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1. Introduction 

The comprehension of soil moisture has evolved from historical agricultural knowledge to a 

pivotal focus in modern environmental and earth sciences. In the 3rd century BCE, agronomists 

like Mago of Carthage emphasized the importance of soil type, moisture retention, and irrigation 

scheduling in sustainable agriculture, principles subsequently reaffirmed by Roman scientists like 

Columella and Varro (Columella, 1941; Cato the Elder, 1934; Daniel J. Hillel., 1991; White, 1970). 

These early practices, grounded in empirical observation, demonstrate a fundamental 

understanding of the soil–water–plant relationship. 

The launch of microwave satellites, including NASA's Skylab in the 1970s and following by 

the passive sensors on SMMR (1978), AMSR-E (2002), SMOS (2009), and SMAP (2015), 

enabled the integration of soil moisture into the domain application of remote sensing (Njoku & 

Entekhabi, 1996). These missions made a significant advancement in the global monitoring of 

surface soil moisture and frequent revisits, however at low spatial resolutions and limited depth 

sensitivity (Kerr et al., 2010; Zribi et al., 2011). Simultaneously, active radar missions (ERS, 

Envisat, Sentinel-1) provided greater resolution datasets but are influenced by surface roughness, 

vegetation, and dielectric characteristics and require advanced algorithms to derive dependable 

moisture signals. Optical sensors (e.g., Sentinel-2) offer indirect vegetation-derived measures of 

moisture stress, such as NDVI and NDWI, which can enhance microwave observations but are 

constrained by cloud cover.  

However, the spatial and temporal heterogeneity of soil moisture makes it difficult to observe 

comprehensively. Soil moisture is influenced by soil texture and structure, weather, vegetation 

cover, topography, irrigation, and land management practices. These vary not only in space but 

also across soil depth and time, making point measurements poorly representative of larger areas 

(Grayson & Western, 1998; Ochsner et al., 2013a). Although in-situ sensors provide great 

precision, their application is limited to experimental sites and does not account for broad-scale 

variability. 

Soil texture is crucial for calibrating soil moisture sensors in the field, as sensor performance is 

dependent upon the dielectric characteristics of the soil matrix (Topp et al., 1980; Robinson et al., 

2008). Conventional methods to determine soil texture, utilizing laboratory analyses such 

hydrometer or laser diffraction techniques, are time-consuming, labor-intensive, and costly, 
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particularly when applied over extensive areas (Minasny & McBratney, 2016). This constraint 

limits the spatial resolution especially in resource-constrained areas. 

To address the limitations of traditional laboratory-based texture analysis, inverse modeling 

approaches have gained increasing attention. In this context, soil texture is inferred indirectly from 

the dynamics of soil moisture, rather than measured directly. Soil texture influences the rate and 

magnitude of soil moisture fluctuations following precipitation or irrigation, allowing for the 

prediction of textural classes or fractions through the analysis of the temporal dynamics of soil 

moisture profiles (Mohanty et al., 2017; Vereecken et al., 2016). Inversion-based techniques, 

whether integrated with sensor data or remote sensing soil moisture, present an attractive method 

for non-invasive, scalable texture mapping. This method is especially beneficial in agricultural 

monitoring systems where the expense or practicality of frequent ground sampling is constrained. 

Research Rationale and the Relevance of the study 

The rationale for focusing on two climatically distinct regions, Tunisia (semi-arid, water-stressed) 

and Hungary (temperate, data-rich), is to evaluate and characterize the soil moisture across 

heterogeneous landscapes. Tunisia’s Merguellil basin offers a relevant test site for assessing the 

potential of remote sensing in regions with limited monitoring infrastructure, whereas Hungary 

provides a reference environment with established datasets and field instrumentation. This dual-

site strategy allows for rigorous model calibration, validation, and transferability testing under 

varying soil textures, land cover types, and climatic gradients. 

The scientific contribution of this thesis lies in advancing digital soil mapping (DSM) techniques 

through a fusion of EO data, in-situ measurements, and machine learning. The relevance extends 

to precision agriculture, drought risk management, and climate adaptation. By providing spatially 

explicit soil moisture maps and texture predictions, the research supports data-driven decisions in 

water allocation, crop management, and land use planning.  

In summary, this study addresses critical scientific and operational gaps in soil moisture estimation. 

It demonstrates that remote sensing and AI-based models, when calibrated with reliable in-situ 

data, can generate high-resolution outputs for sustainable land and water management, particularly 

valuable in regions where traditional monitoring is scarce or fragmented. 
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2. Aim and objectives 

The primary aim of this doctoral research is to develop an integrated framework for accurate, non-

invasive estimation of soil moisture using multi-source data, including Sentinel-1 SAR, Sentinel-

2 optical imagery, in-situ sensor networks, and meteorological variables, combined through 

machine learning techniques. The study targets operational soil moisture monitoring at multiple 

spatial scales and in contrasting agroecological contexts, specifically the semi-arid Merguellil 

basin in Tunisia and temperate agricultural zones in Hungary. 

To fulfil this aim, the research is structured around the following objectives: 

1. To assess the role of soil physical properties, including texture, porosity, structure, and surface 

characteristics, in controlling soil moisture dynamics, using both laboratory-measured and 

remote-sensing-derived parameters. 

2. To support the calibration and validation of the in-situ soil moisture measurements from 

Sentek EnviroSCAN capacitance probes across different depths (10 cm, 20 cm, 30 cm), 

ensuring reliable ground-truth data for model training and validation. 

3. To extract and process Sentinel-1 backscatter coefficients (VV, VH) and Sentinel-2 vegetation 

indices (NDVI, NDWI) for monitoring vegetation–soil–water interactions at plot and 

watershed scales. 

4. To construct predictive models using Random Forest regression algorithms for estimating soil 

moisture and soil texture classes (sand, silt, clay) from environmental and satellite-derived 

covariates. 

5. To evaluate the spatio-temporal variability of soil moisture across the study area by integrating 

sensor data, topographic parameters, and climatic drivers (temperature, rainfall, 

evapotranspiration). 

6. To contribute to the advancement of digital soil mapping (DSM) by demonstrating the 

effectiveness of combining remote sensing, in-situ data, and machine learning for soil 

moisture and soil texture estimation. 
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3. Soil moisture characterization using optical and radar remote sensing data 

3.1. Study area 

The study area (Figure 1), the Merguellil basin in Kairouan (central Tunisia), spans 658,000 ha 

and combines a mountainous upstream (El Haouareb Dam watershed) with a downstream alluvial 

plain, making it a diverse yet erosion-prone landscape. 

 

Figure 1. Study area Merguellil downstream basin of the Kairouan plain (Lacombe, 2007) 

3.2. Methods 

The diagram (Figure 2) illustrates the used workflow for characterizing soil moisture through the 

integration of multi-source remote sensing and environmental data. It begins with a preliminary 

area analysis, followed by the collection of three main data types: Sentinel-1 radar imagery, 

Sentinel-2 optical imagery, and climate data (e.g., ERA5, GPM). Following, covariates were 

extracted from these sources, the backscatter coefficients from Sentinel-1, the vegetation and water 

indices (NDVI, NDWI) from Sentinel-2, and environmental parameters from climatic datasets. 

These covariates are then integrated and subjected to data analysis, including statistical methods 

such as linear correlation, to establish relationships between the derived indices and observed soil 

moisture. The final output of the research is the spatial and temporal characterization of soil 

moisture conditions across the study area. This integrated approach leverages the complementary 

strengths of radar, optical, and climate data for a comprehensive understanding of soil hydrological 

dynamics. 
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Figure 2. Methodological diagram of the soil moisture characterization 

3.2.1. Data collection 

The environmental covariates, Sentinel-1 (Backscatter coefficient), Sentinel-2 (NDVI and NDWI) 

and Digital terrain data were chosen as target explanatory variables to integrate. NDI (Normalized 

Difference Index) is calculated as the difference between reflectance values in two bands divided 

by the sum of those values (Dobos & Luca Montanarella, 2010) 

3.2.2. Extraction of Covariates  

A combination of literature and statistical processing was used to select certain factors. According 

to the literature, covariates had to follow three criteria: first, they had to represent soil-forming 

elements; second, they had to have a direct link with SM; and third, they had to be readily available 

(Dobos et al., 2000).  

3.2.3. Characterization of Soil Moisture 

Many researchers have developed models to characterize soil moisture, and these models showed 

that soil moisture and backscattering coefficient have a fundamental relationship, e.g. (Zhang et 
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al., 2021). The backscatter coefficient and Sentinel-2 data are considered main parameters that can 

help to characterize the soil moisture. 

 3.3. Results and Discussion 

3.3.1. Radar remote sensing 

An optical image and a Sentinel-1 radar image shown in Figure 3 to visually analyze the area. The 

radar image (polarizations) is colored with an RGB composite: red = VH, green = VV, and blue = 

NDI, where NDI refers to the Normalized Difference Index of the VH and VV polarizations. The 

dominance of bluish tones, greenish tones, and the presence of reddish tones in the southern part 

of the study area can be immediately distinguished. 

First, a visualization exercise was performed using the RGB composite and the different 

polarizations (Figure 10) were then carried out as follows: 
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Figure 3. (a) Polarization VV; (b) Polarization VH; (c) Elevation; (d) Optical Image; (e) RGB 

(VV, VH, VV); (f) RGB (VH, VV, NDI) 

Sentinel-1 C-band VV and VH polarizations provided complementary insights into soil moisture 

and land cover: VH enhanced water and soil wetness detection, while VV was more effective for 

vegetation and land use analysis. False-color composites distinguished cultivated soils, ploughed 

terrain, biomass, and bedrock structures, highlighting the sensitivity of SAR backscatter to 

moisture and surface conditions. However, the complexity of multiple scattering in vegetation and 

terrain underscores the need for ground-truth validation and advanced analysis to improve SAR-

based soil moisture assessment. 

3.3.2. Optical Remote Sensing 

Correlation between the NDVI and the NDWI 

The results show that maximum and mean NDWI–NDVI values exhibit strong correlations with 

soil moisture, while minimum values display weaker and less consistent relationships, likely 

influenced by free water, urban areas, or heterogeneous land covers. Validation using additional 

pilots (olive groves and horticultural crops) confirmed this pattern, with strong correlations for 

mean and maximum values but lower predictability for minimums. Outlier points, consistently 

observed across pilots, are interpreted as noise arising from technical errors or non-representative 

conditions. 

 

           R = 0.79 R² = 0.64                     R = 0.859 R² = 0.638               R = 0.28 R² = 0.079 

Figure 4. Correlation between the NDWI and NDVI of the study area 
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            R = 0.87 R² = 0.89                     R = 0.94 R² = 0.76                   R = 0.764 R² = 0.58 

Figure 5. Correlation between the NDWI and NDVI of Pilot 3 

 

            R = 0.94 R² = 0.89                     R = 0.87 R² = 0.76                     R = 0.76 R² = 0.58 

Figure 6. Correlation between the NDWI and NDVI of Pilot 4 

3.3.3. Conclusion 

This study demonstrated that integrating Sentinel-1B SAR data (VV, VH), NDVI, NDWI, DEM, 

and soil type information provides a robust framework for characterizing soil moisture regimes 

across heterogeneous land uses. Correlation analysis across multiple pilot sites revealed that 

vegetation indices, radar backscatter, and soil properties are strongly linked to soil wetness and 

vegetation conditions, confirming the comparative potential of optical and radar datasets. The 

results highlight that combining cognitive and statistical approaches with local knowledge is 

effective for understanding soil–water–vegetation interactions, and further statistical testing of 

environmental covariates is essential to identify the most influential drivers of soil moisture 

variability. Based on the conclusions above the following theses were formulated: 

Thesis 1 

The synergistic integration of Sentinel-1 C-band SAR backscatter (VV/VH), Sentinel-2-derived 

vegetation and water indices (NDVI, NDWI), and digital elevation data enables robust 
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spatiotemporal characterization of soil moisture in the semi-arid Merguellil Basin. By capturing 

complementary signals related to vegetation structure, surface roughness, water content and water 

retention variability, this approach delineates soil wetness patterns across physiographic zones and 

land use types with minimal ground-based input. The method is particularly effective for 

characterizing topsoil moisture (0–5 cm), where SAR backscatter is most responsive, and its 

performance remains sensitive to vegetation density. However, limitations may arise under dense 

canopy cover or highly rough surfaces, where multiple scattering and signal saturation can reduce 

accuracy. 

 

Thesis 2 

Strong statistical correlations between radar backscatter coefficients, spectral vegetation and water 

indices, and topographic parameters demonstrate the capacity of multi-source remote sensing to 

infer soil moisture regimes under data-scarce conditions. The observed divergence in NDVI–

NDWI dynamics across pilot sites further reveals the influence of soil texture, land use, and water 

retention variability, supporting the use of integrated optical-radar analysis for hydrological 

monitoring in heterogeneous agro-ecosystems. Nevertheless, performance declines under dense 

vegetation or highly rough surfaces, where signal penetration and retrieval accuracy are reduced. 

 

4. Non-Invasive Soil Texture Prediction Using Random Forest and Multi-Source 

Environmental Data 

The study area of this chapter is Hungary, a Central European country situated within the 

Carpathian Basin, spanning latitudes 45°48′ to 48°35′ N and longitudes 16°05′ to 22°58′ E. 

4.1. Materials and Methods 

4.1.1. Materials 

Soil particle size distribution was assessed from 0–30 cm depth samples collected at 25 sites across 

Hungary, chosen to capture diverse geographic and geological conditions. Standard granulometric 

analysis determined the proportions of sand, silt, and clay, which were classified using the USDA 

soil texture system. The samples span multiple textural classes, including sandy loam, loam, clay 

loam, sandy clay loam, and clay, with most clustering in the loam to clay loam categories. This 
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distribution highlights the heterogeneity of soil properties across the study area and provides a 

robust basis for texture-based classification and analysis. 

 

Figure 7. Soil Textiure Distribution of Soil Samples Plotted on the USDA Soil Texture Triangle 

A total of twenty-five distinct field sites across Hungary, representing different soil textures, were 

selected for this study. At each site, one Sentek EnviroScan sensor access pipe was installed.  

To ensure minimal soil disturbance and optimal sensor-soil contact, the installation process 

followed a rigorous methodology.  

Data Description  

Figure 8 presents the set of input variables used in the machine learning framework together with 

the target feature, soil texture. 
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Figure 2. Input Features and Target Variable for Soil Texture Prediction 

In this study, the target variables are the soil particle size classes. sand, silt, and clay, defined by 

USDA standards, which form the basis of soil texture classification and strongly influence water 

retention, aeration, and nutrient dynamics. Input features include both in-situ and remote sensing 

variables. Multi-depth soil temperature, humidity, and scaled frequency (SF) measurements were 

obtained using the Sentek EnviroSCAN probe, from which soil moisture at 10, 20, and 30 cm 

depths (SM_10, SM_20, SM_30) and their short-term fluctuations (5-day ranges, vertical gradients, 

and slopes) were derived. Additional temporal features included normalized seasonal progression 

(Season_Value) and diurnal cycles (Day_Night). Vegetation status was captured by the 

Normalized Difference Vegetation Index (NDVI) from Sentinel-2 imagery, serving as a proxy for 

soil–plant water interactions. Together, these variables integrate soil physical properties, 

hydroclimatic dynamics, and vegetation responses, providing a comprehensive dataset to assess 

the relationships between soil texture and soil moisture variability across depths and timescales. 

Variable importance and Model Performance Evaluation 

The feature importance of predictor variables was evaluated using the Random Forest Regressor 

(RFR) algorithm. The importance of each feature was determined based on the mean decrease in 

impurity (MDI), which is computed as the total reduction in variance attributed to each feature 

across all decision trees within the ensemble model. Specifically, the scikit-learn implementation 
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of Random Forest calculates feature importance by assessing how much each predictor variable 

contributes to improving the accuracy of the model’s predictions. 

Since the Random Forest Regressor (RFR) is used for continuous variable prediction rather than 

classification, regression-specific evaluation metrics were employed to assess model performance. 

The key performance indicators used in this study include Mean Squared Error (MSE), Root Mean 

Squared Error (RMSE), Mean Absolute Error (MAE), and the Coefficient of Determination (R² 

Score). These metrics provide a quantitative measure of how well the predicted soil properties 

(Sand, Silt, and Clay fractions) align with actual observed values.   

4.1.2. Methods 

The flowchart (Figure 3) illustrates the methodological framework adopted in this study, organized 

into three main phases: data preparation, model construction, and data prediction. In the data 

preparation phase, field-based measurements, satellite observations, and ancillary environmental 

datasets were collected, pre-processed, and harmonized into a consistent spatial and temporal 

framework. Relevant features were extracted and compiled to create the input dataset. The model 

construction phase involved partitioning the dataset into training and testing subsets, followed by 

the implementation of the machine learning algorithms, Random Forest Regressor (RF). 

Hyperparameter tuning and cross-validation were applied to optimize model performance and 

minimize overfitting. In the data prediction phase, the trained model was applied to generate 

spatially continuous predictions of soil texture, which were then validated against independent in 

situ measurements. 
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Figure 3. Soil texture prediction workflow 

Predictive Modeling 

The predictive modeling process using the Random Forest Regressor (RFR) for soil composition 

estimation follows a structured approach, summarized as follows: 

Data Acquisition and Preprocessing: The dataset contains a range of environmental and geospatial 

predictor variables along with soil texture components (sand, silt, and clay fractions). Initial 

preprocessing steps include handling missing values, standardizing variables, and ensuring 

consistency across all observations. 

Data Splitting and Model Training: The preprocessed dataset is partitioned into training and test 

subsets to assess model generalizability. The Random Forest algorithm is implemented, where 

multiple decision trees are trained using randomly selected samples from the training set. The 

predictions from these trees are aggregated, reducing variance and improving predictive accuracy. 

Model Evaluation and Optimization: The trained model is evaluated using Mean Squared Error 

(MSE), R² score, and feature importance analysis to assess prediction reliability. Hyperparameter 

tuning, including adjustments to tree depth, the number of estimators, and feature selection, is 

performed to optimize model performance. 

Feature importance analysis was conducted to identify the most influential predictors. The model 

selection module was used for data partitioning, cross-validation, and hyperparameter tuning, 
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while the metrics module computed accuracy scores for performance evaluation. The ensemble 

module facilitated the implementation of the Random Forest Regressor, ensuring robust prediction 

capabilities. 

Model Training 

The Random Forest model was selected as the predictive framework for its robustness in capturing 

nonlinear relationships and managing high-dimensional datasets. It operates by constructing 

multiple decision trees, each trained on randomly sampled subsets of the data, enabling diverse 

perspectives on feature–target interactions. These trees individually learn the complex 

dependencies between input features and soil particle size fractions (sand, silt, clay). The ensemble 

then aggregates the predictions across all trees, averaging results to reduce overfitting, enhance 

stability, and improve the overall accuracy and generalization of soil property predictions. 

4.2. Results & Discussion 

Soil particle size class Prediction Using Random Forest Regressor: Model Performance and 

Feature Importance Analysis 

The Random Forest model achieved strong predictive performance for soil particle size fractions, 

with R² values above 0.85 across sand, silt, and clay, confirming its reliability in modeling soil 

composition. Silt prediction was the most accurate (R² = 0.93, RMSE = 2.20), reflecting its more 

uniform properties and consistent model behavior. Sand also performed well (R² = 0.92, RMSE = 

3.87) but showed slightly higher variability due to its coarse texture and rapid drainage. Clay 

prediction was comparatively weaker (R² = 0.85, RMSE = 3.44), highlighting the complexity of 

capturing its nonlinear retention and shrink–swell dynamics. Overall, these results emphasize the 

model’s robustness while underscoring the need for soil texture-specific refinements, particularly 

for clay-rich soils. 

Table 1. Model Performance Metrics for Soil particle size class Prediction 

Target Variable MSE RMSE R² Score 

Sand 14.97 3.87 0.92 
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Silt 4.85 2.2 0.93 

Clay 11.8 3.44 0.85 

 

Feature Importance Relates to Soil particle size class (Sand, Silt, Clay) 

 

Figure 10. Feature Importance Ranking for Silt, Clay and Sand classes 

The feature importance analysis reveals that soil moisture variability across depths is the dominant 

driver of soil particle size prediction, with Range SM_20–SM_30 being most critical for sand and 

silt, and Range SM_10–SM_30 for clay. These vertical gradients capture key differences in water 

transport and retention, reflecting the rapid drainage of sandy soils versus the slower, retentive 

behavior of clays. NDVI and humidity also emerged as important proxies, linking vegetation 

health and atmospheric demand to soil moisture dynamics, while temperature indicators (e.g., 10-

day averages) highlight the role of evapotranspiration pressure. Together, these results demonstrate 

that soil texture governs the soil–water–plant continuum, where coarse soils amplify moisture 

fluctuations under temperature stress and fine soils buffer water availability, and that integrating 

depth-specific moisture ranges with climatic and vegetation features provides a physically 

consistent and statistically robust basis for predicting soil texture classes. 

Evaluation of Model Predictions: True vs. Predicted Soil Composition 

The scatter plots (Figure 11) confirm that the Random Forest model effectively captures soil 

composition trends, with silt predictions showing the highest accuracy and closest alignment to 

the 1:1 line, sand predictions performing moderately with some scatter at low values, and clay 
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predictions exhibiting the greatest dispersion and uncertainty due to complex moisture retention 

properties. Overall, the model proves most reliable for silt, followed by sand, while clay remains 

the most challenging to predict. 

 

Figure 11. True vs Predicted Values of Sand, Silt, and Clay class 

Hyperparameter Optimization Results 

The optimized models were subsequently evaluated using Mean Squared Error (MSE) and the 

coefficient of determination (R2), key statistical metrics for assessing regression model 

performance. The results demonstrated high predictive accuracy, with R² values close to 1, 

indicating a strong correlation between predicted and observed values: 

Table 2. Model Performance Metrics 

Soil particle size class MSE RMSE R² Score 

Sand 5.13 2.27 0.97 

Silt 1.01 1 0.99 

Clay 4.88 2.21 0.94 

4.3. Conclusions 

This study presents a robust machine learning framework for predicting soil texture composition, 

by predicting the sand, silt, and clay fractions, by integrating in-situ soil moisture data with 

Sentinel-2 derived vegetation indices and environmental variables. Among the tested models, 
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Random Forest Regression (RFR) demonstrated a good performance, achieving coefficient of 

determination (R²) values exceeding 0.90 for all soil particle size classes and peaking at 0.99 for 

silt class, underscoring the model's predictive accuracy and generalization capability. 

The feature importance analysis revealed that short-term soil moisture dynamics at multiple depths, 

in combination with Range of the SM, NDVI and humidity, are key determinants of soil texture 

variability. These results validate the hypothesis that soil water availability and vegetative response 

are reliable proxies for underlying textural properties, offering a novel perspective on indirect soil 

characterization. 

Thesis 3 

The integration of multi-depth in-situ soil moisture dynamics from capacitance-based Sentek 

EnviroSCAN sensors with Sentinel-2-derived vegetation indices and environmental parameters 

enables the indirect, non-invasive prediction of soil texture composition. By leveraging Random 

Forest regression, this framework captures the complex interactions between soil moisture 

behavior, vegetative response, and particle size distribution, providing a scalable alternative to 

traditional laboratory-based soil texture analysis. Furthermore, the potential for site-specific model 

transferability remains an important consideration, as variations in parent material, climatic 

conditions, and land use may influence model performance.  

Thesis 4 

Vertical gradients and short-term variability in soil moisture, quantified through sensor-derived 

scaled frequency metrics and multi-depth moisture fluctuation indices, exhibit strong predictive 

relationships with USDA-defined soil particle size classes. The soil moisture fluctuation indices 

were derived from Sentek EnviroSCAN probe data, including maximum, minimum, and range 

values over 5-day moving windows at 10, 20, and 30 cm depths, as well as inter-depth gradients 

(e.g., Range SM_10–30). When combined with NDVI and environmental features within a 

machine learning framework, these spatiotemporal dynamics allow for accurate, high-resolution 

mapping of soil texture, demonstrating the viability of sensor- and satellite-based approaches for 

digital soil characterization in heterogeneous environments. 
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5. Clay Ratio prediction using Machine learning, in situ and remote sensing data 

5.1. Materials and Methods 

For this chapter, the study area, datasets, and preprocessing workflow are identical to those 

described in the previous chapter. The key distinction lies in the prediction target: while the earlier 

chapter focused on soil texture classes, the present analysis specifically aims to predict the Clay 

Ratio. Furthermore, this chapter evaluates and compares the performance of three machine 

learning algorithms, Random Forest Regressor (RF), Extreme Gradient Boosting (XGBoost), and 

Gradient Boosting Regressor (GBR). 

The workflow illustrated in Figure 12 outlines the sequential steps of the study, which are 

structured into three main phases: data preparation, model construction, and data prediction. In the 

data preparation phase, field measurements, remote sensing products, and ancillary datasets are 

integrated, processed, and harmonized. The model construction phase involves splitting the dataset 

into training and testing subsets, followed by the implementation of machine learning algorithms. 

Finally, in the data prediction phase, the trained models are applied to estimate the target variable, 

Clay Ratio, with subsequent accuracy assessment and validation against independent observations. 

 

Figure 12. Clay Ration prediction workflow 
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The Clay Ratio was computed as the proportion of clay content to the combined content of sand 

and silt. 

This derived variable serves as a normalized indicator to assess the relative abundance of fine 

particles within the soil matrix. All predictive features, comprising in situ soil moisture 

measurements at multiple depths, meteorological data, and remote sensing indices, were retained 

to ensure methodological consistency. The Random Forest regression model was again employed 

due to its robustness in handling non-linear relationships and heterogeneous data sources. This 

consistent approach facilitates comparative analysis across different soil texture attributes within 

the same modeling framework. 

Data Description  

Figure 13 presents the set of input variables used in the machine learning framework together with 

the target feature, Clay Ratio. 

 

 

Figure 13. Input Features and Target Variable for the Clay Ratio Prediction 

5.2. Results and Discussion 

Model Performance Analysis 

The comparative evaluation of the three ensemble models for Clay Ratio prediction, Random 

Forest, Gradient Boosting Regressor (GBR), and XGBoost Regressor (XGB), is presented in the 
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table 3 below, based on three standard regression performance metrics: Mean Squared Error 

(MSE), Root Mean Squared Error (RMSE), and the coefficient of determination (R² Score). 

Table 3. Comparison of Model Performance Metrics for Clay Ratio Prediction 

Target Variable MSE  RMSE  R² Score 

Random Forest 0.003 0.054 0.936 

Gradient Boosting 0.0015 0.038 0.9747 

XGBoost 0.0015 0.038 0.9748 

The Random Forest model achieved an R² of 0.936, indicating that it explains 93.6% of the 

variance in clay ratio. However, compared to the other two boosting-based models, it yielded a 

higher error (MSE = 0.003, RMSE = 0.054), which suggests lower precision in capturing more 

complex relationships in the data. 

In contrast, Gradient Boosting and XGBoost outperformed Random Forest on all metrics, both 

achieving an R² of approximately 0.975, which signifies that they explain over 97% of the variance 

in the clay ratio. The RMSE of 0.038 in both models reflects a substantial improvement in 

predictive accuracy over the Random Forest. 

The slightly better R² score for XGBoost (0.9748) compared to Gradient Boosting (0.9747) 

highlights the marginal edge of XGBoost, which can be attributed to its regularization techniques 

and scalability. XGBoost also tends to be more robust to overfitting, particularly in high-

dimensional datasets, due to its built-in shrinkage and column subsampling strategies. 

These results demonstrate that boosting models, particularly XGBoost, are more effective than 

bagging methods like Random Forest in predicting soil clay content from integrated datasets. The 

enhanced performance is likely due to the ability of boosting algorithms to sequentially correct 

prediction errors and focus on difficult-to-predict observations. 

Feature Importance Relates to Clay Ratio Prediction 

The Random Forest model highlights Range SM_10 SM_30 as the most influential feature (Figure 

14), indicating that vertical moisture gradients between shallow and deeper soil layers are critical 
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for predicting clay content. Vegetation index (NDVI), Humidity, and 10-day averaged temperature 

metrics (T_10_Days_Aver, T_10_Days_Aver.1) also show high importance, reflecting their role 

in controlling soil moisture dynamics and vegetation stress responses associated with clay-rich 

soils. Features related to frequency-scaled moisture (e.g., SF_30 / SF_10) and seasonal effects 

(Season_value) follow closely. 

 

Figure 14. Feature Importance for Predicting Clay Ratio - Random Forest Regressor  

Gradient Boosting confirms the dominance of Range SM_10 SM_30 as the top feature, followed 

by NDVI, Humidity, and T_10_Days_Aver.1, consistent with Random Forest. However, this 

model attributes relatively higher importance to frequency-scaled features such as SF_30 / SF_10 

and SF_20, as well as moisture ranges at various depths. The distribution of importance is more 

gradual, showing the model’s sensitivity to a broader set of hydrometeorological variables. Low 

influence remains with slope change metrics (CDiff Slope 10/20/30) and Day_Night. 

XGBoost places the strongest emphasis on Range SM_10 SM_30, assigning it the highest 

individual score among all models, followed by SF_30 / SF_10. This underlines the significance 

of vertical moisture distribution and signal frequency as key indicators of clay content. While 

Humidity, T_10_Days_Aver.1, and NDVI remain important, the sharp drop in importance among 

mid-ranked features suggests that the model relies more heavily on a few dominant variables. 

Model selection 

The evaluation of model performance demonstrates that XGBoost is the most accurate and robust 

algorithm for predicting the Clay Ratio, outperforming both Gradient Boosting Regressor (GBR) 

and Random Forest (RF). While GBR and XGBoost achieved very similar results (R² ≈ 0.975, 
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RMSE = 0.038), both were substantially better than RF (R² = 0.936, RMSE = 0.054), confirming 

the superiority of gradient-based ensemble methods in capturing non-linear soil–environment 

interactions. Scatter plots further validate this, showing XGBoost predictions closely aligned with 

the 1:1 line and exhibiting minimal bias, while RF displayed larger deviations, particularly at 

extremes. Overall, XGBoost emerges as the most reliable model for Clay Ratio prediction, offering 

high precision, strong generalization, and suitability for soil texture modeling in heterogeneous 

agro-environmental contexts. 

Interpretation 

The XGBoost feature importance analysis for clay fraction prediction underscores the dominance 

of vertical soil moisture gradients as key indicators of texture. The most influential variable, Range 

SM_10–SM_30 (0.2731), effectively captures the slower redistribution and higher retention of 

water in clay-rich soils compared to the rapid infiltration of sandy profiles. Similarly, the 

SF_30/SF_10 ratio (0.1694) highlights subsurface stratification and compaction effects that 

influence water movement across horizons. Secondary predictors such as humidity, temperature, 

and NDVI reflect evapotranspiration demand and vegetation status, providing indirect cues about 

soil–water interactions shaped by texture. The importance of range-based temporal and depth-

specific moisture indicators further demonstrates the value of dynamic features over static absolute 

values, as they encapsulate wetting–drying cycles strongly governed by soil texture. In contrast, 

static soil moisture values and topographic or diurnal proxies contributed little to predictive power. 

Overall, the model highlights how integrating moisture dynamics with climatic and vegetation 

signals provides a robust framework for inferring soil texture, with clay prediction strongly linked 

to depth-dependent water redistribution and plant–soil–atmosphere interactions. 

5.3. Conclusion  

In conclusion, the prediction of the clay fraction using machine learning models demonstrates the 

strong potential of data-driven approaches for soil texture characterization. Among the tested 

algorithms, XGBoost achieved the highest predictive performance, with an R² score of 0.9748 and 

the lowest error metrics, confirming its robustness in capturing complex, non-linear relationships 

between environmental predictors and clay content. The analysis of feature importance revealed 

that dynamic indicators of soil moisture variability, particularly the vertical moisture gradient 

between 10 cm and 30 cm depth, were the most informative variables. These findings emphasize 
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the relevance of moisture-related features over static measurements, reflecting the intrinsic link 

between water retention behavior and soil texture. Additionally, variables representing climatic 

demand and vegetative status, such as humidity, temperature, and NDVI, further enhanced model 

accuracy by capturing the soil–plant–atmosphere interactions.  

 Thesis 5 

The vertical gradient of soil moisture, quantified as the differential between shallow and 

subsurface layers (e.g., Range SM_10–SM_30), encapsulates the moisture behavior governed by 

fine particle distribution and thus emerges as a key predictor of clay ratio. When integrated with 

spectral vegetation proxies (NDVI) and environmental variables, this dynamic moisture signal 

enables physically informed, non-invasive estimation of clay-enriched soils through ensemble 

learning frameworks. However, in coarse-textured soils, where infiltration is rapid and vertical 

moisture gradients are less distinct, the predictive strength of this indicator may be reduced, 

highlighting the need for context-specific calibration and validation. 
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