

UNIVERSITY OF MISKOLC

FACULTY OF MECHANICAL ENGINEERING AND INFORMATICS

DEEP REINFORCEMENT LEARNING FOR SWARM ROBOTIC

SYSTEMS

PHD THESES

Prepared by

Alaa Iskandar
Engineering of Mechatronics (BSc),

Engineering of Mechatronics (MSc)

ISTVÁN SÁLYI DOCTORAL SCHOOL OF MECHANICAL ENGINEERING SCIENCES

TOPIC FIELD OF BASIC ENGINEERING SCIENCES

TOPIC GROUP OF MECHANICS OF SOLIDS

Head of Doctoral School

Dr. Gabriella Bognár

DSc, Full Professor

Head of Topic Group

Dr. Páczelt István

Scientific Supervisor

Dr. Béla Kovács

Miskolc

2025

CONTENTS

I

CONTENTS

CONTENTS ...I

SUPERVISOR’S RECOMMENDATIONS .. III

LIST OF SYMBOLS AND ABBREVIATIONS .. IV

1. INTRODUCTION ... 8
1.1. Overview of Swarm Robotics Systems ... 8

1.2. Mathematical models of Swarm Robotics systems .. 9

1.2.1. Boids Model ... 9
1.2.2. ACO model ... 10
1.2.3. SPP Model ... 11
1.2.4. Behavior-Based Models ... 11
1.2.5. PSO Model ... 12
1.2.6. MAS Model .. 13

1.3. Reinforcement learning ... 13

1.3.1. Markov Decision Processes (MDPs) ... 14
1.3.2. Exploration vs. Exploitation .. 14
1.3.3. Model-Free and Model-Based Approaches ... 15
1.3.4. Why PPO for robots domain .. 15

1.4. Outline of the Thesis .. 16

2. AUTOMATIC DESIGN METHODS .. 18
2.1. A Survey on Automatic Design Methods ... 18

2.1.1. PSO-Driven Solutions in SRs ... 18
2.1.2. RL-Driven Solutions in SRs ... 19

2.2. PSO vs. RL Methodologies in Swarm Navigation Behavior ... 21

2.2.1. Defining the task and the environment .. 21
2.2.2. PSO Methodology .. 22
2.2.3. DRL methodology .. 23
2.2.4. Results and discussion ... 24

2.3. Conclusion of comparative analysis.. 28

3. ADVANCING DRL FOR SRS : INNOVATIVE ENHANCEMENT TECHNIQUES 30
3.1. Introduction to Curriculum Learning .. 32

3.1.1. PPO with CL for individual robots .. 33
3.1.2. Convergence efficiency .. 35
3.1.3. Robot’s path planning .. 37
3.1.4. Generalization ... 38
3.1.5. PPO with CL for swarm robots.. 39

3.2. New Hybrid Modular Design with DRL and PSO ... 42

3.2.1. Results and performance analysis .. 46
3.3. Conclusion of Proposed Enhancement Techniques... 50

4. REWARD STRUCTURES: IMPLICATIONS FOR BEHAVIOR OF SR 52
4.1. Scales reward in Shaping and Sparse methods ... 53

4.2. Inverse DRL for Swarm Reward Recovery .. 57

4.2.1. Introduction to IRL .. 57

CONTENTS

II

4.2.2. Objective functions, reward functions, and collective behaviors ... 58
4.2.3. Proposed IRL-RL model .. 60
4.2.4. Results and discussion ... 63

4.3. Conclusion of Reward Methods in DRL for Swarm Robotics ... 68

THESES – NEW SCIENTIFIC RESULTS ... 69

ACKNOWLEDGMENTS ... 71

REFERENCES ... 72

LIST OF PUBLICATIONS RELATED TO THE TOPIC OF THE RESEARCH FIELD 79

SUPERVISOR’S RECOMMENDATION

III

SUPERVISOR’S RECOMMENDATIONS

Date 22/08/2024

Alaa Iskandar is a Syrian PhD candidate specializing in mechatronics engineering. During his

M.Sc. studies, he focused on multi-agent systems as a form of distributed artificial intelligence to

manage micro-electrical grids. He commenced his doctoral studies at the University of Miskolc in

the autumn of 2020 under the Stipendium Hungaricum scholarship program.

Alaa has consistently demonstrated academic excellence, successfully passing all his examinations

and actively engaging in scientific research within the field of swarm robotics. His research

contributions exemplify his work on tasks such as the "foraging task" using swarm robots,

showcasing his ability to apply advanced concepts to practical challenges.

Alaa Iskandar is an exceptionally dedicated researcher. He has authored eight scientific

publications, five of which are high-quality articles published in Scopus-indexed journals, all co-

authored with his supervisor. Additionally, he has frequently presented his work at national and

international scientific conferences, further highlighting his commitment to disseminating

knowledge and contributing to the scientific community.

The most significant contribution of Alaa’s research lies in developing novel models for swarm

robotics systems. His work includes the introduction of curriculum learning integrated with

reinforcement learning to enhance the generalization of these systems. Furthermore, he has

developed a hybrid model for foraging behavior that combines behavioral design with automatic

design methods, such as particle swarm optimization and reinforcement learning, to leverage the

strengths of both approaches. Additionally, he has proposed a continuous inverse reinforcement

learning framework to address the diverse behaviors within swarm robotics systems.

In light of these achievements, I, Dr. Béla Kovács, Associate Professor and supervisor of Alaa

Iskandar, consider his PhD studies highly successful and commend his contributions to

mechatronics and swarm robotics.

Supervisor:
Dr. Béla Kovács

LIST OF SYMBOLS AND ABBREVIATIONS

IV

LIST OF SYMBOLS AND ABBREVIATIONS

GREEK LETTERS

𝛼𝑐𝑢𝑟𝑟𝑒𝑛𝑡 The angle between the robot and the nest with [0,2π] (rad).

𝛼, 𝛽 Control the influence of the pheromone trail and heuristic information.

𝛾 The discount factor.

∆𝐷 The difference between the current state and the previous state.

𝜖 A hyperparameter, typically small (e.g., 0.1 or 0.2), determines the range

within which the ratio 𝑟𝑡(𝜃) is allowed to vary without being clipped.

𝜏 The trajectories (a sequence of states and actions) in the dataset K.

ʎ𝑖𝑗(𝑡) The pheromone level on the path from node i to node j at time t.

𝜌 The evaporation rate, 0 < 𝜌 < 1.

∆ʎ𝑖𝑗(𝑡) The amount of pheromone deposited by the ants.

𝜂𝑖𝑙 The heuristic value (e.g., the inverse of distance).

𝜃𝑖(𝑡 + ∆𝑡) The new direction of particle i at time 𝑡 + ∆𝑡 (rad).

𝜉𝑖(𝑡) A random variable with uniform distribution in the interval [−1,1].

𝜔 Weight.

𝜋 The policy.

𝜋∗ The optimal policy.

𝜋𝑖 The policy of robot (agent) i, mapping states to actions.

𝜋𝐸 The expert policy that generates trajectories τ from the expert.

𝜋𝜃(𝑠𝑡|𝑎𝑡) The policy function, parameterized by θ, gives the probability of taking

action 𝑎𝑡 at state 𝑠𝑡.

Ф(𝑠́), Ф(𝑠) The potential functions that assign a value to the current and subsequent

states, respectively.

∅(𝑆) The feature vector that describes the state S.

LIST OF SYMBOLS AND ABBREVIATIONS

V

LATIN LETTERS

𝐴 Set of actions.

𝐴̂𝑡 The advantage estimator at time t.

𝑎𝑎𝑙𝑖𝑔𝑛 The acceleration due to alignment.

𝑎𝑐𝑜ℎ the acceleration due to cohesion.

𝑎𝑐𝑖 The resultant acceleration for Boid i.

𝑎𝑠𝑒𝑝 The acceleration due to separation.

𝑐1 Cognitive learning factor.

𝑐2 Social learning factor.

𝑑𝑐𝑢𝑟𝑟𝑒𝑛𝑡 The normalized distance between the robot and the nest at time t with

[0,3] (m).

Dc This discriminator distinguishes between trajectories generated by the

expert policy and those generated by the policy G.

𝐷𝑟𝑔 Goal Distance (Distance between robot and target)

𝑑𝑝𝑟𝑒𝑣 The normalized distance between the robot and the nest at time t-1 with

[0,3](m).

𝑑𝑟𝑜𝑏𝑜𝑡𝑠 Distance between two robots when they present around a big box(m).

𝑑𝑖𝑠𝑟𝑒𝑤𝑎𝑟𝑑 Distance reward is when two robots are present around a big box within a

certain distance (m).

E Efficiency.

𝐹𝑖𝑛𝑑𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 The threshold to consider the robot is inside the nest.

𝐹𝑖𝑛𝑑𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠𝑒𝑎𝑟𝑐ℎ𝑖𝑛𝑔 The threshold value of the light sensor where the box

is found. The normalized readings sensors are more than 0.85, meaning the

robot reaches the box boundary. It is defined experimentally.

G The Return.

𝐽(𝜃) The objective function J concerning the policy parameters θ.

𝜅 The noise strength.

K Data set of trajectories.

𝐿𝑘 The length of the tour performed by ant k.

𝐿𝑆0
(𝑡)

, 𝐿𝑆7
(𝑡)

 The normalized current readings of light sensors 0 and 7,

respectively, at time t.

𝐿𝑆0
(𝑡−1)

, 𝐿𝑆7
(𝑡−1)

 The previous normalized readings of light sensors 0 and 7,

respectively, at time t −1.

ℳ𝑖 The set of neighbors of particle i within radius R.

LIST OF SYMBOLS AND ABBREVIATIONS

VI

𝑀𝑎𝑥𝑂𝑢𝑡𝑝𝑢𝑡 The upper value in the output range of ∅(s).

𝑀𝑖𝑛𝑂𝑢𝑡𝑝𝑢𝑡 The lower value in the output range of ∅(s).

𝑀𝑎𝑥𝑉𝑎𝑙𝑢𝑒 The upper value is in the raw range of states.

𝑀𝑖𝑛𝑉𝑎𝑙𝑢𝑒 The lower value in the raw range of states.

N Number of retrieved items (boxes)

𝒩𝑖
𝑘

The set of nodes that ant k can visit from node i.

|neighbors| The number of Boids neighbors.

𝑃 The Penalty.

𝑥𝑗 , 𝑥𝑖 The positions of particle j and its neighbor i.

𝑥𝑖(𝑡) The position of particle i at time t.

𝑃𝑖,𝑡
𝑑 The best fitness value particle has at the t moment.

𝑝𝑔
𝑑

𝑃𝑟𝑜𝑏𝑖𝑗
𝑘 (𝑡)

The best fitness value among the swarm.

Probability of ant k moving from node i to node j.

𝑐𝑜𝑛𝑠𝑡 A constant.

𝑄(𝑠, 𝑎) The Q-value for taking action a at state s.

𝑅(𝑠𝑖, 𝑎𝑖) The reward function evaluates the performance of the agent i based on its

actions 𝑎𝑖 and the state of the environment 𝑠𝑖.

𝑟𝑡(𝜃) The probability ratio of the new policy over the old policy.

𝑟𝑏𝑜𝑥(𝑡) The additional reward is when the robot finds the box. The common

approach to choose rewards values like1.1 are defined experimentally to fit

the environment.

𝑟𝑛𝑒𝑠𝑡 The obtained reward is when the robot reaches the nest.

𝑅(𝑠, 𝑎, 𝑠́) The received reward for moving from state 𝑠 to 𝑠́ when action a is chosen.

𝑅(𝑆) This represents the reward associated with a particular state S.

𝑅𝑒𝑥𝑝𝑒𝑟𝑡 The output of the reward neural network for states from the expert.

𝑅𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 The output of the reward neural network for collected states from training

process.

𝑆 Set of states.

𝑉 Linear velocity.

𝑣𝑖(𝑡) The velocity of particle i at time t.

LIST OF SYMBOLS AND ABBREVIATIONS

VII

𝑣𝑖,𝑡+1
𝑑 The velocity of particle i at t + 1 in d dimensions.

𝑣𝑖,𝑡
𝑑 The velocity of particle i at t (m/s).

𝑣𝑗 , 𝑣𝑖 The velocities of particle j and its neighbor i.

𝑣0 the constant speed of the particles.

𝑉(𝑠𝑡) The value function at state 𝑠𝑡.

𝑉𝑟 Avoiding speed for the right wheel.

𝑉𝑙 Avoiding speed for the left wheel.

𝑣𝑟𝑖𝑔ℎ𝑡−𝑚𝑜𝑡𝑜𝑟 Speeds of the right motor(rad/s).

𝑣𝑙𝑒𝑓𝑡−𝑚𝑜𝑡𝑜𝑟 Speeds of the left motor(rad/s).

𝑊 Turning velocity.

𝑤𝑠𝑒𝑝, 𝑤𝑎𝑙𝑖𝑔𝑛, 𝑤𝑐𝑜ℎ Weights for separation, alignment, and cohesion components.

𝑥𝑖,𝑡
𝑑 The position of PSO’s particle i at the t moment.

𝑥𝑟, 𝑦𝑟 The Cartesian coordinates x, y of the robot

𝑥𝑔, 𝑦𝑔 The Cartesian coordinates x, y of the goal

SUBSCRIPTS

𝑎𝑙𝑖𝑔𝑛 Alignment behavior.

coh Cohesion behavior.

sep Separation behavior.

box The items that the foraging swarm should collect.

nest To indicate the target of the foraging swarm.

prev The previous position of the robot.

Current The current position of the robot.

t Time.

Expert The swarm or robot that has the solution to the problem.

Training The swarm or robot trains to collect the experience.

THESES – OVERVIEW OF SWARM ROBOTICS

8

1. INTRODUCTION

1.1. Overview of Swarm Robotics Systems

Swarm robotics systems (SRs) are a specialized field that focuses on developing models

inspired by the decentralized decision-making processes of natural entities, such as insects, fish,

herds, and others, to mimic their social behaviors [1],[2]. They rely on the dynamics of autonomous

robots collaborating to perform complex tasks without centralized control architecture. So, SR

models depend on a distributed approach to tackle the problems where each robot in the swarm

contributes to generating collective behavior. They are seen as groups consisting of small and

simple robots. These robots have limited capabilities and local perception of their environment.

Each robot in the group is autonomous and makes its own decisions based on its local knowledge

by interacting with other robots and the environment to complete designated tasks by the entire

swarm. Based on the hardware structure, there are two categories: homogeneous, where robots are

structurally similar, and heterogeneous, where differences in design are present. Homogeneous

SRs are widely used due to their simplicity in design and ease of implementation. They consist of

identical robots, making them easier to manage and requiring less complex programming and

maintenance. Heterogeneous swarms are less common even though they offer diverse capabilities

and task specialization, allowing them to handle more complex and varied tasks [3].

The principles underlying these systems have given rise to the field of swarm engineering,

which is related to creating systems of simple robots that work together in known or unknown

environments to achieve complex objectives through decentralized control, emergent collective

behavior, and effective local interactions. It involves a systematic process that starts with defining

the problem and analyzing requirements, followed by designing the individual robots and their

behaviors. Then, simulation and modeling are used to test and refine the system, as well as

prototyping and iterative improvements. Finally, the system is deployed, monitored, and

maintained, with continuous data collection to optimize performance. The produced SRs have

several advantageous characteristics, including scalability, flexibility, and adaptability. Scalability

ensures that changes in the SR occur without significant changes to the system's functionality.

Flexibility allows the SR to adapt to a wide range of tasks because each robot operates based on

simple local rules and interactions, and the collective behavior can shift dynamically to meet new

objectives. Adaptability is a key strength, as SRs can modify their strategies in response to

environmental or task requirements changes. This allows them to remain effective in unpredictable

scenarios, maintaining their performance and reliability [4].

THESES – OVERVIEW OF SWARM ROBOTICS

9

1.2. Mathematical models of Swarm Robotics systems

Developing mathematical models of SRs has been inspired by observing the natural systems

and replicating them with artificial ones with decentralized structures to represent the interaction

among robots and the environment as it is called ’collective behavior.’ Understanding and

modeling this collective behavior can be approached from microscopic and macroscopic

perspectives. The microscopic perspective focuses on the behavior and interactions of individual

robots within the swarm, where each robot operates based on simple, predefined rules that select

its actions in response to its immediate changes in the environment, like the angle of rotation,

linear speeds, and others. In contrast, the macroscopic perspective focuses on the behavior of the

entire swarm and the emergent properties that arise from local interactions like flocking, foraging

aggregation, and others [5].

Mathematical models often build upon each other, enhancing performance and adaptability.

The foundational Boids model by Craig Reynolds (1986) introduced simple rules for decentralized

control and emergent behavior [6]. This concept influenced Particle Swarm Optimization (PSO)

by James Kennedy and Russell Eberhart (1995), an optimization algorithm inspired by social

behaviors [7]. Similarly, Ant Colony Optimization (ACO) by Marco Dorigo (1992) used

pheromone trails to solve combinatorial problems, demonstrating the power of indirect

communication [8]. Self-propelled particle (SPP) models by Tamás Vicsek (1995) further explored

local interaction-based collective motion [9]. Meanwhile, behavior-based models by Rodney

Brooks (1986) emphasize simple, reactive behaviors [10]. Multi-agent systems (MAS) provided a

framework for modeling interactions and coordination among autonomous agents [11], where

reinforcement learning (RL) brought adaptability and learning through trial and error to generate

the collective behavior of SRs modeled by MAS [12],[13],[14]. Each model has evolved by

incorporating insights from its predecessors, leading to increasingly sophisticated swarm control

and optimization approaches.

1.2.1. Boids Model

This model simulates flocking behavior using three simple rules applied to each robot (boid i).

The overall movement of each boid is determined by combining these rules. The rules are

separation (avoiding crowding 𝒂𝒔𝒆𝒑) as in equation (1.1), alignment 𝒂𝒂𝒍𝒊𝒈𝒏 (steering towards the

average direction of neighbors), equation (1.2), and cohesion 𝒂𝒄𝒐𝒉 (moving towards the average

position of neighbors), equation (1.3). In total, the resultant acceleration for each boid i 𝒂𝒄𝒊 is

computed as in equation (1.4) to update the position x and velocity v as in equations (1.5) and (1.6)

"In the following equations, vector quantities are represented using boldface notation , while scalar

quantities are represented using regular italic notation. This convention is used consistently

throughout the thesis."

THESES – OVERVIEW OF SWARM ROBOTICS

10

𝒂𝒔𝒆𝒑 = − ∑

𝒙𝒋 − 𝒙𝒊

|𝒙𝒋 − 𝒙𝒊|2
𝑗∈𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠

(1.1)

𝒂𝒂𝒍𝒊𝒈𝒏 =

1

|𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠|
∑ 𝒗𝒋 − 𝒗𝒊

𝑗∈𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠

(1.2)

𝒂𝒄𝒐𝒉 =

1

|𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠|
∑ 𝒙𝒋 − 𝒙𝒊

𝑗∈𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠

 (1.3)

 𝒂𝒄𝒊 = 𝑤𝑠𝑒𝑝𝒂𝒔𝒆𝒑 + 𝑤𝑎𝑙𝑖𝑔𝑛𝒂𝒂𝒍𝒊𝒈𝒏 + 𝑤𝑐𝑜ℎ𝒂𝒄𝒐𝒉 (1.4)

 𝒗𝒊(𝑡 + 1) = 𝒗𝒊(𝑡) + 𝒂𝒄𝒊 (1.5)

 𝒙𝒊(𝑡 + 1) = 𝒙𝒊(𝑡) + 𝒗𝒊(𝑡 + 1) (1.6)

1.2.2. ACO model

 Ants use pheromones ʎ to communicate and coordinate activities like foraging, particularly

finding the shortest paths from their nest to a food source and back. ACO is primarily used to solve

combinatorial optimization problems such as the Traveling Salesman Problem (TSP) and vehicle

routing. Pheromone evaporation decreases the pheromone level to avoid unlimited accumulation,

as in equation (1.7).

 ʎ𝑖𝑗(𝑡 + 1) = (1 − 𝜌)ʎ𝑖𝑗(𝑡) + ∆ʎ𝑖𝑗(𝑡) (1.7)

 Each ant deposits pheromones on the paths it uses. The pheromone deposit ∆ʎ𝑖𝑗 is calculated

based on the quality of the solutions found by the ants. That is demonstrated in both of equations

(1.8) which accumulates pheromone contributions from all m ants that have traveled on edge (i,j),

and (1.9) defines how much pheromone each ant deposits on an edge. The amount depends on 𝐿𝑘

(tour length of ant k).

∆ʎ𝑖𝑗(𝑡) = ∑ ∆ʎ𝑖𝑗

𝑘

𝑚

𝑘=1

(1.8)

∆ʎ𝑖𝑗
𝑘 = {

𝑐𝑜𝑛𝑠𝑡

𝐿𝑘
 𝑖𝑓 𝑎𝑛𝑡 𝑘 𝑢𝑠𝑒𝑠 𝑒𝑑𝑔𝑒(𝑖, 𝑗) 𝑖𝑛 𝑖𝑡𝑠 𝑡𝑜𝑢𝑟

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(1.9)

 The optimal const value in ACO depends on the problem scale; a common choice is const ≈

𝐿𝑏𝑒𝑠𝑡, with experimental tuning recommended for best results.

An ant 𝑘 at node 𝑖 chooses the next node to move to with a probability 𝑃𝑟𝑜𝑏𝑖𝑗
𝑘 (𝑡) based on the

pheromone level and the heuristic value, equation (1.10).

THESES – OVERVIEW OF SWARM ROBOTICS

11

𝑃𝑟𝑜𝑏𝑖𝑗
𝑘 (𝑡) =

[ʎ𝑖𝑗(𝑡)]
𝛼

[𝜂𝑖𝑗]
𝛽

∑ [ʎ𝑖𝑙(𝑡)]𝛼[𝜂𝑖𝑙]𝛽
𝑙𝜖𝒩𝑖

𝑘

(1.10)

1.2.3. SPP Model

 In the SPP model, each particle moves at a constant speed but continuously adjusts its direction

based on the average direction of its neighbors within a certain interaction radius. This model is

beneficial for understanding how simple local interactions can lead to complex global behaviors

such as flocking, swarming, and schooling. Each agent i updates its new position 𝒙𝒊(𝒕 + ∆𝒕) based

on its current velocity 𝒗𝒊(𝑡), adhering to the equation (1.11):

 𝒙𝒊(𝑡 + ∆𝑡) = 𝒙𝒊(𝑡) + 𝒗𝒊(𝑡)∆𝑡 (1.11)

 This ensures that each agent moves in the direction dictated by its velocity at each time step. The

velocity of each agent is influenced by the average direction of its neighbors within a certain radius,

with added randomness to simulate real-world perturbations. The new direction 𝜃𝑖(𝑡 + ∆𝑡) for

each agent is determined by equation (1.12):

𝜃𝑖(𝑡 + ∆𝑡) = arg (∑ 𝒗𝒋(𝑡)

𝑗∈ℳ𝑖

) + 𝜅𝜉𝑖(𝑡)

(1.12)

 After determining the new direction, the velocity vector is normalized to maintain a constant

speed 𝑣0 as in equation (1.13).

𝒗𝒊(𝑡 + ∆𝑡) = 𝑣0 (

𝑐𝑜𝑠(𝜃𝑖(𝑡 + 1))

𝑠𝑖𝑛(𝜃𝑖(𝑡 + 1))
)

(1.13)

1.2.4. Behavior-Based Models

 These models are inspired by biological systems, where complex behaviors emerge from the

interaction of simpler behavioral modules. Behaviors are essential building blocks of the system,

each representing a specific action or response to an event. For example, behaviors can include

avoiding obstacles, following a path, or seeking a goal. Behaviors are typically reactive, meaning

they respond directly to sensor inputs without the need for complex computation. Then, behavior

arbitration is defined as a mechanism for resolving conflicts between competing behaviors,

ensuring that the most appropriate behavior is executed at any given time. Complex actions and

responses emerge from the interaction and combination of simpler behaviors.

So, each robot has a set of behaviors, 𝐵 = {𝑏1, 𝑏2, 𝑏3 … . . , 𝑏𝑛} where each behavior 𝑏𝑖 is a function

that maps states S, which here represented as sensor inputs to actions A represented as actuator

outputs as 𝑏𝑖 ∶ 𝑆 → 𝐴.

 Each behavior 𝑏𝑖 can be activated based on specific conditions or triggers. Let 𝐶𝑖 represent the

condition for activating behavior 𝑏𝑖. 𝐶𝑖 ∶ 𝑆 → {0,1}, Where 𝐶𝑖(𝑆) = 1 if the condition for behavior

𝑏𝑖 is met, given the sensor input 𝑆, and 0 otherwise. When multiple behaviors are triggered

simultaneously, an arbitration mechanism decides which behavior to execute. This can be done

THESES – OVERVIEW OF SWARM ROBOTICS

12

using fixed priority, dynamic priority, or a combination of behaviors through weighted sums, as

in equation (1.14).

 𝐴 = ∑ 𝑤𝑖𝑏𝑖(𝑠)𝑖 (1.14)

 The final action is a weighted sum of the activated behaviors, ensuring that the contributions of

all active behaviors are normalized and combined to produce the final action, equation (1.15).

𝐴 =

∑ 𝜔𝑖𝑏𝑖(𝑠)𝑖

∑ 𝜔𝑖𝑖

(1.15)

1.2.5. PSO Model

 It is a computational method that optimizes a problem by iteratively improving a candidate

solution about a given quality measure. It mimics the social behavior of birds flocking or fish

schooling. The collection of particles (robots) moves through the solution space (environment),

adjusting their positions based on their updated velocities, equation (1.16). The particles update

their velocities by considering three key factors: their personal best position, the best-known

position of the entire swarm, and a current position. This update process is mathematically

represented in Equation (1.17). Figure 1.1 visually depicts these vector components, illustrating

how each contributes to the overall velocity adjustment, guiding the particles toward optimal

solutions."

 𝒗𝒊,𝒕+𝟏
𝒅 = 𝜔 ∗ 𝒗𝒊,𝒕

𝒅 + 𝑐1 ∗ 𝑟𝑎𝑛𝑑𝑖 ∗ (𝑃𝑖,𝑡
𝑑 − 𝒙𝒊,𝒕

𝒅) + 𝑐2 ∗ 𝑟𝑎𝑛𝑑𝑖 ∗ (𝑝𝑔
𝑑 − 𝒙𝒊,𝒕

𝒅) (1.16)

 𝒙𝒊,𝒕+𝟏
𝒅 = 𝒙𝒊,𝒕

𝒅 + 𝒗𝒊,𝒕+𝟏
𝒅 (1.17)

Figure 1.1. PSO illustration – Interia vector is 𝜔 ∗ 𝑣𝑖,𝑡
𝑑 , and Personal best

vector is 𝑐1 ∗ 𝑟𝑎𝑛𝑑𝑖 ∗ (𝑃𝑖,𝑡
𝑑 − 𝑥𝑖,𝑡

𝑑). Then, the social vector is 𝑐2 ∗ 𝑟𝑎𝑛𝑑𝑖 ∗ (𝑝𝑔
𝑑 − 𝑥𝑖,𝑡

𝑑).

THESES – OVERVIEW OF SWARM ROBOTICS

13

1.2.6. MAS Model

 Multi-agent systems provide a robust framework for modeling the behavior and interactions of

multiple autonomous robots. The mathematical model of MAS includes representing agents

(robots), their states, actions, policies, interactions, and rewards. By optimizing individual and

collective policies by reinforcement learning (RL), MAS can achieve complex tasks through local

interactions and cooperation. Each robot 𝑖 in the system is represented by its state 𝑠𝑖, action 𝑎𝑖,

and policy 𝜋𝑖, where 𝑠𝑖(𝑡) 𝜖 𝑆𝑖 , 𝑎𝑖(𝑡) 𝜖 𝐴𝑖 , 𝜋𝑖: 𝑠𝑖 → 𝑎𝑖.

 Reward and objective function: 𝑅(𝑠𝑖, 𝑎𝑖) = 𝑟𝑖 (𝑠𝑖,𝑡, 𝑎𝑖,𝑡, 𝑠𝑖,𝑡+1).

Policy optimization: Robots aim to optimize their policies to maximize their expected cumulative

reward, as in equation (1.18). This can be done using various reinforcement learning approaches.

𝜋𝑖

∗ = arg max 𝐸 [∑ 𝛾𝑡𝑅𝑖(𝑠𝑡, 𝑎𝑡)

∞

𝑡=0

]
(1.18)

 While approaches like Boids, ACO, and behavior-based models have significantly contributed

to the field of SRs, they are less popular today compared to RL and PSO. The Boids model

primarily focuses on visual simulations and is less suited for solving optimization problems or

dynamic task allocation. ACO is effective for solving combinatorial optimization problems like

routing and scheduling. Despite its strengths, ACO tends to be computationally intensive and has

slower convergence than PSO, making it more specialized for static optimization tasks than

dynamic ones. Behavior-based models are simple and effective for implementing reactive

behaviors and local interactions. Nevertheless, they lack flexibility and adaptability, struggling

with complex and dynamic tasks that require learning and optimization over time. SPP model is

suitable for studying collective motion and emergent behaviors, but it remains primarily theoretical

and less practical for real-world applications. In contrast, Reinforcement Learning (RL) is highly

adaptable and can learn and adjust to complex and dynamic environments, continuously improving

performance through trial and error. Its versatility makes it suitable for various applications,

including navigation, task allocation, and coordination.

1.3. Reinforcement learning

 RL is a subfield of machine learning concerned with training agents through interacting with

their environments rather than using labeled data as in supervised learning. This involves a

sequential decision-making process where the chosen actions are refined over time based on a

feedback signal from the environment in the form of a reward. The agent seeks to take action in

an environment that maximizes cumulative reward. So, the agent's primary goal is to learn a policy

that maximizes the cumulative reward over time. In RL, an agent interacts with its environment

by taking actions based on a policy, a strategy, which is a rule that maps states of the environment

to actions. The environment responds to these actions and provides feedback through rewards and

new states. The agent's objective is to learn a policy that maximizes the long-term sum of rewards

THESES – OVERVIEW OF SWARM ROBOTICS

14

[16]. The scope of RL extends across various domains and applications, driven by its ability to

handle complex decision-making problems. Here are the key areas within the scope of RL:

1.3.1. Markov Decision Processes (MDPs)

 MDPs are fundamental to the RL approach. An MDP provides a mathematical framework for

modeling sequential decision-making. Formally, an MDP is defined by the tuple of (𝑆, 𝐴, 𝑃, 𝑅, 𝛾).

State space 𝑆 represents the set of states of environment that the agent encounters. Actions space

𝐴 is the set of actions the agent can perform. 𝑃 is the function of the probabilities that describe the

environment's dynamic. 𝑅 is the received reward for each selected action that moves the agent to

the next state under probability 𝑃. The discount factor 𝛾 is usually between 0 and 1 and controls

the importance of received rewards over time. So the problem of RL is formed as MDP to

determine the policy 𝜋 that chooses the action 𝑎 for each state 𝑠 that maximizes the cumulative

received rewards, often termed as Return G as in equation (1.19). The Q- value represents the

expected return of taking action a in state s, equation (1.20):

𝐺 = 𝐸 [∑ 𝛾𝑡

∞

𝑡=0
𝑅(𝑠𝑡, 𝑎𝑡)]

(1.19)

 𝑄(𝑠, 𝑎) = 𝐸[𝐺𝑡|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎] (1.20)

 Finding the optimal policy 𝜋∗ involves maximizing 𝐺. Once the Q-values have been learned, the

optimal policy 𝜋∗can be derived from them. The optimal policy selects the action with the highest

Q-value for each state, equation (1.21).

 𝜋∗(𝑠) = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑎

𝑄(𝑠, 𝑎) (1.21)

1.3.2. Exploration vs. Exploitation

 Learning the optimal policy requires maximizing G. So, the agent always seeks to select the

actions that maximize the received rewards. In many situations, the agent may encounter low

rewards in current states, but these states lead to other states with high rewards. So, it is better to

give a probability ε to explore the environment more than exploit it to gain high rewards. This

problem is termed an Exploration-Explotation dilemma. The ε-greedy algorithm is selected in all

models in this dissertation, which is illustrated in algorithm 1 [16]:

Algorithm 1: 𝜀 − 𝐺𝑟𝑒𝑒𝑑𝑦 pseudocode.

𝑰𝒏𝒊𝒕𝒊𝒂𝒍𝒊𝒛𝒆 𝑸(𝒔, 𝒂) 𝒂𝒓𝒃𝒊𝒕𝒓𝒂𝒓𝒊𝒍𝒚 𝒇𝒐𝒓 𝒂𝒍𝒍 𝒔𝒕𝒂𝒕𝒆 − 𝒂𝒄𝒕𝒊𝒐𝒏 𝒑𝒂𝒊𝒓𝒔

𝑺𝒆𝒕 𝜺

𝒘𝒉𝒊𝒍𝒆 𝒏𝒐𝒕 𝒕𝒆𝒓𝒎𝒊𝒏𝒂𝒍 𝒔𝒕𝒂𝒕𝒆: 𝑮𝒆𝒏𝒆𝒓𝒂𝒕𝒆 𝒂 𝒓𝒂𝒏𝒅𝒐𝒎 𝒏𝒖𝒎𝒃𝒆𝒓 𝒃𝒆𝒕𝒘𝒆𝒆𝒏 𝟎 𝒂𝒏𝒅 𝟏

𝒊𝒇 𝒓𝒂𝒏𝒅𝒐𝒎 𝒏𝒖𝒎𝒃𝒆𝒓 < 𝜺:

𝑬𝒙𝒑𝒍𝒐𝒓𝒂𝒕𝒊𝒐𝒏: 𝒄𝒉𝒐𝒐𝒔𝒆 𝒂 𝒓𝒂𝒏𝒅𝒐𝒎 𝒂𝒄𝒕𝒊𝒐𝒏

𝒂 = 𝒓𝒂𝒏𝒅𝒐𝒎 𝒂𝒄𝒕𝒊𝒐𝒏 𝒇𝒓𝒐𝒎 𝒔𝒆𝒕 𝒐𝒇 𝒑𝒐𝒔𝒔𝒊𝒃𝒍𝒆 𝒂𝒄𝒕𝒊𝒐𝒏𝒔

𝒆𝒍𝒔𝒆:

𝑬𝒙𝒑𝒍𝒐𝒊𝒕𝒂𝒕𝒊𝒐𝒏: 𝒄𝒉𝒐𝒐𝒔𝒆 𝒕𝒉𝒆 𝒂𝒄𝒕𝒊𝒐𝒏 𝒘𝒊𝒕𝒉 𝒕𝒉𝒆 𝒉𝒊𝒈𝒉𝒆𝒔𝒕 𝑸 𝒗𝒂𝒍𝒖𝒆
𝒂 = 𝒂𝒄𝒕𝒊𝒐𝒏 𝒘𝒊𝒕𝒉 𝒉𝒊𝒈𝒉𝒆𝒔𝒕 𝑸(𝒔, 𝒂)

THESES – OVERVIEW OF SWARM ROBOTICS

15

1.3.3. Model-Free and Model-Based Approaches

 Models-based RL uses a pre-defined environment model to predict future states and rewards,

enabling efficient learning through planning and simulation. Examples include Value Iteration,

Policy Iteration, and Model-Based Dyna-Q [16]. This approach is sample-efficient but

computationally intensive. If the environment is unknown, there is no way to create a model to

determine 𝑃. In this case, model-free RL methods, such as Q-learning [17] and SARSA [18], do

not require a model of the environment because they learn optimal policies directly from

interactions without explicitly estimating the transition probabilities 𝑃. They allow the learning

process to be simplified, computational requirements reduced, and the learning process adapted

more quickly to complex and dynamic environments. RL methods have become more efficient

and have less computations by incorporating them with deep learning techniques [19]. Moreover,

deep learning introduces new methods for RL, which is termed deep RL. Instead of depending on

Q-values like 𝑄(𝑠, 𝑎) to obtain the optimal policy, which is called value-based methods, neural

networks have been employed to learn the optimal policy directly, such as Soft Actor-Critic (SAC)

[20], Trust Region Policy Optimization (TRPO) [21], Deep Deterministic Policy Gradient (DDPG)

[22]. For instance, DDPG is an actor-critic algorithm designed for continuous action spaces. It

learns an actor network to select actions and a critic network to estimate the value of the chosen

actions. Proximal Policy Optimization (PPO) is also based on actor-critic and policy gradient

methods that optimize the objective function by clipping the policy update. It is designed to be

computationally efficient and stable [23]. Figure 2 is an example of classification RL algorithms.

Figure 1.2 RL algorithms diagram.

1.3.4. Why PPO for robots domain

 To select the RL algorithm for robots, particularly in the context of SRs, several factors need

to be considered, including the complexity of the environment, the need for real-time decision-

making, computational resources, and the specific objectives of the task. There are many

algorithms like DQN, DDPG, TRPO, PPO, and others. Firstly PPO is a policy gradient method as

in equations (1.22), This equation represents the gradient ascent update rule for optimizing the

policy 𝜋𝜃. The gradient is computed using log-probabilities, making it efficient for policy updates,

THESES – OVERVIEW OF SWARM ROBOTICS

16

and 𝑐𝑙𝑖𝑝(𝑟𝑡(𝜃), 1 − 𝜖, 1 + 𝜖) restricts the update to be within a small range [1−ϵ,1+ϵ]. As a results,

that gives an advantage when it compares to other like TRPO for computational cost. While

𝐴̂𝑡 reducing variance and stabilizing training which given in (1.23).

Ensures the policy is updated efficiently, focusing only on beneficial changes.

∇𝜃𝐽(𝜃) = 𝐸𝑡[∇𝜃𝑙𝑜𝑔𝜋𝜃(𝑠𝑡|𝑎𝑡)𝐴̂𝑡]

𝐴̂𝑡 = 𝑄(𝑠𝑡, 𝑎𝑡) − 𝑉(𝑠𝑡)

(1.22)

(1.23)

 It optimizes the policy directly by using a clipped surrogate objective function, considered a

powerful tool for ensuring stability. This approach ensures stable and reliable policy updates,

making PPO highly effective in complex environments. PPO is suitable for continuous and discrete

action spaces, which benefits the diverse tasks encountered in SRs. The clipped surrogate objective

𝐿𝐶𝐿𝐼𝑃(𝜃) can be mathematically represented as equations (1.24),(1.25):

 𝐿𝐶𝐿𝐼𝑃(𝜃) = 𝐸𝑡[min (𝑟𝑡(𝜃)𝐴̂𝑡, 𝑐𝑙𝑖𝑝(𝑟𝑡(𝜃), 1 − 𝜖, 1 + 𝜖)𝐴̂𝑡] (1.24)

𝑟𝑡(𝜃) =

𝜋𝜃(𝑠𝑡|𝑎𝑡)

𝜋𝜃𝑜𝑙𝑑
(𝑠𝑡|𝑎𝑡)

(1.25)

This ratio compares the probability of taking action 𝑎𝑡 under the new policy 𝜋𝜃 versus the old

policy 𝜋𝜃𝑜𝑙𝑑
. If 𝑟𝑡(𝜃) >1, the new policy assigns a higher probability to action 𝑎𝑡 than before.

If 𝑟𝑡(𝜃) <1, the new policy assigns a lower probability to action 𝑎𝑡 .

While DQN is more straightforward and sample-efficient, it is limited to discrete action spaces,

which may not suffice for more complex robotic tasks. DDPG provides a deterministic policy

suited for continuous actions but suffers from lower sample efficiency and higher sensitivity to

hyperparameters, which were tested in our study. TRPO, like PPO, offers high stability but at the

cost of greater computational complexity and implementation difficulty. Several studies have

demonstrated the effectiveness of PPO in various robotics contexts [24], [25], [26], [27], including

SRs, where PPO shows its ability to manage continuous action spaces and provide stable

performance that has been highlighted in research [28], [29], [30].

1.4. Outline of the Thesis

 In Chapter 2, a new comparative study investigates two prominent methodologies, PSO and

DRL, to analyze the performance of a swarm of mobile robots through extensive experimentation.

The objective is to produce a navigation of collective behavior through unknown environments,

highlighting the strengths and weaknesses of each approach. Chapter 3 explores two enhancement

techniques for DRL. Firstly, it proposed a method for achieving collective navigation behavior in

a swarm of robots using DRL. It includes an enhanced PPO by utilizing curriculum learning. A

comparative analysis between the enhanced PPO, the original PPO, and the DDPG algorithm

highlights the strengths of the proposed enhancment. A novel hybrid approach with a modular

design (Behavior-Based Model) combining DRL and PSO is introduced to address dynamic

THESES – OVERVIEW OF SWARM ROBOTICS

17

foraging tasks characterized by non-static environments and objectives. Chapter 4 examines DRL's

reward formulation, focusing on using sparse and shaping rewards to optimize learning, then

developing a deep inverse RL model to uncover the reward structures that guide SR in achieving

tasks through demonstrations. The proposed model is tested under different collective behaviors

according to the required objectives like searching and navigation.

THESES – AUTOMATIC DESIGN METHODS

18

2. AUTOMATIC DESIGN METHODS

Automatic design methods refer to a set of computational techniques and algorithms that

autonomously generate efficient and effective collective behaviors of SRs without requiring

explicit human intervention for each step. These methods leverage various forms of artificial

intelligence, like machine learning and optimization algorithms, to automatically create, evaluate,

and refine robot behaviors based on required objectives.

2.1. A Survey on Automatic Design Methods

Researchers have investigated various design strategies and control mechanisms to generate the

collective behavior of SRs. The approaches are generally classified into two fields: behavior-based

design methods and automatic design methods [31].

Behavior-based design methods are based on modularization of robot behaviors into distinct

modules. Each module is produced by many actions based on sensor readings, like avoiding

obstacles, grabbing boxes, and others. Thus, the collective behavior is generated by interactions

and coordination among modules. These methods are considered simpler and easier to interpret

than automatic design approaches. However, coordinating and tunning many modules is

challenging, especially for complex tasks, because of potential conflicts between modules and

managing the interactions and dependencies between modules. Each module must work

harmoniously with others to achieve the desired collective behavior. At the same time, Automatic

design methods like RL, PSO, genetic algorithms (GA), ACO, and others are employed to generate

the collective behavior of SRs. They utilize machine learning approaches and optimization

algorithms to tune the parameters and policies that govern the behavior of individual robots within

a swarm [32], [33]. For example, evolutionary algorithms like genetic algorithms and PSO are

traditionally favored for fine-tuning robot behaviors by defined fitness functions, while RL is often

preferred for applications requiring continuous learning, adaptability, complex decision-making,

and dynamic exploration-exploitation balance [34].

2.1.1. PSO-Driven Solutions in SRs

 Using the PSO model to enhance the coordination and performance of SRs, particularly for

tasks like target search and navigation. Its strength lies in simplicity, effectiveness, and low

computational cost. , making it a practical choice for swarm-based applications.

 Many contributions have been carried out to enhance PSO's applicability in SR by adapting

various PSO versions to fit diverse contexts with mathematical refinements [34]. An asynchronous

THESES – AUTOMATIC DESIGN METHODS

19

PSO (APSO) version refines the basic model by updating the velocity and position of each particle

immediately after evaluating an individual particle's fitness without waiting for the entire swarm's

fitness evaluation. It ensures the adaptivity of the system to the limited knowledge of the

environment [36]. An Adapted PSO model is introduced as the modified version that is employed

in physical SRs for localization sources. This modification linked the parameters to the velocity

and acceleration of each robot. The physical properties of each robot, like the desired maximum

velocity and acceleration, and relating these to the inertia weight and the cognitive and social

coefficients via a state model [37]. Many studies incorporate artificial intelligence approaches like

fuzzy logic or neural networks to fine-tune and optimize PSO in swarm robotics. There are many

strategies to adapt PSO in SRs [38]. However, to overcome key challenges of PSO in swarm

robotics, such as path planning, collision avoidance, maintaining coordination as the swarm size

grows, and preventing congestion, it is essential to establish robust communication protocols.

2.1.2. RL-Driven Solutions in SRs

 Many improvements have been introduced to RL for SR applications [39]. For example, various

methods were compared, like Deep Q-Network (DQN), N-Step-Q Network (NSQ), and Double

DQN. All these methods were used to generate a navigation collective behavior of a proposed SR.

Then, based on them a combined version named Double N-step Q-Network (DNQ) was derived.

It showed a superior performance in convergence to the optimal policy [40]. Another architecture

was introduced with a hierarchical RL structure, one for the controller responsible for executing

the tasks and another for choosing the controller itself [41]. Defining the reward plays a vital role

in obtaining optimal swarm behavior. Sparse rewards with different values were used to navigate

an obstacle-environment. The aim was to clarify the importance of selected reward values in

swarm behavior. It showed that selecting high penalties makes the swarm focus on avoiding

obstacles rather than directed toward the goal [42].

 These contributions and others help us understand how to adapt RL in SR. They explored many

DRL architectures and reward formulations to optimize the swarm performance. However, many

challenges arose, especially in complex environments like random initialization of neural

networks, which led to extra time for the DRL algorithms to converge to the solution, Crucial

formulating and tuning of the reward function, exploration-exploitation dilemma, and others [43].

 Too many studies have deployed both PSO and RL in SR applications due to their effectiveness;

there is a relatively scarce comparative analysis between these two prominent methods. PSO and

Q-learning were compared for the multi-robot systems to avoid obstacles, this comparison was

limited to measuring the time of convergence where the findings showed that Q-learning with

continuous states is faster than PSO [44].

 Another comparative study explored three automatic methods: Bat Algorithm (BA), Grey Wolf

Optimizer (GWO), and PSO; PSO outperforms BA, and BA surpasses GWO [45]. There is a gap

in comparing the two main approaches, PSO and RL, in SRs. This gap is important because it

provides deeper insight into the best scenarios for each approach based on their theoretical

THESES – AUTOMATIC DESIGN METHODS

20

foundations. By comparing these methods, we can identify their strengths and weaknesses, helping

to determine the most effective algorithm for specific tasks.

Swarm intelligence algorithms have been extensively studied and developed for various

applications, including optimization, robotics, and distributed computing. Due to their

decentralized and adaptive nature, these algorithms are often modified or extended to enhance

performance in specific problem domains. According to the existing research, it is noticeable that

enhancements generally fall into three major categories: parameter modifications, algorithmic

combinations, and structural modifications. The effectiveness of each enhancement strategy

depends on the nature of the problem, the search space characteristics, environmental constraints,

and others.

1. Modifications Through Parameter Tuning

One of the most common approaches to enhancing swarm intelligence algorithms is through

parameter optimization, where RL techniques are used to dynamically adjust hyperparameters in

swarm algorithms. For instance, iSOMA-PPO (Self-Organizing Migrating Algorithm + PPO)

utilizes PPO to adjust the step size and migration patterns of the iSOMA algorithm, improving its

performance in complex optimization tasks [46]. Similarly, RL-LSOP (RL for Large-Scale

Optimization Problems) applies RL to fine-tune PSO parameters in high-dimensional search

spaces (D ≥ 500) [47]. These approaches allow swarm algorithms to become more adaptive and

self-tuning, improving their convergence speed and efficiency without requiring manual parameter

adjustments. However, these methods are primarily focused on global optimization tasks rather

than real-time multi-agent coordination, which is critical in SRs and other decentralized systems.

2. Modifications by Combining Multiple Algorithms

Another major trend in swarm intelligence research involves hybridizing multiple algorithms

to leverage their complementary strengths. This can be seen in PSO-GA (PSO + Genetic

Algorithm), where GA introduces evolutionary operators (crossover & mutation) that introduce

randomness and diversity, preventing premature convergence [48]. Similarly, ACO-PSO (Ant

Colony Optimization + PSO) integrates pheromone-based path selection from ACO with PSO's

velocity-based updates, enhancing performance in dynamic environments [49]. While these hybrid

approaches show significant performance improvements, they often introduce higher

computational complexity and may require domain-specific adaptation to be effectively deployed

in real-world applications.

3. Structural Modifications

Structural modifications focus on how individual agents interact and adapt over time. One such

approach is hierarchical swarm intelligence, where the swarm is divided into different levels of

decision-making, allowing for more scalable and coordinated behaviors. For example,

Hierarchical PSO (H-PSO) introduces leader-follower dynamics, where a subset of high-

performing agents guides the overall swarm [50], another example is my proposed foraging system

in chapter 3.

THESES – AUTOMATIC DESIGN METHODS

21

While numerous studies have explored modifications to swarm intelligence algorithms by

integrating RL techniques, most of these works focus primarily on optimizing algorithmic

parameters for efficiency rather than analyzing their impact on emergent collective behaviors in

swarm robotics. Many hybrid methods, such as iSOMA-PPO, RL-tuned PSO, and LRPSO, aim to

enhance the performance of PSO by adjusting its search strategies, but these studies do not

examine how such modifications affect swarm-level interactions, adaptability, or decision-making

in dynamic environments. A broad comparison across all swarm intelligence methods would be

neither effective nor logical, as the effectiveness of these algorithms is highly dependent on the

nature of the problem and the environment. In swarm robotics, collective behaviors such as

foraging and path planning are the key performance indicators rather than just convergence speed

or solution accuracy. Thus, a direct comparison between PSO and PPO is essential to understand

how each method contributes to swarm-level coordination and adaptability.

This research is one of the few that directly evaluates how PPO and PSO influence the collective

behavior of a swarm. Understanding their strengths and limitations in swarm robotic tasks is

crucial for designing structured control architectures that leverage the best of both approaches. By

focusing on collective behavior rather than algorithmic fine-tuning, this research fills a critical gap

in the literature, demonstrating why a comparative analysis between PSO and PPO is not just

relevant but necessary to advance SR research.

2.2. PSO vs. RL Methodologies in Swarm Navigation Behavior

 This section conducts a comparative analysis of PSO and RL methodologies in the context of

SRs. It primarily explores their effectiveness in generating navigational collective behavior. It

assesses SR's flexibility and adaptivity in the context of these algorithms, providing valuable

insights into the selection of control strategies for SR [51].

2.2.1. Defining the task and the environment

 The 3D Webots robot simulator implements the environment of the swarm robots [52], where

the E-puck mobile robot are chosen to create a homogenous swarm [53]. The Deepbots framework

integrates abstract PPO with the simulator[54]. The system is designed to enable collective

navigation behavior, guiding the robots to converge at a specified target position while avoiding

collisions. This behavior is tested across various environments, as depicted in Figure 2.1. The

testing areas have a square shape surrounded by four walls, with sizes of 1 × 1 𝑚2, 1.3 × 1.3 𝑚2,

and 1.6 × 1.6. Available in three different layouts: no obstacles, one obstacle, and two obstacles.

The E-puck robots are configured with a linear velocity range of [0, 0.25] 𝑚/𝑠 and an angular

velocity range of [−3.14, 3.14] 𝑟𝑎𝑑/𝑠, with their Infra-Red sensors having a range of [0, 0.04] 𝑚.

THESES – AUTOMATIC DESIGN METHODS

22

Figure 2.1. Environments for the navigation task.

2.2.2. PSO Methodology

 The PSO model described in equations (1.16) and (1.17) is adapted for solving a navigation task,

where each robot is treated as a particle. The particle update in the PSO model corresponds to the

path planning in SR. The navigation criterion for the robots is their fitness value. This value is

determined by the distance from each robot to the target. Robots exchange information about their

fitness values and current positions with one another. Robots' optimal personal and global positions

are selected based on the smallest fitness values. To direct a robot to its next position, the speeds

of its left and right motors 𝑣𝑙𝑒𝑓𝑡−𝑚𝑜𝑡𝑜𝑟 , 𝑣𝑟𝑖𝑔ℎ𝑡−𝑚𝑜𝑡𝑜𝑟 are adjusted by equations (2.1) and (2.2), the

process is detailed in Algorithm 2.

 𝑣𝑟𝑖𝑔ℎ𝑡−𝑚𝑜𝑡𝑜𝑟 = 𝑉 + 𝑊 + 𝑉𝑟 (2.2)

 𝑣𝑙𝑒𝑓𝑡−𝑚𝑜𝑡𝑜𝑟 = 𝑉 + 𝑊 + 𝑉𝑙 (2.3)

Algorithm 2: PSO model for the navigational task.

Initialize the environment and robots with positions and velocities

Define fitness function ← DISTANCE between the robot and the target

repeat

for each robot, do

Evaluate robot fitness using the fitness function

THESES – AUTOMATIC DESIGN METHODS

23

if current robot fitness is better than the previous best robot fitness, then

Update the robot's best position to the current position

end if

GET all robot's fitness and positions

Update global best position according to best robot fitness

end for

for each robot, do

Define w = 0.7, c1 = 2, c2 = 2

Update robot velocity using the equation:

v = w×v+c1×r1× (robot best−current position) +c2×r2× (global best−current position)

Update robot position using the equation:

position = position + velocity

Calculate the linear velocity V ← Distance to the new position

Calculate the turning velocity W ← Angle to the new position

Calculate the avoiding speed for each wheel V_l, V_r

Apply left motor speed ← V +W + V_l,

Apply the right motor speed ← V +W + V_r

end for

until the robot reaches the target

2.2.3. DRL methodology

 The MAS model described in section (1.2.6) is formulated as an MDP with the tuple (S, A, T,

R, γ). The state space 𝑆 = [𝐼𝑅 𝑠𝑒𝑛𝑠𝑜𝑟’𝑠 𝑟𝑒𝑎𝑑𝑖𝑛𝑔𝑠: 𝐿𝑆0 … , 𝐿𝑆7, 𝐷, 𝜃]. Where D is the distance

between the target and the robot, and 𝜃 is the angle between the robot and the target—action space

𝐴 = [𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑖𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑤𝑜 𝑚𝑜𝑡𝑜𝑟𝑠]. The transition function 𝑇 describes the dynamics of the

system. By using free models, there is no need to estimate it. Reward 𝑅: Shaping reward, as shown

in Equations (2.4), (2.5), and (2.6), is applied to leverage the experience during the path by

assessing the robot's current and previous positions at each time-step and employing a sparse

method to punish robots when they collide with obstacles. The discount factor γ is a value that

balances the importance of immediate rewards against future rewards.

 𝑃𝑒𝑛𝑎𝑙𝑡𝑦 = {
−0.001 𝑇ℎ𝑒𝑟𝑒 𝑎𝑟𝑒 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝐼𝑅 𝑠𝑒𝑛𝑠𝑜𝑟𝑠.

0 𝑇ℎ𝑒𝑟𝑒 𝑎𝑟𝑒 𝑛𝑜 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑠.

(2.4)

𝑅𝑒𝑤𝑎𝑟𝑑𝑡𝑎𝑟𝑔𝑒𝑡 = {

0.1 𝑇ℎ𝑒 𝑟𝑜𝑏𝑜𝑡 𝑟𝑒𝑎𝑐ℎ𝑒𝑠 𝑡ℎ𝑒 𝑡𝑎𝑟𝑔𝑒𝑡.
0 𝑇ℎ𝑒 𝑟𝑜𝑏𝑜𝑡 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑟𝑒𝑎𝑐ℎ 𝑡ℎ𝑒 𝑡𝑎𝑟𝑔𝑒𝑡.

(2.5)

 𝑅𝑒𝑤𝑎𝑟𝑑 = 𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 − 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 + 𝑃𝑒𝑛𝑎𝑙𝑡𝑦 + 𝑅𝑒𝑤𝑎𝑟𝑑𝑡𝑎𝑟𝑔𝑒𝑡 (2.6)

 The PPO Network, as in Figure 2.1, optimizes the policy by adjusting the weights to improve

the expected return 𝐺 while keeping the new policy not too far from the old policy. Both the actor

and the critic networks use fully connected layers with dimensions (10×64×64×2 for the actor and

10×64×64×1 for the critic with ReLU activation function). The actor part proposes actions as two

speeds based on the current state. The critic network evaluates the actions the actor takes by

THESES – AUTOMATIC DESIGN METHODS

24

computing the advantage, which indicates how much better an action is than the average. After

computing the initial actions, a Gaussian process is applied to refine these actions or to add

exploration noise. The hyperparameters of the PPO training process are presented in Table 2.1.

All mentioned hyperparameters for PPO in are chosen based on empirical testing and [53].

 Table 2.1: PPO hyperparameters.

Parameter Value

Max training timesteps 1000000

Max timesteps per episode 1500

State space dimension 10

Action space dimension 2

Discount factor γ 0.99

PPO epsilon clip 0.2

PPO K epochs 80

Optimizer learning rate actor 0.0003

Optimizer learning rate critic 0.001

Figure 2.1. PPO architecture for the navigation task.

2.2.4. Results and discussion

 A comparative analysis is carried out to assess the system's performance by defining three

metrics:

- The effectiveness is measured by determining the overall time required to accomplish the

task. Flexibility is evaluated by the ability to adapt to changes in environments. The

generalization of the solution is tested in a new environment.

THESES – AUTOMATIC DESIGN METHODS

25

The comparison is performed under identical conditions using the defined performance metrics

across multiple trials for validation. Assessing the efficiency by the time of the first and last robot

in the swarm to complete the task for each environment. The time taken by the first robot to reach

the target, denoted as 𝑅𝐿𝑚𝑖𝑛 by using RL and 𝑃𝑆𝑂𝑚𝑖𝑛 by using PSO, reflects the fastest

individual robot (Microscopic level – individual behaviors).

Conversely, the time recorded for the last robot to reach the target, indicated as 𝑅𝐿𝑚𝑎𝑥 and

𝑃𝑆𝑂𝑚𝑎𝑥 represents the total completion time for the task (Macroscopic level – collective

behavior).

Figure 2.2. Efficiency of RL vs. PSO.

 Analysis based on results in Figure 2.2 indicates that RL outperforms PSO. In detail, 𝑅𝐿𝑚𝑖𝑛

recorded a median completion time of 8.48 seconds and a mean of 8.7 seconds, suggesting that

RL facilitates faster individual robot performance compared to PSO, where 𝑃𝑆𝑂𝑚𝑖𝑛 achieved a

median time of 12.96 seconds and a mean of 12.55 seconds.

Although PSO shows a narrower interquartile range (IQR), suggesting more consistent

performance among the fastest robots, it highlights a uniformity in completion times close to the

median, indicating similar performance levels across various environments.

For the coordination of robots, denoted as 𝑅𝐿𝑚𝑎𝑥 versus 𝑃𝑆𝑂𝑚𝑎𝑥, RL shows a median

completion time of 14.78 seconds with a mean of 14.64 seconds, along with a compact IQR that

underscores a consistent performance among slower robots. In contrast, PSO has broader

variability in completion times, as shown by its broader IQR, with a median of 28.54 seconds and

a mean of 27.9 seconds. This variation is attributed to bottlenecks at the target, which delay the

task completion.

Overall, RL demonstrates more uniform efficiency across individual and coordinated robot

performance. In contrast, PSO displays greater variability in robot performance, suggesting

THESES – AUTOMATIC DESIGN METHODS

26

different strengths, like flexibility, that might not be evident from this box plot analysis.

Furthermore, the paths followed by the robots, as indicated in Figures 2.3 and 2.4, show the

flexibility of both algorithms in adapting to changes in the environment. PSO-guided robots follow

convergent routes, exhibiting a collective behavior influenced by shared information as they

navigate toward the target. Their paths are smoother, indicating efficient routing with minimal

deviations, though looping near the target suggests adjustments within the swarm. Obstacles lead

to longer, collaborative routes to the destination. RL, however, displays a range of trajectories that

indicate a more autonomous, learning-based navigation strategy, with paths featuring sharp turns

and complex maneuvers that demonstrate an adaptive learning process. Compared to PSO, RL

shows less clustering of paths and more individualized responses to obstacle avoidance.

When comparing PSO with RL, the PSO’s paths are marked by unified swarm behavior, possibly

sacrificing individual efficiency for group cohesion. RL's ability to learn and adapt results in more

strategically sound maneuvers than the more deterministic and collective patterns observed with

PSO.

Figure 2.3. Flexibility of PSO.

THESES – AUTOMATIC DESIGN METHODS

27

Figure 2.4. Flexibility of RL.

Figure 2.5. Environment for testing the generalization.

THESES – AUTOMATIC DESIGN METHODS

28

 To assess the generalization of PSO and RL, the behavior patterns of robots were initially

established in a 1.6×1.6 m² environment and subsequently evaluated in a larger 3×3 m² area, as

depicted in Figure 2.5. RL encounters obstacles like limited prior experience and the tendency to

overfit when faced with different conditions, such as new initial positions for the robots or

additional obstacles. To mitigate these challenges, adjustments to the RL's actor-critic framework

or the integration of progressive learning techniques may be necessary (studied in Chapter 3 in the

section on curriculum learning). In contrast, PSO maintains a consistent performance level despite

environmental changes. In tests conducted within this new, more complex setting, PSO–driven

robots demonstrated the ability to navigate collaboratively toward a collective objective, as

illustrated in Figure 2.6. However, RL-driven robots lacked collective swarm behavior and could

not converge, as shown in Figure 2.7. These observations underscore the necessity for advanced

strategies to enhance RL's adaptability in both complex and variable environments.

 Figure 2.6. PSO generalization. Figure 2.7. RL generalization.

2.3. Conclusion of comparative analysis

 This study compares the effectiveness of PSO and RL algorithms in guiding a swarm of robots

through an unknown environment. It highlights the strengths and weaknesses of each method. RL

is faster and better at coordinating robots, but it works best in conditions similar to where it was

trained. RL struggles to adapt to new environments without additional training or more complex

training process with heavy structure. On the other hand, PSO may be slower than RL, but it

performs consistently well across different environments. This makes PSO a reliable choice for

tasks needing stability, especially in unpredictable settings. The slower speed of PSO does not

greatly affect its ability to perform steadily. It is suggested to use RL, where quick reactions and

close coordination are essential, mainly in familiar settings. PSO is recommended for tasks

requiring reliability and consistent performance in new environmental challenges. The results of

this study demonstrate fundamental differences between PSO and PPO in SRs, particularly in

terms of adaptability, coordination, and generalization across different environments. Unlike

previous research that integrates reinforcement learning into PSO for optimization purposes (e.g.,

iSOMA-PPO, RL-LSOP, and LRPSO), our findings reveal how these two approaches

THESES – AUTOMATIC DESIGN METHODS

29

independently influence swarm-level behaviors rather than simply enhancing computational

efficiency. Moreover, our results indicate that swarm coordination differs significantly between

PSO and PPO-based models. PPO agents tend to learn individualized strategies that do not always

align with collective decision-making, leading to less structured swarm behavior compared to

PSO-based swarms, which naturally converge toward a globally coordinated movement pattern.

This observation is crucial for designing hybrid PSO-PPO frameworks, as it suggests that

combining PPO’s learning-based adaptability with PSO’s swarm coordination could lead to more

effective decentralized decision-making in multi-agent robotic systems.

These findings suggest that future work should focus on structured control architectures that

integrate PPO’s adaptive learning with PSO’s decentralized search and coordination mechanisms.

Rather than viewing PSO and PPO as competing methods, this study highlights their

complementary strengths, providing a basis for designing hierarchical or modular control

strategies for swarm robotic tasks such as foraging, path planning, and collective exploration.

THESES – ADVANCING DRL FOR SRS

30

3. ADVANCING DRL FOR SRS : INNOVATIVE ENHANCEMENT TECHNIQUES

 In this chapter, we explore integrating RL approaches within SRs, a domain that significantly

benefits from RL's adaptability and autonomous decision-making capabilities. SRs must adapt to

dynamic environments by adjusting their behaviors through trial and error; this is autonomy, which

is the essential concept in the SRs. The trial- error approach allows robots within the swarm to

independently refine their strategies until they determine the most effective methods. So, RL is

ideal for these systems, such as optimizing foraging behaviors, which are crucial for efficient

environmental mapping and robust execution of missions. Recent studies have focused on

deploying RL to emerge collective foraging behaviors. To address the persistent challenges in this

field, including the complexity of dynamic environments, scalability of learned behaviors,

communication constraints, balance between exploration and exploitation, and the limitations

posed by energy and computational resources. A spectrum of strategic solutions to these challenges

is presented in Table 3.1, providing an overview of current advancements and methodologies in

enhancing DRL within SRs.

 Table3.1. Challenges of deploying RL in foraging swarms.

Challenge Description Challenge Description

Complexity of Dynamic

Environments

Adapting to unpredictable changes, including

moving targets and obstacles.

Scalability of Learning Applying learned behaviors to swarms of

varying sizes and compositions.

Communication

Limitations

Coordinating actions without overwhelming

the network control architecture.

Balancing Exploration and

Exploitation

Efficiently discover new strategies and

environments while utilizing learned behaviors

to achieve optimal performance.

Energy and Computational

Constraints

Managing energy consumption and

computational demands for efficient operation.

 For the "complexity of dynamic environments," creating macroscopic foraging behaviors while

integrating fuzzy logic for fine-tuned obstacle navigation and avoidance is a solution introduced

in [55]. This combination reduces the complexity of the RL problem space, leading to robust,

THESES – ADVANCING DRL FOR SRS

31

scalable foraging behaviors that hold up even in untrained scenarios. Another solution employed

Multi-Agent Reinforcement Learning (MARL) to refine the foraging strategies of active particles,

allowing them to locate and harvest food sources that appear randomly and efficiently [56]. This

research showed that optimizing individual agents' behavior could enhance the entire swarm's

collective foraging efficiency. Another innovative strategy involved using deep RL combined with

CL to master navigation tasks progressively, thereby boosting learning efficiency and

environmental adaptability [57].

 Various techniques have been proposed regarding scalability issues. One research [58] focused

on enhancing system performance without increasing the complexity of individual robots or

intensive inter-robot communication. It suggested that simple, decentralized interactions could

facilitate complex collective tasks. Another study introduced a self-organizing task distribution

model based on a response threshold mechanism, which allows SR to efficiently divide complex

foraging tasks without centralized oversight or heavy communication, ensuring robust

performance across different scenarios [59]. Regarding communication limitations within SRs, the

literature highlights several forward-thinking solutions that improve system robustness and

efficiency in environments with restricted communication. Approaches such as federated learning

combined with deep RL have been noted to enhance performance generalization [60].

Additionally, biologically inspired communication strategies support decentralized swarm

operations [61]. These methods boost the adaptability of swarm systems to dynamic conditions by

enabling collective decision-making and task optimization without relying on complex individual

robot capabilities.

Methodologies like the Mutual-Information Upper Confidence Bound (MI-UCB) [62], and virtual

pheromone systems [63] have been explored to balance exploration and exploitation. MI-UCB,

for instance, optimizes drone coordination via a decentralized approach, balancing information

gathering with reward maximization. Virtual pheromones, on the other hand, allow agents to

switch between discovering new resources and exploiting known ones efficiently.

Moreover, research on addressing energy and computational constraints has led to the

development of mobile edge computing solutions paired with mobility-aware deep RL models,

minimizing computational demands and enhancing energy efficiency while maintaining response

times [64]. Our contributions build on these individual approaches by promoting a modular

strategy combined with the adaptability and efficiency of PPO in dynamic settings. This method

simplifies management and debugging, boosting system adaptability and operational efficiency in

dynamic environments. Our approach significantly improves task performance and resource

utilization by focusing on adaptive learning and decision-making within a collective swarm

intelligence framework.

 This chapter explores advanced enhancement techniques of DRL, focusing on innovative

applications and hybrid designs in SRs. It contains two aspects:

THESES – ADVANCING DRL FOR SRS

32

Firstly, a structured approach to integrating curriculum learning with DRL is presented. It involves

progressive training SRs to generate more generalized and adaptive collective behaviors.

Then, a new hybrid modular design model is introduced, combining automatic design methods

like DRL and PSO with a modular design model. It is verified by tackling the dynamic foraging

task, highlighting the proposed model's flexibility and efficiency. Detailed experimental setups

and results illustrate how these enhanced techniques advance the capabilities of autonomous

swarms, showcasing their potential for building adaptable and robust SRs.

3.1. Introduction to Curriculum Learning

 Curriculum learning (CL) is inspired by the pedagogical approach of structuring education,

where learners tackle complex topics gradually by beginning with basics and simpler parts until

solving the entire task. So, CL is based on a gradually increasing difficulty.

 This concept has been adapted to various machine-learning algorithms and applications [65]. By

incorporating CL, models demonstrate improved generalization in new, unseen data. This

approach also accelerates the training process, especially in non-convex scenarios where the

optimization landscape contains multiple local minima. [66].

When using machine learning in robotics problems like navigation or path planning, incorporating

CL enhances the robot's navigation skills by progressively training it on increasingly complex

scenarios. This method improves the robot's adaptability and efficiency in varied environments. It

is effective in mapping, localization, and optimizing path planning [67] and incorporating CL in

two stages with the RL to solve navigation and obstacle avoidance in a 2D simulated unmanned

aerial vehicle environment. This approach significantly enhanced learning efficiency by reducing

the learning time and cost [68].

 The primary goal of CL is to improve the learning process's efficiency. The challenge of an RL-

driven swarm of robots is training them to learn cooperative strategies and adapt to complex

environments effectively. CL addresses this by segmenting the learning into simpler, progressively

more complicated tasks, making it manageable. Starting with easier tasks enables SR to succeed

quickly. It helps prevent being stuck in suboptimal solutions. Skills acquired in basic scenarios are

transferable to more complex ones, where transfer learning is vital in SRs. That led to enhancing

the swarm's capability in varied scenarios. It can also introduce the robots to diverse environmental

conditions and task variations from the outset, boosting robustness and adaptability.

Deploying CL across various methods to solve tasks in a swarm serves as a powerful tool to

enhance RL's adaptability and generalization in complex scenarios, here are some examples. The

author in [69] utilizes a centralized critic network of MADDPG (Multi-agent DDPG) for a group

of defended drones, enabling them to adapt their strategies based on a shared understanding of

successful behaviors. CL is used to enhance this network, where direct learning of cooperation is

challenging; instead, the process starts with two agents and gradually expands to include the entire

system. In my research, CL is applied more broadly, independent of any specific RL algorithm

THESES – ADVANCING DRL FOR SRS

33

(PPO, DDPG, and others), it improves learning efficiency by progressively increasing

environmental complexity. This highlights how CL has been applied from very different

perspectives, demonstrating its flexibility in addressing diverse challenges within swarm systems.

The "Autonomous Swarm Shepherding" model in [70] employs a hierarchical RL framework,

where a single agent (the dog) guides non-learning agents (the sheep) through curriculum learning

(CL), progressively training it to collect and drive the sheep. However, this approach limits

adaptability, as only one agent learns while others remain passive. In contrast, our model enables

all agents in the swarm to learn independently, significantly increasing system complexity and

realism. Our CL-RL integration teaches collective behaviors rather than focusing on a single

leader, ensuring scalability across diverse swarm configurations. Unlike hierarchical RL, our

approach addresses multiple objectives simultaneously, avoiding unnecessary computational

complexity while improving learning efficiency.

 This section introduces our significant contribution to the field: a model that integrates CL with

DRL to address a navigation challenge for SR. Initially, this model was tested on individual robots

before extending its application to a swarm setting [71]. Specifically, we have enhanced the

efficiency of the PPO algorithm by incorporating a CL, significantly boosting adaptability and

convergence efficiency in complex environments [57]. A comprehensive comparative analysis of

three models is conducted to evaluate the effectiveness of the approach: modified PPO (PPO+CL),

the standard PPO, and the DDPG. This comparison highlights the improvements the proposed

model offers over existing methods.

3.1.1. PPO with CL for individual robots

 Traditional PPO in Figure 2.1 is used with a given reward in equations (2.4, 2.5, 2.6). To

investigate the effectiveness of PPO with CL in solving the navigation problem as in Figure 3.6.

The environment is segmented into many sub-environments for training, each measuring 0.7×0.7

𝑚2. The first training environment is the simplest without obstacles, as shown in Figure 3.1. In

contrast, the second one is more complicated, with multiple small boxes and narrow passages, as

shown in Figure 3.2. The third one contains a long obstacle, as in Figure 3.3. The final training

environment is combined with previous ones, measuring 1×1 𝑚2, as shown in Figure 3.4. The

environment in Figure 3.5 is designed to have a new distribution of obstacles in a new area that

 the robot has not encountered during training, considering that the testing environment combines

training environments.

THESES – ADVANCING DRL FOR SRS

34

Figure 3.1. Training

environment 1- 0.7×0.7 m2.

Figure 3.2. Training

environment 2- 0.7×0.7 m2.

Figure 3.3. Training

environment 3- 0.7×0.7 m2.

Figure 3.4. Training

environment 4- 1×1 m2.

Figure 3.5. Testing

environment 5- 1×1 m2.

Figure 3.6. PPO with CL schematic.

THESES – ADVANCING DRL FOR SRS

35

3.1.2. Convergence efficiency

Figure 3.7. Curriculum learning- Training procedure.

 The flowchart in Figure 3.7 illustrates the proposed training process of PPO with CL. Firstly, the

weights are initialized with random values for (Env_0). Then, the training process continues

sequentially as a series of incremental challenging environments i=1,2,...n, (n=4) in the proposed

model. Each environment (Env_i) begins the training after transferring the learning from the

previous environment by uploading the weights from the previous one (Env_(i-1)). When the robot

records 1000 successful attempts to reach the goal, the model is learned, and the weights are saved.

It is called C criteria. The training time is computed as (𝑡𝐸𝑛𝑣1, 𝑡𝐸𝑛𝑣2, 𝑡𝐸𝑛𝑣3,𝑡𝐸𝑛𝑣4), and the process

iterates to the following environment. The cycle continues until the model has been trained among

all environments. The convergence efficiency is measured by the time of training as in equation

3.1:

 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 = 𝑡𝐸𝑛𝑣1 + 𝑡𝐸𝑛𝑣2 + 𝑡𝐸𝑛𝑣3 + 𝑡𝐸𝑛𝑣4 (3.1)

In Env_1 (i=1), which considers the no-obstacles environment, as shown in Figure 3.8, the robot

reached the target at around 124000-time steps, a noticeable increase in the cumulative received

reward. Then, the weights of actor-critic networks are used to initialize the actor-critic to be trained

in Env_2, where small boxes fill the environment, as shown in Figure 3.9. The robot needs around

236,000 timesteps to reach the target and avoid obstacles. It requires more time because of the

penalties of collisions, which is necessary for learning to avoid obstacles effectively. The

THESES – ADVANCING DRL FOR SRS

36

environment Env_3 introduced a long obstacle that was considered a different challenge. The

weights are transferred from Env_2 to initialize PPO. The robot is trained to maneuver in a shorter

period; it takes about 32000 timesteps, as shown in Figure 3.10. This quick adaptation is

interpreted as the transfer learning that enabled the robot to generalize its avoidance strategies.

Env_4 combines previous ones; the robot mastered this environment in roughly 44,000 timesteps,

as shown in Figure 3.11. This indicates CL's ability to speed up the training process by initializing

it with suitable weights. PPO without CL and DDPG are used to train the robot to navigate Env_4

to compare our approach. The robot reaches the target after 452000 timesteps with some

fluctuations, indicating a less efficient learning process due to the complexity of the environment.

DDPG failed to converge to the solution. Table 3.2 shows the readings of times to ease the

comparison.

Table 3.2. Convergence efficiency.

Table 3.1 compares the convergence efficiency of DDPG, PPO, and PPO with CL. DDPG did not

successfully learn any environments, as indicated by infinite training time. PPO with CL shows

progressive learning across environments with a cumulative training time. In contrast, standard

PPO's slower learning in the final, most complex environment Env_4 indicates it requires more

extensive exploration and training time to adapt without the structured progression that CL

provides.

Figure 3.8. Env_1, rewards in training. Figure 3.9. Env_2, rewards in training.

 𝑡𝐸𝑛𝑣1 𝑡𝐸𝑛𝑣2 𝑡𝐸𝑛𝑣3, 𝑡𝐸𝑛𝑣4 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑡𝑖𝑚𝑒

DDPG - - - - ∞

PPO - - - 452 × 103 452 × 103

PPO+CL 128 × 103 209 × 103 32 × 103 44 × 103 413 × 103

THESES – ADVANCING DRL FOR SRS

37

Figure 3.10. Env_3, rewards in training. Figure 3.11. Env_4, rewards in training.

Figure 3.12. Env_4, rewards in training PPO without CL.

3.1.3. Robot’s path planning

Figure 3.13. Robot’s paths.

THESES – ADVANCING DRL FOR SRS

38

 Figure 3.13 illustrates the outcomes of path planning using three different algorithms, PPO with

CL, PPO, and DDPG, where the design of the actor-network of DDPG was replicated in the actor-

critic network of PPO, maintaining structural consistency between them. Additionally, the same

hyperparameter values were used for both of them. PPO with CL steers the robot along a more

optimized trajectory, leading to a more direct approach to the goal and reflecting an enhanced

navigation technique.

 The trajectory produced by PPO without CL effectively avoids obstacles but is indirect and, thus,

less efficient. On the other hand, DDPG does not reach the desired results in this scenario due to

its failure to learn practical obstacle avoidance, with its performance heavily dependent on precise

hyperparameter tuning.

 The structure and hyperparameters optimized for PPO used in this study may not suit DDPG's

needs. By starting with simpler challenges and progressively introducing more complexity, PPO

with CL avoids overfitting to specific scenarios, potentially leading to a more broadly effective

policy.

 CL supports a more stable learning journey by segmenting the learning into minor, manageable

phases. This is especially beneficial in RL, where extensive exploration might cause significant

policy shifts that disrupt learning. The smoother trajectory observed with PPO and CL indicates a

more consistent progression in learning.

3.1.4. Generalization

Figure 3.14. Ability to generalize.

THESES – ADVANCING DRL FOR SRS

39

Figure 3.8 illustrates the trajectories followed by a robot navigating in a modified environment

where obstacles placements were changed. In this scenario, PPO with CL successfully adapts to

the new modifications. This success can be attributed to the incremental learning approach of CL,

which exposes the robot to a wide variety of situations during training. This diverse experience

helps to develop a robust policy that effectively handles new and unexpected environmental

changes. On the other hand, the version of PPO that lacks CL does not perform well in the altered

environment.

 This failure is likely due to the model's tendency to overfit to the specific conditions it

encountered during training. Without the varied exposure provided by CL, the robot's strategy

remains inflexible and less capable of adapting to environments that differ from those in which it

was specifically trained.

3.1.5. PPO with CL for swarm robots

 Challenges frequently emerge in complex settings or tasks when employing DRL, particularly

in training SRs. A previous section illustrated how integrating DRL with CL can address these

issues. The combination is particularly effective in overcoming the challenges posed by randomly

initialized network parameters in DRL systems. Random initialization produces an initial policy

that may be far from optimal. It takes significant time in complex environments to converge to a

desirable solution, or it may get stuck in suboptimal solutions.

 The exploration phase can be time-consuming and resource-intensive. CL helps by structuring the

learning process in stages, gradually introducing the swarm robots to increasingly complex

scenarios. This structured approach contrasts sharply with typical DRL methods, where robots

might struggle with adaptation due to the randomness of initial network parameters. By

incrementally adjusting to more complex environments, PPO with CL enables the swarm robots

to develop a robust policy that is adaptable and effective across varying conditions. We have

extended the PPO with CL approach to be applied for SRs, as in Figure 3.15, to generate a

navigation collective behavior. The objective is to train the robots to reach their targets while

avoiding collisions with obstacles and each other. The swarm has five robots with two targets and

an obstacle, as shown in Figure 3.15.

 Figure 3.15. Swarm's environment.

THESES – ADVANCING DRL FOR SRS

40

Figure 3.16. DRL with CL for SR.

 As shown in Figure 3.16, the training process is iterative, gradually increasing the complexity of

the stages and transferring the learning at each stage by uploading the weights from the previous

stage. The decomposition process of the training environment is obtained based on three metrics:

swarm sizes (2 robots, 3robots, and five robots), collision avoidance complexity (the existence of

the obstacle or not), and the distances between the targets and robots (by changing the size of the

environment from 0.5×0.5 m2, 0.7×0.7 m2,0.1×0.1 m2, and 1.2×1.2 m2). We assess the swarm's

performance at each stage by measuring the success rate (percentage of targets reached) and

collision rate.

 Figure 3.17 clearly illustrates the comparative success rates of robots trained by PPO with CL

and PPO, and Figure 3.18 demonstrates the avoiding collision performance. They demonstrate

significantly superior performance of PPO with CL.

 These robots could navigate and explore the environment more swiftly and efficiently and apply

their acquired knowledge to achieve designated objectives. In contrast, robots trained using the

PPO alone showed lower success rates. CL enhances robot training by introducing tasks

incrementally, which prevents overfitting and builds a robust policy.

This method allows robots to generalize their skills better across diverse environments, leading to

higher success rates. In contrast, PPO may limit robots to specific scenarios, hindering their

adaptability and overall performance.

THESES – ADVANCING DRL FOR SRS

41

Figure 3.17. Success rate 1. PPO with curriculum learning 2. PPO without curriculum learning.

Figure 3.18. Collison rate 1. PPO with curriculum learning 2. PPO without curriculum learning.

 The graph in Figure 3.19 contrasts the cumulative rewards earned by robots trained with PPO

and those trained using PPO with CL. The robot employing PPO with CL achieves higher rewards

more rapidly, reflecting a more effective training process. This superior performance is likely due

to better initial weight settings, as shown in the values of rewards at the beginning of the training

process, a structured learning path that incrementally introduces challenges, and more efficient

exploration strategies. Additionally, the CL approach equips the robot to handle environmental

variability better and avoid overfitting, thus enhancing its ability to generalize skills to new

situations.

Figure 3.19. The average cumulative rewards: PPO0 without curriculum. PPO1 with curriculum.

THESES – ADVANCING DRL FOR SRS

42

 When the environment is enlarged from 1.2×1.2 m2 to 1.5×1.5 m2, a swarm of five robots trained

using PPO with CL demonstrates significantly improved performance. As the size of the

environment increases, the CL framework aids the swarm in developing and refining effective

navigation strategies in larger spaces. In contrast, robots trained with traditional PPO struggle to

adapt, as shown in Figure 3.20. These robots fail to achieve predefined goals.

Figure 3.20. The success rate for expanded environment 1. PPO with CL 2. PPO without CL.

3.2. New Hybrid Modular Design with DRL and PSO

Foraging swarm behavior refers to the collective effort of a group of robots or organisms

working together to locate, gather, and transport resources back to a designated location. This

behavior is characterized by coordination and communication among individuals to optimize the

efficiency and effectiveness of the resource collection process.

It mimics natural systems, such as ants or bees, which exhibit sophisticated group strategies to

maximize their foraging success. This section introduces a foraging swarm system with a hybrid

model combined with modular design and the deployment of automatic design methods like RL

and PSO [72]. The swarm system is simulated in a 3D robot simulator, Webots.

 The E-Puck robot is selected to construct the SR. Foraging collective behavior is required to

be generated to search for two size boxes, small and big ones, through the environment and then

transport them to the nest. The environment is shown in Figure 3.21. The workspace dimensions

are defined as 3×3 m2. The parameters of E-Puck robots are set as in section 2.2.1. A group of

robots gathered in the nest area as initial positions; they had to search for boxes in the environment.

Then, if one box is found, the robot checks if it can grab it (small box); otherwise, it waits for help

from another to grab it together (big box). Finally, transport the box to the nest to begin another

round until all the boxes are collected.

THESES – ADVANCING DRL FOR SRS

43

Figure 3.21. Foraging environment.

Based on the behavior-based model in section 1.2.4, the foraging task is decomposed into many

modules.

- Searching module: The robots search for boxes and locate them using light sensors, where

boxes emit light at different intensities. They use PPO or PSO.

- Gripping module: Robots catch the box once a box is located.

- Waiting module: This module is for big boxes that require cooperative work.

- Transporting module: Robots navigate back to the nest using PPO.

- Release module: Robots release the grasped box when it reaches the nest.

- Return module: Robots return to the searching module, creating iterable rounds until all

the boxes are collected.

Figure 3.22 illustrates the flow process of the proposed system; the system initially sets up the

positions of all components: the robots, foraging boxes (targets), and the nest. Once set up, the

robots begin the search phase, employing either a PPO model or a PSO algorithm tailored for this

task. This phase directs the robots to the targets using inputs from light sensors, which detect light

emitted by the boxes. Upon locating a box, the robot assesses the box’s size to decide the following

action. A single robot can manage retrieval for smaller boxes, while larger boxes require waiting

for an additional robot to assist, facilitating cooperative transport. This scenario mirrors real-world

tasks that demand varying degrees of effort and teamwork. Once a box is located, the robots switch

to a navigation mode, guided by another PPO model that calculates the optimal route back to the

nest by considering the distance and angle to the nest. Following a successful delivery, the robot

determines whether any targets remain. If targets are left, it resumes the search phase, thus

perpetuating the foraging cycle. The simulation concludes once all targets have been collected.

𝑅(𝑡) =
(𝐿𝑆0

(𝑡)
− 𝐿𝑆0

(𝑡−1)
) + (𝐿𝑆7

(𝑡)
− 𝐿𝑆7

(𝑡−1)
)

2
+ 𝑟𝑏𝑜𝑥(𝑡)

(3.2)

THESES – ADVANCING DRL FOR SRS

44

𝑟𝑏𝑜𝑥(𝑡) = {

1.1 𝐿𝑆0
(𝑡)

> 𝐹𝑖𝑛𝑑𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠𝑒𝑎𝑟𝑐ℎ𝑖𝑛𝑔

1.1 𝐿𝑆7
(𝑡)

> 𝐹𝑖𝑛𝑑𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠𝑒𝑎𝑟𝑐ℎ𝑖𝑛𝑔

0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(3.3)

The threshold 𝐹𝑖𝑛𝑑𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠𝑒𝑎𝑟𝑐ℎ𝑖𝑛𝑔 is set to 0.85. So, when the normalized readings of the

sensors are more than 0.85, the robot can catch the box. The module is set to the transporting

module where rewards are used in Equations (3.4) for successfully retrieving when the threshold

𝐹𝑖𝑛𝑑𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑖𝑛𝑔 is less 0.2. The nest circle has a radius of 0.2, so if the distance

between the robot and the center of the nest is less than 0.2, the robot is in the nest. Equation (3.5)

for leveraging the experience each time step to speed up the learning process by considering the

angle and the distance to know if the robot is in the direction of the nest. These equations reflect

the situation where collaboration is not required if one robot is enough to transport a small box to

the nest. Still, when collaboration is needed in case two robots have to transport a big box to the

nest together, Reward equations (3.6) and (3.7) reflect the robots' behavior in the swarm. When

two robots can catch a big box, a positive reward for catching the box together and keeping the

distance between the two robots less than 0.035 m, or a negative reward when it is bigger than 0.1.

The overall reward in equation (3.8) includes the difference in distance to the target between the

previous and current time step, the target reward, the cosine of the current angle to the target, and

the distance reward.

𝑟𝑛𝑒𝑠𝑡 = {

0.1 𝑑𝑐𝑢𝑟𝑟𝑒𝑛𝑡 < 𝐹𝑖𝑛𝑑𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 .
−

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(3.4)

𝑟𝑒𝑤𝑎𝑟𝑑 = (𝑑𝑝𝑟𝑒𝑣 − 𝑑𝑐𝑢𝑟𝑟𝑒𝑛𝑡) + 𝑟𝑛𝑒𝑠𝑡 +

𝑐𝑜𝑠(𝛼𝑐𝑢𝑟𝑟𝑒𝑛𝑡)

1000

(3.5)

𝑑𝑖𝑠𝑟𝑒𝑤𝑎𝑟𝑑 = {

0.01 0.035 ≤ 𝑑𝑟𝑜𝑏𝑜𝑡𝑠 ≤ 0.1
−0.001 𝑑𝑟𝑜𝑏𝑜𝑡𝑠 < 0.035

−
𝑑𝑟𝑜𝑏𝑜𝑡𝑠

100
 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(3.6)

𝑟𝑛𝑒𝑠𝑡 = {

0.15 𝑑𝑐𝑢𝑟𝑟𝑒𝑛𝑡 < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑎𝑛𝑑 𝑓𝑟𝑖𝑒𝑛𝑑 𝑖𝑠 𝑝𝑟𝑒𝑠𝑒𝑛𝑡.
0.1 𝑑𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑎𝑛𝑑 𝑓𝑟𝑖𝑒𝑛𝑑 𝑖𝑠 𝑛𝑜𝑡 𝑝𝑟𝑒𝑠𝑒𝑛𝑡.
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(3.7)

𝑟𝑒𝑤𝑎𝑟𝑑 = (𝑑𝑝𝑟𝑒𝑣 − 𝑑𝑐𝑢𝑟𝑟𝑒𝑛𝑡) + 𝑟𝑛𝑒𝑠𝑡 +

cos(𝛼𝑐𝑢𝑟𝑟𝑒𝑛𝑡)

1000
+ 𝑑𝑖𝑠𝑟𝑒𝑤𝑎𝑟𝑑

(3.8)

In reward formulation, parameters such as radius = 0.2m, robot distance < 0.035m, also 1000 in

the fraction
𝑐𝑜𝑠(𝛼𝑐𝑢𝑟𝑟𝑒𝑛𝑡)

1000
 , and others were chosen empirically based on problem constraints. These

values were tested iteratively to ensure realistic behavior, considering factors like robot size and

environment constraints. This highlights the challenge of manually designing reward functions,

motivating our proposed RL-IRL model to learn rewards automatically.

THESES – ADVANCING DRL FOR SRS

45

Figure 3.23. Hybrid modular design for foraging swarm.

THESES – ADVANCING DRL FOR SRS

46

3.2.1. Results and performance analysis

 The hybrid modular configuration described in Figure 3.23 utilizes PPO and PSO to improve

decision-making processes in search and navigation tasks. Simultaneously, It reduces demanding

computations, such as gripping or releasing and switching between modules because of the

behavior-based model. This method boosts computational effectiveness and supports tailored

optimization where needed. Several benefits arise from this hybrid modular strategy:

- Specialized Optimization: PPO is integrated into critical modules to enhance task

performance, notably in search and transport activities. This ensures optimal use of PPO's

capabilities.

- Computational Efficiency: PPO, a resource-intensive algorithm, is selectively applied to

manage the computational load effectively. This is essential for controlling numerous

robots with limited processing abilities.

- Simplicity in Routine Tasks: Simpler tasks, like gripping or releasing, utilize

straightforward control schemes that do not require complex decision-making and facilitate

system programming and maintenance.

- Minimized Overfitting Risk: Restricting PPO to complex tasks helps avoid overfitting,

keeping the model versatile and suitable for various situations.

- Accelerated Training Periods: Concentrating on specific modules decreases the total time

required for training, thus expediting system rollout and adaptation.

- Optimized Reward System: The reward framework is carefully designed to match the

objectives of each module, ensuring the primary aims are met and avoiding unintended

actions.

- Comprehensive System Autonomy: when the system encompasses an end-to-end deep RL

architecture that manages all behaviors—ranging from navigation to gripping—across the

entire swarm of robots, it is purely on autonomous decision-making, which may not be the

most efficient. So, integrating with rule-based components enhances the system's

resilience."

A. Foraging performance (PSO-PPO vs PPO-PPO)

 The hybrid modular design stands out for its ability to facilitate the testing and integration of

various algorithms, including PPO, PSO, and beyond. This flexibility enables the system to adapt

dynamically, evaluating different computational strategies under consistent conditions. The 3D

visualizations in Figures 3.24 and 3.25 illustrate the performance of foraging behavior according

to PSO-PPO and PPO-PPO as automatic design methods.

Numerical samples in Table 3.3 are also derived to measure the performance as follow: For the

number of retrieved boxes N ϵ [0,10]. ΔT is the measured time to collect and transport all the boxes

to the nest. PN is the average path length of the SR needed to find and transport all the boxes. So,

Efficiency E is defined as the number of boxes retrieved per unit of time and effort.

Efficiency can be calculated using the parameters ΔT, PN, and N by Equation (3.9) and Table 3.3.

THESES – ADVANCING DRL FOR SRS

47

Figure 3.25. PSO-PPO-driven swarm. Figure 3.24. PPO-PPO-driven swarm.

 Table 3.3. Foraging performance metrics.

Retrieved

items

(Boxes)

PPO-PPO PSO-PPO

Time

(sec)

Average

Path (m)

Time

(sec)

Average

Path (m)

1 13.024 0.726 7.552 0.377

2 13.696 0.774 25.024 1.173

3 27.712 1.767 36.928 1.719

4 33.92 2.243 78.08 3.513

5 36.512 2.434 98.112 4.451

6 59.488 4.129 125.92 5.725

7 61.408 4.268 163.776 7.436

8 69.92 4.942 181.6 8.256

9 72.192 5.126 272.64 12.051

10 88.096 6.305 320.096 14.211

 𝐸 =

𝑁

∆𝑇 × 𝑃𝑁

 (3.9)

𝐸𝑃𝑃𝑂−𝑃𝑃𝑂 =

10

88.096 × 6.31
= 18 × 10−3

𝐸𝑃𝑆𝑂−𝑃𝑃𝑂 =

10

320.096 × 14.21
= 2.19 × 10−3

THESES – ADVANCING DRL FOR SRS

48

 The swarm guided by the PPO-PPO model has shown greater efficiency than the one driven by

PSO-PPO. The analysis reveals that the PPO-equipped swarm is more adept at item retrieval,

evidenced by a more pronounced increase in the number of items collected over time. This system

also benefits from shorter average journey lengths.

Conversely, the PSO's performance graph displays a softer ascent, suggesting longer durations

required to complete the foraging tasks. These findings underscore PPO's superior ability to adapt

quickly and handle the task more effectively. PPO excels not only in learning speed but also in

maintaining robust performance levels.

This advantage stems from the policy gradient optimization inherent to PPO, which fine-tunes the

robotic actions based on rewarded outcomes, resulting in a more optimized strategy. In contrast,

PSO is prone to settling at local optima and lacks precise adjustment capabilities. Additionally,

PSO's dependence on the collective dynamics of the swarm can decrease the performance when

individual robots do not effectively mimic or communicate within the swarm.

The mean execution time for PPO-PPO is 47.60 seconds, whereas PSO-PPO requires 130.97

seconds on average to complete the same task. Furthermore, the standard deviation for execution

time in PPO-PPO is 26.08 seconds, whereas PSO-PPO has an extremely high deviation of 104.71

seconds. This suggests that PPO-PPO demonstrates stable and predictable execution times,

whereas PSO-PPO exhibits high fluctuation, making it unreliable for real-world deployment where

timing consistency is crucial.

In terms of navigation efficiency, PPO-PPO follows a significantly shorter path with an average

distance of 3.27 meters, compared to 5.89 meters for PSO-PPO. This demonstrates that PPO-PPO

optimizes movement better, allowing agents to reach targets more directly and energy efficiently.

The standard deviation of the path length follows the same trend—PPO-PPO exhibits a deviation

of 1.94 meters, while PSO-PPO has a higher deviation of 4.63 meters. This confirms that PSO-

PPO's paths are inconsistent and sometimes highly suboptimal, whereas PPO-PPO maintains a

more structured and predictable trajectory. That suggests that PSO-PPO frequently takes

inefficient paths, which could lead to increased energy consumption and longer exploration times.

B. Dynamic behavior and autonomy

 The behavior of SR for dynamic foraging is analyzed for two proposed systems, PPO-PSO and

PPO-PPO, based on the proposed hybrid modular model. They are used to collect two boxes where

these boxes are not static. They move through the environment randomly. In this dynamic

situation, the SR follows each box until it is grabbed. When grabbed, the box changes to red; it

stops its dynamic nature, moving to a static box to be transported to the nest (yellow area).

- Behavior analysis for PSO

Figure 3.26 illustrates the PSO's capability to identify moving objectives in the environment.

THESES – ADVANCING DRL FOR SRS

49

Figure 3.26. Dynamic Foraging performance/ PSO-driven swarm.

Initial response (t1-t2): The swarm begins at the nest's initial location and then tracks a single

moving box without the other, showing powerful collective behavior with minimal autonomy.

Mid-phase (t3): The swarm locates the green box and forms a tight group around it. The robots'

movements are heavily influenced by their surroundings.

Gripping action (t4-t5): Upon grasping the box (signified by a shift in its color to red), the robot

holding the box heads back to the nest. The robot then releases the box and reverts to PSO mode.

- Behavior analysis for RL

Figure 3.27 illustrates the RL's capability to identify moving objectives in the environment.

Initial response (t1-t2): The RL swarm moves in a distributed, exploratory form, suggesting an

exploratory approach. This allows the swarm to track both moving boxes simultaneously,

indicating high autonomy.

Mid-phase (t3): The swarm methodically adapts to the dynamic target, determining the box's

location more rapidly than the PSO, showcasing superior adaptability to the target's changing

position.

Gripping action (t3-t4-t5): After grasping the box, the robot transports it to the nest area, releases

it, and locates another target using the PPO method.

THESES – ADVANCING DRL FOR SRS

50

Figure 3.27. Dynamic Foraging performance/RL-driven swarm.

3.3. Conclusion of Proposed Enhancement Techniques

 The study offered an in-depth evaluation of the impact of CL on enhancing the training process

and leverages combining a behavior-based model with automatic design methods like RL and PSO

models to improve the swarm's behavior. CL specifically assessed the efficiency of SR trained in

a dynamic 3D environment. By structuring the navigation task into increasingly complex stages,

the research highlighted the robots' ability to adapt to intricate scenarios effectively. Robots

equipped with the PPO augmented by CL demonstrated superior path-planning capabilities in

environments with variable obstacle configurations. This enhanced capability allowed for a more

generalized application of learned behaviors to new environments. Furthermore, the study utilized

complexity metrics, considering factors like swarm size, collision avoidance, and the size of the

environment. The curriculum-based training achieved a higher success rate in reaching targets and

reduced collision rates through improved obstacle avoidance tactics. This method also accelerated

the learning process, as evidenced by faster convergence times. The swarm trained with CL

demonstrated enhanced performance metrics, robust generalization, and adaptation abilities

regarding training and operational efficiency. The number of stages and the incremental

adjustment of parameters at each stage are determined based on experience, taking into account

computational costs and the risk of sub-optimal policies. This approach paves the way for future

improvements, allowing the model to autonomously optimize these values for enhanced

efficiency.

THESES – ADVANCING DRL FOR SRS

51

The other proposed model delves into a dynamic foraging challenge; it suggests that the strategy

integrates a modular framework that manages activities such as gripping, waiting for assistance,

and locating the box, paired with a sophisticated algorithm that facilitates the search and transport

tasks using RL and PSO. This design enables continuous operation in varied environments while

avoiding model overfitting. It also incorporates a module specifically for evaluating different

algorithms. A detailed comparative analysis between PPO and PSO was carried out. The findings

indicated that PPO was more effective, achieving quicker retrieval times and greater overall

efficiency due to its superior adaptability and independence. On the other hand, PSO was less

effective, showing limitations in both efficiency and autonomous function. Moreover, this study

highlights the advantages of a modular design in SRs, laying the groundwork for future

innovations that combine operational efficiency with adaptability.

THESES – REWARD STRUCTURES FOR SRS

52

4. REWARD STRUCTURES: IMPLICATIONS FOR BEHAVIOR OF SR

 Deep RL has significantly advanced the capabilities of SRs, generating complex collective

behaviors through decentralized decision-making processes. A critical component in DRL is the

design of the reward structure, which guides the learning process and influences the swarm's

emergent behavior:

- Learning Signal: The reward structure provides the feedback that the agent (robot) uses to

evaluate the behavior based on their actions within an environment. This feedback loop is essential

because it shapes the policy that guides agent behaviors. In SR, where multiple agents must

coordinate, the reward structure often encodes the desired collaborative behaviors, influencing

how individual agents contribute to the group's objectives.

- Behavior Shaping: Rewards play a crucial role in shaping the system's behavior by

explicitly valuing specific actions over others. This shaping is particularly significant in SRs,

where collective behavior emerges from interactions between multiple robots. For instance, a

reward structure that emphasizes speed over accuracy can lead to the development of policies

prioritizing quick movements and formations, possibly at the cost of precision or stability.

- Convergence to Optimal Policies: The reward design affects how quickly and effectively a

learning algorithm can converge to an optimal policy. Therefore, a well-tuned reward structure is

beneficial in accelerating learning by clearly generating effective strategies and reducing

ambiguity in the rewards received. Poorly designed rewards, such as those that offer conflicting

signals or insufficient differentiation between good and bad actions, can lead to slower learning,

suboptimal policies, or failure to converge.

- Encouraging Exploration vs. Exploitation: As mentioned in section 1.3.2, agents must

balance exploration (trying new actions to discover their effects) and exploitation (using known

actions that yield high rewards). The complex and deep element reward structure significantly

influences this balance; for example, a reward system that provides incremental feedback for novel

strategies can encourage more explorative behaviors.

Reward shaping, sparse rewards, and Inverse RL (IRL) are three distinct methods used in deep RL

to influence SR behavior. Reward shaping modifies the reward function by adding supplementary

feedback to encourage specific behaviors, accelerate learning, and guide robots toward desired

outcomes more efficiently. Sparse rewards, awarded only for significant actions like avoiding

obstacles or reaching the goal, foster robust strategies without frequent feedback, simplifying

reward design but potentially slowing learning and complicating exploration. Inverse RL derives

rewards from observed optimal behaviors, enabling natural and efficient behavior learning without

explicit reward programming. However, it relies heavily on the quality of demonstration data and

involves greater computational complexity. These methods offer different advantages and

drawbacks in training swarm robotics to achieve complex collaborative tasks.

THESES – REWARD STRUCTURES FOR SRS

53

Beyond the conventional reward methods discussed, such as reward shaping, sparse rewards, and

Inverse Reinforcement Learning (IRL), several innovative approaches can further enhance the

learning and performance of swarm robotic systems. These methods can be tailored to the unique

challenges and opportunities presented by swarm behaviors and the complexity of their operational

environments.

This section explores various reward methods, such as reward shaping and sparse rewards, mainly

focusing on the impact of reward scaling in deep RL for SRs for these two methods. Finally, it

introduces a new method of incorporating inverse RL with deep RL, which can deal with

continuous systems and generalize to different environments. It also discusses its implications for

swarm behavior in robotic systems.

4.1. Scales reward in Shaping and Sparse methods

This section delves into two primary methods of configuring rewards: Shaping and Sparse

methods. Sparse rewards are structured so that the robot receives infrequent rewards, typically

only for significant actions like reaching the target, gripping the box, and others rather than for

every step or state transition. The general formula or representation for a sparse reward system can

be described in a conditional format, where the occurrence of specific events primarily determines

the reward as in equation (4.1):

 𝑅(𝑠, 𝑎, 𝑠́) = {
𝑥 𝑖𝑓 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑚𝑒𝑡
𝑃 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(4.1)

x: Represents the obtained value when the condition is met, typically ranging from xmin to

xmax, where xmin ≥ 0 and xmax > xmin. 𝑃: Represents penalties when the condition is not met,

ranging from 𝑃min to 𝑃max, where 𝑃min ≤ 𝑃max ≤ xmin. For example, in section 2.2.3 for

equations (2.4) and (2.5), the sparse method has been used to reward the robot when it reaches the

target or collides with obstacles.

The general formula for reward shaping involves modifying the original reward function

𝑅(𝑠, 𝑎, 𝑠́) in equation (4.1). The shaping term is added to provide the robot with additional

feedback to encourage specific actions. The modified reward function can be expressed as in

equation (4.2):

 𝑅́(𝑠, 𝑎, 𝑠́) = 𝑅(𝑠, 𝑎, 𝑠́) + 𝐹(𝑠, 𝑠́) (4.2)

The shaping function 𝐹(𝑠, 𝑠́) is carefully designed to align with the task's objectives, while

ensuring that it does not change the optimal policy defined by the original reward function. Ideally,

it should provide additional guidance to the learning process without altering the policy. A

common choice for 𝐹 is based on potential-based reward shaping, where:

 𝐹(𝑠, 𝑠́) = 𝛾Ф(𝑠́) − Ф(𝑠) (4.3)

Equation (2.6) is a clear example of the shaping method. The term ’Previous distance - Current

distance’. It rewards the robot for moving closer to the target where the shaping function F(s,s ́)

is defined as the reduction in distance from the target. By including this term, the reward function

THESES – REWARD STRUCTURES FOR SRS

54

directly encourages behaviors that decrease the distance to the target, facilitating faster and more

focused learning toward the main objective.

Beyond the conventional reward methods discussed, such as reward shaping and sparse

rewards, in addition to Inverse RL, several innovative approaches can further enhance the learning

and performance of swarm robotic systems. These methods can be tailored to the unique challenges

and opportunities presented by swarm behaviors and the complexity of their operational

environments. They indeed have been used in the previous section as follows:

Multi-objective Rewards: They involve designing reward functions that consider multiple

criteria simultaneously, which is essential for swarms that must balance competing objectives like

orientation, collaborating, and others, as in equation (3.9)

Curriculum learning: This method can be structured so that swarm robots master individual

skills before tackling collaborative strategies, as in section 2.2

Cooperative Reward Distribution: This method involves distributing rewards based on

individual achievements and contributions to the swarm's collective success. It encourages

cooperation and can be crucial in tasks that require tight coordination, like gripping the big box in

equation (3.7).

Hierarchical Rewards: This approach decomposes complex tasks into simpler sub-tasks, each

with its reward structure. It is particularly suitable for SR, where different layers of hierarchy could

correspond to individual robot tasks, sub-swarm tasks, and overall swarm objectives, such as the

mentioned section 3.2.1 to solve foraging tasks where sets of reward equations used to deal with

small boxes (3.5), and (3.6) and other sets (3.7), (3.8), (3.9) to deal with big boxes. So, the tasks

were divided into sub-tasks.

Understanding and selecting the appropriate reward scale is crucial for optimizing the efficiency

and effectiveness of the learning process in RL. The analysis study is conducted using the primary

approaches, sparse and shaping. It explores the balance between rewards for reaching goals and

penalties for colliding with obstacles[73],[74]. Traditionally, fixed rewards and penalties have

been used, but these may only sometimes yield the best performance across varying environments

and tasks. By generalizing the reward to a variable x and defining the penalty P as a percentage of

x as in equation (4.5)

 𝑃 = −𝛼𝑥 𝑥 > 0 (4.5)

So, The aim is to find the optimal balance that maximizes navigation efficiency and safety.

Through a series of simulations for the environment in Figure 4.1, we evaluate the effects of

different penalty percentages on key performance metrics, including the average time to reach the

goal, the number of collisions, and the success rate of goal achievement. The results are analyzed

to determine the optimal penalty percentage that provides the best trade-off between rapid goal

attainment and minimal collisions. To find the optimal percentage between the reward x (for

reaching the goal) and the penalty 𝑃 (for colliding with obstacles) to achieve the best performance

THESES – REWARD STRUCTURES FOR SRS

55

in a robot navigation problem, we need to balance the motivation for the robot to reach the goal

quickly while avoiding collisions effectively.

Figure 4.1. Reward scales in the sparse method.

The graph in Figure 4.1 presents the relationship between different values of α (the P as a

percentage of x) and two key performance metrics for a robot navigation task: Average collisions

and success rate during training, which records the number of reaching the goal. When α is lower

than 0.4, approximately there is no penalty. The robot cannot achieve its goal because it is not

punished when it distracts its path to the target or collides with walls, so it does not try to change

its behavior. As α increases from 0.4 to 1, average collisions generally decrease, dropping to zero

at α = 0.6. The success rate increases as α moves from -0.4 to 0.3, peaking at 85% at σ = 0.3.

Beyond σ = 0.3, the success rate decreases significantly, reaching zero at σ = 0.8 and above. The

data suggests that. The α value around 0.3 provides the best balance, achieving the highest success

rate with relatively low collisions. Higher penalties α ≥ 0.6 effectively eliminate collisions but

drop the success rate to zero, indicating that strict penalties discourage risky behavior but

discourage task completion. By increasing the penalty, the learning algorithm focuses on avoiding

obstacles rather than reaching the goal. The graph highlights a trade-off between minimizing

collisions and maintaining a high success rate, showing that moderate penalties can enhance safety

and efficiency. In contrast, overly harsh penalties may hinder the robot's ability to achieve its

objectives. These findings can guide the design of reward structures in RL for autonomous

navigation, optimizing the balance between safety and goal achievement.

To analyze the performance of robot navigation using the shaping method, we have to focus on

the trade-off between the F value in equation 4.3 and P based on the graph in Figure 4.1. The

THESES – REWARD STRUCTURES FOR SRS

56

shaping reward is calculated based on the reduction in distance to the target ∆𝐷𝑟𝑔, with an added

penalty for collisions 𝑃 , equation (4.6),(4.7).

 𝑅 = ∆𝐷𝑟𝑔 + 𝑃 𝑤ℎ𝑒𝑟𝑒: ∆𝐷 = 𝐷𝑟𝑔(𝑡 − 1) − 𝐷𝑟𝑔(𝑡) (4.6)

𝐷𝑟𝑔 = √(𝑥𝑟 − 𝑥𝑔)2 − (𝑦𝑟 − 𝑦𝑔)2

(4.7)

Figure 4.2. Reward scales in the sparse method.

By comparing the shaping method graph in Figure 4.2 to a sparse reward graph in Figure 4.1, it

can be observed that the shaping method provides continuous feedback based on the robot's

progress and penalties for collisions, leading to smoother performance curves and better

adaptability. The success rate and collision metrics change more consistently across different 𝜎

values, with a clear optimal range (around 0.1 to 0.3) where the success rate peaks (89%) and

collisions are minimized. In contrast, sparse rewards offer feedback only at specific events,

resulting in slower learning and more abrupt performance changes. Identifying the optimal penalty

range is more challenging with sparse rewards, and the robot might overfit the training

environment due to less frequent feedback. These observations highlight the advantages of shaping

methods in producing robust and efficient navigation strategies compared to sparse reward

structures in complex or dynamic environments.

THESES – REWARD STRUCTURES FOR SRS

57

4.2. Inverse DRL for Swarm Reward Recovery

 Inverse DRL for swarm reward recovery is an emerging approach that aims to figure out the

underlying reward structures guiding the behavior of SRs. By observing the trajectories of the

swarm, Inverse DRL techniques can infer the implicit rewards that drive effective coordination

and task completion. This method not only helps in understanding the intrinsic motivations of the

swarm but also aids in designing better reward mechanisms to enhance performance. Inverse DRL

for swarm reward recovery leverages the strengths of inverse learning algorithms to improve the

adaptability and efficiency of swarm systems in complex, dynamic environments.

4.2.1. Introduction to IRL

 IRL is a machine learning framework that focuses on recovering the reward function that an

agent is optimizing based on its observed behavior. This is in contrast to traditional RL, where the

reward function is known, and the objective is to find the optimal policy. In IRL, the goal is to

understand the motivations behind the observed behavior by inferring the reward function. This

can be particularly useful in scenarios where the reward function is not explicitly defined but can

be inferred from expert demonstrations. The key concept of IRL is expert demonstrations, which

are collected data by observing an expert performing a task, assuming that an optimal policy

generates the observed behavior. The observed data represented a set 𝜏 of trajectories as in equation

(4.8)

 𝜏 = {(𝑠0, 𝑎0), (𝑠1, 𝑎1), … … … . . , (𝑠𝑇 , 𝑎𝑇)} (4.8)

Several methods have been developed for IRL, including:

- Maximum Entropy IRL: This approach assumes that the observed behavior is optimal and

that, among all possible behaviors, the expert's behavior maximizes the entropy of the

policy distribution. The objective is to find the reward function that maximizes the

likelihood of the observed trajectories under the maximum entropy principle, as in equation

(4.9), [75].

 𝑅 = argmax
𝑅

∑ 𝑙𝑜𝑔 𝑃(𝜏|𝑅)

𝜏∈𝐾

 (4.9)

- Feature-Based Linear IRL: This method assumes that the reward function is a linear

combination of features, where the features extracted from states by mapping function

∅(𝑆): 𝑆 → [0,1] as in equation (4.10) [76].

 𝑅(𝑆) = 𝑤𝑇∅(𝑆) (4.10)

- Generative Adversarial Imitation Learning (GAIL) combines generative adversarial

networks (GANs) with imitation learning to infer the reward function. A discriminator is

trained to distinguish between expert 𝐸𝜏~𝜋𝐸[log 𝐷𝑐(𝜏)] and agent

THESES – REWARD STRUCTURES FOR SRS

58

trajectories𝐸𝜏~𝐺[𝑙𝑜𝑔(1 − 𝐷𝑐(𝜏))], while the agent learns to produce trajectories that fool

the discriminator, as in equation (4.11) [77].

 min
𝐺

max
𝐷𝑐

𝐸𝜏~𝜋𝐸[log 𝐷𝑐(𝜏)] + 𝐸𝜏~𝐺[𝑙𝑜𝑔(1 − 𝐷𝑐(𝜏))] (4.11)

While Maximum Entropy IRL provides a principled way to handle uncertainty in reward inference,

it needs help with the high-dimensional and complex interactions typical in SR. It also requires

careful feature engineering, which can be challenging and time-consuming. On the other hand,

Feature-Based Linear IRL relies on linear combinations of predefined features to infer the reward

function. Although simpler and computationally less intensive, it might not effectively capture the

non-linear and complex relationships in swarm behaviors. It also suffers from the limitation of

requiring manual feature engineering, which might not be feasible for intricate swarm dynamics.

GAIL is better suited for SRs due to its ability to handle high-dimensional data, robustness to

complex behaviors, scalability, and adaptability to diverse environments. Its use of deep learning

techniques allows for automatic feature extraction and learning from complex, coordinated

behaviors within the swarm, making it an ideal choice for inferring reward structures and

optimizing swarm performance.

4.2.2. Objective functions, reward functions, and collective behaviors

 The objective function of swarm robots defines the swarm's overall goal. This could include area

coverage, target tracking, formation control, or cooperative transportation. The objective function

typically quantifies the swarm's performance in efficiency, accuracy, and robustness metrics. The

reward function assigns a scalar value to each state or state-action pair, reflecting the immediate

benefit of being in that state or performing that action. In the context of swarm robotics, the reward

function should align with the swarm's objective function, guiding individual robots to take actions

that collectively achieve the swarm's overall goal. It translates the high-level objectives into

actionable feedback for individual robots. IRL helps in designing the reward function by observing

expert swarm behavior. Instead of manually defining the reward structure, IRL can infer it from

demonstrations of successful swarm operations.

 For example, suppose a swarm of robots effectively covers an area in minimal time with no

collisions. In that case, IRL can analyze the trajectories and actions to determine the implicit

reward function being optimized. Once the reward function is inferred using IRL, it can be used

to train new robots or improve existing ones using RL. The inferred reward function ensures the

learned policies align with the swarm's objectives.

Generating collective behaviors in SRs is related to the nature of the specific task. For instance,

SR systems deployed in search and rescue operations leverage algorithms that enhance area

coverage and accelerate the detection of targets. In navigation-focused tasks, SR systems might

use algorithms designed for pathfinding, allowing the robots to navigate complex terrains

efficiently, avoiding obstacles, and reducing the time to reach the target by choosing the shortest

path [78-81].

THESES – REWARD STRUCTURES FOR SRS

59

 The task-specific design of SR is a field marked by complexity due to unpredictable interactions

within individuals through swarm to obtain. The lack of a generalized method for crafting desired

collective behaviors underscores the innovative research in this domain. Among these are bio-

inspired algorithms [82-85], which mimic natural phenomena like the movement of bird flocks or

ant foraging. These algorithms contribute to developing decentralized control systems, wherein

each robot operates on simple rules derived from immediate surroundings and peer interactions.

The modular design strategy also involves constructing robots with versatile modules that can be

reconfigured according to the task requirements. This method enhances the adaptability and

scalability of SR systems, permitting customization to various environments and challenges by

adjusting the modules as needed [86],[87].

 Evolutionary robotics is another method that employs evolutionary algorithms to refine robot

control systems, thereby enabling their behaviors to advance and become more efficient over time.

This approach parallels natural selection, allowing for the autonomous development of solutions

optimally suited to their environments and tasks, with continuous enhancements as robots

encounter new conditions [88]. Furthermore, machine learning techniques, particularly RL, offer

a powerful mechanism for developing versatile SR systems capable of handling a broad spectrum

of tasks. RL enables robots to be independent and learn by interactions with other robots and their

environment, simplifying the design of collective behaviors into smaller, more manageable

components that can dynamically adapt to new challenges. R is the crucial element in RL, which

drives robots to optimize their actions for maximum cumulative rewards over time. R's design

reflects the task's primary goals modeled as an objective function, which fosters the collective

behavior of SR. By observing expert behavior, IRL offers a refined technique that teaches the

underlying reward functions. Unlike conventional RL, where a policy is learned directly from a

predefined reward setup, IRL gains insights into complex behaviors through demonstrations,

bypassing the need to adjust the reward formula explicitly. This approach is particularly beneficial

in SRs, where crafting explicit reward functions can be complex due to the intricate interactions

and dynamics among the robots. IRL offers an alternative by deriving the reward function from

expert demonstrations, thus eliminating the need for manual reward construction and providing a

more structured learning trajectory than traditional methods. This allows robots to learn policies

that match or surpass the expert's strategy based on the inferred rewards without necessitating deep

mathematical knowledge or a detailed understanding of the operational dynamics. This approach

reduces human bias and potential suboptimality [89].

 Researchers have applied IRL in several contexts, such as using maximum entropy IRL to

deduce reward functions from GPS data on pigeon flocks, simulating flocking behavior, and

identifying leader-follower dynamics [90]. It has also been utilized in SRs for tasks like enhancing

area coverage in search and rescue operations, where it leverages human expert demonstrations to

train robots in optimal coverage strategies [91]. Some research combines IRL with automatic

modular design to create control software for SRs based solely on these demonstrations, bypassing

the need for explicitly defined rewards and objectives [92]. Despite challenges in handling high-

dimensional, continuous state-action spaces, IRL has shown potential for generalizing across

THESES – REWARD STRUCTURES FOR SRS

60

various tasks and environments, crucial for developing adaptive and robust SR systems capable of

operating in diverse scenarios. In this chapter, we have proposed a model that stands out from

others in its ability to generalize across different conditions and automate reward design, proving

effective in complex, continuous environments with continuous state-action spaces and enabling

the generation of various collective behaviors like navigation and search tasks. In SRs, designing

effective control strategies for collective behavior is challenging due to complex agent interactions

and multiple objectives. Imitation Learning (IL) directly maps observed state-action pairs from

expert demonstrations to policies, enabling agents to replicate behaviors without understanding

underlying motivations. Supervised Reward Learning involves training a model to predict rewards

from state-action pairs using labeled data, which requires explicit reward annotations and may not

generalize well to new scenarios. Inverse Deep Reinforcement Learning (IDRL), on the other

hand, infers the implicit reward function from expert behavior, allowing agents to learn the

objectives driving the behavior and apply this understanding to novel situations. IDRL is

particularly advantageous for collective behaviors in swarm robotics, as manually crafting reward

functions for complex, multi-objective tasks are often infeasible. By uncovering the expert's

implicit rewards, IDRL facilitates the emergence of desired collective behaviors without the need

for explicit reward specification.

4.2.3. Proposed IRL-RL model

 The proposed IRL-RL model is designed to infer rewards by demonstrating for different tasks.

It is deployed for two tasks already solved in Chapter 3 by RL, with an explicit reward formula.

So, we coped with two tasks: searching for green boxes by following the light that emerges from

them. Second, the navigation task where robots move from initial positions to a target is illustrated

as a yellow circle (Y), as shown in Figure 4.3 [93]. The environment is a 3×3 m2 square area with

four walls.

The parameters of mobile robots were set as in section 2.2.1.

Figure 4.3. IRL-RL’s environment.

Figure 4.4 illustrates the proposed IRL-RL model. It consists of two sections. RL is deployed to

train the robots to generate the policy based on the reward inferred by IRL. The architecture of RL

THESES – REWARD STRUCTURES FOR SRS

61

and parameters are given in the section 2.2.3. In the IRL part, we proposed the following structure,

The pseudo code 4.1 explains the steps of this model, :

- Data Loader: This component is a repository for data received from expert demonstrations

and training sessions. Data from expert demonstrations is gathered using a pre-trained

expert model, while training data is accumulated during the PPO training phase. The data

comprises only state frames, which include flags but omit actions. These flags indicate task

completion, such as locating a specific item in a search task or arriving at a designated

point in navigation tasks. The model is equipped to handle both segmented and continuous

state inputs. The functionality of these state types was explored in the results section. In

segmented mode, sensor readings are first normalized and then categorized into five

segments ranging from 0 to 1, each representing a different value.

- Feature Extractor: As illustrated in Table 2, this component details the types of data, and

the operations applied to the data received from the data loader. The incoming data is in its

raw form, where values from light sensors range between [0, 4095]. Meanwhile, the

distance D spans from [0, 3] meters, and the angle θ varies from [−π, π] rad. The function

∅(s) outlined in Equations (4.12) and (4.13) transforms these raw states, S, into a feature

vector that is more apt for input into the model.

- A shift function is implemented on the normalized states to derive values at t−1. These

values facilitate the establishment of correlations between states, which is crucial for

enhancing the R network's efficacy in determining the direction of state changes.

 ∅(𝑆): 𝑆 → [0,1] (4.12)

∅(𝑆) =
𝑀𝑎𝑥𝑂𝑢𝑡𝑝𝑢𝑡 − 𝑀𝑖𝑛𝑂𝑢𝑡𝑝𝑢𝑡

𝑀𝑎𝑥𝑉𝑎𝑙𝑢𝑒 − 𝑀𝑖𝑛𝑉𝑎𝑙𝑢𝑒
. (𝑆 − 𝑀𝑎𝑥𝑉𝑎𝑙𝑢𝑒) + 𝑀𝑎𝑥𝑂𝑢𝑡𝑝𝑢𝑡

(4.13)

Table 4.1. Features Extractor Input and Output for Searching and Navigation Tasks.

Task Input of features extractor
(from the data loader)

Output of features extractor

Searching 𝐿𝑆0
(𝑡)

, 𝐿𝑆7
(𝑡)

, 𝑓𝑙𝑎𝑔 (𝐹𝑖𝑛𝑑𝑖𝑛𝑔 𝑎

𝑏𝑜𝑥)
𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 [𝐿𝑆0

(𝑡−1)
, 𝐿𝑆0

(𝑡)
, 𝐿𝑆7

(𝑡−1)
, 𝐿𝑆7

(𝑡)
],

𝑓𝑙𝑎𝑔 (𝐹𝑖𝑛𝑑𝑖𝑛𝑔 𝑎 𝑏𝑜𝑥)
Navigation 𝐷(𝑡), 𝜃(𝑡), 𝑓𝑙𝑎𝑔 (𝑅𝑒𝑎𝑐ℎ𝑖𝑛𝑔 𝑃) 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 [𝐷(𝑡−1), 𝐷(𝑡), 𝜃(𝑡−1), 𝜃(𝑡)], flag

(Reaching P)

- Reward Network: The reward neural network aims to estimate the underlying reward

closely. This estimation is achieved by inputting the feature vector into the neural network,

which outputs a scalar reward value. The network is structured with fully connected layers

configured as (length(feature−vectors) ×15×1FC- ReLU activation function).

In the scenarios described, the feature vectors are typically of length 5, as detailed in Table

4.1.

THESES – REWARD STRUCTURES FOR SRS

62

- Deep IRL: The backpropagation process in the reward network involves computing losses

based on Equation (4.14), which ensures the reward neural network's weights are updated

accordingly. The key loss function used here is the binary cross-entropy loss, which

effectively differentiates between the rewards observed from experts and those generated

during training. This loss function is used to distinguish expert demonstrations from

learned policies. The first term maximizes the probability of expert rewards 𝑅𝑒𝑥𝑝𝑒𝑟𝑡, while

the second term minimizes the probability of learned policy rewards 𝑅𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔. The

sigmoid function ensures the outputs are in the range (0,1), making this loss similar to

binary cross-entropy for classification.

 𝑙𝑜𝑠𝑠 = − log (𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑅𝑒𝑥𝑝𝑒𝑟𝑡)) − 𝑙𝑜𝑔 (1 − 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑅𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔)) (4.14)

Figure 4.4. IRL-RL model.

THESES – REWARD STRUCTURES FOR SRS

63

Algorithm 1: Deep Inverse Reinforcement Learning (DIRL).

4.2.4. Results and discussion

 This model concentrated on investigating how rewards influence swarm behavior within a

simulated setting, showcasing the capability of deep IRL to estimate the reward function without

relying on complex mathematical procedures. We implemented this in two distinct tasks: searching

for boxes using continuous RL with segmented features and navigating to a specific location

identified as Y, with continuous RL but utilizing continuous features. The effectiveness of the

swarm was assessed and validated by comparing the rewards from the IRL- RL model to those

from a pre-trained model using expert RL, highlighting the proposed model's proficiency in

guiding the swarm to accomplish the set tasks. Additionally, we analyzed the behaviors generated

by the swarm related to the both models, emphasizing the importance of feature selection in

accurately deriving the reward function. These features varied according to the defined problem

and the objective function of the swarm system, as detailed in Table 4.1. It clarifies the distinct

features selected for searching and navigation tasks. It also considers sensor readings at time steps

t and t-1 to enable the R network to detect changes in light intensity for the searching task or

alterations in distance for the navigation task. Using a deep neural network to represent R, coupled

with a binary cross-entropy loss function, allows the model to manage continuous environments

Step 1: Collect Expert Demonstrations

 Collect expert state-action pairs: Dexpert = {(se, ae)}

Step 2: Initialize Reward Function: (length(feature−vectors) ×15×1 FC with ReLU).

Same hyperparameter of actor and critic of the PPO neural network.

 Initialize reward neural network Rθ with weights w0

Step 3: Train Initial Policy with RL

 Train policy π0 using RL with initial reward Rθ

 Collect agent-generated data: Dagent = {(sπ, aπ)}

Step 4: Compute Predicted Rewards

 Forward propagate through Rθ:

 Re = Rθ(se, ae) # Predicted rewards for expert actions

 Rπ = Rθ(sπ, aπ) # Predicted rewards for agent actions

Step 5: Compute Loss Function

 Compute loss L(θ) based on expert vs. agent rewards (Equation 4.14)

Step 6: Update Reward Function

 Backpropagate loss and update reward weights: w1 = w0 - α * ∇L(θ)

 Generate new reward function Rθ1

Step 7: Train RL Agent with Updated Rewards

 Train new policy π1 using RL with updated Rθ1

 Collect new agent-generated data: Dagent = {(sπ1, aπ1)}

Step 8: Iterate Until Convergence

 Repeat Steps 4-7 until policy π converges to optimal behavior

 (The condition here is the number of iterations)

 Return: Optimized policy π* and learned reward function Rθ*

THESES – REWARD STRUCTURES FOR SRS

64

effectively. Thus, in this models, we reconstructed the reward in both continuous and segmented

modes to develop policies in RL that handle continuous state and action spaces.

a. Searching task

 In this scenario, the reward mechanism is linked to variations in light intensity as detected by

the robots' sensors. The reward increases when robots navigate towards areas with stronger light

intensity and peaks when they locate the targeted boxes. Recovering the reward which leads to a

successful behavior required three rounds as follows:

The reward neural network was initially set up with arbitrary weights labeled as ω0. At this stage,

RL learned a stochastic policy π0. According to this policy, demonstrations were collected. The

data loader then processed data gathered under this policy. Leveraging expert and newly collected

data based on policy π0, the reward network is trained. This training adjusted the weights to ω1.

Subsequently, the RL component, depicted in Figure 4.4, retrained to develop its updated policy

π1 based on these adjusted weights. The cycle concluded with the robot learning policy π2,

characterized by weights ω2, effectively accomplishing the desired task as depicted in Figure 4.5.

The reward function in the expert-driven RL model, represented by a red line, optimizes the reward

as the robot moves closer to the light source or box, maintaining high values upon arrival.

Conversely, the reward deduced by the IRL-RL model, shown by a blue line, reflects the light

intensity increases segmented, mirroring the RL model’s behavior with distinct transitions due to

the segmented mode of feature extraction. Therefore, the data is categorized into specific

segments, with states from 0 to 0.2 indicating darker areas that receive uniform rewards. As

illustrated in Figure 4.6, in the IRL-RL model, sensor readings LS0 and LS7 in the 0 to 0.2 range

yield minimal rewards, which increase as the robot moves into the 0.2-0.4 segment. The reward

significantly spikes in the 0.8-1 range, mentioning the robot’s proximity to the box. The side-by-

side visualization of the reward functions from the expert RL and IRL-RL model showcases their

differences, with a darker blue denoting the latter. Notably, a consistent gradient pattern across

both models indicates a direct correlation of rewards with increasing light intensity. This confirms

that the robots have effectively learned to search for and locate boxes, validating the designed

behavior. This demonstrates the IRL-RL model’s capacity to replicate the decision-making

strategy of the pre-trained robot.

THESES – REWARD STRUCTURES FOR SRS

65

Figure 4.5. Normalized IRL and RL rewards over three episodes for the ω2-searching task.

Figure 4.6. Heat map of the true reward (right) and the recovered reward (left) for the

searching task.

 The behavior of robots, as depicted in the bar chart of Figure 4.7, demonstrates the effectiveness

of the IRL-RL model in comparison to a pre-trained expert RL model across a series of ten

incremental tasks involving box collections. The IRL-RL model showcases a behavior pattern that

allows robots to collect boxes sequentially round-triply. Notably, variations in the times taken to

collect boxes indicate differing behaviors. This observation suggests that the IRL-RL model

doesn't merely replicate the actions of the RL model; instead, it independently learns to accomplish

the task by developing its unique behaviors. This indicates that IRL effectively masters the

inferring of reward structures that lead to successful task completion rather than simply imitating

actions.

THESES – REWARD STRUCTURES FOR SRS

66

Figure 4.7. Swarm searching behavior by IRL-RL and traditional RL.

b. Navigation task
 The identical procedure, encompassing the same number of iterations, was utilized for the

navigation task. Initially, the reward neural network started with randomly assigned weights,

designated as ω0, which generated a stochastic policy π0, initiating the RL model's learning

trajectory. After the initial iteration, data gathered during this phase was employed to refine the

reward network, adjusting the weights to ω1. This adjustment allowed the RL model to enhance

its policy to π1. The cycle concluded with a second update, leading to the final weights ω2, which

equipped the model to perform the required navigation tasks proficiently, as shown in Figure 4.8.

Figure 4.8. Normalized IRL and RL rewards over 3 episodes for ω2- Navigation task.

THESES – REWARD STRUCTURES FOR SRS

67

Figure 4.9. Heat map of the true reward (right) and the recovered reward (left) for the

Navigation task.

Figure 4.9 displays the interpolated IRL and RL reward models, featuring a color gradient shifting

from red to blue, which reflects changes in reward intensity based on the robot’s orientation and

proximity to the target. Higher rewards are indicated by red, associated with smaller angles and

closer distances, signifying the robot’s direct alignment and nearness to the target. Conversely, as

the angle increases or the distance extends, the reward decreases, as demonstrated by the color

transition to blue. Unlike the search task, there is no division into discrete state ranges. The

continuity of the data facilitates a smoother visual gradient and more detailed adjustments of the

reward to the robot’s position and orientation to the target. The resemblance in the trajectories

displayed in both charts in Figure 4.10 shows that IRL has effectively assimilated the data from

RL, closely mimicking the expert RL’s approach. This indicates a successful deployment of IRL,

where the algorithm has adeptly deduced the strategies and decisions deemed optimal by RL.

Figure 4.10. Robots' navigation paths.

THESES – REWARD STRUCTURES FOR SRS

68

4.3. Conclusion of Reward Methods in DRL for Swarm Robotics

 This chapter demonstrates the crucial impact of well-structured reward methods on shaping SRs'

behaviors and learning outcomes in various task environments. Applying diverse reward strategies

such as sparse rewards, shaping rewards, and deep IRL has shown significant differences in how

SRs adapt to and excel in their assigned tasks. In addition to integrating multi-objective rewards,

curriculum learning and cooperative reward distribution within the reward systems can further

refine the behavior and efficiency of swarms, especially in multi-task environments.

It highlighted how reward shaping facilitated more direct and efficient behaviors toward

objectives, like reaching targets or navigating obstacles, compared to sparse rewards, which, while

simplifying the reward design, required more rounds of learning to achieve similar outcomes. It

introduces a relationship between penalty percentages and key performance metrics such as

average time to reach the goal, number of collisions, and success rate. It showed that a balanced

penalty rate, around 0.1 to 0.3, provided the best trade-off between rapid goal attainment and

minimal collisions. This demonstrates that moderate penalties can significantly enhance safety and

efficiency in navigation tasks.

 Finally, the IRL-RL model that utilizes deep IRL to accurately infer the reward function from

expert behavior demonstrations was introduced. Rather than directly learning behaviors, IRL aims

to comprehend the underlying motivations for specific actions or strategies by estimating the

rewards needed to accomplish tasks through generated behaviors. This approach eliminates the

necessity for extensive manual adjustment of reward functions and enables more intuitive,

demonstration-based learning. The proposed IRL-RL model can manage continuous state spaces

and dynamic environments, addressing continuous RL challenges through a deep neural network

to represent the reward function R. Additionally, it can recover the reward function using two types

of data from the data loader: segmented and continuous features, catering to nuanced strategies.

The model was evaluated in two tasks within a simulated swarm robotics environment: navigating

to a predefined location and searching for specific items. It proved highly effective in inferring

and adapting reward structures crucial for successfully directing autonomous robotic swarms to

complete these tasks. Furthermore, The results underscore the model's generalization ability across

various scenarios.

THESES – NEW SCIENTIFIC RESULTS

69

THESES – NEW SCIENTIFIC RESULTS

1. Swarm intelligence algorithms, particularly PSO and PPO, are widely applied in swarm

robotics. While prior research has explored both methods individually, little attention

has been given to a direct comparison of their impact on collective swarm behavior,

adaptability, and coordination in decentralized robotics. Unlike studies that primarily

integrate RL into PSO for parameter tuning and optimization, this research provides a

comparative behavioral analysis of PSO and PPO, evaluating their individual strengths,

limitations, and potential for structured hybridization. By examining their fundamental

role in swarm formation, this study paves the way for more effective hierarchical,

structured, and hybrid control strategies. Publications [k1] ,[k2].

2. This study presents a method for optimizing mobile robot navigation using DRL by

enhancing the PPO algorithm with curriculum learning. The research demonstrates

improved convergence efficiency and adaptability. A comparative analysis between the

modified PPO, original PPO, and other algorithms highlights the superior performance

of the curriculum-augmented PPO, particularly in handling complex, dynamic

environments. Additionally, the study investigates swarm robot training, revealing that

curriculum learning significantly enhances success rates, collision avoidance, and

generalization capabilities in novel scenarios [k3] ,[k4].

3. It introduces a hybrid approach combining automatic design methods like DRL or PSO

within a modular design to tackle the foraging problem in swarm robotics. The system,

implemented in a 3D environment using Webots, involves 8 E-Puck robots equipped

with light sensors to search for and transport dynamically moving resources. The

modular architecture enhances system manageability and reduces computational

demands, making it easier to address complex, non-static foraging tasks. The

simulations show that the RL-based model outperforms PSO regarding task efficiency,

resource collection, and adaptability to dynamic environments. RL-equipped robots

demonstrate superior individual learning and autonomy, contributing to more effective

collective swarm intelligence, while PSO relies more on the collective knowledge of the

swarm [k5].

THESES – NEW SCIENTIFIC RESULTS

70

4. The study systematically examines how reward functions can be structured to guide

robots in tasks such as efficient resource collection, adaptive navigation, and

decentralized decision-making. A key aspect of this research is the balancing of

penalties and rewards, ensuring that learning is neither hindered by excessive

punishment nor misdirected by overly generous rewards, which could lead to

suboptimal behaviors. A major contribution of this thesis is the introduction of a Deep

Inverse Reinforcement Learning (RL-IRL) model designed to discover optimal reward

structures for guiding swarm behavior in complex and unpredictable environments.

Unlike traditional RL methods, which rely on manually defined rewards, IRL extracts

implicit reward functions by learning from expert swarm demonstrations. This method

is particularly effective in handling continuous state and action spaces, allowing the

swarm to develop adaptive collective behaviors based on specific task objectives [k5]

,[k6] ,[k7] ,[k8].

ACKNOWLEDGMENTS

71

ACKNOWLEDGMENTS

First and foremost, I would like to express my deepest gratitude to the University of Miskolc for

allowing me to pursue my doctoral studies. I am profoundly thankful to my supervisor, Dr. Béla

Kovács, for his unwavering support, guidance, and belief in my work. Your mentorship has been

instrumental in helping me navigate the complexities of my research.

I would also like to extend my heartfelt thanks to Ali Hammoud for his collaboration and

dedication in developing the RL-IRL and foraging models. Working alongside you has been an

enriching experience that significantly contributed to the success of this research.

To my beloved parents, words cannot fully express the depth of my gratitude. To my father, whose

wisdom and strength have always been my guiding light, thank you for your endless sacrifices and

for believing in me, even when I doubted myself. To my mother, whose love and warmth have

been a constant source of comfort, thank you for your unwavering support and always being there,

no matter how far away I was.

To my dear sisters, Sawsan and Hanadi, you have been my pillars of strength and greatest

cheerleaders. Your love, encouragement, and understanding have meant the world to me, and I am

forever grateful to have you by my side. I want to express my heartfelt gratitude to my wonderful

nieces, Zainab, Bushra, Rama, and Tala, for their endless joy and love and to Yhia and Samer for

their constant support and encouragement.

To Hla, Assi, and Farah: thank you for your friendship, support, and the joy you bring into my life.

REFERENCES

72

REFERENCES

[1] Cheraghi AR., Shahzad S., Graffi K. ”Past, present, and future of swarm robotics.” In

Intelligent Systems and Applications: Proceedings of the 2021 Intelligent Systems

Conference (IntelliSys), v. 3, pp. 190-233, 2022. Springer International Publishing.

https://doi.org/10.1007/978-3-030-82199-9_13.

[2] Debie E., Kasmarik K., Garratt M. ” Swarm robotics: A Survey from a Multi-tasking

Perspective.” ACM Computing Surveys,v. 56, no. 2, pp. 1-38, 2023.

https://doi.org/10.1145/3611652.

[3] Dias PG., Silva MC., Rocha Filho GP., Vargas PA., Cota LP., Pessin G. ”Swarm robotics: A

perspective on the latest reviewed concepts and applications.” Sensors. vol. 21, no. 6, 2021.

https://doi.org/10.3390/s21062062

[4] Brambilla M., Ferrante E., Birattari M., Dorigo M.” Swarm robotics: a review from the

swarm engineering perspective.” Swarm Intelligence. vol. 7, pp. 1-41, 2013.

https://doi.org/10.1007/s11721-012-0075-2

[5] Olaronke, Iroju, Ikono R., Ishaya G., O. A. Ojerinde, and Olaleke J. ”A systematic review of

swarm robots.” Drones, v. 7, no. 4, pp. 269, 2023. https://doi.org/10.3390/drones7040269

[6] Reynolds CW.” Flocks, herds, and schools: A distributed behavioral model.” In Proceedings

of the 14th annual conference on Computer graphics and interactive techniques, pp. 25-34,

1987. https://doi.org/10.1145/37401.37406

[7] Kennedy J., Eberhart R. "Particle swarm optimization." In Proceedings of ICNN'95 -

International Conference on Neural Networks, v. 4, pp. 1942-1948, 1995. IEEE.

https://doi.org/10.1109/ICNN.1995.488968

[8] Dorigo M. "Ant colony optimization." Scholarpedia, v. 2, no. 3, pp. 1461, 2007.

https://doi.org/10.4249/scholarpedia.1461.

[9] Czirók A., Vicsek T. "Collective behavior of interacting self-propelled particles." Physica A:

Statistical Mechanics and its Applications, v. 281, no. 1-4, pp. 17-29, 2000.

https://doi.org/10.1016/S0378-4371(00)00013-3

[10] Brooks R. "A robust layered control system for a mobile robot." IEEE Journal on Robotics

and Automation, v. 2, no. 1, pp. 14-23, 1986. https://doi.org/10.1109/JRA.1986.1087032

[11] Devi K.V., Smitha B.S., Lakhanpal S., Kalra R., Sethi V.A., Thajil S.K. "A review: Swarm

robotics: Cooperative control in multi-agent systems." In E3S Web of Conferences, v. 505,

p. 03013, 2024. EDP Sciences. https://doi.org/10.1051/e3sconf/202450503013

[12] Nazarova A.V., Zhai M. "Distributed solution of problems in multi-agent robotic systems."

Smart Electromechanical Systems: Group Interaction, pp. 107-124, 2019.

https://doi.org/10.1007/978-3-319-99759-9_9

[13] Hüttenrauch M., Šošić A., Neumann G. "Deep reinforcement learning for swarm systems."

Journal of Machine Learning Research, v. 20, no. 54, pp. 1-31, 2019.

[14] Orr J., Dutta A. "Multi-agent deep reinforcement learning for multi-robot applications: A

survey." Sensors, v. 23, no. 7, pp. 3625, 2023. https://doi.org/10.3390/s23073625

[15] Bayındır L. "A review of swarm robotics tasks." Neurocomputing, v. 172, pp. 292-321,

2016.. https://doi.org/10.1016/j.neucom.2015.05.116

https://doi.org/10.1007/978-3-030-82199-9_13
https://doi.org/10.1145/3611652

REFERENCES

73

[16] Sutton R.S., Barto A.G. Reinforcement Learning: An Introduction. MIT Press, 2018.

[17] Watkins C.J.C.H., Dayan P. "Q-learning." Machine Learning, v. 8, no. 3-4, pp. 279-292,

1992. https://doi.org/10.1007/BF00992698

[18] Rummery G.A., Niranjan M. "On-line Q-learning using connectionist systems." Technical

Report CUED/F-INFENG/TR 166, University of Cambridge, Department of Engineering,

1994.

[19] S.Y., Liu Y., Wang G., Zhang H. "Deep learning for plant identification in natural

environment." Computational Intelligence and Neuroscience, v. 2017, pp. 1-10, 2017.

https://doi.org/10.1155/2017/7361042

[20] Haarnoja T., Zhou A., Abbeel P., Levine S. "Soft actor-critic: Off-policy maximum entropy

deep reinforcement learning with a stochastic actor." Proceedings of the 35th International

Conference on Machine Learning (ICML), v. 80, pp. 1861-1870, 2018.

https://doi.org/10.48550/arXiv.1801.01290

[21] S.J., Levine S., Abbeel P., Jordan M., Moritz P. "Trust region policy optimization." In

International Conference on Machine Learning, pp. 1889-1897, PMLR, 2015..

https://doi.org/10.48550/arXiv.1502.05477

[22] C.N. "Deep deterministic policy gradient for urban traffic light control." arXiv preprint,

arXiv:1703.09035, 2017.https://doi.org/10.48550/arXiv.1703.09035

[23] S.J., W.F., Dhariwal P., Radford A., Klimov O. "Proximal policy optimization algorithms."

arXiv preprint, arXiv:1707.06347, 2017. https://doi.org/10.48550/arXiv.1707.06347

[24] M.W., Park B., Nengroo S.H., Kim T., Har D. "Path planning of cleaning robot with

reinforcement learning." In 2022 IEEE International Symposium on Robotic and Sensors

Environments (ROSE), pp. 1-7, IEEE, 2022. https://doi.org/10.48550/arXiv.2208.08211

[25] Y.L., Bi J., Yuan H. "Dynamic Path Planning for Mobile Robots with Deep Reinforcement

Learning." IFAC-PapersOnLine, v. 55, no. 11, pp. 19-24, 2022.

https://doi.org/10.1016/j.ifacol.2022.08.042

[26] Y.X., Wang P., Zhang Z. "Learning-based end-to-end path planning for lunar rovers with

safety constraints." Sensors, v. 21, no. 3, p. 796, 2021. https://doi.org/10.3390/s21030796

[27] J.X., Wang Z. "Proximal policy optimization based dynamic path planning algorithm for

mobile robots." Electronics Letters, v. 58, no. 1, pp. 13-15, 2022.

https://doi.org/10.1049/ell2.12342

[28] Tan Z., Karaköse M. "Proximal policy based deep reinforcement learning approach for

swarm robots." In 2021 Zooming Innovation in Consumer Technologies Conference (ZINC),

pp. 166-170, IEEE, 2021. https://doi.org/10.1109/ICRA.2021.9562035

[29] Wu Z., Yu C., Ye D., Zhang J., Zhuo H.H. "Coordinated proximal policy optimization."

Advances in Neural Information Processing Systems, v. 34, pp. 26437-26448, 2021.

[30] Sadhukhan P., Selmic R.R. "Multi-agent formation control with obstacle avoidance using

proximal policy optimization." In 2021 IEEE International Conference on Systems, Man, and

Cybernetics (SMC), pp. 2694-2699, IEEE, 2021.

https://doi.org/10.1109/SMC52423.2021.9658635

[31] Khaldi B., Cherif F. "An overview of swarm robotics: Swarm intelligence applied to multi-

robotics." International Journal of Computer Applications, v. 126, no. 2, 2015.

[32] Blum C., Groß R. "Swarm intelligence in optimization and robotics." Springer Handbook

of Computational Intelligence, pp. 1291-1309, 2015. https://doi.org/10.1007/978-3-662-

43505-2_66

REFERENCES

74

[33] Francesca G., Birattari M. "Automatic design of robot swarms: achievements and

challenges." Frontiers in Robotics and AI, v. 3, p. 29, 2016.

https://doi.org/10.3389/frobt.2016.00029

[34] Iskandar A., Kovács B. "A survey on automatic design methods for swarm robotics

systems." Carpathian Journal of Electronic & Computer Engineering, v. 14, no. 2, 2021.

https://doi.org/10.2478/cjece-2021-0006

[35] Mehta D., Sharma A., Ravichandran R. "A review on robotic swarm optimization

techniques." Authorea Preprints, 2023. https://doi.org/10.36227/techrxiv.23675199.v1

[36] Ab Aziz N.A., Ibrahim Z. "Asynchronous particle swarm optimization for swarm robotics."

Procedia Engineering, v. 41, pp. 951-957, 2012.

doi:https://doi.org/10.1016/j.proeng.2012.07.268

[37] Rossides G., Metcalfe B., Hunter A. "Particle swarm optimization—an adaptation for the

control of robotic swarms." Robotics, v. 10, no. 2, p. 58, 2021.

https://doi.org/10.3390/robotics10020058

[38] Hamami M.G.M., Ismail Z.H. "A systematic review on particle swarm optimization

towards target search in the swarm robotics domain." Archives of Computational Methods in

Engineering, pp. 1-20, 2022. https://doi.org/10.1007/s11831-022-09819-3

[39] Blais M.-A., Akhloufi M.A. "Reinforcement learning for swarm robotics: An overview of

applications, algorithms and simulators." Cognitive Robotics, 2023.

https://doi.org/10.1016/j.cogr.2023.07.004

[40] Jin B., Liang Y., Han Z., Ohkura K. "Generating collective foraging behavior for robotic

swarm using deep reinforcement learning." Artificial Life and Robotics, v. 25, pp. 588-595,

2020. https://doi.org/10.1007/s10015-020- 00642-2

[41] Jin B., Liang Y., Han Z., Hiraga M., Ohkura K. "A hierarchical training method of

generating collective foraging behavior for a robotic swarm." Artificial Life and Robotics,

pp. 1-5, Feb 2022. https://doi.org/10.1007/s10015-021-00714-x

[42] Wei Y., Nie X., Hiraga M., Ohkura K., Car Z. "Developing end-to-end control policies for

robotic swarms using deep Q-learning." Journal of Advanced Computational Intelligence and

Intelligent Informatics, v. 23, no. 5, pp. 920-927, 2019.

https://doi.org/10.20965/jaciii.2019.p0920.

[43] Garaffa L.C., Basso M., Konzen A.A., de Freitas E.P. "Reinforcement learning for mobile

robotics exploration: A survey." IEEE Transactions on Neural Networks and Learning

Systems, 2021. https://doi.org/10.1109/TNNLS.2021.3124466.

[44] Di Mario E., Talebpour Z., Martinoli A. "A comparison of PSO and reinforcement learning

for multi-robot obstacle avoidance." In 2013 IEEE Congress on Evolutionary Computation,

pp. 149-156, IEEE, 2013. https://doi.org/10.1109/CEC.2013.6557565

[45] Fan J., Hu M., Chu X., Yang D. "A comparison analysis of swarm intelligence algorithms

for robot swarm learning." In 2017 Winter Simulation Conference (WSC), pp. 3042-3053,

IEEE, 2017. https://doi.org/10.1109/WSC.2017.8248025.

[46] Klein L., Zelinka I., Seidl D. "Optimizing parameters in swarm intelligence using

reinforcement learning: An application of Proximal Policy Optimization to the iSOMA

algorithm." Swarm and Evolutionary Computation, v. 85, p. 101487, 2024.

https://doi.org/10.1016/j.swevo.2024.101487

https://doi.org/10.1109/WSC.2017.8248025
https://doi.org/10.1016/j.swevo.2024.101487

REFERENCES

75

[47] Wang F., Wang X., Sun S. "A reinforcement learning level-based particle swarm

optimization algorithm for large-scale optimization." Information Sciences, v. 602, pp. 298-

312, 2022. https://doi.org/10.1016/j.ins.2022.04.053

[48] Gad A.G. "Particle swarm optimization algorithm and its applications: A systematic

review." Archives of Computational Methods in Engineering, v. 29, no. 5, pp. 2531-2561,

2022. https://doi.org/10.1007/s11831-021-09694-4

[49] Niknam T., Amiri B. "An efficient hybrid approach based on PSO, ACO, and k-means for

cluster analysis." Applied Soft Computing, v. 10, no. 1, pp. 183-197, 2010.

https://doi.org/10.1016/j.asoc.2009.07.001

[50] Janson S., Middendorf M. "A hierarchical particle swarm optimizer for dynamic

optimization problems." Applications of Evolutionary Computing: EvoWorkshops 2004,

EvoBIO, EvoCOMNET, EvoHOT, EvoISAP, EvoMUSART, and EvoSTOC, Coimbra,

Portugal, April 5-7, 2004. Proceedings, pp. 513-524, 2004. https://doi.org/10.1007/978-3-

540-24653-4_52

[51] Iskandar A., Hammoud A., Kovács B. " Swarm Robotics Navigation Task: A Comparative

Study of Reinforcement Learning and Particle Swarm Optimization Methodologies "

Mekhatronika, Avtomatizatsiya, Upravlenie, v. 25, no. 9, pp. 471-478.

https://doi.org/10.17587/mau.25.471-478.

[52] Michel O. "Cyberbotics Ltd. Webots—: professional mobile robot simulation."

International Journal of Advanced Robotic Systems, v. 1, no. 1, p. 5, 2004.

doi:https://doi.org/10.5772/5618.

[53] Kirtas M., Tsampazis K., Passalis N., Tefas A. "Deepbots: A Webots-based deep

reinforcement learning framework for robotics." In Artificial Intelligence Applications and

Innovations: 16th IFIP WG 12.5 International Conference, AIAI 2020, Greece, Proceedings,

Part II, v. 16, pp. 64-75, Springer, 2020. https://doi.org/10.1007/978-3-030-49186-4 6.

[54] Mondada F., Bonani M., Raemy X., Pugh J., Cianci C., Klaptocz A., Magnenat S., Zufferey

J.C., Floreano D., Martinoli A. "The e-puck, a robot designed for education in engineering."

In Proceedings of the 9th Conference on Autonomous Robot Systems and Competitions, v.

1, no. 1, pp. 59-65, IPCB: Instituto Politécnico de Castelo Branco, 2009.

[55] Aznar F., Pujol M., Rizo R. "Learning a swarm foraging behavior with microscopic fuzzy

controllers using deep reinforcement learning." Applied Sciences, v. 11, no. 6, p. 2856, 2021.

https://doi.org/10.3390/app11062856

[56] Löffler R.C., Panizon E., Bechinger C. "Collective foraging of active particles trained by

reinforcement learning." Scientific Reports, v. 13, no. 1, p. 17055, 2023.

https://doi.org/10.1038/s41598-023-44268-3

[57] Iskandar A., Kovács B. "Curriculum learning for deep reinforcement learning in swarm

robotic navigation task." Multidiszciplináris Tudományok, v. 13, no. 3, pp. 175-187, 2023.

https://doi.org/10.35925/j.multi.2023.3.18

[58] Altshuler Y. "Recent developments in the theory and applicability of swarm search."

Entropy, v. 25, no. 5, p. 710, 2023. https://doi.org/10.3390/e25050710

[59] Lee W., Vaughan N., Kim D. "Task allocation into a foraging task with a series of subtasks

in swarm robotic system." IEEE Access, v. 8, pp. 107549-107561, 2020.

https://doi.org/10.1109/ACCESS.2020.2999538

[60] Na S., Rouček T., Ulrich J., Pikman J., Krajník T., Lennox B., Arvin F. "Federated

reinforcement learning for collective navigation of robotic swarms." IEEE Transactions on

https://doi.org/10.1016/j.ins.2022.04.053
https://doi.org/10.1007/s11831-021-09694-4
https://doi.org/10.1016/j.asoc.2009.07.001
https://doi.org/10.17587/mau.25.471-478

REFERENCES

76

Cognitive and Developmental Systems, v. 15, no. 4, pp. 2122-2131, 2023.

https://doi.org/10.1109/TCDS.2023.3239815

[61] Adams S., Jarne Ornia D., Mazo Jr M. "A self-guided approach for navigation in a

minimalistic foraging robotic swarm." Autonomous Robots, v. 47, no. 7, pp. 905-920,2023.

https://doi.org/10.1007/s10514-023-10102-y

[62] Lee K.M., Kong F., Cannizzaro R., Palmer J.L., Johnson D., Yoo C., Fitch R. "An upper

confidence bound for simultaneous exploration and exploitation in heterogeneous multi-

robot systems." In 2021 IEEE International Conference on Robotics and Automation (ICRA),

pp. 8685-8691, IEEE, 2021. https://doi.org/10.1109/ICRA48506.2021.9560822

[63] Talamali M.S., Bose T., Haire M., Xu X., Marshall J.A., Reina A. "Sophisticated collective

foraging with minimalist agents: A swarm robotics test." Swarm Intelligence, v. 14, no. 1,

pp. 25-56, Mar 2020. https://doi.org/10.1007/s11721-019-00176-9

[64] Wang X., Guo H. "Mobility-aware computation offloading for swarm robotics using deep

reinforcement learning." In 2021 IEEE 18th Annual Consumer Communications &

Networking Conference (CCNC), pp. 1-4, IEEE, 2021.

https://doi.org/10.1109/CCNC49032.2021.9369456

[65] Soviany P., Ionescu R.T., Rota P., Sebe N. "Curriculum learning: A survey." International

Journal of Computer Vision, v. 130, no. 6, pp. 1526-1565, Jun 2022.

https://doi.org/10.1007/s11263-022-01611-x

[66] Ghebrechristos H., Alaghband G. "Deep curriculum learning optimization." SN Computer

Science, v. 1, no. 5, p. 245, Sep 2020. https://doi.org/10.1007/s42979-020-00251-7

[67] B.K., Chakravarty P., Shrivastava S. "An A* curriculum approach to reinforcement

learning for RGBD indoor robot navigation." arXiv preprint, arXiv:2101.01774, 2021.

https://doi.org/10.48550/arXiv.2101.01774

[68] Jang P., Jang, S., Shin Y. "Indoor path planning for an unmanned aerial vehicle via

curriculum learning." 2021 21st International Conference on Control, Automation and

Systems (ICCAS). IEEE, 2021. https://doi.org/10.1109/ICTC55196.2022.9952572

[69] Sun M., Yang Z., Dai X., Nian X., Wang H., Xiong H. "Deep reinforcement learning based

on curriculum learning for drone swarm area defense." International Conference on

Autonomous Unmanned Systems, pp. 1119-1128, 2022. [Springer].

https://doi.org/10.1007/978-981-99-0479-2_101

[70] Hussein A., Petraki E., Elsawah S., Abbass H. A. "Autonomous swarm shepherding using

curriculum-based reinforcement learning." Proceedings of the 21st International Conference

on Autonomous Agents and Multiagent Systems, pp. 633-641, 2022.

[71] Iskandar A., Kovács B. "Investigating the impact of curriculum learning on reinforcement

learning for improved navigational capabilities in mobile robots." Inteligencia Artificial, v.

27, no. 73, pp. 163-176, Mar 2024. https://doi.org/10.4114/intartif.vol27iss73pp163-176

[72] Hammoud A., Iskandar A., Kovács B. " Dynamic foraging in swarm robotics: a hybrid

approach with modular design and deep reinforcement learning intelligence" Informatics and

automation, v. 24, pp. 51, 2025. https://doi.org/10.15622/ia.24.1.3

[73] A. Iskandar, B. Kovács, "Analysis of the effects of reward structures in deep reinforcement

learning on the path planning of mobile robots." in 5th international black sea modern

scientific research congress, Rize, Turkiye. pp. 758, 2023.

[74] Iskandar A., Rostum H.M., Kovács B. "Using deep reinforcement learning to solve a

navigation problem for a swarm robotics system." In 2023 24th International Carpathian

https://doi.org/10.1109/ICTC55196.2022.9952572
https://doi.org/10.1007/978-981-99-0479-2_101

REFERENCES

77

Control Conference (ICCC), pp. 185-189, IEEE, 2023.

https://doi.org/10.1109/ICCC57093.2023.10178888

[75] Ziebart B.D., Maas A.L., Bagnell J.A., Dey A.K. "Maximum entropy inverse

reinforcement learning." In AAAI, v. 8, pp. 1433-1438, 2008.

[76] Ng A.Y., Russell S. "Algorithms for inverse reinforcement learning." In ICML, v. 1, no. 2,

p. 2, Jun 2000.

[77] Ho J., Ermon S. "Generative adversarial imitation learning." Advances in Neural

Information Processing Systems, v. 29, 2016.

[78] Nauta J., Van Havermaet S., Simoens P., Khaluf Y. "Enhanced foraging in robot swarms

using collective Lévy walks." In 24th European Conference on Artificial Intelligence (ECAI),

v. 325, pp. 171-178, IOS, 2020. https://doi.org/10.3233/FAIA200090.

[79] Misir O., Gökrem L. "Flocking-based self-organized aggregation behavior method for

swarm robotics." Iranian Journal of Science and Technology, Transactions of Electrical

Engineering, v. 45, no. 4, pp. 1427-1444, 2021. https://doi.org/10.1007/s40998-021-00442-

9

[80] Sadeghi A., Raoufi M., Turgut A.E. "A self-adaptive landmark-based aggregation method

for robot swarms." Adaptive Behavior, v. 30, no. 3, pp. 223-236, 2022.

https://doi.org/10.1177/1059712320985543

[81] Berlinger F., Gauci M., Nagpal R. "Implicit coordination for 3D underwater collective

behaviors in a fish-inspired robot swarm." Science Robotics, v. 6, no. 50, eabd8668, 2021.

https://doi.org/10.1126/scirobotics.abd8668.

[82] Zhang J., Lu Y., Che L., Zhou M. "Moving-distance-minimized PSO for mobile robot

swarm." IEEE Transactions on Cybernetics, v. 52, no. 9, pp. 9871-9881, 2021.

https://doi.org/10.1109/TCYB.2021.3079346.

[83] Parhi D.R., Sahu C., Kumar P.B. "Navigation of multiple humanoid robots using hybrid

adaptive swarm-adaptive ant colony optimisation technique." Computer Animation and

Virtual Worlds, v. 29, no. 2, 2018. https://doi.org/10.1002/cav.1802.

[84] Jiang L., Mo H., Tian P. "An adaptive decentralized control strategy for deployment and

aggregation of swarm robots based on bacterial chemotaxis." Applied Intelligence, v. 53, no.

10, pp. 13018-13036, 2023. https://doi.org/10.1007/s10489-022-04128-5

[85] Hu C., Arvin F., Bellotto N., Yue S., Li H. "Swarm neuro-robots with the bio-inspired

environmental perception." Frontiers in Neurorobotics, v. 18, p. 1386178, 2024.

https://doi.org/10.3389/fnbot.2024.1386178.

[86] Hasselmann K., Ligot A., Birattari M. "Automatic modular design of robot swarms based

on repertoires of behaviors generated via novelty search." Swarm and Evolutionary

Computation, v. 83, p. 101395, 2023. https://doi.org/10.1016/j.swevo.2023.101395.

[87] Birattari M., Ligot A., Francesca G. "AutoMoDe: a modular approach to the automatic off-

line design and fine-tuning of control software for robot swarms." In Automated Design of

Machine Learning and Search Algorithms, pp. 73-90, 2021. https://doi.org/10.1007/978-3-

030-72069-8_5

[88] Stolfi D.H., Danoy G. "Evolutionary swarm formation: From simulations to real-world

robots." Engineering Applications of Artificial Intelligence, v. 128, p. 107501, 2024.

https://doi.org/10.1016/j.engappai.2023.107501

REFERENCES

78

[89] Arora S., Doshi P. "A survey of inverse reinforcement learning: Challenges, methods and

progress." Artificial Intelligence, v. 297, p. 103500, 2021.

https://doi.org/10.1016/j.artint.2021.103500

[90] Pinsler R., Maag M., Arenz O., Neumann G. "Inverse reinforcement learning of bird

flocking behavior." In ICRA Swarms Workshop, 2018.

[91] Chen M., Zhang P. "Area coverage for swarm robots via inverse reinforcement learning."

Available at SSRN 4592186. http://dx.doi.org/10.2139/ssrn.4592186

[92] Gharbi I., Kuckling J., Ramos D.G., Birattari M. "Show me what you want: Inverse

reinforcement learning to automatically design robot swarms by demonstration." In 2023

IEEE International Conference on Robotics and Automation (ICRA), pp. 5063-5070, IEEE,

2023. https://doi.org/10.1109/ICRA48891.2023.10160947.

[93] Iskandar A., Hammoud A., Kovács B. " Implicit understanding: decoding swarm behaviors

in robots through deep inverse reinforcement learning" Informatics and automation, v.23,p.

1485,2024. https://doi.org/10.15622/ia.23.5.8

LIST OF PUBLICATIONS RELATED TO THE TOPIC OF THE RESEARCH FIELD

79

LIST OF PUBLICATIONS RELATED TO THE TOPIC OF THE RESEARCH FIELD

(k1) Iskandar A., Kovács B. "A survey on automatic design methods for swarm robotics systems."

Carpathian Journal of Electronic & Computer Engineering, v. 14, no. 2, 2021.

https://doi.org/10.2478/cjece-2021-0006

(k2) Iskandar A., Hammoud A., Kovács B. " Swarm Robotics Navigation Task: A Comparative

Study of Reinforcement Learning and Particle Swarm Optimization Methodologies "

Mekhatronika, Avtomatizatsiya, Upravlenie. v. 25, no. 9, pp. 471-478.

https://doi.org/10.17587/mau.25.471-478.(Scoups, Q3)

(k3) Iskandar A., Kovács B. "Curriculum learning for deep reinforcement learning in swarm

robotic navigation task." Multidiszciplináris Tudományok, v. 13, no. 3, pp. 175-187, 2023.

https://doi.org/10.35925/j.multi.2023.3.18.

(k4) Iskandar A., Kovács B. "Investigating the impact of curriculum learning on reinforcement

learning for improved navigational capabilities in mobile robots." Inteligencia Artificial, v.

27, no. 73, pp. 163-176, Mar 2024. https://doi.org/10.4114/intartif.vol27iss73pp163-176.
(Scoups, Q4)

(k5) Hammoud A., Iskandar A., Kovács B. " Dynamic foraging in swarm robotics: a hybrid

approach with modular design and deep reinforcement learning intelligence" Informatics and

automation, v. 24, pp. 51, 2025. https://doi.org/10.15622/ia.24.1.3 (Scoups, Q4).

(k6) A. Iskandar, B. Kovács, "Analysis of the effects of reward structures in deep reinforcement

learning on the path planning of mobile robots." in 5th international black sea modern

scientific research congress, Rize, Turkiye. pp. 758, 2023.

(k7) Iskandar A., Rostum H.M., Kovács B. "Using deep reinforcement learning to solve a

navigation problem for a swarm robotics system." In 2023 24th International Carpathian

Control Conference (ICCC), pp. 185-189, IEEE, 2023.

https://doi.org/10.1109/ICCC57093.2023.10178888.(Scoups).

(k8) Iskandar A., Hammoud A., Kovács B. " Implicit understanding: decoding swarm behaviors

in robots through deep inverse reinforcement learning" Informatics and automation, v.23, p.

1485,2024. https://doi.org/10.15622/ia.23.5.8 (Scoups, Q4)

https://doi.org/10.2478/cjece-2021-0006
https://doi.org/10.17587/mau.25.471-478
https://doi.org/10.35925/j.multi.2023.3.18
https://doi.org/10.4114/intartif.vol27iss73pp163-176
https://doi.org/10.1109/ICCC57093.2023.10178888.(Scoups)

