
UNIVERSITY OF MISKOLC

FACULTY OF MECHANICAL ENGINEERING AND INFORMATICS

DEEP REINFORCEMENT LEARNING FOR SWARM ROBOTIC

SYSTEMS

Booklet of PhD Theses

PREPARED BY:

ALAA ISKANDAR

ENGINEERING OF MECHATRONICS (BSC),

ENGINEERING OF MECHATRONICS (MSC)

ISTVÁN SÁLYI DOCTORAL SCHOOL OF MECHANICAL ENGINEERING SCIENCES

TOPIC FIELD OF BASIC ENGINEERING SCIENCES

TOPIC GROUP OF MECHANICS OF SOLIDS

HEAD OF DOCTORAL SCHOOL

DR. GABRIELLA BOGNÁR

DSC, FULL PROFESSOR

HEAD OF TOPIC GROUP

DR. PÁCZELT ISTVÁN

SCIENTIFIC SUPERVISOR

DR. BÉLA KOVÁCS

Miskolc

2025

1

JUDGING COMMITTEE

chair:

secretary:

members:

OFFICIAL REVIEWERS

DEEP REINFORCEMENT LEARNING FOR SWARM ROBOTIC SYSTEMS

2

1. INTRODUCTION

Swarm robotics (SR) is the field that focuses on the study and development of multi-robot

systems which includes a group of relatively simple and often homogeneous robots. They work

together to accomplish tasks. The SR concept was inspired by social insects like ants, bees, and

birds, which exhibit remarkable collective behaviors through decentralized and self-organized

interactions. Control in swarm robotics is typically distributed among the individual ones. Each

robot follows local rules and communicates with nearby peers to achieve group objectives.

There is typically no central controller dictating the actions of the entire group. Instead, robots

interact with each other and with their environment locally, making decisions based on local

information [1]. Collective behavior in SR refers to the interactions of multiple autonomous

robots working together as a group to achieve common objectives [2]. Figure 1 shows different

types of collective behavior but not limited to aggregation, navigation, and dispersion. Robots

in aggregation gather or cluster in a specific location or form a pattern where robots arrange

themselves into predefined shapes. Navigation behavior refers to the coordinated movement of

a group of autonomous robots to reach specific targets. In other words, they navigate through

an environment while adhering to specific objectives such as exploration and avoiding

collisions as constraints. This collective behavior is essential in various applications, including

exploration, search and rescue missions, and environmental monitoring [3]. In the pursuit of

generating collective behavior in swarm robotics, researchers have explored various design

methodologies and control strategies. Two prominent approaches that have emerged are

behavior-based design methods and automatic design methods [4]. Behavior-based design

methods emphasize the modularization of robot control into distinct behaviors or modules. Each

module is responsible for a specific aspect of robot behavior. Thus, the collective behavior

emerges from the interactions and coordination among these modules. They are often

conceptually simpler and more interpretable than automatic design approaches. However,

coordinating and tuning multiple behavior modules to achieve desired collective behaviors can

be challenging, especially for complex tasks. Automatic design methods involve using

optimization algorithms or machine learning techniques to search for and optimize control

parameters or policies that govern the behavior of individual robots within a swarm. While

evolutionary algorithms like genetic algorithms and Practical Swarm Optimization (PSO) have

been traditionally favoured for fine-tuning robot behaviors based on predefined fitness

functions, their efficacy is increasingly challenged by the rise of the Reinforcement Learning

(RL) approach. Critics argue that RL’s trial-and-error approach may offer more dynamic and

adaptable learning for robots. PSO and RL are considered effective automatic design methods

in the swarm concept with their limitations [5].

Reinforcement Learning (RL) is a decision-making framework where an agent interacts with

an environment to maximize cumulative rewards. It is typically modeled as a Markov Decision

Process (MDP), defined by the tuple (S, A, P, R, γ), where S is the state space, A is the action

space, P is the transition probability, R is the reward function, and γ is the discount factor.

DEEP REINFORCEMENT LEARNING FOR SWARM ROBOTIC SYSTEMS

3

Fig. 1 Classification of collective behaviors in swarm robotics.

The goal is to learn an optimal policy π* that maximizes the expected return G, as Equation 1.

Deep Reinforcement Learning (DRL) extends RL by using neural networks to approximate

policies, enabling learning in high-dimensional spaces. Adjusting the weights 𝜃 based on

objective function 𝐽(𝜃) during the interaction with the environment based on policy𝜋𝜃(𝑠𝑡|𝑎𝑡),

and Advantage 𝐴̂𝑡 to enhance learning process, Equation 2. Among DRL methods, Policy

Gradient (PG) approaches directly optimize the policy πθ(s∣a) where updates follow as in

equation 2, one of the most PG methods is Proximal Policy Optimization (PPO) that improves

policy learning by introducing a clipped objective function 𝐿𝐶𝐿𝐼𝑃(𝜃) that prevents large policy

updates, ensuring stable learning as in Equation 3:

𝐺 = 𝐸 [∑ 𝛾𝑡

∞

𝑡=0
𝑅(𝑠𝑡, 𝑎𝑡)]

(1)

 ∇𝜃𝐽(𝜃) = 𝐸𝑡[∇𝜃𝑙𝑜𝑔𝜋𝜃(𝑠𝑡|𝑎𝑡)𝐴̂𝑡] (2)

 𝐿𝐶𝐿𝐼𝑃(𝜃) = 𝐸𝑡[min (𝑟𝑡(𝜃)𝐴̂𝑡, 𝑐𝑙𝑖𝑝(𝑟𝑡(𝜃), 1 − 𝜖, 1 + 𝜖)𝐴̂𝑡] (3)

In DRL, the Actor-Critic architecture is a widely used method that combines two components:

Actor – Learns the policy π(θ), which maps states s to actions a and decides the best action to

take, and Critic – Evaluates the Advantage 𝐴̂𝑡 , which estimates the expected future rewards for

a given state and helps guide the Actor's learning. This framework improves learning efficiency

by using the Critic to reduce variance in policy updates while the Actor focuses on policy

improvement.

Most of studies have chosen PPO for SR because it ensures stable policy updates, works well

in continuous and discrete action spaces, and is computationally efficient, making it ideal for

controlling multiple autonomous robots in decentralized environments [6].

DEEP REINFORCEMENT LEARNING FOR SWARM ROBOTIC SYSTEMS

4

Practical swarm optimization (PSO): It is a computational method that optimizes a problem by

iteratively improving a candidate solution about a given quality measure. It mimics the social

behavior of birds flocking or fish schooling. The collection of particles (robots) moves through

the solution space (environment), adjusting their positions based on their updated velocities,

equation 4. The particles update their velocities by considering three key factors: their personal

best position 𝑃𝑖,𝑡
𝑑 , the best-known position of the entire swarm 𝑝𝑔

𝑑 , and a current position 𝒙𝒊,𝒕
𝒅 .

This update process is mathematically represented in Equation (5).

 𝒗𝒊,𝒕+𝟏
𝒅 = 𝜔 ∗ 𝒗𝒊,𝒕

𝒅 + 𝑐1 ∗ 𝑟𝑎𝑛𝑑𝑖 ∗ (𝑃𝑖,𝑡
𝑑 − 𝒙𝒊,𝒕

𝒅) + 𝑐2 ∗ 𝑟𝑎𝑛𝑑𝑖 ∗ (𝑝𝑔
𝑑 − 𝒙𝒊,𝒕

𝒅) (4)

 𝒙𝒊,𝒕+𝟏
𝒅 = 𝒙𝒊,𝒕

𝒅 + 𝒗𝒊,𝒕+𝟏
𝒅 (5)

𝑃𝑖,𝑡
𝑑 : The best fitness value particle has at the t moment. 𝑝𝑔

𝑑: The best fitness value among the

swarm.𝑣𝑖,𝑡
𝑑 : The velocity of particle i at t (m/s). 𝑥𝑖(𝑡): The position of particle i at time t. 𝜔:

weights. C1, and c2 : cognitive and social contants.

2. METHODOLOGY

The research follows a structured approach:

1. A comparative study between PSO-based and DRL-based swarm navigation

methodologies.

2. Development of an enhanced DRL framework, incorporating curriculum learning to

improve generalization and adaptability in swarm environments.

3. Proposal of a hybrid modular model, combining DRL and PSO to optimize swarm

coordination in foraging and navigation tasks.

4. Investigation of reward structures in DRL, using inverse reinforcement learning to fine-

tune reward functions for improved decision-making.

2.1. A comparative study between PSO-based and DRL-based SR navigation

behavior.

Swarm intelligence algorithms play a crucial role in optimization and robotics. Enhancements

to swarm intelligence generally fall into three categories:

1. Parameter Modifications – Techniques like iSOMA-PPO [7] and RL-LSOP [8]

dynamically adjust hyperparameters, improving convergence speed and efficiency.

However, they focus on global optimization rather than real-time multi-agent

coordination.

2. Algorithm Combinations – Hybrid models such as PSO-GA [9] and ACO-PSO [10]

leverage complementary strengths, improving adaptability but increasing computational

complexity.

3. Structural Modifications – Approaches like Hierarchical PSO (H-PSO) [11] introduce

leader-follower dynamics, enhancing swarm coordination.

DEEP REINFORCEMENT LEARNING FOR SWARM ROBOTIC SYSTEMS

5

While RL-enhanced PSO methods improve performance, they often neglect swarm-level

interactions and adaptability ‘collective behavior’. This research uniquely evaluates how

PPO and PSO influence collective behavior, bridging a major gap in SR literature. By

focusing on swarm coordination rather than algorithmic tuning, it advances the

understanding of structured control architectures for SRs.

Methodology for Comparing PSO vs. DRL Approaches in Swarm Navigation

The comparison between PSO and DRL for swarm navigation follows a structured

methodology:

1. Simulation Environment – The experiments are conducted in a 3D Webots robot

simulator with a swarm of E-puck robots. The robots navigate within environments of

different sizes (1x1 m², 1.3x1.3 m², and 1.6x1.6 m²) with varying obstacle

configurations.

2. PSO Approach – Each robot in the swarm is treated as a particle, with its movement

determined by PSO velocity and position updates. The fitness function evaluates the

distance from the robot to the target, and each robot shares information to update its

personal best and global best positions.

3. DRL Approach (PPO-based) – The DRL method is formulated as a MDP. The PPO

algorithm trains the swarm using a shaped reward function, Equation 6.

 𝑅𝑒𝑤𝑎𝑟𝑑 = 𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 − 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 + 𝑃𝑒𝑛𝑎𝑙𝑡𝑦

+ 𝑅𝑒𝑤𝑎𝑟𝑑𝑡𝑎𝑟𝑔𝑒𝑡

(6)

where Rtarget rewards reaching the goal, and a penalty is given for obstacle collisions.

4. Neural Network Architecture – The PPO model consists of:

o Actor network (10×64×64×2) for selecting actions (motor speeds).

o Critic network (10×64×64×1) for evaluating action quality.

o ReLU activation and adding Gaussian noise for exploration.

5. Evaluation Metrics – The comparison is based on three key metrics:

o Effectiveness – Time taken for the first and last robot to complete the task.

o Flexibility – Adaptability to different environments.

o Generalization – Performance in unseen scenarios.

RL is faster and better at coordinating robots, but it works best in conditions similar to

where it was trained. RL struggles to adapt to new environments without additional training

or more complex training process with heavy structure. On the other hand, PSO may be

slower than RL, but it performs consistently well across different environments. This makes

PSO a reliable choice for tasks needing stability, especially in unpredictable settings. The

slower speed of PSO does not greatly affect its ability to perform steadily. It is suggested to

DEEP REINFORCEMENT LEARNING FOR SWARM ROBOTIC SYSTEMS

6

use RL, where quick reactions and close coordination are essential, mainly in familiar

settings.

2.2. Enhanced DRL framework, by incorporating curriculum learning in SR

environments

The research introduces an enhanced DRL framework, integrating Curriculum Learning

(CL) to improve the generalization and adaptability of SR in navigation tasks. CL is inspired

by the pedagogical approach of structuring education, where learners tackle complex topics

gradually by beginning with basics and simpler parts until solving the entire task. This concept

has been adapted to various machine-learning algorithms and applications. By incorporating

CL, models demonstrate improved generalization in new, unseen data. This approach also

accelerates the training process, especially in non-convex scenarios where the optimization

landscape contains multiple local minima.

This section introduces our significant contribution to the field: a model that integrates CL

with DRL to address a navigation challenge for SR. Initially, this model was tested on

individual robots before extending its application to a swarm setting. Specifically, we have

enhanced the efficiency of the PPO algorithm by incorporating a CL, significantly boosting

adaptability and convergence efficiency in complex environments. A comprehensive

comparative analysis of three models is conducted to evaluate the effectiveness of the approach:

modified PPO (PPO+CL), the standard PPO, and the DDPG. This comparison highlights the

improvements the proposed model offers over existing methods.

 The methodology consists of several key phases.

Fig. 2. Curriculum learning- Training procedure.

DEEP REINFORCEMENT LEARNING FOR SWARM ROBOTIC SYSTEMS

7

Fig. 4. DRL with CL for SR.

 The flowchart in Fig. 3 illustrates the proposed training process of PPO with CL. Firstly, the

weights are initialized with random values for (Env_0). Then, the training process continues

sequentially as a series of incremental challenging environments i=1,2,...n, (n=4) in the

proposed model. Each environment (Env_i) begins the training after transferring the learning

from the previous environment by uploading the weights from the previous one (Env_(i-1)).

When the robot records 1000 successful attempts to reach the goal, the model is learned, and

the weights are saved. It is called C criteria. The training time is computed as

(𝑡𝐸𝑛𝑣1, 𝑡𝐸𝑛𝑣2, 𝑡𝐸𝑛𝑣3,𝑡𝐸𝑛𝑣4), and the process iterates to the following environment. The cycle

continues until the model has been trained among all environments. The convergence efficiency

is measured by the time of training as in Equation 7:

 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 = 𝑡𝐸𝑛𝑣1 + 𝑡𝐸𝑛𝑣2 + 𝑡𝐸𝑛𝑣3 + 𝑡𝐸𝑛𝑣4 (7)

 As shown in Fig. 4, the training process is iterative, gradually increasing the complexity of the

stages and transferring the learning at each stage by uploading the weights from the previous

stage. The decomposition process of the training environment is obtained based on three

metrics: swarm sizes (2 robots, 3robots, and five robots), collision avoidance complexity (the

existence of the obstacle or not), and the distances between the targets and robots (by changing

the size of the environment from 0.5×0.5 m2, 0.7×0.7 m2,0.1×0.1 m2, and 1.2×1.2 m2). We

assess the swarm's performance at each stage by measuring the success rate (percentage of

targets reached) and collision rate.

The curriculum-based training achieved a higher success rate in reaching targets and reduced

collision rates through improved obstacle avoidance tactics. This method also accelerated the

learning process, as evidenced by faster convergence times. The swarm trained with CL

DEEP REINFORCEMENT LEARNING FOR SWARM ROBOTIC SYSTEMS

8

demonstrated enhanced performance metrics, robust generalization, and adaptation abilities

regarding training and operational efficiency.

2.3. New Hybrid Modular Design with DRL and PSO

The proposed hybrid modular model is designed for swarm robotics applications, focusing on

foraging behavior, where a group of robots collaboratively searches, collects, and transports

objects to a designated nest. The foraging process mimics the behavior of biological swarms,

such as ants and bees, which use decentralized coordination strategies to accomplish tasks

efficiently. The simulation environment is built in the Webots 3D simulator, using E-puck

robots to form the swarm. The experimental area consists of a 3×3 m² space containing small

and large objects randomly distributed in addition to dynamics boxes. The swarm operates

under a decentralized control strategy, ensuring that no central unit governs the movement of

robots. Instead, each robot independently navigates the space based on local perception and

swarm intelligence.

The foraging task follows a structured execution cycle:

1. Search Phase – Robots explore the environment to detect objects using light sensors.

2. Gripping Phase – If an object is small, a single robot picks it up; if the object is large,

the robot waits for assistance from nearby robot.

3. Transport Phase – Once an object is acquired, the robot (or group) navigates back to

the nest, optimizing its path.

4. Release Phase – The object is deposited at the nest location.

5. Return Phase – The robot re-enters the search phase, repeating the process until all

objects are collected.

To efficiently manage the foraging task, the hybrid modular model divides the swarm behavior

into distinct functional modules, some of them are related to learning-based adaptation and

others rule-based optimization as in Table 1.

Module Optimization Method Function

Search Module PSO or PPO Finds objects using light sensors.

Gripping

Module
Rule-based

Picks up small objects or waits for help with large

objects.

Transport

Module
PPO Navigates back to the nest.

Release Module Rule-based Drops objects at the nest.

Return Module Rule-based Re-enters search mode for a new object.

Table 1. The foraging process.

DEEP REINFORCEMENT LEARNING FOR SWARM ROBOTIC SYSTEMS

9

Experimental Setup & Evaluation Metrics

To evaluate the effectiveness of the hybrid approach, two configurations were tested:

1. PSO-PPO Hybrid – Uses PSO for search and PPO for transport.

2. PPO-PPO Hybrid – Uses PPO for both search and transport.

The following performance metrics were analyzed:

 Success Rate – The percentage of objects successfully transported to the nest.

 Efficiency – The time required to complete the foraging task.

 Collision Avoidance – The frequency of obstacle collisions.

 Path Optimization – The total distance traveled by robots.

The hybrid modular reduces demanding computations, such as gripping or releasing and

switching between modules because of the behavior-based model. This method boosts

computational effectiveness and supports tailored optimization where needed. Several benefits

arise from this hybrid modular strategy:

- Specialized Optimization: PPO is integrated into critical modules to enhance task

performance, notably in search and transport activities. This ensures optimal use of PPO's

capabilities.

- Computational Efficiency: PPO, a resource-intensive algorithm, is selectively applied

to manage the computational load effectively. This is essential for controlling numerous robots

with limited processing abilities.

- Simplicity in Routine Tasks: Simpler tasks, like gripping or releasing, utilize

straightforward control schemes that do not require complex decision-making and facilitate

system programming and maintenance.

- Minimized Overfitting Risk: Restricting PPO to complex tasks helps avoid overfitting,

keeping the model versatile and suitable for various situations.

- Accelerated Training Periods: Concentrating on specific modules decreases the total

time required for training, thus expediting system rollout and adaptation.

- Optimized Reward System: The reward framework is carefully designed to match the

objectives of each module, ensuring the primary aims are met and avoiding unintended actions.

- The findings indicated that PPO was more effective, achieving quicker retrieval times and

greater overall efficiency due to its superior adaptability and independence. On the other hand,

PSO was less effective, showing limitations in both efficiency and autonomous function.

Moreover, this study highlights the advantages of a modular design in SRs, laying the

groundwork for future innovations that combine operational efficiency with adaptability.

DEEP REINFORCEMENT LEARNING FOR SWARM ROBOTIC SYSTEMS

10

2.4. Investigation of reward structures in DRL

The research explores the impact of reward structures on SR behavior, emphasizing Deep

Inverse Reinforcement Learning (DIRL) to automatically infer reward functions from expert

demonstrations. This approach eliminates the need for manually designed reward functions,

leading to more natural learning and better adaptation to dynamic environments.

Deep RL has significantly advanced the capabilities of SRs, generating complex collective

behaviors through decentralized decision-making processes. A critical component in DRL is

the design of the reward structure, which guides the learning process and influences the swarm's

emergent behavior. In SR, where multiple agents must coordinate, the reward structure often

encodes the desired collaborative behaviors, influencing how individual agents contribute to

the group's objectives.

Reward shaping, sparse rewards, and Inverse RL (IRL) are three distinct methods used in deep

RL to influence SR behavior. Reward shaping modifies the reward function by adding

supplementary feedback to encourage specific behaviors, accelerate learning, and guide robots

toward desired outcomes more efficiently.

 Sparse rewards, awarded only for significant actions like avoiding obstacles or reaching the

goal, foster robust strategies without frequent feedback, simplifying reward design but

potentially slowing learning and complicating exploration.

 Inverse RL derives rewards from observed optimal behaviors, enabling natural and efficient

behavior learning without explicit reward programming. However, it relies heavily on the

quality of demonstration data and involves greater computational complexity.

This section delves into two primary methods of configuring rewards: Shaping and Sparse

methods. The general formula or representation for a sparse reward system can be described in

a conditional format, where the occurrence of specific events primarily determines the reward

as in Equation (8):

 𝑅(𝑠, 𝑎, 𝑠́) = {
𝑥 𝑖𝑓 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑚𝑒𝑡
𝑃 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(8)

x: Represents the obtained value when the condition is met, typically ranging from xmin to xmax,

where xmin ≥ 0 and xmax > xmin. 𝑃: Represents penalties when the condition is not met, ranging

from 𝑃min to 𝑃max, where 𝑃min ≤ 𝑃max ≤ xmin. The general formula for reward shaping involves

modifying the original reward function 𝑅(𝑠, 𝑎, 𝑠́) in equation (4.1). The shaping term is added

to provide the robot with additional feedback to encourage specific actions. The modified

reward function can be expressed as in Euation (9):

 𝑅́(𝑠, 𝑎, 𝑠́) = 𝑅(𝑠, 𝑎, 𝑠́) + 𝐹(𝑠, 𝑠́) (9)

The shaping function 𝐹(𝑠, 𝑠́) is carefully designed to align with the task's objectives, while

ensuring that it does not change the optimal policy defined by the original reward function. By

DEEP REINFORCEMENT LEARNING FOR SWARM ROBOTIC SYSTEMS

11

generalizing the reward to a variable x and defining the penalty P as a percentage of x as in

equation (10)

 𝑃 = −𝛼𝑥 𝑥 > 0 (10)

So, The aim is to find the optimal balance that maximizes navigation efficiency and safety. It

introduces a relationship between penalty percentages and key performance metrics such as

average time to reach the goal, number of collisions, and success rate. It showed that a balanced

penalty rate, around 0.1 to 0.3, provided the best trade-off between rapid goal attainment and

minimal collisions.

Proposed RL-IRL model to reward recovering and collective beahviour generating :

 The proposed IRL-RL model is designed to infer rewards by demonstrating for different tasks.

It is deployed for two tasks : searching for green boxes by following the light that emerges from

them. Second, the navigation task where robots move from initial positions to a target

IRL-RL model consists of two sections: 1- RL is deployed to train the robots to generate the

policy based on the reward inferred by IRL. 2- IRL part, we proposed the following structure,

The pseudo code 1 explains the steps of this model, :

- Data Loader: This component is a repository for data received from expert

demonstrations and training sessions. Data from expert demonstrations is gathered using

a pre-trained expert model, while training data is accumulated during the PPO training

phase. The data comprises only state frames, which include flags but omit actions. These

flags indicate task completion, such as locating a specific item in a search task or

arriving at a designated point in navigation tasks. The model is equipped to handle both

segmented and continuous state inputs. In segmented mode, sensor readings are first

normalized and then categorized into five segments ranging from 0 to 1, each

representing a different value.

- Feature Extractor: As illustrated in Table 2, this component details the types of data,

and the operations applied to the data received from the data loader. The incoming data

is in its raw form, where values from light sensors range between [0, 4095]. Meanwhile,

the distance D spans from [0, 3] meters, and the angle θ varies from [−π, π] rad. The

function ∅(s) outlined in Equations (11) and (12) transforms these raw states, S, into a

feature vector that is more apt for input into the model.

- A shift function is implemented on the normalized states to derive values at t−1. These

values facilitate the establishment of correlations between states, which is crucial for

enhancing the R network's efficacy in determining the direction of state changes.

DEEP REINFORCEMENT LEARNING FOR SWARM ROBOTIC SYSTEMS

12

 ∅(𝑆): 𝑆 → [0,1] (11)

∅(𝑆) =

𝑀𝑎𝑥𝑂𝑢𝑡𝑝𝑢𝑡 − 𝑀𝑖𝑛𝑂𝑢𝑡𝑝𝑢𝑡

𝑀𝑎𝑥𝑉𝑎𝑙𝑢𝑒 − 𝑀𝑖𝑛𝑉𝑎𝑙𝑢𝑒
. (𝑆 − 𝑀𝑎𝑥𝑉𝑎𝑙𝑢𝑒) + 𝑀𝑎𝑥𝑂𝑢𝑡𝑝𝑢𝑡

(12)

Table 2. Features Extractor Input and Output for Searching and Navigation Tasks.

Task Input of features extractor

(from the data loader)

Output of features extractor

Searching 𝐿𝑆0
(𝑡)

, 𝐿𝑆7
(𝑡)

, 𝑓𝑙𝑎𝑔 (𝐹𝑖𝑛𝑑𝑖𝑛𝑔 𝑎

𝑏𝑜𝑥)

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 [𝐿𝑆0
(𝑡−1)

, 𝐿𝑆0
(𝑡)

, 𝐿𝑆7
(𝑡−1)

, 𝐿𝑆7
(𝑡)

],

𝑓𝑙𝑎𝑔 (𝐹𝑖𝑛𝑑𝑖𝑛𝑔 𝑎 𝑏𝑜𝑥)

Navigation 𝐷(𝑡), 𝜃(𝑡), 𝑓𝑙𝑎𝑔 (𝑅𝑒𝑎𝑐ℎ𝑖𝑛𝑔 𝑃) 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 [𝐷(𝑡−1), 𝐷(𝑡), 𝜃(𝑡−1), 𝜃(𝑡)], flag

(Reaching P)

- Reward Network: The reward neural network aims to estimate the underlying reward

closely. This estimation is achieved by inputting the feature vector into the neural

network, which outputs a scalar reward value. The network is structured with fully

connected layers configured as (length(feature−vectors) ×15×1FC- ReLU activation

function).

In the scenarios described, the feature vectors are typically of length 5, as detailed in Table 2.

- Deep IRL: The backpropagation process in the reward network involves computing

losses based on Equation (13), which ensures the reward neural network's weights are

updated accordingly. The key loss function used here is the binary cross-entropy loss,

which effectively differentiates between the rewards observed from experts and those

generated during training. This loss function is used to distinguish expert

demonstrations from learned policies. The first term maximizes the probability of expert

rewards 𝑅𝑒𝑥𝑝𝑒𝑟𝑡, while the second term minimizes the probability of learned policy

rewards 𝑅𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔. The sigmoid function ensures the outputs are in the range (0,1),

making this loss similar to binary cross-entropy for classification.

 𝑙𝑜𝑠𝑠 = − log (𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑅𝑒𝑥𝑝𝑒𝑟𝑡)) − 𝑙𝑜𝑔 (1 − 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑅𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔)) (13)

DEEP REINFORCEMENT LEARNING FOR SWARM ROBOTIC SYSTEMS

13

Algorithm 1: Deep Inverse Reinforcement Learning (DIRL).

 Finally, the IRL-RL model that utilizes deep IRL to accurately infer the reward function from

expert behavior demonstrations was introduced. Rather than directly learning behaviors, IRL

aims to comprehend the underlying motivations for specific actions or strategies by estimating

the rewards needed to accomplish tasks through generated behaviors. This approach eliminates

the necessity for extensive manual adjustment of reward functions and enables more intuitive,

demonstration-based learning. The proposed IRL-RL model can manage continuous state

spaces and dynamic environments, addressing continuous RL challenges through a deep neural

network to represent the reward function R. Additionally, it can recover the reward function

using two types of data from the data loader: segmented and continuous features, catering to

nuanced strategies. The model was evaluated in two tasks within a simulated swarm robotics

environment: navigating to a predefined location and searching for specific items. It proved

highly effective in inferring and adapting reward structures crucial for successfully directing

autonomous robotic swarms to complete these tasks. Furthermore, The results underscore the

model's generalization ability across various scenarios.

Step 1: Collect Expert Demonstrations

 Collect expert state-action pairs: Dexpert = {(se, ae)}

Step 2: Initialize Reward Function: (length(feature−vectors) ×15×1 FC with ReLU).

Same hyperparameter of actor and critic of the PPO neural network.

 Initialize reward neural network Rθ with weights w0

Step 3: Train Initial Policy with RL

 Train policy π0 using RL with initial reward Rθ

 Collect agent-generated data: Dagent = {(sπ, aπ)}

Step 4: Compute Predicted Rewards

 Forward propagate through Rθ:

 Re = Rθ(se, ae) # Predicted rewards for expert actions

 Rπ = Rθ(sπ, aπ) # Predicted rewards for agent actions

Step 5: Compute Loss Function

 Compute loss L(θ) based on expert vs. agent rewards (Equation 4.14)

Step 6: Update Reward Function

 Backpropagate loss and update reward weights: w1 = w0 - α * ∇L(θ)

 Generate new reward function Rθ1

Step 7: Train RL Agent with Updated Rewards

 Train new policy π1 using RL with updated Rθ1

 Collect new agent-generated data: Dagent = {(sπ1, aπ1)}

Step 8: Iterate Until Convergence

 Repeat Steps 4-7 until policy π converges to optimal behavior

 (The condition here is the number of iterations)

 Return: Optimized policy π* and learned reward function Rθ*

DEEP REINFORCEMENT LEARNING FOR SWARM ROBOTIC SYSTEMS

14

3. NEW scientific results – theses

T1. The Swarm intelligence algorithms, particularly PSO and PPO, are widely applied in

swarm robotics. While prior research has explored both methods individually, little

attention has been given to a direct comparison of their impact on collective swarm

behavior, adaptability, and coordination in decentralized robotics. Unlike studies that

primarily integrate RL into PSO for parameter tuning and optimization, this research

provides a comparative behavioral analysis of PSO and PPO, evaluating their

individual strengths, limitations, and potential for structured hybridization. By

examining their fundamental role in swarm formation, this study paves the way for

more effective hierarchical, structured, and hybrid control strategies. Publications

[k1], [k2].

T2. This study presents a method for optimizing mobile robot navigation using DRL by

enhancing the PPO algorithm with curriculum learning. The research demonstrates

improved convergence efficiency and adaptability. A comparative analysis between

the modified PPO, original PPO, and other algorithms highlights the superior

performance of the curriculum-augmented PPO, particularly in handling complex,

dynamic environments. Additionally, the study investigates swarm robot training,

revealing that curriculum learning significantly enhances success rates, collision

avoidance, and generalization capabilities in novel scenarios [k3], [k4].

T3. It introduces a hybrid approach combining automatic design methods like DRL or

PSO within a modular design to tackle the foraging problem in swarm robotics. The

system, implemented in a 3D environment using Webots, involves 8 E-Puck robots

equipped with light sensors to search for and transport dynamically moving

resources. The modular architecture enhances system manageability and reduces

computational demands, making it easier to address complex, non-static foraging

tasks. The simulations show that the RL-based model outperforms PSO regarding

task efficiency, resource collection, and adaptability to dynamic environments. RL-

equipped robots demonstrate superior individual learning and autonomy,

contributing to more effective collective swarm intelligence, while PSO relies more

on the collective knowledge of the swarm [k5].

DEEP REINFORCEMENT LEARNING FOR SWARM ROBOTIC SYSTEMS

15

T4. The study systematically examines how reward functions can be structured to guide

robots in tasks such as efficient resource collection, adaptive navigation, and

decentralized decision-making. A key aspect of this research is the balancing of

penalties and rewards, ensuring that learning is neither hindered by excessive

punishment nor misdirected by overly generous rewards, which could lead to

suboptimal behaviors. A major contribution of this thesis is the introduction of a

Deep Inverse Reinforcement Learning (RL-IRL) model designed to discover optimal

reward structures for guiding swarm behavior in complex and unpredictable

environments. Unlike traditional RL methods, which rely on manually defined

rewards, IRL extracts implicit reward functions by learning from expert swarm

demonstrations. This method is particularly effective in handling continuous state

and action spaces, allowing the swarm to develop adaptive collective behaviors based

on specific task objectives [k5] ,[k6] ,[k7] ,[k8].

DEEP REINFORCEMENT LEARNING FOR SWARM ROBOTIC SYSTEMS

16

4. LIST OF PUBLICATIONS RELATED TO THE TOPIC OF THE

RESEARCH FIELD

[k1] Iskandar A., Kovács B. "A survey on automatic design methods for swarm robotics

systems." Carpathian Journal of Electronic & Computer Engineering, v. 14, no. 2, 2021.

https://doi.org/10.2478/cjece-2021-0006.

[k2] Iskandar A., Hammoud A., Kovács B. " Swarm Robotics Navigation Task: A

Comparative Study of Reinforcement Learning and Particle Swarm Optimization

Methodologies " Mekhatronika, Avtomatizatsiya, Upravlenie. v. 25, no. 9, pp. 471-478.

https://doi.org/10.17587/mau.25.471-478.

[k3] Iskandar A., Kovács B. "Curriculum learning for deep reinforcement learning in swarm

robotic navigation task." Multidiszciplináris Tudományok, v. 13, no. 3, pp. 175-187,

2023. https://doi.org/10.35925/j.multi.2023.3.18.

[k4] Iskandar A., Kovács B. "Investigating the impact of curriculum learning on

reinforcement learning for improved navigational capabilities in mobile robots."

Inteligencia Artificial, v. 27, no. 73, pp. 163-176, Mar 2024.

https://doi.org/10.4114/intartif.vol27iss73pp163-176.

[k5] Hammoud A., Iskandar A., Kovács B. " Dynamic foraging in swarm robotics: a hybrid

approach with modular design and deep reinforcement learning intelligence" Informatics

and automation, v. 24, pp. 51, 2025. https://doi.org/10.15622/ia.24.1.3.

[k6] Iskandar, B. Kovács, "Analysis of the effects of reward structures in deep reinforcement

learning on the path planning of mobile robots." in 5th international black sea modern

scientific research congress, Rize, Turkiye. pp. 758, 2023.

[k7] Iskandar A., Rostum H.M., Kovács B. "Using deep reinforcement learning to solve a

navigation problem for a swarm robotics system." In 2023 24th International Carpathian

Control Conference (ICCC), pp. 185-189, IEEE, 2023.

https://doi.org/10.1109/ICCC57093.2023.10178888.

[k8] Iskandar A., Hammoud A., Kovács B. " Implicit understanding: decoding swarm

behaviors in robots through deep inverse reinforcement learning" Informatics and

automation, v.23, p. 1485,2024. https://doi.org/10.15622/ia.23.5.8.

DEEP REINFORCEMENT LEARNING FOR SWARM ROBOTIC SYSTEMS

17

5. LITERATURE CITED IN THE THESES BOOKLET

[1] Cheraghi, A.R., Shahzad, S., Graffi, K.: Past, present, and future of swarm robotics. In:

Intelligent Systems and Applications: Proceedings of the 2021 Intelligent Systems

Conference (IntelliSys) 3, pp. 190–233,2022. https://doi.org/10.1007/978-3-030-

82199-9\13

[2] Majid, M., Arshad, M., Mokhtar, R.: Swarm robotics behaviors and tasks: a technical

review. Control Engineering in Robotics and Industrial Automation: Malaysian Society

for Automatic Control Engineers (MACE) Technical Series 2018, 99–167,2022.

https://doi.org/10.1007/978-3-030-74540-0 5

[3] Shahzad, M.M., Saeed, Z., Akhtar, A., Munawar, H., Yousaf, M.H., Baloach, N.K.,

Hussain, F.: A review of swarm robotics in a nutshell. Drones 7(4), 269,2023.

https://doi.org/10.3390/drones7040269

[4] Iskandar, A., Kov´acs, B.: A survey on automatic design methods for swarm robotics

systems. Carpathian Journal of Electronic and Computer Engineering 14(2), 1–5 ,2021.

https://doi.org/10.2478/cjece-2021-000614

[5] Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics: a review from

the swarm engineering perspective. Swarm Intelligence 7, 1–41 (2013)

https://doi.org/10.1007/s11721-012-0075-2

[6] Iskandar A., Kovács B. "Investigating the impact of curriculum learning on

reinforcement learning for improved navigational capabilities in mobile robots."

Inteligencia Artificial, v. 27, no. 73, pp. 163-176, Mar 2024.

https://doi.org/10.4114/intartif.vol27iss73pp163-176

[7] Klein L., Zelinka I., Seidl D. "Optimizing parameters in swarm intelligence using

reinforcement learning: An application of Proximal Policy Optimization to the iSOMA

algorithm." Swarm and Evolutionary Computation, v. 85, p. 101487, 2024.

https://doi.org/10.1016/j.swevo.2024.101487

[8] Wang F., Wang X., Sun S. "A reinforcement learning level-based particle swarm

optimization algorithm for large-scale optimization." Information Sciences, v. 602, pp.

298-312, 2022. https://doi.org/10.1016/j.ins.2022.04.053

[9] Gad A.G. "Particle swarm optimization algorithm and its applications: A systematic

review." Archives of Computational Methods in Engineering, v. 29, no. 5, pp. 2531-

2561, 2022. https://doi.org/10.1007/s11831-021-09694-4

[10] Niknam T., Amiri B. "An efficient hybrid approach based on PSO, ACO, and k-means

for cluster analysis." Applied Soft Computing, v. 10, no. 1, pp. 183-197, 2010.

https://doi.org/10.1016/j.asoc.2009.07.001

[11] Janson S., Middendorf M. "A hierarchical particle swarm optimizer for dynamic

optimization problems." Applications of Evolutionary Computing: EvoWorkshops 2004,

EvoBIO, EvoCOMNET, EvoHOT, EvoISAP, EvoMUSART, and EvoSTOC, Coimbra,

Portugal, April 5-7, 2004. Proceedings, pp. 513-524, 2004. https://doi.org/10.1007/978-

3-540-24653-4_52

https://doi.org/10.1007/s11721-012-0075-2
https://doi.org/10.4114/intartif.vol27iss73pp163-176
https://doi.org/10.1016/j.ins.2022.04.053
https://doi.org/10.1007/978-3-540-24653-4_52
https://doi.org/10.1007/978-3-540-24653-4_52

