

UNIVERSITY OF MISKOLC

FACULTY OF ECONOMIC

YOUSEF PADGANEH

Operational Risk Capital Management within Banks according to Basel II (Loss Distribution Approach: Analysis and Risk Professional Perspectives)

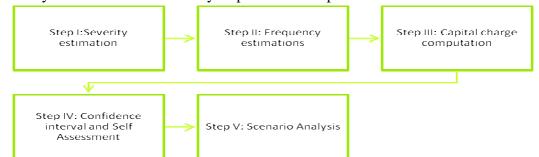
Theses of the PhD Dissertation

Name of Doctoral School: Enterprise Theory and Practice

Head of Doctoral School: Professor, Dr. István Szintay

Scientific Supervisor: Dr. Sándor Bozsik

Table of Contents


A.	Introduction
B.	Rationale of the research4
C.	Research Objectives
D.	Research Method Framework5
E.	Literature Review – A synopsis
F.	Data Analysis and Hypotheses testing
G.	Conclusions
H.	Recommendations
•	Bibliography
•	Annexure I: Basel history and key elements25
•	Annexure II: Author's Working experience, publications, seminar, and conference26

A. Introduction

Basel committee (annexure I) defines operational risk as the risk of loss resulting from inadequate or failed internal processes, people and systems or from external events. Operational risk was not a serious challenge before high-profile cases started to change the landscape. In the past, regulators mainly focused on market and credit risks simply because losses experienced in those sectors were significant. This research intends to; a) throw light on the Basel committee's standards with regards to operational risk, b) analysis of both the academic and banker's opinion, c) analysis of various methods to calculate capital charges, their effectiveness, and d) aims to seek the risk expertise opinion on operational risk management and their preferred model under the Advanced Measurement Approaches "AMA" through questionnaires.

Under the AMA financial institutions are required to develop their own internal measurement methods that estimate the expected and unexpected operational losses based on the combined use of internal and relevant external data. Moreover, the approach should be comparable to internal rating approaches used for credit risk at one year holding period and 99.9th percentile confidence interval. And the bank should demonstrate that the approach is robust to capture potentially severe 'tail' loss events.

The key purpose of choosing the right economic capital methodology is to ensure that it covers all material sources of risk. This requirement is a precondition for providing reliable risk estimates for capital management and risk-based performance measurement. Since operational losses are an important source of risk, the quantification of operational risk (OR) has to be part of the bank's economic capital calculation. Regulatory capital requirements under Pillar I of the Basel II Accord (2006) has given a strong additional incentive for the development of a quantitative OR methodology. One of the popular methods under the AMA is the loss distribution approach (LDA). Under the LDA, banks quantify the frequency and severity of operational risk losses distribution for each risk cell (business line/event type) over a 1-year time horizon. The key steps towards implementation of LDA are as follows:

Key steps toward LDA, Source: Jos'e Aparicio, and Eser Keskiner (2004)

The main objective of an LDA model is to provide realistic risk estimates for the bank and its business units based on loss distribution that accurately reflect the underlying data. In addition to this, saving capital by moving to advanced methods and deploying the sophisticated measurement tools is another motive for banks. The LDA is the one of the most advanced methods envisaged so far and I believe was the most exhilarating area for further research according to Jos'e Aparicio, and Eser Keskiner (2004).

According to Bank of Japan (2005), the most commonly used operational risk quantification method is known as the "loss distribution approach." This approach has been

exhaustively studied by actuaries, mathematicians, and statisticians well before the concept of operational risk came into existence, and given the characteristics and challenges of the data, we can resolve many issues by using an LDA approach (Kabir Dutta, and Jason Perry, 2007). Table 1.1 shows advantages and disadvantages of using the LDA:

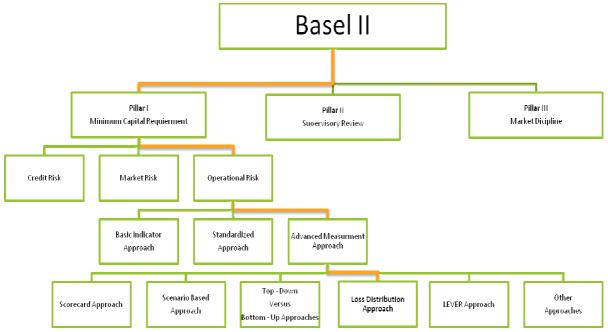

	A dreamte and	Ŭ	Diss duranta sas
	Advantages		Disadvantages
a)	A popular method under the AMA,	a)	Backward looking approach,
b)	A powerful tool to quantify operational risk loss data	b)	Only rely of loss data,
c)	Covers Severity and Frequency of losses,	c)	Require substantial data Management,
d)	Enable to optimize risk transfer options,	d)	Underestimate the necessary capital
e)	Lower amount of Capital charges,		charge when only when calibrated only
f)	More risk sensitive than other approaches,		on internal data, and
g)	Provides a framework for addressing extreme outcomes,	e)	Very sophisticated model where some of
h)	Successfully implemented in Insurance,		the banks face with difficulties in
i)	One of the most important methodologies suggested by		implementation.
	Basel II Committee.		

Table 1.1- LDA Advantages and Disadvantages, Developed based on K.Dutta, and J. Perry, 2007

B. Rationale of the research

Within banks and other financial institutions there is now an increasing pressure to manage operational risk. Apart from regulatory requirements, this pressure is also due to the increasing sophistication of financial products and systems. Increasing dependency of financial systems on Information technology has made banks more vulnerable towards cyber-attacks, system failures and fraud.

A key element of Operational Risk Management is to measure the size and scope of the firm's risk exposures to allocate an amount of capital to safeguard the bank. However, so far there is no clear established or single approach to measure operational risk on a firm – wide basis. Instead, there are several methods used.

Theoretical Scope of the Research: Loss Distribution Approach (LDA) under Advance Measurement Approach (AMA), Source: author's own work

C. Research Objectives

The key objective of this dissertation is to assess various methods in computing operational risk capital charges with focus on Advanced Measurement Approach "AMA". Most importantly, the objective is to seek the opinion of Risk experts / practitioners in Operational Risk Management and their most preferable method under advanced measurement approach. There is a particular focus in the questionnaire on whether the Loss Distribution Approach is an improved mechanism under Advanced Measurements approach or not. By reviewing similar research conducted in the past and through seeking the risk professional's opinion, the objectives of this research will be achieved.

D. Research Method and Framework

Since most of the discussions are based on research conducted by experts on the field of operational risk and opinion of risk professionals, it is possible to say the research method is a qualitative and quantitative based. A questionnaire is also prepared to collect data from risk professionals and various banks regarding their view on operational risk management approaches used and roadblocks faced by them. The researcher has developed a questionnaire in order to collect quantitative and qualitative data. The questionnaire is in English medium with close-ended questions using a 5 Point Likert Scale.

The questionnaire comprised of 48 questions which included, demographic details of respondents as well as the perception of operations risk and role of Basel II in the banking environment. Out of 48 questions, some of them had sub-questions also to cover up as many concepts as possible. In order to support the objectives of this research, seven hypotheses were made and tested.

The population was Risk Professionals who work in the UAE Banks with the total of n=100 bankers completed the questionnaire during the year 2011.

Scope of this research is limited to UAE banking system and in regards to Operational Risk Management.

E. Literature Review – A synopsis

Based on the review of the literature, LDA seems to be one of the best approaches to quantify operational risk losses and calculate capital charges under AMA. It is also preferred by several researchers and banking industry professionals in the last decade (See below table).

No.	AMA and use of LDA
1	Toshihiko Mori, and Eiji Harada (2001), The last approach [LDA]is considered as a future option[To calculate capital under AMA]
2	Padraic Walsh (2003), The loss distribution approach is theoretically the most robust method developed to date.
3	Padraic Walsh (2003), The loss distribution approach provides a framework for addressing extreme outcomes.
4	ITWG (2003), The Industry Technical Working Group shares a common view that loss data should really be the foundation of an LDA-based AMA approach.
5	Klugman et al. (2004), [LDA] is a good source for various loss models
6	Jos'eAparicio, and EserKeskiner (2004), This is the most advanced method [LDA] envisaged so far and we believe the most exciting area for further research

7	Fitch (2004), The vast majority of banks hoping to adopt AMA plan to use a loss distribution approach to							
'	their capital charge.							
	M.R.A. Bakker(2004), The Loss Distribution Approach (LDA) uses frequency and severity distributions							
8	based on operational losses to quantify operational risk and is at this moment one of the most used and							
o	discussed (see for instance Cruz (2002) and Frachot, Georges, and Roncalli (2001)) approach under the							
	AMAs to measure operational risks.							
9	Chartis (2005), In annual Chartis Customer Survey of over 130 financial institutions 58% of respondents							
	indicated that they will be using a combination of the LDA (Loss Distribution Approach) and COSO							
	approach (Committee of Sponsoring Organisations of the Tread way Commission)							
10	Bank of Japan (2005), The most commonly used operational risk quantification method is known as the							
	"loss distribution approach."							
11	KabirDutta, and Jason Perry (2007), Given the characteristics and challenges of the data, we can resolve							
	many issues by using an LDA approach							
12	KabirDutta, and Jason Perry(2007), The LDA has been exhaustively studied by actuaries,							
	mathematicians, and statisticians well before the concept of operational risk came into existence							
Carro								

F. Data Analysis and Hypothesis Testing

The total number of respondents that participated in the research is 100. To analyze the collected information, different methods such as Univariate and Bivariate (Cross Tabs) analysis are used.

One-way analysis of variance (ANOVA) is used to test the difference between the means of the groups of variables (multiple testing). This is done at the 0.05 level of significance. In addition to the above a "Pearson" correlation test was applied using SPSS to two hypotheses (i.e. H_6 and H_7). The summary of the analysis is provided below.

a) Univariate statistics: Univariate method for analyzing data on a single variable

Characteristics	% of respondents						
Ago	21-30	31-40			40 years and	above	
Age	41	32			27		
Gender	Ν	/ Iale			Female		
		82			18		
	Senior	Graduate	Pos		Masters	Other	
Qualification	Secondary		gradu		Masters		
	2	38	45		7	8	
Current Position	Chief Risk	Risk Manager	Operational Risk		Operational	Operational	
	Officer	Kisk Manager	Mana		Risk Analyst	Risk Officer	
	11	30	32	·	18	9	
Experience of Risk	>3	3>5	5>1	0	1(<	
Management.	30	42	26		2	2	
Type of bank	Retail	Commercial	Investr	nent	Merchant		
Type of ballk	49	45	4		2	2	
		9	% of resp	ondent	5		
Characteristics	Not at all	To a lesser degree	To a f degr		To a high degree	Totally	
Credit Risk	0	39	33		27	1	
Market Risk	6	32	36		20	6	
liquidity risk	10	29	30)	29	2	
Country risk	6	23	32		26	13	
reputation risk	9	25\$	28		22	16	

at a time has been used in this section.

Legal Risk	6	22	32	26	14
Operational risk	12	18	31	30	9

To what degree has your organization implemented the following as primary factors of operational risk?

		(% of respondents					
Characteristics	Not at all	To a lesser	To a fair	To a high	Totally			
		degree	degree	degree	Totally			
People	0	34	29	35	2			
Processes	5	22	33	27	13			
System	18	21	29	23	9			
External factors	20	26	28	20	6			

Source: author's own work

To what degree has your organization recognized the following people exposures as an important part of operational risk?

	% of respondents						
Characteristics	Not	To a lesser	To a fair	To a high	Totally		
	at all	degree	degree	degree	Totally		
Incompetence	3	31	30	32	4		
Negligence	10	25	29	20	16		
human error	5	22	32	26	15		
low morale	12	18	32	30	8		
high staff turnover	1	36	29	33	1		
employees fraudulent/criminal activities	1	35	29	34	1		

Source: author's own work

To what degree has your organization recognized the following process exposures as an important part of operational risk?

	% of respondents								
Characteristics	Not at all	To a lesser	To a fair	To a high	Totally				
		degree	degree	degree	Totally				
Errors in procedure/methodologies	25	38	16	16	5				
Execution error	0	25	31	21	23				
Documentation errors	12	13	24	32	19				
Product complexity	6	23	35	24	12				
Security risk	7	18	35	24	16				

Source: author's own work

To what degree has your organization recognized the following system exposures as an important part of operational risk?

		% of 1	respondents		
Characteristics	Not	To a lesser	To a fair	To a high	Totally
	at all	degree	degree	degree	Totally
System infiltration	12	16	29	27	16
System failures	24	29	29	14	4
Fraud	2	18	35	29	16
Programming errors	3	21	34	27	15
Information risk	2	18	35	24	21
Telecommunication risk	8	10	37	33	12
Obsolescence of systems	8	21	33	22	16
Implementing a formal risk management	5	16	38	29	12
process	5	10	50	29	12
Adopted a specific definition for	0	19	36	29	16

operational risk		1			
Risk identification	8	18	35	27	12
Risk evaluation	10	19	27	24	20
Risk control	1	30	34	20	15
Risk financing	0	19	26	32	23
Recognize the importance of aligning an	0	17	20	52	23
operational risk management process with	5	30	34	18	13
its strategy and objectives	5	50	54	10	15
Involve internal audit to manage					
operational risk?	1	20	24	33	22
Involved business managers in an					
operational risk management process?	0	30	36	22	20
Operational Risk definition based on Basel					
II	10	19	33	25	13
LDA is a statistical/actuarial approach for			•		
computing aggregate loss distributions	1	9	39	35	16
LDA is better than the other methods to					
quantify operational risk while using	3	9	38	36	14
AMA.					
Bank uses LDA to identify and estimate	22	24	10	0	<i>.</i>
frequency and severity of losses	33	34	19	8	6
bank uses the methods available through					
LDA to check data completeness of loss	22	49	18	5	6
data among the participating members					
There is an effective tracking method at the	15	26	1.5	0	6
bank that works well with LDA	45	26	15	8	6
The collected data works with LDA and					
this tells you your data collection method	27	49	18	4	2
is effective					
There are differences I notice across					
different business lines at our bank and	1	9	39	35	16
other similar institutions					
Arriving at the appropriate threshold to					
capture operational loss and near misses is	3	9	38	36	14
very important.					
Operational events across the various					
business lines at your bank are handled	3	19	33	24	21
according to what AMA recommends					
The ratio of supervisors to staff at your	4	22	35	22	17
bank is correct.	•	22			17
Your bank has a unit that handles	6	8	36	34	16
confidential client information	÷	Ű		51	10
Your bank defines operational risk	12	28	32	17	11
according to what AMA recommends.					
You justify your bank's pursuing of			•		
quantification of operational risk as a	15	9	39	35	16
positive measure					
If there is going to be a loss at your bank, it	2	0	20	2.5	
would be because of inadequate or failed	3	9	38	36	14
internal process.					
If there is going to be a loss at your bank, it	10	20	20	17	11
would be because of people or system	12	28	32	17	11
failure.					
If there is going to be fraud at your bank, it	1	9	40	35	15
would be internal.					
The bank gathers more than one year's	2	6	42	37	13
data					
bank has the ability to withstand business	5	9	36	32	18
disruption					

You model extreme events at your bank according to what AMA recommends	26	44	14	6	10
There are technologies you incorporate in your decision making process that enables your bank to reduce risk	2	14	28	31	25
You promote sound internal policies and control procedures.	0	11	39	30	20
You motivate investment in operational risk infrastructure to reduce operational risk at your bank.	4	22	35	22	17
Your bank relies on internal data, external data, and scenario analysis.	6	8	36	34	16
Your bank has adequate insurance coverage or loss mitigation processes in place	12	28	32	17	11
Your bank handles frequency distribution and severity distribution according to what AMA recommends.	34	26	13	18	9
You run statistical simulation to produce a loss distribution.	12	28	32	17	11
You rely on KRIs while calculating the cost of operational risk at your bank	1	9	40	35	15
If you belong to any group of banks, capital flows among the members freely.	20	6	42	37	13
Risk indicators play a role in your monitoring and gathering of internal, external, current and historical data	5	9	36	32	18
Source: author's own work	I	1		I	1

- **b) Bivariate statistics:** Bivariate Statistical procedures used to describe the relationship between two variables with a special focus on LDA. The primary focus is on the extent to which they covary, or vary together.
 - i. Age group

Description	Level	Ag	e Group (%)	Total
		21-30	31-40	+40	
	Not at all	2.4	0	0	1.0
1) LDA is a statistical/actuarial approach for	To a lesser degree	12.2	9.4	3.7	9.0
computing aggregate loss distributions	To a fair degree	41.5	34.4	40.7	39.0
	To a high degree	26.8	40.6	40.7	35.0
	Totally	17.1	15.6	14.8	16.0
Total		100	100	100	100
	Not at all	31.7	21.9	48.1	33.0
2) LDA is better than the other methods to	To a lesser degree	39.0	40.6	18.5	34.0
quantify operational risk while using	To a fair degree	14.6	25.0	18.5	19.0
AMA.	To a high degree	9.8	6.3	7.4	8.0
	Totally	4.9	6.3	7.4	6.0
Total		100	100	100	100
3) The bank uses LDA to identify and	Not at all	29.3	18.8	14.8	22.0
	To a lesser degree	51.2	50.0	44.4	49.0

estimate frequency and severity of losses?	To a fair degree	9.8	18.8	29.6	18.0
	To a high degree	7.3	3.1	3.7	5.0
	Totally	2.4	9.4	7.4	6.0
Total		100	100	100	100
4) The bank uses the methods available	Not at all	46.3	50.0	37.0	45.0
through LDA to check data completeness	To a lesser degree	29.3	21.9	25.9	26.0
of loss data among the participating	To a fair degree	12.2	15.6	18.5	15.0
members?	To a high degree	4.9	12.5	7.4	8.0
	Totally	7.3	0	11.1	6.0
Total		100	100	100	100
	Not at all	24.4	25.0	33.3	27.0
5) There is an effective tracking method at	To a lesser degree	53.7	56.3	33.3	49.0
the bank that works well with LDA	To a fair degree	14.6	15.6	25.9	18.0
	To a high degree	4.9	3.1	3.7	4.0
	Totally	2.4	0	3.7	2.0
Total		100	100	100	100

ii. Gender

Description	Level	Gende	er (%)	Total
· ·		Male	Female	
	Not at all	1.2	0	1.0
1) LDA is a statistical/actuarial approach for	To a lesser degree	11.0	0	9.0
computing aggregate loss distributions	To a fair degree	37.8	44.4	39.0
1 0 00 0	To a high degree	35.4	33.3	35.0
	Totally	14.6	22.2	16.0
Total		100	100	100
	Not at all	24.4	11.1	22.0
2) The bank uses LDA to identify and	To a lesser degree	56.1	16.7	49.0
estimate frequency and severity of losses?	To a fair degree	14.6	33.3	18.0
estimate requerey and severity of resses.	To a high degree	1.2	22.2	5.0
	Totally	3.7	16.7	6.0
Total		100	100	100
3) The bank uses the methods available	Not at all	50.0	22.2	45.0
through LDA to check data completeness	To a lesser degree	25.6	27.8	26.0
of loss data among the participating	To a fair degree	12.2	27.8	15.0
members?	To a high degree	8.5	5.6	8.0
includers.	Totally	3.7	16.7	6.0
Total		100	100	100
4) There is an effective tracking method at	Not at all	26.8	27.8	27.0
,	To a lesser degree	53.7	27.8	49.0

the bank that works well with LDA	To a fair degree	14.6	33.3	18.0
	To a high degree	3.7	5.6	4.0
	Totally	1.2	5.6	2.0
Total		100	100	100
	Not at all	1.2	0	1.0
5) The collected data works with LDA and	To a lesser degree	11.0	0	9.0
this tells you your data collection method	To a fair degree	37.8	44.4	39.0
is effective.	To a high degree	35.4	33.3	35.0
	Totally	14.6	22.2	16.0
Total		100	100	100

iii. Qualifications

Description	Level		Qua	lification	t (%)		Total
	20102	SS	G	PG	М	0	2000
	Not at all	0	0	2.2	0	0	1.0
1) LDA is a statistical/actuarial	To a lesser degree	0	13.2	6.7	0	12.5	9.0
approach for computing	To a fair degree	50	44.7	33.3	57.1	25.0	39.0
aggregate loss distributions	To a high degree	50	23.7	40.0	42.9	50.0	35.0
	Totally	0	18.4	17.8		12.5	16.0
Total		100	100	100	100	100	100
	Not at all	50	21.1	26.7	0	12.5	22.
2) The bank uses LDA to identify	To a lesser degree	0	47.4	51.1	57.1	50.0	49.
and estimate frequency and	To a fair degree	50	15.8	13.3	42.9	25.0	18.
severity of losses?	To a high degree	0	7.9	2.2	0	12.5	5.0
	Totally	0	7.9	6.7	0	0	6.0
Total		100	100	100	100	100	100
	Not at all	0	52.6	46.7	28.6	25.0	45.0
3) The bank uses the methods	To a lesser degree	0	21.1	31.1	14.3	37.5	26.0
available through LDA to check	To a fair degree	50	13.2	8.9	42.9	25.0	15.0
data completeness of loss data							
among the participating	To a high degree	50	5.3	6.7	14.3	12.5	8.0
members?							
	Totally	0	7.9	6.7	0	0	6.0
Total		100	100	100	100	100	100
	Not at all	0	26.3	33.3	14.3	12.5	27.0
4) There is an effective tracking	To a lesser degree	0	52.6	48.9	42.9	50.0	49.0
method at the bank that works	To a fair degree	100.	13.2	15.6	28.6	25.0	18.0
well with LDA	To a high degree	0	5.3	0	14.3	12.5	4.0
	Totally	0	2.6	2.2	0	0	2.0
Total		100	100	100	100	100	100

Total	Totally	100	10.4	100	100	100	100
	Totally	0	18.4	17.8	0	12.5	16.
effective.	To a high degree	50.	23.7	40.0	42.9	50.0	35.
data collection method is	To a fair degree	50.	44.7	33.3	57.1	25.0	39.
LDA and this tells you your	To a lesser degree	0	13.2	6.7	0	12.5	9.0
5) The collected data works with	Not at all	0	0	2.2	0	0	1.0

iv. Current position

			Curre	nt Positi	on (%)		
Description	Level	CR		OR	OR	OR	Total
		0	RM	М	А	0	
	Not at all	0	0	3.1	0	0	1.0
1) LDA is a statistical/actuarial	To a lesser degree	9.1	13.3	6.3	0	22.2	9.0
approach for computing	To a fair degree	27.3	33.3	28.1	61.1	66.7	39.0
aggregate loss distributions	To a high degree	36.4	33.3	50.0	22.2	11.1	35.0
	Totally	27.3	20.0	12.5	16.7	0	16.0
Total		100	100	100	100	100	100
	Not at all	45.5	20.0	15.6	22.2	22.2	22.0
2) The bank uses LDA to identify	To a lesser degree	36.4	43.3	56.3	55.6	44.4	49.0
and estimate frequency and	To a fair degree	9.1	23.3	15.6	11.1	33.3	18.0
severity of losses?	To a high degree	9.1	3.3	6.3	5.6	0	5.0
	Totally	0	10.0	6.3	5.6	0	6.0
Total		100	100	100	100	100	100
3) The bank uses the methods	Not at all	36.4	36.7	43.8	55.6	66.7	45.0
available through LDA to check	To a lesser degree	27.3	30.0	37.5	5.6	11.1	26.0
data completeness of loss data	To a fair degree	0	13.3	9.4	33.3	22.2	15.0
among the participating	To a high degree	27.3	6.7	6.3	5.6	0	8.0
members?	Totally	9.1	13.3	3.1	0	0	6.0
Total		100	100	100	100	100	100
	Not at all	54.5	30.0	21.9	16.7	22.2	27.0
4) There is an effective tracking	To a lesser degree	27.3	40.0	59.4	61.1	44.4	49.0
method at the bank that works	To a fair degree	18.2	23.3	15.6	11.1	22.2	18.0
well with LDA	To a high degree	0	0	3.1	11.1	11.1	4.0
	Totally	0	6.7	0	0	0	2.0
Total		100	100	100	100	100	100
5) The collected data works with	Not at all			3.1			1.0
LDA and this tells you your	To a lesser degree	9.1	13.3	6.3		22.2	9.0
data collection method is	To a fair degree	27.3	33.3	28.1	61.1	66.7	39.0
effective.	To a high degree	36.4	33.3	50.0	22.2	11.1	35.0
	Totally	27.3	20.0	12.5	16.7	0	16.0
Total		100	100	100	100	100	100

Source: author's own work

v. Experience in risk management

		Expe	rience in F	Risk Mana	igement	
Description	Level		(%)		Total
		>3	3>5	5>10	+10	
	Not at all	0	0	3.8	0	1.0
1) LDA is a statistical/actuarial	To a lesser degree	16.7	4.8	7.7	0	9.0
approach for computing	To a fair degree	36.7	40.5	42.3	0	39.0
aggregate loss distributions	To a high degree	30.0	35.7	38.5	50.0	35.0
	Totally	16.7	19.0	7.7	50.0	16.0
Total		100	100.0	100.0	100.0	100.0
	Not at all	20.0	28.6	15.4	0	22.0
2) The bank uses LDA to identify	To a lesser degree	63.3	42.9	38.5	100.0	49.0
and estimate frequency and	To a fair degree	13.3	11.9	34.6	0	18.0
severity of losses?	To a high degree		9.5	3.8	0	5.0
	Totally	3.3	7.1	7.7	0	6.0
Total		100	100.0	100.0	100.0	100.0
3) The bank uses the methods	Not at all	43.3	59.5	26.9	0	45.0
available through LDA to check	To a lesser degree	40.0	11.9	34.6	0	26.0
data completeness of loss data	To a fair degree	6.7	11.9	30.8	0	15.0
among the participating	To a high degree	3.3	9.5	7.7	50.0	8.0
members?	Totally	6.7	7.1	0	50.0	6.0
Total		100	100.0	100.0	100.0	100.0
	Not at all	33.3	33.3	11.5	0	27.0
4) There is an effective tracking	To a lesser degree	40.0	52.4	50.0	100.0	49.0
method at the bank that works	To a fair degree	16.7	9.5	34.6	0	18.0
well with LDA	To a high degree	6.7	2.4	3.8	0	4.0
	Totally	3.3	2.4	0	0	2.0
Total		100	100.0	100.0	100.0	100.0
5) The collected data works with	Not at all	0	0	3.8	0	1.0
LDA and this tells you your	To a lesser degree	16.7	4.8	7.7	0	9.0
data collection method is	To a fair degree	36.7	40.5	42.3	0	39.0
effective.	To a high degree	30.0	35.7	38.5	50.0	35.0
	Totally	16.7	19.0	7.7	50.0	16.0
Total		100	100.0	100.0	100.0	100.0

Source: author's own work

vi. Type of the banks

Description	Level	r	Гуре of th	e banks (%)	Total
		RB	CB	IB	MB	
1) LDA is a statistical/actuarial	Not at all	0	2.2	0	0	1.0

	approach for computing	To a lesser degree	4.1	13.3	0	50.0	9.0
	aggregate loss distributions	To a fair degree	42.9	37.8	25.0	0	39.0
		To a high degree	36.7	31.1	50.0	50.0	35.0
		Totally	16.3	15.6	25.0	0	16.0
	Total		100	100	100	100	100
		Not at all	16.3	26.7	50.0	0	22.0
2)	The bank uses LDA to identify	To a lesser degree	44.9	55.6	25.0	50.0	49.0
	and estimate frequency and	To a fair degree	26.5	8.9	25.0	0	18.0
	severity of losses?	To a high degree	4.1	4.4	0	50.0	5.0
		Totally	8.2	4.4	0	0	6.0
	Total		100	100	100	100	100
3)	The bank uses the methods	Not at all	42.9	48.9	25.0	50.0	45.0
	available through LDA to check	To a lesser degree	22.4	31.1	0	50.0	26.0
	data completeness of loss data	To a fair degree	18.4	11.1	25.0	0	15.0
	among the participating	To a high degree	8.2	4.4	50.0	0	8.0
	members?	Totally	8.2	4.4	0	0	6.0
	Total		100	100	100	100	100
		Not at all	26.5	26.7	25.0	50.0	27.0
4)	There is an effective tracking	To a lesser degree	42.9	57.8	25.0	50.0	49.0
	method at the bank that works	To a fair degree	22.4	11.1	50.0	0	18.0
	well with LDA	To a high degree	6.1	2.2	0	0	4.0
		Totally	2.0	2.2	0	0	2.0
	Total		100	100	100	100	100
5)	The collected data works with	Not at all	0	2.2	0	0	1.0
	LDA and this tells you your	To a lesser degree	4.1	13.3	0	50.0	9.0
	data collection method is	To a fair degree	42.9	37.8	25.0	0	39.0
	effective.	To a high degree	36.7	31.1	50.0	50.0	35.0
		Totally	16.3	15.6	25.0	0	16.0
	Total		100	100	100	100	100

Testing of Hypothesis: Below are the hypotheses testing:

Hypothesis Number I:

- Null Hypothesis (H_0): There is no significant difference among different age groups regarding LDA is an improved mechanism for determining and working on operational risk.
- Alternate Hypothesis (H_A): There is a significant difference among different age groups regarding LDA is an improved mechanism for determining and working on operational risk.

In order to determine whether there is a significant difference among different age groups regarding LDA is an improved mechanism for determining and working on operational risk, a kruskal – wallis test was applied using SPSS.

	H I- Ranks		
	Age	Ν	Mean Rank
LDA is better than the other methods to	21-30 years	41	49.95
quantify operational risk while using	31-40 years	32	55.23
AMA.	40 years and above	27	45.72
	Total	100	
	HI- Test Statistics ^{a,b}		
LDA is better than the othe	r methods to quantify operationa	l risk while using	AMA.
Chi-square (1.74.3)	Df (2)	Asymp.	Sig. (.418)
a. Kruskal Wallis Test - b. Grouping Var	iable: Age		

H₁: Ranks and test statistics - Source: author's own work

From the table above we can observe that the value of chi square statistic is 1.743 and its corresponding p value is 0.418>0.05. Since the p value is more than 0.05 we can conclude that there is no significant difference among different age groups regarding LDA is an improved mechanism for determining and working on operational risk. We fail to reach significance; thus the decision is to retain the null hypothesis.

Hypothesis Number II:

- Null Hypothesis (H₀): There is no significant difference in grading between different types of banks regarding operational risk.
- Alternate Hypothesis (H_A): There is a significant difference in grading between different types of banks regarding operational risk.

In order to determine whether there is a significant difference in grading between different types of banks regarding operational risk, a kruskal – wallis test was applied using SPSS.

		H II- Ranks		
	• •	pe of bank that you ar presenting	re N	Mean Rank
		Retail	49	51.47
		Commercial	45	50.01
Operational risk	Dimension 1	Investment	4	56.25
		Merchant	2	26.25
		Total	100	
	Н	II- Test Statistics ^{a,b})	
		Operational risk		
Chi-square (1.735)	df	(3)	Asymp. Sig	g. (.629)
a. Kruskal Wallis Test - b	. Grouping Variabl	e: Indicate the type of	f bank that you are rep	resenting

H2: Ranks and test statistics - Source: author's own work

From the table above we can observe that the value of chi square statistic is 1.735 and its corresponding p value is 0.629>0.05. Since the p value is more than 0.05 we can conclude that there is no significant difference in grading between different types of banks regarding operational risk. We fail to reach significance; thus the decision is to retain the null hypothesis.

Hypothesis Number III:

• Null Hypothesis (H₀): There is no significant difference in grading between different types of banks and their capability for handling operational risk.

• Alternate Hypothesis (H_A) : There is a significant difference in grading between different types of banks and their capability for handling operational risk.

In order to determine whether there is a significant difference in grading between different types of banks and their capability for handling operational risk, a kruskal – wall is test was applied using SPSS.

H III- Ranks				
	Indicate the type of bank that you are representing		Ν	Mean Rank
To what degree does your		Retail	49	47.58
organisation recognize the		Commercial	45	54.64
importance of aligning an	Dimension 1	Investment	4	38.63
operational risk management process		Merchant	2	52.50
with its strategy and objectives?		Total	100	
H III- Test Statistics ^{a,b}				
To what degree does your organisation recognize the importance of aligning an operational risk management				
process with its strategy and objectives?				
Chi-square (2.262)	df (3)		Asymp. Sig.	(.520)
a. Kruskal Wallis Test - b. Grouping Variable: Indicate the type of bank that you are representing				

 $H_3: Ranks \ and \ test \ statistics$ - Source: author's own work

From the table above we can observe that the value of chi square statistic is 2.262 and its corresponding p value is 0.520>0.05. Since the p value is more than 0.05 we can conclude that there is no significant difference in grading between different types of banks and their capability for handling operational risk. A one way analysis of variance of applied using SPSS in order test this hypothesis. We fail to reach significance; thus the decision is to retain the null hypothesis.

Hypothesis Number IV

- Null Hypothesis (H_0) : There is no significant difference between different types of banks and their data management technology.
- Alternate Hypothesis (H_A): There is a significant difference between different types of banks and their data management technology.

In order to determine whether there is a significant difference between different types of banks and their data management technology, a kruskal – wallis test was applied using SPSS.

H IV- Ranks					
	Indicate the type of bank that you are representing		Ν	Mean Rank	
Your bank relies on internal data,		Retail	49	51.05	
external data, and scenario analysis.		Commercial	45	50.61	
	Dimension 1	Investment	4	50.00	
		Merchant	2	35.50	
			100		
H IV- Test Statistics ^{a,b}					
Your bank relies on internal data, external data, and scenario analysis.					
Chi-square (.609)	df (3)		Asymp. Sig. (.894)		
a. Kruskal Wallis Test - b. Grouping Variable: Indicate the type of bank that you are representing					

H4: Ranks and test statistics - Source: author's own work

From the table above we can observe that we can observe that the value of chi square statistic is 0.609 and its corresponding p value is 0.893>0.05. Since the p value is more than 0.05 we can conclude that there is no significant difference between different types of banks and their data management technology. We fail to reach significance; thus the decision is to retain the null hypothesis.

Hypothesis Number V:

- Null Hypothesis (H_0): There is no significant difference between different types of banks in acceptance of recommendation from agencies like AMA.
- Alternate Hypothesis (H_A) : There is a significant difference between different types of banks in acceptance of recommendation from agencies like AMA.

In order to determine whether there is a significant difference between different types of banks in acceptance of recommendation from agencies like AMA, a kruskal – wallis test was applied using SPSS.

	H V-	Ranks			
	Indicate the type of bank that you are representing		Ν	Mean Rank	
Your bank defines operational risk		Retail	49	51.59	
according to what AMA		Commercial	45	49.06	
recommends.	Dimension 1	Investment	4	53.63	
		Merchant	2	50.00	
			100		
H V- Test Statistics ^{a,b}					
Your bank defines operational risk according to what AMA recommends.					
Chi-square (.244)	df (3)		Asymp. Sig. (.970)		
a. Kruskal Wallis Test - b. Grouping Variable: Indicate the type of bank that you are representing					

 $H_{5} {:} \ Ranks \ and \ test \ statistics$ - Source: author's own work

From the table above we can observe that we can observe that the value of chi square statistic is 0.244 and its corresponding p value is 0.970>0.05. Since the p value is more than 0.05 we can conclude that there is no significant difference between different types of banks in acceptance of recommendation from agencies like AMA. We fail to reach significance; thus the decision is to retain the null hypothesis.

Hypothesis Number VI:

- Null Hypothesis (H_0) : Quantifying operational risk cannot prevent banks from financial losses.
- Alternate Hypothesis (H_A) : Quantifying operational risk can prevent banks from financial losses.

A Pearson correlation test was applied using SPSS to assess whether quantifying operational risk can prevent financial losses.

H VI - Correlations					
Operational risk Risk financing					
	Pearson Correlation	1	.079		
Operational risk	Sig. (2-tailed)		.433		
	Ν	100	100		
Risk financing	Pearson Correlation	.079	1		
	Sig. (2-tailed)	.433			

	H VI - Correlations					
	Operational risk Risk financing					
	Pearson Correlation	1	.079			
Operational risk	Sig. (2-tailed)		.433			
	N	100	100			
Dials financing	Pearson Correlation	.079	1			
Risk financing	Sig. (2-tailed)	.433				
	N	100	100			

H₆: Ranks and test statistics - Source: author's own work

From the table above we can observe that the correlation coefficient is 0.079 and its corresponding p value is 0.433>0.05. Since the p value is more than 0.05, null hypotheses can be accepted and quantifying operational risk cannot prevent banks from financial losses. We fail to reach significance; thus the decision is to retain the null hypothesis.

Hypothesis Number VII:

- Null Hypothesis (H_0) : LDA is not the most appropriate method to quantify operational risk data.
- Alternate Hypothesis (H_A) : LDA is the most appropriate method to quantify operational risk data.

A Pearson correlation test was applied using SPSS to assess whether LDA is the most appropriate method to quantify the operational risk data.

H VII - Correlations				
		Operational risk	LDA is better than the	
			other methods to quantify	
			operational risk while	
			using AMA.	
	Pearson Correlation	1	.172	
Operational risk	Sig. (2-tailed)		.088	
	N	100	100	
LDA is better than the other	Pearson Correlation	.172	1	
methods to quantify operational	Sig. (2-tailed)	.088		
risk while using AMA.	Ν	100	100	

H7: Ranks and test statistics - Source: author's own work

From the table above we can observe that the correlation coefficient is 0.172 and its corresponding p value is 0.088>0.05. Since the p value is more than 0.05, null hypotheses can be accepted and LDA is not the most appropriate method to quantify operational risk data. We fail to reach significance; thus the decision is to retain the null hypothesis.

There results of hypotheses show that all the null hypotheses were accepted.

G. Conclusions and Recommendations

The purpose of this research was to study the computing operational risk capital charges using different methodologies within banks according to Basel II with special focus on LDA. There are a lot of risks that banking organizations go through on a daily basis. The study therefore sought to assess various methods for quantifying operational risk loss data and compute required capital charges within a bank when historical data loss data is limited.

To achieve the objectives of this research, in addition to qualitative approach a quantitative research approach was employed where managers working in different banking organization of entities participated in the research. It was established that the risk types in banks include credit risk, market risk, liquidity risk interest rate risk, country risk, reputation risk, legal risk and operational risk. Factors of operational risk as found in the study include people, processes, systems and external factors like political pressure, natural disasters and fraud among others. There are also a number of exposures that were found to be part of operational risk. The exposures include people exposure, systems exposures and systems exposures.

Operational risk resulting from people is as a result of incompetence, negligence, human error, low morale, high staff turnover and fraudulent activities of bank employees. Concerning process exposures, it was established that process exposures leading to operational risk include errors in procedure/methodologies, execution errors, documentation errors, product complexity and security risk. System infiltration, system failures, fraud, programming errors, information risk, telecommunication risk and obsolescence of systems were found to be system exposures leading to operational risk.

Implementation of a formal risk management process is critical to averting the threats that area associated with operational risk. In addition, it is also very important to align operational risk management process with its strategy and objectives because such approach would ensure success in operational risk management. The study established that entities put in place a separate operational risk management structure in order to deal with risk effectively. It was established that arriving at the appropriate threshold to capture operational loss and near misses is very important and that operational events across the various business lines in banks are handled according to what AMA recommends.

It is important to ensure that the ratio of supervisors to staff in a bank is correct in order to curb operational risk that could result from lack of proper supervision of employees. Many banks have a unit that handles confidential client information and they tend to define operational risk according to what AMA recommends.

Majority of respondents justify their bank's pursuing of quantification of operational risk as a positive measure and they unanimously agreed that if there to be a loss at their bank, it would be because of inadequate or failed internal process. Putting in place internal process in the banks to deal will all sorts of risk is therefore quite necessary in trying to contain risk especially operational risk. Promoting sound internal policies and control procedures is effective in managing operational risk in the banking industry.

The management fraternity can therefore play a very significant role in motivating investment in operational risk infrastructure to reduce operational risk at the bank. Many banking institutions according to this study rely on KRIs while calculating the cost of operational risk at the bank and that risk indicators play a role in monitoring and gathering of internal, external, current and historical data.

Concerning the hypotheses, it was found out that, LDA is an improved mechanism but not the only preferred model for determining and working on operational risk, operational risk is one of the biggest risks for banks, bank has suitable capability for handling operational risk, data management and technology can help in reduction of operational risk. It was also found out that recommendation from agencies like AMA are taken seriously by banks and adhered to. Experience of the respondents on the subject of the study, which is quantifying operational risk within banks according to Basel II was instrumental in ensuring accuracy of the data collected. The same applies to the age and academic qualification of the respondents.

Based on the literature review, data analysis and hypotheses testing researcher is in a position to state the following theses:

No.	Thesis statement
Thesis I	There is a significant difference in agreement among different age groups regarding LDA is an improved mechanism for determining and working on operational risk. That means the senior and junior bankers have a different view on LDA. Most of the young and well qualified bankers preferred risk modeling.
Thesis II	There is a significant difference in grading between different types of banks regarding operational risk. Risk is a mainly derived by Board of Director and it is a top down approach. The stronger risk culture /knowledge among Board member the stronger risk management framework and activity in a bank.
Thesis III	There is a significant difference in grading between types of Banks and their capability for handling operational risk. This is highly depending on the availability of risk infrastructure including human resources.
Thesis IV	There is a significant difference between different types of banks and their Data management technology.
Thesis V	There is a significant difference between the types of banks in acceptance of recommendation from agencies like AMA. This is highly depending on readiness of the banks around the globe in regards to implementation of AMA.
Thesis VI	Quantifying operational risk cannot prevent banks from financial losses. That means banks should not be rely on data quantifying to prevent them from the financial loss but also there must be a comprehensive risk management framework.
Thesis VII	LDA is not the only appropriate methods to quantify operational risk data. In spite of several researches and recommendation from various risk professionals [Toshihiko Mori, and Eiji Harada (2001), Padraic Walsh (2003), ITWG (2003), Klugman et al. (2004), Jos'eAparicio, and Eser Keskiner (2004), Fitch (2004), M.R.A. Bakker(2004), Chartis (2005), Bank of Japan (2005), Kabir Dutta, and Jason Perry (2007), and Basel Committee)] there is no strong evidence to say that LDA is the most appropriate model in quantifying operational risk data.

These statements - Source: author's own work

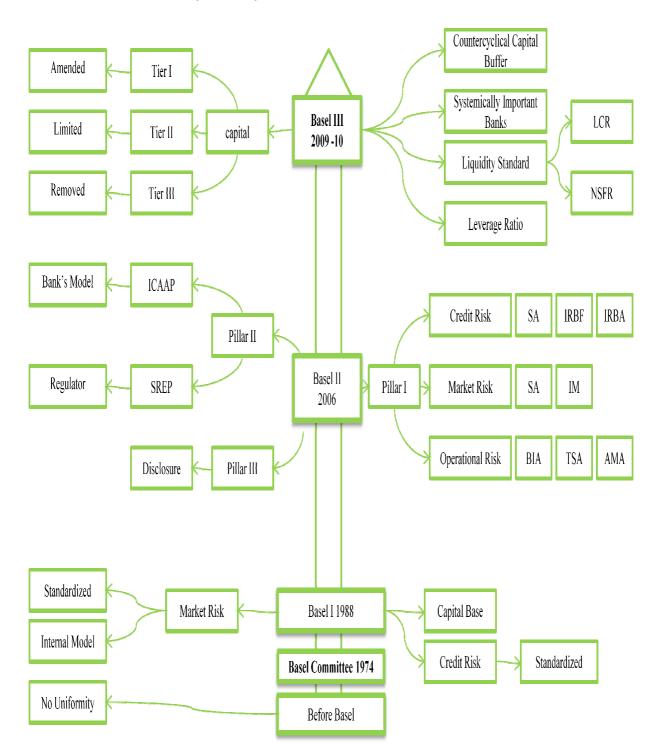
K. Further Recommendation

Quantifying operational risk within banks according to Basel II is a very important subject, whose finding can be quite important to different players in the banking industry.

However, due to the nature of risk and the risk they pose to banking organization, future scholars should consider conducting research to ascertain the impact of information technology in operational risk management. Such study would present important information that would provide the effectiveness of ICT in operational risk management. In addition, further research should also be conducted to establish factors affecting operational risk in the banking industry in their order of priority. This can be important in trying to manage and reduce operational risk in the banking industry.

Bibliography

Adrian .B.W. Paul. A., (2010) OECD Journal, Financial Market Trends, Volume 2010 - Issue 1


Aparicio . J., Keskiner. E., (2004), "A Review of Operational Risk Quantitative Methodologies Within the Basel II Framework"

Bakker M.R.A (2004), "Quantifying Operational Risk within banks according to Basel II"- (p-29)

- Balin, B. J. 2008. Basel I, Basel II, and emerging markets: A nontechnical analysis. http://ssrn. com /abstract=1477712.
- Basel II & III Compliance Professionals Association (BCPA, 2010- 2011), http://www.basel-iiassociation.com/
- Basel Committee on Banking Supervision. (2000). "Range of Practice in Banks' Internal Ratings Systems". Available: www.bis.org/publ/bcbs66.pdf.
- Basel Committee on Banking Supervision. (2006), BCBS 128" Basel II: International Convergence of Capital Measurement and Capital Standards: A Revised Framework - Comprehensive Version". Available: www.bis.org/publ/bcbs128.pdf.
- Basel Committee on Banking Supervision, (2010), BCBS 179, "The Basel committee's response to the financial crisis: Report to the G20", (p 1- 15)
- Basel Committee on Banking Supervision, (2010), BCBS, 180, "Calibrating regulatory minimum capital requirements and capital buffers: a top down approach", (p 1- 18)
- Boudoukh, J., et al. (1995). "Expect the Worst". London: Risk Publications. (p101).
- Carol .A (2003), "Operational risk: regulation, analysis and management". (pp174-178)
- Central Bank of the United Arab Emirates (2010), "Annual report 2010:, (p2, p21-p22).
- Chalupka, Teply (2008, "Operational Risk and Implications for Economic Capital" A Case Study, IES FSV UK, June 2008, working version (p 9)
- Chartis (2005), "Operational Risk Systems" Available: www.chartis-research.com
- Chorafas, D.N. (2004), "Operational Risk Control with Basel II: Basic Principles and Capital Requirement". Burlington: Butterworth-Heinemann Publication.
- Currie, C.V., (2005), "A test of the strategic effect of Basel II operational risk requirements on banks," School of finance and economics, working paper No. 143, University of Technology , Sydney Australia.
- Dutta.K , Perry .J (2007), "An empirical analysis of loss distribution models for estimating operational risk capital".
- Federal Deposit Insurance Corporation.(FDIC) (2003), "Supervisory Guidance on Operational Risk Advanced". Available: http:// www.fdic.gov/regulations/laws/.

- Federal Reserve Bank Boston (2003), "Using Loss Data to Quantify Operational Risk", Available: www.bis. org/bcbs/events/wkshop0303/p04deforose.pdf .
- Federal Reserve Board (2007), "Exploring Costs, Capital Requirements and Risk Mitigation" Available: www.federalreserve.gov/SECRS/2007/July/20070717/OP-1277/OP-1277_16_1.pdf.
- Fitch Rating (2004), "Operational Risk Management and Basel II implementation: Survey result: Fitch Rating special report".
- Fontnouvelle, D., et al.(2006), "Capital and Risk: New Evidence on the Implications of Large Operational Losses" .Journal of Money, Credit, and Banking 38(7), (p1,819-1,846).
- Fontnouvelle, D., et al, (2005), "Implications of Alternative Operational Risk Modeling Techniques", NBER Working Paper No. W1103, (p121)
- Froot, Kenneth A.,(2003), "Bank Capital and Risk Management: Operational Risks In Context". Presentation at the Federal Reserve Bank of Boston.
- Holmquist, E., (2004), "Right-Sizing ORM: Scaling Operational Risk Management for the Small and Medium-Sized Market" London: Risk Books (p51)
- Hull, J. (2006) Risk Management and Financial Institutions New York:Prentice Hall, (p121)
- ITWG (2003), "An LDA Based Advanced Measurement Approach for the measurement of operational risk". Ideas, issues and emerging practices. http://www.newyorkfed.org/newsevents/events/banking/2003/con0529p.pdf
- Izhar .H (2010), "Identifying operational risk exposures in Islamic banking", Kyoto bulletin of islamic area studies, 3-2, (pp, 17-53)
- Klugman, S., et al. (2004), "Loss models from data to decisions" .Wiley, Hoboken, NJ.
- Koker, Rudi De. (2006), "Operational Risk Modeling: Where Do We Go From Here?" In: Ellen Davis (Eds.), The Advanced Measurement Approach to Operational Risk. (pp.37-57).
- Mori, T. (2001), "Internal Measurement Approach to Operational Risk Capital Charge". Available: www.boj.or.jp/en/type/ronbun/ron/wps/kako/data/fwp01e02.pdf .
- New York Federal (2003), "Scenario-Based AMA" Available: www.newyorkfed.org /newsevents/ events/ banking /2003/con0529d.pdf.
- NYFRB EPR (1996), "Evaluation of Value-at-Risk Models Using Historical Data". NYFRB Economic Review 2(1) Available: http://www.ny.frb.org/research/epr /epr /96v02n1/9604hend.pdf .
- Nystrom .K., Skoglund .J. (2003), "Quantitative Operational Risk Management", http://www. each.usp .br/ rvicente/risco/nystrom.pdf

- Rachev, T., et al (2006), "Operational Risk: A Guide to Basel II Capital Requirements, Models, and Analysis", New York : John Wiley & Sons Inc. p110-115
- Study Group on the Advancement of Operational Risk Management(2006), "Discussions on Further Advancing Operational Risk Management". Available: http://www.boj.or.jp /en/type/release/zuiji_new/fsc0608c.pdf.
- Tschoegl, A. (2004), "The Key to Risk Management" Available: http://fic.wharton.upenn.edu /fic/papers/99/9422.pdf Last accessed 2 April 2010
- Walters, D., (2003), "Basel II yields increased focus on managing operational risk, Knowledge Leader", Available: www. knowledgeleader. com/KnowledgeLeader/ Content.nsf/ Web+Content/ HotIssuesBaseII.
- Walsh Padraic (2003), "Operational Risk and the new Basel accord:. www.hyperion.com/ downloads /opriskwhitepare.pdf
- WWW.moodysanalytics.com/Insight/Regulations/Basel-III/Basel-III-Publications.aspx

Annexure I: Basel history and key elements

Source: Basel committee history and key elements, (Developed based on BCBS No. 4(1988), 24(1996), 128(2006), 189(2010)

Annexure II: Author's Working experience, publications, seminar, and conference

- **1.** Academic background: more than 10 years teaching finance and banking for undergraduate and postgraduate. Several position such as VP Finance and Admin, Head of Business School in IAU university Dubai, UAE.
- **2.** Banking More than 10 years in banking. Currently Heading Operational and Market Risk and Basel implementation of Commercial Bank International, UAE.
- **3.** Book -Operational Risk Management Advanced Measurement Approach (2010)
- 4. Basel II a need for Banking Industry, Bank Quarterly Magazine, No. 43, 2008
- 5. Risk Management in Banking Industry, Bank Quarterly Magazine, No. 40, 2007
- 6. Basel II and Banking industry, Bank Quarterly Magazine, No. 39, 2007
- **7.** Operational Risk Management, Bank Quarterly Magazine, No. 38, 2006 (A professional magazine in banking in Persian language)

No.	Description	Title	Date	Place
1	Risk Management Workshop	Market Risk Management	2012	Tehran - Iran
2	Risk Management Workshop	Basel III	2012	Tehran - Iran
3	Operational Risk Management Forum	Advanced Measurement Approach	2012	Dubai - UAE
4	Risk Management Forum	Risk and Capital Management	2012	Tehran - Iran
5	One Day Seminar on Credit Risk	Towards Internal Rating Based Approach	2011	Dubai – UAE
6	MENA CIO Summit 2011	Basel III impact on Banking Technology	2011	Dubai - UAE
7	The 6^{th} E. commerce Conf.	Risk and Pricing in Banking	2010	Tehran - Iran
8	A comprehensive seminar on Basel II- IRB	IRB: How to implement?	2010	Dubai - UAE
9	The 4 th International e. Banking Conf. Tehran	E. Banking Strategy	2010	Tehran - Iran
10	One day Seminar	Operational Risk Management	2010	Isfahan – Iran
11	Three days special Basel II seminar for top Iranian Bankers	Basel II implementation – Challenges and opportunities	2008	Tehran - Iran
12	The second international conf. in e. commerce (Key speaker)	Principles of Risk Management in e. Banking (Basel Committee standards)	2008	Tehran - Iran
13	The first International Conference in Risk Management (Key speaker)	Basel II and Banking Industry	2007	Tehran - Iran

Conferences (As a Key Speaker)

Source: author's own work