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LIST OF SYMBOLS AND ABBREVIATIONS 

GREEK LETTERS 

𝛼𝑐𝑢𝑟𝑟𝑒𝑛𝑡 The angle between the robot and the nest with [0,2π] (rad). 

 

𝛼, 𝛽 Control the influence of the pheromone trail and heuristic information. 

𝛾 The discount factor. 

 

∆𝐷 The difference between the current state and the previous state. 

 

𝜖 A hyperparameter, typically small (e.g., 0.1 or 0.2), determines the range 

within which the ratio 𝑟𝑡(𝜃)  is allowed to vary without being clipped. 

 

𝜏 The trajectories (a sequence of states and actions) in the dataset K. 

 

ʎ𝑖𝑗(𝑡) The pheromone level on the path from node i to node j at time t. 

𝜌 The evaporation rate, 0 <  𝜌 < 1. 

∆ʎ𝑖𝑗(𝑡) The amount of pheromone deposited by the ants. 

𝜂𝑖𝑙  The heuristic value (e.g., the inverse of distance). 

𝜃𝑖(𝑡 + ∆𝑡) The new direction of particle i at time 𝑡 + ∆𝑡 (rad). 

𝜉𝑖(𝑡) A random variable with uniform distribution in the interval [−1,1]. 

𝜔 Weight. 

𝜋 The policy. 

 

𝜋∗ The optimal policy. 

 

𝜋𝑖 The policy of robot (agent) i, mapping states to actions. 

 

𝜋𝐸 The expert policy that generates trajectories τ from the expert. 

 

𝜋𝜃(𝑠𝑡|𝑎𝑡) The policy function, parameterized by θ, gives the probability of taking 

action 𝑎𝑡 at state 𝑠𝑡. 

 

Ф(𝑠́), Ф(𝑠) The potential functions that assign a value to the current and subsequent 

states, respectively. 

∅(𝑆) The feature vector that describes the state S. 
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LATIN LETTERS 

𝐴 Set of actions. 

 

𝐴̂𝑡 The advantage estimator at time t. 

 

𝑎𝑎𝑙𝑖𝑔𝑛 The acceleration due to alignment. 

 

𝑎𝑐𝑜ℎ the acceleration due to cohesion. 

 

𝑎𝑐𝑖 The resultant acceleration for Boid i. 

 

𝑎𝑠𝑒𝑝 The acceleration due to separation. 

 

𝑐1 Cognitive learning factor. 

 

𝑐2 Social learning factor. 

 

𝑑𝑐𝑢𝑟𝑟𝑒𝑛𝑡 The normalized distance between the robot and the nest at time t with 

[0,3] (m). 

Dc This discriminator distinguishes between trajectories generated by the 

expert policy and those generated by the policy G. 

 

𝐷𝑟𝑔 Goal Distance ( Distance between robot and target) 

𝑑𝑝𝑟𝑒𝑣 The normalized distance between the robot and the nest at time t-1 with 

[0,3](m). 

 

𝑑𝑟𝑜𝑏𝑜𝑡𝑠 Distance between two robots when they present around a big box(m). 

 

𝑑𝑖𝑠𝑟𝑒𝑤𝑎𝑟𝑑 Distance reward is when two robots are present around a big box within a 

certain distance (m). 

E  Efficiency. 

𝐹𝑖𝑛𝑑𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 The threshold to consider the robot is inside the nest. 

 

𝐹𝑖𝑛𝑑𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠𝑒𝑎𝑟𝑐ℎ𝑖𝑛𝑔 The threshold value of the light sensor where the box 

is found. The normalized readings sensors are more than 0.85, meaning the 

robot reaches the box boundary. It is defined experimentally. 

G The Return. 

 

𝐽(𝜃) The objective function J concerning the policy parameters θ. 

 

𝜅 The noise strength. 

 

K Data set of trajectories. 

 

𝐿𝑘 The length of the tour performed by ant k. 

 

𝐿𝑆0
(𝑡)

, 𝐿𝑆7
(𝑡)

 The normalized current readings of light sensors 0 and 7, 

respectively, at time t. 

 

𝐿𝑆0
(𝑡−1)

, 𝐿𝑆7
(𝑡−1)

 The previous normalized readings of light sensors 0 and 7, 

respectively, at time t −1. 

 

ℳ𝑖 The set of neighbors of particle i within radius R. 
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𝑀𝑎𝑥𝑂𝑢𝑡𝑝𝑢𝑡 The upper value in the output range of ∅(s). 

 

𝑀𝑖𝑛𝑂𝑢𝑡𝑝𝑢𝑡 The lower value in the output range of ∅(s). 

 

𝑀𝑎𝑥𝑉𝑎𝑙𝑢𝑒 The upper value is in the raw range of states. 

 

𝑀𝑖𝑛𝑉𝑎𝑙𝑢𝑒 The lower value in the raw range of states. 

 

N Number of retrieved items (boxes) 

 

𝒩𝑖
𝑘 

 

The set of nodes that ant k can visit from node i. 

|neighbors| The number of Boids neighbors. 

 

𝑃 The Penalty. 
 

𝑥𝑗 , 𝑥𝑖 The positions of particle j and its neighbor i. 

 

𝑥𝑖(𝑡) The position of particle i at time t. 

 

𝑃𝑖,𝑡
𝑑  The best fitness value particle has at the t moment. 

 

𝑝𝑔
𝑑 

 

𝑃𝑟𝑜𝑏𝑖𝑗
𝑘 (𝑡) 

The best fitness value among the swarm. 

 

Probability of ant k moving from node i to node j. 

 

𝑐𝑜𝑛𝑠𝑡 A constant. 

 

𝑄(𝑠, 𝑎) The Q-value for taking action a at state s. 

 

𝑅(𝑠𝑖, 𝑎𝑖) The reward function evaluates the performance of the agent i based on its 

actions 𝑎𝑖 and the state of the environment 𝑠𝑖. 

 

𝑟𝑡(𝜃) The probability ratio of the new policy over the old policy. 

 

𝑟𝑏𝑜𝑥(𝑡) The additional reward is when the robot finds the box. The common 

approach to choose rewards values like1.1 are defined experimentally to fit 

the environment. 

 

𝑟𝑛𝑒𝑠𝑡 The obtained reward is when the robot reaches the nest. 

 

𝑅(𝑠, 𝑎, 𝑠́) The received reward for moving from state 𝑠 to 𝑠́ when action a is chosen. 

 

𝑅(𝑆) This represents the reward associated with a particular state S. 

 

𝑅𝑒𝑥𝑝𝑒𝑟𝑡 The output of the reward neural network for states from the expert. 

 

𝑅𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 The output of the reward neural network for collected states from training 

process. 

 

𝑆 Set of states. 

𝑉 Linear velocity. 

𝑣𝑖(𝑡) The velocity of particle i at time t. 
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𝑣𝑖,𝑡+1
𝑑  The velocity of particle i at t + 1 in d dimensions. 

 

𝑣𝑖,𝑡
𝑑  The velocity of particle i at t (m/s). 

 

𝑣𝑗 , 𝑣𝑖 The velocities of particle j and its neighbor i. 

 

𝑣0 the constant speed of the particles. 

 

𝑉(𝑠𝑡) The value function at state 𝑠𝑡. 
 

𝑉𝑟 Avoiding speed for the right wheel. 

 

𝑉𝑙 Avoiding speed for the left wheel. 

 

𝑣𝑟𝑖𝑔ℎ𝑡−𝑚𝑜𝑡𝑜𝑟 Speeds of the right motor(rad/s). 

 

𝑣𝑙𝑒𝑓𝑡−𝑚𝑜𝑡𝑜𝑟 Speeds of the left motor(rad/s). 

 

𝑊 Turning velocity. 

 

𝑤𝑠𝑒𝑝, 𝑤𝑎𝑙𝑖𝑔𝑛, 𝑤𝑐𝑜ℎ Weights for separation, alignment, and cohesion components. 

 

𝑥𝑖,𝑡
𝑑  The position of PSO’s particle i at the t moment. 

 

𝑥𝑟, 𝑦𝑟  The Cartesian coordinates x, y of the robot 

 

𝑥𝑔, 𝑦𝑔 The Cartesian coordinates x, y of the goal 

 

 
SUBSCRIPTS 

𝑎𝑙𝑖𝑔𝑛 Alignment behavior. 

 

coh Cohesion behavior. 

 

sep Separation behavior. 

 

box The items that the foraging swarm should collect. 

 

nest To indicate the target of the foraging swarm. 

 

prev The previous position of the robot. 

 

Current The current position of the robot. 

 

t Time. 

 

Expert The swarm or robot that has the solution to the problem. 

 

Training The swarm or robot trains to collect the experience. 
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1. INTRODUCTION 

1.1. Overview of Swarm Robotics Systems 

 

Swarm robotics systems (SRs) are a specialized field that focuses on developing models 

inspired by the decentralized decision-making processes of natural entities, such as insects, fish, 

herds, and others, to mimic their social behaviors [1],[2]. They rely on the dynamics of autonomous 

robots collaborating to perform complex tasks without centralized control architecture. So, SR 

models depend on a distributed approach to tackle the problems where each robot in the swarm 

contributes to generating collective behavior. They are seen as groups consisting of small and 

simple robots. These robots have limited capabilities and local perception of their environment. 

Each robot in the group is autonomous and makes its own decisions based on its local knowledge 

by interacting with other robots and the environment to complete designated tasks by the entire 

swarm. Based on the hardware structure, there are two categories: homogeneous, where robots are 

structurally similar, and heterogeneous, where differences in design are present. Homogeneous 

SRs are widely used due to their simplicity in design and ease of implementation. They consist of 

identical robots, making them easier to manage and requiring less complex programming and 

maintenance. Heterogeneous swarms are less common even though they offer diverse capabilities 

and task specialization, allowing them to handle more complex and varied tasks [3]. 

The principles underlying these systems have given rise to the field of swarm engineering, 

which is related to creating systems of simple robots that work together in known or unknown 

environments to achieve complex objectives through decentralized control, emergent collective 

behavior, and effective local interactions. It involves a systematic process that starts with defining 

the problem and analyzing requirements, followed by designing the individual robots and their 

behaviors. Then, simulation and modeling are used to test and refine the system, as well as 

prototyping and iterative improvements. Finally, the system is deployed, monitored, and 

maintained, with continuous data collection to optimize performance. The produced SRs have 

several advantageous characteristics, including scalability, flexibility, and adaptability. Scalability 

ensures that changes in the SR occur without significant changes to the system's functionality. 

Flexibility allows the SR to adapt to a wide range of tasks because each robot operates based on 

simple local rules and interactions, and the collective behavior can shift dynamically to meet new 

objectives. Adaptability is a key strength, as SRs can modify their strategies in response to 

environmental or task requirements changes. This allows them to remain effective in unpredictable 

scenarios, maintaining their performance and reliability [4]. 
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1.2. Mathematical models of Swarm Robotics systems 

 

Developing mathematical models of SRs has been inspired by observing the natural systems 

and replicating them with artificial ones with decentralized structures to represent the interaction 

among robots and the environment as it is called ’collective behavior.’ Understanding and 

modeling this collective behavior can be approached from microscopic and macroscopic 

perspectives. The microscopic perspective focuses on the behavior and interactions of individual 

robots within the swarm, where each robot operates based on simple, predefined rules that select 

its actions in response to its immediate changes in the environment, like the angle of rotation, 

linear speeds, and others. In contrast, the macroscopic perspective focuses on the behavior of the 

entire swarm and the emergent properties that arise from local interactions like flocking, foraging 

aggregation, and others [5].  

Mathematical models often build upon each other, enhancing performance and adaptability. 

The foundational Boids model by Craig Reynolds (1986) introduced simple rules for decentralized 

control and emergent behavior [6]. This concept influenced Particle Swarm Optimization (PSO) 

by James Kennedy and Russell Eberhart (1995), an optimization algorithm inspired by social 

behaviors [7]. Similarly, Ant Colony Optimization (ACO) by Marco Dorigo (1992) used 

pheromone trails to solve combinatorial problems, demonstrating the power of indirect 

communication [8]. Self-propelled particle (SPP) models by Tamás Vicsek (1995) further explored 

local interaction-based collective motion [9]. Meanwhile, behavior-based models by Rodney 

Brooks (1986) emphasize simple, reactive behaviors [10]. Multi-agent systems (MAS) provided a 

framework for modeling interactions and coordination among autonomous agents [11], where 

reinforcement learning (RL) brought adaptability and learning through trial and error to generate 

the collective behavior of SRs modeled by MAS [12],[13],[14]. Each model has evolved by 

incorporating insights from its predecessors, leading to increasingly sophisticated swarm control 

and optimization approaches. 

1.2.1.  Boids Model 

This model simulates flocking behavior using three simple rules applied to each robot (boid i). 

The overall movement of each boid is determined by combining these rules. The rules are 

separation (avoiding crowding 𝒂𝒔𝒆𝒑 ) as in equation (1.1), alignment  𝒂𝒂𝒍𝒊𝒈𝒏 (steering towards the 

average direction of neighbors), equation (1.2), and cohesion 𝒂𝒄𝒐𝒉 (moving towards the average 

position of neighbors), equation (1.3). In total, the resultant acceleration for each boid i 𝒂𝒄𝒊 is 

computed as in equation (1.4) to update the position x and velocity v as in equations (1.5) and (1.6) 

"In the following equations, vector quantities are represented using boldface notation , while scalar 

quantities are represented using regular italic notation. This convention is used consistently 

throughout the thesis." 
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𝒂𝒔𝒆𝒑 = − ∑

𝒙𝒋 − 𝒙𝒊

|𝒙𝒋 − 𝒙𝒊|2
𝑗∈𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠

 
(1.1) 

 
𝒂𝒂𝒍𝒊𝒈𝒏 =

1

|𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠|
∑ 𝒗𝒋 − 𝒗𝒊

𝑗∈𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠
 

(1.2) 

 
𝒂𝒄𝒐𝒉 =

1

|𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠|
∑ 𝒙𝒋 − 𝒙𝒊

𝑗∈𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠
 

 

 (1.3) 

 𝒂𝒄𝒊 = 𝑤𝑠𝑒𝑝𝒂𝒔𝒆𝒑 + 𝑤𝑎𝑙𝑖𝑔𝑛𝒂𝒂𝒍𝒊𝒈𝒏 + 𝑤𝑐𝑜ℎ𝒂𝒄𝒐𝒉 (1.4) 

 𝒗𝒊(𝑡 + 1) = 𝒗𝒊(𝑡) + 𝒂𝒄𝒊 (1.5) 

 𝒙𝒊(𝑡 + 1) = 𝒙𝒊(𝑡) + 𝒗𝒊(𝑡 + 1) (1.6) 

 

1.2.2. ACO model 

   Ants use pheromones ʎ to communicate and coordinate activities like foraging, particularly 

finding the shortest paths from their nest to a food source and back. ACO is primarily used to solve 

combinatorial optimization problems such as the Traveling Salesman Problem (TSP) and vehicle 

routing. Pheromone evaporation decreases the pheromone level to avoid unlimited accumulation, 

as in equation (1.7).  

 ʎ𝑖𝑗(𝑡 + 1) = (1 − 𝜌)ʎ𝑖𝑗(𝑡) + ∆ʎ𝑖𝑗(𝑡) (1.7) 

    Each ant deposits pheromones on the paths it uses. The pheromone deposit ∆ʎ𝑖𝑗  is calculated 

based on the quality of the solutions found by the ants. That is demonstrated in both of equations 

(1.8) which accumulates pheromone contributions from all m ants that have traveled on edge (i,j), 

and (1.9) defines how much pheromone each ant deposits on an edge. The amount depends on 𝐿𝑘 

(tour length of ant k). 

 
∆ʎ𝑖𝑗(𝑡) = ∑ ∆ʎ𝑖𝑗

𝑘

𝑚

𝑘=1

 
(1.8) 

 

∆ʎ𝑖𝑗
𝑘 = {

𝑐𝑜𝑛𝑠𝑡

𝐿𝑘
         𝑖𝑓 𝑎𝑛𝑡 𝑘 𝑢𝑠𝑒𝑠 𝑒𝑑𝑔𝑒(𝑖, 𝑗) 𝑖𝑛 𝑖𝑡𝑠 𝑡𝑜𝑢𝑟

0                                                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

(1.9) 

   The optimal const value in ACO depends on the problem scale; a common choice is const ≈ 

𝐿𝑏𝑒𝑠𝑡, with experimental tuning recommended for best results. 

An ant 𝑘 at node 𝑖 chooses the next node to move to with a probability 𝑃𝑟𝑜𝑏𝑖𝑗
𝑘 (𝑡) based on the 

pheromone level and the heuristic value, equation (1.10). 



THESES – OVERVIEW OF SWARM ROBOTICS  

11 
 

 

𝑃𝑟𝑜𝑏𝑖𝑗
𝑘 (𝑡) =

[ʎ𝑖𝑗(𝑡)]
𝛼

[𝜂𝑖𝑗]
𝛽

∑ [ʎ𝑖𝑙(𝑡)]𝛼[𝜂𝑖𝑙]𝛽
𝑙𝜖𝒩𝑖

𝑘

 

(1.10) 

1.2.3. SPP Model 

   In the SPP model, each particle moves at a constant speed but continuously adjusts its direction 

based on the average direction of its neighbors within a certain interaction radius. This model is 

beneficial for understanding how simple local interactions can lead to complex global behaviors 

such as flocking, swarming, and schooling. Each agent i updates its new position 𝒙𝒊(𝒕 + ∆𝒕) based 

on its current velocity 𝒗𝒊(𝑡), adhering to the equation (1.11): 

 𝒙𝒊(𝑡 + ∆𝑡) = 𝒙𝒊(𝑡) + 𝒗𝒊(𝑡)∆𝑡 (1.11) 

   This ensures that each agent moves in the direction dictated by its velocity at each time step. The 

velocity of each agent is influenced by the average direction of its neighbors within a certain radius, 

with added randomness to simulate real-world perturbations. The new direction 𝜃𝑖(𝑡 + ∆𝑡) for 

each agent is determined by equation (1.12): 

 

𝜃𝑖(𝑡 + ∆𝑡) = arg ( ∑ 𝒗𝒋(𝑡)

𝑗∈ℳ𝑖

) + 𝜅𝜉𝑖(𝑡) 

(1.12) 

   After determining the new direction, the velocity vector is normalized to maintain a constant 

speed 𝑣0 as in equation (1.13). 

 
𝒗𝒊(𝑡 + ∆𝑡) =  𝑣0 (

𝑐𝑜𝑠(𝜃𝑖(𝑡 + 1))

𝑠𝑖𝑛(𝜃𝑖(𝑡 + 1))
) 

(1.13) 

1.2.4. Behavior-Based Models 

   These models are inspired by biological systems, where complex behaviors emerge from the 

interaction of simpler behavioral modules. Behaviors are essential building blocks of the system, 

each representing a specific action or response to an event. For example, behaviors can include 

avoiding obstacles, following a path, or seeking a goal. Behaviors are typically reactive, meaning 

they respond directly to sensor inputs without the need for complex computation. Then, behavior 

arbitration is defined as a mechanism for resolving conflicts between competing behaviors, 

ensuring that the most appropriate behavior is executed at any given time. Complex actions and 

responses emerge from the interaction and combination of simpler behaviors.  

So, each robot has a set of behaviors, 𝐵 = {𝑏1, 𝑏2, 𝑏3 … . . , 𝑏𝑛} where each behavior 𝑏𝑖  is a function 

that maps states S, which here represented as sensor inputs to actions A represented as actuator 

outputs as 𝑏𝑖 ∶ 𝑆 → 𝐴.  

   Each behavior 𝑏𝑖 can be activated based on specific conditions or triggers. Let 𝐶𝑖 represent the 

condition for activating behavior 𝑏𝑖. 𝐶𝑖 ∶ 𝑆 → {0,1}, Where 𝐶𝑖(𝑆) = 1 if the condition for behavior 

𝑏𝑖 is met, given the sensor input 𝑆, and 0 otherwise. When multiple behaviors are triggered 

simultaneously, an arbitration mechanism decides which behavior to execute. This can be done 
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using fixed priority, dynamic priority, or a combination of behaviors through weighted sums, as 

in equation (1.14). 

                       𝐴 = ∑ 𝑤𝑖𝑏𝑖(𝑠)𝑖    (1.14) 

   The final action is a weighted sum of the activated behaviors, ensuring that the contributions of 

all active behaviors are normalized and combined to produce the final action, equation (1.15). 

 
𝐴 =

∑ 𝜔𝑖𝑏𝑖(𝑠)𝑖

∑ 𝜔𝑖𝑖
 

(1.15) 

1.2.5. PSO Model 

   It is a computational method that optimizes a problem by iteratively improving a candidate 

solution about a given quality measure. It mimics the social behavior of birds flocking or fish 

schooling. The collection of particles (robots) moves through the solution space (environment), 

adjusting their positions based on their updated velocities, equation (1.16). The particles update 

their velocities by considering three key factors: their personal best position, the best-known 

position of the entire swarm, and a current position. This update process is mathematically 

represented in Equation (1.17). Figure 1.1 visually depicts these vector components, illustrating 

how each contributes to the overall velocity adjustment, guiding the particles toward optimal 

solutions." 

 𝒗𝒊,𝒕+𝟏
𝒅 = 𝜔 ∗ 𝒗𝒊,𝒕

𝒅 + 𝑐1 ∗ 𝑟𝑎𝑛𝑑𝑖 ∗ (𝑃𝑖,𝑡
𝑑 − 𝒙𝒊,𝒕

𝒅 ) + 𝑐2 ∗ 𝑟𝑎𝑛𝑑𝑖 ∗ (𝑝𝑔
𝑑 − 𝒙𝒊,𝒕

𝒅 ) (1.16) 

 𝒙𝒊,𝒕+𝟏
𝒅 = 𝒙𝒊,𝒕

𝒅 + 𝒗𝒊,𝒕+𝟏
𝒅  (1.17) 

 

Figure 1.1. PSO illustration – Interia vector is 𝜔 ∗ 𝑣𝑖,𝑡
𝑑 , and Personal best                                                                  

vector is 𝑐1 ∗ 𝑟𝑎𝑛𝑑𝑖 ∗ (𝑃𝑖,𝑡
𝑑 − 𝑥𝑖,𝑡

𝑑 ). Then, the social vector is 𝑐2 ∗ 𝑟𝑎𝑛𝑑𝑖 ∗ (𝑝𝑔
𝑑 − 𝑥𝑖,𝑡

𝑑 ). 
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1.2.6. MAS Model 

   Multi-agent systems provide a robust framework for modeling the behavior and interactions of 

multiple autonomous robots. The mathematical model of MAS includes representing agents 

(robots), their states, actions, policies, interactions, and rewards. By optimizing individual and 

collective policies by reinforcement learning (RL), MAS can achieve complex tasks through local 

interactions and cooperation. Each robot 𝑖 in the system is represented by its state 𝑠𝑖, action 𝑎𝑖, 

and policy 𝜋𝑖, where  𝑠𝑖(𝑡) 𝜖 𝑆𝑖 , 𝑎𝑖(𝑡) 𝜖 𝐴𝑖 , 𝜋𝑖: 𝑠𝑖 → 𝑎𝑖. 

 Reward and objective function: 𝑅(𝑠𝑖, 𝑎𝑖) = 𝑟𝑖 (𝑠𝑖,𝑡, 𝑎𝑖,𝑡, 𝑠𝑖,𝑡+1). 

Policy optimization: Robots aim to optimize their policies to maximize their expected cumulative 

reward, as in equation (1.18). This can be done using various reinforcement learning approaches. 

 
𝜋𝑖

∗ = arg max 𝐸 [∑ 𝛾𝑡𝑅𝑖(𝑠𝑡, 𝑎𝑡)

∞

𝑡=0

] 
(1.18) 

   While approaches like Boids, ACO, and behavior-based models have significantly contributed 

to the field of SRs, they are less popular today compared to RL and PSO. The Boids model 

primarily focuses on visual simulations and is less suited for solving optimization problems or 

dynamic task allocation. ACO is effective for solving combinatorial optimization problems like 

routing and scheduling. Despite its strengths, ACO tends to be computationally intensive and has 

slower convergence than PSO, making it more specialized for static optimization tasks than 

dynamic ones. Behavior-based models are simple and effective for implementing reactive 

behaviors and local interactions. Nevertheless, they lack flexibility and adaptability, struggling 

with complex and dynamic tasks that require learning and optimization over time. SPP model is 

suitable for studying collective motion and emergent behaviors, but it remains primarily theoretical 

and less practical for real-world applications. In contrast, Reinforcement Learning (RL) is highly 

adaptable and can learn and adjust to complex and dynamic environments, continuously improving 

performance through trial and error. Its versatility makes it suitable for various applications, 

including navigation, task allocation, and coordination. 

1.3. Reinforcement learning 

   RL is a subfield of machine learning concerned with training agents through interacting with 

their environments rather than using labeled data as in supervised learning. This involves a 

sequential decision-making process where the chosen actions are refined over time based on a 

feedback signal from the environment in the form of a reward. The agent seeks to take action in 

an environment that maximizes cumulative reward. So, the agent's primary goal is to learn a policy 

that maximizes the cumulative reward over time. In RL, an agent interacts with its environment 

by taking actions based on a policy, a strategy, which is a rule that maps states of the environment 

to actions. The environment responds to these actions and provides feedback through rewards and 

new states. The agent's objective is to learn a policy that maximizes the long-term sum of rewards 
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[16]. The scope of RL extends across various domains and applications, driven by its ability to 

handle complex decision-making problems. Here are the key areas within the scope of RL: 

1.3.1. Markov Decision Processes (MDPs) 

   MDPs are fundamental to the RL approach. An MDP provides a mathematical framework for 

modeling sequential decision-making. Formally, an MDP is defined by the tuple of (𝑆, 𝐴, 𝑃, 𝑅, 𝛾). 

State space 𝑆 represents the set of states of environment that the agent encounters. Actions space 

𝐴 is the set of actions the agent can perform. 𝑃 is the function of the probabilities that describe the 

environment's dynamic.  𝑅 is the received reward for each selected action that moves the agent to 

the next state under probability 𝑃. The discount factor 𝛾 is usually between 0 and 1 and controls 

the importance of received rewards over time. So the problem of RL is formed as MDP to 

determine the policy 𝜋 that chooses the action 𝑎 for each state 𝑠 that maximizes the cumulative 

received rewards, often termed as Return G as in equation (1.19). The Q- value represents the 

expected return of taking action a in state s, equation (1.20): 

 
𝐺 = 𝐸 [∑ 𝛾𝑡

∞

𝑡=0
𝑅(𝑠𝑡, 𝑎𝑡)] 

(1.19) 

 𝑄(𝑠, 𝑎) = 𝐸[𝐺𝑡|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎] (1.20) 

   Finding the optimal policy 𝜋∗ involves maximizing 𝐺. Once the Q-values have been learned, the 

optimal policy 𝜋∗can be derived from them. The optimal policy selects the action with the highest 

Q-value for each state, equation (1.21). 

 𝜋∗(𝑠) = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑎

𝑄(𝑠, 𝑎) (1.21) 

1.3.2. Exploration vs. Exploitation 

   Learning the optimal policy requires maximizing G. So, the agent always seeks to select the 

actions that maximize the received rewards. In many situations, the agent may encounter low 

rewards in current states, but these states lead to other states with high rewards. So, it is better to 

give a probability ε to explore the environment more than exploit it to gain high rewards. This 

problem is termed an Exploration-Explotation dilemma. The ε-greedy algorithm is selected in all 

models in this dissertation, which is illustrated in algorithm 1 [16]: 

Algorithm 1: 𝜀 − 𝐺𝑟𝑒𝑒𝑑𝑦 pseudocode. 

𝑰𝒏𝒊𝒕𝒊𝒂𝒍𝒊𝒛𝒆 𝑸(𝒔, 𝒂) 𝒂𝒓𝒃𝒊𝒕𝒓𝒂𝒓𝒊𝒍𝒚 𝒇𝒐𝒓 𝒂𝒍𝒍 𝒔𝒕𝒂𝒕𝒆 − 𝒂𝒄𝒕𝒊𝒐𝒏 𝒑𝒂𝒊𝒓𝒔 

𝑺𝒆𝒕 𝜺 

𝒘𝒉𝒊𝒍𝒆 𝒏𝒐𝒕 𝒕𝒆𝒓𝒎𝒊𝒏𝒂𝒍 𝒔𝒕𝒂𝒕𝒆: 𝑮𝒆𝒏𝒆𝒓𝒂𝒕𝒆 𝒂 𝒓𝒂𝒏𝒅𝒐𝒎 𝒏𝒖𝒎𝒃𝒆𝒓 𝒃𝒆𝒕𝒘𝒆𝒆𝒏 𝟎 𝒂𝒏𝒅 𝟏 

𝒊𝒇 𝒓𝒂𝒏𝒅𝒐𝒎 𝒏𝒖𝒎𝒃𝒆𝒓 <  𝜺: 

# 𝑬𝒙𝒑𝒍𝒐𝒓𝒂𝒕𝒊𝒐𝒏: 𝒄𝒉𝒐𝒐𝒔𝒆 𝒂 𝒓𝒂𝒏𝒅𝒐𝒎 𝒂𝒄𝒕𝒊𝒐𝒏 

𝒂 =  𝒓𝒂𝒏𝒅𝒐𝒎 𝒂𝒄𝒕𝒊𝒐𝒏 𝒇𝒓𝒐𝒎 𝒔𝒆𝒕 𝒐𝒇 𝒑𝒐𝒔𝒔𝒊𝒃𝒍𝒆 𝒂𝒄𝒕𝒊𝒐𝒏𝒔 

𝒆𝒍𝒔𝒆: 

# 𝑬𝒙𝒑𝒍𝒐𝒊𝒕𝒂𝒕𝒊𝒐𝒏: 𝒄𝒉𝒐𝒐𝒔𝒆 𝒕𝒉𝒆 𝒂𝒄𝒕𝒊𝒐𝒏 𝒘𝒊𝒕𝒉 𝒕𝒉𝒆 𝒉𝒊𝒈𝒉𝒆𝒔𝒕 𝑸 𝒗𝒂𝒍𝒖𝒆 
𝒂 =  𝒂𝒄𝒕𝒊𝒐𝒏 𝒘𝒊𝒕𝒉 𝒉𝒊𝒈𝒉𝒆𝒔𝒕 𝑸(𝒔, 𝒂) 
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1.3.3. Model-Free and Model-Based Approaches 

   Models-based RL uses a pre-defined environment model to predict future states and rewards, 

enabling efficient learning through planning and simulation. Examples include Value Iteration, 

Policy Iteration, and Model-Based Dyna-Q [16]. This approach is sample-efficient but 

computationally intensive. If the environment is unknown,  there is no way to create a model to 

determine 𝑃. In this case, model-free RL methods, such as Q-learning [17] and SARSA [18], do 

not require a model of the environment because they learn optimal policies directly from 

interactions without explicitly estimating the transition probabilities 𝑃. They allow the learning 

process to be simplified, computational requirements reduced, and the learning process adapted 

more quickly to complex and dynamic environments. RL methods have become more efficient 

and have less computations by incorporating them with deep learning techniques [19]. Moreover, 

deep learning introduces new methods for RL, which is termed deep RL. Instead of depending on 

Q-values like 𝑄(𝑠, 𝑎) to obtain the optimal policy, which is called value-based methods, neural 

networks have been employed to learn the optimal policy directly, such as Soft Actor-Critic (SAC) 

[20], Trust Region Policy Optimization (TRPO) [21], Deep Deterministic Policy Gradient (DDPG) 

[22]. For instance, DDPG is an actor-critic algorithm designed for continuous action spaces. It 

learns an actor network to select actions and a critic network to estimate the value of the chosen 

actions. Proximal Policy Optimization (PPO) is also based on actor-critic and policy gradient 

methods that optimize the objective function by clipping the policy update. It is designed to be 

computationally efficient and stable [23]. Figure 2 is an example of classification RL algorithms. 

 

Figure 1.2 RL algorithms diagram. 
 

1.3.4. Why PPO for robots domain 

   To select the RL algorithm for robots, particularly in the context of SRs, several factors need 

to be considered, including the complexity of the environment, the need for real-time decision-

making, computational resources, and the specific objectives of the task. There are many 

algorithms like DQN, DDPG, TRPO, PPO, and others. Firstly PPO is a policy gradient method as 

in equations (1.22), This equation represents the gradient ascent update rule for optimizing the 

policy 𝜋𝜃. The gradient is computed using log-probabilities, making it efficient for policy updates, 
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and 𝑐𝑙𝑖𝑝(𝑟𝑡(𝜃), 1 − 𝜖, 1 + 𝜖) restricts the update to be within a small range [1−ϵ,1+ϵ].  As a results, 

that gives an advantage when it compares to other like TRPO for computational cost. While 

𝐴̂𝑡  reducing variance and stabilizing training which given in (1.23). 

Ensures the policy is updated efficiently, focusing only on beneficial changes. 

 

 

∇𝜃𝐽(𝜃) = 𝐸𝑡[∇𝜃𝑙𝑜𝑔𝜋𝜃(𝑠𝑡|𝑎𝑡)𝐴̂𝑡] 

𝐴̂𝑡 = 𝑄(𝑠𝑡, 𝑎𝑡) − 𝑉(𝑠𝑡) 

(1.22) 

(1.23) 

   It optimizes the policy directly by using a clipped surrogate objective function, considered a 

powerful tool for ensuring stability. This approach ensures stable and reliable policy updates, 

making PPO highly effective in complex environments. PPO is suitable for continuous and discrete 

action spaces, which benefits the diverse tasks encountered in SRs. The clipped surrogate objective 

𝐿𝐶𝐿𝐼𝑃(𝜃) can be mathematically represented as equations (1.24),(1.25): 

 𝐿𝐶𝐿𝐼𝑃(𝜃) =  𝐸𝑡[min (𝑟𝑡(𝜃)𝐴̂𝑡, 𝑐𝑙𝑖𝑝(𝑟𝑡(𝜃), 1 − 𝜖, 1 + 𝜖)𝐴̂𝑡] (1.24) 

 
𝑟𝑡(𝜃) =

𝜋𝜃(𝑠𝑡|𝑎𝑡)

𝜋𝜃𝑜𝑙𝑑
(𝑠𝑡|𝑎𝑡)

 
(1.25) 

This ratio compares the probability of taking action 𝑎𝑡 under the new policy 𝜋𝜃 versus the old 

policy 𝜋𝜃𝑜𝑙𝑑
. If 𝑟𝑡(𝜃) >1, the new policy assigns a higher probability to action 𝑎𝑡 than before. 

If 𝑟𝑡(𝜃) <1, the new policy assigns a lower probability to action 𝑎𝑡 . 

While DQN is more straightforward and sample-efficient, it is limited to discrete action spaces, 

which may not suffice for more complex robotic tasks. DDPG provides a deterministic policy 

suited for continuous actions but suffers from lower sample efficiency and higher sensitivity to 

hyperparameters, which were tested in our study. TRPO, like PPO, offers high stability but at the 

cost of greater computational complexity and implementation difficulty. Several studies have 

demonstrated the effectiveness of PPO in various robotics contexts [24], [25], [26], [27], including 

SRs, where PPO shows its ability to manage continuous action spaces and provide stable 

performance that has been highlighted in research [28], [29], [30]. 

1.4. Outline of the Thesis 

   In Chapter 2, a new comparative study investigates two prominent methodologies, PSO and 

DRL, to analyze the performance of a swarm of mobile robots through extensive experimentation. 

The objective is to produce a navigation of collective behavior through unknown environments, 

highlighting the strengths and weaknesses of each approach. Chapter 3 explores two enhancement 

techniques for DRL. Firstly, it proposed a method for achieving collective navigation behavior in 

a swarm of robots using DRL. It includes an enhanced PPO by utilizing curriculum learning. A 

comparative analysis between the enhanced  PPO, the original PPO, and the DDPG algorithm 

highlights the strengths of the proposed enhancment. A novel hybrid approach with a modular 

design (Behavior-Based Model) combining DRL and PSO is introduced to address dynamic 
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foraging tasks characterized by non-static environments and objectives. Chapter 4 examines DRL's 

reward formulation, focusing on using sparse and shaping rewards to optimize learning, then 

developing a deep inverse RL model to uncover the reward structures that guide SR in achieving 

tasks through demonstrations. The proposed model is tested under different collective behaviors 

according to the required objectives like searching and navigation.
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2. AUTOMATIC DESIGN METHODS 

Automatic design methods refer to a set of computational techniques and algorithms that 

autonomously generate efficient and effective collective behaviors of SRs without requiring 

explicit human intervention for each step. These methods leverage various forms of artificial 

intelligence, like machine learning and optimization algorithms, to automatically create, evaluate, 

and refine robot behaviors based on required objectives. 

2.1. A Survey on Automatic Design Methods 

Researchers have investigated various design strategies and control mechanisms to generate the 

collective behavior of SRs. The approaches are generally classified into two fields: behavior-based 

design methods and automatic design methods [31].  

Behavior-based design methods are based on modularization of robot behaviors into distinct 

modules. Each module is produced by many actions based on sensor readings, like avoiding 

obstacles, grabbing boxes, and others. Thus, the collective behavior is generated by interactions 

and coordination among modules. These methods are considered simpler and easier to interpret 

than automatic design approaches. However, coordinating and tunning many modules is 

challenging, especially for complex tasks, because of potential conflicts between modules and 

managing the interactions and dependencies between modules. Each module must work 

harmoniously with others to achieve the desired collective behavior. At the same time, Automatic 

design methods like RL, PSO, genetic algorithms (GA), ACO, and others are employed to generate 

the collective behavior of SRs. They utilize machine learning approaches and optimization 

algorithms to tune the parameters and policies that govern the behavior of individual robots within 

a swarm [32], [33]. For example, evolutionary algorithms like genetic algorithms and PSO are 

traditionally favored for fine-tuning robot behaviors by defined fitness functions, while RL is often 

preferred for applications requiring continuous learning, adaptability, complex decision-making, 

and dynamic exploration-exploitation balance [34]. 

2.1.1. PSO-Driven Solutions in SRs 

   Using the PSO model to enhance the coordination and performance of SRs, particularly for 

tasks like target search and navigation. Its strength lies in simplicity, effectiveness, and low 

computational cost. , making it a practical choice for swarm-based applications. 

 Many contributions have been carried out to enhance PSO's applicability in SR by adapting 

various PSO versions to fit diverse contexts with mathematical refinements [34]. An asynchronous 



THESES – AUTOMATIC DESIGN METHODS  

19 
 

PSO (APSO) version refines the basic model by updating the velocity and position of each particle 

immediately after evaluating an individual particle's fitness without waiting for the entire swarm's 

fitness evaluation. It ensures the adaptivity of the system to the limited knowledge of the 

environment [36]. An Adapted PSO model is introduced as the modified version that is employed 

in physical SRs for localization sources. This modification linked the parameters to the velocity 

and acceleration of each robot. The physical properties of each robot, like the desired maximum 

velocity and acceleration, and relating these to the inertia weight and the cognitive and social 

coefficients via a state model [37]. Many studies incorporate artificial intelligence approaches like 

fuzzy logic or neural networks to fine-tune and optimize PSO in swarm robotics. There are many 

strategies to adapt PSO in SRs [38]. However, to overcome key challenges of PSO in swarm 

robotics, such as path planning, collision avoidance, maintaining coordination as the swarm size 

grows, and preventing congestion, it is essential to establish robust communication protocols. 

2.1.2. RL-Driven Solutions in SRs 

   Many improvements have been introduced to RL for SR applications [39]. For example, various 

methods were compared, like Deep Q-Network (DQN), N-Step-Q Network (NSQ), and Double 

DQN. All these methods were used to generate a navigation collective behavior of a proposed SR. 

Then, based on them a combined version named Double N-step Q-Network (DNQ) was derived. 

It showed a superior performance in convergence to the optimal policy [40]. Another architecture 

was introduced with a hierarchical RL structure, one for the controller responsible for executing 

the tasks and another for choosing the controller itself [41]. Defining the reward plays a vital role 

in obtaining optimal swarm behavior. Sparse rewards with different values were used to navigate 

an obstacle-environment. The aim was to clarify the importance of selected reward values in 

swarm behavior. It showed that selecting high penalties makes the swarm focus on avoiding 

obstacles rather than directed toward the goal [42]. 

   These contributions and others help us understand how to adapt RL in SR. They explored many 

DRL architectures and reward formulations to optimize the swarm performance. However, many 

challenges arose, especially in complex environments like random initialization of neural 

networks, which led to extra time for the DRL algorithms to converge to the solution, Crucial 

formulating and tuning of the reward function, exploration-exploitation dilemma, and others [43].  

   Too many studies have deployed both PSO and RL in SR applications due to their effectiveness; 

there is a relatively scarce comparative analysis between these two prominent methods. PSO and 

Q-learning were compared for the multi-robot systems to avoid obstacles, this comparison was 

limited to measuring the time of convergence where the findings showed that Q-learning with 

continuous states is faster than PSO [44]. 

   Another comparative study explored three automatic methods:  Bat Algorithm (BA), Grey Wolf 

Optimizer (GWO), and PSO; PSO outperforms BA, and BA surpasses GWO [45]. There is a gap 

in comparing the two main approaches, PSO and RL, in SRs. This gap is important because it 

provides deeper insight into the best scenarios for each approach based on their theoretical 



THESES – AUTOMATIC DESIGN METHODS  

20 
 

foundations. By comparing these methods, we can identify their strengths and weaknesses, helping 

to determine the most effective algorithm for specific tasks. 

Swarm intelligence algorithms have been extensively studied and developed for various 

applications, including optimization, robotics, and distributed computing. Due to their 

decentralized and adaptive nature, these algorithms are often modified or extended to enhance 

performance in specific problem domains. According to the existing research, it is noticeable that 

enhancements generally fall into three major categories: parameter modifications, algorithmic 

combinations, and structural modifications. The effectiveness of each enhancement strategy 

depends on the nature of the problem, the search space characteristics, environmental constraints, 

and others.  

1. Modifications Through Parameter Tuning 

One of the most common approaches to enhancing swarm intelligence algorithms is through 

parameter optimization, where RL techniques are used to dynamically adjust hyperparameters in 

swarm algorithms. For instance, iSOMA-PPO (Self-Organizing Migrating Algorithm + PPO) 

utilizes PPO to adjust the step size and migration patterns of the iSOMA algorithm, improving its 

performance in complex optimization tasks [46]. Similarly, RL-LSOP (RL for Large-Scale 

Optimization Problems) applies RL to fine-tune PSO parameters in high-dimensional search 

spaces (D ≥ 500) [47]. These approaches allow swarm algorithms to become more adaptive and 

self-tuning, improving their convergence speed and efficiency without requiring manual parameter 

adjustments. However, these methods are primarily focused on global optimization tasks rather 

than real-time multi-agent coordination, which is critical in SRs and other decentralized systems. 

2. Modifications by Combining Multiple Algorithms 

Another major trend in swarm intelligence research involves hybridizing multiple algorithms 

to leverage their complementary strengths. This can be seen in PSO-GA (PSO + Genetic 

Algorithm), where GA introduces evolutionary operators (crossover & mutation) that introduce 

randomness and diversity, preventing premature convergence [48]. Similarly, ACO-PSO (Ant 

Colony Optimization + PSO) integrates pheromone-based path selection from ACO with PSO's 

velocity-based updates, enhancing performance in dynamic environments [49]. While these hybrid 

approaches show significant performance improvements, they often introduce higher 

computational complexity and may require domain-specific adaptation to be effectively deployed 

in real-world applications. 

3. Structural Modifications 

Structural modifications focus on how individual agents interact and adapt over time. One such 

approach is hierarchical swarm intelligence, where the swarm is divided into different levels of 

decision-making, allowing for more scalable and coordinated behaviors. For example, 

Hierarchical PSO (H-PSO) introduces leader-follower dynamics, where a subset of high-

performing agents guides the overall swarm [50], another example is my proposed foraging system 

in chapter 3. 
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While numerous studies have explored modifications to swarm intelligence algorithms by 

integrating RL techniques, most of these works focus primarily on optimizing algorithmic 

parameters for efficiency rather than analyzing their impact on emergent collective behaviors in 

swarm robotics. Many hybrid methods, such as iSOMA-PPO, RL-tuned PSO, and LRPSO, aim to 

enhance the performance of PSO by adjusting its search strategies, but these studies do not 

examine how such modifications affect swarm-level interactions, adaptability, or decision-making 

in dynamic environments. A broad comparison across all swarm intelligence methods would be 

neither effective nor logical, as the effectiveness of these algorithms is highly dependent on the 

nature of the problem and the environment. In swarm robotics, collective behaviors such as 

foraging and path planning are the key performance indicators rather than just convergence speed 

or solution accuracy. Thus, a direct comparison between PSO and PPO is essential to understand 

how each method contributes to swarm-level coordination and adaptability. 

This research is one of the few that directly evaluates how PPO and PSO influence the collective 

behavior of a swarm. Understanding their strengths and limitations in swarm robotic tasks is 

crucial for designing structured control architectures that leverage the best of both approaches. By 

focusing on collective behavior rather than algorithmic fine-tuning, this research fills a critical gap 

in the literature, demonstrating why a comparative analysis between PSO and PPO is not just 

relevant but necessary to advance SR research. 

2.2. PSO vs. RL Methodologies in Swarm Navigation Behavior 

   This section conducts a comparative analysis of PSO and RL methodologies in the context of 

SRs. It primarily explores their effectiveness in generating navigational collective behavior. It 

assesses SR's flexibility and adaptivity in the context of these algorithms, providing valuable 

insights into the selection of control strategies for SR [51]. 

2.2.1. Defining the task and the environment 

   The 3D Webots robot simulator implements the environment of the swarm robots [52], where 

the E-puck mobile robot are chosen to create a homogenous swarm [53]. The Deepbots framework 

integrates abstract PPO with the simulator[54]. The system is designed to enable collective 

navigation behavior, guiding the robots to converge at a specified target position while avoiding 

collisions. This behavior is tested across various environments, as depicted in Figure 2.1. The 

testing areas have a square shape surrounded by four walls, with sizes of 1 × 1 𝑚2, 1.3 × 1.3 𝑚2, 

and 1.6 × 1.6.  Available in three different layouts: no obstacles, one obstacle, and two obstacles. 

The E-puck robots are configured with a linear velocity range of [0, 0.25] 𝑚/𝑠 and an angular 

velocity range of [−3.14, 3.14] 𝑟𝑎𝑑/𝑠, with their Infra-Red sensors having a range of [0, 0.04] 𝑚. 
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Figure 2.1. Environments for the navigation task. 

2.2.2. PSO Methodology 

   The PSO model described in equations (1.16) and (1.17) is adapted for solving a navigation task, 

where each robot is treated as a particle. The particle update in the PSO model corresponds to the 

path planning in SR. The navigation criterion for the robots is their fitness value. This value is 

determined by the distance from each robot to the target. Robots exchange information about their 

fitness values and current positions with one another. Robots' optimal personal and global positions 

are selected based on the smallest fitness values. To direct a robot to its next position, the speeds 

of its left and right motors 𝑣𝑙𝑒𝑓𝑡−𝑚𝑜𝑡𝑜𝑟 , 𝑣𝑟𝑖𝑔ℎ𝑡−𝑚𝑜𝑡𝑜𝑟 are adjusted by equations (2.1) and (2.2), the 

process is detailed in Algorithm 2. 

 𝑣𝑟𝑖𝑔ℎ𝑡−𝑚𝑜𝑡𝑜𝑟 = 𝑉 + 𝑊 + 𝑉𝑟 (2.2) 

 𝑣𝑙𝑒𝑓𝑡−𝑚𝑜𝑡𝑜𝑟 = 𝑉 + 𝑊 + 𝑉𝑙 (2.3) 

 

Algorithm 2: PSO model for the navigational task. 

 

Initialize the environment and robots with positions and velocities 

Define fitness function ← DISTANCE between the robot and the target 

repeat 

for each robot, do 

Evaluate robot fitness using the fitness function 
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if current robot fitness is better than the previous best robot fitness, then 

Update the robot's best position to the current position 

end if 

GET all robot's fitness and positions 

Update global best position according to best robot fitness 

end for 

for each robot, do 

Define w = 0.7, c1 = 2, c2 = 2 

Update robot velocity using the equation: 

v = w×v+c1×r1× (robot best−current position) +c2×r2× (global best−current position) 

Update robot position using the equation: 

position = position + velocity 

Calculate the linear velocity V ← Distance to the new position 

Calculate the turning velocity W ← Angle to the new position 

Calculate the avoiding speed for each wheel V_l, V_r 

Apply left motor speed ← V +W + V_l, 

Apply the right motor speed ← V +W + V_r 

end for 

until the robot reaches the target 

 

 

2.2.3. DRL methodology  

   The MAS model described in section (1.2.6) is formulated as an MDP with the tuple (S, A, T, 

R, γ). The state space 𝑆 =  [ 𝐼𝑅 𝑠𝑒𝑛𝑠𝑜𝑟’𝑠 𝑟𝑒𝑎𝑑𝑖𝑛𝑔𝑠: 𝐿𝑆0 … , 𝐿𝑆7, 𝐷, 𝜃]. Where D is the distance 

between the target and the robot, and 𝜃 is the angle between the robot and the target—action space 

𝐴 = [𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑖𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑤𝑜 𝑚𝑜𝑡𝑜𝑟𝑠]. The transition function 𝑇 describes the dynamics of the 

system. By using free models, there is no need to estimate it. Reward 𝑅:  Shaping reward, as shown 

in Equations (2.4), (2.5), and (2.6), is applied to leverage the experience during the path by 

assessing the robot's current and previous positions at each time-step and employing a sparse 

method to punish robots when they collide with obstacles. The discount factor γ is a value that 

balances the importance of immediate rewards against future rewards. 

 𝑃𝑒𝑛𝑎𝑙𝑡𝑦 = {
−0.001 𝑇ℎ𝑒𝑟𝑒 𝑎𝑟𝑒 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝐼𝑅 𝑠𝑒𝑛𝑠𝑜𝑟𝑠.

0                                                       𝑇ℎ𝑒𝑟𝑒 𝑎𝑟𝑒 𝑛𝑜 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑠.
 

(2.4) 

 

 
𝑅𝑒𝑤𝑎𝑟𝑑𝑡𝑎𝑟𝑔𝑒𝑡 = {

0.1                      𝑇ℎ𝑒 𝑟𝑜𝑏𝑜𝑡 𝑟𝑒𝑎𝑐ℎ𝑒𝑠 𝑡ℎ𝑒 𝑡𝑎𝑟𝑔𝑒𝑡.
0           𝑇ℎ𝑒 𝑟𝑜𝑏𝑜𝑡 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑟𝑒𝑎𝑐ℎ 𝑡ℎ𝑒 𝑡𝑎𝑟𝑔𝑒𝑡.

 
(2.5) 

 

 𝑅𝑒𝑤𝑎𝑟𝑑 = 𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 − 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 + 𝑃𝑒𝑛𝑎𝑙𝑡𝑦 + 𝑅𝑒𝑤𝑎𝑟𝑑𝑡𝑎𝑟𝑔𝑒𝑡           (2.6) 

   The PPO Network, as in Figure 2.1, optimizes the policy by adjusting the weights to improve 

the expected return 𝐺 while keeping the new policy not too far from the old policy. Both the actor 

and the critic networks use fully connected layers with dimensions (10×64×64×2 for the actor and 

10×64×64×1 for the critic with ReLU activation function). The actor part proposes actions as two 

speeds based on the current state. The critic network evaluates the actions the actor takes by 
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computing the advantage, which indicates how much better an action is than the average. After 

computing the initial actions, a Gaussian process is applied to refine these actions or to add 

exploration noise. The hyperparameters of the PPO training process are presented in Table 2.1. 

All mentioned hyperparameters for PPO in  are chosen based on empirical testing and [53]. 

              Table 2.1: PPO hyperparameters. 

Parameter Value 

Max training timesteps 1000000 

Max timesteps per episode 1500 

State space dimension 10 

Action space dimension 2 

Discount factor γ 0.99 

PPO epsilon clip 0.2 

PPO K epochs 80 

Optimizer learning rate actor 0.0003 

Optimizer learning rate critic 0.001 

 

 

Figure 2.1. PPO architecture for the navigation task. 

2.2.4. Results and discussion 

   A comparative analysis is carried out to assess the system's performance by defining three 

metrics: 

- The effectiveness is measured by determining the overall time required to accomplish the 

task. Flexibility is evaluated by the ability to adapt to changes in environments. The 

generalization of the solution is tested in a new environment.  
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The comparison is performed under identical conditions using the defined performance metrics 

across multiple trials for validation.  Assessing the efficiency by the time of the first and last robot 

in the swarm to complete the task for each environment. The time taken by the first robot to reach 

the target, denoted as 𝑅𝐿𝑚𝑖𝑛 by using RL and 𝑃𝑆𝑂𝑚𝑖𝑛 by using PSO, reflects the fastest 

individual robot (Microscopic level – individual behaviors).  

Conversely, the time recorded for the last robot to reach the target, indicated as 𝑅𝐿𝑚𝑎𝑥 and 

𝑃𝑆𝑂𝑚𝑎𝑥 represents the total completion time for the task (Macroscopic level – collective 

behavior). 

 

Figure 2.2. Efficiency of RL vs. PSO. 

   Analysis based on results in Figure 2.2 indicates that RL outperforms PSO. In detail, 𝑅𝐿𝑚𝑖𝑛 

recorded a median completion time of 8.48 seconds and a mean of 8.7 seconds, suggesting that 

RL facilitates faster individual robot performance compared to PSO, where 𝑃𝑆𝑂𝑚𝑖𝑛 achieved a 

median time of 12.96 seconds and a mean of 12.55 seconds.  

Although PSO shows a narrower interquartile range (IQR), suggesting more consistent 

performance among the fastest robots, it highlights a uniformity in completion times close to the 

median, indicating similar performance levels across various environments. 

For the coordination of robots, denoted as 𝑅𝐿𝑚𝑎𝑥 versus 𝑃𝑆𝑂𝑚𝑎𝑥, RL shows a median 

completion time of 14.78 seconds with a mean of 14.64 seconds, along with a compact IQR that 

underscores a consistent performance among slower robots. In contrast, PSO has broader 

variability in completion times, as shown by its broader IQR, with a median of 28.54 seconds and 

a mean of 27.9 seconds. This variation is attributed to bottlenecks at the target, which delay the 

task completion.  

Overall, RL demonstrates more uniform efficiency across individual and coordinated robot 

performance. In contrast, PSO displays greater variability in robot performance, suggesting 
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different strengths, like flexibility, that might not be evident from this box plot analysis. 

Furthermore, the paths followed by the robots, as indicated in Figures 2.3 and 2.4, show the 

flexibility of both algorithms in adapting to changes in the environment. PSO-guided robots follow 

convergent routes, exhibiting a collective behavior influenced by shared information as they 

navigate toward the target. Their paths are smoother, indicating efficient routing with minimal 

deviations, though looping near the target suggests adjustments within the swarm. Obstacles lead 

to longer, collaborative routes to the destination. RL, however, displays a range of trajectories that 

indicate a more autonomous, learning-based navigation strategy, with paths featuring sharp turns 

and complex maneuvers that demonstrate an adaptive learning process. Compared to PSO, RL 

shows less clustering of paths and more individualized responses to obstacle avoidance.  

When comparing PSO with RL, the PSO’s paths are marked by unified swarm behavior, possibly 

sacrificing individual efficiency for group cohesion. RL's ability to learn and adapt results in more 

strategically sound maneuvers than the more deterministic and collective patterns observed with 

PSO. 

 

Figure 2.3. Flexibility of PSO. 



THESES – AUTOMATIC DESIGN METHODS  

27 
 

 

Figure 2.4. Flexibility of RL. 

 

Figure 2.5. Environment for testing the generalization. 
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   To assess the generalization of PSO and RL, the behavior patterns of robots were initially 

established in a 1.6×1.6 m² environment and subsequently evaluated in a larger 3×3 m² area, as 

depicted in Figure 2.5. RL encounters obstacles like limited prior experience and the tendency to 

overfit when faced with different conditions, such as new initial positions for the robots or 

additional obstacles. To mitigate these challenges, adjustments to the RL's actor-critic framework 

or the integration of progressive learning techniques may be necessary (studied in Chapter 3 in the 

section on curriculum learning). In contrast, PSO maintains a consistent performance level despite 

environmental changes. In tests conducted within this new, more complex setting, PSO–driven 

robots demonstrated the ability to navigate collaboratively toward a collective objective, as 

illustrated in Figure 2.6. However, RL-driven robots lacked collective swarm behavior and could 

not converge, as shown in Figure 2.7. These observations underscore the necessity for advanced 

strategies to enhance RL's adaptability in both complex and variable environments. 

 

 

 

 

 

 

 

 

            

          

           Figure  2.6.  PSO generalization.                          Figure  2.7.  RL generalization. 

2.3. Conclusion of comparative analysis 

   This study compares the effectiveness of PSO and RL algorithms in guiding a swarm of robots 

through an unknown environment. It highlights the strengths and weaknesses of each method. RL 

is faster and better at coordinating robots, but it works best in conditions similar to where it was 

trained. RL struggles to adapt to new environments without additional training or more complex 

training process with heavy structure. On the other hand, PSO may be slower than RL, but it 

performs consistently well across different environments. This makes PSO a reliable choice for 

tasks needing stability, especially in unpredictable settings. The slower speed of PSO does not 

greatly affect its ability to perform steadily. It is suggested to use RL, where quick reactions and 

close coordination are essential, mainly in familiar settings. PSO is recommended for tasks 

requiring reliability and consistent performance in new environmental challenges. The results of 

this study demonstrate fundamental differences between PSO and PPO in SRs, particularly in 

terms of adaptability, coordination, and generalization across different environments. Unlike 

previous research that integrates reinforcement learning into PSO for optimization purposes (e.g., 

iSOMA-PPO, RL-LSOP, and LRPSO), our findings reveal how these two approaches 
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independently influence swarm-level behaviors rather than simply enhancing computational 

efficiency. Moreover, our results indicate that swarm coordination differs significantly between 

PSO and PPO-based models. PPO agents tend to learn individualized strategies that do not always 

align with collective decision-making, leading to less structured swarm behavior compared to 

PSO-based swarms, which naturally converge toward a globally coordinated movement pattern. 

This observation is crucial for designing hybrid PSO-PPO frameworks, as it suggests that 

combining PPO’s learning-based adaptability with PSO’s swarm coordination could lead to more 

effective decentralized decision-making in multi-agent robotic systems. 

These findings suggest that future work should focus on structured control architectures that 

integrate PPO’s adaptive learning with PSO’s decentralized search and coordination mechanisms. 

Rather than viewing PSO and PPO as competing methods, this study highlights their 

complementary strengths, providing a basis for designing hierarchical or modular control 

strategies for swarm robotic tasks such as foraging, path planning, and collective exploration.
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3. ADVANCING DRL FOR SRS : INNOVATIVE ENHANCEMENT TECHNIQUES 

   In this chapter, we explore integrating RL approaches within SRs, a domain that significantly 

benefits from RL's adaptability and autonomous decision-making capabilities. SRs must adapt to 

dynamic environments by adjusting their behaviors through trial and error; this is autonomy, which 

is the essential concept in the SRs. The trial- error approach allows robots within the swarm to 

independently refine their strategies until they determine the most effective methods. So, RL is 

ideal for these systems, such as optimizing foraging behaviors, which are crucial for efficient 

environmental mapping and robust execution of missions. Recent studies have focused on 

deploying RL to emerge collective foraging behaviors. To address the persistent challenges in this 

field, including the complexity of dynamic environments, scalability of learned behaviors, 

communication constraints, balance between exploration and exploitation, and the limitations 

posed by energy and computational resources. A spectrum of strategic solutions to these challenges 

is presented in Table 3.1, providing an overview of current advancements and methodologies in 

enhancing DRL within SRs. 

            Table3.1. Challenges of deploying RL in foraging swarms. 

Challenge Description Challenge Description 

Complexity of Dynamic 

Environments 

Adapting to unpredictable changes, including 

moving targets and obstacles. 

Scalability of Learning Applying learned behaviors to swarms of 

varying sizes and compositions. 

Communication 

Limitations 

Coordinating actions without overwhelming 

the network control architecture. 

Balancing Exploration and 

Exploitation 

Efficiently discover new strategies and 

environments while utilizing learned behaviors 

to achieve optimal performance. 

Energy and Computational 

Constraints 

Managing energy consumption and 

computational demands for efficient operation. 

 

   For the "complexity of dynamic environments," creating macroscopic foraging behaviors while 

integrating fuzzy logic for fine-tuned obstacle navigation and avoidance is a solution introduced 

in [55]. This combination reduces the complexity of the RL problem space, leading to robust, 
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scalable foraging behaviors that hold up even in untrained scenarios. Another solution employed 

Multi-Agent Reinforcement Learning (MARL) to refine the foraging strategies of active particles, 

allowing them to locate and harvest food sources that appear randomly and efficiently [56]. This 

research showed that optimizing individual agents' behavior could enhance the entire swarm's 

collective foraging efficiency. Another innovative strategy involved using deep RL combined with 

CL to master navigation tasks progressively, thereby boosting learning efficiency and 

environmental adaptability [57].  

    Various techniques have been proposed regarding scalability issues. One research [58] focused 

on enhancing system performance without increasing the complexity of individual robots or 

intensive inter-robot communication. It suggested that simple, decentralized interactions could 

facilitate complex collective tasks. Another study introduced a self-organizing task distribution 

model based on a response threshold mechanism, which allows SR to efficiently divide complex 

foraging tasks without centralized oversight or heavy communication, ensuring robust 

performance across different scenarios [59]. Regarding communication limitations within SRs, the 

literature highlights several forward-thinking solutions that improve system robustness and 

efficiency in environments with restricted communication. Approaches such as federated learning 

combined with deep RL have been noted to enhance performance generalization [60]. 

Additionally, biologically inspired communication strategies support decentralized swarm 

operations [61]. These methods boost the adaptability of swarm systems to dynamic conditions by 

enabling collective decision-making and task optimization without relying on complex individual 

robot capabilities.  

Methodologies like the Mutual-Information Upper Confidence Bound (MI-UCB) [62], and virtual 

pheromone systems [63] have been explored to balance exploration and exploitation. MI-UCB, 

for instance, optimizes drone coordination via a decentralized approach, balancing information 

gathering with reward maximization. Virtual pheromones, on the other hand, allow agents to 

switch between discovering new resources and exploiting known ones efficiently.  

Moreover, research on addressing energy and computational constraints has led to the 

development of mobile edge computing solutions paired with mobility-aware deep RL models, 

minimizing computational demands and enhancing energy efficiency while maintaining response 

times [64]. Our contributions build on these individual approaches by promoting a modular 

strategy combined with the adaptability and efficiency of PPO in dynamic settings. This method 

simplifies management and debugging, boosting system adaptability and operational efficiency in 

dynamic environments. Our approach significantly improves task performance and resource 

utilization by focusing on adaptive learning and decision-making within a collective swarm 

intelligence framework. 

   This chapter explores advanced enhancement techniques of DRL, focusing on innovative 

applications and hybrid designs in SRs. It contains two aspects:  



THESES – ADVANCING DRL FOR SRS 

32 
 

Firstly, a structured approach to integrating curriculum learning with DRL is presented. It involves 

progressive training SRs to generate more generalized and adaptive collective behaviors.  

Then, a new hybrid modular design model is introduced, combining automatic design methods 

like DRL and PSO with a modular design model. It is verified by tackling the dynamic foraging 

task, highlighting the proposed model's flexibility and efficiency. Detailed experimental setups 

and results illustrate how these enhanced techniques advance the capabilities of autonomous 

swarms, showcasing their potential for building adaptable and robust SRs.  

3.1. Introduction to Curriculum Learning 

   Curriculum learning (CL) is inspired by the pedagogical approach of structuring education, 

where learners tackle complex topics gradually by beginning with basics and simpler parts until 

solving the entire task.  So, CL is based on a gradually increasing difficulty. 

   This concept has been adapted to various machine-learning algorithms and applications [65]. By 

incorporating CL, models demonstrate improved generalization in new, unseen data. This 

approach also accelerates the training process, especially in non-convex scenarios where the 

optimization landscape contains multiple local minima. [66].  

When using machine learning in robotics problems like navigation or path planning, incorporating 

CL enhances the robot's navigation skills by progressively training it on increasingly complex 

scenarios. This method improves the robot's adaptability and efficiency in varied environments. It 

is effective in mapping, localization, and optimizing path planning [67] and incorporating CL in 

two stages with the RL to solve navigation and obstacle avoidance in a 2D simulated unmanned 

aerial vehicle environment.  This approach significantly enhanced learning efficiency by reducing 

the learning time and cost [68].  

   The primary goal of CL is to improve the learning process's efficiency. The challenge of an RL-

driven swarm of robots is training them to learn cooperative strategies and adapt to complex 

environments effectively. CL addresses this by segmenting the learning into simpler, progressively 

more complicated tasks, making it manageable. Starting with easier tasks enables SR to succeed 

quickly. It helps prevent being stuck in suboptimal solutions. Skills acquired in basic scenarios are 

transferable to more complex ones, where transfer learning is vital in SRs. That led to enhancing 

the swarm's capability in varied scenarios. It can also introduce the robots to diverse environmental 

conditions and task variations from the outset, boosting robustness and adaptability.  

Deploying CL across various methods to solve tasks in a swarm serves as a powerful tool to 

enhance RL's adaptability and generalization in complex scenarios, here are some examples. The 

author in [69] utilizes a centralized critic network of MADDPG (Multi-agent DDPG) for a group 

of defended drones, enabling them to adapt their strategies based on a shared understanding of 

successful behaviors. CL is used to enhance this network, where direct learning of cooperation is 

challenging; instead, the process starts with two agents and gradually expands to include the entire 

system. In my research, CL is applied more broadly, independent of any specific RL algorithm 
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(PPO, DDPG, and others), it improves learning efficiency by progressively increasing 

environmental complexity. This highlights how CL has been applied from very different 

perspectives, demonstrating its flexibility in addressing diverse challenges within swarm systems. 

The "Autonomous Swarm Shepherding" model in [70] employs a hierarchical RL framework, 

where a single agent (the dog) guides non-learning agents (the sheep) through curriculum learning 

(CL), progressively training it to collect and drive the sheep. However, this approach limits 

adaptability, as only one agent learns while others remain passive. In contrast, our model enables 

all agents in the swarm to learn independently, significantly increasing system complexity and 

realism. Our CL-RL integration teaches collective behaviors rather than focusing on a single 

leader, ensuring scalability across diverse swarm configurations. Unlike hierarchical RL, our 

approach addresses multiple objectives simultaneously, avoiding unnecessary computational 

complexity while improving learning efficiency. 

   This section introduces our significant contribution to the field: a model that integrates CL with 

DRL to address a navigation challenge for SR. Initially, this model was tested on individual robots 

before extending its application to a swarm setting [71]. Specifically, we have enhanced the 

efficiency of the PPO algorithm by incorporating a CL, significantly boosting adaptability and 

convergence efficiency in complex environments [57]. A comprehensive comparative analysis of 

three models is conducted to evaluate the effectiveness of the approach: modified PPO (PPO+CL), 

the standard PPO, and the DDPG. This comparison highlights the improvements the proposed 

model offers over existing methods. 

3.1.1. PPO with CL for individual robots 

   Traditional PPO in Figure 2.1 is used with a given reward in equations (2.4, 2.5, 2.6). To 

investigate the effectiveness of PPO with CL in solving the navigation problem as in Figure 3.6. 

The environment is segmented into many sub-environments for training, each measuring 0.7×0.7 

𝑚2. The first training environment is the simplest without obstacles, as shown in Figure 3.1. In 

contrast, the second one is more complicated, with multiple small boxes and narrow passages, as 

shown in Figure 3.2. The third one contains a long obstacle, as in Figure 3.3. The final training 

environment is combined with previous ones, measuring 1×1 𝑚2, as shown in Figure 3.4. The 

environment in Figure 3.5 is designed to have a new distribution of obstacles in a new area that 

 the robot has not encountered during training, considering that the testing environment combines 

training environments. 
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Figure 3.1. Training                          

environment 1- 0.7×0.7 m2. 

Figure 3.2. Training                          

environment 2- 0.7×0.7 m2. 

Figure 3.3. Training                          

environment 3- 0.7×0.7 m2. 

   

  

Figure 3.4. Training 

environment 4- 1×1 m2. 

Figure 3.5. Testing 

environment 5- 1×1 m2. 

 

Figure 3.6. PPO with CL schematic. 
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3.1.2. Convergence efficiency  

 

Figure 3.7. Curriculum learning- Training procedure. 

   The flowchart in Figure 3.7 illustrates the proposed training process of PPO with CL. Firstly, the 

weights are initialized with random values for (Env_0). Then, the training process continues 

sequentially as a series of incremental challenging environments i=1,2,...n, (n=4) in the proposed 

model. Each environment (Env_i) begins the training after transferring the learning from the 

previous environment by uploading the weights from the previous one (Env_(i-1)). When the robot 

records 1000 successful attempts to reach the goal, the model is learned, and the weights are saved. 

It is called C criteria. The training time is computed as (𝑡𝐸𝑛𝑣1, 𝑡𝐸𝑛𝑣2, 𝑡𝐸𝑛𝑣3,𝑡𝐸𝑛𝑣4), and the process 

iterates to the following environment.  The cycle continues until the model has been trained among 

all environments. The convergence efficiency is measured by the time of training as in equation 

3.1: 

 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 = 𝑡𝐸𝑛𝑣1 +  𝑡𝐸𝑛𝑣2 + 𝑡𝐸𝑛𝑣3 + 𝑡𝐸𝑛𝑣4 (3.1) 

In Env_1 (i=1), which considers the no-obstacles environment, as shown in Figure 3.8, the robot 

reached the target at around 124000-time steps, a noticeable increase in the cumulative received 

reward. Then, the weights of actor-critic networks are used to initialize the actor-critic to be trained 

in Env_2, where small boxes fill the environment, as shown in Figure 3.9. The robot needs around 

236,000 timesteps to reach the target and avoid obstacles. It requires more time because of the 

penalties of collisions, which is necessary for learning to avoid obstacles effectively. The 
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environment Env_3 introduced a long obstacle that was considered a different challenge. The 

weights are transferred from Env_2 to initialize PPO. The robot is trained to maneuver in a shorter 

period; it takes about 32000 timesteps, as shown in Figure 3.10. This quick adaptation is 

interpreted as the transfer learning that enabled the robot to generalize its avoidance strategies. 

Env_4 combines previous ones; the robot mastered this environment in roughly 44,000 timesteps, 

as shown in Figure 3.11. This indicates CL's ability to speed up the training process by initializing 

it with suitable weights. PPO without CL and DDPG are used to train the robot to navigate Env_4 

to compare our approach. The robot reaches the target after 452000 timesteps with some 

fluctuations, indicating a less efficient learning process due to the complexity of the environment. 

DDPG failed to converge to the solution. Table 3.2 shows the readings of times to ease the 

comparison. 

Table 3.2. Convergence efficiency. 

Table 3.1 compares the convergence efficiency of DDPG, PPO, and PPO with CL. DDPG did not 

successfully learn any environments, as indicated by infinite training time. PPO with CL shows 

progressive learning across environments with a cumulative training time. In contrast, standard 

PPO's slower learning in the final, most complex environment Env_4 indicates it requires more 

extensive exploration and training time to adapt without the structured progression that CL 

provides. 

  

Figure 3.8. Env_1, rewards in training. Figure 3.9. Env_2, rewards in training. 

                     𝑡𝐸𝑛𝑣1 𝑡𝐸𝑛𝑣2 𝑡𝐸𝑛𝑣3, 𝑡𝐸𝑛𝑣4 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 

DDPG - - - - ∞ 

PPO - - - 452 × 103 452 × 103 

PPO+CL 128 × 103 209 × 103 32 × 103 44 × 103 413 × 103 
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Figure 3.10. Env_3, rewards in training. Figure 3.11. Env_4, rewards in training. 

 

Figure 3.12. Env_4, rewards in training PPO without CL. 

 

 

3.1.3. Robot’s path planning 

 

Figure 3.13. Robot’s paths. 
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   Figure 3.13 illustrates the outcomes of path planning using three different algorithms, PPO with 

CL, PPO, and DDPG, where the design of the actor-network of DDPG was replicated in the actor-

critic network of PPO, maintaining structural consistency between them. Additionally, the same 

hyperparameter values were used for both of them. PPO with CL steers the robot along a more 

optimized trajectory, leading to a more direct approach to the goal and reflecting an enhanced 

navigation technique. 

   The trajectory produced by PPO without CL effectively avoids obstacles but is indirect and, thus, 

less efficient. On the other hand, DDPG does not reach the desired results in this scenario due to 

its failure to learn practical obstacle avoidance, with its performance heavily dependent on precise 

hyperparameter tuning.  

   The structure and hyperparameters optimized for PPO used in this study may not suit DDPG's 

needs. By starting with simpler challenges and progressively introducing more complexity, PPO 

with CL avoids overfitting to specific scenarios, potentially leading to a more broadly effective 

policy.  

   CL supports a more stable learning journey by segmenting the learning into minor, manageable 

phases. This is especially beneficial in RL, where extensive exploration might cause significant 

policy shifts that disrupt learning. The smoother trajectory observed with PPO and CL indicates a 

more consistent progression in learning. 

3.1.4. Generalization 

Figure 3.14. Ability to generalize. 
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Figure 3.8 illustrates the trajectories followed by a robot navigating in a modified environment 

where obstacles placements were changed. In this scenario, PPO with CL successfully adapts to 

the new modifications. This success can be attributed to the incremental learning approach of CL, 

which exposes the robot to a wide variety of situations during training. This diverse experience 

helps to develop a robust policy that effectively handles new and unexpected environmental 

changes. On the other hand, the version of PPO that lacks CL does not perform well in the altered 

environment. 

 This failure is likely due to the model's tendency to overfit to the specific conditions it 

encountered during training. Without the varied exposure provided by CL, the robot's strategy 

remains inflexible and less capable of adapting to environments that differ from those in which it 

was specifically trained.              

3.1.5. PPO with CL for swarm robots 

   Challenges frequently emerge in complex settings or tasks when employing DRL, particularly 

in training SRs. A previous section illustrated how integrating DRL with CL can address these 

issues. The combination is particularly effective in overcoming the challenges posed by randomly 

initialized network parameters in DRL systems. Random initialization produces an initial policy 

that may be far from optimal. It takes significant time in complex environments to converge to a 

desirable solution, or it may get stuck in suboptimal solutions. 

 The exploration phase can be time-consuming and resource-intensive. CL helps by structuring the 

learning process in stages, gradually introducing the swarm robots to increasingly complex 

scenarios. This structured approach contrasts sharply with typical DRL methods, where robots 

might struggle with adaptation due to the randomness of initial network parameters. By 

incrementally adjusting to more complex environments, PPO with CL enables the swarm robots 

to develop a robust policy that is adaptable and effective across varying conditions.  We have 

extended the PPO with CL approach to be applied for SRs, as in Figure 3.15, to generate a 

navigation collective behavior. The objective is to train the robots to reach their targets while 

avoiding collisions with obstacles and each other. The swarm has five robots with two targets and 

an obstacle, as shown in Figure 3.15.  

 

 

 

 

 

 

 

 

 

 

 

 

 

                                      Figure 3.15. Swarm's environment. 
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Figure 3.16. DRL with CL for SR. 

 
 

   As shown in Figure 3.16, the training process is iterative, gradually increasing the complexity of 

the stages and transferring the learning at each stage by uploading the weights from the previous 

stage. The decomposition process of the training environment is obtained based on three metrics: 

swarm sizes (2 robots, 3robots, and five robots), collision avoidance complexity (the existence of 

the obstacle or not), and the distances between the targets and robots (by changing the size of the 

environment from 0.5×0.5 m2, 0.7×0.7 m2,0.1×0.1 m2, and 1.2×1.2 m2). We assess the swarm's 

performance at each stage by measuring the success rate (percentage of targets reached) and 

collision rate. 

   Figure 3.17 clearly illustrates the comparative success rates of robots trained by PPO with CL 

and PPO, and Figure 3.18 demonstrates the avoiding collision performance. They demonstrate 

significantly superior performance of PPO with CL.  

   These robots could navigate and explore the environment more swiftly and efficiently and apply 

their acquired knowledge to achieve designated objectives. In contrast, robots trained using the 

PPO alone showed lower success rates. CL enhances robot training by introducing tasks 

incrementally, which prevents overfitting and builds a robust policy.  

This method allows robots to generalize their skills better across diverse environments, leading to 

higher success rates. In contrast, PPO may limit robots to specific scenarios, hindering their 

adaptability and overall performance. 
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Figure 3.17. Success rate 1. PPO with curriculum learning 2. PPO without curriculum learning. 

  
Figure 3.18. Collison rate 1. PPO with curriculum learning 2. PPO without curriculum learning. 

 

   The graph in Figure 3.19 contrasts the cumulative rewards earned by robots trained with  PPO 

and those trained using PPO with CL. The robot employing PPO with CL achieves higher rewards 

more rapidly, reflecting a more effective training process. This superior performance is likely due 

to better initial weight settings, as shown in the values of rewards at the beginning of the training 

process, a structured learning path that incrementally introduces challenges, and more efficient 

exploration strategies. Additionally, the CL approach equips the robot to handle environmental 

variability better and avoid overfitting, thus enhancing its ability to generalize skills to new 

situations. 

 
Figure 3.19. The average cumulative rewards: PPO0 without curriculum. PPO1 with curriculum. 
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   When the environment is enlarged from 1.2×1.2 m2 to 1.5×1.5 m2, a swarm of five robots trained 

using PPO with CL demonstrates significantly improved performance. As the size of the 

environment increases, the CL framework aids the swarm in developing and refining effective 

navigation strategies in larger spaces. In contrast, robots trained with traditional PPO struggle to 

adapt, as shown in Figure 3.20. These robots fail to achieve predefined goals. 

 

  
Figure 3.20. The success rate for expanded environment 1. PPO with CL 2. PPO without CL. 

 

3.2. New Hybrid Modular Design with DRL and PSO 

Foraging swarm behavior refers to the collective effort of a group of robots or organisms 

working together to locate, gather, and transport resources back to a designated location. This 

behavior is characterized by coordination and communication among individuals to optimize the 

efficiency and effectiveness of the resource collection process.  

It mimics natural systems, such as ants or bees, which exhibit sophisticated group strategies to 

maximize their foraging success. This section introduces a foraging swarm system with a hybrid 

model combined with modular design and the deployment of automatic design methods like RL 

and PSO [72]. The swarm system is simulated in a 3D robot simulator, Webots. 

 The E-Puck robot is selected to construct the SR.  Foraging collective behavior is required to 

be generated to search for two size boxes, small and big ones, through the environment and then 

transport them to the nest. The environment is shown in  Figure 3.21. The workspace dimensions 

are defined as 3×3 m2. The parameters of E-Puck robots are set as in section 2.2.1. A group of 

robots gathered in the nest area as initial positions; they had to search for boxes in the environment. 

Then, if one box is found, the robot checks if it can grab it (small box); otherwise, it waits for help 

from another to grab it together (big box). Finally, transport the box to the nest to begin another 

round until all the boxes are collected. 
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Figure 3.21. Foraging environment. 

Based on the behavior-based model in section 1.2.4, the foraging task is decomposed into many 

modules. 

- Searching module: The robots search for boxes and locate them using light sensors, where 

boxes emit light at different intensities. They use PPO or PSO.    

- Gripping module: Robots catch the box once a box is located. 

- Waiting module: This module is for big boxes that require cooperative work. 

- Transporting module: Robots navigate back to the nest using PPO. 

- Release module: Robots release the grasped box when it reaches the nest. 

- Return module: Robots return to the searching module, creating iterable rounds until all 

the boxes are collected.  

Figure 3.22 illustrates the flow process of the proposed system; the system initially sets up the 

positions of all components: the robots, foraging boxes (targets), and the nest. Once set up, the 

robots begin the search phase, employing either a PPO model or a PSO algorithm tailored for this 

task. This phase directs the robots to the targets using inputs from light sensors, which detect light 

emitted by the boxes. Upon locating a box, the robot assesses the box’s size to decide the following 

action. A single robot can manage retrieval for smaller boxes, while larger boxes require waiting 

for an additional robot to assist, facilitating cooperative transport. This scenario mirrors real-world 

tasks that demand varying degrees of effort and teamwork. Once a box is located, the robots switch 

to a navigation mode, guided by another PPO model that calculates the optimal route back to the 

nest by considering the distance and angle to the nest. Following a successful delivery, the robot 

determines whether any targets remain. If targets are left, it resumes the search phase, thus 

perpetuating the foraging cycle. The simulation concludes once all targets have been collected. 

 

 

𝑅(𝑡) =
(𝐿𝑆0

(𝑡)
− 𝐿𝑆0

(𝑡−1)
) + (𝐿𝑆7

(𝑡)
− 𝐿𝑆7

(𝑡−1)
)

2
+ 𝑟𝑏𝑜𝑥(𝑡) 

(3.2) 
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𝑟𝑏𝑜𝑥(𝑡) = {

1.1    𝐿𝑆0
(𝑡)

> 𝐹𝑖𝑛𝑑𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠𝑒𝑎𝑟𝑐ℎ𝑖𝑛𝑔

1.1    𝐿𝑆7
(𝑡)

> 𝐹𝑖𝑛𝑑𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠𝑒𝑎𝑟𝑐ℎ𝑖𝑛𝑔

0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

(3.3) 

The threshold 𝐹𝑖𝑛𝑑𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠𝑒𝑎𝑟𝑐ℎ𝑖𝑛𝑔 is set to 0.85. So, when the normalized readings of the 

sensors are more than 0.85, the robot can catch the box. The module is set to the transporting 

module where rewards are used in Equations (3.4) for successfully retrieving when the threshold 

𝐹𝑖𝑛𝑑𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑖𝑛𝑔 is less 0.2. The nest circle has a radius of 0.2, so if the distance 

between the robot and the center of the nest is less than 0.2, the robot is in the nest. Equation (3.5) 

for leveraging the experience each time step to speed up the learning process by considering the 

angle and the distance to know if the robot is in the direction of the nest. These equations reflect 

the situation where collaboration is not required if one robot is enough to transport a small box to 

the nest. Still, when collaboration is needed in case two robots have to transport a big box to the 

nest together, Reward equations (3.6) and (3.7) reflect the robots' behavior in the swarm. When 

two robots can catch a big box, a positive reward for catching the box together and keeping the 

distance between the two robots less than 0.035 m, or a negative reward when it is bigger than 0.1. 

The overall reward in equation (3.8) includes the difference in distance to the target between the 

previous and current time step, the target reward, the cosine of the current angle to the target, and 

the distance reward. 

 
𝑟𝑛𝑒𝑠𝑡  = {

0.1      𝑑𝑐𝑢𝑟𝑟𝑒𝑛𝑡 < 𝐹𝑖𝑛𝑑𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 .
−

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(3.4) 

 
𝑟𝑒𝑤𝑎𝑟𝑑 = (𝑑𝑝𝑟𝑒𝑣 −  𝑑𝑐𝑢𝑟𝑟𝑒𝑛𝑡) + 𝑟𝑛𝑒𝑠𝑡 +

𝑐𝑜𝑠(𝛼𝑐𝑢𝑟𝑟𝑒𝑛𝑡)

1000
 

(3.5) 

 

𝑑𝑖𝑠𝑟𝑒𝑤𝑎𝑟𝑑 = {

0.01             0.035 ≤  𝑑𝑟𝑜𝑏𝑜𝑡𝑠 ≤ 0.1 
−0.001                   𝑑𝑟𝑜𝑏𝑜𝑡𝑠 < 0.035

−
𝑑𝑟𝑜𝑏𝑜𝑡𝑠

100
                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

(3.6) 

 
𝑟𝑛𝑒𝑠𝑡 = {

0.15        𝑑𝑐𝑢𝑟𝑟𝑒𝑛𝑡 < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑎𝑛𝑑 𝑓𝑟𝑖𝑒𝑛𝑑 𝑖𝑠 𝑝𝑟𝑒𝑠𝑒𝑛𝑡.
0.1        𝑑𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑎𝑛𝑑 𝑓𝑟𝑖𝑒𝑛𝑑 𝑖𝑠 𝑛𝑜𝑡 𝑝𝑟𝑒𝑠𝑒𝑛𝑡.
0                                                                               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 
(3.7) 

 
𝑟𝑒𝑤𝑎𝑟𝑑 = (𝑑𝑝𝑟𝑒𝑣 −  𝑑𝑐𝑢𝑟𝑟𝑒𝑛𝑡) + 𝑟𝑛𝑒𝑠𝑡 +

cos(𝛼𝑐𝑢𝑟𝑟𝑒𝑛𝑡)

1000
+ 𝑑𝑖𝑠𝑟𝑒𝑤𝑎𝑟𝑑 

(3.8) 

 

In reward formulation, parameters such as radius = 0.2m, robot distance < 0.035m, also 1000 in 

the fraction  
𝑐𝑜𝑠(𝛼𝑐𝑢𝑟𝑟𝑒𝑛𝑡)

1000
 , and others were chosen empirically based on problem constraints. These 

values were tested iteratively to ensure realistic behavior, considering factors like robot size and 

environment constraints. This highlights the challenge of manually designing reward functions, 

motivating our proposed RL-IRL model to learn rewards automatically. 
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Figure 3.23. Hybrid modular design for foraging swarm. 
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3.2.1. Results and performance analysis 

   The hybrid modular configuration described in Figure 3.23 utilizes PPO and PSO to improve 

decision-making processes in search and navigation tasks. Simultaneously, It reduces demanding 

computations, such as gripping or releasing and switching between modules because of the 

behavior-based model. This method boosts computational effectiveness and supports tailored 

optimization where needed. Several benefits arise from this hybrid modular strategy: 

- Specialized Optimization: PPO is integrated into critical modules to enhance task 

performance, notably in search and transport activities. This ensures optimal use of PPO's 

capabilities. 

- Computational Efficiency: PPO, a resource-intensive algorithm, is selectively applied to 

manage the computational load effectively. This is essential for controlling numerous 

robots with limited processing abilities. 

- Simplicity in Routine Tasks: Simpler tasks, like gripping or releasing, utilize 

straightforward control schemes that do not require complex decision-making and facilitate 

system programming and maintenance. 

- Minimized Overfitting Risk: Restricting PPO to complex tasks helps avoid overfitting, 

keeping the model versatile and suitable for various situations. 

- Accelerated Training Periods: Concentrating on specific modules decreases the total time 

required for training, thus expediting system rollout and adaptation. 

- Optimized Reward System: The reward framework is carefully designed to match the 

objectives of each module, ensuring the primary aims are met and avoiding unintended 

actions. 

- Comprehensive System Autonomy: when the system encompasses an end-to-end deep RL 

architecture that manages all behaviors—ranging from navigation to gripping—across the 

entire swarm of robots, it is purely on autonomous decision-making, which may not be the 

most efficient. So, integrating with rule-based components enhances the system's 

resilience." 

A. Foraging performance (PSO-PPO vs PPO-PPO) 

   The hybrid modular design stands out for its ability to facilitate the testing and integration of 

various algorithms, including PPO, PSO, and beyond. This flexibility enables the system to adapt 

dynamically, evaluating different computational strategies under consistent conditions. The 3D 

visualizations in Figures 3.24 and 3.25 illustrate the performance of foraging behavior according 

to PSO-PPO and PPO-PPO as automatic design methods.  

Numerical samples in Table 3.3 are also derived to measure the performance as follow: For the 

number of retrieved boxes N ϵ [0,10]. ΔT is the measured time to collect and transport all the boxes 

to the nest. PN is the average path length of the SR needed to find and transport all the boxes. So,  

Efficiency E is defined as the number of boxes retrieved per unit of time and effort.  

Efficiency can be calculated using the parameters ΔT, PN, and N by Equation (3.9) and Table 3.3. 
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Figure 3.25. PSO-PPO-driven swarm.                                                 Figure 3.24. PPO-PPO-driven swarm. 

                 Table 3.3. Foraging performance metrics. 

Retrieved 

items 

(Boxes) 

PPO-PPO PSO-PPO 

Time 

(sec) 

Average 

Path (m) 

Time 

(sec) 

Average 

Path (m) 

1 13.024 0.726 7.552 0.377 

2 13.696 0.774 25.024 1.173 

3 27.712 1.767 36.928 1.719 

4 33.92 2.243 78.08 3.513 

5 36.512 2.434 98.112 4.451 

6 59.488 4.129 125.92 5.725 

7 61.408 4.268 163.776 7.436 

8 69.92 4.942 181.6 8.256 

9 72.192 5.126 272.64 12.051 

10 88.096 6.305 320.096 14.211 

     

 
                          𝐸 =

𝑁

∆𝑇 × 𝑃𝑁
 

       (3.9) 

 
𝐸𝑃𝑃𝑂−𝑃𝑃𝑂 =

10

88.096 × 6.31
= 18 × 10−3 

 

 

 
𝐸𝑃𝑆𝑂−𝑃𝑃𝑂 =

10

320.096 × 14.21
= 2.19 × 10−3 
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   The swarm guided by the PPO-PPO model has shown greater efficiency than the one driven by 

PSO-PPO. The analysis reveals that the PPO-equipped swarm is more adept at item retrieval, 

evidenced by a more pronounced increase in the number of items collected over time. This system 

also benefits from shorter average journey lengths.  

Conversely, the PSO's performance graph displays a softer ascent, suggesting longer durations 

required to complete the foraging tasks. These findings underscore PPO's superior ability to adapt 

quickly and handle the task more effectively. PPO excels not only in learning speed but also in 

maintaining robust performance levels.  

This advantage stems from the policy gradient optimization inherent to PPO, which fine-tunes the 

robotic actions based on rewarded outcomes, resulting in a more optimized strategy. In contrast, 

PSO is prone to settling at local optima and lacks precise adjustment capabilities. Additionally, 

PSO's dependence on the collective dynamics of the swarm can decrease the performance when 

individual robots do not effectively mimic or communicate within the swarm. 

The mean execution time for PPO-PPO is 47.60 seconds, whereas PSO-PPO requires 130.97 

seconds on average to complete the same task. Furthermore, the standard deviation for execution 

time in PPO-PPO is 26.08 seconds, whereas PSO-PPO has an extremely high deviation of 104.71 

seconds. This suggests that PPO-PPO demonstrates stable and predictable execution times, 

whereas PSO-PPO exhibits high fluctuation, making it unreliable for real-world deployment where 

timing consistency is crucial. 

In terms of navigation efficiency, PPO-PPO follows a significantly shorter path with an average 

distance of 3.27 meters, compared to 5.89 meters for PSO-PPO. This demonstrates that PPO-PPO 

optimizes movement better, allowing agents to reach targets more directly and energy efficiently.  

The standard deviation of the path length follows the same trend—PPO-PPO exhibits a deviation 

of 1.94 meters, while PSO-PPO has a higher deviation of 4.63 meters. This confirms that PSO-

PPO's paths are inconsistent and sometimes highly suboptimal, whereas PPO-PPO maintains a 

more structured and predictable trajectory. That suggests that PSO-PPO frequently takes 

inefficient paths, which could lead to increased energy consumption and longer exploration times. 

 

B. Dynamic behavior and autonomy 

   The behavior of SR for dynamic foraging is analyzed for two proposed systems, PPO-PSO and 

PPO-PPO, based on the proposed hybrid modular model. They are used to collect two boxes where 

these boxes are not static. They move through the environment randomly. In this dynamic 

situation, the SR follows each box until it is grabbed. When grabbed, the box changes to red; it 

stops its dynamic nature, moving to a static box to be transported to the nest (yellow area). 

- Behavior analysis for PSO 

Figure 3.26 illustrates the PSO's capability to identify moving objectives in the environment. 
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Figure 3.26.  Dynamic Foraging performance/ PSO-driven swarm. 

Initial response (t1-t2): The swarm begins at the nest's initial location and then tracks a single 

moving box without the other, showing powerful collective behavior with minimal autonomy. 

Mid-phase (t3): The swarm locates the green box and forms a tight group around it. The robots' 

movements are heavily influenced by their surroundings. 

Gripping action (t4-t5): Upon grasping the box (signified by a shift in its color to red), the robot 

holding the box heads back to the nest. The robot then releases the box and reverts to PSO mode. 

- Behavior analysis for RL 

Figure 3.27 illustrates the RL's capability to identify moving objectives in the environment. 

Initial response (t1-t2): The RL swarm moves in a distributed, exploratory form, suggesting an 

exploratory approach. This allows the swarm to track both moving boxes simultaneously, 

indicating high autonomy. 

Mid-phase (t3): The swarm methodically adapts to the dynamic target, determining the box's 

location more rapidly than the PSO, showcasing superior adaptability to the target's changing 

position. 

Gripping action (t3-t4-t5): After grasping the box, the robot transports it to the nest area, releases 

it, and locates another target using the PPO method. 
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Figure 3.27. Dynamic Foraging performance/RL-driven swarm. 

3.3. Conclusion of Proposed Enhancement Techniques 

   The study offered an in-depth evaluation of the impact of CL on enhancing the training process 

and leverages combining a behavior-based model with automatic design methods like RL and PSO 

models to improve the swarm's behavior. CL specifically assessed the efficiency of SR trained in 

a dynamic 3D environment. By structuring the navigation task into increasingly complex stages, 

the research highlighted the robots' ability to adapt to intricate scenarios effectively. Robots 

equipped with the PPO augmented by CL demonstrated superior path-planning capabilities in 

environments with variable obstacle configurations. This enhanced capability allowed for a more 

generalized application of learned behaviors to new environments. Furthermore, the study utilized 

complexity metrics, considering factors like swarm size, collision avoidance, and the size of the 

environment. The curriculum-based training achieved a higher success rate in reaching targets and 

reduced collision rates through improved obstacle avoidance tactics. This method also accelerated 

the learning process, as evidenced by faster convergence times. The swarm trained with CL 

demonstrated enhanced performance metrics, robust generalization, and adaptation abilities 

regarding training and operational efficiency. The number of stages and the incremental 

adjustment of parameters at each stage are determined based on experience, taking into account 

computational costs and the risk of sub-optimal policies. This approach paves the way for future 

improvements, allowing the model to autonomously optimize these values for enhanced 

efficiency. 
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The other proposed model delves into a dynamic foraging challenge; it suggests that the strategy 

integrates a modular framework that manages activities such as gripping, waiting for assistance, 

and locating the box, paired with a sophisticated algorithm that facilitates the search and transport 

tasks using RL and PSO. This design enables continuous operation in varied environments while 

avoiding model overfitting. It also incorporates a module specifically for evaluating different 

algorithms. A detailed comparative analysis between PPO and PSO was carried out. The findings 

indicated that PPO was more effective, achieving quicker retrieval times and greater overall 

efficiency due to its superior adaptability and independence. On the other hand, PSO was less 

effective, showing limitations in both efficiency and autonomous function. Moreover, this study 

highlights the advantages of a modular design in SRs, laying the groundwork for future 

innovations that combine operational efficiency with adaptability. 
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4. REWARD STRUCTURES: IMPLICATIONS FOR BEHAVIOR OF SR 

 

   Deep RL has significantly advanced the capabilities of SRs, generating complex collective 

behaviors through decentralized decision-making processes. A critical component in DRL is the 

design of the reward structure, which guides the learning process and influences the swarm's 

emergent behavior: 

- Learning Signal: The reward structure provides the feedback that the agent (robot) uses to 

evaluate the behavior based on their actions within an environment. This feedback loop is essential 

because it shapes the policy that guides agent behaviors. In SR, where multiple agents must 

coordinate, the reward structure often encodes the desired collaborative behaviors, influencing 

how individual agents contribute to the group's objectives. 

- Behavior Shaping: Rewards play a crucial role in shaping the system's behavior by 

explicitly valuing specific actions over others. This shaping is particularly significant in SRs, 

where collective behavior emerges from interactions between multiple robots. For instance, a 

reward structure that emphasizes speed over accuracy can lead to the development of policies 

prioritizing quick movements and formations, possibly at the cost of precision or stability.  

- Convergence to Optimal Policies: The reward design affects how quickly and effectively a 

learning algorithm can converge to an optimal policy. Therefore, a well-tuned reward structure is 

beneficial in accelerating learning by clearly generating effective strategies and reducing 

ambiguity in the rewards received. Poorly designed rewards, such as those that offer conflicting 

signals or insufficient differentiation between good and bad actions, can lead to slower learning, 

suboptimal policies, or failure to converge. 

- Encouraging Exploration vs. Exploitation: As mentioned in section 1.3.2, agents must 

balance exploration (trying new actions to discover their effects) and exploitation (using known 

actions that yield high rewards). The complex and deep element reward structure significantly 

influences this balance; for example, a reward system that provides incremental feedback for novel 

strategies can encourage more explorative behaviors. 

Reward shaping, sparse rewards, and Inverse RL (IRL) are three distinct methods used in deep RL 

to influence SR behavior. Reward shaping modifies the reward function by adding supplementary 

feedback to encourage specific behaviors, accelerate learning, and guide robots toward desired 

outcomes more efficiently. Sparse rewards, awarded only for significant actions like avoiding 

obstacles or reaching the goal, foster robust strategies without frequent feedback, simplifying 

reward design but potentially slowing learning and complicating exploration. Inverse RL derives 

rewards from observed optimal behaviors, enabling natural and efficient behavior learning without 

explicit reward programming. However, it relies heavily on the quality of demonstration data and 

involves greater computational complexity. These methods offer different advantages and 

drawbacks in training swarm robotics to achieve complex collaborative tasks.  
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Beyond the conventional reward methods discussed, such as reward shaping, sparse rewards, and 

Inverse Reinforcement Learning (IRL), several innovative approaches can further enhance the 

learning and performance of swarm robotic systems. These methods can be tailored to the unique 

challenges and opportunities presented by swarm behaviors and the complexity of their operational 

environments. 

This section explores various reward methods, such as reward shaping and sparse rewards, mainly 

focusing on the impact of reward scaling in deep RL for SRs for these two methods. Finally, it 

introduces a new method of incorporating inverse RL with deep RL, which can deal with 

continuous systems and generalize to different environments. It also discusses its implications for 

swarm behavior in robotic systems. 

4.1. Scales reward in Shaping and Sparse methods 

This section delves into two primary methods of configuring rewards: Shaping and Sparse 

methods. Sparse rewards are structured so that the robot receives infrequent rewards, typically 

only for significant actions like reaching the target, gripping the box, and others rather than for 

every step or state transition. The general formula or representation for a sparse reward system can 

be described in a conditional format, where the occurrence of specific events primarily determines 

the reward as in equation (4.1): 

 𝑅(𝑠, 𝑎, 𝑠́) =  {
𝑥  𝑖𝑓 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑚𝑒𝑡
𝑃               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
(4.1) 

x: Represents the obtained value when the condition is met, typically ranging from xmin to 

xmax, where xmin ≥ 0 and xmax > xmin. 𝑃: Represents penalties when the condition is not met, 

ranging from 𝑃min  to 𝑃max, where 𝑃min  ≤  𝑃max ≤ xmin. For example, in section 2.2.3 for 

equations (2.4) and (2.5), the sparse method has been used to reward the robot when it reaches the 

target or collides with obstacles. 

The general formula for reward shaping involves modifying the original reward function 

𝑅(𝑠, 𝑎, 𝑠́) in equation (4.1). The shaping term is added to provide the robot with additional 

feedback to encourage specific actions. The modified reward function can be expressed as in 

equation (4.2): 

 𝑅́(𝑠, 𝑎, 𝑠́) = 𝑅(𝑠, 𝑎, 𝑠́) + 𝐹(𝑠, 𝑠́) (4.2) 

The shaping  function 𝐹(𝑠, 𝑠́) is carefully designed to align with the task's objectives, while 

ensuring that it does not change the optimal policy defined by the original reward function. Ideally, 

it should provide additional guidance to the learning process without altering the policy. A 

common choice for 𝐹 is based on potential-based reward shaping, where: 

 𝐹(𝑠, 𝑠́) = 𝛾Ф(𝑠́) −  Ф(𝑠) (4.3) 

Equation (2.6) is a clear example of the shaping method. The term ’Previous distance - Current 

distance’. It rewards the robot for moving closer to the target where the shaping function F(s,s ́ ) 

is defined as the reduction in distance from the target. By including this term, the reward function 
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directly encourages behaviors that decrease the distance to the target, facilitating faster and more 

focused learning toward the main objective. 

Beyond the conventional reward methods discussed, such as reward shaping and sparse 

rewards, in addition to Inverse RL, several innovative approaches can further enhance the learning 

and performance of swarm robotic systems. These methods can be tailored to the unique challenges 

and opportunities presented by swarm behaviors and the complexity of their operational 

environments. They indeed have been used in the previous section as follows: 

Multi-objective Rewards: They involve designing reward functions that consider multiple 

criteria simultaneously, which is essential for swarms that must balance competing objectives like 

orientation, collaborating, and others, as in equation (3.9) 

Curriculum learning: This method can be structured so that swarm robots master individual 

skills before tackling collaborative strategies, as in section 2.2 

Cooperative Reward Distribution: This method involves distributing rewards based on 

individual achievements and contributions to the swarm's collective success. It encourages 

cooperation and can be crucial in tasks that require tight coordination, like gripping the big box in 

equation (3.7). 

Hierarchical Rewards: This approach decomposes complex tasks into simpler sub-tasks, each 

with its reward structure. It is particularly suitable for SR, where different layers of hierarchy could 

correspond to individual robot tasks, sub-swarm tasks, and overall swarm objectives, such as the 

mentioned section 3.2.1 to solve foraging tasks where sets of reward equations used to deal with 

small boxes (3.5), and (3.6) and other sets (3.7), (3.8), (3.9) to deal with big boxes. So, the tasks 

were divided into sub-tasks. 

Understanding and selecting the appropriate reward scale is crucial for optimizing the efficiency 

and effectiveness of the learning process in RL. The analysis study is conducted using the primary 

approaches, sparse and shaping. It explores the balance between rewards for reaching goals and 

penalties for colliding with obstacles[73],[74]. Traditionally, fixed rewards and penalties have 

been used, but these may only sometimes yield the best performance across varying environments 

and tasks. By generalizing the reward to a variable x and defining the penalty P as a percentage of 

x as in equation (4.5) 

 𝑃 = −𝛼𝑥      𝑥 > 0 (4.5) 

So, The aim is to find the optimal balance that maximizes navigation efficiency and safety. 

Through a series of simulations for the environment in Figure 4.1, we evaluate the effects of 

different penalty percentages on key performance metrics, including the average time to reach the 

goal, the number of collisions, and the success rate of goal achievement. The results are analyzed 

to determine the optimal penalty percentage that provides the best trade-off between rapid goal 

attainment and minimal collisions. To find the optimal percentage between the reward x (for 

reaching the goal) and the penalty 𝑃 (for colliding with obstacles) to achieve the best performance 
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in a robot navigation problem, we need to balance the motivation for the robot to reach the goal 

quickly while avoiding collisions effectively. 

 

 

Figure 4.1. Reward scales in the sparse method. 

The graph in Figure 4.1 presents the relationship between different values of α (the P as a 

percentage of  x) and two key performance metrics for a robot navigation task: Average collisions 

and success rate during training, which records the number of reaching the goal. When α is lower 

than 0.4, approximately there is no penalty. The robot cannot achieve its goal because it is not 

punished when it distracts its path to the target or collides with walls, so it does not try to change 

its behavior. As α increases from 0.4 to 1, average collisions generally decrease, dropping to zero 

at α = 0.6. The success rate increases as α moves from -0.4 to 0.3, peaking at 85% at σ = 0.3. 

Beyond σ = 0.3, the success rate decreases significantly, reaching zero at σ = 0.8 and above. The 

data suggests that. The α value around 0.3 provides the best balance, achieving the highest success 

rate with relatively low collisions. Higher penalties α ≥ 0.6 effectively eliminate collisions but 

drop the success rate to zero, indicating that strict penalties discourage risky behavior but 

discourage task completion. By increasing the penalty, the learning algorithm focuses on avoiding 

obstacles rather than reaching the goal. The graph highlights a trade-off between minimizing 

collisions and maintaining a high success rate, showing that moderate penalties can enhance safety 

and efficiency. In contrast, overly harsh penalties may hinder the robot's ability to achieve its 

objectives. These findings can guide the design of reward structures in RL for autonomous 

navigation, optimizing the balance between safety and goal achievement. 

To analyze the performance of robot navigation using the shaping method, we have to focus on 

the trade-off between the F value in equation 4.3 and P based on the graph in Figure 4.1. The 
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shaping reward is calculated based on the reduction in distance to the target ∆𝐷𝑟𝑔, with an added 

penalty for collisions 𝑃 , equation (4.6),(4.7). 

 𝑅 = ∆𝐷𝑟𝑔 + 𝑃   𝑤ℎ𝑒𝑟𝑒: ∆𝐷 = 𝐷𝑟𝑔(𝑡 − 1) − 𝐷𝑟𝑔(𝑡) (4.6) 

 
𝐷𝑟𝑔 = √(𝑥𝑟 − 𝑥𝑔)2 − (𝑦𝑟 − 𝑦𝑔)2 

(4.7) 

 

 

Figure 4.2. Reward scales in the sparse method. 

 

By comparing the shaping method graph in Figure 4.2 to a sparse reward graph in Figure 4.1, it 

can be observed that the shaping method provides continuous feedback based on the robot's 

progress and penalties for collisions, leading to smoother performance curves and better 

adaptability. The success rate and collision metrics change more consistently across different 𝜎 

values, with a clear optimal range (around 0.1 to 0.3) where the success rate peaks (89%) and 

collisions are minimized. In contrast, sparse rewards offer feedback only at specific events, 

resulting in slower learning and more abrupt performance changes. Identifying the optimal penalty 

range is more challenging with sparse rewards, and the robot might overfit the training 

environment due to less frequent feedback. These observations highlight the advantages of shaping 

methods in producing robust and efficient navigation strategies compared to sparse reward 

structures in complex or dynamic environments. 
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4.2. Inverse DRL for Swarm Reward Recovery  

   Inverse DRL for swarm reward recovery is an emerging approach that aims to figure out the 

underlying reward structures guiding the behavior of SRs. By observing the trajectories of the 

swarm, Inverse DRL techniques can infer the implicit rewards that drive effective coordination 

and task completion. This method not only helps in understanding the intrinsic motivations of the 

swarm but also aids in designing better reward mechanisms to enhance performance. Inverse DRL 

for swarm reward recovery leverages the strengths of inverse learning algorithms to improve the 

adaptability and efficiency of swarm systems in complex, dynamic environments. 

4.2.1. Introduction to IRL  

   IRL is a machine learning framework that focuses on recovering the reward function that an 

agent is optimizing based on its observed behavior. This is in contrast to traditional RL, where the 

reward function is known, and the objective is to find the optimal policy. In IRL, the goal is to 

understand the motivations behind the observed behavior by inferring the reward function. This 

can be particularly useful in scenarios where the reward function is not explicitly defined but can 

be inferred from expert demonstrations. The key concept of IRL is expert demonstrations, which 

are collected data by observing an expert performing a task, assuming that an optimal policy 

generates the observed behavior. The observed data represented a set 𝜏 of trajectories as in equation 

(4.8) 

 𝜏 = {(𝑠0, 𝑎0), (𝑠1, 𝑎1), … … … . . , (𝑠𝑇 , 𝑎𝑇)}              (4.8) 

 

Several methods have been developed for IRL, including: 

- Maximum Entropy IRL: This approach assumes that the observed behavior is optimal and 

that, among all possible behaviors, the expert's behavior maximizes the entropy of the 

policy distribution. The objective is to find the reward function that maximizes the 

likelihood of the observed trajectories under the maximum entropy principle, as in equation 

(4.9), [75]. 

 𝑅 = argmax
𝑅

∑ 𝑙𝑜𝑔 𝑃(𝜏|𝑅)

𝜏∈𝐾

 (4.9) 

   
- Feature-Based Linear IRL: This method assumes that the reward function is a linear 

combination of features, where the features extracted from states by mapping function  

∅(𝑆): 𝑆 → [0,1] as in equation (4.10) [76]. 

 

 𝑅(𝑆) = 𝑤𝑇∅(𝑆) (4.10) 
   

- Generative Adversarial Imitation Learning (GAIL) combines generative adversarial 

networks (GANs) with imitation learning to infer the reward function. A discriminator is 

trained to distinguish between expert 𝐸𝜏~𝜋𝐸[log 𝐷𝑐(𝜏)] and agent 
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trajectories𝐸𝜏~𝐺[𝑙𝑜𝑔(1 − 𝐷𝑐(𝜏))], while the agent learns to produce trajectories that fool 

the discriminator, as in equation (4.11) [77]. 

 

 min
𝐺

max
𝐷𝑐

𝐸𝜏~𝜋𝐸[log 𝐷𝑐(𝜏)] + 𝐸𝜏~𝐺[𝑙𝑜𝑔(1 − 𝐷𝑐(𝜏))] (4.11) 

While Maximum Entropy IRL provides a principled way to handle uncertainty in reward inference, 

it needs help with the high-dimensional and complex interactions typical in SR. It also requires 

careful feature engineering, which can be challenging and time-consuming. On the other hand, 

Feature-Based Linear IRL relies on linear combinations of predefined features to infer the reward 

function. Although simpler and computationally less intensive, it might not effectively capture the 

non-linear and complex relationships in swarm behaviors. It also suffers from the limitation of 

requiring manual feature engineering, which might not be feasible for intricate swarm dynamics. 

GAIL is better suited for SRs due to its ability to handle high-dimensional data, robustness to 

complex behaviors, scalability, and adaptability to diverse environments. Its use of deep learning 

techniques allows for automatic feature extraction and learning from complex, coordinated 

behaviors within the swarm, making it an ideal choice for inferring reward structures and 

optimizing swarm performance. 

4.2.2. Objective functions, reward functions, and collective behaviors  

   The objective function of swarm robots defines the swarm's overall goal. This could include area 

coverage, target tracking, formation control, or cooperative transportation. The objective function 

typically quantifies the swarm's performance in efficiency, accuracy, and robustness metrics. The 

reward function assigns a scalar value to each state or state-action pair, reflecting the immediate 

benefit of being in that state or performing that action. In the context of swarm robotics, the reward 

function should align with the swarm's objective function, guiding individual robots to take actions 

that collectively achieve the swarm's overall goal. It translates the high-level objectives into 

actionable feedback for individual robots. IRL helps in designing the reward function by observing 

expert swarm behavior. Instead of manually defining the reward structure, IRL can infer it from 

demonstrations of successful swarm operations.  

   For example, suppose a swarm of robots effectively covers an area in minimal time with no 

collisions. In that case, IRL can analyze the trajectories and actions to determine the implicit 

reward function being optimized. Once the reward function is inferred using IRL, it can be used 

to train new robots or improve existing ones using RL. The inferred reward function ensures the 

learned policies align with the swarm's objectives. 

Generating collective behaviors in SRs is related to the nature of the specific task. For instance, 

SR systems deployed in search and rescue operations leverage algorithms that enhance area 

coverage and accelerate the detection of targets. In navigation-focused tasks, SR systems might 

use algorithms designed for pathfinding, allowing the robots to navigate complex terrains 

efficiently, avoiding obstacles, and reducing the time to reach the target by choosing the shortest 

path [78-81].  
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   The task-specific design of SR is a field marked by complexity due to unpredictable interactions 

within individuals through swarm to obtain. The lack of a generalized method for crafting desired 

collective behaviors underscores the innovative research in this domain. Among these are bio-

inspired algorithms [82-85], which mimic natural phenomena like the movement of bird flocks or 

ant foraging. These algorithms contribute to developing decentralized control systems, wherein 

each robot operates on simple rules derived from immediate surroundings and peer interactions. 

The modular design strategy also involves constructing robots with versatile modules that can be 

reconfigured according to the task requirements. This method enhances the adaptability and 

scalability of SR systems, permitting customization to various environments and challenges by 

adjusting the modules as needed [86],[87].  

   Evolutionary robotics is another method that employs evolutionary algorithms to refine robot 

control systems, thereby enabling their behaviors to advance and become more efficient over time. 

This approach parallels natural selection, allowing for the autonomous development of solutions 

optimally suited to their environments and tasks, with continuous enhancements as robots 

encounter new conditions [88]. Furthermore, machine learning techniques, particularly RL, offer 

a powerful mechanism for developing versatile SR systems capable of handling a broad spectrum 

of tasks. RL enables robots to be independent and learn by interactions with other robots and their 

environment, simplifying the design of collective behaviors into smaller, more manageable 

components that can dynamically adapt to new challenges.  R is the crucial element in RL, which 

drives robots to optimize their actions for maximum cumulative rewards over time. R's design 

reflects the task's primary goals modeled as an objective function, which fosters the collective 

behavior of SR. By observing expert behavior, IRL offers a refined technique that teaches the 

underlying reward functions. Unlike conventional RL, where a policy is learned directly from a 

predefined reward setup, IRL gains insights into complex behaviors through demonstrations, 

bypassing the need to adjust the reward formula explicitly. This approach is particularly beneficial 

in SRs, where crafting explicit reward functions can be complex due to the intricate interactions 

and dynamics among the robots. IRL offers an alternative by deriving the reward function from 

expert demonstrations, thus eliminating the need for manual reward construction and providing a 

more structured learning trajectory than traditional methods. This allows robots to learn policies 

that match or surpass the expert's strategy based on the inferred rewards without necessitating deep 

mathematical knowledge or a detailed understanding of the operational dynamics. This approach 

reduces human bias and potential suboptimality [89].  

   Researchers have applied IRL in several contexts, such as using maximum entropy IRL to 

deduce reward functions from GPS data on pigeon flocks, simulating flocking behavior, and 

identifying leader-follower dynamics [90]. It has also been utilized in SRs for tasks like enhancing 

area coverage in search and rescue operations, where it leverages human expert demonstrations to 

train robots in optimal coverage strategies [91]. Some research combines IRL with automatic 

modular design to create control software for SRs based solely on these demonstrations, bypassing 

the need for explicitly defined rewards and objectives [92]. Despite challenges in handling high-

dimensional, continuous state-action spaces, IRL has shown potential for generalizing across 
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various tasks and environments, crucial for developing adaptive and robust SR systems capable of 

operating in diverse scenarios. In this chapter, we have proposed a model that stands out from 

others in its ability to generalize across different conditions and automate reward design, proving 

effective in complex, continuous environments with continuous state-action spaces and enabling 

the generation of various collective behaviors like navigation and search tasks. In SRs, designing 

effective control strategies for collective behavior is challenging due to complex agent interactions 

and multiple objectives. Imitation Learning (IL) directly maps observed state-action pairs from 

expert demonstrations to policies, enabling agents to replicate behaviors without understanding 

underlying motivations. Supervised Reward Learning involves training a model to predict rewards 

from state-action pairs using labeled data, which requires explicit reward annotations and may not 

generalize well to new scenarios. Inverse Deep Reinforcement Learning (IDRL), on the other 

hand, infers the implicit reward function from expert behavior, allowing agents to learn the 

objectives driving the behavior and apply this understanding to novel situations. IDRL is 

particularly advantageous for collective behaviors in swarm robotics, as manually crafting reward 

functions for complex, multi-objective tasks are often infeasible. By uncovering the expert's 

implicit rewards, IDRL facilitates the emergence of desired collective behaviors without the need 

for explicit reward specification. 

4.2.3. Proposed IRL-RL model  

   The proposed IRL-RL model is designed to infer rewards by demonstrating for different tasks. 

It is deployed for two tasks already solved in Chapter 3 by RL, with an explicit reward formula. 

So, we coped with two tasks: searching for green boxes by following the light that emerges from 

them. Second, the navigation task where robots move from initial positions to a target is illustrated 

as a yellow circle (Y), as shown in Figure 4.3 [93]. The environment is a 3×3 m2 square area with 

four walls.  

The parameters of mobile robots were set as in section 2.2.1. 

 
Figure 4.3. IRL-RL’s environment. 

 
Figure 4.4 illustrates the proposed IRL-RL model. It consists of two sections. RL is deployed to 

train the robots to generate the policy based on the reward inferred by IRL. The architecture of RL 
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and parameters are given in the section 2.2.3. In the IRL part, we proposed the following structure, 

The pseudo code 4.1 explains the steps of this model, : 

 

- Data Loader: This component is a repository for data received from expert demonstrations 

and training sessions. Data from expert demonstrations is gathered using a pre-trained 

expert model, while training data is accumulated during the PPO training phase. The data 

comprises only state frames, which include flags but omit actions. These flags indicate task 

completion, such as locating a specific item in a search task or arriving at a designated 

point in navigation tasks. The model is equipped to handle both segmented and continuous 

state inputs. The functionality of these state types was explored in the results section. In 

segmented mode, sensor readings are first normalized and then categorized into five 

segments ranging from 0 to 1, each representing a different value. 

- Feature Extractor: As illustrated in Table 2, this component details the types of data, and 

the operations applied to the data received from the data loader. The incoming data is in its 

raw form, where values from light sensors range between [0, 4095]. Meanwhile, the 

distance D spans from [0, 3] meters, and the angle θ varies from [−π, π] rad. The function 

∅(s) outlined in Equations (4.12) and (4.13) transforms these raw states, S, into a feature 

vector that is more apt for input into the model. 

-  A shift function is implemented on the normalized states to derive values at t−1. These 

values facilitate the establishment of correlations between states, which is crucial for 

enhancing the R network's efficacy in determining the direction of state changes. 

 ∅(𝑆): 𝑆 → [0,1] (4.12) 
   
 

∅(𝑆) =
𝑀𝑎𝑥𝑂𝑢𝑡𝑝𝑢𝑡 − 𝑀𝑖𝑛𝑂𝑢𝑡𝑝𝑢𝑡

𝑀𝑎𝑥𝑉𝑎𝑙𝑢𝑒 − 𝑀𝑖𝑛𝑉𝑎𝑙𝑢𝑒
. (𝑆 −  𝑀𝑎𝑥𝑉𝑎𝑙𝑢𝑒) + 𝑀𝑎𝑥𝑂𝑢𝑡𝑝𝑢𝑡 

(4.13) 

 

Table 4.1. Features Extractor Input and Output for Searching and Navigation Tasks. 

 

Task Input of features extractor 
(from the data loader) 

Output of features extractor 

Searching 𝐿𝑆0
(𝑡)

, 𝐿𝑆7
(𝑡)

, 𝑓𝑙𝑎𝑔 (𝐹𝑖𝑛𝑑𝑖𝑛𝑔 𝑎 

𝑏𝑜𝑥)  
𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 [ 𝐿𝑆0

(𝑡−1)
, 𝐿𝑆0

(𝑡)
, 𝐿𝑆7

(𝑡−1)
, 𝐿𝑆7

(𝑡)
 ], 

𝑓𝑙𝑎𝑔 (𝐹𝑖𝑛𝑑𝑖𝑛𝑔 𝑎 𝑏𝑜𝑥) 
Navigation 𝐷(𝑡), 𝜃(𝑡), 𝑓𝑙𝑎𝑔 (𝑅𝑒𝑎𝑐ℎ𝑖𝑛𝑔 𝑃) 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 [𝐷(𝑡−1), 𝐷(𝑡), 𝜃(𝑡−1), 𝜃(𝑡)],  flag 

(Reaching P) 
 

- Reward Network: The reward neural network aims to estimate the underlying reward 

closely. This estimation is achieved by inputting the feature vector into the neural network, 

which outputs a scalar reward value. The network is structured with fully connected layers 

configured as (length(feature−vectors) ×15×1FC- ReLU activation function).  

In the scenarios described, the feature vectors are typically of length 5, as detailed in Table 

4.1. 



THESES – REWARD STRUCTURES FOR SRS  

62 
 

- Deep IRL: The backpropagation process in the reward network involves computing losses 

based on Equation (4.14), which ensures the reward neural network's weights are updated 

accordingly. The key loss function used here is the binary cross-entropy loss, which 

effectively differentiates between the rewards observed from experts and those generated 

during training. This loss function is used to distinguish expert demonstrations from 

learned policies. The first term maximizes the probability of expert rewards 𝑅𝑒𝑥𝑝𝑒𝑟𝑡, while 

the second term minimizes the probability of learned policy rewards 𝑅𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔. The 

sigmoid function ensures the outputs are in the range (0,1), making this loss similar to 

binary cross-entropy for classification. 

 

 𝑙𝑜𝑠𝑠 = − log (𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑅𝑒𝑥𝑝𝑒𝑟𝑡)) − 𝑙𝑜𝑔 (1 − 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑅𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔)) (4.14) 

 

 
Figure 4.4. IRL-RL model. 
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Algorithm 1: Deep Inverse Reinforcement Learning (DIRL). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2.4. Results and discussion  

   This model concentrated on investigating how rewards influence swarm behavior within a 

simulated setting, showcasing the capability of deep IRL to estimate the reward function without 

relying on complex mathematical procedures. We implemented this in two distinct tasks: searching 

for boxes using continuous RL with segmented features and navigating to a specific location 

identified as Y, with continuous RL but utilizing continuous features. The effectiveness of the 

swarm was assessed and validated by comparing the rewards from the IRL- RL model to those 

from a pre-trained model using expert RL, highlighting the proposed model's proficiency in 

guiding the swarm to accomplish the set tasks. Additionally, we analyzed the behaviors generated 

by the swarm related to the both models, emphasizing the importance of feature selection in 

accurately deriving the reward function. These features varied according to the defined problem 

and the objective function of the swarm system, as detailed in Table 4.1. It clarifies the distinct 

features selected for searching and navigation tasks. It also considers sensor readings at time steps 

t and t-1 to enable the R network to detect changes in light intensity for the searching task or 

alterations in distance for the navigation task. Using a deep neural network to represent R, coupled 

with a binary cross-entropy loss function, allows the model to manage continuous environments 

Step 1: Collect Expert Demonstrations 

    Collect expert state-action pairs: Dexpert = {(se, ae)} 

Step 2: Initialize Reward Function: (length(feature−vectors) ×15×1 FC with ReLU ).  

Same hyperparameter of actor and critic of the PPO neural network. 

    Initialize reward neural network Rθ with weights w0 

Step 3: Train Initial Policy with RL 

    Train policy π0 using RL with initial reward Rθ 

    Collect agent-generated data: Dagent = {(sπ, aπ)} 

Step 4: Compute Predicted Rewards 

    Forward propagate through Rθ: 

        Re = Rθ(se, ae)   # Predicted rewards for expert actions 

        Rπ = Rθ(sπ, aπ)   # Predicted rewards for agent actions 

Step 5: Compute Loss Function 

    Compute loss L(θ) based on expert vs. agent rewards (Equation 4.14) 

Step 6: Update Reward Function 

    Backpropagate loss and update reward weights: w1 = w0 - α * ∇L(θ) 

    Generate new reward function Rθ1 

Step 7: Train RL Agent with Updated Rewards 

    Train new policy π1 using RL with updated Rθ1 

    Collect new agent-generated data: Dagent = {(sπ1, aπ1)} 

Step 8: Iterate Until Convergence 

    Repeat Steps 4-7 until policy π converges to optimal behavior  

   (The condition here is the   number of iterations) 

   Return: Optimized policy π* and learned reward function Rθ* 
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effectively. Thus, in this models, we reconstructed the reward in both continuous and segmented 

modes to develop policies in RL that handle continuous state and action spaces. 

 

a. Searching task 
 

   In this scenario, the reward mechanism is linked to variations in light intensity as detected by 

the robots' sensors. The reward increases when robots navigate towards areas with stronger light 

intensity and peaks when they locate the targeted boxes. Recovering the reward which leads to a 

successful behavior required three rounds as follows: 

The reward neural network was initially set up with arbitrary weights labeled as ω0. At this stage, 

RL learned a stochastic policy π0. According to this policy, demonstrations were collected. The 

data loader then processed data gathered under this policy. Leveraging expert and newly collected 

data based on policy π0, the reward network is trained. This training adjusted the weights to ω1. 

Subsequently, the RL component, depicted in Figure 4.4, retrained to develop its updated policy 

π1 based on these adjusted weights. The cycle concluded with the robot learning policy π2, 

characterized by weights ω2, effectively accomplishing the desired task as depicted in Figure 4.5. 

The reward function in the expert-driven RL model, represented by a red line, optimizes the reward 

as the robot moves closer to the light source or box, maintaining high values upon arrival. 

Conversely, the reward deduced by the IRL-RL model, shown by a blue line, reflects the light 

intensity increases segmented, mirroring the RL model’s behavior with distinct transitions due to 

the segmented mode of feature extraction. Therefore, the data is categorized into specific 

segments, with states from 0 to 0.2 indicating darker areas that receive uniform rewards. As 

illustrated in Figure 4.6, in the IRL-RL model, sensor readings LS0 and LS7 in the 0 to 0.2 range 

yield minimal rewards, which increase as the robot moves into the 0.2-0.4 segment. The reward 

significantly spikes in the 0.8-1 range, mentioning the robot’s proximity to the box. The side-by-

side visualization of the reward functions from the expert RL and IRL-RL model showcases their 

differences, with a darker blue denoting the latter. Notably, a consistent gradient pattern across 

both models indicates a direct correlation of rewards with increasing light intensity. This confirms 

that the robots have effectively learned to search for and locate boxes, validating the designed 

behavior. This demonstrates the IRL-RL model’s capacity to replicate the decision-making 

strategy of the pre-trained robot. 
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Figure 4.5. Normalized IRL and RL rewards over three episodes for the ω2-searching task. 

 
Figure 4.6. Heat map of the true reward (right) and the recovered reward (left) for the 

searching task. 

 

   The behavior of robots, as depicted in the bar chart of Figure 4.7, demonstrates the effectiveness 

of the IRL-RL model in comparison to a pre-trained expert RL model across a series of ten 

incremental tasks involving box collections. The IRL-RL model showcases a behavior pattern that 

allows robots to collect boxes sequentially round-triply. Notably, variations in the times taken to 

collect boxes indicate differing behaviors. This observation suggests that the IRL-RL model 

doesn't merely replicate the actions of the RL model; instead, it independently learns to accomplish 

the task by developing its unique behaviors. This indicates that IRL effectively masters the 

inferring of reward structures that lead to successful task completion rather than simply imitating 

actions. 
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Figure 4.7. Swarm searching behavior by IRL-RL and traditional RL. 

 

b. Navigation task 
   The identical procedure, encompassing the same number of iterations, was utilized for the 

navigation task. Initially, the reward neural network started with randomly assigned weights, 

designated as ω0, which generated a stochastic policy π0, initiating the RL model's learning 

trajectory. After the initial iteration, data gathered during this phase was employed to refine the 

reward network, adjusting the weights to ω1. This adjustment allowed the RL model to enhance 

its policy to π1. The cycle concluded with a second update, leading to the final weights ω2, which 

equipped the model to perform the required navigation tasks proficiently, as shown in Figure 4.8. 

 

 
Figure 4.8. Normalized IRL and RL rewards over 3 episodes for ω2- Navigation task. 
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Figure 4.9. Heat map of the true reward (right) and the recovered reward (left) for the 

Navigation task. 

 

Figure 4.9 displays the interpolated IRL and RL reward models, featuring a color gradient shifting 

from red to blue, which reflects changes in reward intensity based on the robot’s orientation and 

proximity to the target. Higher rewards are indicated by red, associated with smaller angles and 

closer distances, signifying the robot’s direct alignment and nearness to the target. Conversely, as 

the angle increases or the distance extends, the reward decreases, as demonstrated by the color 

transition to blue. Unlike the search task, there is no division into discrete state ranges. The 

continuity of the data facilitates a smoother visual gradient and more detailed adjustments of the 

reward to the robot’s position and orientation to the target. The resemblance in the trajectories 

displayed in both charts in Figure 4.10 shows that IRL has effectively assimilated the data from 

RL, closely mimicking the expert RL’s approach. This indicates a successful deployment of IRL, 

where the algorithm has adeptly deduced the strategies and decisions deemed optimal by RL. 

 
Figure 4.10. Robots' navigation paths. 



THESES – REWARD STRUCTURES FOR SRS  

68 
 

4.3. Conclusion of Reward Methods in DRL for Swarm Robotics 

   This chapter demonstrates the crucial impact of well-structured reward methods on shaping SRs' 

behaviors and learning outcomes in various task environments. Applying diverse reward strategies 

such as sparse rewards, shaping rewards, and deep IRL has shown significant differences in how 

SRs adapt to and excel in their assigned tasks. In addition to integrating multi-objective rewards, 

curriculum learning and cooperative reward distribution within the reward systems can further 

refine the behavior and efficiency of swarms, especially in multi-task environments. 

It highlighted how reward shaping facilitated more direct and efficient behaviors toward 

objectives, like reaching targets or navigating obstacles, compared to sparse rewards, which, while 

simplifying the reward design, required more rounds of learning to achieve similar outcomes. It 

introduces a relationship between penalty percentages and key performance metrics such as 

average time to reach the goal, number of collisions, and success rate. It showed that a balanced 

penalty rate, around 0.1 to 0.3, provided the best trade-off between rapid goal attainment and 

minimal collisions. This demonstrates that moderate penalties can significantly enhance safety and 

efficiency in navigation tasks. 

   Finally, the IRL-RL model that utilizes deep IRL to accurately infer the reward function from 

expert behavior demonstrations was introduced. Rather than directly learning behaviors, IRL aims 

to comprehend the underlying motivations for specific actions or strategies by estimating the 

rewards needed to accomplish tasks through generated behaviors. This approach eliminates the 

necessity for extensive manual adjustment of reward functions and enables more intuitive, 

demonstration-based learning. The proposed IRL-RL model can manage continuous state spaces 

and dynamic environments, addressing continuous RL challenges through a deep neural network 

to represent the reward function R. Additionally, it can recover the reward function using two types 

of data from the data loader: segmented and continuous features, catering to nuanced strategies. 

The model was evaluated in two tasks within a simulated swarm robotics environment: navigating 

to a predefined location and searching for specific items. It proved highly effective in inferring 

and adapting reward structures crucial for successfully directing autonomous robotic swarms to 

complete these tasks. Furthermore, The results underscore the model's generalization ability across 

various scenarios. 
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THESES – NEW SCIENTIFIC RESULTS 

1. Swarm intelligence algorithms, particularly PSO and PPO, are widely applied in swarm 

robotics. While prior research has explored both methods individually, little attention 

has been given to a direct comparison of their impact on collective swarm behavior, 

adaptability, and coordination in decentralized robotics. Unlike studies that primarily 

integrate RL into PSO for parameter tuning and optimization, this research provides a 

comparative behavioral analysis of PSO and PPO, evaluating their individual strengths, 

limitations, and potential for structured hybridization. By examining their fundamental 

role in swarm formation, this study paves the way for more effective hierarchical, 

structured, and hybrid control strategies. Publications [k1] ,[k2]. 

 

2. This study presents a method for optimizing mobile robot navigation using DRL by 

enhancing the PPO algorithm with curriculum learning. The research demonstrates 

improved convergence efficiency and adaptability. A comparative analysis between the 

modified PPO, original PPO, and other algorithms highlights the superior performance 

of the curriculum-augmented PPO, particularly in handling complex, dynamic 

environments. Additionally, the study investigates swarm robot training, revealing that 

curriculum learning significantly enhances success rates, collision avoidance, and 

generalization capabilities in novel scenarios [k3] ,[k4]. 

 

 

3. It introduces a hybrid approach combining automatic design methods like DRL or PSO 

within a modular design to tackle the foraging problem in swarm robotics. The system, 

implemented in a 3D environment using Webots, involves 8 E-Puck robots equipped 

with light sensors to search for and transport dynamically moving resources. The 

modular architecture enhances system manageability and reduces computational 

demands, making it easier to address complex, non-static foraging tasks. The 

simulations show that the RL-based model outperforms PSO regarding task efficiency, 

resource collection, and adaptability to dynamic environments. RL-equipped robots 

demonstrate superior individual learning and autonomy, contributing to more effective 

collective swarm intelligence, while PSO relies more on the collective knowledge of the 

swarm [k5].  
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4. The study systematically examines how reward functions can be structured to guide 

robots in tasks such as efficient resource collection, adaptive navigation, and 

decentralized decision-making. A key aspect of this research is the balancing of 

penalties and rewards, ensuring that learning is neither hindered by excessive 

punishment nor misdirected by overly generous rewards, which could lead to 

suboptimal behaviors. A major contribution of this thesis is the introduction of a Deep 

Inverse Reinforcement Learning (RL-IRL) model designed to discover optimal reward 

structures for guiding swarm behavior in complex and unpredictable environments. 

Unlike traditional RL methods, which rely on manually defined rewards, IRL extracts 

implicit reward functions by learning from expert swarm demonstrations. This method 

is particularly effective in handling continuous state and action spaces, allowing the 

swarm to develop adaptive collective behaviors based on specific task objectives [k5] 

,[k6] ,[k7] ,[k8].
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