1. Fundamental assumptions

3.1.1. General relations regarding the pre-buckling state. All the geometrical
conditions, hypotheses and kinematical relations mentioned previously in Section 2.1 hold.
However, some physical quantities will be addressed in a more accurate manner.

For the forthcoming shallow planar circular beam model we maintain the validity of the
Euler-Bernoulli beam theory � i.e. the cross-sections remain plane and perpendicular to the
deformed centerline. The novelty in this chapter is that the Green-Lagrange strain tensor
E is now not linearized, thus

E = EL +EN , EL =
1

2
(u ◦ ∇+∇ ◦ u) , EN =

1

2
(∇ ◦ u) · (u ◦ ∇) . (3.1.1)

Here EL is the linear part and EN is the nonlinear part of the strain tensor.
Moreover, we assume that the tensor of in�nitesimal rotations Ψ � see (2.1.8b) � is the

dominant when that is compared to the linear strains and the strain-rotation product:

EN =
1

2
(∇ ◦ u) · (u ◦ ∇) =

1

2

(
EL + ΨT

)
·
(
EL + Ψ

)
=

=
1

2

(
EL ·EL + ΨT ·EL +EL · Ψ + ΨT · Ψ

)
≈ 1

2
ΨT · Ψ =

1

2
Ψ · ΨT . (3.1.2)

This assumption is generally accepted in the literature when modelling beams � see, e.g.
[73,74,108]. The superscript T stands for the transpose of a tensor (or vector). Based on
the former hypothesis

εξ = eξ ·
1

2
(u ◦ ∇+∇ ◦ u) · eξ + eξ ·

1

2

(
ΨT · Ψ

)
· eξ =

1

1 + ζ
ρo

(εoξ + ζκo) +
1

2
ψ2
oη (3.1.3)

is the axial strain at an arbitrary point on the cross-section while the nonlinear strain on
the centerline is

εξ|ζ=0 = εm = εoξ +
1

2
ψ2
oη . (3.1.4)

Based on equations (2.1.8)-(2.1.11) we remind the reader that ρo is the initial radius of the
centerline, εoξ, ψoη and κo are the linearized strain; the rotation and the curvature on the
centerline.

Bradford et al. in their model assume that

1

1 + ζ
ρo

' 1; κo = −d2wo
ds2

(3.1.5)

thus, with our notations, the strain according to them is

εξ = εoξ + ζκo +
1

2
ψ2
oη '

duo
ds

+
wo
ρo
− ζ d2wo

ds2
+

1

2

(
dwo
ds

)2

(3.1.6)

� see equation (1) and (2) in [61]. We remark that equation (3.1.3) is more accurate (due
to the presence of the quadratic term) than equation (2.1.10) in Chapter 2.

25
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This time we again assume that the corresponding elements of the second Piola-Kirchho�
stress tensor S satisfy the inequality σξ � ση, σζ . Consequently, Hooke's law σξ = E(η, ζ)εξ
is the constitutive equation. In the knowledge of the stresses we can determine the inner
forces in the pre-buckling equilibrium con�guration. Making use of Hooke's law, the kine-
matic equations (3.1.3), (3.1.4) and utilizing then the notations (2.1.12), (2.1.13) we get the
axial force as

N =

∫
A

Eεξ dA =

∫
A

E
ρo

ρo + ζ
dA︸ ︷︷ ︸

AeR'Ae

εoξ +

∫
A

E
ζρo
ρo + ζ

dA︸ ︷︷ ︸
QeR=− Ieη

ρo

κo +

∫
A

E dA︸ ︷︷ ︸
Ae

1

2
ψ2
oη =

= AeRεoξ +QeRκo + Ae
1

2
ψ2
oη ' Ae

(
εoξ +

1

2
ψ2
oη

)
︸ ︷︷ ︸

εm

− Ieη
ρo
κo = Aeεm −

Ieη
ρo
κo . (3.1.7)

As regards the bending moment a similar line of thought yields

M =

∫
A

Eεξζ dA =

∫
A

E

(
1

1 + ζ
ρo

(εoξ + ζκo) +
1

2
ψ2
oη

)
ζ dA =

=

∫
A

E
ζ

1 + ζ
ρo

dA︸ ︷︷ ︸
QeR'−

Ieη
ρo

εoξ +

∫
A

E
ζ2

1 + ζ
ρo

dA︸ ︷︷ ︸
IeR'Ieη

κo +

∫
A

Eζ dA︸ ︷︷ ︸
Qeη=0

1

2
ψ2
oη =

= −Ieη
ρo

(
duo
ds

+
wo
ρo

)
− Ieη

d

ds

(
dwo
ds
− uo
ρo

)
= −Ieη

(
d2wo
ds2

+
wo
ρ2
o

)
. (3.1.8)

In the sequel we assume the validity of the inequality Aeρ2
o/Ieη � 1, or which is the same

that

Aeρ
2
o

Ieη
− 1 ≈ Aeρ

2
o

Ieη
=

(
ρo
ie

)2

= m , ie =

√
Ieη
Ae

. (3.1.9)

Here ie is the E-weighted radius of gyration and m is a parameter of the geometry and
material. In the knowledge of the previous formulae one can check � see Appendix A.1.1 for
details � that

N =
Ieη
ρ2
o

(
Aeρ

2
o

Ieη
− 1

)
εm −

M

ρo
≈ Aeεm −

M

ρo
=

= Ae

[
duo
ds

+
wo
ρo

+
1

2

(
−dwo

ds
+ uo

)2
]

+
Ieη
ρo

(
d2wo
ds2

+
wo
ρ2
o

)
. (3.1.10)

Contrarily, it is worth pointing out that � with our notations � the recent shallow beam
model for homogeneous material (E = constant) by Bradford et al. assume that

N = Aeεm = Ae

[
duo
ds

+
wo
ρo

+
1

2

(
dwo
ds

)2
]

; M = −Ieη
d2wo
ds2

. (3.1.11)

For the validity see equations (12) and (11) in [61]. The improvements implied to our new
model are now easily noticeable.

For practical reasons it is sometimes worthy of changing derivatives with respect to the
arc coordinate s to derivatives with respect to the angle coordinate ϕ. For the sake of brevity,
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the following notational convention is introduced:

dn(. . .)

dsn
=

1

ρno

dn(. . .)

dϕn
=

1

ρno
(. . .)(n) ; n ∈ Z . (3.1.12)

3.1.2. General relations for the post-buckling state. First, we introduce a new
notational convention. Quantities denoted by an asterisk are measured in the post-buckling
equilibrium state while the change (increment) between the pre- and post-buckling equilib-
rium is denoted by a subscript b. (The change from the initial con�guration to the pre-
buckling state is not denoted by any speci�c symbol.) Based on this rule, a similar line of
thought as that applied in the previous subsection yields the increment in the kinematic
relations. This means that for the rotation �eld and the change of curvature we have

ψ∗oη =
u∗o
ρo
− dw∗o

ds
=
uo + uob
ρo

− d(wo + wob)

ds
= ψoη + ψoη b , ψoη b =

uob
ρo
− dwob

ds
, (3.1.13a)

κ∗o =
dψ∗oη
ds

=
1

ρo

du∗o
ds
− d2w∗o

ds2
= κo + κo b , κo b =

1

ρo

duob
ds
− d2wob

ds2
. (3.1.13b)

According to (3.1.4) we obtain the expression of the 'exact' strain after buckling in the form

ε∗ξ =
1

1 + ζ
ρo

(
ε∗oξ + ζκ∗o

)
+

1

2

(
ψ∗oη
)2

=
1

1 + ζ
ρo

[εoξ + εoξ b + ζ (κo + κo b)] +
1

2
(ψoη + ψoη b)

2 =

=
1

1 + ζ
ρo

(εoξ + ζκo) +
1

2
(ψoη)

2 +
1

1 + ζ
ρo

(εoξ b + ζκo b) + ψoηψoη b +
1

2
ψ2
oη b = εξ + εξ b

(3.1.14)

where

εξ b =
1

1 + ζ
ρo

(εoξ b + ζκo b) + ψoηψoη b +
1

2
ψ2
oη b '

1

1 + ζ
ρo

(εoξ b + ζκo b) + ψoηψoη b , (3.1.15a)

εoξ b =
duob
ds

+
wob
ρo

, εmb = εξ b|ζ=0 = εoξ b + ψoηψoη b +
1

2
ψ2
oη b ' εoξ b + ψoηψoη b . (3.1.15b)

Notice that the quadratic term in the rotation increment is ignored since the validity of the
inequality 0.5ψ2

oη b � ψoηψoη b is assumed. It is in accord with some earlier works, e.g. [56,61]
where

1

1 + ζ
ρo

= 1 and εmb = εoξ b + ψoηψoη b '
duob
ds

+
wob
ρo

+
dwo
ds

dwob
ds

. (3.1.16)

We proceed with the expressions for the inner axial force and bending moment. Recalling
equations (3.1.7)-(3.1.8) valid for the pre-buckling state we can write

N∗ =

∫
A

Eε∗ξ dA =

∫
A

E

(
1

1 + ζ
ρo

(
ε∗oξ + ζκ∗o

)
+

1

2

(
ψ∗oη
)2

)
dA = AeRε

∗
oξ+QeRκ

∗
o+Ae

1

2

(
ψ∗oη
)2

(3.1.17)
which is formally identical to (3.1.7). Substituting here the kinematic relations (3.1.15) and
assuming again the validity of equations (2.1.13) we obtain

N∗ = Ae

(
εoξ +

1

2
(ψoη)

2

)
− Ieη
ρo
κo + Ae (εoξ b + ψoηψoη b)−

Ieη
ρo
κob = N +Nb . (3.1.18)

The formula for the axial force increment is further manipulated as detailed under (A.1.2).
The �nal nonlinear form is

Nb =
Ieη
ρ2
o

mεmb +
Ieη
ρ3
o

(
w

(2)
ob + wob

)
. (3.1.19)
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It can be checked with ease by recalling (3.1.8) that

M∗ = −Ieη
(

d2w∗o
ds2

+
w∗o
ρ2
o

)
= −Ieη

(
d2wo
ds2

+
wo
ρ2
o

)
−Ieη

(
d2wob
ds2

+
wob
ρ2
o

)
︸ ︷︷ ︸

Mb

= M +Mb (3.1.20)

is the bending moment in the post-buckling equilibrium. With regard to equations (3.1.9)
and (3.1.20), it follows from (3.1.19) that

Nb =
Ieη
ρ2
o

(
Aeρ

2
o

Ieη
− 1

)
εmb −

Mb

ρo
≈ Aeεmb −

Mb

ρo
. (3.1.21)

For these increments similar observations can be made as those detailed in relation with
equation (3.1.11) when comparing it to the model by Bradford et al.

3.2. Governing equations

3.2.1. Equilibrium conditions in the pre-buckling state. Figure 3.1 shows the cen-
terline of the beam in the initial con�guration (continuous line) as well as in the pre-buckling
equilibrium state (dashed line) assuming symmetrical loading and support conditions. The
beam is supported by rotationally restrained pins at both ends. These restraints � which
are modelled as torsional springs � have a spring sti�ness (kγ`)[kγr] at the (left) [right] end.
The loading can consist of the distributed force f = fteξ + fneζ and the concentrated force
Pζ . The former one is directed downwards and is exerted at the crown point. The included
angle of the curved member is 2ϑ. For the pre-buckling equilibrium state∫

V

σξδεξ dV = −Pζ δwo|s=0 − kγ`ψoηδψoη|s(−ϑ) − kγrψoηδψoη|s(ϑ) +

∫
L

(fnδwo + ftδuo) ds

(3.2.1)
is the principle of virtual work, where the virtual (kinematically admissible) quantities are
preceded by a symbol δ.

Figure 3.1. The investigated rotationally restrained beam.
Based on this principle one can �nd the equilibrium conditions, the dynamic boundary

conditions (BCs) as well as the continuity and discontinuity conditions. Details are provided
in Appendix A.1.2. With regard to the arbitrariness of the virtual quantities δuo, δwo and
δψoη, we have the equilibrium equations

dN

ds
+

1

ρo

[
dM

ds
−
(
N +

M

ρo

)
ψoη

]
+ ft = 0 ,

d

ds

[
dM

ds
−
(
N +

M

ρo

)
ψoη

]
− N

ρo
+ fn = 0 ,

(3.2.2)
the dynamic boundary conditions

N |s(±ϑ) = 0 ,

[
dM

ds
−
(
N +

M

ρo

)
ψoη

]∣∣∣∣
s(±ϑ)

= 0 , (3.2.3a)
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(M − kγ`ψoη)|s(−ϑ) = 0 , (M + kγrψoη)|s(ϑ) = 0 (3.2.3b)

and the discontinuity condition[
dM

ds
−
(
N +

M

ρo

)
ψoη

]∣∣∣∣
s=+0

−
[

dM

ds
−
(
N +

M

ρo

)
ψoη

]∣∣∣∣
s=−0

− Pζ = 0 . (3.2.3c)

The geometrical boundary conditions can assume the form

uo|s(±ϑ) = 0 , wo|s(±ϑ) = 0, ψoη|s(±ϑ) = 0 . (3.2.4)

3.2.2. Equilibrium equations in terms of the displacements. In the sequel we
focus on the stability problem of beams under a central concentrated force Pζ . It means
that the distributed load is removed. Our aim is to express the equilibrium equations in
terms of the displacements. As for (3.2.2)1, �rst, let us plug in relation (3.1.10) for the axial
compressive force. Consequently, two terms vanish. What remains is

d

ds
(Aeεm)− 1

ρo
(Aeεmψoη) = 0 . (3.2.5)

It can be assumed with a good accuracy that the quadratic product εmψoη can be neglected
when it is compared to the �rst term [56]. Accordingly

dεm
ds
' dεoξ

ds
= 0 → εm ' εoξ = constant (3.2.6)

holds for the pre-buckling equilibrium. Hence, (depending on which theory is applied) the
nonlinear/linearized strain on the centerline is constant.

Some further transformations are as well required on equation (3.2.2)2. These are detailed
in Appendix A.1.4. Here the �nal form, on which the stability investigations will be based
is presented:

W (4)
o + (2−mεm)W (2)

o + (1−mεm)Wo = −mεm . (3.2.7)

The new notation Wo = wo/ρo is referred to as the dimensionless normal displacement. For
the sake of brevity, we introduce the parameter

χ2 = 1−mεm. (3.2.8)

In this way relation (3.2.7) can equivalently be rewritten as

W (4)
o +

(
χ2 + 1

)
W (2)
o + χ2Wo = χ2 − 1 . (3.2.9)

This result is comparable with what Bradford et al. have used in their recent series of articles
on stability problems of shallow arches � see, e.g. equation (14) in [62], which, with our
notations, can be expressed as

W (4)
o + (χ2 − 1)W (2)

o = χ2 − 1 . (3.2.10)

The e�ects of our keeping the additional terms will be evaluated later in Section 3.5.

3.2.3. The principle of virtual work after the loss of stability. The principle of
virtual work for the buckled con�guration assumes the form∫

V

σ∗ξδε
∗
ξ dV = −P ∗ζ δw∗o|s=0 + P ∗ξ δu

∗
o|s=0 − mẅ∗oδw

∗
o|s=0 − mü∗oδu

∗
o|s=0−

− kγ `ψ
∗
oηδψ

∗
oη

∣∣
s(−ϑ)

− kγ rψ
∗
oηδψ

∗
oη

∣∣
s(ϑ)

+

∫
L

(f ∗nδw
∗
o + f ∗t δu

∗
o) ds , (3.2.11)

where

ẅ∗o =
∂2w∗o
∂t2

, ü∗o =
∂2u∗o
∂t2

(3.2.12)

are the second time derivatives of the displacements.
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Here it is assumed that the stability loss is a dynamical process characterized by a mass
m placed at the crown point of the beam (where the concentrated force acts). In other words,
the e�ect of the mass distribution on the centerline is modelled by this concentrated mass.
So far, we have made no restriction concerning the loads � they can be dead, or follower
ones. However, we will assume a dead load later. Apart from these changes (3.2.11) formally
coincides with (3.2.1).

Based on the detailed manipulations of Appendix A.1.3 it can be shown that the arbi-
trariness of the virtual quantities yields the post-buckling equations

∂Nb

∂s
+

1

ρo

∂Mb

∂s
− 1

ρo

(
N +

M

ρo

)
ψoη b −

1

ρo

(
Nb +

Mb

ρo

)
ψoη b + ftb = 0 , (3.2.13a)

∂2Mb

∂s2
− Nb

ρo
− ∂

∂s

[(
N +Nb +

M +Mb

ρo

)
ψoη b +

(
Nb +

Mb

ρo

)
ψoη

]
+ fnb = 0 . (3.2.13b)

Moreover [
∂Mb

∂s
−
(
N +Nb +

M +Mb

ρo

)
ψoη b −

(
Nb +

Mb

ρo

)
ψoη

]∣∣∣∣
s=−0

− (3.2.14a)

−
[
∂Mb

∂s
−
(
N +Nb +

M +Mb

ρo

)
ψoη b −

(
Nb +

Mb

ρo

)
ψoη

]∣∣∣∣
s=+0

+ m
∂2wob
∂t2

∣∣∣∣
s=0

+ Pζ b|s=0 = 0 ,

Nb|s=−0 − Nb|s=+0 + Pξ b + m
∂2uob
∂t2

∣∣∣∣
s=0

= 0 (3.2.14b)

are the discontinuity conditions at the crown point and

Nb|s(±ϑ) = 0 , (Mb + kγ rψoη b)|s(ϑ) = 0 ; (Mb − kγ `ψoη b)|s(−ϑ) = 0 ,[
∂Mb

∂s
−
(
N +Nb +

M +Mb

ρo

)
ψoη b −

(
Nb +

Mb

ρo

)
ψoη

]∣∣∣∣
s(±ϑ)

= 0 (3.2.15)

are the dynamic boundary conditions.
Depending on the supports and loading applied, geometrical conditions such as

uob|s=−0 = uob|s=+0 , wob|s=−0 = wob|s=+0 , ψoη b|s=−0 = ψoη b|s=+0 , (3.2.16)

uob|s(±ϑ) = 0 , wob|(±ϑ) = 0, ψoη b|s(±ϑ) = 0 (3.2.17)

should be ful�lled instead of the corresponding boundary and discontinuity conditions.

3.2.4. Post-buckling equilibrium equations in terms of the displacements. As-
sume now � as in Subsection 3.2.2 � that there is only a dead load Pζ exerted at the
crown point of the beam and there is no concentrated mass m at its point of application:
fnb = ftb = Pξ b = Pζ b = m = 0. Observe that the structure of equilibrium equation (3.2.13a)
is very similar to that of (3.2.2)1. The exception is the last but one term in (3.2.13a) as it does
not appear in the pre-buckling relation. However, that can be neglected since that product
is quadratic in the increments. Therefore, repeating now the line of thought presented in
Subsection 3.2.2 for the increments yields

d

ds
(Aeεmb)−

1

ρo
(Aeεmψoηb)︸ ︷︷ ︸

it can be neglected

= 0 ⇒ dεmb

ds
' dεoξ b

ds
= 0 → εmb ' εoξ b = constant .

(3.2.18)
Thus, the change in the axial strain is constant both for the nonlinear model and for the
linear one.
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Appendix A.1.5 is devoted to the detailed manipulations on equilibrium equation (3.2.13b).
The resultant relation of these is

W
(4)
ob + (2−mεm)W

(2)
ob + (1−mεm)Wob = −mεmb +mεmb(W

(2)
o +Wo) (3.2.19)

which follows from (A.1.23). The new notation Wob = wob/ρo is the dimensionless displace-
ment increment. Recalling (3.2.8) we have

W
(4)
ob + (χ2 + 1)W

(2)
ob + χ2Wob = mεmb

[
−1 +

(
W (2)
o +Wo

)]
. (3.2.20)

If we compare it with equation (39) in [62] by Bradford et al., that is

W
(4)
ob + (χ2 − 1)W

(2)
ob = mεmb

(
1 +W (2)

o

)
, (3.2.21)

the di�erences are easily noticeable.

3.3. Solutions for the pre-buckling state

3.3.1. General solution. In Section 3.2.2 we have derived di�erential equations (3.2.6)
and (3.2.9), which describe the equilibrium of the beam prior to buckling. Because of the
discontinuity in the shear force, the closed-form solution that satis�es the pre-buckling equi-
librium is sought separately on the left [Wo ` = Wo if ϕ ∈ [−ϑ, 0]] and on the right {Wo r = Wo

if ϕ ∈ [0, ϑ]} half-beam:

Wo r =
χ2 − 1

χ2
+ A1 cosϕ+ A2 sinϕ− A3

χ2
cosχϕ− A4

χ2
sinχϕ , (3.3.1a)

Wo ` =
χ2 − 1

χ2
+B1 cosϕ+B2 sinϕ− B3

χ2
cosχϕ− B4

χ2
sinχϕ . (3.3.1b)

Here Ai and Bi (i = 1, . . . , 4) are undetermined integration constants. These can be deter-
mined by using the boundary and continuity (discontinuity) conditions.

Three fundamental symmetric support arrangements will be investigated: when the beam
is (a) pinned-pinned (kγ r = kγ ` = 0), (b) �xed-�xed (kγ r = kγ ` → ∞) and (c) rotationally
restrained by means of uniform torsional springs (kγ r = kγ `). The most important common
property of these follows from the fact that the geometry, the loading and the supports are
all symmetric in terms of ϕ, therefore the pre-buckling radial (dimensionless) displacement
is an even function of the angle coordinate: Wo(ϕ) = Wo(−ϕ). As a consequence, in what
follows, it is su�cient to consider, e.g. a right half-beam model.

3.3.2. Pinned-pinned beams. As regards the boundary conditions at the crown point,
the tangential displacement and the rotation are zero and there is a

Figure 3.2. The simpli�ed model of a pinned-pinned beam.
jump in the shear force with a magnitude Pζ/2. Moreover, the displacement and the bending
moment are zero at the right pin-support. These boundary conditions are all gathered in
Table 3.1, even in terms of the displacements.
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Table 3.1. Boundary conditions for the pinned-pinned right half-beam.
Boundary conditions

Crown point Right end

ψoη|ϕ=+0 = 0 Wo|ϕ=ϑ = 0[
−dM

ds
+

Pζ
2

]
ϕ=+0

= 0 M |ϕ=ϑ = 0

Boundary conditions in terms of Wo

Crown point Right end

W
(1)
o

∣∣∣
ϕ=+0

= 0 Wo|ϕ=ϑ = 0

IeηW
(3)
o

∣∣∣
ϕ=+0

=
Pζ
2

W
(2)
o

∣∣∣
ϕ=ϑ

= 0

When expressing the boundary conditions with the aid of the general solution valid for the
right half-beam, we arrive at the system of linear equations

0 χ 0 −1
0 0 0 1

cosϑ sinϑ − 1
χ2 cosχϑ − 1

χ2 sinχϑ

− cosϑ − sinϑ cosχϑ sinχϑ



A1

A2

A3

A4

 =


0
χ

χ2−1
P̂
ϑ

−χ2−1
χ2

0

 , P̂ =
Pζ
2

ρ2
oϑ

Ieη
.

(3.3.2)
Here P̂ is a dimensionless force. Observe that the solutions

A1 = − 1

cosϑ
− tanϑ

χ2 − 1

P̂
ϑ

= A11 + A12
P̂
ϑ
, A2 =

1

χ2 − 1

P̂
ϑ

= A22
P̂
ϑ
,

A3 = − 1

cosχϑ
− χ tanχϑ

χ2 − 1

P̂
ϑ

= A31 + A32
P̂
ϑ
, A4 =

χ

χ2 − 1

P̂
ϑ

= A42
P̂
ϑ

(3.3.3)

are decomposed into the sum of two parts depending on whether these are proportional to
the loading (Ai2) or not (Ai1). Now the closed form solution for the whole beam can be
constructed with the use of the function

H(ϕ) =

{
−1 ϕ < 0

1 ϕ > 0 .
(3.3.4)

Thus,

Wo =
χ2 − 1

χ2
+ A11 cosϕ− A31

χ2
cosχϕ+

+

(
A12 cosϕ+ A22H sinϕ− A32

χ2
cosχϕ− A42

χ2
H sinχϕ

)
P̂
ϑ

(3.3.5)

is the dimensionless radial displacement. Recalling (2.1.8a) we get the rotation �eld

ψoη = Uo −W (1)
o ' −W (1)

o =

= D11 sinϕ+D31 sinχϕ+ (D12 sinϕ+D22 cosϕ+D32 sinχϕ+D42 cosχϕ)
P̂
ϑ
. (3.3.6a)

Here and in the sequel we assume that the tangential displacement has a negligible e�ect on
the rotation �eld of shallow beams [61], [108]. The newly introduced nonzero constants Dij

i, j ∈ [1, 2, 3, 4] are de�ned by

D11 = A11 , D12 = A12 , D22 = −A22H , D31 = −A31

χ
, D32 = −A32

χ
, D42 =

A42H

χ
.

(3.3.6b)
We remark that for �xed-�xed and rotationally restrained shallow circular beams equations
(3.3.5) and (3.3.6) are also valid, though the value of the constants di�er.

The following line of thought is also proper for all three investigated support arrange-
ments. As equilibrium equation (3.2.6) yields that the axial strain (3.1.4)1 is constant on
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the centerline, let us calculate the mathematical average of this quantity. According to the
linear theory we thus have

εo ξ =
1

ϑ

∫ ϑ

0

εo ξ(ϕ)dϕ =
1

ϑ
Uo|ϑ0 +

1

ϑ

∫ ϑ

0

Wodϕ =
1

ϑ

∫ ϑ

0

Wodϕ = Iow + I1w
P̂
ϑ
. (3.3.7)

Although the above equation is linear in P̂ , it is nonlinear in εo ξ due to the presence of χ �
see the de�nition under (3.2.8). We remark that the integrals Iow and I1w are presented in
closed form in Appendix A.1.6. Equation (3.3.7) can be rearranged so that

I1w
P̂
ϑ

+ Iow − εoξ = 0 . (3.3.8)

If we now consider the strain according to the nonlinear theory, the mathematical average
of (3.1.4) is given by

εm =
1

ϑ

∫ ϑ

0

εm(ϕ)dϕ =
1

ϑ

∫ ϑ

0

(
εoξ +

1

2
ψ2
oη

)
dϕ = Iow + I1w

P̂
ϑ

+ Ioψ + I1ψ
P̂
ϑ

+ I2ψ

(
P̂
ϑ

)2

(3.3.9)

or which is the same

I2ψ

(
P̂
ϑ

)2

+ (I1w + I1ψ)
P̂
ϑ

+ (Iow + Ioψ − εm) = 0 . (3.3.10)

This is a more accurate quadratic relationship between the external load and the axial strain.
The constants Ioψ , I1ψ and I2ψ for pinned-pinned support are gathered in Appendix A.1.6.

We hereby note that the former integrals were computed numerically by using the sub-
routine DQDAG from the IMSL Library [109] when using a self-made Fortran 90 code to �nd
solutions. After performing some tests, we have come to the conclusion that the accuracy
of this routine turns out to be more than su�cient with its maximum error being less than
10−7.

3.3.3. Fixed-�xed beams. Compared to pinned-pinned members, one boundary con-
dition is changed at the right support of the half-beam model. This time the rotation is zero
if ϕ = ϑ � we refer to Table 3.2.

Figure 3.3. The simpli�ed model of a �xed-�xed beam.
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Table 3.2. Boundary conditions for the �xed-�xed right half-beam.
Boundary conditions

Crown point Right end

ψoη|ϕ=+0 = 0 Wo|ϕ=ϑ = 0

− dM
ds

∣∣
ϕ=+0

+
Pζ
2

= 0 ψoη|ϕ=ϑ = 0

Boundary conditions
Crown point Right end

W
(1)
o

∣∣∣
ϕ=+0

= 0 Wo|ϕ=ϑ = 0

IeηW
(3)
o

∣∣∣
ϕ=+0

=
Pζ
2

W
(1)
o

∣∣∣
ϕ=ϑ

= 0

Consequently, after recalling solution (3.3.1a) we get the equation system
0 χ 0 −1
0 0 0 1

cosϑ sinϑ − 1
χ2 cosχϑ − 1

χ2 sinχϑ

−χ sinϑ χ cosϑ sinχϑ − cosχϑ



A1

A2

A3

A4

 =


0

P̂ 1
ϑ

χ
χ2−1

−χ2−1
χ2

0

 (3.3.11)

for the determination of the integration constants. From here we obtain

A1 =
1− χ2

Dχ
sinχϑ+

1

D(1− χ2)
(cosϑ cosχϑ+χ sinϑ sinχϑ−1)

P̂
ϑ

= A11+A12
P̂
ϑ
, (3.3.12a)

A2 =
1

χ2 − 1

P̂
ϑ

= A22
P̂
ϑ
, A4 =

χ

χ2 − 1

P̂
ϑ

= A42
P̂
ϑ
, (3.3.12b)

A3 =
1

D
(
1− χ2

)
sinϑ+

χ

D(1− χ2)
(χ− sinϑ sinχϑ− χ cosϑ cosχϑ)

P̂
ϑ

= A31 + A32
P̂
ϑ
,

(3.3.12c)
where

D = χ cosϑ sinχϑ− sinϑ cosχϑ . (3.3.12d)
It means that we can now establish the displacement and rotation �elds for the whole beam
in the same way as in (3.3.5), (3.3.6). On the basis of (3.3.7) and (3.3.9), calculating the
mathematical average of the strain yields either

I1w
P̂
ϑ

+ Iow − εoξ = 0 , (3.3.13)

or

I2ψ

(
P̂
ϑ

)2

+ (I1w + I1ψ)
P̂
ϑ

+ (Iow + Ioψ − εm) = 0 . (3.3.14)

As regards the values of the integrals Iow, I1w and Ioψ , I1ψ, I2ψ, we refer the reader to
Appendix A.1.6. Keep in mind however, that the constants A1, A2, A3 and A4 are now
given by (3.3.12). Therefore the values of Dij in (3.3.6b) also di�er from those valid for
pinned-pinned beams.

3.3.4. Rotationally-restrained beams. The appropriately chosen half-beam model
is shown in Figure 3.4, while the boundary conditions are gathered in Table 3.3.

Figure 3.4. The simpli�ed model of a rotationally restrained beam.
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For the sake of brevity, it is practical to introduce the constant

S =
ρokγ
Ieη

, (3.3.15)

which is the dimensionless spring sti�ness. The greater S is, the greater the restraining
moment the springs exert on the beam.

Table 3.3. Boundary conditions for the rotationally restrained right half-beam.
Boundary conditions

Crown point Right end

ψoη|ϕ=+0 = 0 Wo|ϕ=ϑ = 0[
−dM

ds +
Pζ

2

]
ϕ=+0

= 0 [M + kγψo η]|ϕ=ϑ = 0

Boundary conditions in terms of Wo

Crown point Right end

W
(1)
o

∣∣∣
ϕ=+0

= 0 Wo|ϕ=ϑ = 0

IeηW
(3)
o

∣∣∣
ϕ=+0

=
Pζ

2

[
W

(2)
o + SW (1)

o

]∣∣∣
ϕ=ϑ

= 0

Here we get the following system of equations for A1, ..., A4:
cosϑ sinϑ − cosχϑ

χ2 − sinχϑ
χ2

0 χ 0 −1
− cosϑ−S sinϑ S cosϑ−sinϑ cosχϑ+ S

χ
sinχϑ sinχϑ− S

χ
cosχϑ

0 −1 0 χ



A1

A2

A3

A4

 =


1−χ2

χ2

0
0
P̂
ϑ

.
(3.3.16)

Let us introduce the constant

C0 =
(
χ2 − 1

)
cosϑ cosχϑ− S (sinϑ cosχϑ− χ cosϑ sinχϑ) (3.3.17)

thus, the solution to (3.3.16) satis�es the boundary conditions if

A1 = A11 +
P̂
ϑ
A12 =

(1− χ2) (χ cosχϑ+ S sinχϑ)

χC0

+

+
(1− χ2) sinϑ cosχϑ− S (cosϑ cosχϑ+ χ sinϑ sinχϑ− 1)

(χ2 − 1) C0

P̂
ϑ
, (3.3.18a)

A2 =
1

(χ2 − 1)

P̂
ϑ

= A22
P̂
ϑ

; A4 =
χ

(χ2 − 1)

P̂
ϑ

= A42
P̂
ϑ
, (3.3.18b)

A3 = A31 +
P̂
ϑ
A32 =

cosϑ+ S sinϑ

−C0

+

+
χ [(χ2 − 1) cosϑ sinχϑ− S (sinϑ sinχϑ+ χ cosϑ cosχϑ− χ)]

− (χ2 − 1) C0

P̂
ϑ
. (3.3.18c)

If [S = 0] {S → ∞} we get back the results valid for [pinned-pinned (3.3.3)] and {�xed-�xed
(3.3.12)} beams.

The radial displacement for the whole rotationally restrained beam is given by (3.3.5),
while (3.3.6) provides the rotation �eld, given that the relevant Aij constants are substituted.
Averaging the strain again yields a formula which is formally the same as (3.3.10). The
related coe�cients Iow, I1w, Ioψ, I1ψ and I2ψ are listed in Appendix A.1.6.

3.4. Possible solutions for the post-buckling state

3.4.1. General solution. After substituting the pre-buckling solution (3.3.5) into the
right side of equation (3.2.20) we get

W
(4)
ob + (1 + χ2)W

(2)
ob + χ2Wob = −mεmb

1− χ2

χ2

(
1

1− χ2
+ A3 cosχϕ+ A4 sinχϕ

)
. (3.4.1)
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We remind the reader that the post-buckling axial strain on the E-weighted centerline is
constant (3.2.18) and it can therefore be calculated as

εmb =
1

2ϑ

∫ ϑ

−ϑ

(
U

(1)
ob +Wob + ψoη bψoη

)
dϕ =

1

2ϑ
Uob|ϑ−ϑ +

1

2ϑ

∫ ϑ

−ϑ
(Wob + ψoη bψoη) dϕ =

=
1

2ϑ

∫ ϑ

−ϑ

(
Wob +

(
Uob −W (1)

ob

) (
Uo −W (1)

o

))
dϕ ≈ 1

2ϑ

∫ ϑ

−ϑ

(
Wob +W

(1)
ob W

(1)
o

)
dϕ . (3.4.2)

It is clear that the rotation ψoη ≈ −W (1)
o is an odd function of ϕ. Due to the symmetry

properties of the loading and the supports, there are two basically di�erent cases to be dealt
with. If, by assumption, Wob is an odd function of ϕ, then the above integral vanishes: εmb
is equal to zero. Otherwise, when � by hypothesis � Wob is an even function ϕ, the strain
increment is a nonzero constant. We remark that these observations are naturally valid for
homogeneous beams as well [61,65]. Consequently: (a) if εmb = 0 the di�erential equation
that governs the problem of antisymmetric (or bifurcation) buckling is homogeneous and,
according to (3.4.1), it takes the form

W
(4)
ob + (1 + χ2)W

(2)
ob + χ2Wob = 0 , (3.4.3)

while (b) if εmb = constant 6= 0 we have to solve equation (3.2.20) (or which is the same
equation (3.4.1)) keeping in mind that the buckled shape of the beam is symmetric. The
latter phenomenon is called snap-through or limit-point buckling. To better understand, the
two possibilities are illustrated in Figure 3.5 where a continuous line represents the centerline
of the beam in the initial con�guration, the dashed line is the symmetric pre-buckling shape,
while the dotted line is the buckled (a) antisymmetric, (b) symmetric shape of the centerline.
Although the �gure in question shows rotational restraints, the shapes are valid for pinned-
pinned and �xed-�xed shallow curved beams as well.

Figure 3.5. Possible (a) antisymmetric and (b) symmetric buckling shapes.

The general solution to the homogeneous di�erential equation (3.4.3) assumes the form

Wob(ϕ) = F1 cosϕ+ F2 sinϕ+ F3 sinχϕ+ F4 cosχϕ , (3.4.4)

meanwhile the displacement �eld satisfying di�erential equation (3.4.1) is sought as

Wob(ϕ) = C1 cosϕ+C2 sinϕ+C3 sinχϕ+C4 cosχϕ−mεmb

2χ3

(
2

χ
+ A3ϕ sinχϕ− A4ϕ cosχϕ

)
.

(3.4.5)
Here Ci and Fi are undetermined integration constants. It is important to mention that after
buckling, every physical quantity is continuous through the interval ϕ ∈ [−ϑ;ϑ] because there
is no increment in the loading.

The newly introduced concepts, like bifurcation and limit-point buckling will further be
illustrated in Subsubsection 3.5.1.3.
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3.4.2. Pinned-pinned beams � antisymmetric buckling. The boundary conditions
in terms of the displacement increments are gathered in Table 3.4.

Table 3.4. Boundary conditions for pinned-pinned beams when εmb = 0.
Boundary conditions

Left end Right end
Wob (ϕ) |ϕ=−ϑ = 0 Wob (ϕ) |ϕ=ϑ = 0

W
(2)
ob (ϕ)

∣∣∣
ϕ=−ϑ

= 0 W
(2)
ob (ϕ)

∣∣∣
ϕ=ϑ

= 0

After substituting the solution (3.4.4) into the former boundary conditions we arrive at
the homogeneous system of linear equations:

cosϑ 0 0 cosχϑ
0 sinϑ sinχϑ 0

cosϑ 0 0 χ2 cosχϑ
0 sinϑ χ2 sinχϑ 0



F1

F2

F3

F4

 =


0
0
0
0

 . (3.4.6)

Nontrivial solution is obtained when the determinant of the coe�cient matrix vanishes:

D = (1− χ)2 (1 + χ)2 sinχϑ cosχϑ cosϑ sinϑ = 0 . (3.4.7)

Recalling the notation χ2 = 1 − mεm we can come to the following conclusions: (a) if
1−χ = 0 then χ = 1, consequently εm = 0; (b) if 1 +χ = 0 then χ = −1 and so εm > 0; (c)
if sinχϑ = 0 then χ = π/ϑ and (d) if cosχϑ = 0 then χ = π/2ϑ. We remark that the �rst
two cases have no physical sense. For solution (d) we get that Wob(ϕ) = E4 cos π

2ϑ
ϕ which

is a contradiction as for symmetric buckled shapes εmb 6= 0. These thoughts mean that the
lowest critical axial strain for bifurcation buckling is

εm =
1

m

(
1− χ2

)
=

1

m

[
1−

(
G(ϑ)

ϑ

)2
]
, where G(ϑ) = π . (3.4.8)

If we now substitute solution (c) back into equation system (3.4.6) it can be checked that
F1 = F2 = F4 = 0 and consequently, it follows from (3.4.4) that

Wob(ϕ) = F3 sin
π

ϑ
ϕ (3.4.9)

is the buckled antisymmetric shape of the beam with the unknown amplitude parameter F3.
Note that if we neglect the e�ect of the angle of rotation on the axial strain then we shall

change the notation εm to εoξ.

3.4.3. Pinned-pinned beams � symmetric buckling. When solving di�erential
equation (3.4.1) it is su�cient to deal with a half beam model again. Choosing the right-
half beam and relying on a similar concept as introduced in Subsection 3.3.2, the boundary
conditions are presented in Table 3.5.

Table 3.5. Boundary conditions for pinned-pinned beams when εmb 6= 0.
Boundary conditions

Crown point Right end

W
(1)
ob (ϕ)

∣∣∣
ϕ=0

= 0 Wob (ϕ) |ϕ=ϑ = 0

W
(3)
ob (ϕ)

∣∣∣
ϕ=0

= 0 W
(2)
ob (ϕ)

∣∣∣
ϕ=ϑ

= 0
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Upon substitution of solution (3.4.5) into the boundary conditions we arrive at the inhomo-
geneous system of linear equations

0 −2χ3 −2χ4 0
0 −2χ −2χ4 0

cosϑ sinϑ sinχϑ cosχϑ
2χ2 cosϑ 2χ2 sinϑ 2χ4 sinχϑ 2χ4 cosχϑ



C1

C2

C3

C4

 =

= mεmb


A4

3A4

1
2χ3

(
2
χ

+ A3ϑ sinχϑ− A4ϑ cosχϑ
)

A3 (χϑ sinχϑ− 2 cosχϑ)− A4 (2 sinχϑ+ ϑχ cosχϑ)

 (3.4.10)

which can be solved in closed-form � the constants Ci are presented in Appendix A.1.7. The
decomposition of the resultant coe�cients into two parts � one independent of P̂ and the
other depending linearly on P̂ � is also carried out there in such a way that

Ci = εmb

(
Ĉi1 + Ĉi2

P̂
ϑ

)
, i = 1, . . . , 4 . (3.4.11)

The forthcoming thoughts are valid for all three support arrangements. The solution
to Wob for the whole beam can now be reconstructed using the previous constants � see
equations (A.1.37)-(A.1.38) for further details � as

Wob = εmb

[(
Ĉ01 + Ĉ11 cosϕ+ Ĉ41 cosχϕ+ Ĉ51ϕ sinχϕ

)
+

+
P̂
ϑ

(
Ĉ12 cosϕ+ Ĉ22H sinϕ+ Ĉ32H sinχϕ+ Ĉ42 cosχϕ+ Ĉ52ϕ sinχϕ+ Ĉ62Hϕ cosχϕ

)]
.

(3.4.12)

In the knowledge of the radial displacement we can determine the rotation increment:

− ψoη b ' W
(1)
ob = εmb

[
K11 sinϕ+K41 sinχϕ+K51ϕ cosχϕ+

+ (K12 sinϕ+K22 cosϕ+K32 cosχϕ+K42 sinχϕ+K52ϕ cosχϕ+K62ϕ sinχϕ)
P̂
ϑ

]
,

(3.4.13)

where the new constants Kij are de�ned by (A.1.41). If we neglect the e�ect of the tangential
displacement on the angle of rotation � this assumption is the same as that the in papers
[56,74] � we can rewrite equation (3.4.2) in the form

εmb =
1

ϑ

∫ ϑ

0

(
Wob +W (1)

o W
(1)
ob

)
dϕ . (3.4.14)

Application of the linearized theory would result in

εoξ b =
1

ϑ

∫ ϑ

0

Wob dϕ . (3.4.15)

If we now substitute (3.3.6), (3.4.12) and (3.4.13) into equation (3.4.14), we can observe that
the strain increment vanishes. Further performing the integrations we have

1 =

[
I01 +

P̂
ϑ
I02

]
+

I11 +
P̂
ϑ
I12 +

(
P̂
ϑ

)2

I13
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or what is the same

I13

(
P̂
ϑ

)2

+ [I02 + I12]
P̂
ϑ

+ [I01 + I11 − 1] = 0 ; Iij ∈ R . (3.4.16)

Here the constants I01 and I02 follow from the �rst integral � and at the same time from the
linear theory � in (3.4.14), while the coe�cients I11, I12 and I13 are from the second one.
We can therefore remark that establishment of closed-form solutions to the integrals is again
possible. Some details are gathered in Appendix A.1.8. We also remark that we have used
the same IMSL subroutine as before to compute numerically the value of each integral in
order to determine the critical load.

3.4.4. Fixed-�xed beams � antisymmetric buckling. Substitute solution (3.4.4)
for the displacement increment Wob into the boundary conditions presented in Table 3.6.

Table 3.6. Boundary conditions for �xed-�xed beams when εmb = 0.
Boundary conditions

Left support Right support
Wob|ϕ=−ϑ = 0 Wob|ϕ=ϑ = 0

W
(1)
ob

∣∣∣
ϕ=−ϑ

= 0 W
(1)
ob

∣∣∣
ϕ=ϑ

= 0

Then nontrivial solution of the equation system
cosϑ 0 0 cosχϑ

0 sinϑ sinχϑ 0
0 cosϑ χ cosχϑ 0

sinϑ 0 0 χ sinχϑ



F1

F2

F3

F4

 =


0
0
0
0

 (3.4.17)

exists when the characteristic determinant is set to zero:

D = (χ sinϑ cosχϑ− cosϑ sinχϑ) (sinϑ cosχϑ− χ cosϑ sinχϑ) = 0 . (3.4.18)

Vanishing of the �rst factor results in

χ tanϑ = tanχϑ , (3.4.19)

to which the solution can be approximated with a good accuracy by the polynomial

χϑ = H(ϑ = 0 . . . 1.5) = 4.493 419 972 + 8.585 048 966 · 10−3ϑ+ 3. 717 588 695 · 10−2ϑ2+

+ 5.594 338 754 · 10−2ϑ3 − 3.056 068 806 · 10−2ϑ4 + 8.717 756 418 · 10−3ϑ5 . (3.4.20)

Graphical illustration of this result is presented in Figure 3.6. It can easily be shown that
an antisymmetric buckling shape is related to this solution with F1 = F4 = 0 and F2 =
−F3 sinχϑ/ sinϑ, thus

Wob = F3

(
sinχϕ− sinχϑ

sinϑ
sinϕ

)
. (3.4.21)
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Figure 3.6. Antisymmetric solution for �xed-�xed beams.
Hence, the critical strain is

εm =
1

m

(
1− χ2

)
=

1

m

[
1−

(
H(ϑ)

ϑ

)2
]
. (3.4.22)

If we consider the second term in (3.4.18), that is sinϑ cosχϑ− χ cosϑ sinχϑ = 0 then

χϑ = 3. 14159265− 0.219 240 5286ϑ+ 1.558 063 614ϑ2 − 2.391 954 053ϑ3+

+ 1.895 751 910ϑ4 − 0.441 333 7717ϑ5, if ϑ ∈ [0, 1.6] (3.4.23)

is the solution and the corresponding beam shape is of the form

Wob = F1

(
cosϕ− sinϑ

χ sinχϑ
cosχϕ

)
.

This function is symmetric in ϕ. So it is a contradiction.

3.4.5. Fixed-�xed beams � solution for symmetric buckling. To tackle this type
of buckling � based on what has been mentioned in Subsection 3.4.3 � let us recall solution
(3.4.5) which is now paired with the boundary conditions gathered in Table 3.7.

Table 3.7. Boundary conditions for �xed-�xed beams when εmb 6= 0 .
Boundary conditions

Crown point Right end

W
(1)
ob (ϕ)

∣∣∣
ϕ=0

= 0 Wob (ϕ) |ϕ=ϑ = 0

W
(3)
ob (ϕ)

∣∣∣
ϕ=0

= 0 W
(1)
ob (ϕ)

∣∣∣
ϕ=ϑ

= 0

Thus, we obtain the following inhomogeneous system of linear equations:
0 1 χ 0
0 1 χ3 0

cosϑ sinϑ sinχϑ cosχϑ
sinϑ − cosϑ −χ cosχϑ χ sinχϑ



C1

C2

C3

C4

 =

= mεmb


− A4

2χ3

−3A4

2χ

1
2χ3

(
2
χ

+ A3ϑ sinχϑ− A4ϑ cosχϑ
)

A4

2χ3 (cosχϑ− χϑ sinχϑ)− A3

2χ3 (sinχϑ+ χϑ cosχϑ)

 . (3.4.24)
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The solutions for Ci are presented in Appendix A.1.7. To get the load-strain relationship we
have to repeat the steps detailed after equation (3.4.11).

3.4.6. Rotationally restrained beams � antisymmetric buckling. The general
solution to the homogeneous equilibrium equation (3.4.3) is paired with the homogeneous
BCs gathered in Table 3.8.

Table 3.8. Boundary conditions for rotationally restrained beams: εmb = 0.
Boundary conditions

Left end Right end

Wob|ϕ=−ϑ = 0 Wob|ϕ=ϑ = 0(
−W (2)

ob + SW (1)
ob

)∣∣∣
ϕ=−ϑ

= 0
(
W

(2)
ob + SW (1)

ob

)∣∣∣
ϕ=ϑ

= 0

Upon substitution of solution (3.4.4) into the boundary conditions we obtain


cosϑ − sinϑ − sinχϑ cosχϑ
cosϑ sinϑ sinχϑ cosχϑ

− cosϑ− S sinϑ S cosϑ− sinϑ χ (S cosχϑ− χ sinχϑ) −χ (χ cosχϑ+ S sinχϑ)
cosϑ+ S sinϑ S cosϑ− sinϑ χ (S cosχϑ− χ sinχϑ) χ (χ cosχϑ+ S sinχϑ)



F1

F2

F3

F4

 =


0
0
0
0

 (3.4.25)

for which system the characteristic determinant is

D =
[(
χ2 − 1

)
sinϑ sinχϑ+ S (cosϑ sinχϑ− χ sinϑ cosχϑ)

]
·

·
[(
χ2 − 1

)
cosϑ cosχϑ+ S (χ cosϑ sinχϑ− sinϑ cosχϑ)

]
= 0 . (3.4.26)

Vanishing of the �rst factor results in the transcendental equation

Sχ tanϑ

S + (χ2 − 1) tanϑ
= tanχϑ. (3.4.27)

Some numerical solutions for F = χϑ in terms of ϑ are plotted in Figure 3.7.
Recalling (3.2.8) we get the critical strain for antisymmetric buckling:

εm =
1− χ2

m
=

1

m

[
1−

(
F(ϑ,S)

ϑ

)2
]
. (3.4.28)

If we now substitute solution (3.4.27) back into the boundary conditions it follows that
F1 = F4 = 0 and F2 = −F3sinχϑ/sinϑ. Consequently, after recalling the general solution
(3.4.4) we obtain that the shape of the beam is indeed antisymmetric:

Wob(ϕ) = F3

(
sinχϕ− sinχϑ

sinϑ
sinϕ

)
= F3

(
sin

F

ϑ
ϕ− sinF

sinϑ
sinϕ

)
. (3.4.29)
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Figure 3.7. Some solutions to F(ϑ, χ,S).

Vanishing of the second factor in (3.4.26) yields(
χ2 − 1

)
+ S (χ tanχϑ− tanϑ) = 0 . (3.4.30)

After solving the above equation for J = χϑ, we �nd that a symmetric buckling shape is
obtained for the radial displacement with F2 = F3 = 0 and F1 = F4 cosχϑ/ cosϑ:

Wob(ϕ) = F4

(
cosχϕ− cosχϑ

cosϑ
cosϕ

)
= F4

(
cos

J

ϑ
ϕ− cos J

cosϑ
cosϕ

)
. (3.4.31)

3.4.7. Rotationally restrained beams � symmetric buckling. As the buckled
shape is now symmetric the BCs collected in Table 3.9 are valid for the right half-beam.

Table 3.9. Boundary conditions for rotationally restrained beams: εmb 6= 0.
Boundary conditions

Crown point Right end

W
(1)
ob

∣∣∣
ϕ=0

= 0 Wob|ϕ=ϑ = 0

W
(3)
ob

∣∣∣
ϕ=0

= 0 W
(2)
ob + SW (1)

ob

∣∣∣
ϕ=ϑ

= 0

Upon substitution of solution (3.4.5) into the boundary conditions, we get the equation
system cosϑ sinϑ sinχϑ cosχϑ

− cosϑ− S sinϑ S cosϑ− sinϑ χ (S cosχϑ− χ sinχϑ) −χ (χ cosχϑ+ S sinχϑ)
0 2χ3 2χ4 0
0 2χ 2χ4 0

 C1

C2

C3

C4

 = mεmb


1

2χ3

(
2
χ
+A3ϑ sinχϑ−A4ϑ cosχϑ

)
−A3

χ

(
ϑ sinχϑ

2
− cosχϑ

χ
− S sinχϑ

2χ2 − Sϑ cosχϑ
2χ

)
− A4

χ

(
S cosχϑ

2χ2 − sinχϑ
χ
− ϑ cosχϑ

2
− Sϑ sinχϑ

2χ

)
−A4

−3A4

 . (3.4.32)

The solutions are gathered in Appendix A.1.7, just as for the other supports.
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3.5. Computational results

Symmetrically supported shallow circular beams can buckle in an antisymmetric mode
(with no strain increment) and in a symmetric mode when the length of the centerline
changes. In this section the outcomes of the new nonlinear model are compared to the
results derived and presented in [56] and [61] by Bradford et al. The cited authors have
found that their results for shallow circular arches agree well with �nite element calculations
using the commercial software Abaqus and the �nite element model published in [51]. As
our new model has less neglects � we remind the reader to equations (3.2.9)-(3.2.10) and
(3.2.20)-(3.2.21) �, we expect more accurate results regarding the permissible loads and a
better approximation for non-shallow beams, i.e. when ϑ ∈ [0.8; 1.5]. To facilitate the
evaluations and comparisons � following the footsteps of Bradford et al. by recalling (3.1.9)
� let us introduce

λ =

√
Aeρ2

o

Ieη
ϑ2 =

√
mϑ2 =

ρo
ie
ϑ2 , (3.5.1)

which is the modi�ed slenderness ratio of the beam.
When investigating the in-plane stability of circular shallow beams, altogether, �ve ranges

of interest can be found. The order of the ranges and its geometrical endpoints depend on
the supports and the geometry. It is possible that there is

• no buckling;
• only antisymmetric buckling can happen;
• only symmetric buckling can occur;
• both symmetric and antisymmetric buckling is possible and the antisymmetric shape
is the dominant;
• both symmetric and antisymmetric buckling is possible and the symmetric shape is
the dominant.

Now let us overview how one can �nd the typical endpoints of these characteristic ranges
through the example of pinned-pinned beams. This line of thought is implicitly applicable to
all the other support arrangements as well. The lower limit for antisymmetric buckling can
be determined from the condition that the discriminant of the quadratic polynomial (3.3.10)
should be a positive number when substituting the lowest antisymmetric solution (3.4.8) for
the strain (or what is the same, for χ). Thus,[

(I1w + I1ψ)2 − 4I2ψ (Iow + Ioψ − εm)
]∣∣
χϑ=G

≥ 0 . (3.5.2)

If this equation is zero we have the desired endpoint and if it is greater than zero we get the
corresponding critical (buckling) load P directly from (3.3.10).

The lower endpoint of symmetric buckling is obtained in the following steps: (a) we set
the angle coordinate to zero in (3.3.5) to get the displacement of the crown point; then (b)
we substitute here equation (3.3.10) for the dimensionless load and �nally (c) we take the
lowest symmetric solution from (3.4.7). The condition to get the desired limit is that the
displacement should be real.

In certain cases it happens that both the critical strain and the critical load P are equal
for symmetric and antisymmetric buckling. It means that when evaluating the antisymmetric
and symmetric buckling loads against the geometry we �nd that these two curves intersect
each other. Regarding the critical behaviour of beams, this intersection point generally
implies a switch between the symmetric and antisymmetric buckling modes. For a more
illustrative explanation see Subsubsection 3.5.1.3. This intersection point can be found by
plugging the lowest antisymmetric solution χϑ = π � which is at the same time equal to the
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lowest symmetric solution � into the post-buckling relationship (3.4.16). Consequently[
I13

(
P
ϑ

)2

+ (I02 + I12)
P
ϑ

+ (I01 + I11 − 1)

]∣∣∣∣∣
m,ϑ,χϑ=G

= 0 . (3.5.3)

For some �xed-�xed and rotationally restrained beams we experience that there is an
upper limit for antisymmetric buckling. It is found when (3.3.10) becomes zero for certain
critical strains. Therefore the discriminant

(I1w + I1ψ)2 − 4I2ψ (Iow + Ioψ − εm) = 0 (3.5.4)

vanishes again.

3.5.1. Pinned-pinned beams. As regards the behaviour of pinned-pinned circular
beams there are four typical ranges in the following order [61,110]:

• no buckling expected;
• only symmetric (or limit point) buckling can occur;
• both symmetric and antisymmetric buckling is possible, but the previous one is the
dominant;
• both symmetric and antisymmetric buckling is possible, but the former one is the
dominant.

The geometrical limits for the ranges are functions of the slenderness as λ = λ(m). Beams,
whose slenderness ratio is su�ciently small, do not buckle. Increasing the value of λ opens the
possibility of symmetric (limit point) buckling. Further raising λ yields that, theoretically,
both symmetric and antisymmetric (bifurcation) buckling can occur. However, it will later
be shown that meanwhile in the third typical buckling range the symmetric shape is the
dominant; in the fourth one antisymmetric buckling happens �rst.

In Table 3.10 the typical endpoints are gathered for four magnitudes of m.

Table 3.10. Geometrical limits for the buckling modes � pinned-pinned beams.

m 103 104

λ ≤ 3.80 λ ≤ 3.87 no buckling
3.80 < λ ≤ 7.90 3.87 < λ ≤ 7.96 limit point only
7.90 < λ ≤ 9.68 7.96 < λ ≤ 10.05 bifurcation point after limit point

λ > 9.68 λ > 10.05 bifurcation point before limit point

m 105 106

λ ≤ 3.89 λ ≤ 3.90 no buckling
3.89 < λ ≤ 7.97 3.90 < λ ≤ 7.98 limit point only
7.97 < λ ≤ 10.18 7.98 < λ ≤ 10.22 bifurcation point after limit point

λ > 10.18 λ > 10.22 bifurcation point before limit point

In the forthcoming, the approximate polynomials de�ning the boundaries of all the no-
table intervals are provided and compared to the m-independent results by Bradford et al.
These �gures are

λ(m) =


3.903 1 + 8.14 · 10−8m− 3.05/m0.5 if m ∈ [103; 104]

11.3 · 105

m2
− 357

m
+ 3.897 471 + 9.1725 · 10−9m− 5.295 · 10−15m2 if m ∈ [104; 106]

3.91 in [61] p.714.
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These polynomials are plotted in Figure 3.8. The new model is close to the results by
Bradford et al. The greatest relative di�erence is 2.6% when m = 1 000. It has turned out
that the upper limit value for the two models are only 0.01 away.

Figure 3.8. The lower limit for symmetric buckling � pinned-pinned beams.

Moving on now to the lower geometrical limit for antisymmetric buckling, we have

λ(m) =


7.975 6 + 5.4 · 10−7m− 2.15/m0.5 if m ∈ [103; 104]

7.971 4 + 1.33 · 10−8m− 118.14/m− 6.636 · 10−15m2 if m ∈ [104; 106]

7.96 in [61] p. 714.

These relationships are drawn in Figure 3.9. Accordingly, the minor di�erences between the
models can easily be noticed.

Figure 3.9. The lower limit for antisymmetric buckling � pinned-pinned beams.

For pinned-pinned shallow circular beams it happens that there is an intersection point
of the symmetric and antisymmetric buckling curves when both the critical loads and strains
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coincide. The equation of the �tting curve � see Figure 3.10 � is

λ(m) =


−271/m+ 9.923 + 2.84 · 10−5m− 1.2 · 10−9m2 if m ∈ [103; 104]

7.162 · 106

m2
− 2144

m
+ 10.200 3 + 7.7 · 10−8m− 4.549 · 10−14m2 if m ∈ [104; 106]

9.8 in [61] p. 714.

The limit value for our solution is λ ≈ 10.23. This is again close but di�erent by 4% from
the limit for the earlier model [61].

Figure 3.10. The intersection point � pinned-pinned beams.

3.5.1.1. Antisymmetric bifurcation buckling. Pinned-pinned shallow beams may buckle in
an antisymmetric (bifurcation) mode with no strain increment. The loss of stability occurs
when the lowest antisymmetric critical strain level, or what is the same, χϑ = π is reached �
we remind the reader to Subsection 3.4.2. Evaluating equation (3.3.10) under this condition
yields the critical (dimensionless) load P in terms of the geometry. Computational results
for four magnitudes of m are presented and compared to [61] in Figure 3.11.

In the surroundings of the lower limit, independently of m, the two models agree well.
The �gure also shows that, in both cases, the computational results tend to a certain value
as the semi-vertex angle ϑ increases. These limits are rather far, though. In general, the
di�erences in the dimensionless force between the models are slightly greater if m is smaller.
In short, the new model usually returns lower permissible loads meaning that the previous
one tends to overestimate the load such structural members can bear.

Comparing the models for strictly shallow members (ϑ ≤∼ π/4), the greatest di�erence
regarding the critical dimensionless load is ∆ ' 4.9% at ϑ = π/4 ' 0.78, m = 106. For
deeper beams, at ϑ = 1.15 it is 10.5% and it can reach up to 20.5% at ϑ = 1.5.

It must be mentioned that equation (59) in [61] is said to approximate well the critical
load given that ϑ ≥ π/4. This statement is con�rmed with �nite element computations.
Unfortunately, it is not clari�ed how and under what assumptions this formula was obtained.
At the same time, we have plotted this relation � see the magenta dashed line in Figure 3.11.
This function turns out to be dependent on the angle only. In relation to this solution, the
new model yields greater critical loads between 0.78...1.23 in ϑ. After the intersection at
ϑ ' 1.23 � where the permissible loads happen to be the same � this tendency changes. At
ϑ = 1.5 the di�erence is about 16%.
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Figure 3.11. Antisymmetric buckling loads for pinned-pinned beams.

3.5.1.2. Symmetric snap-through buckling. Concerning symmetric buckling we have equa-
tion (3.3.10) which is always valid prior to buckling until the moment of the loss of stability;
and equation (3.4.16). The latter one was derived assuming a symmetric buckled shape.
This time there are two unknowns: the critical strain and critical load. To get these we
need to solve the cited two nonlinear relations simultaneously. To tackle this mathematical
problem, we have used the subroutine DNEQNF from the IMSL Library [109] under Fortran
90 programming language.

Figure 3.12. Symmetric buckling loads for pinned-pinned beams.

Regarding the computational results, which are provided in Figure 3.12, one can clearly
see that as we increase the value of m, the corresponding curves move horizontally to the
left. The curves are independent of m with a good accuracy above ϑ ' 1.25.
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Figure 3.13. Symmetric buckling loads � comparison of the models.
The new model can, again, be compared to that by Bradford et al. However, results

in [61] are only available within that range, where symmetric buckling is the dominant. The
related curves are plotted between these characteristic endpoints in Figure 3.13. This time
the previous model generally underestimates the permissible load. The greatest di�erences
can be experienced around ϑ ∈ [0.5; 0.55], when m = 1 000, that is 7 to 9%. This result is
quite considerable given that the whole interval is only 0.205 wide along the abscissa.

Figure 3.14. Critical symmetric and antisymmetric strains � pinned-pinned beams.
It is also worthy to check how the lowest critical strain for symmetric (εcrit sym) and

antisymmetric (εcrit anti) buckling relates to each other � see Figure 3.14 for the details.
When the rate on the ordinate reaches 1, there is a switch between the buckling modes.
Prior to this, the critical strain for antisymmetric buckling is lower. After the switch, this
tendency changes.

Finite element veri�cations. Some control �nite element (FE) computations were carried
out to verify the new model using the commercial �nite element software Abaqus 6.7 and
Adina 8.9. The tested cross-section is rectangular: the width is 0.01 [m] and the height
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is 0.005 [m]. Young's modulus is 2 · 1011 [Pa]. In Abaqus we have used 3-node quadratic
Timoshenko beam elements (B22) and the Static,Riks step; while in Adina 2-node beam
elements and the Collapse Analysis have been chosen. The numerical results for symmetric
buckling are gathered in Table 3.11. All the geometries are picked from the range in which
� according to our model � this buckling mode dominates. As it turns out, the results of the
new model coincide quite well with those of Abaqus and Adina. Moreover, in this comparison
these outcomes are more accurate than the results of [61]. The maximum di�erence between
our model and the FE �gures is only 4.3%.

Table 3.11. Comparison with FE calculations � pinned-pinned beams.
m λ PNew model PBradford et al. PAbaqus PAdina

1 000 4.56 1.63 1.62 1.68 1.7
1 000 5.84 2.09 2.02 2.11 2.12
1 000 7.76 3.03 2.8 2.97 3
1 000 8.72 3.55 3.28 3.43 3.49
1 000 9.36 3.87 3.62 3.72 3.82

1 000 000 4.48 1.66 1.6 1.66 1.66
1 000 000 5.44 1.95 1.88 1.95 1.95
1 000 000 7.36 2.77 2.62 2.77 2.77
1 000 000 9.6 3.86 3.76 3.87 3.86

When trying to carry out some control calculations for antisymmetric buckling, we have
found that it is possible with both software via introducing initial geometric imperfections
to the model using the �rst (antisymmetric) buckling mode of the beams obtained from
eigenvalue (and eigenshape) extraction. Regarding the magnitude of the imperfection (a
number the normalized displacements of the eigenshapes are multiplied by) we have found
no exact rule but only some vague recommendations in the Abaqus manual [111]. Neither
could we �nd any relevant information in the related scienti�c articles, even though they
present FE calculations � see, e.g. [61,74]. While performing some tests, we have found that
the results are heavily a�ected by the imperfection magnitude. Since the current work is
not intended to deal with the imperfection sensitivity of beams, such investigations are not
included.

3.5.1.3. Load-crown point displacement and load-strain ratios. To better understand the
behaviour of circular beams, we have drawn the four possible primary equilibrium path
types through the example when m is 100 000. In Figure 3.15 for four di�erent slender-
nesses, the dimensionless concentrated force P̂ is plotted against the dimensionless (vertical)
displacement WoC of the crown point. The former quantity is obtained upon dividing the
displacement by the initial rise of the circular beam. Consequently,

WoC =

∣∣∣∣ Wo|ϕ=0

1− cosϑ

∣∣∣∣ . (3.5.5)

When λ = 3.5 (ϑ ' 0.105), the slope of the path is always positive, so there is no
buckling. When λ is 6.6 (ϑ ' 0.144), only symmetric limit point buckling can occur, where
it is indicated in the �gure. At this notable point ∂P̂/∂WoC = 0. If λ = 8.8 (ϑ ' 0.166), a
bifurcation point appears but on the descending (unstable) branch of the de�ection curve.
Thus, the critical behaviour is still represented by the preceding limit point. Finally, if
λ = 11.1 (ϑ ' 0.187), the bifurcation point is located before the limit point, so antisymmetric
buckling is expected �rst. When λ ' 10.18 (ϑ ' 0.179) the limit- and bifurcation points in
relation with the critical behaviour coincide. These four ranges are in a complete accord with
Section 3.5.1, and follow each other in this same order for any investigated m. Furthermore,
these results show a really good correlation with Abaqus as illustrated.
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Figure 3.15. Load-displacement curves for pinned-pinned beams.

Figure 3.16. Dimensionless load � strain/critical strain ratio (pinned beams).

Figure 3.16 shows how the dimensionless load varies with the ratio εm/εcrit anti for the same
geometries as before. When λ = 3.5, there are two di�erent values of P̂ , which only occur
once for any possible strain level. When λ is 6.6, starting from the origin we can see two
points, where the tangent is zero [∂P̂/∂(εm/εcrit anti) = 0]. As indicated, symmetric snap-
through buckling relates to the upper point. The critical antisymmetric strain is, obviously,
not reached for these �rst two geometries. However, when λ = 8.8, we experience that the
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path crosses the ratio 1 in the abscissa but before that, there is a limit point. Thus, still
the former one governs. Finally, for λ = 11.1, the bifurcation point comes �rst and therefore
an antisymmetric buckled shape is expected beforehand. It is also worth pointing out that
independently of λ, one branch always starts from the origin while the other one begins
around P̂(λ) ' 2.9 . . . 3.1. At P̂ ' π/2 and ϑ ' 0.248, the related branches intersect each
other.

3.5.2. Fixed-�xed beams. The behaviour of �xed-�xed beams [112] shows some no-
table di�erences compared to pinned-pinned members. For beams whose m < 21 148 there
are two ranges of interest, in which there is

• no buckling or
• symmetric buckling only.

However, beyond this limit, there are four ranges regarding the buckling behaviour. It is
possible that there is

• no buckling;
• only symmetric buckling can occur;
• both symmetric and antisymmetric buckling can happen, but the previous one is the
dominant;
• only symmetric buckling can occur (the bifurcation point vanishes).

So we can see that the symmetric buckling shape is the only real possibility throughout,
while for pinned-pinned structural members the dominant mode was antisymmetric. The
limits for each range are again functions of the slenderness as it is shown in the forthcoming.
Bradford et al. [61] have found three ranges, when evaluating their model � the �rst three
ranges in the previous enumeration.

The typical endpoints for four magnitudes of m are provided in Table 3.12.

Table 3.12. Buckling mode limits for �xed-�xed beams.
m 103 104

λ ≤ 11.61 λ ≤ 11.15 no buckling
λ > 11.61 λ > 11.15 limit point only

m 2.5 · 104 105 106

λ ≤ 11.12 λ ≤ 11.06 λ ≤ 11.02 no buckling
11.12 < λ ≤ 53.77 11.06 < λ ≤ 42.60 11.02 < λ ≤ 39.4 limit point only
53.77 < λ ≤ 86.33 42.60 < λ ≤ 206.13 39.4 < λ ≤ 672.15 bifurcation p. after limit p.

λ > 86.33 λ > 206.13 λ > 672.15 limit point only

The approximative polynomials for the range boundaries are gathered hereinafter and
are compared with the previous model. The lower limit for symmetric buckling is

λ(m) =


−1.74 · 105

m2
+

608

m
+ 11.186− 4.8 · 10−6m+ 5.2 · 10−11m2 if m ∈ [103; 5 · 104]

2 530

m
+ 11.036 3− 8.7 · 10−9m if m ∈ [5 · 104; 106]

11.07 in [61] p. 717.

Overall, the two models are quite close in this respect. The maximum di�erence is 5.3%
when m = 1 000.
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Figure 3.17. The lower limit for symmetric buckling � �xed-�xed beams.

As we �nd no upper limit for symmetric buckling as long as ϑ ∈ [0; 1.5], we now move
on to the lower limit for antisymmetric buckling, that is

λ(m) =



2.4 · 1044

m10
− 0.085 ·m

1
2 + 64.144 if m ∈ [21 148; 40 000]

314 000

m
+ 39 + 4.6 · 10−6m if m ∈ [40 000; 100 000]

300 000

m
+ 39.64− 5.5 · 10−7m if m ∈ [100 000; 1 000 000]

38.15 in [61] p. 716.

Meanwhile, for Bradford et al. the result is valid for any m, in our model antisymmetric
buckling is only possible when m ≥ 21 148. The di�erence to the earlier model is huge for
small m-s: at the beginning it is 70% and it is still 11.2% if m = 100 000. The limit values,
though, are only 3.2% away. If we recall the results for pinned-pinned beams (see Figure
3.9), these numbers are considerable.

Figure 3.18. The lower limit for antisymmetric buckling � �xed-�xed beams.
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Finally, the upper limit for antisymmetric buckling is approximated via the functions

λ(m) =

−90.3− 2.27 · 10−4m− 3.323 · 1087

m20
+ 3.187m0.4 if m ∈ [21 148; 105]

−10.1− 2.628 · 10−5m+ 0.617m0.51 if m ∈ [105; 106].

Bradford et al. have not mentioned the possibility of this limit. In this model, it varies
considerably with m. Altogether, we can mention that, according to the new model, no
antisymmetric buckling is expected �rst for �xed-�xed circular beams: the symmetric shape
is always the dominant. We further remark that we have found no intersection point for the
symmetric and antisymmetric buckling curves.

Figure 3.19. The upper limit for antisymmetric buckling � �xed-�xed beams.

3.5.2.1. Antisymmetric bifurcation buckling. Figure 3.20 reveals how the critical dimen-
sionless load varies with the geometry when the critical strain (3.4.20) is substituted into
(3.3.14). The results are compared to Figure 6 in [61]. Meanwhile the solution by Bradford
et al. tends to a certain value (P ' 6.95), our curves always have di�erent limits which are
reached after a steep decrease as ϑ increases. If both 1/m and ϑ are su�ciently small, the
outcomes of both models seem to be rather close. However, a distinction of up to 10.3%

Figure 3.20. Antisymmetric buckling loads for �xed-�xed beams.
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is possible in the critical dimensionless loads if, e.g. ϑ ' 0.807 and m = 100 000. When
m is smaller (25 000), the di�erences are greater even from the lower endpoint. From our
results it can clearly be seen that the (theoretical) possibility of antisymmetric bifurcation
buckling is the own of shallow �xed-�xed circular beams only: around ϑ(m) ' 0.73 . . . 0.85
a real solution vanishes. When m < 21 148 we �nd no real solution at all. To brie�y sum
up, the new model always results in lower buckling loads.

3.5.2.2. Symmetric buckling. To deal with the problem of symmetric buckling, we need to
solve equations (3.3.14) and (3.4.16) together, when the constants for �xed-�xed beams are
substituted. The numerical results are provided graphically in Figure 3.21. Unfortunately,
we can only make a comparison with a restriction that λ ≤ 100 since Bradford et al. have
not published results beyond this limit.

Figure 3.21. Symmetric buckling loads for �xed-�xed beams.

It is visible that if the angle is su�ciently great the new model yields approximately the same
critical load, independently of m. It is also clear that around the lower limit

Figure 3.22. Critical symmetric and antisymmetric strains � �xed-�xed beams.

for symmetric buckling the two models generally predict very similar results, though the
lower m is the greater the di�erences are. When m = 1 000, the characteristics of the curves
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by both models are very similar, otherwise there is quite a substantial distinction after a
while in ϑ. The greatest di�erence is experienced when m = 106 and ϑ ' 0.316, that is 7.2%.
For greater central angles we would expect even greater di�erences. When the central angles
are smaller, the model by Bradford et al. generally predicts lower critical loads than ours
but then this tendency changes. The exception is m = 1 000 when the new model always
returns greater permissible loads in the plotted range.

When comparing the critical strains for symmetric and antisymmetric buckling in Figure
3.22, we can again con�rm that symmetric buckled shape is the only possibility.

Finite element veri�cations. Using the same software and settings as for pinned-pinned
beams, some �nite element control calculations were again carried out for symmetric buck-
ling. The results can be seen in Table 3.13. The correlation of the �gures is absolutely

Table 3.13. Comparison with FE calculations � �xed-�xed beams.

m λ PNew model PBradford et al. PAbaqus PAdina

1 000 13 5.30 5.17 5.09 5.35

1 000 16 5.76 5.50 5.50 5.69

1 000 23 6.53 6.15 6.29 6.70

1 000 35 7.09 6.80 6.99 7.36

1 000 44 7.29 7.00 7.29 7.62

1 000 54 7.46 7.20 7.53 7.81

1 000 63.4 7.62 7.38 7.71 7.97

1 000 000 13 5.14 5.17 5.14 5.15

1 000 000 23 6.36 6.15 6.42 6.37

1 000 000 84 7.32 7.69 7.37 7.36

1 000 000 285 7.40 n.a. 7.47 7.49

1 000 000 612 7.42 n.a. 7.6 7.59

1 000 000 1090 7.46 n.a. 7.72 7.73

1 000 000 1868 7.64 n.a. 7.98 8.00

favourable. The maximum di�erence compared to the Abaqus results is +4.7% and it is
−4.5% for Adina. These extreme values were experienced for deep beams. It suggests that
the new model is indeed appropriate to predict the critical load of �xed-�xed circular deep
beams with a good accuracy as long as ϑ ≤ 1.5.

3.5.2.3. Load-crown point displacement and load-strain ratio graphs. Figure 3.23 presents
the four possible primary equilibrium path types for beams with m ≥ 21 148 and the two
characteristic modes when m < 21 148. First, let us see the two common types. Beams
with small λ � e.g. 9.5 � do not buckle. Increasing the slenderness ratio (λ = 17.5) results
in the appearance of a limit point. Thus, symmetric snap-through buckling can occur for
both picked magnitudes of m. The next two modes are relevant only when m ≥ 21 148. If
λ(m = 100 000) = 47, there is a bifurcation point on the descending (unstable) branch of
the load-de�ection curve, so still the symmetric shape governs. If λ(m = 100 000) = 210,
then the bifurcation point vanishes. What remains is a limit point. The results, regarding
the �rst stabile branches until the �rst limit point show an excellent correlation with �nite
element results � see the dashed lines in the relevant �gure.
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Figure 3.23. Load - displacement curves � �xed-�xed beams.

The typical dimensionless load - strain ratio graphs are shown separately for m ≥ 21 148
and m < 21 148 in Figure 3.24 and 3.25, respectively. First, let m = 100 000 and λ = 9.5.
There are two possible values of P̂ and each occurs once. If we change λ to 17.5 the two
branches have an intersection and further, on that branch starting from the origin we �nd a
point where ∂P̂/∂(εm/εcrit anti) = 0. This point relates to symmetric snap-through buckling.
It is the only option as εm/εcrit anti is always less than 1. Increasing the slenderness to 47, it
can be seen that the critical antisymmetric strain is reached, i.e. antisymmetric buckling is
also possible. However, this point can be found after the limit point, so still the symmetric
shape is the dominant. Finally, when λ = 210, we �nd that the intersection point of the
two branches are considerably further in the abscissa, compared to the previous curves and
(partly for this reason) the bifurcation point vanishes.

DOI: 10.14750/ME.2016.008



In-plane elastic stability of heterogeneous shallow circular beams 57

Decreasing m to 10 000 � see Figure 3.25 � there are two characteristic types. In terms of
physical sense, these coincide with the �rst two cases of the previous paragraph. Increasing
the slenderness above 17.5 would never result in the appearance of a bifurcation point: the
ratio 1 on the horizontal axis is never reached.

Figure 3.24. Dimensionless load-strain graph types, m ≥ 21 148.

Figure 3.25. Dimensionless load-strain graph types, m < 21 148.

We remark that λ andm have a considerable e�ect on where the upper branch commences
on the ordinate if εm = 0. The intersection point of the branches is also a function of these
quantities. However, the physically possible (lower) branches always start from the origin.

3.5.3. Rotationally restrained beams. In the present subsection beams with rota-
tional end-restraints are investigated and evaluated [113]. Such beams will be compared to
pinned-pinned (S = 0) and �xed-�xed (S → ∞) structural members to demonstrate the
e�ect of the dimensionless spring sti�ness � see (3.3.15). We remark that the model seems
to be valid for both limits: we always get back the same results as in the preceding sections.
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Altogether, there are �ve intervals of interest. For certain geometries and spring sti�-
nesses, it is possible that there is

• no buckling;
• only symmetric buckling can occur;
• both symmetric and antisymmetric buckling is possible, but the previous one is the
dominant;
• both symmetric and antisymmetric buckling is possible and the former one governs;
• symmetric buckling is the only possibility as the bifurcation point vanishes.

First, the e�ect of the dimensionless spring sti�ness S on the endpoints of the typical
ranges is studied. The dark red dashed lines are only added lines to the forthcoming �gures
with no physical meaning. Choosing m to be 1 000, Figure 3.26 shows the e�ects of the
dimensionless spring sti�ness on the buckling ranges in terms of the semi-vertex angle. The
evaluation is always carried out along a visionary vertical line, i.e. assuming a �xed S in
the forthcoming diagrams. If S = 0, we get back the same results (buckling modes and
endpoints) as for pinned-pinned beams. Thus, below ϑ = 0.347, there is no buckling �
such range is always denoted by (I). Then, up until ϑ = 0.5, only symmetric buckling can
occur (II). Even though the possibility of antisymmetric buckling appears after a further
increase in ϑ, the symmetric shape is the dominant (III) as long as the intersection point of
the symmetric and antisymmetric buckling curves is reached at ϑ = 0.553. After that, the
critical strain for antisymmetric buckling is always lower, therefore it is the governing mode
(IV ).

Figure 3.26. Typical buckling ranges in terms of S � m = 1 000.

Apart from the range endpoints, there are no other remarkable di�erences as long as
S ≤4.2. Passing this value results in the disappearance of the intersection point. It means
that the antisymmetric buckling point is always located on the unstable branch of the primary
equilibrium path. The next important limit is S = 7.6 since above that, even the possibility
of antisymmetric buckling vanishes. It can also be observed that as S → ∞, i.e. the beam
is �xed, the switch between no buckling and symmetric buckling approaches to ϑ = 0.606.
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Figure 3.27. Typical buckling ranges in terms of S � m = 10 000.

Figure 3.28. Typical buckling ranges in terms of S � m = 100 000.
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The behaviour of beams with m = 10 000 is very similar to the previous description
� see Figure 3.27. Now an intersection point exists until S ≤ 6.6 and a lower limit for
antisymmetric buckling can be found as long as S ≤ 33.3. Consequently, these two endpoints
show an increase in S due to an increase in m. It is also a noticeable property that increasing
m yields a decrease in all the typical range endpoints expressed in ϑ.

The results are a little more complex for m = 100 000 as it is revealed in Figure 3.28.
This time there exists an upper limit for antisymmetric buckling above S(ϑ < 1.5) = 2.8.
Therefore, if S ∈ [0; 2.8], given that the angle is su�ciently small, there is no buckling
(I). It is followed by the range of symmetric buckling only (II). Then the possibility of
antisymmetric buckling appears but only after symmetric buckling (III). After that, the
antisymmetric shape governs throughout. However, between 2.8 . . . 11.2 in S, after range
(IV ), the symmetric shape becomes again the dominant (II), since the possibility of anti-
symmetric buckling vanishes. After S = 11.2, the intersection point also vanishes, so above
range (I) the symmetric shape governs.

The relevant curves for m = 1 000 000 are plotted in Figure 3.29. These follow each other
very similarly to m = 100 000. As can be seen, an increase in m results in a slight increase
in the upper limit for antisymmetric buckling and a decrease in all other limits in ϑ.

Figure 3.29. Typical buckling ranges in terms of S � m = 1 000 000.
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3.5.3.1. Antisymmetric and symmetric buckling. In the sequel the governing (critical)
buckling loads are drawn for four magnitudes of m as functions of the semi-vertex angle. In
each of these graphs, curves are presented for S = 0 (pinned-pinned beam); S = 1020 (�xed-
�xed beam with a very good accuracy) and S = 1 (rotationally restrained beam). When both
symmetric (drawn with �ne dashed lines in the corresponding �gures) and antisymmetric
(drawn using continuous lines) shape is possible only the dominant kind is plotted. The
evaluation procedure is the same as that detailed at the very beginning of Section 3.5.

In Figure 3.30, m is chosen to be 1 000. The lower limits for symmetric buckling are
ϑ(S = 0) = 0.346; ϑ(S = 1) = 0.371 and ϑ(S = 1020) = 0.606. This buckling mode is the
dominant for �xed-�xed beams throughout the whole interval. As for the other two cases,
an intersection point can be found at ϑ(S = 0) = 0.553 and ϑ(S = 1) = 0.590. Therefore,
beyond these points, antisymmetric buckling governs. It can be observed that increasing
the value of S results that the lower limit for symmetric buckling and the intersection point
moves right in this diagram with increasing related buckling loads. It is also clear that
rotationally restrained beams can bear such loading levels, which are always between the
critical loads for pinned-pinned and �xed-�xed beams. Above ϑ ' 0.7, it is quite a notable
range in P so account for such restraints seems inevitable.

Figure 3.30. Buckling loads versus the semi-vertex angle when m = 1 000.

Figure 3.31. Buckling loads versus the semi-vertex angle when m = 10 000.
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Setting m to 10 000 yields the results shown in Figure 3.31. Now the lower endpoints of
symmetric buckling are ϑ(S = 0) = 0.196; ϑ(S = 1) = 0.205 and ϑ(S = 1020) = 0.334. It
means that an increase in m returns a decrease in this limit. The intersection point increases
in the angle with the spring sti�ness: ϑ(S = 0) = 0.317; ϑ(S = 1) = 0.328. It is also clear
that the symmetric buckling curves of the two least sti� supports (for which S = 0 and
S = 1) run quite close for smaller angles. The critical load for any S is generally greater
this time compared to the results when m = 1 000.

In Figure 3.32, m is picked to be 100 000. The curves representing symmetric buckling
for S = 0 and S = 1 and its endpoints almost coincide � there are hardly any noticeable
di�erences, so they could even be treated together. The lower limit for symmetric buckling,
anyway, further decreases: ϑ(S = 0) = 0.111; ϑ(S = 1) = 0.113 and ϑ(S = 1020) = 0.187.
At the same time, the intersection point occurs at ϑ(S = 0) = 0.179; ϑ(S = 1) = 0.182. The
symmetric buckling curves are again closer to each other and the lower endpoint of all the
curves are closer to the origin.

Figure 3.32. Buckling loads versus the semi-vertex angle when m = 100 000.

Figure 3.33. Buckling loads versus the semi-vertex angle when m = 1 000 000.

Withm = 1 000 000, we �nd that ϑ(S = 0) = 0.062; ϑ(S = 1) = 0.063 and ϑ(S = 1020) =
0.105 are the lower limits for symmetric buckling and ϑ(S = 0) = 0.101; ϑ(S = 1) = 0.102
give the intersection point. Thus, again, when S is 0 and 1, these �gures are the same with
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a good accuracy. Generally, the di�erences compared to m = 100 000 are not that relevant
when moving from m = 1 000 to m = 10 000.

To sum up the outcomes, it is obvious from the former �gures that the presence of the
springs can have a considerable e�ect on the buckling load. Just to pick an illustrative
example, if m = 1 000 000 and ϑ = 1, the critical dimensionless load P can vary between 5.4
and 7.5. This interval becomes even greater, when ϑ is greater.

Finite element veri�cations. The results for symmetric buckling are again veri�ed by FE
computations using Abaqus and the same settings as mentioned in Subsubsection 3.5.1.1. It
can be seen that the greatest di�erences (4.4%) are experienced whenm = 106 and ϑ = 1.366,
so predictions for not so shallow beams seem to be really good. The new model, anyway,
generally yields lower permissible loads except for when m = 103 and ϑ = 0.641.

Table 3.14. Some control FE results regarding the symmetric buckling loads.
S m ϑ PAbaqus PNew model

0/10/1020 103 0.641 4.98 / 5.03/5.09 5.23 / 5.26 / 5.29
0/10/1020 103 1.052 6.78 / 6.83 / 6.99 6.70 / 6.86 / 7.09
0/10/1020 103 1.416 7.48 / 7.51 / 7.71 7.36 / 7.43 / 7.62
0/100/1020 106 0.289 6.75 / 7.20 / 7.38 6.69 / 7.14 / 7.32
0/10/1020 106 0.782 6.98 / 7.18 / 7.52 6.76 / 6.99 / 7.42
0/10/1020 106 1.366 7.58 / 7.70 / 7.98 7.26 / 7.39 / 7.64

3.5.3.2. The primary equilibrium paths and the load-strain relationships. On the horizon-
tal axis in Figure 3.34, the dimensionless displacement of the crown point WoC is plotted
against the dimensionless load P̂ for beams with m = 100 000.

Figure 3.34. Dimensionless crown point displacement versus dimensionless
load, m = 100 000.
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There are four central angles picked to represent the di�erent path types of rotationally
restrained beams when S = 1 and 15. These are compared with results valid for pinned-
pinned and �xed-�xed beams. Finite element computations are also provided using �ne
dashed lines. When ϑ = 0.113, the slope is always positive and there is neither limit point
nor bifurcation point for the spring supported beams. This is also true for the �xed-�xed
beam with, of course, less displacement under the same load. However, for the pin-supported
member there is a limit point. Increasing ϑ to 0.16 results in the appearance of a limit point
for all but the �xed beam. The corresponding critical loads increase together with S. The
�xed-�xed beam still has a positive tangent throughout but its curve generally runs closer to
the others up until the �rst limit point on the curves for the restrained beams. At ϑ = 0.17,
there is a bifurcation point but on the descending branch of the corresponding curve for
the pinned-pinned and restrained beams. Finally, for ϑ = 0.2, there is a limit point in all
four curves. These points are really close to each other as well as all the whole �rst stable
branches. This time and above this central angle, the two picked rotationally restrained and
pinned-pinned beams buckle antisymmetrically �rst, as the bifurcation point is located on
the stable branch. Meanwhile, �xed-�xed beams can still buckle symmetrically only. The
Abaqus computations con�rm the validity of the outcomes.

For S = 1 the load-strain curves are drawn in Figure 3.35. When ϑ = 0.113, there are
two di�erent branches to which always a di�erent P̂ belongs. If ϑ = 0.16, the branches
intersect each other and a limit point also appears meaning that symmetric snap-through
buckling can occur. However, the ratio εm/εmcrit anti = 1 is not reached. Increasing ϑ to
0.17, we experience that a bifurcation point appears after the limit point. Finally, if ϑ
is equal to or greater than 0.2, the bifurcation point comes prior to the limit point: the
antisymmetric buckling shape dominates for such shallow circular beams under a central
load. It is also a remarkable property that every time there are two branches. The �rst one
always starts at the origin. There is an intersection point of the two corresponding branches
around εm/εmcrit anti ≈ 0.27, where the loading level is P̂ ≈ 1.75.

Figure 3.35. Typical load-strain relationships for m = 100 000.

3.6. The e�ect of heterogeneity on the buckling load

We now demonstrate how heterogeneity can a�ect the buckling load of bilayered beams
with rectangular cross-section, given that only the material composition is varied � the overall
geometry remains unchanged. As can be seen from Figure 3.36, the upper layer has a Young's
modulus E1 and a height b1. The height is a parameter: b1 ∈ [0, b]. When b1 = 0, the beam
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is homogeneous with a Young's modulus E2. In this case, the heterogeneity parameter is
always denoted by mhom and the radius of the E-weighted centerline is ρo hom. (If b1 = b,
the homogeneous cross-section has a Young's modulus E1.) For any other (and obviously
heterogeneous) distributions, in this section, we use the notations mhet and ρo het.

Figure 3.36. The investigated bilayered cross-section.

Recalling (2.1.13) and (3.1.9), we would like to �nd out how the ratio

mhet

mhom(b1 = 0)
=
AeIηE2

AE2Ieη

[
ρo het

ρo hom

]2

(3.6.1)

is related to the material distribution. It turns out that this fraction is a function of the
quotients ρo/b, b1/b and E2/E1 for this simple rectangular cross-section. The �rst, and
otherwise dominant term on the right side of the former expression depends only on the
ratios E2/E1 and b1/b � see the de�nitions (2.1.13). Some possible solutions are plotted
in Figure 3.37. On the account of heterogeneity, we can see an up to 55% di�erence when
E2/E1 = 5. It is also clear that when b/b1 = 0.5, the coherent curves intersect each other
and the maxima of these are also the same. It means that the plotted ratio is obviously
independent of whether the upper or the lower layer has a greater Young's modulus. The
quotient E2/E1 only a�ects at what rate of b/b1 the maximum is reached.

Figure 3.37. The �rst term in (3.6.1).
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The second term in (3.6.1) further depends on the ratio ρohom/b. For the rates 10, 50
and 100, the results are plotted in Figure 3.38. It can be seen that this term has a much
less considerable e�ect � at most ±4%, when ρo hom/b = 10. For the other two picked
ratios it is always less than 1%. So for most geometries and material distributions the ratio
(ρo het/ρo hom)2 can be considered to be 1 with a good accuracy.

Figure 3.38. The second term in (3.6.1).

To sum up, the ratio mhet/mhom is always the product of the previous two matching
�gures. Here we plot this quotient for ρohom/b = 10 � see Figure 3.39.

Figure 3.39. Variation of (3.6.1) because of the heterogeneity.
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As it can therefore be seen, due to the heterogeneity, the maxima in the rates of m are
as follows:

• mhet/mhom = 1.500 at b1/b = 0.405, if E2/E1 = 5;
• mhet/mhom = 1.397 at b1/b = 0.375, if E2/E1 = 4;
• mhet/mhom = 1.284 at b1/b = 0.337, if E2/E1 = 3;
• mhet/mhom = 1.155 at b1/b = 0.285, if E2/E1 = 2;
• mhet/mhom = 1.183 at b1/b = 0.689, if E2/E1 = 1/2;
• mhet/mhom = 1.335 at b1/b = 0.646, if E2/E1 = 1/3;
• mhet/mhom = 1.468 at b1/b = 0.609, if E2/E1 = 1/4;
• mhet/mhom = 1.589 at b1/b = 0.580, if E2/E1 = 1/5.

3.6.1. Numerical example. Let us insist on the former bilayered rectangular cross-
section. We choose a pinned-pinned circular beam with E2/E1 = 4. The following mhom

values are tested: 1.2 ·103; 1.08 ·104; 1.0008 ·105; 106. We would like to �nd out how hetero-
geneity a�ects the critical load through the variation of the parameter m. Investigations are
carried out until the maxima of the parameter mhet is reached, while gradually increasing
the ratio b1/b � see the preceding �gures. All the results are shown graphically in Figure
3.40. For every picked central angle only the dominant buckling mode is evaluated. When it
is a symmetric shape, the corresponding curve is �ne dashed. When it is an antisymmetric
shape (it is the more general thanks to the pinned supports), then the curve is continuous.
Since the interval of symmetric buckling for pinned-pinned beams is quite narrow as shown
in Figure 3.13, there are generally one or at most two samples picked from this range.

Figure 3.40. The e�ect of the heterogeneity on the critical load.

Overall, we can conclude that heterogeneity has a really massive e�ect on the buckling load,
independently of the magnitude of the tested m-s. This can even be 50% for antisymmetric
case and 41% for symmetric buckling. It is also a conclusion that, for every sample, the semi-
vertex angle ϑ does not really have an impact on the plotted ratios: the related curves usually
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coincide for the majority of the interval. We can as well observe the fact that increasing the
value of mhom results in a slight increase in the maxima of the ratio mhet/mhom measured
along the abscissa.

3.7. Summary of the results achieved in Section 3

I have investigated the in-plane elastic static stability of circular beams with cross-
sectional inhomogeneity provided that the beams are subjected to a vertical force at the
crown point. The most important results are as follows:

1. I have derived a new model both for the pre-buckling radial displacements and for
the post-buckling radial displacements � in the later case both for symmetric and
asymmetric buckling. Cross-sectional inhomogeneity is implied in these equations via
the parameter m. The equations and therefore the model I have established are more
accurate than those solved by Bradford et al. [56,61] for homogeneous material.

2. Though I have neglected the e�ect of the tangential displacement on the angle of
rotation � most papers like [56,61,73,74] also utilize this assumption � the results
for the critical loads seem to be be more accurate than those published in [56,61]
thanks to the less neglects. Further, the results happen to approximate well the
critical behaviour of not strictly shallow circular beams.

3. Solutions are provided for (a) pinned-pinned, (b) �xed-�xed and (c) rotationally
restrained beams. For each case, I have determined what characters the stability loss
can have: no buckling, limit point buckling, bifurcation buckling after limit point
buckling, bifurcation buckling precedes limit point buckling. The endpoints of the
corresponding intervals are not constant in λ (as in the previous models) but depend
on the parameter m.

4. Comparisons have been made with previous results and commercial FE computations
as well. These con�rm that the results of the novel model are indeed more accurate
than the earlier results. For small central angles the di�erences are, in general, smaller
than for greater central angles.

5. Cross-sectional inhomogeneity can have a signi�cant e�ect on the critical load as the
provided simple example shows.
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CHAPTER 4

In-plane vibrations of loaded heterogeneous deep circular beams

4.1. Introductory remarks

In this chapter we investigate the in-plane vibrations of deep circular beams under a
constant concentrated vertical load, which is exerted at the crown point. For such problem,
according to the reviewed literature, there are no preceding scienti�c works. We aim to
�nd out how we can account for the e�ect of the concentrated load. A further goal is
to demonstrate the e�ects of heterogeneity on the frequency spectrum. The forthcoming
method implies the Green function matrix and requires the application of a geometrically
linear model. But contrary to the preceding stability model, the e�ects of the tangential
displacement on the rotation �eld are not neglected. Since we remain within the frames of
the linear theory, there is a need for some simpli�cations compared to the stability model of
Chapter 3.

4.1.1. Equations of the static equilibrium. On the basis of the previous chapter
only the most important relations are gathered here. The �rst one of these is that the axial

Figure 4.1. A circular deep beam under compression.

strain is approximated linearly, i.e. the square of the rotation �eld ψ2
oη is dropped compared

to (3.1.3), consequently

εξ =
1

1 + ζ
ρo

(εoξ + ζκo) , εoξ =
duo
ds

+
wo
ρo
, ψoη =

uo
ρo
− dwo

ds
, κo =

duo
ρods

− d2wo
ds2

. (4.1.1)

But this time the e�ect of the tangential displacement on the rotations will be kept to
better approximate the the behaviour of deep curved beams. The constitutive equation is
unchanged meaning that Hooke's law yields

N =
Ieη
ρ2
o

mεoξ −
M

ρo
, M = −Ieη

(
d2wo
ds2

+
wo
ρ2
o

)
, (4.1.2a)

N +
M

ρo
=
Ieη
ρ2
o

mεoξ, with m̃ =
Aeρ

2
o

Ieη

− 1 ' Aeρ
2
o

Ieη

= m . (4.1.2b)

These formulae are the same as (3.1.7), (3.1.8) and (3.1.10) given that we swap εm for εoξ.
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The equilibrium equations and the (dis)continuity conditions in terms of N and M �
obtained from the principle of virtual work � are also unchanged and are shown under
(3.2.2)-(3.2.4) for rotationally restrained beams. What comes next are the expressions of the
equilibrium equations

dN

ds
+

1

ρo

[
dM

ds
−
(
N +

M

ρo

)
ψoη

]
+ ft = 0 ,

d

ds

[
dM

ds
−
(
N +

M

ρo

)
ψoη

]
− N

ρo
+ fn = 0

(4.1.3)

in which N and M should be given in terms of the kinematic quantities using (4.1.2). In
this way, from (4.1.3)1 we get

Ieη
ρ3
o

m
dεoξ
dϕ
− Ieη
ρ3
o

mεoξψoη + ft = 0 , (4.1.4)

where the product εoξψoη � being quadratic in the displacements � can be neglected when it
is compared to the other terms. Thus, we �nd that

dεoξ
dϕ

= ε
(1)
oξ = U (2)

o +W (1)
o = − ρ3

o

mIeη
ft (4.1.5)

where the following notations are applied:

Uo =
uo
ρo
, Wo =

wo
ρo
, (. . .)(n) =

dn(. . .)

dϕn
n ∈ Z. (4.1.6)

If the density of the distributed forces in the tangential direction ft is zero, i.e. there is only
a radial load on the beam, then

εoξ = constant. (4.1.7)

The manipulations on (4.1.3)2 are detailed in Appendix A.2.1. The result is

W (4)
o + (2−mεoξ)W (2)

o + [1 +m (1− εoξ)]Wo +mU (1)
o =

ρ3
o

Ieη
fn . (4.1.8)

To sum up, when the distributed forces do not vanish we arrive at the system of DEs[
0 0
0 1

] [
Uo
Wo

](4)

+

[
−m 0

0 2−mεoξ

] [
Uo
Wo

](2)

+

+

[
0 −m
m 0

] [
Uo
Wo

](1)

+

[
0 0
0 1 +m (1− εoξ)

] [
Uo
Wo

](0)

=
ρ3
o

Ieη

[
ft
fn

]
. (4.1.9)

If the distributed forces are equal to zero and the beam is subjected to a compressive force
at the crown point then the static equilibrium is governed by

W (5)
o +

(
1 + χ2

)
W (3)
o + χ2W (1)

o = 0, (4.1.10)

or equivalently by
U (6)
o +

(
1 + χ2

)
U (4)
o + χ2U (2)

o = 0, (4.1.11)

where
χ2 = 1−mεoξ, since mεoξ < 1 . (4.1.12)

Here the strain is due to the concentrated force Pζ .
It is also possible that the concentrated force is directed upwards, i.e. it causes a positive

strain. There are two cases: (a) if mεoξ < 1 then the previous three relations hold; (b) if the
former relation is not valid then χ2 is rede�ned by

χ2 = mεoξ − 1, provided that mεoξ > 1 . (4.1.13)
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Thus, the static equilibrium is governed by

W (5)
o +

(
1− χ2

)
W (3)
o − χ2W (1)

o = 0, (4.1.14)

or equivalently by
U (6)
o +

(
1− χ2

)
U (4)
o − χ2U (2)

o = 0. (4.1.15)

4.1.2. Equations of the vibrations. In accordance with the notational conventions
introduced in Subsection 3.1.2, the increments in the various quantities are still distinguished
by a subscript b. Now these increments are related to the time-dependent vibrations [wob =
wob(s, t); uob = uob(s, t) � t denotes the time]. Here we gather the most important linearized
formulae based on the subsection cited.

As regards the axial strain and the rotation �eld, recalling (3.1.14), we have

εξ b '
1

1 + ζ
ρo

(εoξ b + ζκo b) , εoξ b =
∂uob
∂s

+
wob
ρo

, (4.1.16a)

ψoη b =
uob
ρo
− ∂wob

∂s
, κo b =

1

ρo

∂uob
∂s
− ∂2wob

∂s2
. (4.1.16b)

Hooke's law for the increments (3.1.17)-(3.1.21) yields

Nb =
Ieη
ρ2
o

mεoξ b −
Mb

ρo
, Mb = −Ieη

(
∂2wob
∂s2

+
wob
ρ2
o

)
, Nb +

Mb

ρo
=
Ieη
ρ2
o

mεoξ b. (4.1.17)

At the same time the equations of motion

∂

∂s

(
Nb +

Mb

ρo

)
− 1

ρo

(
N +

M

ρo

)
ψoη b + ftb = 0 , (4.1.18a)

∂2Mb

∂s2
− Nb

ρo
− ∂

∂s

[(
N +

M

ρo

)
ψoη b +

(
Nb +

Mb

ρo

)
ψoη

]
+ fnb = 0 (4.1.18b)

formally coincide with (3.2.13) given that the quadratic terms in the increments are neglected.
As we are now dealing with the vibrations, the increments in the distributed forces are forces
of inertia

ftb = −ρaA
∂2uob
∂t2

, fnb = −ρaA
∂2wob
∂t2

, (4.1.19)

where ρa is the average density of the cross-section:

ρa =
1

A

∫
A

ρ (η, ζ) dA (4.1.20)

If we repeat the same procedure as that leading to (3.2.18) but on (4.1.18a) we have

Ieη
ρ2
o

m
dεoξ b

ds
− 1

ρo

Ieη
ρ2
o

mεoξψoη b + ftb = 0 . (4.1.21)

Moreover, after neglecting the second (quadratic term), we arrive at

−m
(
U

(2)
ob +W

(1)
ob

)
=

ρ3
o

Ieη
ftb . (4.1.22)

The manipulations performed on (4.1.18b) are detailed in Appendix A.2.2. The result is

W
(4)
ob + (2−mεoξ)W (2)

ob + [1 +m (1− εoξ)]Wob +mU
(1)
ob =

ρ3
o

Ieη
fnb . (4.1.23)

Consequently, the two governing equations in matrix form are[
0 0
0 1

] [
Uob
Wob

](4)

+

[
−m 0

0 2−mεoξ

] [
Uob
Wob

](2)

+
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+

[
0 −m
m 0

] [
Uob
Wob

](1)

+

[
0 0
0 1 +m (1− εoξ)

] [
Uob
Wob

](0)

=
ρ3
o

Ieη

[
ftb
fnb

]
. (4.1.24)

Under the assumption of harmonic vibrations

Uob(ϕ, t) = Ûob(ϕ) sinαt and Wob(ϕ, t) = Ŵob(ϕ) sinαt (4.1.25)

with Ûob and Ŵob denoting the amplitudes. The corresponding relations for these latter
quantities follow from (4.1.24) as[

0 0
0 1

]
︸ ︷︷ ︸

4
P

[
Ûob
Ŵob

]
︸ ︷︷ ︸

y

(4)

+

[
−m 0

0 2−mεoξ

]
︸ ︷︷ ︸

2
P

[
Ûob
Ŵob

](2)

+

+

[
0 −m
m 0

]
︸ ︷︷ ︸

1
P

[
Ûob
Ŵob

](1)

+

[
0 0
0 1 +m (1− εoξ)

]
︸ ︷︷ ︸

0
P

[
Ûob
Ŵob

](0)

= Λ

[
Ûob
Ŵob

]
︸ ︷︷ ︸

r

(4.1.26)

in which

Λ = ρa
Aρ3

o

Ieη
α2 (4.1.27)

is the unknown eigenvalue and α is the eigenfrequency sought. The in�uence of the direction
and the magnitude of the concentrated load Pζ is incorporated into this model via the strain
εoξ, while the heterogeneity is present through the eigenvalue Λ(ρa, Ieη) and the parameter
m(Ae, Ieη, ρo).

If the beam is unloaded there is no initial strain in it: εoξ = 0. Then we get back those
equations which govern the free vibrations [41,100]:[

0 0
0 1

] [
Ûob
Ŵob

](4)

+

[
−m 0

0 2

] [
Ûob
Ŵob

](2)

+

[
0 −m
m 0

] [
Ûob
Ŵob

](1)

+

+

[
0 0
0 m+ 1

] [
Ûob
Ŵob

](0)

= Λ

[
Ûob
Ŵob

]
. (4.1.28)

Depending on the supports of the beam, the system (4.1.26) or (4.1.28) is associated with
appropriate homogeneous boundary conditions so that together these constitute eigenvalue
problems. The left side of these systems can brie�y be rewritten in the form

K [y (ϕ) , εoξ] =
4

Py(4) +
2

Py(2) +
1

Py(1) +
0

Py(0) . (4.1.29)

In the sequel, two support arrangements will be exposed to further investigations. The
boundary conditions for pinned-pinned beams (kγ` = kγ r = 0) are

Ûob

∣∣∣
±ϑ

= Ŵob

∣∣∣
±ϑ

= Ŵ
(2)
ob

∣∣∣
±ϑ

= 0. (4.1.30a)

Thus, the displacements and the bending moment (4.1.17)2 are all zero at both ends. For
�xed-�xed members (kγ`; kγ r → ∞) the third condition is related to the end-rotations
(4.1.16)3:

Ûob

∣∣∣
±ϑ

= Ŵob

∣∣∣
±ϑ

= Ŵ
(1)
ob

∣∣∣
±ϑ

= 0 . (4.1.30b)

4.2. Solutions to the homogeneous parts

4.2.1. The static equilibrium. As we have pointed out in Subsection 4.1.1, there are
two possible cases to deal with.
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4.2.1.1. If mεoξ < 1. Solutions to the dimensionless displacements Wo and Uo in (4.1.10)
and (4.1.11) with the integration constants Ti, i = 1, 2, . . . are sought as

Wo = −T2 − T3 cosϕ+ T4 sinϕ− χT5 cosχϕ+ χT6 sinχϕ , (4.2.1)

Uo = T2ϕ−
∫
Wo (ϕ) dϕ = T1 + T̂2ϕ+ T3 sinϕ+ T4 cosϕ+ T5 sinχϕ+ T6 cosχϕ . (4.2.2)

The constant part ofWo and the linear part of Uo should satisfy the equilibrium equation
(4.1.8) when fn = 0. This condition provides the connection between the coe�cients T2 and
T̂2:

[1 +m (1− εoξ)]Wo +mU (1)
o = −T2 [1 +m (1− εoξ)] +mT̂2 = 0 (4.2.3)

from where

T̂2 =
1 +m (1− εoξ)

m
T2 . (4.2.4)

4.2.1.2. If mεoξ > 1. In most cases when the concentrated force is directed upwards the
general solutions of (4.1.14) and (4.1.15) are

Wo = −S2 − S3 cosϕ+ S4 sinϕ− χS5 coshχϕ− S6χ sinhχϕ , (4.2.5a)

Uo = S1 + Ŝ2ϕ+ S3 sinϕ+ S4 cosϕ+ χS5 sinhχϕ+ S6χ coshχϕ , Si ∈ R. (4.2.5b)

The connection between S2 and Ŝ2 is obtained from the same condition as previously, thus

[1 +m (1− εoξ)]Wo +mU (1)
o = − [1 +m (1− εoξ)]S2 +mŜ2 = 0 (4.2.6)

from which

Ŝ2 =
1 +m (1− εoξ)

m
S2 . (4.2.7)

4.2.2. The increments. Let us determine the solutions for the homogeneous parts of
equations (4.1.26):

Û
(2)
ob + Ŵ

(1)
ob = 0 , (4.2.8)

Ŵ
(4)
ob + 2Ŵ

(2)
ob + Ŵob +m

(
Û

(1)
ob + Ŵob

)
−mεoξ

(
Ŵob + Ŵ

(2)
ob

)
= 0 . (4.2.9)

After deriving the second equation with respect to the angle coordinate we have

Ŵ
(5)
ob + 2Ŵ

(3)
ob + Ŵ

(1)
ob +m

(
Û

(2)
ob + Ŵ

(1)
ob

)
︸ ︷︷ ︸

=0

−mεoξ
(
Ŵ

(1)
ob + Ŵ

(3)
ob

)
= 0 . (4.2.10)

Substituting here now (4.2.8)1 we obtain

Ŵ
(5)
ob + 2Ŵ

(3)
ob + Ŵ

(1)
ob −mεoξ

(
Ŵ

(1)
ob + Ŵ

(3)
ob

)
= −Û (6)

ob − 2Û
(4)
ob − Û

(2)
ob +mεoξ

(
Û

(2)
ob + Û

(4)
ob

)
= 0

(4.2.11)
or more concisely

Ŵ
(5)
ob + (2−mεoξ) Ŵ (3)

ob + (1−mεoξ) Ŵ (1)
ob = Û

(6)
ob + (2−mεoξ) Û (4)

ob + (1−mεoξ) Û (2)
ob = 0.
(4.2.12)

DOI: 10.14750/ME.2016.008



In-plane vibrations of loaded heterogeneous deep circular beams 74

4.2.2.1. Solution when mεoξ < 1. This inequality applies to all beams under compression
because the strain is a negative number as the concentrated force is directed downwards.
However, the inequality also holds for some beams under tension (when the force is directed
upwards). Therefore, with the notation

χ2 = 1−mεoξ (4.2.13)

the related di�erential equations assume the forms

Ŵ
(5)
ob +

(
χ2 + 1

)
Ŵ

(3)
ob + χ2Ŵ

(1)
ob = Û

(6)
ob +

(
1 + χ2

)
Û

(4)
ob + χ2Û

(2)
ob = 0 . (4.2.14)

It is not too di�cult to check that the solutions for the dimensionless amplitudes are

Ŵob = −J2 − J3 cosϕ+ J4 sinϕ− χJ5 cosχϕ+ χJ6 sinχϕ ; (4.2.15)

and

Ûob = Ĵ2ϕ+ J1 + J3 sinϕ+ J4 cosϕ+ J5 sinχϕ+ J6 cosχϕ (4.2.16)

in which the constants J2 and Ĵ2 are not independent since the corresponding solutions
should satisfy both (4.2.8) and (4.2.9). The �rst equation is identically satis�ed. As regards
the second one, the linear part of Ûob and the constant part of Ŵob should satisfy it, therefore
it follows from the relation

Ŵob +m
(
Û

(1)
ob + Ŵob

)
−mεoξŴob = −J2 +m

(
Ĵ2 − J2

)
+mεoξJ2 = 0 (4.2.17)

that

Ĵ2 =
1 +m (1− εoξ)

m
J2 =MJ2 . (4.2.18)

4.2.2.2. Solution when mεoξ > 1. This time the beam is always in tension, because then
εoξ > 0. Let us now denote

χ2 = mεoξ − 1 . (4.2.19)

The di�erential equations to deal with are

Ŵ
(5)
ob +

(
1− χ2

)
Ŵ

(3)
ob − χ

2Ŵ
(1)
ob = Û

(6)
ob +

(
1− χ2

)
Û

(4)
ob − χ

2Û
(2)
ob = 0 . (4.2.20)

As it can be observed, the solutions are slightly di�erent compared to Subsubsection 4.2.2.1:

Ŵob = −L2 − L3 cosϕ+ L4 sinϕ− χL5 coshχϕ− L6χ sinhχϕ , (4.2.21a)

Ûob = L1 + L̂2ϕ+ L3 sinϕ+ L4 cosϕ+ χL5 sinhχϕ+ L6χ coshχϕ , Li ∈ R. (4.2.21b)

The connection between L2 and L̂2 is obtained again from the condition that the linear part
of Ûob and the constant part of Ŵob should satisfy equation (4.2.9), consequently

[1 +m (1− εoξ)] Ŵob +mÛ
(1)
ob = − [1 +m (1− εoξ)]L2 +mL̂2 = 0 . (4.2.22)

As a result we get that

L̂2 =
1 +m (1− εoξ)

m
L2 =ML2 . (4.2.23)

It turns out to be formally the same as (4.2.18).
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4.3. The Green function matrix

The theoretical background for the solution of the eigenvalue problems in question is sum-

marized here on the basis of [41]. Since the matrix
4

P is non-invertible in (4.1.29), the cited
system is degenerated. We are now dealing with the inhomogeneous di�erential equations

K[y(ϕ), εoξ] =
4∑

κ=0

κ

P(ϕ)y(κ)(ϕ) = r(ϕ) ,
3

P(ϕ) = 0, (4.3.1)

where r(ϕ) is a prescribed inhomogeneity. The boundary conditions � we remind the reader
to equations (4.1.30a), (4.1.30b) � are

Ûob(−ϑ) = 0, Ŵob(−ϑ) = 0, Ŵ
(2)
ob (−ϑ) = 0 | Ûob(ϑ) = 0, Ŵob(ϑ) = 0, Ŵ

(2)
ob (ϑ) = 0

(4.3.2)

and

Ûob(−ϑ) = 0, Ŵob(−ϑ) = 0, Ŵ
(1)
ob (−ϑ) = 0 | Ûob(ϑ) = 0, Ŵob(ϑ) = 0, Ŵ

(1)
ob (ϑ) = 0

(4.3.3)

for pinned-pinned and �xed-�xed beams, respectively. Equations (4.3.1)-(4.3.2) and (4.3.1)-
(4.3.3) constitute two boundary value problems.

Solution to the homogeneous di�erential equations K[y] = 0 depends on the de�nition
of χ2. Exactly as beforehand, there are two possibilities:

χ2 =

{
1−mεoξ
mεoξ − 1

if
mεoξ < 1
mεoξ > 1 .

(4.3.4)

The solution to y can be expressed in the form

y =

[
4∑
j=1

Y
(2×2)

j C
(2×2)

j

]
e

(2×1)
, (4.3.5a)

where � based on (4.2.15)-(4.2.16) � the general solutions to the di�erential equations are

Y1 =

[
cosϕ 0
sinϕ 0

]
, Y2 =

[
− sinϕ 0
cosϕ 0

]
, Y3 =

[
cosχϕ Mϕ
χ sinχϕ −1

]
, Y4 =

[
− sinχϕ 1
χ cosχϕ 0

]
,

(4.3.5b)

if mεoξ < 1. Recalling (4.2.21) it can be seen that Y3 and Y4 are di�erent when mεoξ > 1,
that is

Y3 =

[
coshχϕ Mϕ
χ sinhχϕ −1

]
, Y4 =

[
− sinhχϕ 1
χ coshχϕ 0

]
. (4.3.5c)

In equation (4.3.5a), Ci are arbitrary constant matrices and e is an arbitrary column matrix.
Solutions to the boundary value problems (4.3.1)-(4.3.2) and (4.3.1)-(4.3.3) are sought in the
form

y(ϕ) =

∫ ϑ

−ϑ
G(ϕ, ψ)r(ψ)dψ , G(ϕ, ψ) =

[
G11(ϕ, ψ) G12(ϕ, ψ)
G21(ϕ, ψ) G22(ϕ, ψ)

]
, (4.3.6)

where G(ϕ, ψ) is the Green function matrix. The physical sense of this matrix is shown
in Figure 4.2. When the beam, which is pre-loaded by the force Pζ , is further loaded by
a concentrated dimensionless unit force in the tangential/normal direction at ψ, the Green
function matrix returns the response of the structural element, that is the dimensionless
tangential/normal displacement at ϕ. The green and blue arrows belong together in the
related �gure.
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Figure 4.2. The physical sense of the Green function matrix.
The Green function matrix is de�ned by the following four properties [41]:
1. It is a continuous function of the angle coordinates ϕ and ψ in both of the triangular

ranges −ϑ ≤ ϕ ≤ ψ ≤ ϑ and −ϑ ≤ ψ ≤ ϕ ≤ ϑ.
The functions {G11(ϕ, ψ), G12(ϕ, ψ)} [G21(ϕ, ψ), G22(ϕ, ψ)] are {2 times} [4 times]

di�erentiable with respect to ϕ. Moreover, the derivatives

∂κG(ϕ, ψ)

∂ϕκ
= G(κ)(ϕ, ψ) κ = 1, 2 ; (4.3.7a)

∂κG2j(ϕ, ψ)

∂ϕκ
= G

(κ)
2j (ϕ, ψ) κ = 1, . . . , 4; j = 1, 2 (4.3.7b)

are continuous in ϕ and ψ.
2. Let ψ be �xed in [−ϑ, ϑ]. Despite the fact that the functions and the derivatives

G11(ϕ, ψ) , G
(1)
12 (ϕ, ψ) , G

(κ)
21 (ϕ, ψ) κ = 1, 2, 3 ; G

(κ)
22 (ϕ, ψ) κ = 1, 2 (4.3.8a)

are continuous in the whole range, the derivatives G(1)
11 (ϕ, ψ) and G(3)

22 (ϕ, ψ) have a
jump at ϕ = ψ, that is

lim
ε→0

[
G

(1)
11 (ϕ+ ε, ϕ)−G(1)

11 (ϕ− ε, ϕ)
]

= 1/
2

P 11(ϕ), (4.3.8b)

lim
ε→0

[
G

(3)
22 (ϕ+ ε, ϕ)−G(3)

22 (ϕ− ε, ϕ)
]

= 1/
4

P 22(ϕ) . (4.3.8c)

3. Let α denote an arbitrary constant vector. For a �xed ψ ∈ [−ϑ, ϑ], the vector
G(ϕ, ψ)α � as a function of ϕ (ϕ 6= ψ) � should satisfy the homogeneous di�erential
equations K [G(ϕ, ψ)α] = 0 .

4. The vector G(ϕ, ψ)α, as a function of ϕ, should satisfy the boundary conditions
(4.3.2) or (4.3.3).

In addition, there is one unique Green function matrix to any given boundary value
problem [41]. If the Green function matrix exists � it is proven in [41] � then the vector
(4.3.6) satis�es the di�erential equation (4.3.1) and the boundary conditions (4.3.2) or (4.3.3).

Consider now the di�erential equations written brie�y in the form

K[y] = Λy ; (4.3.9)

where K[y] is given by (4.1.29) and Λ is the eigenvalue sought � see (4.1.27). The ordinary
di�erential equations (4.3.9) are associated with homogeneous boundary conditions � see
(4.3.2) or (4.3.3) � and as it has already been mentioned, together they constitute boundary
value problems, which are now, in fact, eigenvalue problems.

The vectors aT (ϕ) = [a1(ϕ)|a2(ϕ)] and bT (ϕ) = [b1(ϕ)|b2(ϕ)] are comparison vectors if
they are di�erent from zero, satisfy the boundary conditions and are di�erentiable as many
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times as required. Both eigenvalue problems (4.3.9)-(4.3.2) and (4.3.9)-(4.3.3) are self-adjoint
because the product

(a,b)M =

∫ ϑ

−ϑ
aTKb dϕ (4.3.10)

is commutative, i.e. (a,b)M = (b, a)M . Due to the this property the Green function matrix
is cross-symmetric: G(ϕ, ψ) = GT (ψ, ϕ).

4.4. Numerical solution to the eigenvalue problems

Making use of (4.3.6), each of the eigenvalue problems (4.3.9)-(4.3.2) and (4.3.9)-(4.3.3) can
be replaced by a homogeneous system of integral equations of the form

y(ϕ) = Λ

∫ ϑ

−ϑ
G(ϕ, ψ)y(ψ)dψ . (4.4.1)

Numerical solution to this eigenvalue problem can be sought by quadrature methods [114].
Consider the integral formula

J(φ) =

∫ ϑ

−ϑ
φ(ψ) dψ ≡

n∑
j=0

wjφ(ψj) ψj ∈ [−ϑ, ϑ] , (4.4.2)

where ψj(ϕ) is a vector and the weights wj are known. Having utilized the latter equation,
we obtain from (4.4.1) that

n∑
j=0

wjG(ϕ, ψj)ỹ(ψj) = ι̃ỹ(ϕ) ι̃ = 1/Λ̃ ψj ∈ [−ϑ, ϑ] (4.4.3)

is the solution, which yields an approximate eigenvalue Λ̃ = 1/ι̃ and a corresponding ap-
proximate eigenfunction ỹ(ϕ). After setting ϕ to ψi (i = 0, 1, 2, . . . , n) we have

n∑
j=0

wjG(ψi, ψj)ỹ(ψj) = ι̃ỹ(ψi) ι̃ = 1/Λ̃ ψi, ψj ∈ [−ϑ, ϑ] , (4.4.4)

or what is the same, a system in the form

GDỸ = ι̃Ỹ , (4.4.5)

where G = [G(ψi, ψj)] is symmetric if the problem is self-adjoint. Further

D = diag(w0, w0|w1, w1| . . . |wn, wn)

and ỸT = [ỹT (ψ0)|ỹT (ψ1)| . . . |ỹT (ψn)]. After solving the generalized algebraic eigenvalue
problem (4.4.5) we have the approximate eigenvalues Λ̃r and eigenvectors Ỹr, while the
corresponding eigenfunction is obtained from a substitution into (4.4.3):

ỹr(ϕ) = Λ̃r

n∑
j=0

wjG(ϕ, ψj)ỹr(ψj) r = 0, 1, 2, . . . , n . (4.4.6)

Divide the range [−ϑ, ϑ] into equidistant subintervals of length h and apply the integration
formula to each subinterval. By repeating the line of thought leading to (4.4.6), one can
readily show that the algebraic eigenvalue problem obtained has the same structure as (4.4.6).

It is also possible to consider the system of integral equations (4.4.1) as if it were a
boundary integral equation and apply isoparametric approximation on the subintervals, i.e.
over the elements. If this is the case, one can approximate the eigenfunction on the e-th
element (on the e-th subinterval which is mapped onto the range γ ∈ [−1, 1] and is denoted
by Le) by

e
y = N1(γ)

e
y1 + N2(γ)

e
y2 + N3(γ)

e
y3 , (4.4.7)
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where quadratic local approximation is assumed. Here Ni = diag(Ni), N1 = 0.5γ(γ −
1), N2 = 1 − γ2, N3 = 0.5γ(γ + 1) and

e
yi is the value of the eigenfunction y(ϕ) at the

left endpoint, the midpoint and the right endpoint of the e-th element, respectively. Upon
substitution of the approximation (4.4.7) into (4.4.1) we have

ỹ(ϕ) = Λ̃

nbe∑
e=1

∫
Le

G(ϕ, γ)[N1(γ)|N2(γ)|N3(γ)]dγ


e
y1
e
y2
e
y3

 , (4.4.8)

in which, nbe is the number of elements (subintervals). Using equation (4.4.8) as a point of
departure and repeating the line of thought leading to (4.4.5), we again �nd an algebraic
eigenvalue problem.

4.5. Construction of the Green function matrices

4.5.1. The structure of the Green function matrix. Recalling the third property
of the de�nition from Section 4.3, equation (4.3.6) and the general solution (4.3.5a); the
Green function matrix can be expressed in the form [41]

G(ϕ, ψ)︸ ︷︷ ︸
(2×2)

=
4∑
j=1

Yj(ϕ) [Aj(ψ)±Bj(ψ)] , (4.5.1)

where the sign is [positive](negative) if [ϕ ≤ ψ](ϕ ≥ ψ). The matrices Yj, Aj and Bj are
partitioned in the following way

Yj =

 j

Y 11

j

Y 12
j

Y 21

j

Y 22

 =
1 {
1 {

[
Yj1

Yj2

]
︸ ︷︷ ︸

(2×2)

, (4.5.2a)

Aj =

 j

A11

j

A12
j

A21

j

A22

 =

[
Aj1︸︷︷︸
(2×1)

Aj2︸︷︷︸
(2×1)

]
, Bj =

 j

B11

j

B12
j

B21

j

B22

 =

[
Bj1︸︷︷︸
(2×1)

Bj2︸︷︷︸
(2×1)

]
. (4.5.2b)

Observe that Yj1, Yj2 are row matrices while Aj1, Aj2 and Bj1, Bj2 are column matrices.
Keep in mind that Y3 and Y4 are di�erent for the two cases considered, i.e. when mεoξ ≶ 1.

4.5.2. The Green function matrix when mεoξ < 1. We commence with the deter-
mination of the matrices Bj, which can be calculated by utilizing the second property of the
de�nition. It is related to the (dis)continuity conditions (4.3.8) in Section 4.3. Thus, there
are two equation systems to be solved. The �rst system can be constructed by ful�lling the
relations 

∑4
j=1 Yj1Bj1∑4
j=1 Yj2Bj1∑4
j=1 Y

(1)
j1 Bj1∑4

j=1 Y
(1)
j2 Bj1∑4

j=1 Y
(2)
j2 Bj1∑4

j=1 Y
(3)
j2 Bj1


=



0
0

−1
2

(
2

P 11

)−1

0
0
0


(4.5.3)

given that we use the angle coordinate ψ when expressing Yj. If we recall (4.3.1) and (4.3.5b)

it can easily be seen that
2

P 11 = −m. Since
j

Y 12 =
j

Y 22 = 0 for j = 1, 2; the quantities
1

B21

and
2

B21 are set to zero.
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The other system to be dealt with is quite similar:

∑4
j=1 Yj1Bj2∑4
j=1 Yj2Bj2∑4
j=1 Y

(1)
j1 Bj2∑4

j=1 Y
(1)
j2 Bj2∑4

j=1 Y
(2)
j2 Bj2∑4

j=1 Y
(3)
j2 Bj2


=



0
0
0
0
0

−1
2

(
4

P22

)−1


. (4.5.4)

Here
4

P 22 = 1. Since
j

Y 12 =
j

Y 22 = 0 for j = 1, 2; the quantities
1

B22 and
2

B22 are also set
to zero. According to equations (4.5.3) and (4.5.4), the matrices Bj are independent of the
boundary conditions.

For the sake of brevity, we introduce the following notational conventions for the nonzero
coe�cients

a =
1

B1i, b =
2

B1i, c =
3

B1i, d =
3

B2i, e =
4

B1i, f =
4

B2i , i = 1, 2. (4.5.5)

If i = 1 we have the system
cosψ − sinψ cosχψ Mψ − sinχψ 1
sinψ cosψ χ sinχψ −1 χ cosχψ 0
− sinψ − cosψ −χ sinχψ M −χ cosχψ 0

cosψ − sinψ χ2 cosχψ 0 −χ2 sinχψ 0
− sinψ − cosψ −χ3 sinχψ 0 −χ3 cosχψ 0
− cosψ sinψ −χ4 cosχψ 0 χ4 sinχψ 0




a
b
c
d
e
f

 =


0
0
1

2m
0
0
0

 . (4.5.6)

The solutions are

a =
1

B11 =
χ2 sinψ

2 (1− χ2) (1−M)m
, b =

2

B11 =
χ2 cosψ

2 (1− χ2) (1−M)m
, (4.5.7a)

c =
3

B11 = − sinχψ

2χ (1− χ2) (1−M)m
, d =

3

B21 = − 1

2 (1−M)m
, (4.5.7b)

e =
4

B11 = − cosχψ

2χ (1− χ2) (1−M)m
, f =

4

B21 =
Mψ

2m (1−M)
. (4.5.7c)

If i = 2, then
cosψ − sinψ cosχψ Mψ − sinχψ 1
sinψ cosψ χ sinχψ −1 χ cosχψ 0
− sinψ − cosψ −χ sinχψ M −χ cosχψ 0

cosψ − sinψ χ2 cosχψ 0 −χ2 sinχψ 0
− sinψ − cosψ −χ3 sinχψ 0 −χ3 cosχψ 0
− cosψ sinψ −χ4 cosχψ 0 χ4 sinχψ 0




a
b
c
d
e
f

 =


0
0
0
0
0
−1

2

 (4.5.8)

is the equation system for the unknowns and the solutions assume the forms

a =
1

B12 =
cosψ

2 (1− χ2)
, b =

2

B12 = − sinψ

2 (1− χ2)
, c =

3

B12 = − cosχψ

2 (1− χ2)χ2
,

d =
3

B22 = 0 , e =
4

B12 =
sinχψ

2 (1− χ2)χ2
, f =

4

B22 =
1

2χ2
. (4.5.9)
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4.5.2.1. Constants for pinned-pinned supports. We now move on to the matrices Aj which
can be determined if we recall the fourth property of the Green function matrix. First, let

αT = [1 | 0] and thus, set
1

A21;
2

A21 to zero. The latter choice is because of the structure of
Y1 and Y2. The boundary conditions (4.3.2) yield the following equation system:

∑4
j=1 Yj1|ϕ=−ϑ Aj1|ψ∑4
j=1 Yj1|ϕ=ϑ Aj1|ψ∑4
j=1 Yj2|ϕ=−ϑ Aj1|ψ∑4
j=1 Yj2|ϕ=ϑ Aj1|ψ∑4
j=1 Y

(2)
j2

∣∣∣
ϕ=−ϑ

Aj1|ψ∑4
j=1 Y

(2)
j2

∣∣∣
ϕ=ϑ

Aj1|ψ


=



−
∑4

j=1 Yj1|ϕ=−ϑ Bj1|ψ∑4
j=1 Yj1|ϕ=ϑ Bj1|ψ

−
∑4

j=1 Yj2|ϕ=−ϑ Bj1|ψ∑4
j=1 Yj2|ϕ=ϑ Bj1|ψ

−
∑4

j=1 Y
(2)
j2

∣∣∣
ϕ=−ϑ

Bj1|ψ∑4
j=1 Y

(2)
j2

∣∣∣
ϕ=ϑ

Bj1|ψ


. (4.5.10)

Second, let αT = [0 | 1] and set
1

A22;
2

A22 to zero for similar reasons as before. Then the
boundary conditions determine that the system to be dealt with is

∑4
j=1 Yj1|ϕ=−ϑ Aj2|ψ∑4
j=1 Yj1|ϕ=ϑ Aj2|ψ∑4
j=1 Yj2|ϕ=−ϑ Aj2|ψ∑4
j=1 Yj2|ϕ=ϑ Aj2|ψ∑4
j=1 Y

(2)
j2

∣∣∣
ϕ=−ϑ

Aj2|ψ∑4
j=1 Y

(2)
j2

∣∣∣
ϕ=ϑ

Aj2|ψ


=



−
∑4

j=1 Yj1|ϕ=−ϑ Bj2|ψ∑4
j=1 Yj1|ϕ=ϑ Bj2|ψ

−
∑4

j=1 Yj2|ϕ=−ϑ Bj2|ψ∑4
j=1 Yj2|ϕ=ϑ Bj2|ψ

−
∑4

j=1 Y
(2)
j2

∣∣∣
ϕ=−ϑ

Bj2|ψ∑4
j=1 Y

(2)
j2

∣∣∣
ϕ=ϑ

Bj2|ψ


. (4.5.11)

Consequently, the unknown nonzero matrix elements are
1

A1i(ψ),
2

A1i(ψ),
3

A1i(ψ),
3

A2i(ψ),
4

A1i(ψ),
4

A2i(ψ) i = 1, 2; ψ ∈ [−ϑ, ϑ] .

This time both systems can be expressed simultaneously (with the zero columns removed)
as


cosϑ sinϑ cosχϑ −Mϑ sinχϑ 1
cosϑ − sinϑ cosχϑ Mϑ − sinχϑ 1
− sinϑ cosϑ −χ sinχϑ −1 χ cosχϑ 0

sinϑ cosϑ χ sinχϑ −1 χ cosχϑ 0
sinϑ − cosϑ χ3 sinχϑ 0 −χ3 cosχϑ 0
− sinϑ − cosϑ −χ3 sinχϑ 0 −χ3 cosχϑ 0





1

A1i
2

A1i
3

A1i
3

A2i
4

A1i
4

A2i


=

=


−a cosϑ− b sinϑ− c cosχϑ+ dMϑ− e sinχϑ− f
a cosϑ− b sinϑ+ c cosχϑ+ dMϑ− e sinχϑ+ f
a sinϑ− b cosϑ+ cχ sinχϑ+ d− eχ cosχϑ
a sinϑ+ b cosϑ+ cχ sinχϑ− d+ eχ cosχϑ
−a sinϑ+ b cosϑ− cχ3 sinχϑ+ eχ3 cosχϑ
−a sinϑ− b cosϑ− cχ3 sinχϑ− eχ3 cosχϑ

 . (4.5.12)

With the constants

C11 =
(
1− χ2

)
sinϑ, C12 = χ

(
1− χ2

)
sinχϑ ,

D11 = cosϑ sinχϑ− χ3 sinϑ cosχϑ−Mχϑ
(
1− χ2

)
cosϑ cosχϑ

(4.5.13)
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the solutions are gathered hereinafter:

1

A1i =
1

C11

[
b
(
1− χ2

)
cosϑ+ dχ2

]
,

2

A1i =
aχ3 cosϑ cosχϑ− aχϑ (1− χ2)M sinϑ cosχϑ+ a sinϑ sinχϑ+ cχ3 + χ3f cosχϑ

D11

,

3

A1i = − 1

C12

(
d− eχ

(
1− χ2

)
cosχϑ

)
,

3

A2i = − 1

D11

(
1− χ2

)
χ (a cosχϑ+ c cosϑ+ f cosϑ cosχϑ) ,

4

A1i = − 1

D11

(
a+ c

(
1− χ2

)
Mχϑ cosϑ sinχϑ+ c

(
χ3 sinϑ sinχϑ+ cosϑ cosχϑ

)
+ f cosϑ

)
,

4

A2i = − 1

C12 sinϑ

(
bχ
(
1− χ2

)
sinχϑ− dMϑχ

(
1− χ2

)
sinϑ sinχϑ+ dχ3 cosϑ sinχϑ−

−d sinϑ cosχϑ+ eχ sinϑ− eχ3 sinϑ
)
. (4.5.14)

4.5.2.2. Constants for �xed-�xed supports. Only the last two equations need be changed
in (4.5.10) and (4.5.11) because of the di�erent boundary conditions (4.3.3). These rows in
question are now

4∑
j=1

Y
(1)
j2

∣∣∣
ϕ=−ϑ

Aj1|ψ = −
4∑
j=1

Y
(1)
j2

∣∣∣
ϕ=−ϑ

Bj1|ψ , (4.5.15a)

4∑
j=1

Y
(1)
j2

∣∣∣
ϕ=ϑ

Aj1|ψ =
4∑
j=1

Y
(1)
j2

∣∣∣
ϕ=ϑ

Bj1|ψ (4.5.15b)

and
4∑
j=1

Y
(1)

j2

∣∣∣
ϕ=−ϑ

Aj2|ψ = −
4∑
j=1

Y
(1)

j2

∣∣∣
ϕ=−ϑ

Bj2|ψ , (4.5.16a)

4∑
j=1

Y
(1)

j2

∣∣∣
ϕ=ϑ

Aj2|ψ =
4∑
j=1

Y
(1)

j2

∣∣∣
ϕ=ϑ

Bj2|ψ . (4.5.16b)

As a result, we obtain the following system:


cosϑ sinϑ cosχϑ −Mϑ sinχϑ 1
cosϑ − sinϑ cosχϑ Mϑ − sinχϑ 1
− sinϑ cosϑ −χ sinχϑ −1 χ cosχϑ 0

sinϑ cosϑ χ sinχϑ −1 χ cosχϑ 0
cosϑ sinϑ χ2 cosχϑ 0 χ2 sinχϑ 0
cosϑ − sinϑ χ2 cosχϑ 0 −χ2 sinχϑ 0





1

A1i
2

A1i
3

A1i
3

A2i
4

A1i
4

A2i


=

=


−a cosϑ− b sinϑ− c cosχϑ+ dMϑ− e sinχϑ− f
a cosϑ− b sinϑ+ c cosχϑ+ dMϑ− e sinχϑ+ f
a sinϑ− b cosϑ+ cχ sinχϑ+ d− eχ cosχϑ
a sinϑ+ b cosϑ+ cχ sinχϑ− d+ eχ cosχϑ
−a cosϑ− b sinϑ− cχ2 cosχϑ− eχ2 sinχϑ
a cosϑ− b sinϑ+ cχ2 cosχϑ− eχ2 sinχϑ

 . (4.5.17)
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Let us introduce the constants

C31 =
(
1− χ2

)
sinϑ sinχϑ+Mχϑ (χ cosϑ sinχϑ− sinϑ cosχϑ) ,

D31 = χ sinϑ cosχϑ− cosϑ sinχϑ
(4.5.18)

with which we can simplify the solutions to (4.5.17) into these forms:

1

A1i =
1

D31

[
b (sinϑ sinχϑ+ χ cosϑ cosχϑ)− dχ cosχϑ+ eχ2

]
,

2

A1i =
aMχϑ (χ sinϑ sinχϑ+ cosϑ cosχϑ) + [fχ2 − a (1− χ2) cosϑ] sinχϑ+ cMχϑχ2

C31

,

3

A1i = − 1

D31χ
[b+ eχ (χ sinϑ sinχϑ+ cosϑ cosχϑ)− d cosϑ] ,

3

A2i = − 1

C31

[
a
(
1− χ2

)
sinχϑ+ cχ

(
1− χ2

)
sinϑ− fχ (χ cosϑ sinχϑ− sinϑ cosχϑ)

]
,

4

A1i =
−1

C31

[
aMϑ+ cMχϑ (χ cosϑ cosχϑ+ sinϑ sinχϑ) + c

(
1− χ2

)
sinϑ cosχϑ+ f sinϑ

]
,

4

A2i =
1

D31χ

[
b
(
1− χ2

)
cosχϑ+ dMχϑ (χ sinϑ cosχϑ− cosϑ sinχϑ)−

−d
(
1− χ2

)
cosϑ cosχϑ+ eχ

(
1− χ2

)
cosϑ

]
. (4.5.19)

4.5.3. The Green function matrix when mεoξ > 1. If we repeat the line of thought
leading to (4.5.6) we can easily determine the coe�cients in the matrices Bj. Obviously, we
shall now use (4.3.5c) for Y3 and Y4. When i = 1, from the system of linear equations

cosψ − sinψ coshχψ Mψ sinhχψ 1
sinψ cosψ −χ sinhχψ −1 −χ coshχψ 0
− sinψ − cosψ χ sinhχψ M χ coshχψ 0

cosψ − sinψ −χ2 coshχψ 0 −χ2 sinhχψ 0
− sinψ − cosψ −χ3 sinhχψ 0 −χ3 coshχψ 0
− cosψ sinψ −χ4 coshχψ 0 −χ4 sinhχψ 0




a
b
c
d
e
f

 =


0
0
1

2m
0
0
0

 (4.5.20)

we obtain the solutions

a =
1

B11 = − χ2 sinψ

2 (1 + χ2) (1−M)m
, b =

2

B11 = − χ2 cosψ

2 (1 + χ2) (1−M)m
,

c =
3

B11 = − sinhχψ

2χ (1 + χ2) (1−M)m
, d =

3

B21 = − 1

2 (1−M)m
,

e =
4

B11 =
coshχψ

2χ (1 + χ2) (1−M)m
, f =

4

B21 =
Mψ

2 (1−M)m
.

(4.5.21)

If i = 2
cosψ − sinψ coshχψ Mψ sinhχψ 1
sinψ cosψ −χ sinhχψ −1 −χ coshχψ 0
− sinψ − cosψ χ sinhχψ M χ coshχψ 0

cosψ − sinψ −χ2 coshχψ 0 −χ2 sinhχψ 0
− sinψ − cosψ −χ3 sinhχψ 0 −χ3 coshχψ 0
− cosψ sinψ −χ4 coshχψ 0 −χ4 sinhχψ 0




a
b
c
d
e
f

 =


0
0
0
0
0
−1

2

 (4.5.22)
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is the equation system to be solved � compare it with (4.5.8) � and the solutions are

a =
1

B12 =
cosψ

2 (1 + χ2)
, b =

2

B12 = − sinψ

2 (1 + χ2)
, c =

3

B12 =
coshχψ

2 (1 + χ2)χ2
,

d =
3

B22 = 0 , e =
4

B12 = − sinhχψ

2χ2 (1 + χ2)
, f =

4

B22 = − 1

2χ2
.

(4.5.23)
4.5.3.1. Constants for pinned-pinned supports. Similarly as in Subsubsection 4.5.2.1 the

boundary conditions (4.1.30a) are used to determine the constants in Aj . With these in
hand we arrive at the equation system


cosϑ sinϑ coshχϑ −Mϑ − sinhχϑ 1
cosϑ − sinϑ coshχϑ Mϑ sinhχϑ 1
− sinϑ cosϑ χ sinhχϑ −1 −χ coshχϑ 0

sinϑ cosϑ −χ sinhχϑ −1 −χ coshχϑ 0
sinϑ − cosϑ χ3 sinhχϑ 0 −χ3 coshχϑ 0
− sinϑ − cosϑ −χ3 sinhχϑ 0 −χ3 coshχϑ 0





1

A1i
2

A1i
3

A1i
3

A2i
4

A1i
4

A2i


=

=


−a cosϑ− b sinϑ− c coshχϑ+ dMϑ+ e sinhχϑ− f
a cosϑ− b sinϑ+ c coshχϑ+ dMϑ+ e sinhχϑ+ f
a sinϑ− b cosϑ− cχ sinhχϑ+ d+ eχ coshχϑ
a sinϑ+ b cosϑ− cχ sinhχϑ− d− eχ coshχϑ
−a sinϑ+ b cosϑ− cχ3 sinhχϑ+ eχ3 coshχϑ
−a sinϑ− b cosϑ− cχ3 sinhχϑ− eχ3 coshχϑ

 . (4.5.24)

Making use of the notations

C21 =
(
1 + χ2

)
sinϑ, C22 = χ

(
1 + χ2

)
sinhχϑ ,

D22 = − cosϑ sinhχϑ− χ3 sinϑ coshχϑ+Mϑχ
(
1 + χ2

)
cosϑ coshχϑ

(4.5.25)

the solutions for
1

A1i, . . . ,
4

A2i are

1

A1i =
1

C21

[
b
(
1 + χ2

)
cosϑ− dχ2

]
,

2

A1i =
(aχ3 cosϑ+ aϑχ (1 + χ2)M sinϑ+ fχ3) coshχϑ− a sinϑ sinhχϑ+ cχ3

D22

,

3

A1i =
1

C22

(
d+ eχ

(
1 + χ2

)
coshχϑ

)
,

3

A2i =
χ

D22

(
1 + χ2

)
(a coshχϑ+ c cosϑ+ f cosϑ coshχϑ) ,

4

A1i = −a− c (1 + χ2)Mχϑ cosϑ sinhχϑ+ c (χ3 sinϑ sinhχϑ+ cosϑ coshχϑ) + f cosϑ

D22

,

4

A2i = − 1

C22 sinϑ

(
bχ
(
1 + χ2

)
sinhχϑ− dMϑχ

(
1 + χ2

)
sinϑ sinhχϑ− dχ3 cosϑ sinhχϑ+

+d sinϑ coshχϑ+ eχ
(
1 + χ2

)
sinϑ

)
. (4.5.26)
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4.5.3.2. Constants for �xed-�xed supports. For the matrices Aj, the boundary conditions
(4.1.30b) yield the equation system upon repeating the steps leading to (4.5.17). Conse-
quently


cosϑ sinϑ coshχϑ −Mϑ − sinhχϑ 1
cosϑ − sinϑ coshχϑ Mϑ sinhχϑ 1
− sinϑ cosϑ χ sinhχϑ −1 −χ coshχϑ 0

sinϑ cosϑ −χ sinhχϑ −1 −χ coshχϑ 0
cosϑ sinϑ −χ2 coshχϑ 0 χ2 sinhχϑ 0
cosϑ − sinϑ −χ2 coshχϑ 0 −χ2 sinhχϑ 0





1

A1i
2

A1i
3

A1i
3

A2i
4

A1i
4

A2i


=

=


−a cosϑ− b sinϑ− c coshχϑ+ dMϑ+ e sinhχϑ− f
a cosϑ− b sinϑ+ c coshχϑ+ dMϑ+ e sinhχϑ+ f
a sinϑ− b cosϑ− cχ sinhχϑ+ d+ eχ coshχϑ
a sinϑ+ b cosϑ− cχ sinhχϑ− d− eχ coshχϑ
−a cosϑ− b sinϑ+ cχ2 coshχϑ− eχ2 sinhχϑ
a cosϑ− b sinϑ− cχ2 coshχϑ− eχ2 sinhχϑ

 , (4.5.27)

from where with the constants
C41 = −

(
1 + χ2

)
sinϑ sinhχϑ+ χMϑ (χ cosϑ sinhχϑ+ sinϑ coshχϑ) ;

D41 = χ sinϑ coshχϑ− cosϑ sinhχϑ
(4.5.28)

the closed form solutions are
1

A1i =
1

D41

(
b (sinϑ sinhχϑ+ χ cosϑ coshχϑ)− dχ coshχϑ− χ2e

)
,

2

A1i =
aMϑχ (χ sinϑ sinhχϑ− cosϑ coshχϑ) + [a (1 + χ2) cosϑ+ fχ2] sinhχϑ+ cMϑχ3

C41

,

3

A1i =
1

D41χ
[b+ eχ (χ sinϑ sinhχϑ− cosϑ coshχϑ)− d cosϑ] ,

3

A2i =
1

C41

[
a
(
1 + χ2

)
sinhχϑ+ cχ

(
1 + χ2

)
sinϑ+ fχ (χ cosϑ sinhχϑ+ sinϑ coshχϑ)

]
,

4

A1i = −aMϑ− cMϑχ (χ cosϑ coshχϑ+ sinϑ sinhχϑ) + [c (1 + χ2) coshχϑ+ f ] sinϑ

C41

;

4

A2i =
1

D41χ

(
−b
(
1 + χ2

)
coshχϑ+ dMχϑ (χ sinϑ coshχϑ− cosϑ sinhχϑ) +

+d
(
1 + χ2

)
cosϑ coshχϑ+ eχ

(
1 + χ2

)
cosϑ

)
. (4.5.29)

4.6. The load-strain relationships

It is vital to be aware of how the loading a�ects the strain on the centerline. In practise,
the loading is the known quantity. However, our formulation involves the axial strain εoξ as
parameter. Because the model is linear, the e�ects the deformations have on the equilibrium

state can be neglected with a good accuracy [41]. We can establish the desired εoξ = εoξ

(
P̂
)

relationship on the basis of the system (4.1.9) given that we set fn = ft = εoξ = 0 in the
equation cited. Solution for the dimensionless displacements are sought separately on the
left and right half beam due to the discontinuity in the shear force as

Uo (ϕ = −ϑ...0) = O1 cosϕ−O2 sinϕ+O3 (ϕ cosϕ− sinϕ) +O4 (m+ 1)ϕ+
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+O5 (− cosϕ− ϕ sinϕ) +O6 ,

Wo (ϕ = −ϑ...0) = O1 sinϕ+O2 cosϕ+O3ϕ sinϕ−O4m+O5ϕ cosϕ ,

Uo (ϕ = 0...ϑ) = R1 cosϕ−R2 sinϕ+R3 (ϕ cosϕ− sinϕ) +R4 (m+ 1)ϕ+

+R5 (− cosϕ− ϕ sinϕ) +R6 ,

Wo (ϕ = 0...ϑ) = R1 sinϕ+R2 cosϕ+R3ϕ sinϕ−R4m+R5ϕ cosϕ , Oi; Ri ∈ R. (4.6.1)
Therefore, the strain is

εoξ = U (1)
o +Wo = O4 = R4 . (4.6.2)

4.6.1. Pinned-pinned beams. The related di�erential equations (4.1.9) are associated
with the boundary conditions

Uo|±ϑ = Wo|±ϑ = M |±ϑ = 0 (4.6.3a)

and the continuity (discontinuity) conditions

Uo|ϕ=−0 = Uo|ϕ=+0 , Wo|ϕ=−0 = Wo|ϕ=+0 , ψoη|ϕ=−0 = ψoη|ϕ=+0 ,

N |ϕ=−0 = N |ϕ=+0 , M |ϕ=−0 = M |ϕ=+0 ,
dM

ds

∣∣∣∣
ϕ=+0

− dM

ds

∣∣∣∣
ϕ=−0

− Pζ = 0

(4.6.3b)

prescribed at the crown point. Here, all physical quantities are known in terms of the
displacements � see (4.1.1)-(4.1.2b). The altogether twelve conditions are detailed and the
equation system is constructed in Appendix A.2.3. Based on these results, the load-strain
relationship is

εoξ =
P̂
ϑ

ϑ sin3 ϑ− 2 cosϑ sin2 ϑ+ ϑ sinϑ cos2 ϑ+ 2 cos2 ϑ− 2 cos3 ϑ

m
(
ϑ sin2 ϑ− 3 sinϑ cosϑ+ 3ϑ cos2 ϑ

)
+ 2ϑ cos2 ϑ

. (4.6.4)

The strain εoξ is [negative] (positive) if the dimensionless force

P̂ =
Pζρ

2
oϑ

2Ieη
(4.6.5)

is [negative] (positive).

4.6.2. Fixed-�xed beams. Following a similar line of thought as in the previous sub-
section, for �xed-�xed beams, the load-strain relationship is

εoξ = −P̂
ϑ

(1− cosϑ) (sinϑ− ϑ)

ϑ (1 +m) [ϑ+ sinϑ cosϑ]− 2m sin2 ϑ
. (4.6.6)

For the details see Appendix A.2.3.

4.7. The critical strain

The critical strain is also important to be aware of. At this value the beam under
compression loses its stability. It can be obtained for a given support arrangement if we
solve the eigenvalue problem de�ned by equations (4.1.24) with the right side set to zero
(the heterogeneous beam is in static equilibrium under the action of the force exerted at the
crown point � there is no load increment). The eigenvalue is χ2 = 1−mεoξ because buckling
can only occur when εoξ < 0. The solutions happen to be the same as (4.2.15), (4.2.16)
except for the hat symbols, that is

Wob = −J2 − J3 cosϕ+ J4 sinϕ− χJ5 cosχϕ+ χJ6 sinχϕ ; (4.7.1)

Uob =MJ2ϕ+ J1 + J3 sinϕ+ J4 cosϕ+ J5 sinχϕ+ J6 cosχϕ . (4.7.2)
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4.7.1. Pinned-pinned beams. To obtain the critical strain we shall use the solutions
(4.7.1)-(4.7.2), which should be substituted into the boundary conditions

Uob|±ϑ = Wob|±ϑ = W
(2)
ob

∣∣∣
±ϑ

= 0 . (4.7.3)

In this way we get the following homogeneous system of linear equations:
1 −Mϑ − sinϑ cosϑ − sinχϑ cosχϑ
1 Mϑ sinϑ cosϑ sinχϑ cosχϑ
0 1 cosϑ sinϑ χ cosχϑ χ sinχϑ
0 1 cosϑ − sinϑ χ cosχϑ −χ sinχϑ
0 0 cosϑ sinϑ χ3 cosχϑ χ3 sinχϑ
0 0 cosϑ − sinϑ χ3 cosχϑ −χ3 sinχϑ




J1

J2

J3

J4

J5

J6

 =


0
0
0
0
0
0

 . (4.7.4)

The determinant D of the coe�cient matrix vanishes at the nontrivial solution, therefore

D = 0 = χ (χ− 1) (χ+ 1) (sinϑ sinχϑ) ·
·
(
sinχϑ cosϑ− χ3 cosχϑ sinϑ+ χ3Mϑ cosχϑ cosϑ− χMϑ cosχϑ cosϑ

)
. (4.7.5)

This condition yields �ve possibilities:

χ = 1 , χ = −1 , χ = 0 , sinχϑ = 0 ,

sinχϑ cosϑ− χ3 cosχϑ sinϑ− χ3Mϑ cosχϑ cosϑ+ χMϑ cosχϑ cosϑ = 0 .
(4.7.6)

Since the critical strain is a negative number, the �rst three roots have no physical sense.
From the fourth condition it follows that

χϑ = ±jπ , j = 1, 2, . . . ,

which means that χϑ = π is the lowest reasonable root. The corresponding eigenfunctions
satisfy the relations Wob(ϕ) = −Wob(−ϕ); Uob(ϕ) = Uob(−ϕ) . Consequently

εoξ crit = − 1

m

(
χ2 − 1

)
= − 1

m

[(π
ϑ

)2

− 1

]
(4.7.7)

is the critical strain. This result is the same as that obtained in relation with the stability
problem of shallow beams � compare it with (3.4.8).

4.7.2. Fixed-�xed beams. The critical strain can be obtained similarly as for pinned-
pinned beams. For �xed-�xed structural members

Uob|±ϑ = Wob|±ϑ = W
(1)
ob

∣∣∣
±ϑ

= 0 (4.7.8)

are the boundary conditions, which lead to the homogeneous equation system
0 1 cosϑ − sinϑ χ cosχϑ −χ sinχϑ
0 1 cosϑ sinϑ χ cosχϑ χ sinχϑ
0 0 sinϑ cosϑ χ2 sinχϑ χ2 cosχϑ
0 0 − sinϑ cosϑ −χ2 sinχϑ χ2 cosχϑ
1 Mϑ sinϑ cosϑ sinχϑ cosχϑ
1 −Mϑ − sinϑ cosϑ − sinχϑ cosχϑ




J1

J2

J3

J4

J5

J6

 =


0
0
0
0
0
0

 . (4.7.9)

Nontrivial solutions exist if the determinant D of the coe�cient matrix vanishes, that is, if

D = 0 = −8χ (− cosϑ sinχϑ+ χ sinϑ cosχϑ)×
×
(
−χ2 sinϑ sinχϑ+ χ2Mϑ cosϑ sinχϑ−Mϑ (sinϑ cosχϑ)χ+ sinϑ sinχϑ

)
. (4.7.10)

Consequently, there are three possibilities:

χ = 0, χ sinϑ cosχϑ = cosϑ sinχϑ, (4.7.11)
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sinχϑ
(
χ2Mϑ cosϑ+ sinϑ

)
= sinϑ

(
Mϑχ cosχϑ+ χ2 sinχϑ

)
. (4.7.12)

Equation (4.7.11)2 provides the lowest physically possible solution for χϑ. After dividing
throughout by cosϑχ cosϑ we get

χ tanϑ = tanχϑ . (4.7.13)

This equation is the same as (3.4.19) set up for the stability investigations of shallow beams.
The approximative polynomials satisfying the above relation with a good accuracy are

χϑ = gff(ϑ = 0 . . . 1.5) = 4.493 419 972 + 8.585 048 966 · 10−3ϑ+ 3. 717 588 695 · 10−2ϑ2+

+ 5.594 338 754 · 10−2ϑ3 − 3.056 068 806 · 10−2ϑ4 + 8.717 756 418 · 10−3ϑ5 , (4.7.14a)

χϑ = gff(ϑ = 1.5 . . . π) = 8.267 582 130 − 9.756 084 003ϑ+ 10.135 036 093ϑ2−
− 5.340 762 360ϑ3 + 1.848 589 184ϑ4 − 0.497 142 450ϑ4.5 . (4.7.14b)

Figure 4.3 con�rms that the approximative results (see the orange symbols) are indeed
accurate enough compared to the 'exact' solution (blue continuous line).

Figure 4.3. The solution gff(ϑ) for �xed deep circular beams.

It means that the critical strain

εoξ crit = − 1

m

[(gff

ϑ

)2

− 1

]
(4.7.15)

can be given in the same structure as in (3.4.22). However, this time the polynomial is valid
for greater central angles as well.

4.8. Computational results

Based on the previously reviewed algorithm, a program was developed in Fortran90 lan-
guage using the DGVCRG subroutine from the IMSL library [109] to compute the eigenvalues
(eigenfrequencies).

To validate the model and the code, we have checked whether the solutions for the free
vibrations (|εoξ| = |εoξ crit · 10−5| ' 0) coincide with previous results for homogeneous beams
from the literature [41, 100] given that the parameter m has the same value. To do so,
�rst, let us overview some well-known achievements. The i-th eigenfrequency for the free
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transverse vibrations of homogeneous straight beams [100] is

α∗i =
Ci, charπ

2√
ρA
IηE

`2
b

, (4.8.1)

where Ci, char denotes constants which depend on the supports and the ordinal number of the
frequency sought (see Table 4.1) and moreover `b is the length of the beam. The extension
of the former relation for cross-sectional inhomogeneity is [115]

α∗i =
Ci, charπ

2√
ρaA
Ieη
`2
b

. (4.8.2)

Table 4.1. The values of Ci,char [116].

i = 1 i = 2 i = 3 i = 4

Pinned-pinned beams 1 4 9 16

Fixed-�xed beams 2.266 6.243 12.23 20.25

If we recall and rearrange equations (4.1.26)-(4.1.27) with εoξ ' 0, then

αi = αi free =

√
Λi Ieη
ρaAρ4

o

(4.8.3)

provides the i-th natural (unloaded) frequency for curved beams. Thus, the quotient of the
previous two formulae is

Ci,char
αi
α∗i

=

√
Λi√

ρaA

Ieη
ρ2
o

π2√
ρaA

Ieη
`2
b

=
ϑ 2
√

Λi

π2
. (4.8.4)

This relation expresses the ratio of the natural frequencies of curved and straight beams with
the same length (`b = ρoϑ̄ = ρo2ϑ) and same material composition, i.e. it is valid not only
for homogeneous materials but also for cross-sectional inhomogeneity.

Moving on now to the free longitudinal vibrations of homogeneous �xed-�xed rods, the
natural frequencies assume the form [100]

α̂i =
Ki char

`r

√
E

ρ
π , (4.8.5)

where the constant Ki char = i; (i = 1, 2, 3, . . .); `r is the length of the rod and ρ is the
density of the cross-section. If we recall equation (4.8.3) for homogeneous material, we
can compare this result to that valid for the free vibrations of curved beams (given that
|εoξ| = |εoξ crit · 10−5| ' 0 when calculating the eigenvalues Λi) in such a way that

Ki char
αi free

α̂i
=

1√
m

ϑ̄

π

√
Λi . (4.8.6)
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4.8.1. Results for unloaded pinned-pinned beams. In Figure 4.4 the ratio (4.8.4)
is plotted in terms of the central angle ϑ̄ of the circular beam. The following values of m
were picked: 750, 1 000, 1 300, 1 750, 2 400, 3 400, 5 000, 7 500, 12 000, 20 000, 35 000,
60 000, 100 000 and 200 000.

The (comparable) outcomes are identical to those of [41] valid for homogeneous beams.
Thus, it turns out that the ratios of the odd frequencies do not depend on m. Another
important property is that there can be experienced a frequency shift: in terms of magnitude,
the �rst/third frequency becomes the second/fourth one if the central angle is su�ciently
great.

Figure 4.4. Vibrations of pinned-pinned circular beams when εoξ ' 0.

A few �nite element control calculations were carried out to check the results. In Abaqus 6.7
we have used the Linear Perturbation, Frequency step. The model consisted of B22 (3-node
Timoshenko beam) elements. Further, we chose E = 2 · 1011 Pa and ρ = 7 800 kg/m3. The
frequency ratios of the new model (αiNew model) and Abaqus (αiAbaqus) are gathered in Tables
4.2 and 4.3. There is generally a very good agreement.
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Table 4.2. FE veri�cations, ρo/b = 10; m = 1 200.

ϑ
α1 New model

α1 Abaqus

α2 New model

α2 Abaqus

α3 New model

α3 Abaqus

α4 New model

α4 Abaqus

0.5 1.001 1.053 1.109 1.179
1 1.014 1.029 1.004 1.053
1.5 1.007 1.014 1.028 1.006
2 1.004 1.008 1.014 1.022
2.5 1.003 1.005 1.010 1.015

Table 4.3. FE veri�cations, ρo/b = 30 ,m = 10 800.

ϑ
α1 New model

α1 Abaqus

α2 New model

α2 Abaqus

α3 New model

α3 Abaqus

α4 New model

α4 Abaqus

0.5 1.006 1.010 1.005 1.025
1 1.002 1.004 1.007 1.011
1.5 1.001 1.002 1.003 1.006
2 1.000 1.001 1.002 1.003
2.5 1.000 1.001 1.002 1.003
3 1.001 1.001 1.001 1.002

Some further comparisons with the results presented in Tables 5 and 8 in [82] are provided
hereinafter assuming a rectangular cross-section (A = 0.01 m2; Iη = 8.33 ·10−6 m4) and that
E = 2 · 1011 Pa, ρa = 7 800 kg/m3. In Table 4.4, 2ϑ = π/2 while in Table 4.5, it is 2ϑ = π.

Table 4.4. Comparison of the eigenfrequencies, 2ϑ = π/2, pinned supports.

m Ref. [117] Ref. [82] col. 1 Ref. [82] col. 2 Ref. [82] col. 5 New model

10 000 α1 38.38 38.38 38.42 38.28 38.41
10 000 α2 89.57 89.56 90.46 89.08 89.77
10 000 α3 171.42 171.41 172.17 169.75 172.18
10 000 α4 244.96 244.94 269.26 243.05 245.82
2 500 α1 152.93 152.93 153.7 151.45 153.48
2 500 α2 343.01 342.76 361.85 336.46 345.31
2 500 α3 552.15 552.17 688.7 549.84 552.28
2 500 α4 675.71 675.83 1077.01 651.82 685.38

Table 4.5. Comparison of the eigenfrequencies, 2ϑ = π, pinned supports.

m Ref. [117] Ref. [82] col. 1 Ref. [82] col. 2 Ref. [82] col. 5 New model

10 000 α1 6.33 6.33 6.33 6.32 6.33
10 000 α2 19.31 19.31 19.33 19.28 19.32
10 000 α3 38.98 38.97 39.02 38.87 39.05
10 000 α4 63.53 63.53 63.71 63.29 63.79
2 500 α1 25.28 25.28 25.31 25.21 25.3
2 500 α2 77.01 76.99 77.31 76.57 77.18
2 500 α3 155.24 155.25 156.09 153.75 155.96
2 500 α4 251.86 251.82 254.83 248.12 253.81

Tüfekçi and Arpaci [82] have checked their numerical results under various assumptions. In
the next two tables, the notation Ref. [82] col. 1 denotes that the authors have accounted
axial extension and rotatory inertia e�ects as in [117]. Further, Ref. [82] col. 2 notes that
both these e�ects are neglected, meanwhile in the column named Ref. [82] col. 5, results by
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the most accurate model are shown: not only axial and transverse shear extension e�ects but
also rotatory inertia e�ects are considered. After comparing the outcomes one can conclude
that the correlation, even with the model using the least neglects, is really good.

The quotient (4.8.6) is plotted in Figure 4.5 for i = 1, 2. According to the computational
results, these ratios do not depend on the parameter m and its value are equal to 1 or 2 if
the central angle is small enough.

Figure 4.5. Results for pinned-pinned beams, when εoξ ' 0.

4.8.2. Results for loaded pinned-pinned beams. Now the e�ect of the central con-
centrated load on the frequencies is analysed. In this subsection let αi be the i-th natural
frequency of the loaded circular beam while the unloaded (natural) frequencies are denoted
by αi free.

Figure 4.6 represents the quotient α2
2/α

2
2 free � the subscript 2 is in accord with Figure 4.4

� against the quotient |εoξ/εoξ crit| for beams under compression and tension. The frequencies
α2 and α2 free are the lowest eigenfrequencies of the vibrations above the limit

ϑ̄(m) ' −0.142 5 + 2.7 · 10−8m+ 10 700/m2 + 5.04/m0.2 , m ∈ [103; 106] . (4.8.7)

Figure 4.6. Results for the two loading cases of pinned-pinned beams.

The tested values of the related parameters are as follows: m = {103; 104; 105}; ϑ̄ =
{0.2; 0.4; 0.6; 1; 1.6; 2; 3; 4; 5; 6} and |εoξ/εoξ crit| = {10−5; 0.1; 0.2; ...; 0.9; 0.99}. In addition to
the fact that the results are independent of m and ϑ, the plotted relationships are linear
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with a very good accuracy � i.e. the frequencies under [compression] <tension> happen to
[decrease] <increase> linearly. The polynomials

α2
2

α2
2 free

= 1.000 46− 1.000 38
|εoξ|
εoξ crit

, if εoξ < 0 , (4.8.8)

α2
2

α2
2 free

= 1.000 661 286 + 0.999 915 179
|εoξ|
εoξ crit

, if εoξ > 0 (4.8.9)

�t well on these results. This achievement is basically the same as the well-known result
that is valid for pinned-pinned straight beams if they are subjected to an axial force � see
for instance [86].

4.8.3. Results for unloaded �xed-�xed beams. The quotient (4.8.4) is plotted in
Figure 4.7 against the central angle. Once more, the picked values of m are 750, 1 000, 1 300,
1 750, 2 400, 3 400, 5 000, 7 500, 12 000, 20 000, 35 000, 60 000, 100 000 and 200 000. The
curves run similarly as for pinned-pinned beams and the properties are also the same. The
quotients are generally greater for the same parameters meaning that the �xed ends provide
sti�er supports.

Figure 4.7. Results for �xed-�xed beams when εoξ ' 0.
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There were some experiments carried out by some kind colleagues in Romania to deter-
mine the �rst natural frequency of four specimens. I would like to express my gratitude to
them. The method is detailed in [118]. The tested beams with rectangular cross-section
are made of steel: E ' 2 · 1011 Pa. All the other parameters are gathered in Table 4.6.
The measured frequencies are denoted by α1 Meas. We can see that both the new model and
Abaqus yield really close results to the experiments.

Table 4.6. Unloaded frequencies � comparison with measurements.

m ϑ̄ A ρo
α1 New model

α1 Meas.

α1 Abaqus

α1 Meas.

[ −] [◦] [mm2] [mm] [−] [−]

98 523 46 29.7 · 4.8 434.9 1.099 1.097

84 984 43.1 25 · 5.5 462.9 1.050 1.047

77 961 36.9 29.5 · 5 403 1.046 1.041

281 169 31.17 25.6 · 3.1 474.5 1.070 1.068

Some additional Abaqus computations were as well carried out. The settings were the same
as mentioned in relation with pinned-pinned beams and the consequences also hold. The
results are gathered in Tables 4.7 and 4.8.

Table 4.7. FE veri�cations, �xed-�xed beams, m = 1 200, ρo/b = 10.

ϑ
α1 New model

α1 Abaqus

α2 New model

α2 Abaqus

α3 New model

α3 Abaqus

α4 New model

α4 Abaqus

0.5 1.019 1.115 1.193 1.314

1 1.031 1.037 1.021 1.075

1.5 1.014 1.025 1.039 1.037

2 1.008 1.015 1.022 1.032

2.5 0.971 1.010 1.015 1.022

Table 4.8. FE veri�cations, �xed-�xed beams, m = 10 800, ρo/b = 30.

ϑ
α1 New model

α1 Abaqus

α2 New model

α2 Abaqus

α3 New model

α3 Abaqus

α4 New model

α4 Abaqus

0.5 1.014 1.007 1.018 1.039

1 1.004 1.006 1.010 1.014

1.5 1.002 1.003 1.006 1.009

2 1.001 1.002 1.003 1.005

2.5 1.000 1.001 1.002 1.004

3 1.000 1.001 1.002 1.004

Recalling the results gathered in Tables 1 and 4 in [82], we can make some additional
comparisons as shown in Tables 4.9 and 4.10. All the data are the same as for pinned-pinned
beams. The agreement is good yet again.
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Table 4.9. Comparison of the eigenfrequencies, 2ϑ = π/2, �xed supports.

m Ref. [117] Ref. [82] col. 1 Ref. [82] col. 2 Ref. [82] col. 5 New model
10 000 α1 63.07 63.06 63.16 62.62 63.1
10 000 α2 117.22 117.19 120.76 115.85 117.5
10 000 α3 217.13 217.08 218.41 213.28 218.2
10 000 α4 249.26 345.21 322.26 247.96 249.8
2 500 α1 251 251 252.66 244.24 251.89
2 500 α2 399.68 399.65 483.04 390.09 401.16
2 500 α3 613.25 613.33 873.64 600.7 617.25
2 500 α4 847.24 847.07 1289.06 795.82 859.02

Table 4.10. Comparison of the eigenfrequencies, 2ϑ = π, �xed supports.

m Ref. [117] Ref. [82] col. 1 Ref. [82] col. 2 Ref. [82] col. 5 New model
10 000 α1 12.23 12.23 12.24 12.21 12.24
10 000 α2 26.89 26.89 26.95 26.80 26.92
10 000 α3 49.93 49.93 50.03 49.70 50.07
10 000 α4 76.43 76.44 76.84 75.95 76.85
2 500 α1 48.87 48.86 48.96 48.51 48.9
2 500 α2 106.85 106.85 107.78 105.53 107.1
2 500 α3 198.57 198.51 200.13 194.94 199.5
2 500 α4 299.61 299.59 307.37 292.46 302.13

The quotients (4.8.6) for i = 1, 2 are plotted in Figure 4.8. With a good accuracy, these
ratios do not depend on the parameter m and are equal to 1 and 2, respectively if the central
angle is small enough.

Figure 4.8. Comparison with vibrating rods when εoξ ' 0.

4.8.4. Results for loaded �xed-�xed beams. When the e�ect of the central con-
centrated load is accounted � keeping the same notations as in Subsection 4.8.2 � we have
found that while the numerical results for the frequency quotient (α2/α2 free)

2 show some
noticeable dependency on the central angle, they are insensible to the parameter m. The
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tested values are the same as for the other support arrangement. The results are presented
graphically in Figure 4.9.

We can conclude that when the beam is under compression and ϑ̄ ∈ [0.2; 5], the results
are approximated with a good accuracy by the continuous black curve in the corresponding
�gure. The equation of that approximative polynomial is(

α2

α2 free

)2

= 0.999 354− 0.916 924

∣∣∣∣ εoξ
εoξ crit

∣∣∣∣− 0.077 732

∣∣∣∣ εoξ
εoξ crit

∣∣∣∣2 . (4.8.10)

When ϑ̄ = 6 we had better use(
α2

α2 free

)2

= 0.994 622− 0.611 192

∣∣∣∣ εoξ
εoξ crit

∣∣∣∣− 0.352 049

∣∣∣∣ εoξ
εoξ crit

∣∣∣∣2 . (4.8.11)

It therefore means that the approximations are more reasonable with quadratic functions
instead of linear ones.

The case of tension seems a bit more complicated as the central angle has a greater
in�uence on the frequency quotients. The equations of the �tting curves in Figure 4.9 are(

α2

α2 free

)2

= 0.994 252 + 0.968 480

∣∣∣∣ εoξ
εoξ crit

∣∣∣∣+ 0.012 209

∣∣∣∣ εoξ
εoξ crit

∣∣∣∣2 , if ϑ̄ = 0.2; (4.8.12)

(
α2

α2 free

)2

= 0.998 414 + 0.971 007

∣∣∣∣ εoξ
εoξ crit

∣∣∣∣− 0.058 161

∣∣∣∣ εoξ
εoξ crit

∣∣∣∣2 , if ϑ̄ = 3; (4.8.13)

(
α2

α2 free

)2

= 1.000 444 + 0.874 756

∣∣∣∣ εoξ
εoξ crit

∣∣∣∣− 0.051 986

∣∣∣∣ εoξ
εoξ crit

∣∣∣∣2 , if ϑ̄ = 5; (4.8.14)

(
α2

α2 free

)2

= 1.000 926 + 0.679 926

∣∣∣∣ εoξ
εoξ crit

∣∣∣∣− 0.088 723

∣∣∣∣ εoξ
εoξ crit

∣∣∣∣2 , if ϑ̄ = 6. (4.8.15)

The frequencies α2 and α2 free are the lowest frequencies above the limit

ϑ̄(m) ' −0.159+8.874·10−8m−2.99·10−14m2+6.448/m0.2 , m ∈ [7.5·102; 2·105] . (4.8.16)

Figure 4.9. Results for the two loading cases of �xed-�xed beams.
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4.8.5. The e�ect of heterogeneity on the frequency spectrum. Here we investi-
gate how the frequencies can change due to the inhomogeneity. We consider a functionally
graded material composition. The material properties, i. e. Young's modulus E = E(ζ) and

Figure 4.10. A functionally graded rectangular cross-section.
the density ρ are distributed along the axis z (or ζ) of the rectangular cross-section in Figure
4.10 according to a similar power law rule as in [73,95,98]:

E(z) = (Em − Ec)
(z
b

)k
+ Ec , ρ(z) = (ρm − ρc)

(z
b

)k
+ ρc . (4.8.17)

Here the subscripts c and m refer to the ceramic and metal constituents of the material and
the exhibitor k ∈ R. In this example we choose an aluminium oxide Al2O3 and aluminium
constitution, therefore

Ec = 38·104 MPa ; Em = 7·104 MPa ; ρc = 3.8·10−6 kg

mm2
; ρm = 2.707·10−6 kg

mm2
. (4.8.18)

The value of the index k will be increased gradually from 0 by 0.5 until 5. If k = 0, the
cross-section is homogeneous aluminium and the typical quantities will be distinguished by
a subscript hom. Otherwise, the subscript het is in command. (When k → ∞ the whole
cross-section is Al2O3 with a thin aluminium layer at z = b.) In Figures 4.11 and 4.12 we
show the distribution of E and ρ along the height of the cross-section accordingly with the
power law.

Figure 4.11. Variation of Young's modulus over the height of the cross-
section.
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Figure 4.12. Variation of the density over the height of the cross-section.

Similarly as done in Section 3.6, we now plot some typical distributions along the axis z
(or ζ). The parameter m consists of two parts just as in (3.6.1):

mhet

mhom(k = 0)
=
AeIη
AIeη

[
ρo het

ρo hom

]2

. (4.8.19)

Recalling formulae (2.1.12)-(2.1.13c), (4.8.17), (4.8.18) and Figure 4.10, the physical quan-
tities we need for the current example assume the forms

E (ζ) = (70 000− 380 000)

(
ζ + zc
b

)k
+ 380 000 , (4.8.20a)

Qey =

∫
A
EzdA = a

∫ b

0

[(
(70 000− 380 000)

(z
b

)k
+ 380 000

)
z

]
dz , (4.8.20b)

Ae =

∫
A
EdA = a

∫ b

0

[
(70 000− 380 000)

(z
b

)k
+ 380 000

]
dz , zC =

Qey
Ae

, (4.8.20c)

Ieη =

∫
A
Eζ2dA = a

∫ (b−zc)

−zc

[(
(70 000− 380 000)

(
ζ + zc
b

)k
+ 380 000

)
ζ2

]
dζ . (4.8.20d)

The �rst term on the right side of (4.8.19) depends only on k as can be seen from Figure
4.13. The maximum is reached at k = 2, that is ' 1.218.

Figure 4.13. The �rst factor in (4.8.19) against k.
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The second factor is, moreover, function of the ratio ρo/b. Some possible solutions with
the approximative polynomials are plotted in Figure 4.14.

Figure 4.14. The second factor in (4.8.19) against k.

Therefore, the product (4.8.19) itself in terms of k and ρo/b is shown in Figure 4.15.

Figure 4.15. The parameter m (4.8.19) against k.

4.8.5.1. Free vibrations. Now let us see how the inhomogeneity can a�ect the �rst four
natural frequencies of pinned-pinned circular beams. We choosemhom = 1 200 and ρo/b = 10,
therefore the maximum of the quotient mhet/mhom is ' 1.196 at k = 2. The picked semi-
vertex angles are ϑ = (0.2; 0.4; 0.8; 1.6). We remind the reader to the fact that not only
the parameter m but also the average density and the E-weighted moment of inertia have
in�uence on the frequency spectrum � see equations (4.1.27) and (4.1.26). The computational
results are plotted in Figure 4.16.
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Figure 4.16. The change in the frequencies due to the inhomogeneity.

Generally we can conclude that there are signi�cant di�erences because of the inhomo-
geneity. When ϑ = 0.2, all four frequencies change in a similar way and in the order from
the �rst one to the fourth one. Interestingly, when ϑ = 0.4, only the second, third and
fourth frequencies change almost exactly the same way. Increasing the semi-vertex angle to
0.8, we again experience a new tendency: the even frequencies are a�ected the mostly by
the material composition. On the bottom right diagram the curves coincide with a good
accuracy.

4.8.5.2. Loaded vibrations. Let mhom(k = 0) = 10 800 and ρo/b = 30. Pζ ref is always
the critical load of the homogeneous pinned-pinned beam � its value further depends on the
central angle. We would like to brie�y show how the the �rst four frequencies change for
k = 0.5; 1; 2.5 and 5 given that the load is unchanged and at the same time proportional to
the critical load of the homogeneous beam.

First, we investigate the case when ϑ = 0.2. The quotient Pζ/Pζ ref is [positive] (negative)
when the beam is under [compression] (tension). The beam is unloaded if this ratio is zero.
The results for eight di�erent load values in relation with the �rst four natural frequencies
are gathered in Tables 4.11�4.14.

After observing these tables, one can conclude that the inhomogeneity a�ects more the
frequencies under compression than in tension. The greatest in�uence of the load is always
on the �rst frequency and the least is on the fourth one. It is also a common property
that the corresponding frequency quotients are closest to 1 when the tensile force is the
greatest. From the top to the bottom of any column, the numbers increase gradually. Both
the inhomogeneity and the loading can have a huge in�uence on the frequencies.
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Table 4.11. Results when k = 0.5 and ϑ = 0.2.

Pζ
Pζ ref

α1 het (k = 0.5)

α1 hom (k = 0)

α2 het (k = 0.5)

α2 hom (k = 0)

α3 het (k = 0.5)

α3 hom (k = 0)

α4 het (k = 0.5)

α4 hom (k = 0)

−0.8 1.238 1.230 1.308 1.347
−0.6 1.273 1.260 1.329 1.362
−0.4 1.318 1.298 1.353 1.377
−0.2 1.377 1.346 1.380 1.394
0.0 1.462 1.411 1.412 1.412
0.2 1.591 1.503 1.448 1.432
0.4 1.817 1.645 1.491 1.453
0.6 2.339 1.898 1.543 1.477
0.8 3.264 2.508 1.606 1.502

Table 4.12. Results when k = 1 and ϑ = 0.2.

Pζ
Pζ ref

α1 het (k = 1.0)

α1 hom (k = 0)

α2 het (k = 1.0)

α2 hom (k = 0)

α3 het (k = 1.0)

α3 hom (k = 0)

α4 het (k = 1.0)

α4 hom (k = 0)

−0.8 1.318 1.289 1.385 1.435
−0.6 1.363 1.326 1.411 1.453
−0.4 1.420 1.373 1.441 1.472
−0.2 1.497 1.433 1.474 1.492
0.0 1.604 1.512 1.513 1.515
0.2 1.766 1.624 1.557 1.539
0.4 2.046 1.796 1.609 1.566
0.6 2.681 2.097 1.672 1.594
0.8 3.782 2.813 1.749 1.625

Table 4.13. Results when k = 2.5 and ϑ = 0.2.

Pζ
Pζ ref

α1 het (k = 2.5)

α1 hom (k = 0)

α2 het (k = 2.5)

α2 hom (k = 0)

α3 het (k = 2.5)

α3 hom (k = 0)

α4 het (k = 2.5)

α4 hom (k = 0)

−0.8 1.402 1.364 1.484 1.545
−0.6 1.458 1.41 1.516 1.567
−0.4 1.53 1.468 1.552 1.59
−0.2 1.624 1.541 1.593 1.616
0.0 1.755 1.639 1.64 1.643
0.2 1.952 1.776 1.694 1.673
0.4 2.287 1.983 1.758 1.705
0.6 3.304 2.342 1.834 1.74
0.8 5.230 3.186 1.926 1.778
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Table 4.14. Results when k = 5 and ϑ = 0.2.

Pζ
Pζ ref

α1 het (k = 5.0)

α1 hom (k = 0)

α2 het (k = 5.0)

α2 hom (k = 0)

α3 het (k = 5.0)

α3 hom (k = 0)

α4 het (k = 5.0)

α4 hom (k = 0)

−0.8 1.446 1.421 1.557 1.626
−0.6 1.509 1.474 1.594 1.651
−0.4 1.588 1.54 1.634 1.677
−0.2 1.692 1.623 1.681 1.706
0.0 1.835 1.733 1.734 1.736
0.2 2.049 1.887 1.795 1.769
0.4 2.413 2.118 1.867 1.805
0.6 4.117 2.517 1.951 1.844
0.8 7.109 3.447 2.054 1.885

Similar tendencies but with less signi�cant di�erences are experienced for such semi-
vertex angles when ϑ = 0.5 as it turns out from Tables 4.15�4.18. Altogether, there is sill at
least 22.6% distinction between the related frequencies. None of the ratios go below 1.

Table 4.15. Results when k = 0.5 and ϑ = 0.5.

Pζ
Pζ ref

α1 het (k = 0.5)

α1 hom (k = 0)

α2 het (k = 0.5)

α2 hom (k = 0)

α3 het (k = 0.5)

α3 hom (k = 0)

α4 het (k = 0.5)

α4 hom (k = 0)

−0.8 1.226 1.368 1.399 1.346
−0.6 1.256 1.379 1.415 1.360
−0.4 1.295 1.392 1.431 1.376
−0.2 1.344 1.409 1.446 1.393
0.0 1.411 1.431 1.462 1.411
0.2 1.505 1.459 1.475 1.431
0.4 1.650 1.494 1.488 1.453
0.6 1.908 1.539 1.500 1.477
0.8 2.528 1.596 1.512 1.503

Table 4.16. Results when k = 1 and ϑ = 0.5.

Pζ
Pζ ref

α1 het (k = 1.0)

α1 hom (k = 0)

α2 het (k = 1.0)

α2 hom (k = 0)

α3 het (k = 1.0)

α3 hom (k = 0)

α4 het (k = 1.0)

α4 hom (k = 0)

−0.8 1.282 1.467 1.525 1.432
−0.6 1.321 1.480 1.546 1.450
−0.4 1.369 1.497 1.565 1.469
−0.2 1.430 1.518 1.585 1.491
0.0 1.512 1.545 1.604 1.513
0.2 1.627 1.579 1.622 1.537
0.4 1.803 1.622 1.639 1.564
0.6 2.111 1.676 1.654 1.593
0.8 2.840 1.745 1.669 1.625
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Table 4.17. Results when k = 2.5 and ϑ = 0.5.

Pζ
Pζ ref

α1 het (k = 2.5)

α1 hom (k = 0)

α2 het (k = 2.5)

α2 hom (k = 0)

α3 het (k = 2.5)

α3 hom (k = 0)

α4 het (k = 2.5)

α4 hom (k = 0)

−0.8 1.357 1.581 1.663 1.542
−0.6 1.405 1.598 1.685 1.564
−0.4 1.464 1.62 1.712 1.587
−0.2 1.539 1.646 1.734 1.613
0.0 1.638 1.68 1.756 1.64
0.2 1.779 1.722 1.778 1.669
0.4 1.988 1.773 1.799 1.701
0.6 2.354 1.839 1.817 1.736
0.8 3.21 1.921 1.835 1.777

Table 4.18. Results when k = 5 and ϑ = 0.5.

Pζ
Pζ ref

α1 het (k = 5.0)

α1 hom (k = 0)

α2 het (k = 5.0)

α2 hom (k = 0)

α3 het (k = 5.0)

α3 hom (k = 0)

α4 het (k = 5.0)

α4 hom (k = 0)

−0.8 1.416 1.657 1.735 1.624
−0.6 1.47 1.677 1.76 1.648
−0.4 1.537 1.701 1.787 1.675
−0.2 1.621 1.733 1.81 1.705
0.0 1.733 1.77 1.836 1.734
0.2 1.888 1.817 1.859 1.768
0.4 2.122 1.875 1.881 1.803
0.6 2.526 1.948 1.9 1.842
0.8 3.468 2.039 1.919 1.887

Tables 4.19�4.22 are �lled with results under the assumption that ϑ = 1. When k = 0.5, the
load magnitude and direction do not have a real e�ect on the frequencies. In this respect
the other three tables are more informative.

Table 4.19. Results when k = 0.5 and ϑ = 1.

Pζ
Pζ ref

α1 het (k = 0.5)

α1 hom (k = 0)

α2 het (k = 0.5)

α2 hom (k = 0)

α3 het (k = 0.5)

α3 hom (k = 0)

α4 het (k = 0.5)

α4 hom (k = 0)

−0.8 1.404 1.408 1.409 1.412
−0.6 1.405 1.408 1.409 1.412
−0.4 1.407 1.409 1.410 1.412
−0.2 1.408 1.410 1.410 1.412
0.0 1.411 1.411 1.411 1.413
0.2 1.414 1.412 1.412 1.413
0.4 1.421 1.414 1.412 1.413
0.6 1.433 1.416 1.413 1.414
0.8 1.469 1.419 1.414 1.414
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Table 4.20. Results when k = 1 and ϑ = 1.

Pζ
Pζ ref

α1 het (k = 1.0)

α1 hom (k = 0)

α2 het (k = 1.0)

α2 hom (k = 0)

α3 het (k = 1.0)

α3 hom (k = 0)

α4 het (k = 1.0)

α4 hom (k = 0)

−0.8 1.168 1.330 1.401 1.443
−0.6 1.229 1.368 1.426 1.460
−0.4 1.302 1.411 1.453 1.478
−0.2 1.328 1.430 1.466 1.486
0.0 1.512 1.513 1.512 1.515
0.2 1.675 1.574 1.545 1.535
0.4 1.933 1.652 1.584 1.558
0.6 2.345 1.735 1.622 1.580
0.8 3.284 1.834 1.664 1.604

Table 4.21. Results when k = 2.5 and ϑ = 1.

Pζ
Pζ ref

α1 het (k = 2.5)

α1 hom (k = 0)

α2 het (k = 2.5)

α2 hom (k = 0)

α3 het (k = 2.5)

α3 hom (k = 0)

α4 het (k = 2.5)

α4 hom (k = 0)

−0.8 1.257 1.436 1.517 1.563
−0.6 1.326 1.479 1.544 1.582
−0.4 1.405 1.527 1.574 1.601
−0.2 1.507 1.59 1.605 1.622
0.0 1.639 1.639 1.639 1.643
0.2 1.819 1.707 1.676 1.665
0.4 2.085 1.791 1.714 1.688
0.6 2.533 1.878 1.757 1.713
0.8 3.554 1.987 1.803 1.738

Table 4.22. Results when k = 5 and ϑ = 1.

Pζ
Pζ ref

α1 het (k = 5.0)

α1 hom (k = 0)

α2 het (k = 5.0)

α2 hom (k = 0)

α3 het (k = 5.0)

α3 hom (k = 0)

α4 het (k = 5.0)

α4 hom (k = 0)

−0.8 1.324 1.516 1.602 1.651
−0.6 1.397 1.563 1.631 1.672
−0.4 1.483 1.614 1.664 1.692
−0.2 1.592 1.669 1.697 1.714
0.0 1.732 1.734 1.733 1.737
0.2 1.926 1.806 1.772 1.76
0.4 2.207 1.891 1.814 1.786
0.6 2.703 1.988 1.859 1.811
0.8 3.772 2.104 1.908 1.84

4.8.5.3. Finite element computations. For the forthcoming �nite element computations
we have used the same Pζ loads in [N] both for the new model and for Abaqus. The tested
geometry: a = b = 10 mm, ρo/b = 30, and the material is aluminium (k = 0 � see the
material properties beforehand). Pζ ref denotes the critical load of the pinned-pinned beam
according to (4.6.4) and (4.7.7). In Abaqus we have combined the Static, General and the
Linear Perturbation, Frequency steps with B22 beam elements.

This comparison holds two vital basic di�erences we should mention. The �rst one is
that the load-strain relationship is not known for Abaqus. The next one is the fact that the
commercial software can only account for the load using a geometrically nonlinear model
regarding the pre-stressing step. As a consequence, we expect more distinct results between
the models as the load is increased. Despite all these remarks, some simple comparisons for
ϑ = 0.2; 0.5; 1 are provided in Tables 4.23�4.25.
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Table 4.23. Results when ϑ = 0.2.

Pζ
Pζ ref

α1 New model

α1 Abaqus

α2 New model

α2 Abaqus

α3 New model

α3 Abaqus

α3 New model

α3 Abaqus

−0.8 0.815 1.132 1.136 1.321
−0.6 0.820 1.106 1.120 1.292
−0.4 0.835 1.080 1.105 1.265
−0.2 0.876 1.055 1.090 1.237

0.0 1.001 1.037 1.079 1.213
0.2 1.575 1.018 1.071 1.198
0.4 0.666 0.779 0.965 1.164

Table 4.24. Results when ϑ = 0.5.

Pζ
Pζ ref

α1 New model

α1 Abaqus

α2 New model

α2 Abaqus

α3 New model

α3 Abaqus

α3 New model

α3 Abaqus

−0.8 1.009 0.857 1.162 1.021
−0.6 1.008 0.879 1.137 1.021
−0.4 1.007 0.913 1.097 1.022
−0.2 1.006 0.956 1.054 1.023

0.0 1.006 1.010 1.004 1.025
0.2 1.008 1.083 0.947 1.029
0.4 1.013 1.186 0.881 1.036
0.6 1.031 1.347 0.804 1.047

Table 4.25. Results when ϑ = 1.

Pζ
Pζ ref

α1 New model

α1 Abaqus

α2 New model

α2 Abaqus

α3 New model

α3 Abaqus

α3 New model

α3 Abaqus

−0.8 1.218 1.084 1.063 1.059
−0.6 1.175 1.066 1.050 1.047
−0.4 1.126 1.047 1.036 1.035
−0.2 1.069 1.027 1.022 1.023

0 1.002 1.004 0.996 1.011
0.2 0.921 0.979 0.991 0.998
0.4 0.821 0.952 0.964 0.986
0.6 0.690 0.923 0.958 0.974

In general these three tables show that the models coincide really well for unloaded beams.
Further, the di�erences are less when the force is a tensile one. The �rst frequencies seem to
be the furthest from each other between the two models regarding the whole loading range.
When the amplitude of the load is greater, the di�erences as well become greater as expected
in advance. Altogether, the correlation is quite good between Pζ/Pζ ref ∈ (−0.8, . . . , 0.4).

4.9. Summary of the results achieved in Section 4

I have investigated the vibrations of curved beams with cross-sectional inhomogeneity,
subjected to a vertical force at the crown point. The most important results are as follows:

1. I have derived the governing equations of those boundary value problems which make
it possible to determine how a radial load a�ects the natural frequencies. For pinned-
pinned and �xed-�xed beams I have determined the Green function matrices assum-
ing that the beam is prestressed by a central load. When computing these matrices
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I had to take into account that the system of ordinary di�erential equations that
govern the problem is degenerated.

2. Making use of the Green function matrices, I have reduced the self-adjoint eigenvalue
problems set up for the eigenfrequencies to eigenvalue problems governed by homo-
geneous Fredholm integral equation systems � four homogenous Fredholm integral
equation systems have been established. These integral equations can directly be
used for those dead loads, which result in a constant, otherwise either negative or
positive axial strain on the E-weighted centerline. I have replaced these eigenvalue
problems with algebraic ones and solved them numerically.

3. It has turned out that the square of the quotient of the second loaded and unloaded
natural frequencies depends almost linearly on the axial strain-critical strain ratio
and is actually independent of the curved beam geometry and material inhomogene-
ity for pinned-pinned beams. The relations for �xed-�xed beams are more dependent
on the central angle and are rather quadratic. In the knowledge of the load-strain
relationship we can determine the strain due to the load, and then the natural fre-
quencies of the loaded structure. If the strain is zero, we get back those results which
are valid for the free vibrations.

4. In some cases, the numerical results are veri�ed by commercial �nite element calcu-
lations and experiments as well. According to these, it turns out that the numerical
model approximates the eigenfrequencies with a good accuracy.
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CHAPTER 5

Outline

I remark that the text in this chapter coincides more or less with the text of the Synopsis.
The author's aim to provide a summary in this way is twofold. First of all, I intend to give
the reader the opportunity to brie�y survey the preliminaries and objectives of this work:
what methodologies have been used during the solution, what results have been attained
and �nally, what my future research plans are. Secondly, I might be wrong but I think that
it is worthy to add such a summary to the main text since the related, though, separate
Synopsis will probably be preserved with less probability.

5.1. Preliminaries

As regards the preliminaries I again point out that in recent decades, curved beams have
been widely used in numerous engineering applications as load carrying members. Let us just
think about arch bridges, roof structures or sti�eners in the aerospace or marine industry.
Scientists and designers are always being interested in the mechanical behaviour (stresses,
displacements, load carrying capabilities, etc.) of such structural elements to prevent fail-
ure (e.g.: yielding, buckling, self-excited vibrations) under given loads and circumstances.
Therefore, there are a number of books, articles and other scienti�c works delivering rele-
vant results, see, e.g., [8,13,22] for calculating the stresses, [41,61,73] for stability problems
and [41,82,91] as regards the issue of vibrations.

Nowadays not only homogeneous members but inhomogeneous or heterogeneous ones are
also getting more and more widespread. These beams can have more advantageous properties
compared to homogeneous ones, such as reduced weight; improved corrosion, fatigue and
chemical resistance and higher strength. A class of nonhomogeneous material composition
is the so-called cross-sectional inhomogeneity. It means that the material parameters � say,
Young's modulus E or the Poisson ratio ν � have symmetric distribution with respect to the
cross-sectional axis ζ. This distribution is either continuous or constant over each segment
(layer). Some illustrative examples are shown in Figure 5.1. In this way it

Figure 5.1. The concept of cross-sectional inhomogeneity.

is possible to simply model composites, multilayered or functionally graded materials. For
planar, elastic, isotropic circular beams of this kind, I intend to focus on three mechanical
issues: stresses, stability and vibrations.
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5.1.1. Some mechanical issues of circular beams. As regards the mechanical be-
haviour of curved beams, investigations began in the 19th century. The foremost load-
displacement relationship was established by Bresse (1854). Winkler was the �rst to derive
a formula for the normal stress distribution (1858) and Grashof is known for developing an
equilibrium method (1878) for the calculation of the shear stresses. These results are well
collected in the works [8,11].

The interest is still live, as new models for di�erent loading cases, geometries, and even
for nonhomogeneous materials are continuously being published. For instance, Ascione and
Fraternali [18] use the �nite element method to obtain solutions for the stresses in per-
fectly bonded layered curved beams. They assume that each layer is a Timoshenko beam.
They compute interlaminar, normal and shear stresses as well. Segura and Armengaud [19]
propose simple analytical solutions for the normal and shearing stress distributions in com-
posites under bending loads. The normal stress distribution due to the bending moment
and the axial force is hyperbolic over the cross-section. The authors have also managed to
extend Bredt's formula for composite curved beams to get the shear stresses. Article [25] by
Baksa and Ecsedi provides formulae for the stress distributions in straight beams with cross-
sectional inhomogeneity under pure bending. Book [8] by Kozák and Szeidl also deserves
mentioning as it presents how to derive the stresses in straight beams with cross-sectional
inhomogeneity and also gathers formulae for the stress distributions in homogeneous curved
beams. According to the literature review, it seems that curved beams with cross-sectional
inhomogeneity have not yet been investigated.

Another popular topic is the buckling behaviour of beams. In 1757, Euler derived his
well-known formula for the critical (buckling) load of straight bars under compression. Con-
sidering the behaviour of curved members, stability investigations began much later: around
the beginning of the 19th century. The early literature ignored the extensibility of the center-
line � see, e.g., [31] by Hurlbrink. Then Chwalla and Kollbrunner [32] showed that account
for the axial strain can notably a�ect the critical load. After the 1950s, work became more
intensive. Szeidl in his PhD thesis [41] determines the critical load of circular beams under
radial dead load given that the Fourier series of the load is known. Paper [36] by DaDeppo
and Schmidt provides solution to the buckling load of deep circular beams whose loading is
a vertical force. The authors have shown that quadratic terms should be accounted in the
analysis.

When dealing with shallow circular beams Pi, Bradford et al. have pointed out [51,61]
that account even for the pre-buckling deformations is likewise essential not to overestimate
the permissible load. The authors have been intensively investigating the stability of homo-
geneous (shallow and deep) arches using their analytical model, which accounts for all the
above mentioned properties. Nonlinearities are considered through the square of the in�n-
itesimal rotations. The authors have evaluated their model for various loads (distributed,
concentrated) and boundary conditions (pinned, �xed, elastic supports, mixed supports,
etc.). Bateni et al. [73] use the same kinematical hypotheses as presented in [61] to analyse
shallow arches under a concentrated load. However, their model is valid for functionally
graded materials.

The vibrations of curved beams has been a �eld of interest as of the 1920s. Den Hartog
was the �rst to investigate the free vibrations of such structural elements (1928). Early but
still notable contributions � assuming the inextensibility of the centerline � were provided
in [76,78].

Szeidl in his PhD thesis [41] investigates how the extensibility of the centerline can
change the eigenfrequencies of the free vibrations of planar circular beams under a constant
radial load. The author achieves results using the Green function matrix, with what, the
related boundary value problem is transformed to a problem governed by Fredholm integral
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equations. Kang et al. [81] obtain the frequencies (eigenvalues) for the in- and out-of-plane
vibrations of circular Timoshenko arches given that rotatory inertia and shear deformations
are accounted. Tüfekçi and Arpaci [82] managed to gain exact analytical solutions for the
in-plane free harmonic vibrations of circular arches. The authors account for the extensibility
of the centerline and also for the transverse shear and rotatory inertia e�ects. Kovács [91]
deals with layered arches assuming the possibility of both perfect and even imperfect bonding
between any two nearby layers.

In the reviewed literature there are some sources, which use the Green function to tackle
some dynamic issues. Szeidl et al. [100] determine the natural frequencies of pinned and
�xed circular arches using this technique. Kelemen [101] extends the former model. She
computes the natural frequencies as functions of a constant distributed radial load. Li et
al. [103] consider the forced vibrations of straight Timoshenko beams when these are under
a time harmonic concentrated load. Damping e�ects at the ends are accounted.

5.2. Objectives

Based on the reviewed open literature, the main objectives of the candidate are related
to cross-sectional inhomogeneity and are detailed in the forthcoming.

Objective 1: Generalization of some classical results valid for homogeneous materials. These
investigations are aimed to lead to the following results:

� Generalization of two elementary relationships (valid for homogeneous curved beams)
� that provide the normal stress caused by an axial force and a bending moment �
for curved beams with cross-sectional inhomogeneity.

� Setting up a further formula for computing the shear stress.
� In addition, a formula for the shear correction factor is also to be derived.
� The results obtained for the stresses should be compared with those obtained by
�nite element computations.

Objective 2: On the basis of the literature overview, no investigations have been carried out
concerning the stability problem of (shallow) circular beams under the assumption of
cross-sectional inhomogeneity. Within the frames of what has been mentioned above,
Objective 2 is summarized in the following items.

� I intend develop a new nonlinear model for non-strictly shallow curved beams from
the principle of virtual work. It is aimed to be more accurate than those presented
in [61,74] and should be applicable to cross-sectional inhomogeneity as well.

� I would like to evaluate the new model for pinned-pinned, �xed-�xed and rotationally
restrained supports provided that the beam is subjected to a central load at the crown
point. This would involve the determination of the critical load both for symmetric
snap-through and antisymmetric bifurcation buckling.

� At the same time, the typical buckling ranges and its endpoints are also of interest.
� Comparison of the results with those available in the literature and with the Abaqus
commercial �nite element software should also be performed.

Objective 3: is related to the in-plane vibrations of loaded circular beams with cross-
sectional inhomogeneity. I intend
� to derive those boundary value problems, which can make it clear how a radial
load a�ects the natural frequencies of pinned-pinned and �xed-�xed beams,

� to construct the corresponding Green function matrices by taking into account
that the central load at the crown point can either be compressive or tensile
(four Green function matrices are to be determined),
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� to reduce the eigenvalue problems set up for the natural frequencies (which
depend on the load) to eigenvalue problems governed by homogeneous Fredholm
integral equation systems (four systems should be established),

� to replace these eigenvalue problems with algebraic ones and to solve them nu-
merically,

� to clarify how the vertical force at the crown point a�ects the frequencies of the
vibrations (when this load is removed, I have to get back the results valid for
free vibrations),

� to verify some results by Abaqus and/or experiments.

5.3. Investigations performed

While establishing the mechanical models, the validity of the following common hypothe-
ses were considered:

� there is cross-sectional inhomogeneity,
� the displacements and deformations are su�ciently small,
� the beam models are one-dimensional,
� the (E-weighted) centerline remains in its own plane,
� the curved beam has uniform cross-section and constant initial radius,
� the cross-section is symmetric,
� the classical single-layer theory applies,
� the magnitude of the normal stress σξ is much greater than that of the stress com-
ponents ση and σζ .

When deriving simple closed-form solutions for the normal stress distribution, the validity
of the Euler-Bernoulli theory is assumed. Such loads that cause bending action and axial
strain can be applied (with shearing e�ects neglected). First, an 'exact' formula is derived.
Then further transformations and simpli�cations lead to the generalized form of the Grashof
(Winkler) formula. Accordingly, the bending moment has a constant and hyperbolic e�ect
on the normal stress distribution while the axial force causes constant stress. A further
achievement is another formula for the normal stress and for the location of the neutral axis
in the case of pure bending � both are dependent on the material composition.

The shear stresses are obtained by using equilibrium equations for a portion of the beam
(i.e. the kinematical relations are not completely satis�ed). The result is the extension
of Grashof's equilibrium method for cross-sectional inhomogeneity. The advantage of this
procedure is the relatively simple outcome. Moreover, a formula is proposed for the shear
correction factor.

The static stability model is based on the Euler-Bernoulli hypothesis. The kinematical as-
sumption contains a quadratic term, that is, the square of the in�nitesimal rotations. Given
that the investigated structural element is primarily a shallow arch, the e�ect of the tangen-
tial displacements on the former quantity is neglected. As the pre-buckling deformations are
substantial, the change in the equilibrium state due to the deformations is accounted. The
governing equilibrium equations under concentrated and distributed loads for non-uniform
rotational end restraints are established using the principle of virtual work. However, solu-
tion is calculated only when there is a concentrated dead load exerted at the crown point.
Due to the symmetry properties, a half-beam model is examined. The nonlinear axial strain
on the centerline is constant under these conditions. In this way, a fourth-order ordinary dif-
ferential equation governs the problem mathematically, which can be solved in closed-form.
The former statements are valid even for the incremental quantities, which are measured
after the loss of stability.
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Semi-analytical evaluations are carried out for symmetrically supported pinned, �xed
and rotationally restrained circular beams. These evaluations, on the one hand, include
the determination of the pre-buckling equilibrium in terms of the material, geometry and
loading. On the other hand, it is also pointed out that there are two possible buckling modes:
antisymmetric bifurcation buckling with no strain increment and symmetric snap-through
mode with a changing centerline length. The related critical strains and therefore the critical
loads are determined in terms of the geometry. It is found that there are beams for which
there is no buckling. As for the others it is also sought which of the two buckling modes
dominates in terms of the geometry.

For pinned beams, mostly antisymmetric buckling can be expected. However, for �xed
ones the symmetric type governs. When the spring sti�ness of the supports are (equal to
zero) [tend to in�nity] we get back the solutions valid for (pinned) [�xed] beams. To better
understand the behaviour of the members, the primary equilibrium paths are also plotted for
each typical buckling range. Commercial �nite element computations and comparison with
the literature indicate that the results can be considered as valid for all checked supports
and even for not strictly shallow arches. Simple numerical examples show that material
heterogeneity can have a signi�cant impact on the permissible loads, therefore account for
this property seems inevitable.

The vibration analysis is based on linearized strains and the Euler-Bernoulli hypothesis.
At the same time, the e�ect of the tangential displacements on the rigid body rotations are
kept so that the results are applicable for deep arches as well. The natural frequencies are
sought and that how a central concentrated load changes these frequencies. The equilibrium
equations are derived from the principle of virtual work for a beam under concentrated and
distributed loads. The strain the concentrated load causes is constant on the centerline. The
pre-buckling (initial) equilibrium is governed by ordinary di�erential equations.

As for the dynamic part of the issue, the forces of inertia are accounted and undamped
time harmonic vibrations are considered. The derivations lead to an eigenvalue problem
where the square of the eigenfrequencies are proportional to these eigenvalues. Solutions are
sought for those cases when the central vertical concentrated force causes compression and
tension.

The Green function matrix is constructed in closed-form for both loading cases of pinned
and �xed beams. The application of this technique requires linear ordinary di�erential
equations with closed-form general solutions and self-adjoint eigenvalue problems. With
the corresponding Green functions in hand, each eigenvalue problem governed by ordinary
di�erential equations and the corresponding boundary conditions can be replaced by homo-
geneous Fredholm integral equations and following the procedure presented in [41], they can
numerically be reduced to algebraic equation systems (eigenvalue problems).

When dealing with the vibrations, we must also be aware of the critical load because if
this limit is reached, buckling occurs. So the critical (bifurcation) loads are also determined.
Since in practise, the load is the known quantity and the model has the strain as parameter,
a unique relationship between these quantities is provided.

Results are evaluated both for the free and loaded vibrations and are compared with the
literature and commercial �nite element software computations. Moreover, colleagues from
Romania contributed with some measurements for the free vibrations of �xed beams. Thanks
to their e�orts it became possible to compare some numerical results also with experiments
to con�rm the validity of the model.

Regarding the outcomes, the quotients of the even unloaded frequencies of curved and
straight beams with the same length and material only depend on the central angle and
the supports, while the odd ones are also functions of the cross-sectional geometry and
material distribution. It turns out that for pinned beams the quotient of the square of the
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second loaded and unloaded frequencies (increase) [decrease] almost linearly under (tension)
[compression] in terms of the strain-critical strain ratio and the central angle, geometry
and material do not a�ect these relations. The experiences are similar but more likely
quadratic and more dependent on the geometry for �xed members. The e�ect of the material
composition on the frequencies is illustrated through simple numerical examples.

5.4. Summary of the novel results

The �rst objective was to provide simple formulae for calculating the stress state of
heterogeneous curved beams by generalizing the formulae valid for homogeneous curved
beams. These involved the expressions of the normal stress and shear stress. The shear
correction factor was also determined. The most important results are gathered in

Statement 1.

1.a. I have derived an exact and two approximative relationships that provide the normal
stress caused by an axial force and a bending moment in curved beams with cross-
sectional inhomogeneity. The latter two are generalizations of well-known relation-
ships valid for homogeneous curved beams. A further formula has been established
for computing the shearing stress.

1.b. In addition, a formula for the shear correction factor has also been derived. The
results obtained by the relationships set up for the stresses are compared with �nite
element computations. A good agreement is found between the di�erent models.

As regards the corresponding publications see references {8}, {12} and {19} in Section
5.8. Though the title is the same for {12} and {19}, the former is more detailed.

Statement 2.

I have investigated the in-plane elastic static stability of circular beams with cross-sectional
inhomogeneity provided that the beam is subjected to a vertical force at the crown point.

2.a. I have derived a new model both for the pre-buckling and post-buckling radial dis-
placements - in the later case both for symmetric and antisymmetric buckling. Cross-
sectional inhomogeneity is implied in these equations via the parameter m (which is
a function of the E-weighted radius of gyration and the radius of curvature). The
equations I have established are more accurate than those recently set up by Bradford
et al. in [56, 61] for homogeneous and by Bateni and Eslami [73] for functionally
graded material. Though I neglected the e�ect of the tangential displacements on
the angle of rotation, papers [56,61] also apply this assumption. Altogether, as the
new model uses less neglects, the results for the critical load are more accurate than
those published in the formerly cited works.

2.b. Solutions are provided for (a) pinned-pinned, (b) �xed-�xed and (c) rotationally
restrained beams. For each case I have determined what character the stability loss
can have: no buckling, limit point buckling, bifurcation buckling after limit point
buckling, bifurcation buckling precedes limit point buckling. The endpoints of the
corresponding intervals are not constant in the modi�ed slenderness λ as in the
previous models but further depend on the parameter m (on the E-weighted radius
of gyration and the radius of curvature).

2.c. Comparisons have been made with previous results and �nite element computations
as well. These prove that the results obtained are applicable also for not strictly
shallow beams, up until the semi-vertex angle ϑ is not greater than 1.5. For small
central angles the di�erences between the models are, in general, smaller than for
greater central angles.
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2.d. Cross-sectional inhomogeneity can have a serious e�ect on the critical load. This is
proven via a simple example.

As regards the corresponding publications see references {2}, {3}, {5}, {10}, {11}, {13}-
{18} and {20} in Section 5.8.

Statement 3.

I have investigated the vibrations of circular beams with cross-sectional inhomogeneity, sub-
jected to a vertical force at the crown point.

3.a. I have derived the governing equations of those boundary value problems which make
it possible to determine how a radial load a�ects the natural frequencies. For pinned-
pinned and �xed-�xed beams I have determined the Green function matrices assum-
ing that the beam is prestressed by a central load. When computing these matrices
I had to take into account that the system of ordinary di�erential equations that
govern the problem is degenerated.

3.b. Making use of the Green function matrices, I have reduced the self-adjoint eigenvalue
problems set up for the eigenfrequencies to eigenvalue problems governed by homo-
geneous Fredholm integral equation systems � four homogenous Fredholm integral
equation systems have been established. These integral equations can directly be
used for those dead loads, which result in a constant, otherwise either negative or
positive axial strain on the E-weighted centerline. I have replaced these eigenvalue
problems with algebraic ones and solved them numerically.

3.c. It has turned out that the square of the quotient of the second loaded and unloaded
natural frequencies depends almost linearly on the axial strain-critical strain ratio
and is actually independent of the curved beam geometry and material inhomogene-
ity for pinned-pinned beams. The relations for �xed-�xed beams are more dependent
on the central angle and are rather quadratic. In the knowledge of the load-strain
relationship we can determine the strain due to the load, and then the natural fre-
quencies of the loaded structure. If the strain is zero, we get back those results which
are valid for the free vibrations.

3.d. In some cases, the numerical results are veri�ed by commercial �nite element calcu-
lations and experiments as well. According to these, it turns out that the numerical
model approximates the eigenfrequencies with a good accuracy.

As regards the corresponding publications see references {1}, {4}, {6}, {7}, {9}, {11} and
{20} in Section 5.8.

5.5. Magyar nyelv¶ összefoglaló (Summary in Hungarian)

Figure 5.2. Néhány példa keresztmetszeti inhomogenitásra.

Napjainkban igen elterjed a görbült középvonalú rudak alkalmazása mérnöki szerkezetek-
ben. Gondoljunk például az ívelt kialakítású hídszerkezetekre, tet®szerkezetekre, vagy például
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repül®gépek egyes merevít® elemeire. Az ilyen rudak mechanikai viselkedésének leírásá-
val a XIX. századtól kezd®d®en számos kutató foglalkozott. Az újabbnál-újabb modellek
mind egyre pontosabban és általánosabban írják le ezen szerkezeti elemek viselkedését, úgy
mint a feszültségek eloszlását [8,13,25], a rudak stabilitását [22,24,41], vagy épp rezgé-
seit [6,41,91,101,116]. Az el®z®, teljesség igénye nélkül összegy¶jtött irodalmi hivatkozások
mind magyar szerz®k munkái.

Ma már nem csak homogén, hanem heterogén, vagy inhomogén anyagú görbe rudak
legyártására is egyre gazdaságosabb lehet®ség nyílik, el®segítve ezek terjedését. Az ilyen
kialakítású rudak olyan el®nyös tulajdonságokkal rendelkezhetnek homogén társaikkal szem-
ben, mint például a kisebb tömeg, magasabb szilárdság, vagy a jobb korrózióállóság. Kereszt-
metszeti inhomogenitásnak nevezzük azt a fajta anyagi heterogenitást, amikor az anyag-
jellemz®k, úgy, mint a rugalmassági modulusz E, vagy a Poisson tényez® ν csak a kereszt-
metszeti koordinátáktól függenek, továbbá a keresztmetszet ζ tengelyére vonatkozóan szim-
metrikus eloszlásúak. Az eloszlás lehet folytonos, vagy szakaszonként folytonos. Néhány
példát szemléltet az 5.2 ábra.

A fent említett tulajdonságokkal rendelkez® körívalakú rudakkal kapcsolatban a jelen
dolgozat három területen ért el új eredményeket. Ezeket foglaljuk most röviden össze.

Számos modell készült, amelyek a feszültségeloszlás számítására nyújtanak viszonylag
egyszer¶, zárt alakú képleteket. Ugyanakkor az áttekintett irodalomban nem találtam olyan
modellt, amely keresztmetszeti inhomogenitású görbe rudakban kialakuló feszültségek el-
oszlására irányuló, egyszer¶ kézi számításokra alkalmas képleteket mutatnának be. Ehhez
kapcsolódóan az új eredmények:

� levezettem egy egzakt és általánosítottam ét, homogén anyagú görbe rúdra vonatkozó
normálfeszültségi képletet keresztmetszeti inhomogenitás esetére, amennyiben a ter-
helés rúder® és/vagy hajlítónyomaték.

� Levezettem a nyírófeszültség számítására egy összefüggést egyensúlyi egyenletekb®l.
� A nyírási korrekciós tényez®re is felállítottam egy formulát.
� A feszültségek eloszlását az említett tulajdonságú rudakra ellen®riztem az Abaqus
kereskedelmi végeselemes szoftver számításaival és jó egyezést találtam a tesztelt
geometriáknál.

Keresztmetszeti inhomogenitású körívalakú síkgörbe rudak rugalmas, statikai stabilitásra
vonatkozóan

� levezettem egy új modellt, ami pontosabb és általánosabb az irodalomban megtalál-
ható, alig néhány évvel ezel®ttinél [56,61].

� A modell segítségével mind az antiszimmetrikus bifurkációs, mind a szimmetrikus,
átpattanás formájában bekövetkez® kihajlás jellemezhet®, amennyiben a terhelés a
koronapontban m¶köd® függ®leges irányú er®, a támaszok pedig szimmetrikusak: két
végén csuklóval megtámasztott, befogott, illetve spirálrugóval megfogott rudakkal
foglalkoztam.

� Meghatároztam a kritikus terhelések értékét és a jellemz® kihajlási tartományokat is
a geometria és a támaszok függvényében.

� Habár az érint®irányú elmozdulások hatását elhanyagoltam a szögelfordulás számí-
tásánál (lapos rudaknál ez szokásos feltevés), ennek ellenére a modell nem csak szi-
gorúan véve lapos rudaknál közelíti jól a megengedhet® terhelést. Ezt támasztják alá
korábbi irodalmi eredmények és az Abaqus szoftver számításai is.

Keresztmetszeti inhomogenitású körívalakú síkgörbe rudak rezgéseivel kapcsolatban

� levezettem azokat a peremérték-feladatokat, amelyek megoldásával meghatározhatók
a rúd sajátfrekvenciái.
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� Két végén csuklóval megtámasztott, illetve befogott rudakra meghatároztam zárt
alakban a Green-féle függvénymátrixokat, amelyek segítségével lehet®ség nyílik meg-
vizsgálni a koronapontban m¶köd® koncentrált terhelés frekvenciaspektrumra gyako-
rolt hatását.

� A Green-féle függvénymátrixok segítségével az önadjungált sajátértékfeladatokat ho-
mogén Fredholm integrálegyenlet-rendszerrel kifejezhet® feladatokra vezettem vissza.

� Ezeket a sajátérték-feladatokat algebrai egyenletrendszerré alakítva megoldottam.
� Az eredmények szerint amennyiben a terhelés húzó/nyomóer®, a második terhelt
frekvenciák és a szabadrezgésekhez tartozó második frekvenciák négyzetének hánya-
dosa csuklós rudaknál igen jó közelítéssel lineárisan függ a nyúlás/kritikus nyúlás
hányadostól és független a geometriától. Befogott rudaknál nagyobb a geometria
befolyása erre a jellemz®re és ez a kapcsolat inkább kvadratikus.

� Amennyiben a terhel® koncentrált er® zérus, vagyis nulla a középvonal nyúlása, visz-
szakapom a szabadrezgésekhez tartozó sajátfrekvenciákat.

� Abaqus számítások, korábbi irodalmi eredményekkel való összevetés, illetve néhány
mérési eredmény igazolja az eljárást és az eredmények helyességét.

A Bíráló Bizottság által elfogadott tézisek

1. Tézis

1.a. Levezettem egy egzakt és két közelít® összefüggést a normálfeszültség számítására
amennyiben a keresztmetszeti inhomogenitású görbe rúd terhelése rúder® és hajlító-
nyomaték. A két közelít® modell jól ismert, homogén esetre vonatkozó összefüggések
általánosításai. Származtattam egy további formulát a nyírófeszültség számítására.

1.b. Ezeken felül a nyírási korrekciós tényez®re is felírtam egy összefüggést. A feszült-
ségeloszlásokra kapott új képletek eredményeit összehasonlítottam néhány végese-
lemes számítással. Jó egyezés tapasztalható.

2. Tézis

Keresztmetszeti inhomogenitású síkgörbe rudak rugalmas stabilitását vizsgáltam, ameny-
nyiben a rúd terhelése koronaponti koncentrált, függ®leges irányú merev er®.

2.a. Levezettem egy új modellt keresztmetszeti inhomogenitású körívalakú rudak stabili-
tásának vizsgálatára. Ez mind a stabilitásvesztés el®tti, mind az azt követ® (szimmet-
rikus, vagy antiszimmetrikus) egyensúlyi helyzetet pontosabban közelíti a korábbi,
homogén [56,61], vagy funkcionálisan gradiens anyagra érvényes [73] irodalmi model-
leknél. Bár elhanyagoltam a tangenciális irányú elmozdulások hatását a forgásokra
� a [56, 61] cikkek szintén élnek ezzel a feltevéssel � összességében az új modell
kevesebb egyszer¶sítést alkalmaz, következésképp a kritikus terhelésekre vonatkozó
eredmények (összefüggések) pontosabbak, mint a korábbi munkák eredményei.

2.b. Kiértékeltem a modellt (a) két végén csuklóval megtámasztott; (b) két végén befogott;
(c) két végén spirálrugóval megtámasztott rudakra. Meghatároztam a lehetséges sta-
bilitási tartományokat (nincs stabilitásvesztés, szimmetrikus/antiszimmetrikus sta-
bilitásvesztés a domináns). A jellemz® tartományok határai nem állandóak a λ
módosított karcsúsági tényez®ben, mint a korábban is említett modelleknél, hanem
függenek az m paramétert®l is, tehát az E-vel súlyozott inerciasugártól és a görbületi
sugártól is.

2.c. Összehasonlításokat végeztem korábbi modellekkel és végeselemes számításokkal. Ezek
alapján a modell nem csak szigorúan véve lapos rudaknál közelíti jól a megengedhet®
terhelést, hanem egészen három radián nyílásszögig. A korábbi modellel szemben
kisebbek az eltérések, ha kisebb a nyílásszög.
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2.d. A keresztmetszeti inhomogenitásnak jelent®s hatása lehet a kritikus terhelésre � ezt
az állítást egyszer¶ számpéldával illusztráltam.

3. Tézis

Keresztmetszeti inhomogenitású görbe rudak rezgéseit is vizsgáltam, amennyiben korona-
ponti koncentrált, függ®leges irányú er® a terhelés.

3.a. Olyan önadjungált sajátérték-feladatokat vezettem le, amelyek megoldásával meg-
határozható hogyan befolyásolja a sajátfrekvenciákat a radiális terhelés. Csuklós
és befogott rúdra egyaránt meghatároztam a Green-féle függvénymátrixokat feltéve,
hogy a rúd el® van terhelve egy koronaponti koncentrált er®vel. Itt �gyelembe kellett
venni, hogy a közönséges di�erenciálegyenletek elfajulók.

3.b. A Green-féle függvénymátrixokkal az önadjungált sajátérték-feladatokat homogén
Fredholm integrálegyenletekre vezettem vissza, amikb®l a sajátfrekvenciákat meg-
határoztam. Ez összesen négy, homogén Fredholm integrálegyenlet-rendszert jelent.
Az integrálegyenletek minden olyan merev (konzervatív) terhelésre használhatók,
amelyekre nézve állandó a középvonal menti fajlagos nyúlás � ez lehet akár pozitív,
akár negatív el®jel¶ mennyiség. A sajátérték-feladatokat algebrai egyenletrendszerrel
helyettesítettem és numerikusan megoldottam.

3.c. A második terhelt és terheletlen frekvenciák négyzetének hányadosa jó közelítés-
sel lineárisan függ a középvonal nyúlása/kritikus nyúlás hányadostól és független a
geometriától, valamint az anyagi összetételt®l csuklós rudaknál. Befogott esetben
ugyanakkor a kapcsolat inkább kvadratikus és a nyílásszögnek érezhet® befolyása van
az eredményekre. A terhelés-nyúlás kapcsolat ismeretében meghatározható az adott
er®höz tartozó nyúlás értéke és így a terhelt rúd sajátfrekvenciái. Ha zérus a nyúlás,
visszakapjuk a szabadrezgésekhez tartozó frekvenciákat.

3.d. A numerikus számítási eredményeket néhány esetben végeselemes számításokkal és
kísérleti eredményekkel is összevetettem. Ezek alapján a modell jól közelíti a frekven-
ciákat.

5.6. Possible application of the results

The results achieved can be applied to homogeneous or heterogeneous circular beams as
structural elements to predict the behaviour (possible failure regarding the stresses, stability
and vibrations) of the members under given circumstances. With new and improved models
continuously being made, it is possible to gain more and more accurate results and thus,
reduce uncertainties and save costs.

Some of the results could be harnessed in the education as nowadays nonhomogeneous
materials are gradually gathering ground. Primarily, I am thinking about the simple closed-
form solutions for the normal and shear stress distributions in circular beams with cross-
sectional inhomogeneity. Moreover, a simpli�ed form of the stability model could as well be
included in the curriculum to broaden the student's view of the phenomenon of buckling,
which is many times restricted to classical Euler column.

Moreover, the models and solutions obtained could be used for benchmark purposes to
verify other models.

5.7. Future research

Based on the presented models, several additional improvements and generalizations
could be made. In the simplest way, by changing the loading and/or the supports � even
considering not symmetric conditions, or three-hinged beams � so that the investigations
could be extended even more. Research is in progress for the vibration model when the
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beam is pinned at the left end and is �xed at the right end and there are equal rotational
end restraints.

Keeping the hypotheses of the presented stability model, an interesting question is how
the buckling loads, buckling shapes and the typical ranges change if the beam is subjected to
a radial or vertical load at a point, other than the crown point. The post-buckling behaviour
might also be worthy of dealing with and moreover, the dynamic behaviour could also be
modeled some way. It would also be desirable to develop a one-dimensional �nite element
model, taking �nite strains and/or rotations into account when dealing with the stability
problem.

But such questions could as well be arisen how to harness the experiences of presented
models to tackle some issues of curved but not circular beams, out-of plane problems, bi-
modular materials, to account for shear deformations, interlayer slip, etc.

It would also be satisfying to verify the results with experiments. Concerning this idea,
there is an ongoing cooperation with some generous colleagues of the Transilvania University
of Bra³ov.
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APPENDIX A

Detailed manipulations

A.1. The long formal transformations of Chapter 3

A.1.1. Formulae for the axial force. Making use of the kinematic relation (3.1.4) and the
inequality (3.1.9) we can manipulate (3.1.7) into a more favourable form:

N = Ae

(
duo
ds

+
wo
ρo

+
1

2
ψ2
oη

)
︸ ︷︷ ︸
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. (A.1.1)

A similar line of thought for the increment in the axial force Nb results in
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. (A.1.2)

A.1.2. Transformation of the principle of virtual work � pre-buckling state. Substi-
tuting the corresponding kinematical quantities into the principle of virtual work (3.2.1) and taking
the relation

dV =

(
1 +

ζ

ρo

)
dsdA (A.1.3)

into account, which provides the in�nitesimal volume element, the left side of the principle can be
rewritten as∫

V
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=
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{∫
A
σξdA

(
dδuo
ds

+
δwo
ρo

)
+

∫
A
ζσξdA

dδψoη
ds

+

∫
A

(
1 +

ζ

ρo

)
σξ dAψoη

(
δuo
ρo
− dδwo

ds

)}
ds =

=

∫
L

[
N

(
dδuo
ds

+
δwo
ρo

)
+M

dδψoη
ds

+

(
N +

M

ρo

)
ψoη

(
δuo
ρo
− dδwo

ds

)]
ds , (A.1.4)

where the formulae (3.1.7)-(3.1.8) for the inner forces have also been taken into account. Applying
now the integration by parts theorem and performing some arrangements we obtain the following
equation:∫
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. (A.1.5)

Notice that [|s=−0](|s=+0) denotes the [left](right) side limit for the expression that precedes the
symbol |. If we set (A.1.5) equal to the right side of (3.2.1) we �nally get
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(A.1.6)

A.1.3. Transformation of the principle of virtual work � post-buckling state. Ex-
panding the quantities denoted by an asterisk in (3.2.11) and using the decompositions presented
in the �rst paragraph of Subsection 3.1.2, we obtain∫

V
(σξ + σξ b) δεξb dV = − (Pζ + Pζ b) δwo b|s=0 + Pξ b δuo b|s=0−
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+

∫
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The kinematical quantities in the pre-buckling state are assumed to be known at this stage of the
investigations. Therefore, the corresponding variations are all equal to zero. Recalling formulae
(3.1.13a)-(3.1.15), for the virtual rotation and strain we can write

δψ∗oη = δψoη b =
δuob
ρo
− dδwob

ds
(A.1.8)

and moreover
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After substituting (3.2.1) and (A.1.9), we can rewrite the principle of virtual work (A.1.7) in the
form
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The �rst three integrals require some further manipulations which are based on the integration by
parts and are detailed in the forthcoming:∫
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Furthermore∫
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The third integral is formally the same as the �rst one if we change σξ to σξ b, therefore∫
V
σξδε

N
ξ bdV =

∫
L

∫
A

(
1 +

ζ

ρo

)
σξbδε

N
ξ bdAds =

∫
L

(
Nb +

Mb

ρo

)
ψoη b

(
δuob
ρo
− dδwob

ds

)
ds =

=

∫
L

1

ρo

(
Nb +

Mb

ρo

)
ψoη bδuobds+

∫
L

∂

∂s

[(
Nb +

Mb

ρo

)
ψoη b

]
δwobds+

+

[(
Nb +

Mb

ρo

)
ψoη b

∣∣∣∣
s=+0

−
(
Nb +

Mb

ρo

)
ψoη b

∣∣∣∣
s=−0

]
+

+

(
Nb +

Mb

ρo

)
ψoη bδwob

∣∣∣∣
s(−ϑ)

−
(
Nb +

Mb

ρo

)
ψoη bδwob

∣∣∣∣
s(ϑ)

. (A.1.13)

As a summary of these manipulations, the principle of virtual work (A.1.7), or what is the same,
equation (3.2.11) can �nally be rewritten as

−
∫
L

(
∂Nb

∂s
− 1

ρo

(
N +

M

ρo

)
ψoη b +

1

ρo

[
∂Mb

∂s
−
(
Nb +

Mb

ρo

)
ψoη b

]
+ ftb

)
δuo bds−

−
∫
L

(
∂2Mb

∂s2
− Nb

ρo
− ∂

∂s

[(
N +Nb +

M +Mb

ρo

)
ψoη b +

(
Nb +

Mb

ρo

)
ψoη

]
+ fnb

)
δwobds−

−
[
∂Mb

∂s
−
(
N +Nb +

M +Mb

ρo

)
ψoη b −

(
Nb +

Mb

ρo

)
ψoη

]
δwob

∣∣∣∣
s(−ϑ)

+

+

[
∂Mb

∂s
−
(
N +Nb +

M +Mb

ρo

)
ψoη b −

(
Nb +

Mb

ρo

)
ψoη

]
δwob

∣∣∣∣
s(ϑ)

+

+

{[
∂Mb

∂s
−
(
N +Nb +

M +Mb

ρo

)
ψoη b −

(
Nb +

Mb

ρo

)
ψoη

]∣∣∣∣
s=−0

−

−
[
∂Mb

∂s
−
(
N +Nb +

M +Mb

ρo

)
ψoη b −

(
Nb +

Mb

ρo

)
ψoη

]∣∣∣∣
s=+0

+m
∂2wob
∂t2

+ Pζ b

∣∣∣∣
s=0

}
δwob|s=0−

− Nbδuo b|s(−ϑ) +

[
Nb|s=−0 − Nb|s=+0 + Pξ b +m

∂2uob
∂t2

∣∣∣∣
s=0

]
δuo b|s=0 + Nbδuo b|s(ϑ) +

+ (Mb + kγ rψoη b)|ϑ δψoη b|s(ϑ) − (Mb − kγ `ψoη b)|s(−ϑ) δψoη b|s(−ϑ) = 0 . (A.1.14)

A.1.4. The pre-buckling equilibrium in terms of the displacements. It follows from
equation (3.2.2)2 that

d2M

ds2
− ψoη

d

ds

(
N +

M

ρo

)
−
(
N +

M

ρo

)
dψoη
ds
− N

ρo
= 0 . (A.1.15)

Substitute here now equations (3.1.8) and (3.1.10) which express the inner forces as functions of
the displacements. The �rst and third terms in (A.1.15) require no further manipulation at this
point. The second one, however, vanishes � see (3.1.10) and (3.2.6). As for the fourth one, some
transformations need to be performed:

N

ρo
=
Ae
ρo
εm −

M

ρ2
o

=
Ieη
ρ3
o

Aeρ
2
o

Ieη
εm −

M

ρ2
o

=
Ieη
ρ3
o

mεm +
Ieη
ρ4
o

(
w(2)
o + wo

)
.

Consequently, the equilibrium condition (A.1.15) can now be rewritten as

−Ieη
ρ4
o

(
w(4)
o + w(2)

o

)
− Ieη
ρ4
o

Aeρ
2
o

Ieη
ρoεmψ

(1)
oη −

Ieη
ρ3
o

mεm −
Ieη
ρ4
o

(
w(2)
o + wo

)
= 0 .

If we multiply this formula by (−ρ4
o/Ieη) we get(

w(4)
o + w(2)

o

)
+
Aeρ

2
o

Ieη
ρoεmψ

(1)
oη + ρomεm +

(
w(2)
o + wo

)
=
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=
(
w(4)
o + w(2)

o

)
+ ρomεm

(
ψ(1)
oη + 1

)
+
(
w(2)
o + wo

)
= 0 . (A.1.16)

If we now substitute ψoη from (2.1.8) and u
(1)
o from (3.1.4) into the term ρoεm

(
1 + ψ

(1)
oη

)
, we arrive

at the following result:

ρoεm

(
1 + ψ(1)

oη

)
=ρoεm

[
1 +

1

ρo

(
u(1)
o − w(2)

o

)]
=ρoεm

[
1 +

1

ρo

(
ρoεm − wo −

1

2
ψ2
oηρo − w(2)

o

)]
≈

≈ ρoεm(1 + εm)︸ ︷︷ ︸
≈1

− εm
(
wo + w(2)

o

)
≈ ρoεm − εm

(
w(2)
o + wo

)
. (A.1.17)

Plugging it back into (A.1.16) we �nd that the pre-buckling displacement wo should satisfy the
di�erential equation

w(4)
o + 2w(2)

o + wo −mεm
(
w(2)
o + wo

)
= −mρoεm. (A.1.18)

A.1.5. The post-buckling equilibrium in terms of the displacements. We assume there
are no distributed forces. From the comparison of equations (3.1.10) and (3.2.6) as well as (3.1.21)
and (3.2.18) we get that

d

ds

(
N +

M

ρo

)
= 0 ,

d

ds

(
Nb +

Mb

ρo

)
= 0 .

Thus, equation (3.2.13b) has the form

−d2Mb

ds2
+
Nb

ρo
+

(
N +

M

ρo

)
︸ ︷︷ ︸

Aeεm

dψoη b
ds

+

(
Nb +

Mb

ρo

)
︸ ︷︷ ︸

Aeεmb

dψoη
ds

= 0 , (A.1.19)

where we have neglected the quadratic terms in the increments. With regard to the last two terms,
some transformations with the aid of (3.1.9) and (3.1.10) should be carried out. The �rst one of
these is

Aeεm
dψoη b
ds

+Aeεmb
dψoη
ds

= m
Ieη
ρ2
o

(
εm

dψoη b
ds

+ εmb
dψoη
ds

)
. (A.1.20)

Substitute now Mb from (3.1.20), Nb from (3.1.19) (while again utilizing (3.1.20)) into (A.1.19) and
take equation (3.1.9) into account. In this way we have

Ieη
ρ4
o

(
w

(4)
ob + w

(2)
ob

)
+
Ieη
ρ4
o

(
w

(2)
ob + wob

)
+m

Ieη
ρ3
o

εmb +m
Ieη
ρ3
o

εmψ
(1)
oη b +m

Ieη
ρ3
o

εmbψ
(1)
oη = 0 . (A.1.21)

Let us multiply the former expression by ρ4
o/Ieη. After some minor arrangements we obtain

w
(4)
ob + 2w

(2)
ob + wob +mρoεmb

(
1 + ψ(1)

oη

)
+mρoεmψ

(1)
oη b = 0 . (A.1.22)

Now repeat the line of thought leading to (A.1.17) � by formally changing εm to εmb � to arrive at

mρoεmb

(
1 + ψ(1)

oη

)
' mρoεmb

[
1− 1

ρo

(
w(2)
o + wo

)]
= mρoεmb −mεmb

(
w(2)
o + wo

)
.

In a similar way (with the omission of the unit) the previous procedure can be applied as well to
the last term in (A.1.22):

mρoεmψ
(1)
oη b ' −mεm

(
w

(2)
ob + wob

)
.

Altogether

w
(4)
ob + (2−mεm)w(2)

ob + (1−mεm)wob = −mρoεmb +mεmb

(
w(2)
o + wo

)
(A.1.23)

is the post-buckling equilibrium equation in terms of the displacements.
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A.1.6. Computation of the pre-buckling strain. For any support arrangement substitu-
tion of Wo from (3.3.5) into (3.3.7) results in

εoξ =
1

ϑ

∫ ϑ

0
Wo dϕ =

1

ϑ

[∫ ϑ

0

(
χ2 − 1

χ2
+A11 cosϕ−

A31

χ2
cosχϕ

)
dϕ +

+

∫ ϑ

0

(
A12 cosϕ+A22 sinϕ−

A32

χ2
cosχϕ− A42

χ2
sinχϕ

)]
dϕ
P̂
ϑ

= Iow + I1w
P̂
ϑ
,

where

Iow =
χ
(
χ2ϑ− ϑ+A11χ

2 sinϑ
)
−A31 sinχϑ

ϑχ3
, (A.1.24a)

I1w =
A12χ

3 sinϑ+A22χ
3 (1− cosϑ)−A32 sinχϑ+A42 (cosχϑ− 1)

ϑχ3
. (A.1.24b)

To calculate the nonlinear strain we need the square of the rotation �eld from (3.3.6), that is

ψ2
oη '

[
D11 sinϕ+D31 sinχϕ+ (D12 sinϕ+D22 cosϕ+D32 sinχϕ+D42 cosχϕ)

P̂
ϑ

]2

=

= 2 (D11 sinϕ+D31 sinχϕ) (D12 sinϕ+D22 cosϕ+D32 sinχϕ+D42 cosχϕ)
P̂
ϑ
+

+ (D11 sinϕ+D31 sinχϕ)
2 + (D12 sinϕ+D22 cosϕ+D32 sinχϕ+D42 cosχϕ)

2

(
P̂
ϑ

)2

.

(A.1.25)

Accordingly, we can now determine the constants in (3.3.9), which are

1

ϑ

∫ ϑ

0

1

2
ψ2
oη (ϕ) dϕ = Ioψ + I1ψ

P̂
ϑ

+ I2ψ

(
P̂
ϑ

)2

. (A.1.26)

Here

Ioψ =
1

2ϑ

∫ ϑ

0
(D11 (sinϕ) +D31 (sinχϕ))

2 dϕ =
1

8ϑχ
·

·
{
D2

11χ [2ϑ− sin 2ϑ] +
8D11D31χ

(χ2 − 1)
(cosϑ sinχϑ− χ sinϑ cosχϑ) +D2

31 [2ϑχ− (sin 2χϑ)]

}
(A.1.27)

and

I1ψ =
1

ϑ

∫ ϑ

0
(D11 sinϕ+D31 sinχϕ) (D12 sinϕ+D22 cosϕ+D32 sinχϕ+D42 cosχϕ) dϕ =

=
D11D42

ϑ (χ2 − 1)
(cosϑ cosχϑ+ χ sinϑ sinχϑ− 1) +

D31D12

ϑ (χ2 − 1)
(cosϑ sinχϑ− χ sinϑ cosχϑ)+

+
D31D22

ϑ (χ2 − 1)
(χ− χ cosϑ cosχϑ− sinϑ sinχϑ)+

+
D31D32

2

(
1− sinχϑ cosχϑ

ϑχ

)
+
D11D12

2

(
1− sinϑ cosϑ

ϑ

)
+

+
D11D22

2ϑ
sin2 ϑ+

D11D32

ϑ (χ2 − 1)
(cosϑ sinχϑ− χ sinϑ cosχϑ) +

D31D42

2ϑχ
sin2 χϑ . (A.1.28)

Moving on now to I2ψ in (A.1.26) it is worth decomposing the integrand in question into four parts:

I2ψ =
1

2ϑ

∫ ϑ

0
(D12 sinϕ+D22 cosϕ+D32 sinχϕ+D42 cosχϕ)

2 dϕ =
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=
1

2ϑ

∫ ϑ

0
(D12 sinϕ+D22 cosϕ+D32 sinχϕ+D42 cosχϕ) D12 sinϕ dϕ+

+
1

2ϑ

∫ ϑ

0
(D12 sinϕ+D22 cosϕ+D32 sinχϕ+D42 cosχϕ)D22 cosϕ dϕ+

+
1

2ϑ

∫ ϑ

0
(D12 sinϕ+D22 cosϕ+D32 sinχϕ+D42 cosχϕ)D32 sinχϕ dϕ+

+
1

2ϑ

∫ ϑ

0
(D12 sinϕ+D22 cosϕ+D32 sinχϕ+D42 cosχϕ)D42 cosχϕ dϕ =

= I2ψA + I2ψB + I2ψC + I2ψD . (A.1.29)

The �rst term in this sum is

I2ψA =
1

2ϑ

∫ ϑ

0
(D12 sinϕ+D22 cosϕ+D32 sinχϕ+D42 cosχϕ) D12 sinϕ dϕ =

=
D12

8ϑ (1− χ2)

{
D12

(
1− χ2

)
[2ϑ− sin 2ϑ] +D22

(
1− χ2

)
[1− cos 2ϑ] +

+ 4D32 (χ sinϑ cosχϑ− cosϑ sinχϑ) +4D42 [1− cosϑ cosχϑ− χ sinϑ sinχϑ]} . (A.1.30a)

The second one can brie�y be expressed as

I2ψB =
1

2ϑ

∫ ϑ

0
(D12 sinϕ+D22 cosϕ+D32 sinχϕ+D42 cosχϕ)D22 cosϕ dϕ =

=
−D22

8ϑ (χ2 − 1)

{
D12

(
χ2 − 1

)
(cos 2ϑ− 1)−D22

(
χ2 − 1

)
(sin 2ϑ+ 2ϑ)+

+ 4D32 [χ (cosχϑ) cosϑ+ (sinχϑ) sinϑ− χ] +
+4D42 [(cosχϑ) sinϑ− χ (sinχϑ) cosϑ]} . (A.1.30b)

Moreover, for the third part, the integration yields

I2ψC =
1

2ϑ

∫ ϑ

0
(D12 sinϕ+D22 cosϕ+D32 sinχϕ+D42 cosχϕ)D32 sinχϕ dϕ =

=
D32

8χϑ (1− χ2)
{4D12χ [χ (cosχϑ) sinϑ− (sinχϑ) cosϑ] +

+ 4D22χ [(sinχϑ) sinϑ+ χ (cosχϑ) cosϑ− χ] +
+D32

(
1− χ2

)
[2ϑχ− sin 2χϑ] +D42

(
1− χ2

)
[1− cos 2χϑ]

}
(A.1.30c)

and �nally, for the the last one we have

I2ψD =
1

2ϑ

∫ ϑ

0
(D12 sinϕ+D22 cosϕ+D32 sinχϕ+D42 cosχϕ)D42 cosχϕ dϕ =

=
D42

8ϑχ (χ2 − 1)
{4D12χ [(cosχϑ) cosϑ+ χ (sinχϑ) sinϑ− 1]+

+ 4D22χ [χ (sinχϑ) cosϑ− (cosχϑ) sinϑ] + 2D32

(
χ2 − 1

)
sin2 χϑ+

+2D42

(
χ2 − 1

)
[χϑ+ (sinχϑ) cosχϑ]

}
. (A.1.30d)

A.1.7. Manipulations on the displacement increment. Pinned-pinned beams. Consider-
ing pinned-pinned beams the solution to the equation system (3.4.10) is

C1 = −mεmb
−A3 cosχϑ+A4 (χ sinϑ− sinχϑ)− 1

χ2 (χ2 − 1) cosϑ
, (A.1.31a)

C2 = mεmb
A4

χ (χ2 − 1)
, C3 = −mεmb

(
3χ2 − 1

)
A4

2χ4 (χ2 − 1)
, (A.1.31b)
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C4 = −mεmb
χ
[
ϑ
(
1− χ2

)
sinχϑ+ 2χ cosχϑ

]
A3 +

(
1− χ2

)
[sinχϑ− ϑχ cosχϑ]A4 + 2

2χ4 (χ2 − 1) cosχϑ
.

(A.1.31c)

It is preferable to decompose each of these coe�cients into two parts: one proportional to the
loading and the other not. Recalling and substituting here A3 and A4 for pinned-pinned beams
from (3.3.3), after some arrangements, we obtain that

C1 = εmb

(
m

A31 cosχϑ+ 1

(χ2 − 1)χ2 cosϑ
+m

A32 cosχϑ−A42 (χ sinϑ− sinχϑ)

(χ2 − 1)χ2 cosϑ

P̂
ϑ

)
= εmb

(
Ĉ11 + Ĉ12

P̂
ϑ

)
,

(A.1.32a)

C2 = εmbm
A42

(χ2 − 1)χ

P̂
ϑ

= εmbĈ22
P̂
ϑ
, C3 = εmbm

(
1− 3χ2

)
A42

2χ4 (χ2 − 1)

P̂
ϑ

= εmbĈ32
P̂
ϑ
, (A.1.32b)

C4 = εmb

(
Ĉ41 + Ĉ42

P̂
ϑ

)
= εmbm

2 +A31

[
χϑ
(
1− χ2

)
sinχϑ+ 2χ2 cosχϑ

]
2χ4 (1− χ2) cosχϑ

+

+ εmbm
P̂
ϑ

A32

[
χϑ
(
1− χ2

)
sinχϑ+ 2χ2 cosχϑ

]
+A42

(
χ2 − 1

)
(χϑ cosχϑ− sinχϑ)

2χ4 (1− χ2) cosχϑ
, (A.1.32c)

with the new constants de�ned by

Ĉ11 = m
A31 cosχϑ+ 1

χ2 (χ2 − 1) cosϑ
, Ĉ12 = m

A32 cosχϑ−A42 (χ sinϑ− sinχϑ)

χ2 (χ2 − 1) cosϑ
, (A.1.33a)

Ĉ22 = m
A42

χ (χ2 − 1)
, Ĉ32 = m

(
1− 3χ2

)
A42

2χ4 (χ2 − 1)
, (A.1.33b)

Ĉ41 = m
2 +A31χ

[
ϑ
(
1− χ2

)
sinχϑ+ 2χ cosχϑ

]
2χ4 (1− χ2) cosχϑ

, (A.1.33c)

Ĉ42 = m
A32χ

[
ϑ
(
1− χ2

)
sinχϑ+ 2χ cosχϑ

]
+A42

(
χ2 − 1

)
(χϑ cosχϑ− sinχϑ)

2χ4 (1− χ2) cosχϑ
. (A.1.33d)

Fixed-�xed beams. Proceeding with the problem of �xed-�xed beams, the solution to the system
(3.4.24) can preferably be expressed as

C1 = − mεmb
2χ3D (1− χ2)

{
2
(
χ2 − 1

)
sinχϑ+A3

(
χ2 − 1

)
[sinχϑ cosχϑ+ ϑχ] +

+A4

[
3χ2 − 2χ3 (sinϑ) sinχϑ+

(
1− χ2

)
cos2 χϑ− 2χ2 (cosχϑ) cosϑ− 1

]}
, (A.1.34a)

C2 = mεmb
A4

χ (χ2 − 1)
, C3 = −mεmbA4

3χ2 − 1

2χ4 (χ2 − 1)
, (A.1.34b)

C4 =
mεmb

2χ4D (1− χ2)

{
A4

[{(
1− χ2

)
[ϑχ cosχϑ− sinχϑ] + 2χ2 (sinχϑ)

}
sinϑ+

+
(
2χ3 cosχϑ− ϑχ2

(
1− χ2

)
sinχϑ

)
cosϑ− 2χ3

]
+ 2

(
χ2 − 1

)
sinϑ+

+A3

(
χ2 − 1

) [
χ (ϑ sinϑ+ cosϑ) sinχϑ+ ϑχ2 cosϑ cosχϑ

]}
. (A.1.34c)

It is practical again to decompose the constants Ai and Ci into the usual two parts. Recalling
(3.3.12) we can write

C1 = εmb

(
Ĉ11 + Ĉ12

P̂
ϑ

)
= εmbm

1

2χ3D
[2 sinχϑ+A31 (cosχϑ sinχϑ+ ϑχ)]−

− εmbm
1

2χ3 (1− χ2)D
{
A32

(
χ2 − 1

)
[(cosχϑ) sinχϑ+ ϑχ] +

+A42

[
3χ2 − 2χ3 (sinϑ) sinχϑ+

(
1− χ2

)
cos2 χϑ− 2χ2 (cosχϑ) cosϑ− 1

]} P̂
ϑ
, (A.1.35a)
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C2 = εmb
−mA42

χ (1− χ2)

P̂
ϑ

= εmbĈ22
P̂
ϑ
, C3 = εmb

m
(
3χ2 − 1

)
2χ4 (1− χ2)

A42
P̂
ϑ

= εmbĈ32
P̂
ϑ
, (A.1.35b)

C4 = εmbm
1

2χ4D
{
−2 sinϑ−A31

[
χ (ϑ sinϑ+ cosϑ) sinχϑ+ ϑχ2 cosϑ cosχϑ

]}
+

+ εmbm
1

2 (1− χ2)χ4D

{
A42

[[(
1− χ2

)
(ϑχ cosχϑ− sinχϑ) + 2χ2 (sinχϑ)

]
sinϑ+

+
(
2χ3 cosχϑ− ϑχ2

(
1− χ2

)
sinχϑ

)
cosϑ− 2χ3

]
+

+A32

(
χ2 − 1

) [
χ (ϑ sinϑ+ cosϑ) sinχϑ+ ϑχ2 cosϑ cosχϑ

]} P̂
ϑ

= εmb

(
Ĉ41 + Ĉ42

P̂
ϑ

)
,

(A.1.35c)

where the values of Ĉij can be read o� easily.

Rotationally restrained beams. The solution to the corresponding system (3.4.32) happens to be

C1 = εmb

(
Ĉ11 + Ĉ12

P̂
ϑ

)
=

= εmb
m

χ3C0

{
A31

[
χ cos2 χϑ+ 0.5S (ϑχ+ cosχϑ sinχϑ)

]
+ (χ cosχϑ+ S sinχϑ)

}
+

+ εmb
m

2χ3 (1− χ2) C0

{
A32

(
1− χ2

) [
2χ cos2 χϑ+ S (ϑχ+ cosχϑ sinχϑ)

]
+

+A42

[
2χ
(
1− χ2

)
(sinχϑ− χ sinϑ) cosχϑ+

+S
(
2χ2 cosϑ cosχϑ+ 2χ3 sinϑ sinχϑ− 3χ2 + 1 +

(
χ2 − 1

)
cos2 χϑ

)]} P̂
ϑ
, (A.1.36a)

C2 = εmbĈ22
P̂
ϑ

= εmb
mA42

(χ2 − 1)χ

P̂
ϑ
, C3 = εmbĈ32

P̂
ϑ

= εmb
A42m

(
3χ2 − 1

)
2χ4 (1− χ2)

P̂
ϑ
, (A.1.36b)

C4 = εmb

(
Ĉ41 + Ĉ42

P̂
ϑ

)
= εmb

m

2χ4 (χ2 − 1) C0

{
2
(
1− χ2

)
(cosϑ+ S sinϑ)+

+A31

(
χ2 − 1

)
cosϑ

[
χ
(
ϑ
(
χ2 − 1

)
sinχϑ− 2χ cosχϑ

)
−Sχ ((1 + ϑ tanϑ) sinχϑ+ χϑ cosχϑ)]

}
+

+ εmb
P̂
ϑ

m

2χ4 (χ2 − 1) C0

{
A32

(
χ2 − 1

)
cosϑ

[
χ
(
ϑ
(
χ2 − 1

)
sinχϑ− 2χ cosχϑ

)
−

−Sχ ((1 + ϑ tanϑ) sinχϑ+ χϑ cosχϑ)] +A42

[(
χ2 − 1

) (
1− χ2

)
(ϑχ cosχϑ− sinχϑ) cosϑ+

+S
(
2χ3 (1−cosϑ cosχϑ)+

(
χ2−1

)
ϑχ [sinϑ cosχϑ−χ cosϑ sinχϑ] +

(
1−3χ2

)
sinϑ sinχϑ

)]}
.

(A.1.36c)

It can be checked that if [S = 0] {S → ∞} we get back the results valid for [pinned-pinned] and
{�xed-�xed} beams.

The displacement and rotation after buckling. From now on what is written is valid for all
support arrangements. To be able to rewrite the solution Wob in a favourable form, the particular
solution Wob p in (3.4.5) is manipulated so that

Wob p = −εmb
m

2χ3

(
2

χ
+A3ϕ sinχϕ−A4ϕ cosχϕ

)
=

= εmb

[
−m
χ4
− A31m

2χ3
ϕ sinχϕ+

(
−A32m

2χ3
ϕ sinχϕ+

A42m

2χ3
ϕ cosχϕ

)
P̂
ϑ

]
=

= εmb

[
Ĉ01 + Ĉ51ϕ sinχϕ+

(
Ĉ52ϕ sinχϕ+ Ĉ62ϕ cosχϕ

) P̂
ϑ

]
, (A.1.37a)
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where

Ĉ01 = −m
χ4

, Ĉ51 = −A31m

2χ3
, Ĉ52 = −A32m

2χ3
, Ĉ62 =

A42m

2χ3
. (A.1.37b)

Altogether, the solution for the whole beam is sought as

Wob = C1 cosϕ+C2H sinϕ+C3H sinχϕ+C4 cosχϕ− εmb
m

2χ3

(
2

χ
+A3ϕ sinχϕ−A4Hϕ cosχϕ

)
or more practically, the displacement �eld is

Wob = εmb

[
Ĉ01 + Ĉ11 cosϕ+ Ĉ41 cosχϕ+ Ĉ51ϕ sinχϕ+

+
(
Ĉ12 cosϕ+ Ĉ22H sinϕ+ Ĉ32H sinχϕ+ Ĉ42 cosχϕ+ Ĉ52ϕ sinχϕ+ Ĉ62Hϕ cosχϕ

) P̂
ϑ

]
.

(A.1.38)

As regards the expression of the rotation, it is the derivative of the former relation, therefore

− ψoηb 'W
(1)
ob = εmb

[
−Ĉ11 sinϕ+

(
Ĉ51 − Ĉ41χ

)
sinχϕ+ Ĉ51χϕ cosχϕ+

+
(
−Ĉ12 sinϕ+ Ĉ22H cosϕ+

(
Ĉ32χ+ Ĉ62

)
H cosχϕ+

(
Ĉ52 − Ĉ42χ

)
sinχϕ+

+Ĉ52χϕ cosχϕ− Ĉ62Hχϕ sinχϕ
) P̂
ϑ

]
(A.1.39)

or what is the same

− ψoηb 'W
(1)
ob = εmb [K11 sinϕ+K41 sinχϕ+K51ϕ cosχϕ+

+ (K12 sinϕ+K22 cosϕ+K32 cosχϕ+K42 sinχϕ+

+K52ϕ cosχϕ+K62ϕ sinχϕ)
P̂
ϑ

]
, (A.1.40)

with

K11 = −Ĉ11 , K41 = Ĉ51 − Ĉ41χ , K51 = Ĉ51χ , K12 = −Ĉ12 , K22 = Ĉ22H ,

K32 = Ĉ32Hχ+ Ĉ62H , K42 = Ĉ52 − Ĉ42χ , K52 = Ĉ52χ , K62 = −Ĉ62χH .
(A.1.41)

A.1.8. The averaged strain increment. We aim to detail the integrals I01, I02, I11, I12, I13

introduced in Subsection 3.4.3 under (3.4.16). Recalling the formula for the averaged axial strain
we have two terms to deal with:

1

ϑ

∫ ϑ

0
Wobdϕ = εmb

[
I02
P̂
ϑ

+ I01

]
; (A.1.42a)

1

ϑ

∫ ϑ

0
W

(1)
ob W

(1)
o dϕ = εmb

I13

(
P̂
ϑ

)2

+
P̂
ϑ
I12 + I11

 . (A.1.42b)

Starting with the �rst one let us integrate that part of the displacement increment which does not
contain the loading P̂. Therefore, it follows that

I01 =
1

ϑ

∫ ϑ

0

(
Ĉ01 + Ĉ11 cosϕ+ Ĉ41 cosχϕ+ Ĉ51ϕ sinχϕ

)
dϕ =

=
1

χ2ϑ

[
χ2
(
Ĉ01ϑ+ Ĉ11 sinϑ

)
+ Ĉ41χ sinχϑ+ Ĉ51 (sinχϑ− χϑ cosχϑ)

]
. (A.1.43a)

Integrating the remainder of the displacement increment yields
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I02 =
1

ϑ

∫ ϑ

0

(
Ĉ12 cosϕ+ Ĉ22 sinϕ+ Ĉ32 sinχϕ+ Ĉ42 cosχϕ+ Ĉ52ϕ sinχϕ+ Ĉ62ϕ cosχϕ

)
dϕ =

=
1

χ2ϑ

[
χ2
(
Ĉ12 sinϑ+ (1− cosϑ) Ĉ22

)
+ Ĉ52 sinχϑ+ (cosχϑ− 1) Ĉ62+

+χ
(
(1− cosχϑ) Ĉ32 + Ĉ42 sinχϑ− Ĉ52ϑ cosχϑ+ Ĉ62ϑ sinχϑ

)]
. (A.1.43b)

Observe that I01 and I02 are the only integrals that appear when the linearized theory is considered.
In this way we get the

I02
P̂
ϑ

+ I01 = 1 (A.1.44)

linear relation for P̂.
As for the second integral in (A.1.42) let us recall formulae (3.4.13) and (3.3.6a) providing the

rotations and then separate the terms depending on the power of P̂/ϑ:

1

ϑ

∫ ϑ

0
ψoηψoη bdϕ ≈

1

ϑ

∫ ϑ

0

(
−W (1)

o

)(
−W (1)

ob

)
dϕ =

= −εmb
1

ϑ

∫ ϑ

0

[
(K11 sinϕ+K41 sinχϕ+K51 ϕ cosχϕ)+

+
P̂
ϑ
(K12 sinϕ+K22 cosϕ+K32 cosχϕ+K42 sinχϕ+K52ϕ cosχϕ+K62ϕ sinχϕ)

]
·

·

[
D11 sinϕ+D31 sinχϕ+ (D12 sinϕ+D22 cosϕ+D32 sinχϕ+D42 cosχϕ)

P̂
ϑ

]
dϕ =

= −εmb
1

ϑ

∫ ϑ

0
[(K11 sinϕ+K41 sinχϕ+K51 ϕ cosχϕ) (D11 sinϕ+D31 sinχϕ)+

+ (K11 sinϕ+K41 sinχϕ+K51 ϕ cosχϕ) (D12 sinϕ+D22 cosϕ+D32 sinχϕ+D42 cosχϕ)
P̂
ϑ
+

+ (K12 sinϕ+K22 cosϕ+K32 cosχϕ+K42 sinχϕ+K52ϕ cosχϕ+K62ϕ sinχϕ) ·

· (D11 sinϕ+D31 sinχϕ)
P̂
ϑ
+

+ (K12 sinϕ+K22 cosϕ+K32 cosχϕ+K42 sinχϕ+K52ϕ cosχϕ+K62ϕ sinχϕ) ·

· (D12 sinϕ+D22 cosϕ+D32 sinχϕ+D42 cosχϕ)

(
P̂
ϑ

)2
dϕ ,

in which

I11 = − 1

ϑ

∫ ϑ

0
(K11 sinϕ+K41 sinχϕ+K51 ϕ cosχϕ) (D11 sinϕ+D31 sinχϕ) dϕ , (A.1.45a)

I12 = − 1

ϑ

∫ ϑ

0
(D11 sinϕ+D31 sinχϕ) ·

· (K12 sinϕ+K22 cosϕ+K32 cosχϕ+K42 sinχϕ+K52ϕ cosχϕ+K62ϕ sinχϕ) dϕ−

− 1

ϑ

∫ ϑ

0
(K11 sinϕ+K41 sinχϕ+K51 ϕ cosχϕ) (D12 sinϕ+D22 cosϕ+D32 sinχϕ+D42 cosχϕ) dϕ,

(A.1.45b)

I13 = − 1

ϑ

∫ ϑ

0
(D12 sinϕ+D22 cosϕ+D32 sinχϕ+D42 cosχϕ) ·

· (K12 sinϕ+K22 cosϕ+K32 cosχϕ+K42 sinχϕ+K52ϕ cosχϕ+K62ϕ sinχϕ) dϕ . (A.1.45c)

DOI: 10.14750/ME.2016.008



Detailed manipulations 129

Construction of closed-form solutions to these is feasible. However, it is not worth dealing with these
since � as it turns out � the applied Fortran subroutine and other tested mathematical softwares like
Maple 16 or Scienti�c Work Place 5.5 can cope with these integrals easily and accurately enough.

A.2. Some additional transformations for Chapter 4

A.2.1. The static equilibrium. Substitution of (4.1.2) into (4.1.3)2 yields

− Ieη
d2

ds2

(
d2wo
ds2

+
wo
ρ2
o

)
− Ieη

ρ2
o

(
d2wo
ds2

+
wo
ρ2
o

)
− Ieη

ρ3
o

mεoξ −
Ieη
ρ2
o

mεoξ
d

ds
ψoη + fn = 0 (A.2.1)

which, after some arrangements, leads to

w(4)
o + 2w(2)

o + wo + ρomεoξ + ρomεoξψ
(1)
oη =

ρ4
o

Ieη
fn (A.2.2)

or equivalently to

W (4)
o + 2W (2)

o +Wo +mεoξ

(
1 + U (1)

o −W (2)
o

)
=

ρ3
o

Ieη
fn . (A.2.3)

If the distributed force fn is zero then

W (4)
o + 2W (2)

o +Wo +m
(
U (1)
o +Wo

)
+mεoξ

(
U (1)
o −W (2)

o

)
= 0 . (A.2.4)

Equation (A.2.3) can be rewritten using (4.1.1)2

εoξ = U (1)
o +Wo → U (1)

o = εoξ −Wo, (A.2.5)

thus

W (4)
o + 2W (2)

o +Wo +mεoξ +mεoξ

(
εoξ −Wo −W (2)

o

)
=

ρ3
o

Ieη
fn ,

W (4)
o + 2W (2)

o +Wo +mεoξ (1 + εoξ)−mεoξ
(
Wo +W (2)

o

)
=

ρ3
o

Ieη
fn . (A.2.6)

If we assume that 1 + εoξ ≈ 1 then �nally we have

W (4)
o + 2W (2)

o +Wo +m
(
U (1)
o +Wo

)
−mεoξ

(
Wo +W (2)

o

)
=

ρ3
o

Ieη
fn ,

W (4)
o + (2−mεoξ)W (2)

o + [1 +m (1− εoξ)]Wo +mU (1)
o =

ρ3
o

Ieη
fn . (A.2.7)

Equilibrium equations (4.1.5) and (A.2.7) are now gathered in matrix form:[
0 0
0 1

] [
Uo
Wo

](4)

+

[
−m 0
0 2−mεoξ

] [
Uo
Wo

](2)

+

+

[
0 −m
m 0

] [
Uo
Wo

](1)

+

[
0 0
0 1 +m (1− εoξ)

] [
Uo
Wo

](0)

=
ρ3
o

Ieη

[
ft
fn

]
. (A.2.8)

When the distributed forces are zero we can utilize

U (2)
o +W (1)

o = ε
(1)
oξ = 0 → U (2)

o = −W (1)
o (A.2.9)

on the �rst derivative of (A.2.4). As a consequence, we can eliminate either Uo

W (5)
o + 2W (3)

o +W (1)
o +mεoξ

(
U (2)
o −W (3)

o

)
=W (5)

o + 2W (3)
o +W (1)

o −mεoξ
(
W (1)
o +W (3)

o

)
=

W (5)
o + (2−mεoξ)W (3)

o + (1−mεoξ)W (1)
o =W (5)

o +
(
1 + χ2

)
W (3)
o + χ2W (1)

o = 0 (A.2.10)

or Wo

U (6)
o +

(
1 + χ2

)
U (4)
o + χ2U (2)

o = 0, (A.2.11)
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given that
χ2 = 1−mεoξ, if mεoξ < 1 . (A.2.12)

A.2.2. Equations of the vibrations. Substituting relations (4.1.17) into (4.1.18)2, after some
arrangements we get(

w
(4)
ob + w

(2)
ob

)
+
(
w

(2)
ob + wob

)
+mρoεoξ ψ

(1)
oη b +mρo

(
εoξ b − (εoξ bψoη)

(1)︸ ︷︷ ︸
quadratic term

)
=

ρ4
o

Ieη
fnb , (A.2.13)

where the underset quadratic term can be neglected with a good accuracy. Some further ma-

nipulations are need to be carried out in the latter formula taking into account that (a) ψ
(1)
oη b =

u
(1)
ob /ρo − w

(2)
ob /ρo and (b) u

(1)
ob = ρoεoξ b − wob, therefore

(
w

(4)
ob + w

(2)
ob

)
+
(
w

(2)
ob + wob

)
+mεoξ

(
ρoεoξ b − wob − w

(2)
ob

)
+mρoεoξ b =

ρ4
o

Ieη
fnb , (A.2.14)

or what is the same(
w

(4)
ob + w

(2)
ob

)
+
(
w

(2)
ob + wob

)
−mεoξ

(
wob + w

(2)
ob

)
+mρoεoξ b (1 + εoξ) =

ρ4
o

Ieη
fnb . (A.2.15)

Here we can apply the inequality εoξ b � εξ bεoξ, thus(
w

(4)
ob + w

(2)
ob

)
+
(
w

(2)
ob + wob

)
+mρoεoξ b −mεoξ

(
wob + w

(2)
ob

)
=

ρ4
o

Ieη
fnb . (A.2.16)

Introducing the dimensionless displacements leads to(
W

(4)
ob +W

(2)
ob

)
+
(
W

(2)
ob +Wob

)
+m

(
U

(1)
ob +Wob

)
−mεoξ

(
Wob +W

(2)
ob

)
=

ρ3
o

Ieη
fnb . (A.2.17)

So the governing equations in terms of the dimensionless displacement increments are

−m
(
U

(2)
ob +W

(1)
ob

)
=

ρ3
o

Ieη
ftb , (A.2.18)

W
(4)
ob + (2−mεoξ)W

(2)
ob + [1 +m (1− εoξ)]Wob +mU

(1)
ob =

ρ3
o

Ieη
fnb . (A.2.19)

We repeat these relations in matrix form:[
0 0
0 1

] [
Uob
Wob

](4)

+

[
−m 0
0 2−mεoξ

] [
Uob
Wob

](2)

+

+

[
0 −m
m 0

] [
Uob
Wob

](1)

+

[
0 0
0 1 +m (1− εoξ)

] [
Uob
Wob

](0)

=
ρ3
o

Ieη

[
ftb
fnb

]
. (A.2.20)

A.2.3. The load-strain relationship. Substituting the solution (4.6.1) into (4.6.3b) yields

O1 −O5 +O6 −R1 +R5 −R6 = 0,

O2 −O4m−R2 +R4m = 0,

O1 +O5 −R1 −R5 = 0,

−O2 +O4 (m+ 1) +R2 −R4 (m+ 1) = 0,

−O2 + 2O3 +R2 − 2R3 = 0,

−O1 − 3O5 +R1 + 3R5 −
(ρo)

2 Pζ
Ieη

= 0, (A.2.21)

which are indeed the (dis)continuity conditions and are independent of the supports.
For pinned-pinned beams the boundary conditions (4.6.3a) are

O1 cosϑ+O2 sinϑ+O3 (−ϑ cosϑ+ sinϑ)−O4 (m+ 1)ϑ+O5 (− cosϑ− ϑ sinϑ) +O6 = 0,

O1 sinϑ+O2 cosϑ+O3 (2 cosϑ− ϑ sinϑ)−O5 (−2 sinϑ− ϑ cosϑ) = 0,
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−O1 sinϑ+O2 cosϑ+O3ϑ sinϑ−O4m−O5ϑ cosϑ = 0,

R1 cosϑ−R2 sinϑ+R3 (ϑ cosϑ− sinϑ) +R4 (m+ 1)ϑ+R5 (− cosϑ− ϑ sinϑ) +R6 = 0,

−R1 sinϑ−R2 cosϑ+R3 (2 cosϑ− ϑ sinϑ)−R5 (2 sinϑ+ ϑ cosϑ) = 0,

R1 sinϑ+R2 cosϑ+R3ϑ sinϑ−R4m+R5ϑ cosϑ = 0. (A.2.22)

For �xed-�xed beams they are slightly di�erent:

O1 cosϑ+O2 sinϑ+O3 (−ϑ cosϑ+ sinϑ)−O4 (m+ 1)ϑ+O5 (− cosϑ− ϑ sinϑ) +O6 = 0,

O1 cosϑ+O2 sinϑ+O3 (− sinϑ− ϑ cosϑ) +O5 (cosϑ− ϑ sinϑ) = 0,

−O1 sinϑ+O2 cosϑ+O3ϑ sinϑ−O4m−O5ϑ cosϑ = 0,

R1 cosϑ−R2 sinϑ+R3 (ϑ cosϑ− sinϑ) +R4 (m+ 1)ϑ+R5 (− cosϑ− ϑ sinϑ) +R6 = 0,

R1 cosϑ−R2 sinϑ+R3 (sinϑ+ ϑ cosϑ) +R5 (cosϑ− ϑ sinϑ) = 0,

R1 sinϑ+R2 cosϑ+R3ϑ sinϑ−R4m+R5ϑ cosϑ = 0 . (A.2.23)
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