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1 Preliminaries
Stability investigations of engineering structures look back on a long history.
Euler dealt with buckling of long slender columns. As regards the stability
problems of circular plates, we mention that the first paper devoted to this
question was published in 1890 [1]. Since then a number of papers have been
dealt with this question. Without striving for completeness we cite some
important papers [2, 3, 4, 5, 6, 7, 8, 9, 10].

There are various methods for increasing the resistance of a circular plate
to buckling. We can apply diverse supports on the boundaries of the structure
or at an appropriate inner location where the structure functioning is not
disturbed. A possible solution is the simultaneously applied supports at the
boundary and in the middle of a solid circular plate or at the inner and outer
boundaries of an annular plate. Instead of a support, or in addition to the
existing supports we could mount further concentric ring support(s) in order
to improve stability of the plate. Additionally, if the applied support restrains
rotation of the plate, the stiffening effect can be further increased.

Thevendran and Wang have investigated annular plates with torsional
spring and/or simple support on their boundaries using the Rayleigh-Ritz
method [11]. Choosing an appropriate spring constant they have been able
to model a clamped support. Laura and his co-authors [12] have examined a
circular plate which is simply supported at an intermediate radius and on its
boundary together with an elastic restrain against rotation on the boundary.
Under the assumption of axisymmetric deformations they have also used the
Rayleigh-Ritz method.

Wang and his co-authors have investigated stability of an identical struc-
ture assuming non-axisymmetric deformations and using the Kirchhoff theory
of plates [13, 14], and afterwards doing the calculations on the base of the
Mindlin-Reissner plate theory [15]. Choosing the optimal placement for the
support in terms of stability is also a part of their work.

Analysis of densely corrugated plate can be performed if the effect of the
stiffeners are averaged or smeared out on the middle surface of the plate
and an orthotropic material model is used. We can find details about the
theoretical background of this technique in paper [16] by Troitsky. Simitses
and his co-author [17] as well as Srinivasan and his co-author [18] have dealt
with the the observance of the stiffening in this manner. In the articles cited
stability investigations and vibration analysis are presented for annular and
sector plates stiffened densely in radial and concentric directions. Kumelj and
his co-author have investigated the stability of an annular orthotropic plate
which is loaded in its own plane on the inner and outer boundaries [19].

We can apply a few discrete stiffeners to improve the stability of the plates.
The stiffening effect of a curved beam attached to the boundary of a circular
plate has been examined in article [20] by Phillips and his co-author. Turvey
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[21] has presented experimental results for a similarly stiffened circular plate
but the stability problem is left out of consideration. A further paper by
Turvey and his co-authors deals with the issue of a circular plate stiffened by
a single diameter stiffener, the stability problems are, however, again left out
of consideration [22]. Irie and his co-authors have investigated the stability
and vibration of annular plates reinforced by radial stiffeners [23].

In paper [24] by Bareeva and Lizarev the effect of red a concentric ring
is introduced through the in-plane stress distribution. Rossettos and his co-
author have dealt with the symmetric [25] and asymmetric buckling of ring-
stiffened circular plates. The effect of the stiffener is taken into account via
the flexural and torsional rigidity while the axial rigidity is ignored. The
papers of Frostig and Simitses [26, 27] have not applied the simplifications
of the articles cited above. Articles [24, 25, 26, 27] provide solutions both
for axisymmetric and for asymmetric deformations. The concentric stiffening
ring is modeled as a curved beam.

Szilassy dealt with the stability of circular and annular plates stiffened
by a cylindrical shell on its outer boundary in his PhD thesis [28] and in a
further article [29]. On the contrary to the problem examined by Frostig and
Simitses [26, 27] he used a cylindrical shell as a stiffening element instead of
a curved beam applied in papers [26, 27]. The stiffening shell is attached to
the outer boundary of the circular plate – it is worthy of note, that Frostig
and Simitses have not mentioned the corresponding results of Szilassy who
examined two different problems. The first one is that of a circular plate,
while the other one is a boundary value problem of an annular plate. It is
assumed that (i) the load is an in-plane axisymmetric dead one and (ii) the
deformations in the circular and annular plates and in the cylindrical shell
are also axisymmetric. For solving the corresponding eigenvalue problem, he
used the solution of a differential equation set up for the rotation field while
the solution for the cylindrical shell is based on the theory of thin shells.

2 Objectives
After reviewing the preliminary literature the main objectives of the the
present thesis are formulated in the following.

In order to expand the range of solvable eigenvalue problems in contrast
to the work of Szilassy [28], [29] we shall use a differential equation set up for
the deflection of the plate and not the one that is set up for the rotation field.
Therefore the following objective can be composed:

Objective 1.: (a) We shall derive those nonlinear equation(s) which provide
the critical load for a circular plate which is stiffened by a cylindrical
shell on its boundary symmetrically to its middle plane or stiffened by
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a cylindrical shell only on one side of the middle plane. When deriving
these equations we shall utilize the continuity conditions prescribed at
the intersection line of the middle surfaces of the shell and the plate.
(b) By solving the nonlinear equations obtained we shall determine the
dimensionless critical load. (c) We shall clarify how the height of the
shell affects the value of the critical load. (d) There arises the question
if the stiffening shell could be replaced by elastic supports. If yes, what
are the corresponding spring constants?

The fundamental problem in Objective 1. – how does the stiffening shell
affect the critical load – is also a problem to be raised and solved for annular
plates as well. Although there exists a closed form solution for the differential
equation that describes the stability problem of annular plates, it is a further
issue that the closed form solutions are difficult to handle, because the in-
dexes of those Bessel functions which constitute the solution depend on the
eigenvalue (the critical load) sought. This fact is also involved in

Objective 2.: Using a proper numerical procedure – it is worth testing it
on the problem of the circular plate – (a) we should determine the
dimensionless critical load for annular plates stiffened on its boundary
symmetrically to its middle plane or stiffened only on one side of the
middle plane. These investigations should be carried out for various
support types. (b) On the basis of the computational results the effect
of the inner radius (as an independent parameter) on the critical load
should also be clarified.

Although the constant radial force system acting on the outer bound-
ary of the structure is an axisymmetric load, there is no guarantee, that the
deformation of the structure after stability loss is also axisymmetric. Con-
sequently there arises the question whether the smallest critical load belongs
to axisymmetric or to non-axisymmetric deformations. The assumption of
non-axisymmetric buckling shapes supposes a more sophisticated mechanical
model. These thoughts lead to the formulation of

Objective 3.: Using Fourier’s method together with an appropriately choo-
sen Galerkin function for the solution of the shell problem we shall clarify
how the solution can be derived for the coefficients of the Fourier series.
For the cylindrical shell we shall utilize some results of Vlasov [30] and
Jezsó [31]. Furthermore the boundary and continuity conditions valid for
the Fourier coefficients should also be clarified. Based on these results
and by using a proper numerical algorithm the critical load should be
determined for each coefficient of the Fourier series. The computations
are to be carried out for various support arrangements concerning the
circular/annular plates stiffened on their boundary symmetrically to the
middle plane or stiffened only on one side of the middle plane.

3



It is a further issue how the structure behaves if the stiffening shell is
attached to the plate at an intermediate radius, i.e., somewhere between the
inner and outer boundaries. As regards the preliminaries we cite article [27]
by Frostig. This author modeled the stiffener as a concentric ring (e.g. as
a beam) which is attached at an intermediate radius to the plate. As the
name implies, this assumption can be used only if the stiffener is beamlike.
It is worth mentioning that there are a few publications on this topic in the
scientific literature. Related to this issue our

Objective 4.: We should develop an appropriate model in order to investi-
gate the effect of shell-stiffening at an intermediate radius. We should
do calculations in order to determine (a) the critical load and (b) the
optimal placement of the stiffening shell. We should make the cor-
responding investigations both for axisymmetric deformations and for
non-axisymmetric deformations as well.

3 Performed investigations
The cross-section of the investigated structure is shown in Fig. 1. The struc-
ture consists of a circular or annular plate and a cylindrical shell attached
either on the outer boundary of the plate or at an inner radius between the
outer and inner boundaries of the plate. The shell is either built symmetri-
cally to the mid-surface of the plate or – if it is applied on the boundary –
attached on one side of it. The figure demonstrates a symmetric stiffening
on the outer boundary of an annular plate. The structure is loaded by radial
distributed forces with a constant intensity acting in the middle plane of the
plate. The load is a dead one.
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Figure 1. Geometry and load of the structure

We assume that the plate and the shell are thin, consequently we can use
the Kirchhoff theory of plates and shells. It is also assumed that the problem
is linear with regard to the kinematic equations and material law. Heat effects
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are not taken into account. The plate and the shell are made of homogeneous
isotropic material.

At first we present the investigations done on stiffening on the outer bound-
ary.

In order to solve the problem raised we separate the shell and plate from
each other mentally and state the governing equations for each part. The
solutions regarding the certain parts are connected through the continuity
conditions.

Under the assumption of axisymmetric deformations the deflection of the
cylindrical shell is obtained from the well known differential equation. The
physical quantities appearing in the boundary and continuity conditions re-
lating the shell are derived from the deflection. The actual solution for the
problem is a superposition of the solutions we determine for two partial loads.
In the first load the shell is subjected to the line loads coming from the load
of the structure and the inner force between the elements. In the second load
the shell is subjected to a distributed moment coming from the inner moment
between the elements. After solving the partial problems we obtain continuity
conditions between the shell and the plate.

The deformations and in-plane stress distribution in the plate originated
from the in-plane load are obtained from the plane stress problem which is
detailed in the literature.

Under the assumption of axisymmetric deformations we utilize the solution
of the differential equation set up for the deflection together with the boundary
conditions we derive a nonlinear equation which provide the critical load of
symmetrically stiffened circular plate. In order to compute the roots of the
nonlinear equation and the critical load a program has been written in the
Fortran 90 language. The results obtained are presented in diagrams. It can
be observed that the critical load increases significantly if we raise the height
of the shell. The function is asymptotic, i.e. increasing the height of the shell
over a certain limit has no further influence on the value of the critical load.
If the plate is stiffened with a shell only on one side of it, the critical load
is obtained in a bit different manner that is by examining the bounds of the
deflections. In this case the we get the critical load from the condition that
the displacements tend to infinity if buckling occurs.

The closed form solution of the differential equation regarding the stability
problem of annular plates is difficult to handle since the index of the Bessel
functions depends on the critical load. Since the index of the Bessel functions
is not known, we solve the differential equation set up for the deflection of
the middle surface of the plate numerically. We use the numerical solution in
order to determine the critical load.

In the numerical algorithm we transform a differential equation of order
four into a set of four differential equations of order one. We compute the solu-
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tion of the system of equations by an appropriate numerical method (Runge-
Kutta method). Substituting these solutions into the boundary conditions
we get a linear homogeneous system of equation which includes the load as a
parameter. The critical value of the load is obtained from the condition that
the system of equations has a non-trivial solution only if the determinant of
its coefficient matrix vanishes.

The algorithm has been implemented in a program code and the results
we have obtained are presented in diagrams. The influence of the height of
the shell and the inner radius of the plate on the critical load is shown if
the stiffening is either symmetric with respect to the plate middle plain or is
attached to one side of the annular plate. The effect of the height of the shell
is similar to that we saw in the case of circular plates, while the critical load
increases if the inner radius is getting bigger.

Under the assumption of non-axisymmetric deformations the load is ax-
isymmetric but not the deflection. In this more general case the plane stress
problem remains the same as in the former problem. If we consider the non-
axisymmetric deformations of the plate and the shell, the governing equations
are different and therefore the solutions of them are different as well.

If the problem is non-axisymmetric the equations are set up for two vari-
ables. In the cylindrical coordinate system we use we expand the displacement
field in terms of the angle coordinate. By substituting the series in the dif-
ferential equation set up for the deflection, we obtain ordinary differential
equations for the members of the series. We use the solutions we have found
for the calculation of the physical quantities, which are also expanded into
Fourier series.

In the solution procedure of the cylindrical shell first we eliminate the
shear forces from the equilibrium equations. Then we express the force re-
sultants and moment resultants in terms of the displacement coordinates by
subsequent substitutions in the equilibrium equations. This way we get the
fundamental equations set up for the displacement field which constitute a
system of three coupled differential equations. The fundamental equations
are fullfilled identically if we calculate the displacement coordinates in terms
of Galerkin functions which was introduced by Vlasov. This way we uncouple
the fundamental equations. The displacement coordinates and the physical
quantities in the shell derived from the displacement coordinates are all cal-
culated in terms of the Galerkin function. The Galerkin function should be
also expanded into Fourier series as we did with the displacement field of the
plate. The displacement coordinates on the middle surface of the shell, the ro-
tation field, the force resultants and moment resultants can also be expanded
into Fourier series. The coefficients of these series can be calculated from the
solution for the Fourier coefficients of the Galerkin function.
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After clarifying the boundary and continuity conditions prescribed for the
structure we obtain a homogeneous linear system of equation to determine
the integration constants. The critical load belongs to the non-trivial solution
of the system of equations. The computational results are presented in dia-
grams for circular and annular plates with stiffening symmetric to the plate
or attached to one side of it. The critical loads belonging to the members
of the Fourier series have been shown against the height of the shell and the
inner radius of the annular plates. On the basis of the diagrams the geometric
proportions can be determined for which the smallest critical load belongs to
non-axisymmetric deformations.

Annular and circular plates stiffened at an intermediate radius are dis-
cussed in the following. In this case the plate has to be separated into two
parts. Consequently we derive two separate solutions for the two segments
of the plate in the solutions of the plane stress problem. These solutions are
joined through the continuity conditions. The in-plane stress distribution in
the two segments can be described with only one load parameter. As regards
the solutions of the plate and the shell, these can be derived in principle
identically as we have seen in the former problems.

The computational results, considering axisymmetric and non-axisymmet-
ric deformations as well, are given in terms of the radius of the shell while
the shell height has a fixed value. By analysing the diagrams we find that
the smallest critical load belongs to axisymmetric deformations for circular
plates. Further we can determine the geometric proportions where the small-
est critical load of annular plates belongs to non-axisymmetric deformations.

4 Novel results
Novel results concern the stability problem of shell-stiffened circular or annular
plates. Homogeneous isotropic material and small deformations are assumed.
The shell is attached symmetrically to the middle plane of the plate or only
to one side of it. Otherwise the stiffening shell might be attached to the
plate either on the outer boundary or at an intermediate radius. The plane
stress distribution in the plate is axisymmetric, however the deflection due to
buckling can either be symmetric or non-symmetric.

According to the aforementioned objectives, the results I have attained
are organized into four statements. Each statement is organized into para-
graphs denoted by roman letters which are preceded by the statement number.

Statement 1. Assuming axisymmetric load and deformations

1.a. I have derived the nonlinear equation(s) that provide the critical load
both for a circular plate stiffened symmetrically to its middle plane by
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a cylindrical shell and for a circular plate stiffened on one side of the
middle plane by a cylindrical shell.

1.b. I have determined the dimensionless critical loads and the limits for the
increase of the characteristic geometric sizes of the stiffener. According
to the results it is worth increasing the shell height to the value h

Re
= 0, 3.

Then we have obtained that the critical load is 3.5–4.5 times greater for
the stiffened structure if the thickness of plate and that of the shell are
the same.

1.c. I have determined the spring constant of those elastic supports which
could stand in for the symmetrically attached stiffening shell.

As regards the corresponding publications see references (1), (2), (3), (4) and
(12).

Statement 2. Considering an annular plate stiffened on its outer boundary
symmetrically to its middle plane or only on one side of the middle plane

2.a. I have developed a numerical algorithm in order to determine the di-
mensionless critical load.

2.b. I have clarified the effect of the inner radius on the critical load for var-
ious types of supports. I have determined numerically how the critical
load of annular plates depend on the inner radius of the plate and on
the height of the shell. I have also determined the limits for which it
is not worth increasing the length size of the stiffener since that has no
further influence on the critical load of the structure.

As regards the corresponding publications see references (2), (5) and (13).

Statement 3. Assuming axisymmetric load and non-axisymmetric deflec-
tion I have investigated the stability problem of those circular and/or annular
plates which are stiffened on their outer boundary either symmetrically to the
middle plane of the plate or only on one side of the middle plane.

3.a. I have derived the solution both for the plate and for the shell by ex-
panding the displacement field of the plate together with the Galerkin
function belonging to the shell into Fourier series. I have clarified the
boundary- and continuity conditions that the Fourier coefficients of the
physical quantities in the plate and the shell should meet.

3.b. I have determined numerically the critical loads of circular and annular
plates stiffened on their outer boundary. I have determined what is the
influence of the shell height and the inner radius of annular plates on
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the critical load of structures with uniform thickness for shell-stiffened
circular and annular plates assuming simple or clamped support types
on the inner boundary.

3.c According to the computational results, the smallest critical load be-
longs to a non-axisymmetric deflection of the annular plate provided
that the plate and shell have some special dimensions – small values of
h
Re

which increases if the inner radius ρi gets bigger.

As regards the corresponding publications see references (6), (7), (8), (9), (14)
and (15).

Statement 4. Considering a circular or annular plate with intermediate
shell-stiffening

4.a. I have developed a model in order to determine the critical load of the
shell-stiffened plate under the assumption of axisymmetric and non-
axisymmetric deformations.

4.b. In the case of a circular plate, the smallest critical load belongs to ax-
isymmetric deformations. An optimal placement of the shell exists at
the approximate radial coordinate ρs ≈ 0.72.

4.c. Considering an annular plate I have investigated the dependency on the
shell radius for plates with simple or clamped support types. According
to the results the smallest critical load belongs to non-axisymmetric
deformations if the stiffening shell is applied near the boundaries of the
plate. The smallest critical load belongs to axisymmetric deformations
if the radius of the shell lies in an intermediate interval of the plate.
This interval decreases with the inner radius of the plate

As regards the corresponding publications see references (1), (10), and (11).

5 Possible applications of the results
Assume that the inner space of a pressure vessel (a cylindrical shell) is sep-
arated into parts by annular (circular) plates. If the distance of the plates
is above a certain limit and the buckling problem of the plates arises then
the problem to be solved may coincide with the stability problem of a shell-
stiffened annular plate. During the analysis we should take into account that
the smallest critical load may belong to axisymmetric deformations or (under
special conditions) to non-axisymmetric deformations.

The results could also be used for educational purposes, because a part of
them might be worth introducing in a curriculum related to stability theory.
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6 Future research
Based on the line of thought of the PhD thesis, the stability problem of
a polar orthotropic circular (annular) plate stiffened by an also orthotropic
cylindrical shell might be examined. The latter could cause some difficulties
since serious investigations are needed to derive the solutions to be utilized
from the equations of the shell theory.

A further possible question is how to calculate the critical load of the
investigated structure if the load is not axisymmetric, for example: shell-
stiffened circular plate loaded along its diameter.

7 Author’s publications
Journal articles in foreign language

(1) Dániel Burmeister. Effects of shell-stiffening on the stability of circular
plates. Procedia Engineering, 48:46–55, 2012.

(2) Dániel Burmeister. Stability of shell-stiffened and axisymmetrically
loaded annular plates. Technische Mechanik, 33(1):1–18, 2013.

Journal article in Hungarian language

(3) Dániel Burmeister. Külső peremén körhengerhéjjal merevített körleme-
zek stabilitásvizsgálatának egyes kérdései. (Some problems of the sta-
bility analysis of circular plates stiffened by a cylindrical shell on its
outer boundary) Multidiszciplináris Tudományok: A Miskolci Egyetem
közleménye, 2(1):21–30, 2012.

Conference papers in foreign language

(4) Dániel Burmeister. Stability of a circular plate stiffened with a cylin-
drical shell. In XXIV. microCAD International Scientific Conference,
Section G, pp 25–30, 2010.

(5) Dániel Burmeister. Stability of a circular plate with a hole stiffened by
a cylindrical shell. In 7th International Conference of PhD Students, pp
19–24, 2010.

(6) Dániel Burmeister. Stability of a circular plate stiffened by a cylindrical
shell. In XXV. microCAD International Scientific Conference, Section
E, pp 69–74, 2011.

(7) Dániel Burmeister. Stability of a circular plate stiffened by a cylindrical
shell. In The 4th International Conference on Computational Mechanics
and Virtual Engineering – COMEC 2011, pp 210–215, 2011.

10



(8) Dániel Burmeister. Stability of shell-stiffened and axisymmetrically
loaded annular plates. In 7th International Conference of the Croat-
ian Society of Mechanics (7ICCSM2012), 2012.

(9) Dániel Burmeister. Stability of shell-stiffened annular plates. In The
publications of the XXVI. microCAD International Scientific Confer-
ence, 2012.

(10) Dániel Burmeister. Stability of shell-stiffened circular plates. In The
publications of the XXVII. microCAD International Scientific Confer-
ence, 2013.

(11) Dániel Burmeister. Buckling of annular plates with intermediate shell-
stiffening. In The Publications of the MultiScience – XXVIII. micro-
CAD International Multidisciplinary Scientific Conference, 2014.

Conference papers in Hungarian language

(12) Dániel Burmeister. Peremén körhengerhéjjal merevített tömör körlemez
stabilitása. (Stability of solid circular plates stiffened with a cylindrical
shell on its boundary) In Doktoranduszok fóruma: Gépészmérnöki és
Informatikai Kar Szekciókiadványa, pp. 40–45, 2010.

(13) Dániel Burmeister. Stability of a circular plate with a hole stiffened
by a cylindrical shell - further solutions. In Doktoranduszok fóruma:
Gépészmérnöki és Informatikai Kar Szekciókiadványa, pp. 31–36, 2011.

(14) Dániel Burmeister. Buckling of shell-stiffened and axisymmetrically
loaded annular plates. In Doktoranduszok fóruma: Gépészmérnöki és
Informatikai Kar Szekciókiadványa, pp. 18–23, 2012.

Talks in Hungarian

(15) Dániel Burmeister. Körhengerhéjjal merevített körlemez stabilitásvizs-
gálata nem tengelyszimmetrikus alakváltozás mellett. (Stability anal-
ysis of shell-stiffened circular plates assuming non-axisymmetric de-
formations) In 11th Hungarian Conference on Theoretical and Ap-
plied Mechanics, HCTAM, 2011 (XI. Magyar Mechanikai Konferencia).
Miskolci Egyetem, 2011.

References
[1] G. H. Bryan. On the stability of a plate under thrust in its own plane with

applications to the "buckling" of the sides of a ship. Proceedings of the London
Mathematical Society, page 54–67, 1890.

11



[2] A. Nádai. Über das Ausbeulen von Kreisförmingen Platten. Zeitschrift des
Vereines deutscher Ingenieure, 59(11):221–224, 1915.

[3] W.G. Bickley. Deflexions and vibrations of a circular elastic plate under tension.
Phil. Mag., 59:777–797, 1933.

[4] U. Fischer. Untersuchung der elastischen Beulung von Kreisringplatten unter
der Wirkung rotationssymmetrischer Randkräfte. PhD thesis, TH Magdeburg,
1965.

[5] S. Majumdar. Buckling of a thin annular plate under uniform compression.
AIAA Journal, 9:1701–1707, 1971.

[6] G. Pardoen. Vibration and buckling analysis of axisymmetric polar orthotropic
circular plates. Computers & Structures, 4:951–960, 1974.

[7] G.K. Ramaiah and K. Vijayakumar. Elastic stability of annular plates under
uniform compressive forces along the outer edge. AIAA Journal, 13:832–834,
1975.

[8] Lien-When Chen and Ji-Liang Dong. Vibrations of an initially stressed trans-
versely isotropic circular thick plate. International Journal of Mechanical Sci-
ences, 26(4):253–263, 1984.

[9] C. M. Wang and T. M. Aung. Buckling of circular plates under intermediate
and edge radial loads. Thin-Walled Structures, 43:1926–1933, 2005.

[10] Y. Zhang, L. Chen, S. Swaddiwudhipong, Z. Liu, et al. Buckling Deformation of
Annular Plates Describing Natural Forms. International Journal of Structural
Stability and Dynamics, 14(1):1350054[15 pages], 2014.

[11] V. Thevendran and C. M. Wang. Buckling of Annular Plates Elastically Re-
strained against Rotation along Edges. Thin-Walled Structures, 25(3):231–246,
1996.

[12] P. A. A. Laura, R. H. Gutiérrez, H. C. Sanzi, and G. Elvira. Buckling of
circular, solid and annular plates with an intermediate circular support. Ocean
Engineering, 27:749–755, 2000.

[13] C. Y. Wang and C. M. Wang. Buckling of circular plates with an internal ring
support and elastically restrained edges. Thin-Walled Structures, 39:821–825,
2001.

[14] J. N. Reddy, C. M. Wang, and C. Y. Wang. Exact Solutions for Buckling of
Structural Members. CRC Press, 2005.

[15] C. M. Wang and T. M. Aung. Buckling of Circular Mindlin Plates with an
Internal Ring Support and Elastically Restrained Edge. Journal of Engineering
Mechanics, 131(4):359–366, 2005.

[16] M. Troitsky. Stiffened Plates. Elsevier, 1971.

[17] G. J. Simitses and C. M. Blackmon. Buckling of eccentrically stiffened, thin
circular plates. AIAA Journal, 7(6):1200–1202, 1969.

[18] R. S. Srinivasan and V. Thiruvenkatachari. Static and Dynamic Analysis of
Stiffened Plates. Computers & Structures, 21(3):395–403, 1985.

12



[19] T. Kumelj and F. Kosel. Elastic Stability of Thin Annular Plate Made of
Rectilinearly Orthotropic Material. Computers & Structures, 54(1):141–145,
1995.

[20] J. S. Phillips and J. F. Carney. Stability of an Annular Plate Reinforced With a
Surrounding Edge Beam. Journal of Applied Mechanics, ASME, 41(2):497–501,
1974.

[21] G. J. Turvey and N. G. V. Der Avanessien. Axisymmetric elasto-plastic large
deflection response of ring siffened circular plates. International Journal of
Mechanical Sciences, 31(11-12):905–924, 1989.

[22] G. J. Turvey and M. Salehi. Elasto-plastic large deflection response of pressure
loaded circular plates stiffened by a single diameter stiffener. Thin-Walled
Structures, 46:996–1002, 2008.

[23] T. Irie, G. Yamada, and S. Aomura. Vibration and stability of stiffened annular
plates. The Journal of the Acoustical Society of America, 72:466, 1982.

[24] N. Bareeva and A. D. Lizarev. On the stability of an annular plate under the
influence of radial tensile forces. Inzhenernyj Zhurnal. Mekhanika Tverdogo
Tela, 2:126–129, 1966.

[25] J. N. Rossettos and G. Yang. Asymmetric Buckling of Ring Stiffened Circular
Plates. Journal of Applied Mechanics, ASME, 53(2):475–476, 1986.

[26] Y. Frostig and G. J. Simitses. Effect of boundary conditions and rigidities on
the buckling of annular plates. Thin-Walled Structures, 5(4):229–246, 1987.

[27] Y. Frostig and G. J. Simitses. Buckling of ring-stiffened multi-annular plates.
Computers & Structures, 29(3):519–526, 1988.

[28] I. Szilassy. Külső peremén terhelt körgyűrűalakú tárcsa stabilitása. PhD thesis,
Miskolci Egyetem, 1971.

[29] I. Szilassy. Stability of an annular disc loaded on its external flange by an
arbitrary force system. Publ. Techn. Univ. Heavy Industry. Ser. D. Natural
Sciences, 33:31–55, 1976.

[30] V. Z. Vlasov. General theory of shells and its applications in engineering, in:
Selected Papers [in Russian]. Vol. 1, Izd. Akad. Nauk SSSR, Moscow, 1962.

[31] K. Jezsó. Nem tengelyszimmetrikus terheléű vékony körhengerhéjak szilárdság-
tani vizsgálata. PhD thesis, Miskolci Egyetem, 1980.

13


