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1. INTRODUCTION 

Swarm robotics (SR) is the field that focuses on the study and development of multi-robot 

systems which includes a group of relatively simple and often homogeneous robots. They work 

together to accomplish tasks. The SR concept was inspired by social insects like ants, bees, and 

birds, which exhibit remarkable collective behaviors through decentralized and self-organized 

interactions. Control in swarm robotics is typically distributed among the individual ones. Each 

robot follows local rules and communicates with nearby peers to achieve group objectives. 

There is typically no central controller dictating the actions of the entire group. Instead, robots 

interact with each other and with their environment locally, making decisions based on local 

information [1]. Collective behavior in SR refers to the interactions of multiple autonomous 

robots working together as a group to achieve common objectives [2]. Figure 1 shows different 

types of collective behavior but not limited to aggregation, navigation, and dispersion. Robots 

in aggregation gather or cluster in a specific location or form a pattern where robots arrange 

themselves into predefined shapes. Navigation behavior refers to the coordinated movement of 

a group of autonomous robots to reach specific targets. In other words, they navigate through 

an environment while adhering to specific objectives such as exploration and avoiding 

collisions as constraints. This collective behavior is essential in various applications, including 

exploration, search and rescue missions, and environmental monitoring [3]. In the pursuit of 

generating collective behavior in swarm robotics, researchers have explored various design 

methodologies and control strategies. Two prominent approaches that have emerged are 

behavior-based design methods and automatic design methods [4]. Behavior-based design 

methods emphasize the modularization of robot control into distinct behaviors or modules. Each 

module is responsible for a specific aspect of robot behavior. Thus, the collective behavior 

emerges from the interactions and coordination among these modules. They are often 

conceptually simpler and more interpretable than automatic design approaches. However, 

coordinating and tuning multiple behavior modules to achieve desired collective behaviors can 

be challenging, especially for complex tasks. Automatic design methods involve using 

optimization algorithms or machine learning techniques to search for and optimize control 

parameters or policies that govern the behavior of individual robots within a swarm. While 

evolutionary algorithms like genetic algorithms and Practical Swarm Optimization (PSO) have 

been traditionally favoured for fine-tuning robot behaviors based on predefined fitness 

functions, their efficacy is increasingly challenged by the rise of the Reinforcement Learning 

(RL) approach. Critics argue that RL’s trial-and-error approach may offer more dynamic and 

adaptable learning for robots. PSO and RL are considered effective automatic design methods 

in the swarm concept with their limitations [5].  

Reinforcement Learning (RL) is a decision-making framework where an agent interacts with 

an environment to maximize cumulative rewards. It is typically modeled as a Markov Decision 

Process (MDP), defined by the tuple (S, A, P, R, γ), where S is the state space, A is the action 

space, P is the transition probability, R is the reward function, and γ is the discount factor. 
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Fig. 1 Classification of collective behaviors in swarm robotics. 

The goal is to learn an optimal policy π* that maximizes the expected return G, as Equation 1. 

Deep Reinforcement Learning (DRL) extends RL by using neural networks to approximate 

policies, enabling learning in high-dimensional spaces. Adjusting the weights 𝜃 based on 

objective function 𝐽(𝜃) during the interaction with the environment based on policy𝜋𝜃(𝑠𝑡|𝑎𝑡), 

and Advantage 𝐴̂𝑡 to enhance learning process, Equation 2. Among DRL methods, Policy 

Gradient (PG) approaches directly optimize the policy πθ(s∣a) where updates follow as in 

equation 2, one of the most PG methods is Proximal Policy Optimization (PPO) that improves 

policy learning by introducing a clipped objective function 𝐿𝐶𝐿𝐼𝑃(𝜃) that prevents large policy 

updates, ensuring stable learning as in Equation 3: 

 

 
𝐺 = 𝐸 [∑ 𝛾𝑡

∞

𝑡=0
𝑅(𝑠𝑡, 𝑎𝑡)] 

(1) 

 

 ∇𝜃𝐽(𝜃) = 𝐸𝑡[∇𝜃𝑙𝑜𝑔𝜋𝜃(𝑠𝑡|𝑎𝑡)𝐴̂𝑡] (2) 

 

 𝐿𝐶𝐿𝐼𝑃(𝜃) =  𝐸𝑡[min (𝑟𝑡(𝜃)𝐴̂𝑡, 𝑐𝑙𝑖𝑝(𝑟𝑡(𝜃), 1 − 𝜖, 1 + 𝜖)𝐴̂𝑡] (3) 

   

In DRL, the Actor-Critic architecture is a widely used method that combines two components: 

Actor – Learns the policy π(θ), which maps states s to actions a and decides the best action to 

take, and Critic – Evaluates the Advantage 𝐴̂𝑡 , which estimates the expected future rewards for 

a given state and helps guide the Actor's learning. This framework improves learning efficiency 

by using the Critic to reduce variance in policy updates while the Actor focuses on policy 

improvement.  

Most of studies have chosen PPO for SR because it ensures stable policy updates, works well 

in continuous and discrete action spaces, and is computationally efficient, making it ideal for 

controlling multiple autonomous robots in decentralized environments [6]. 
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Practical swarm optimization (PSO): It is a computational method that optimizes a problem by 

iteratively improving a candidate solution about a given quality measure. It mimics the social 

behavior of birds flocking or fish schooling. The collection of particles (robots) moves through 

the solution space (environment), adjusting their positions based on their updated velocities, 

equation 4. The particles update their velocities by considering three key factors: their personal 

best position 𝑃𝑖,𝑡
𝑑 , the best-known position of the entire swarm 𝑝𝑔

𝑑 , and a current position 𝒙𝒊,𝒕
𝒅  . 

This update process is mathematically represented in Equation (5).  

 𝒗𝒊,𝒕+𝟏
𝒅 = 𝜔 ∗ 𝒗𝒊,𝒕

𝒅 + 𝑐1 ∗ 𝑟𝑎𝑛𝑑𝑖 ∗ (𝑃𝑖,𝑡
𝑑 − 𝒙𝒊,𝒕

𝒅 ) + 𝑐2 ∗ 𝑟𝑎𝑛𝑑𝑖 ∗ (𝑝𝑔
𝑑 − 𝒙𝒊,𝒕

𝒅 )        (4) 

 𝒙𝒊,𝒕+𝟏
𝒅 = 𝒙𝒊,𝒕

𝒅 + 𝒗𝒊,𝒕+𝟏
𝒅         (5) 

𝑃𝑖,𝑡
𝑑 : The best fitness value particle has at the t moment.  𝑝𝑔

𝑑: The best fitness value among the 

swarm.𝑣𝑖,𝑡
𝑑 : The velocity of particle i at t (m/s). 𝑥𝑖(𝑡): The position of particle i at time t. 𝜔: 

weights. C1, and c2 : cognitive and social contants. 

2. METHODOLOGY 

The research follows a structured approach: 

1. A comparative study between PSO-based and DRL-based swarm navigation 

methodologies. 

2. Development of an enhanced DRL framework, incorporating curriculum learning to 

improve generalization and adaptability in swarm environments. 

3. Proposal of a hybrid modular model, combining DRL and PSO to optimize swarm 

coordination in foraging and navigation tasks. 

4. Investigation of reward structures in DRL, using inverse reinforcement learning to fine-

tune reward functions for improved decision-making. 

2.1. A comparative study between PSO-based and DRL-based SR navigation 

behavior. 

Swarm intelligence algorithms play a crucial role in optimization and robotics. Enhancements 

to swarm intelligence generally fall into three categories: 

1. Parameter Modifications – Techniques like iSOMA-PPO [7] and RL-LSOP [8] 

dynamically adjust hyperparameters, improving convergence speed and efficiency. 

However, they focus on global optimization rather than real-time multi-agent 

coordination. 

2. Algorithm Combinations – Hybrid models such as PSO-GA [9] and ACO-PSO [10] 

leverage complementary strengths, improving adaptability but increasing computational 

complexity. 

3. Structural Modifications – Approaches like Hierarchical PSO (H-PSO) [11] introduce 

leader-follower dynamics, enhancing swarm coordination. 
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While RL-enhanced PSO methods improve performance, they often neglect swarm-level 

interactions and adaptability ‘collective behavior’. This research uniquely evaluates how 

PPO and PSO influence collective behavior, bridging a major gap in SR literature. By 

focusing on swarm coordination rather than algorithmic tuning, it advances the 

understanding of structured control architectures for SRs.  

Methodology for Comparing PSO vs. DRL Approaches in Swarm Navigation 

The comparison between PSO and DRL for swarm navigation follows a structured 

methodology: 

1. Simulation Environment – The experiments are conducted in a 3D Webots robot 

simulator with a swarm of E-puck robots. The robots navigate within environments of 

different sizes (1x1 m², 1.3x1.3 m², and 1.6x1.6 m²) with varying obstacle 

configurations. 

2. PSO Approach – Each robot in the swarm is treated as a particle, with its movement 

determined by PSO velocity and position updates. The fitness function evaluates the 

distance from the robot to the target, and each robot shares information to update its 

personal best and global best positions.  

3. DRL Approach (PPO-based) – The DRL method is formulated as a MDP. The PPO 

algorithm trains the swarm using a shaped reward function, Equation 6. 

 𝑅𝑒𝑤𝑎𝑟𝑑 = 𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 − 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 + 𝑃𝑒𝑛𝑎𝑙𝑡𝑦

+ 𝑅𝑒𝑤𝑎𝑟𝑑𝑡𝑎𝑟𝑔𝑒𝑡 

(6) 

where Rtarget rewards reaching the goal, and a penalty is given for obstacle collisions. 

4. Neural Network Architecture – The PPO model consists of: 

o Actor network (10×64×64×2) for selecting actions (motor speeds). 

o Critic network (10×64×64×1) for evaluating action quality. 

o ReLU activation and adding Gaussian noise for exploration. 

5. Evaluation Metrics – The comparison is based on three key metrics: 

o Effectiveness – Time taken for the first and last robot to complete the task. 

o Flexibility – Adaptability to different environments. 

o Generalization – Performance in unseen scenarios. 

RL is faster and better at coordinating robots, but it works best in conditions similar to 

where it was trained. RL struggles to adapt to new environments without additional training 

or more complex training process with heavy structure. On the other hand, PSO may be 

slower than RL, but it performs consistently well across different environments. This makes 

PSO a reliable choice for tasks needing stability, especially in unpredictable settings. The 

slower speed of PSO does not greatly affect its ability to perform steadily. It is suggested to 
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use RL, where quick reactions and close coordination are essential, mainly in familiar 

settings. 

2.2. Enhanced DRL framework, by incorporating curriculum learning in SR 

environments 

The research introduces an enhanced DRL framework, integrating Curriculum Learning 

(CL) to improve the generalization and adaptability of SR in navigation tasks. CL is inspired 

by the pedagogical approach of structuring education, where learners tackle complex topics 

gradually by beginning with basics and simpler parts until solving the entire task. This concept 

has been adapted to various machine-learning algorithms and applications. By incorporating 

CL, models demonstrate improved generalization in new, unseen data. This approach also 

accelerates the training process, especially in non-convex scenarios where the optimization 

landscape contains multiple local minima.  

This section introduces our significant contribution to the field: a model that integrates CL 

with DRL to address a navigation challenge for SR. Initially, this model was tested on 

individual robots before extending its application to a swarm setting. Specifically, we have 

enhanced the efficiency of the PPO algorithm by incorporating a CL, significantly boosting 

adaptability and convergence efficiency in complex environments. A comprehensive 

comparative analysis of three models is conducted to evaluate the effectiveness of the approach: 

modified PPO (PPO+CL), the standard PPO, and the DDPG. This comparison highlights the 

improvements the proposed model offers over existing methods. 

 The methodology consists of several key phases. 

 

 
Fig. 2. Curriculum learning- Training procedure. 
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Fig. 4. DRL with CL for SR. 

   The flowchart in Fig. 3 illustrates the proposed training process of PPO with CL. Firstly, the 

weights are initialized with random values for (Env_0). Then, the training process continues 

sequentially as a series of incremental challenging environments i=1,2,...n, (n=4) in the 

proposed model. Each environment (Env_i) begins the training after transferring the learning 

from the previous environment by uploading the weights from the previous one (Env_(i-1)). 

When the robot records 1000 successful attempts to reach the goal, the model is learned, and 

the weights are saved. It is called C criteria. The training time is computed as 

(𝑡𝐸𝑛𝑣1, 𝑡𝐸𝑛𝑣2, 𝑡𝐸𝑛𝑣3,𝑡𝐸𝑛𝑣4), and the process iterates to the following environment.  The cycle 

continues until the model has been trained among all environments. The convergence efficiency 

is measured by the time of training as in Equation 7: 

 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 = 𝑡𝐸𝑛𝑣1 + 𝑡𝐸𝑛𝑣2 + 𝑡𝐸𝑛𝑣3 + 𝑡𝐸𝑛𝑣4 (7) 

 As shown in Fig. 4, the training process is iterative, gradually increasing the complexity of the 

stages and transferring the learning at each stage by uploading the weights from the previous 

stage. The decomposition process of the training environment is obtained based on three 

metrics: swarm sizes (2 robots, 3robots, and five robots), collision avoidance complexity (the 

existence of the obstacle or not), and the distances between the targets and robots (by changing 

the size of the environment from 0.5×0.5 m2, 0.7×0.7 m2,0.1×0.1 m2, and 1.2×1.2 m2). We 

assess the swarm's performance at each stage by measuring the success rate (percentage of 

targets reached) and collision rate. 

The curriculum-based training achieved a higher success rate in reaching targets and reduced 

collision rates through improved obstacle avoidance tactics. This method also accelerated the 

learning process, as evidenced by faster convergence times. The swarm trained with CL 
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demonstrated enhanced performance metrics, robust generalization, and adaptation abilities 

regarding training and operational efficiency. 

2.3. New Hybrid Modular Design with DRL and PSO 

The proposed hybrid modular model is designed for swarm robotics applications, focusing on 

foraging behavior, where a group of robots collaboratively searches, collects, and transports 

objects to a designated nest. The foraging process mimics the behavior of biological swarms, 

such as ants and bees, which use decentralized coordination strategies to accomplish tasks 

efficiently. The simulation environment is built in the Webots 3D simulator, using E-puck 

robots to form the swarm. The experimental area consists of a 3×3 m² space containing small 

and large objects randomly distributed in addition to dynamics boxes. The swarm operates 

under a decentralized control strategy, ensuring that no central unit governs the movement of 

robots. Instead, each robot independently navigates the space based on local perception and 

swarm intelligence. 

The foraging task follows a structured execution cycle: 

1. Search Phase – Robots explore the environment to detect objects using light sensors. 

2. Gripping Phase – If an object is small, a single robot picks it up; if the object is large, 

the robot waits for assistance from nearby robot. 

3. Transport Phase – Once an object is acquired, the robot (or group) navigates back to 

the nest, optimizing its path. 

4. Release Phase – The object is deposited at the nest location. 

5. Return Phase – The robot re-enters the search phase, repeating the process until all 

objects are collected. 

To efficiently manage the foraging task, the hybrid modular model divides the swarm behavior 

into distinct functional modules, some of them are related to learning-based adaptation and 

others rule-based optimization as in Table 1. 

   

Module Optimization Method Function 

Search Module PSO or PPO  Finds objects using light sensors. 

Gripping 

Module 
Rule-based 

Picks up small objects or waits for help with large 

objects. 

Transport 

Module 
PPO  Navigates back to the nest. 

Release Module Rule-based Drops objects at the nest. 

Return Module Rule-based Re-enters search mode for a new object. 

Table 1. The foraging process. 
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Experimental Setup & Evaluation Metrics 

To evaluate the effectiveness of the hybrid approach, two configurations were tested: 

1. PSO-PPO Hybrid – Uses PSO for search and PPO for transport. 

2. PPO-PPO Hybrid – Uses PPO for both search and transport. 

The following performance metrics were analyzed: 

 Success Rate – The percentage of objects successfully transported to the nest. 

 Efficiency – The time required to complete the foraging task. 

 Collision Avoidance – The frequency of obstacle collisions. 

 Path Optimization – The total distance traveled by robots. 

The hybrid modular reduces demanding computations, such as gripping or releasing and 

switching between modules because of the behavior-based model. This method boosts 

computational effectiveness and supports tailored optimization where needed. Several benefits 

arise from this hybrid modular strategy: 

- Specialized Optimization: PPO is integrated into critical modules to enhance task 

performance, notably in search and transport activities. This ensures optimal use of PPO's 

capabilities. 

- Computational Efficiency: PPO, a resource-intensive algorithm, is selectively applied 

to manage the computational load effectively. This is essential for controlling numerous robots 

with limited processing abilities. 

- Simplicity in Routine Tasks: Simpler tasks, like gripping or releasing, utilize 

straightforward control schemes that do not require complex decision-making and facilitate 

system programming and maintenance. 

- Minimized Overfitting Risk: Restricting PPO to complex tasks helps avoid overfitting, 

keeping the model versatile and suitable for various situations. 

- Accelerated Training Periods: Concentrating on specific modules decreases the total 

time required for training, thus expediting system rollout and adaptation. 

- Optimized Reward System: The reward framework is carefully designed to match the 

objectives of each module, ensuring the primary aims are met and avoiding unintended actions. 

- The findings indicated that PPO was more effective, achieving quicker retrieval times and 

greater overall efficiency due to its superior adaptability and independence. On the other hand, 

PSO was less effective, showing limitations in both efficiency and autonomous function. 

Moreover, this study highlights the advantages of a modular design in SRs, laying the 

groundwork for future innovations that combine operational efficiency with adaptability.  
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2.4. Investigation of reward structures in DRL 

The research explores the impact of reward structures on SR behavior, emphasizing Deep 

Inverse Reinforcement Learning (DIRL) to automatically infer reward functions from expert 

demonstrations. This approach eliminates the need for manually designed reward functions, 

leading to more natural learning and better adaptation to dynamic environments. 

Deep RL has significantly advanced the capabilities of SRs, generating complex collective 

behaviors through decentralized decision-making processes. A critical component in DRL is 

the design of the reward structure, which guides the learning process and influences the swarm's 

emergent behavior. In SR, where multiple agents must coordinate, the reward structure often 

encodes the desired collaborative behaviors, influencing how individual agents contribute to 

the group's objectives. 

Reward shaping, sparse rewards, and Inverse RL (IRL) are three distinct methods used in deep 

RL to influence SR behavior. Reward shaping modifies the reward function by adding 

supplementary feedback to encourage specific behaviors, accelerate learning, and guide robots 

toward desired outcomes more efficiently. 

 Sparse rewards, awarded only for significant actions like avoiding obstacles or reaching the 

goal, foster robust strategies without frequent feedback, simplifying reward design but 

potentially slowing learning and complicating exploration. 

 Inverse RL derives rewards from observed optimal behaviors, enabling natural and efficient 

behavior learning without explicit reward programming. However, it relies heavily on the 

quality of demonstration data and involves greater computational complexity.  

This section delves into two primary methods of configuring rewards: Shaping and Sparse 

methods. The general formula or representation for a sparse reward system can be described in 

a conditional format, where the occurrence of specific events primarily determines the reward 

as in Equation (8): 

 𝑅(𝑠, 𝑎, 𝑠́) =  {
𝑥  𝑖𝑓 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑚𝑒𝑡
𝑃               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
(8) 

x: Represents the obtained value when the condition is met, typically ranging from xmin to xmax, 

where xmin ≥ 0 and xmax > xmin. 𝑃: Represents penalties when the condition is not met, ranging 

from 𝑃min  to 𝑃max, where 𝑃min  ≤  𝑃max ≤ xmin. The general formula for reward shaping involves 

modifying the original reward function 𝑅(𝑠, 𝑎, 𝑠́) in equation (4.1). The shaping term is added 

to provide the robot with additional feedback to encourage specific actions. The modified 

reward function can be expressed as in Euation (9): 

 𝑅́(𝑠, 𝑎, 𝑠́) = 𝑅(𝑠, 𝑎, 𝑠́) + 𝐹(𝑠, 𝑠́) (9) 

The shaping  function 𝐹(𝑠, 𝑠́) is carefully designed to align with the task's objectives, while 

ensuring that it does not change the optimal policy defined by the original reward function. By 



DEEP REINFORCEMENT LEARNING FOR SWARM ROBOTIC SYSTEMS 

 

11 

generalizing the reward to a variable x and defining the penalty P as a percentage of x as in 

equation (10) 

 𝑃 = −𝛼𝑥      𝑥 > 0 (10) 

So, The aim is to find the optimal balance that maximizes navigation efficiency and safety. It 

introduces a relationship between penalty percentages and key performance metrics such as 

average time to reach the goal, number of collisions, and success rate. It showed that a balanced 

penalty rate, around 0.1 to 0.3, provided the best trade-off between rapid goal attainment and 

minimal collisions.  

Proposed RL-IRL model to reward recovering and collective beahviour generating : 

   The proposed IRL-RL model is designed to infer rewards by demonstrating for different tasks. 

It is deployed for two tasks : searching for green boxes by following the light that emerges from 

them. Second, the navigation task where robots move from initial positions to a target  

IRL-RL model consists of two sections: 1- RL is deployed to train the robots to generate the 

policy based on the reward inferred by IRL. 2- IRL part, we proposed the following structure, 

The pseudo code 1 explains the steps of this model, : 

 

- Data Loader: This component is a repository for data received from expert 

demonstrations and training sessions. Data from expert demonstrations is gathered using 

a pre-trained expert model, while training data is accumulated during the PPO training 

phase. The data comprises only state frames, which include flags but omit actions. These 

flags indicate task completion, such as locating a specific item in a search task or 

arriving at a designated point in navigation tasks. The model is equipped to handle both 

segmented and continuous state inputs. In segmented mode, sensor readings are first 

normalized and then categorized into five segments ranging from 0 to 1, each 

representing a different value. 

 

- Feature Extractor: As illustrated in Table 2, this component details the types of data, 

and the operations applied to the data received from the data loader. The incoming data 

is in its raw form, where values from light sensors range between [0, 4095]. Meanwhile, 

the distance D spans from [0, 3] meters, and the angle θ varies from [−π, π] rad. The 

function ∅(s) outlined in Equations (11) and (12) transforms these raw states, S, into a 

feature vector that is more apt for input into the model. 

 

-  A shift function is implemented on the normalized states to derive values at t−1. These 

values facilitate the establishment of correlations between states, which is crucial for 

enhancing the R network's efficacy in determining the direction of state changes. 



DEEP REINFORCEMENT LEARNING FOR SWARM ROBOTIC SYSTEMS 

 

12 

 ∅(𝑆): 𝑆 → [0,1] (11) 

   

 
∅(𝑆) =

𝑀𝑎𝑥𝑂𝑢𝑡𝑝𝑢𝑡 − 𝑀𝑖𝑛𝑂𝑢𝑡𝑝𝑢𝑡

𝑀𝑎𝑥𝑉𝑎𝑙𝑢𝑒 − 𝑀𝑖𝑛𝑉𝑎𝑙𝑢𝑒
. (𝑆 −  𝑀𝑎𝑥𝑉𝑎𝑙𝑢𝑒) + 𝑀𝑎𝑥𝑂𝑢𝑡𝑝𝑢𝑡 

(12) 

 

Table 2. Features Extractor Input and Output for Searching and Navigation Tasks. 

Task Input of features extractor 

(from the data loader) 

Output of features extractor 

Searching 𝐿𝑆0
(𝑡)

, 𝐿𝑆7
(𝑡)

, 𝑓𝑙𝑎𝑔 (𝐹𝑖𝑛𝑑𝑖𝑛𝑔 𝑎 

𝑏𝑜𝑥)  

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 [ 𝐿𝑆0
(𝑡−1)

, 𝐿𝑆0
(𝑡)

, 𝐿𝑆7
(𝑡−1)

, 𝐿𝑆7
(𝑡)

 ], 

𝑓𝑙𝑎𝑔 (𝐹𝑖𝑛𝑑𝑖𝑛𝑔 𝑎 𝑏𝑜𝑥) 

Navigation 𝐷(𝑡), 𝜃(𝑡), 𝑓𝑙𝑎𝑔 (𝑅𝑒𝑎𝑐ℎ𝑖𝑛𝑔 𝑃) 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 [𝐷(𝑡−1), 𝐷(𝑡), 𝜃(𝑡−1), 𝜃(𝑡)],  flag 

(Reaching P) 

 

- Reward Network: The reward neural network aims to estimate the underlying reward 

closely. This estimation is achieved by inputting the feature vector into the neural 

network, which outputs a scalar reward value. The network is structured with fully 

connected layers configured as (length(feature−vectors) ×15×1FC- ReLU activation 

function).  

In the scenarios described, the feature vectors are typically of length 5, as detailed in Table 2. 

- Deep IRL: The backpropagation process in the reward network involves computing 

losses based on Equation (13), which ensures the reward neural network's weights are 

updated accordingly. The key loss function used here is the binary cross-entropy loss, 

which effectively differentiates between the rewards observed from experts and those 

generated during training. This loss function is used to distinguish expert 

demonstrations from learned policies. The first term maximizes the probability of expert 

rewards 𝑅𝑒𝑥𝑝𝑒𝑟𝑡, while the second term minimizes the probability of learned policy 

rewards 𝑅𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔. The sigmoid function ensures the outputs are in the range (0,1), 

making this loss similar to binary cross-entropy for classification. 

 

 𝑙𝑜𝑠𝑠 = − log (𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑅𝑒𝑥𝑝𝑒𝑟𝑡)) − 𝑙𝑜𝑔 (1 − 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑅𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔)) (13) 

 

 

 



DEEP REINFORCEMENT LEARNING FOR SWARM ROBOTIC SYSTEMS 

 

13 

Algorithm 1: Deep Inverse Reinforcement Learning (DIRL). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   Finally, the IRL-RL model that utilizes deep IRL to accurately infer the reward function from 

expert behavior demonstrations was introduced. Rather than directly learning behaviors, IRL 

aims to comprehend the underlying motivations for specific actions or strategies by estimating 

the rewards needed to accomplish tasks through generated behaviors. This approach eliminates 

the necessity for extensive manual adjustment of reward functions and enables more intuitive, 

demonstration-based learning. The proposed IRL-RL model can manage continuous state 

spaces and dynamic environments, addressing continuous RL challenges through a deep neural 

network to represent the reward function R. Additionally, it can recover the reward function 

using two types of data from the data loader: segmented and continuous features, catering to 

nuanced strategies. The model was evaluated in two tasks within a simulated swarm robotics 

environment: navigating to a predefined location and searching for specific items. It proved 

highly effective in inferring and adapting reward structures crucial for successfully directing 

autonomous robotic swarms to complete these tasks. Furthermore, The results underscore the 

model's generalization ability across various scenarios.   

 

 

Step 1: Collect Expert Demonstrations 

    Collect expert state-action pairs: Dexpert = {(se, ae)} 

Step 2: Initialize Reward Function: (length(feature−vectors) ×15×1 FC with ReLU ).  

Same hyperparameter of actor and critic of the PPO neural network. 

    Initialize reward neural network Rθ with weights w0 

Step 3: Train Initial Policy with RL 

    Train policy π0 using RL with initial reward Rθ 

    Collect agent-generated data: Dagent = {(sπ, aπ)} 

Step 4: Compute Predicted Rewards 

    Forward propagate through Rθ: 

        Re = Rθ(se, ae)   # Predicted rewards for expert actions 

        Rπ = Rθ(sπ, aπ)   # Predicted rewards for agent actions 

Step 5: Compute Loss Function 

    Compute loss L(θ) based on expert vs. agent rewards (Equation 4.14) 

Step 6: Update Reward Function 

    Backpropagate loss and update reward weights: w1 = w0 - α * ∇L(θ) 

    Generate new reward function Rθ1 

Step 7: Train RL Agent with Updated Rewards 

    Train new policy π1 using RL with updated Rθ1 

    Collect new agent-generated data: Dagent = {(sπ1, aπ1)} 

Step 8: Iterate Until Convergence 

    Repeat Steps 4-7 until policy π converges to optimal behavior  

   (The condition here is the   number of iterations) 

   Return: Optimized policy π* and learned reward function Rθ* 
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3.  NEW scientific results – theses 

T1. The Swarm intelligence algorithms, particularly PSO and PPO, are widely applied in 

swarm robotics. While prior research has explored both methods individually, little 

attention has been given to a direct comparison of their impact on collective swarm 

behavior, adaptability, and coordination in decentralized robotics. Unlike studies that 

primarily integrate RL into PSO for parameter tuning and optimization, this research 

provides a comparative behavioral analysis of PSO and PPO, evaluating their 

individual strengths, limitations, and potential for structured hybridization. By 

examining their fundamental role in swarm formation, this study paves the way for 

more effective hierarchical, structured, and hybrid control strategies. Publications 

[k1], [k2]. 

 

T2. This study presents a method for optimizing mobile robot navigation using DRL by 

enhancing the PPO algorithm with curriculum learning. The research demonstrates 

improved convergence efficiency and adaptability. A comparative analysis between 

the modified PPO, original PPO, and other algorithms highlights the superior 

performance of the curriculum-augmented PPO, particularly in handling complex, 

dynamic environments. Additionally, the study investigates swarm robot training, 

revealing that curriculum learning significantly enhances success rates, collision 

avoidance, and generalization capabilities in novel scenarios [k3], [k4]. 

 

T3. It introduces a hybrid approach combining automatic design methods like DRL or 

PSO within a modular design to tackle the foraging problem in swarm robotics. The 

system, implemented in a 3D environment using Webots, involves 8 E-Puck robots 

equipped with light sensors to search for and transport dynamically moving 

resources. The modular architecture enhances system manageability and reduces 

computational demands, making it easier to address complex, non-static foraging 

tasks. The simulations show that the RL-based model outperforms PSO regarding 

task efficiency, resource collection, and adaptability to dynamic environments. RL-

equipped robots demonstrate superior individual learning and autonomy, 

contributing to more effective collective swarm intelligence, while PSO relies more 

on the collective knowledge of the swarm [k5].  
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T4. The study systematically examines how reward functions can be structured to guide 

robots in tasks such as efficient resource collection, adaptive navigation, and 

decentralized decision-making. A key aspect of this research is the balancing of 

penalties and rewards, ensuring that learning is neither hindered by excessive 

punishment nor misdirected by overly generous rewards, which could lead to 

suboptimal behaviors. A major contribution of this thesis is the introduction of a 

Deep Inverse Reinforcement Learning (RL-IRL) model designed to discover optimal 

reward structures for guiding swarm behavior in complex and unpredictable 

environments. Unlike traditional RL methods, which rely on manually defined 

rewards, IRL extracts implicit reward functions by learning from expert swarm 

demonstrations. This method is particularly effective in handling continuous state 

and action spaces, allowing the swarm to develop adaptive collective behaviors based 

on specific task objectives [k5] ,[k6] ,[k7] ,[k8].  
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