
Extending the application of a shale volume estimation formula derived from factor 

analysis of wireline logging data
1 

by Norbert P. Szabó
2
 and Mihály Dobróka

2,3
 

1
 Received; accepted. 

2
 Department of Geophysics, University of Miskolc, 3515 Miskolc-Egyetemváros, Hungary, 

e-mail: norbert.szabo.phd@gmail.com; dobroka@uni-miskolc.hu 

3 
MTA-ME Applied Geoscience Research Group, University of Miskolc, H-3515 Miskolc-

Egyetemváros, Hungary
 

 

 

 

Corresponding Author: 

Mihály Dobróka 

Department of Geophysics 

University of Miskolc 

3515, Miskolc-Egyetemváros, Hungary 

Phone: + 36 46 361936 

fax: + 36 46 361936 

e-mail: dobroka@uni-miskolc.hu 



Abstract 

A multivariate statistical procedure is developed for the estimation of shale volume in clastic 

sedimentary formations. The method offers an alternative to extract shale content from 

borehole geophysical measurements. Factor analysis of various well-logging data types 

generates a new well log that correlates with the shale content of shaly-sandy rocks. The 

mathematical relationship between shale volume and factor scores is represented by a non-

linear equation, which seems to be applicable for data sets originating from different 

sedimentary basins. A comparative study is made between three different data sets originated 

from Hungary and the United States of America to check the validity of the proposed 

empirical formula. Shale volumes predicted from factor analysis are confirmed by estimates 

from independent deterministic and inverse modeling. Petrophysical information derived by 

factor analysis of logs recorded in deep wells can be used for a more accurate and reliable 

estimation of effective porosity and absolute permeability of reservoir rocks, for decreasing 

the estimation error of inversion estimates and for reducing the ambiguity in the solution of 

the well-logging inverse problem. 
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1. Introduction 

Petrophysical properties of shaly sand formations can be extracted from borehole geophysical 

data either by deterministic or inversion procedures. The former ones substitute data to 

explicit equations in order to determine the petrophysical properties separately. There are 

several kinds of deterministic methods for the estimation of porosity, shale volume, mineral 

composition of rock matrix, water saturation, and other non-measurable properties of 

sedimentary formations (Serra 1984; Asquith and Krygowski 2004). Wireline logging data 

can also be evaluated by using an appropriate inversion method, which assumes a known 

relationship, called probe response function, between the observed data and the parameters of 

the petrophysical model. The solution of the inverse problem is given by fitting a theoretical 

data set calculated by the response equations to the measured data. As a result of the inversion 

procedure, the most probable set of model parameters with estimation errors is specified 

(Menke 1984). The theory of the inverse problem of borehole geophysics and its practical 

implementation are detailed in Mayer and Sibbit (1980), Alberty and Hashmy (1984), Ball et 

al (1987). 

Factor analysis is a multivariate statistical method, which is generally used to reduce high-

dimensional data sets to lower dimensions and to extract unobservable quantities hidden in the 

original measurements. The mathematical background of factor analysis is detailed in Lawley 

and Maxwell (1962). Various petrophysical applications of the statistical method have been 

published (Buoro and Silva 1994; Grana et al 2011; Herron 1986; Ma 2011; Rao and Pal 

1980; Urbancic and Bailey 1988). Szabó et al (2012) used a linear factor model to process 

engineering geophysical sounding (EGS) data for the hydrogeological characterization of 

shallow formations by giving the spatial distribution of water saturation between twelve 

boreholes drilled at a Hungarian site. As the latest application, dry density of soil layers was 

http://link.springer.com/search?facet-author=%22Y.+Zee+Ma%22


derived from factor analysis of EGS data with the purpose of providing geotechnical 

operations with in-situ information (Szabó 2012). 

Shale volume is a key parameter in well log analysis, because it greatly affects all 

measurements and petrophysical interpretation results. For instance, in hydrocarbon 

prospecting a realistic calculation of reserves largely depends on the accurate prediction of 

shale content and other related quantities such as effective porosity and permeability. Factor 

analysis is applicable for the determination of shale volume from well-logging data. Szabó 

(2011) found strong correlation between one of the new variables (factor) and shale volume 

estimated by inversion processing. It was shown that shale volume was directly proportional 

to the first factor representing the largest amount of variance in the original (data) variables. 

Regression tests showed a non-linear connection between the above quantities, which proved 

to be valid for some different areas of the Pannonian Basin, Hungary.  

In the paper, shale volume calculation based on factor analysis is tested in three boreholes 

drilled thousands of kilometers apart from each other. Data sets originated from Hungary and 

the United States of America are processed separately and the given results are compared to 

study the applicability of the non-linear formula proposed by Szabó (2011). The statistical 

research reveals that the empirical equation can be applied well to the selected areas 

representing very different geological ages and environments. 

2. Estimation of shale volume 

2.1 Deterministic and inverse modeling 

Shale is treated in well-logging applications as a fine grained rock containing a sizable portion 

of clay minerals and silt (Ellis 2007). The volume fraction of dispersed shale occupying the 

pore space of permeable formations can be expressed from the material balance equation 
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where Φ denotes effective porosity, Vma,k is the volume of the k-th matrix constituent, n is the 

number of mineral types forming the rock matrix. The deterministic approach for shale 

volume estimation is a relatively simple procedure, which is normally based on single well 

log analysis. Generally spontaneous potential (SP) or natural gamma-ray intensity (GR) data 

is substituted into an explicit equation to calculate the amount of shale in shaly-sand 

sequences. The most frequently used shale volume indicators are based on the calculation of 

gamma-ray index from GR log (Clavier et al 1971; Larionov 1969; Poupon and Gaymard 

1970; Stieber 1970). Newer methods integrates more types of well logs for a more accurate 

estimation (Bhuyan and Passey 1994; Fertl and Frost 1980). 

Inversion procedure is applicable to process all data types simultaneously to give an estimate 

for several petrophysical parameters. Consider m as the P-by-1 column vector of model 

parameters including shale volume and other petrophysical quantities. In the classical 

inversion methodology the model vector is defined locally in a certain measuring point. Data 

are collected in the same depth by borehole probes using different physical principles. Let d
(m)

 

be the Q-by-1 column vector of measured data. The relationship between the model and data 

vector is basically non-linear. Theoretical data in vector d
(c)

 are calculated by using Q number 

of probe response equations from relationship d
(c)

=g(m). Linearization based on Taylor-series 

expansion is frequently used for simplifying the above connection (Menke 1984) 
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where G is the Jacobi’s matrix including partial derivatives of data with respect to model 

parameters. Derivatives ∂dq
(c)

/∂mp (q=1,2,…,Q;  p=1,2,…,P) are calculated numerically in the 



inversion procedure. The solution to the inverse problem is found by minimizing the L2-norm 

of the difference between the measured and calculated data vectors. Since data have different 

orders of magnitude and measurement units an objective function measuring the weighted 

overall error is to be optimized 
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where σq is the standard deviation of the q-th measured data that specifies the contribution of 

the given datum to the solution. The minimization of Equation (3) leads to a solution 
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where -2

qqq σW   (q=1,2,…Q) is the q-th diagonal element of the weighting matrix W. 

Equation (4) is solved by an iterative process, in which the model is continuously refined. The 

quality of inversion results are checked by calculating a data misfit and parameter estimation 

errors (Menke 1984). The reliability is also possible to be quantified by using the matrix of 

Pearson’s correlation coefficients, which measures the strength of linear relationships between 

the model parameters involved in the inversion procedure (Isaaks and Srivastava 1989).  

The above detailed inversion method is generally accepted in the oil industry, which gives fast 

and good results in case of having a realistic initial model. However, as there are slightly 

more measured data than petrophysical unknowns in a given depth, the accuracy and 

reliability of inversion estimation performed point by point along the borehole are limited 

because of the marginal over-determination of the inverse problem. On the other hand, in case 

of poor starting models linearized inversion methods tend to trap in a local minimum of the 

objective function given in Equation (3). For getting a more robust inversion estimate of 



inversion parameters a global optimization (Simulated Annealing or Genetic Algorithm) 

based inversion methodology for solving highly over-determined well-logging inverse 

problems was suggested by Dobróka and Szabó 2005, 2011, 2012 and Dobróka et al 2009, 

2012. 

2.2 Factor analysis 

The first step in formulating the statistical problem is the construction of the N-by-M matrix 

of original data 

                                              





























NMN2N1

iMi2i1

2M2221

1M1211

DDD

DDD

DDD

DDD













D ,                                           (5) 

where each column represents one measurement type. The number of data variables is M and 

the total number of measuring (depth) points is N. The model of factor analysis is based on 

the following matrix decomposition 

                                                                EFLD  T ,                                                           (6) 

where F denotes the N-by-a matrix of factor scores, L is the M-by-a matrix of factor loadings 

and E is the N-by-M matrix of residuals (superscript T denotes matrix transpose). The first 

term on the right side of Equation (6) can be detailed as follows 
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where one column of matrix F represents the estimated values of a given factor in different 

measuring points (a is the number of factors). Factor scores of a column form a new well log 

that is called a factor log. The elements of matrix L represent the individual weights of the 

measured variables on the resultant factors. Assuming that factors are linearly independent 

IFF /NT  (where I is the identity matrix) the correlation matrix of the standardized original 

variables can be written as 

                                                      ΨLLDDR   TT1N ,                                                (8) 

where ψ=E
T
E/N is the diagonal matrix of specific variances being independent of the 

common factors explaining the major part of variance of the original variables.  

The factor loadings can be determined by a non-iterative approximate method suggested by 

Jöreskog (2007). Consider the sample covariance matrix S of the standardized data variables 

and the following derived quantity 

                                                           2/11-2/11-
SSSS diagdiag .                                            (9) 

Calculating the eigenvalues λ and eigenvectors ω of matrix S
*
 in Equation (9), the matrix of 

factor loadings can be computed as 
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where Γa=diag(λ1,λ2,…,λa), Ωa=(ω1,ω2,…,ωa) and U is an arbitrary a-by-a orthogonal matrix. 

Constant θ is expressed by the rest of the eigenvalues not used in Equation (10)  
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a-M
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which specifies the smallest number of factors in case of θ<1. The factor scores can be 

estimated by the maximum likelihood method, which requires the optimization of the 

following log-likelihood function 

                                                 maxT1TT  
FLDΨFLDP .                                      (12) 

Fulfilling the condition 0/  FP  a linear solution can be given for factor scores (Bartlett 

1937) 
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An orthogonal transformation of factor loadings is usually performed for the easier 

interpretation of uncorrelated factors. In this study, the varimax rotation algorithm was used 

that maximizes the sum of the variances of the squared factor loadings (Kaiser 1958).  

Szabó (2011) concluded that there is a strong correlation between the first factor (1
st
 column 

of matrix F) and shale volume estimated by inverse modeling. At first, the factor scores need 

to be rescaled for a comparative study 
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where F1,min and F1,max are the minimum and maximum values of factor scores derived from 

Equation (13) respectively, F
’
1,min and F

’
1,max are the desired lower and upper limit of the 

rescaled factor 1F   respectively. In the next step, the functional dependence between F’1 and 

Vsh is determined. Regression analyses show the following non-linear relationship between 

the above quantities 
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where a and b are regression constants. This paper deals with an assumption that the choosing 

of coefficients a and b is nearly independent from the measurement area and Equation (15) 

can be treated as a general formula approximately valid in different sedimentary basins. To 

measure the quality of curve fitting based on Equation (15) we apply a special type of 

correlation calculus. The strength of non-linear relationship between two variables can be 

characterized by the rank correlation coefficient (Spearman 1904), which is applied to 

measure the goodness of regression results. 

3. Geological settings 

The first application of Equation (15) was showed by Szabó (2011). In this study, the earlier 

suggested empirical formula is extended to new prospecting areas. Three test sites 

representing different locations and geological environments were chosen for the comparative 

study. The short description of geology and the lists of processed well-logging data sets are 

presented below. 

The first data set was collected from a hydrocarbon exploratory borehole drilled in the Great 

Hungarian Plain, East Hungary (Area-1). The investigation area is part of the Pannonian 

Basin Province of Central Europe, where several petroleum systems have been discovered and 

exploited. The Pannonian Basin consists of a large sedimentary basin of Neogene age 

overlying Paleogene basins and a Mesozoic or Paleozoic basement (Dolton 2006). The 

Pannonian sediments contain oil and gas-bearing formations, thermal and freshwater 

resources at the top. The sequence of the processing interval represents Upper Miocene 

(Pannonian) aged lacustrine deposits of the Lake Pannon, which form an unconsolidated sand 

complex interbedded with clay and silt layers. The reservoirs has got high and medium 

porosities and are saturated with water and gas. The processed well logs including caliper 

(CAL), spontaneous potential (SP), natural gamma-ray intensity (GR), compensated neutron 



(CN), compensated density (DEN), acoustic traveltime (AT), microlaterolog (RMLL), 

shallow (RS) and deep resistivity (RD) measurements are plotted in Figure 1. 

The second area was chosen from the literature (Asquith and Krygowski 2004). The 

investigated well was drilled in the Permian Basin of Texas, United States of America (Area-

2). The Atoka Formation is a sequence of marine, tan to gray, silty sandstones and grayish 

black shales, which extends over a very large area from Arkansas to New Mexico and West 

Texas. The sediments of Area-2 represents different age and burial depth with respect to 

Pannonian sands. The common feature between the two formations is that both of them 

consist of unconsolidated sediments. The matrix of the Pennsylvanian aged Atoka sandstone 

was made up of loose and dominantly coarse mineral grains, which were poorly cemented. 

The sand was characterized by large porosity and permeability and the pore space was filled 

with water, gas and condensate. The data set consisted of caliper (CALI), spontaneous 

potential (SP), natural gamma-ray intensity (GR), neutron porosity (NPHI), density porosity 

(DPHI), deep induction (ILD), medium induction (ILM) and shallow resistivity (LL8) logs 

(Figure 2). 

The third area was also chosen from the literature (Anna 2009). The well site can be found in 

the Powder River Basin of Wyoming, United States of America (Area-3). The hydrocarbon 

reservoir rocks shows similar age, lithologic characteristics and production history in the 

basin. The Minnelusa Formation is Pennsylvanian and Permian in age. The rocks of the 

reservoir zone as continental shelf sediments produce oil and gas, which are generally 

composed of sandstone, carbonate, and evaporites. The well logs represent a short zone with 

medium porosity and permeability, where the high resistivities indicates hard dolomites. The 

well logs applied to factor analysis were spontaneous potential (SP), natural gamma-ray 



intensity (GR), acoustic (interval) traveltime (DT) and deep resistivity (RD). The data set can 

be seen in Figure 3. 

4. Test computations 

Szabó (2011) showed that practically the same regression coefficients for Equation (15) are 

valid in two hydrocarbon wells drilled 200 km apart from each other in the Great Hungarian 

Plain, Hungary. Some new interpretation results of deep wells also suggest the use of 

1F0.037

sh 2.76eV


  as a local formula for the Pannonian Basin (Area-1). To extend the validity 

of the above empirical relationship the three well-logging data sets presented in Section 3 are 

processed by factor analysis and the resultant shale volume logs are compared to that of 

independent shale volume calculations. 

Factor analysis of the data sets was performed separately, where the number of factors was 

specified previously. The average of Pearson’s correlation coefficients for the measured 

variables were 0.08, 0.10, 0.29 for Area-1, Area-2 and Area-3, respectively. The weakly 

correlated measurement variables were transformed into some uncorrelated factors. In East 

Hungary and West Texas the major part of the variance of the original data was explained by 

the first two factors (89% and 93% for Area-1 and Area-2, respectively), thus two factors 

were extracted. In Wyoming only one factor represented the main information of the original 

data set (99% of total variance). The estimated factor loadings for the three test sites are 

shown in Table 1. In each cases, the largest weights on the first factor were given by GR and 

SP logs. At the same time, other well logs sensitive to porosity and saturation also assisted in 

the development of the first factor. A significant difference was that resistivity measurements 

got very different values of factor loadings in the test sites. For making the results comparable 

the factors were transformed into the same scale. The new interval of factor scores was 

computed according to Equation (14). Since shale volume lies between 0% and 100% then 



F
’
1,min=0 and F

’
1,max=100 were chosen. The exponential relationships between the (scaled) first 

factor and shale volume are illustrated in Figure 4. The regression analysis proved that 

Equation (15) including practically the same values of exponents a and b approximated well 

the relationships between the factor scores and shale volumes in the three test sites. While 

parameter b was fixed as 0.037, coefficient a was estimated 2.756 (amin=2.744, amax= 2.768), 

2.763 (amin=2.712, amax=2.814), 2.705 (amin=2.66, amax=2.751) with 95% confidence bounds 

for Area-1, Area-2 and Area-3, respectively. The rank correlation coefficient was 0.98 in all 

cases (assuming linear connection the Pearson’s correlation coefficients were calculated 

around 0.8). 

Shale volume was calculated from the factor scores by using Equation (15) with the actual 

regression coefficients and the results were compared to estimates of independent well log 

analysis methods. In Area-1 factor analysis was checked by local (depth-by-depth) inverse 

modeling using a weighted least squares method [Eq. (4)]. In Area-2, the result of 

deterministic interpretation of several well logs was used for verification (Asquith and 

Krygowski 2004). In Area-3 the Larionov formula gave reference data for shale volume 

estimation. In Figure 4, shale volume logs estimated by factor analysis as well as traditional 

interpretation methods are shown for the measurement areas. It is concluded that there is a 

good agreement between the independent interpretation results. The RMS error between the 

resultant logs was 8.2%, 9.6%, 4.3%  for Area-1, Area-2 and Area-3, respectively. The 

procedures took only a few seconds of CPU times using a quad-core processor based 

workstation. 

5. Discussion 

Shale volume estimation is frequently performed by using a shale indicator derived from the 

GR log. The linear model connecting gamma-ray index to shale volume is often overestimates 



the fraction of shale in real formations (Poupon and Gaymard 1970). Field experiments 

showed that some non-linear fomulae gave more accurate results (Clavier et al 1971; 

Larionov 1969; Stieber 1970) that can be used independently from the location of the well. In 

Figure 6 the theoretical relationships between natural gamma-ray index and shale volume 

proposed by the above deterministic formulae with the estimation results of factor analysis 

can be compared in case of Area-1. The crossplot confirms the validity of Equation (15) with 

coefficients a=2.76 and b=0.037. It must be mentioned that the estimated constants are 

approximate values, and as a result of local regression analyses they have to be specified in 

different areas. Though, some data sets of other well-sites situated in North and South 

Hungary, Alaska and Ohio (USA) have already been successfully processed, additional 

measurements are required for further research. After processing them, it is expected that the 

statistical formula can be extended to even larger areas. The universality of the empirical 

formula is a strong assumption. In this stage of research its validity is proven in deep wells, 

clean and shaly water and hydrocarbon-bearing clastic reservoirs. In these formations all well 

logs are very sensitive to the amount of shaliness, that is why the first factor representing the 

most information of measurements highly correlates with shale volume. In multi-mineral 

rocks or complex reservoirs other matrix components may influence the same factor and the 

correlation is not so strong. According to our research Equation (15) holds also for shallow 

wells, but the coefficients are somewhat different. 

A necessary feasibility condition for giving an optimal solution by the maximum likelihood 

method is that the input data set is to follow normal distribution. For measuring normality we 

calculated the skewness of individual well logs, which is the ratio of the third central moment 

to the cube of standard deviation of the data. Zero skewness indicates that the probability 

density function is symmetrical and data follow Gaussian distribution. In Areas-1-3 near zero 

skewnesses were calculated. To study the dependence of factor analysis on the nature of the 



statistical distribution of data we generated several quasi measured data sets from that of 

Area-2. The new data sets (D') became antisymmetrical distributions, which were derived 

from the original (near-symmetrical) data (D) by using the transformation of 

D'ij=Dij(1+R()/Cj), where R() is a random number selected from Rayleigh distribution 

(scale parameter  was set to 0.5) and Cj is a properly chosen constant depending on the range 

of the j-th well log to control the distance between the original and the new data set. The data 

distance was calculated as 
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The new values of shale volume were calculated by the Larionov's formula. We performed 

factor analysis on the new data sets with different data distances. Regression tests were 

applied to estimate coefficient a beside the fixed value of parameter b (0.037). Figure 7 shows 

that the value of coefficient a slightly descreases with increasing skewness. It is concluded 

that the empirical formula proposed in this study provides a good approximation in case of 

near Gaussian or moderately skewed data distributions. However, in case of larger asymmetry 

of data requires a more robust form of the factor analysis algorithm. 

6. Conclusions 

It is inferred that factor analysis is applicable to extract the shale content as basic lithologic 

information of sedimentary rocks from well-logging data. The results of factor analysis of 

data sets acquired from three distant areas were compared and verified by independent 

estimates of deterministic and inverse modeling. In this stage of research an exponential 

relationship between the first factor and shale volume is assumed in sedimentary geological 

environments. This relationship proves to be straight and applicable both in water and 



hydrocarbon reservoirs. With the implementation of the statistical method a more reliable 

estimation to shale volume and other derived petrophysical parameters, such as effective 

porosity, water and hydrocarbon saturation, absolute permeability, can be made in primer 

porosity reservoirs. These parameters given from different sources can be confirmed or 

updated by the results of factor analysis in the prospecting area. The estimation of shale 

volume is an important issue for the success of inverse modeling, too. By giving a reliable 

estimate for shale volume by an independent source, i.e. factor analysis, the number of 

unknowns can be decreased in the well-logging inverse problem. Releasing shale volume 

from the list of inversion unknowns, the over-determination of the inverse problem can be 

effectively increased. Consequently, the local (marginally over-determined) inversion 

procedure can give a more accurate estimate for the inversion model. The algorithm of factor 

analysis can also be implemented to multi-well applications (Szabó et al 2012). If data of 

several wellbores are integrated into one statistical procedure, it is possible to determine the 

2D/3D spatial distribution of shale volume. Considering all of the above advantageous 

properties, it is expected that factor analysis will strengthen the potential of well-logging data 

processing in geological exploration. 
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List of figure captions 

Figure 1. Well logs recorded in Pannonian sand (Area-1) as input for the factor analysis. 

Measured quantities are: caliper CAL (inch), spontaneous potential SP (mV), natural gamma-

ray GR (API), compensated neutron CN (%), density DEN (g/cm
3
), acoustic traveltime AT 

(μs/ft), microlaterolog RMLL (ohmm), shallow resistivity RS (ohmm), deep resistivity RD 

(ohmm). 

Figure 2. Well logs measured in Atoka sandstone (Area-2) as input for factor analysis. 

Observed quantities are: caliper CALI (inch), spontaneous potential SP (mV), natural gamma-

ray GR (API), neutron porosity NPHI (v/v), density porosity DPHI (v/v), deep induction ILD 

(ohmm), medium induction ILM (ohmm), shallow resistivity LL8 (ohmm). 

Figure 3. Well logs observed in Minnelusa formation (Area-3) as input for factor analysis. 

Measured variables are: spontaneous potential SP (mV), natural gamma-ray intensity GR 

(API), acoustic traveltime DT (μs/ft), deep resistivity RD (ohmm).    

Figure 4. Regression relationships between the first scaled factor (F’1) and shale volume (Vsh) 

for Area-1 (A), Area-2 (B), Area-3 (C). 

Figure 5. Shale volume estimates from factor analysis represented by blue curve for Area-1 

(A), red curve for Area-2 (B), orange curve for Area-3 (C). Independent petrophysical 

modeling results are illustrated with black curves. 

Figure 6. Natural gamma-ray index vs. shale volume crossplot. Different natural gamma-ray 

intensity log based empirical equations are indicated with black curves. Estimation results of 

factor analysis are represented with grey dots. 



Figure 7. Factor analysis results of positively skewed well-logging data sets. (A) Data 

distance vs. regression coefficient a (B), data distance vs. average skewness (C), first scaled 

factor vs. shale volume (C). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



List of table captions 

Table 1. Factor loadings estimated by the factor analysis of well-logging data measured from 

Pannonian sand (Area-1), Atoka sandstone (Area-2), Minnelusa formation (Area-3). 



Tables 

Table 1. 

Area-1 Area-2 Area-3 

Minnelusa Formation 

(Wyoming, USA) 

Pannonian Sand  

(East Hungary) 

Atoka Sandstone  

(West Texas, USA) 

Well log Factor 1 Factor 2 Well log Factor 1 Factor 2 Well log Factor 1 

CAL 0.46 -0.02 CALI 0.47 0.79 - - 

CN 0.91 0.25 NPHI 0.48 0.82 - - 

DEN 0.79 -0.60 DPHI 0.09 0.78 - - 

AT 0.12 0.79 - - - AT 0.37 

GR 0.94 -0.04 GR 0.76 0.56 GR 0.82 

RD -0.68 -0.06 ILD -0.93 -0.31 RD -0.26 

RMLL -0.72 0.57 LL8 -0.89 -0.26 - - 

RS -0.18 -0.01 ILM -0.75 -0.30 - - 

SP -0.83 -0.15 SP 0.75 -0.08 SP 0.55 
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