
 
 

UNIVERSITY OF MISKOLC 

FACULTY OF MECHANICAL ENGINEERING AND INFORMATICS 

 
 

 

 
 

ELABORATING AND OPTIMIZING METHODS TO INVESTIGATE HEAT 

TRANSFER PROBLEMS IN BUILDING COMPONENTS 
 

 
Booklet of PhD Theses 

 

 

PREPARED BY: 

Ali Habeeb Askar 

Mechanical Engineering Department (BSc),  

Mechanical Engineering Department (MSc) 
 

ISTVÁN SÁLYI DOCTORAL SCHOOL OF MECHANICAL ENGINEERING SCIENCES 

TOPIC FIELD OF BASIC ENGINEERING SCIENCES 

TOPIC GROUP OF TRANSPORT PROCESSES AND MACHINES 
 

 
HEAD OF DOCTORAL SCHOOL 

Dr. Gabriella Bognár 

DSc, Full Professor 
 

HEAD OF TOPIC GROUP 

Dr. László Baranyi  

Full Professor 

SCIENTIFIC SUPERVISOR 

Dr. Endre Kovács 

Dr. Betti Bolló 

Miskolc 

2025





 

 
 

JUDGING COMMITTEE 

Chair: 

 

Secretary: 

 

Members: 

 

 

 

 

OFFICIAL REVIEWERS  

 





INTRODUCTION 

3 
 

1. INTRODUCTION 

The rise of smart technologies has transformed energy optimization in buildings, which 

consume 40% of primary energy and contribute 24% to greenhouse gas emissions. This thesis 

examines smart home technologies, energy efficiency, and thermal comfort, focusing on heat 

transfer in building envelopes. Predicting energy needs during design is key to optimizing energy 

use and economic outcomes [1]. The International Energy Agency notes the construction sector 

accounts for over a third of global energy consumption and 40% of CO2 emissions. In Hungary, 

fossil fuels dominate the energy supply, but solar PV installations are growing to meet clean energy 

goals by 2030 [2].Building envelopes, especially walls, are critical for reducing heat loss, which 

accounts for 35% of a home’s energy loss. Enhancing insulation and using smart materials can 

improve efficiency. Thermal bridges, which increase heat loss, require integrated thermal and 

structural design [3]. This study explores energy renovation techniques for existing buildings to 

boost efficiency and sustainability. 

Energy efficiency in buildings is vital for a sustainable economy, with the construction sector 

offering significant potential to reduce energy use and emissions. Heat transfer calculations guide 

building design, estimating energy loss through conduction in walls, roofs, and floors. Wall 

conduction, influenced by thickness and insulation, responds to weather conditions, impacting 

thermal comfort and energy consumption [4]. Innovative wall designs, like passive solar and 

lightweight concrete, enhance efficiency, while high R-values reduce heat loss [5]. However, high 

humidity can cause condensation, risking microbial growth. Roofs, critical for shielding against 

solar radiation, benefit from insulation and reflective coatings to minimize heat gain. In tropical 

climates, passive cooling techniques, like ventilated roofs, improve comfort. Fenestration, 

including advanced glazing technologies, optimizes thermal performance and lighting. These 

strategies—improved insulation, innovative walls, and efficient roofing—collectively lower 

energy demands, fostering sustainability in buildings [6]. 

Analytical solutions for homogeneous systems are used to validate numerical methods, 

particularly for one-dimensional multilayer problems in building envelope heat gain, loss, and 

storage [7]. However, most building heat conduction issues are multi-dimensional and transient, 

with varying material properties, requiring numerical simulations. Thermal analysis examines 

temperature distributions, fluxes, and heat capacities, often using numerical methods for complex, 

non-homogeneous scenarios [8]. Analytical solutions are precise for simple geometries, but 

numerical integration is needed when material properties vary spatially. Newton’s law of cooling 

and Stefan–Boltzmann’s law describe convective and radiative heat transfer, incorporated into 

numerical models like finite difference schemes (FDM). Implicit FDM methods offer stability but 

are computationally slow for multi-dimensional problems, while explicit methods, though faster 

and parallelizable, are conditionally stable under the CFL limit [9]. Semi-explicit or semi-implicit 
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methods balance stability and speed, with algorithms like the leapfrog–hopscotch (LH) method 

excelling in heat conduction simulations. Studies show LH, Dufort–Frankel, and hopscotch 

methods perform well, especially for stiff systems, allowing large time steps without stability 

issues [10]. These methods effectively model convection and radiation in building walls across 

seasons. Developing new algorithms for diffusion-reaction equations with time- and space-

dependent coefficients remains a key focus. 

In my research, I collaborated with my supervisors and colleagues to explore and enhance 

families of novel and traditional explicit methods for solving linear and nonlinear heat conduction 

equations. These methods were developed based on innovative approaches. Specifically, I adapted 

successful techniques, such as the pseudo-implicit and Leapfrog hopscotch methods, to scenarios 

involving heat transfer through convection and nonlinear radiation (like Stefan-Boltzmann-type 

radiation). These adaptations addressed real-world heat transfer challenges in building 

environments. Additionally, I conducted a comparative analysis of my findings with those 

obtained from neural networks 

Diffusion of particles and Fourier-type heat conduction are omnipresent mass or energy 

transport processes.  

 2u
u q

t



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  (1.1) 

In the simplest linear case, they are described by the following partial differential equation 

(PDE): 
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where x, t  are the independent variables, ( )u u x,t=  is the unknown concentration of particles 

or the temperature in the case of heat transfer, and α is the coefficient of (thermal) diffusivity. The 

thermal diffusivity of a material can be given as / ( )k c = , where ( )c c r ,t= , ( )k k r ,t= , and 

( ),r t =  are the specific heat, the heat conductivity, and the density of the material, respectively. 

If these coefficients depend on space, one has to use the more general equation 
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where it is assumed that the c and ρ functions are positive. This equation is now valid for more 

than one space dimension. 

The heat conduction Eq. (1.2)  can be extended to include heat convection, radiation, and source 

terms are added to the heat conduction Eq.(1.1). In the case of Eq. (1.2) in one space dimension, 

applying the most common central difference equation
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which is second order in x , where 1i ,...,N=  and N is the overall number of nodes. By 

applying this, in one space dimension, I am able to derive the spatially discretized form of the 

heat transfer Eq. (1.1) in one space dimension as follows: 

 4

2

1 12i ii i
i i

u u udu
q Ku u

dt x
 − +− +

= + − −


. (1.5) 

Now, let us demonstrate the discretization of the heat transfer equation assuming that the 

variables α, k, c, and ρ, which describe the properties of materials, are functions of space rather 

than fixed values. In one space dimension, I now have to deal with the following instead of the 

term 
2u for homogeneous materials:  
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I discretize the function k, and at the same time the space derivatives in Eq. (1.6) by the standard 

central difference formula to obtain: 
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Equations (1.6) and  (1.7) are based on the node-picture, typically used by mathematicians. 

Instead of node-variables, let us introduce cell variables to arrive at a resistance-capacitance-type 

model of heat conduction. It means that iu , ic , and i  are the approximation of the average 

temperature, specific heat, and density of cell i, by their value at the cell centre. Furthermore, 
i,i+1k  

is the heat conductivity between cell i and its (right) neighbour, estimated by its value at the border 

of the cells. Now the previous formula will have the form:  

 
41 1
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 . (1.8) 

As a generalization of Eq. (1.8) one may construct the ODE system for the time derivative of 

the cell variables for a generic grid by using the above approximations as follows: 
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The set of ordinary differential equations (ODEs) shown here can be used with a lot of different 

grids, even ones that are not structured and have cells that are different sizes, shapes, and 

properties. It is important to note that uneven discretization may potentially compromise spatial 

accuracy. However, for the purposes of this work, I have chosen to exclusively utilize cells of a 

rectangular configuration. 
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2. METHODOLOGY OF THE STUDY  

My objective is to refine and optimize numerical methods to effectively analyze heat transfer 

in building components, enabling optimization of building envelopes from both thermodynamic 

and economic perspectives. The research is structured into three key areas. First, I systematically 

evaluate nine numerical algorithms, assessing their stability and accuracy, develop a pseudo-

implicit algorithm, investigate free convection and radiation terms using the leapfrog-hopscotch 

method, and compare numerical approaches for diffusion-reaction partial differential equations 

(PDEs). Second, I apply neural networks to predict building energy performance, validate models, 

and simulate the thermal behavior of building walls using the leapfrog-hopscotch method as the 

recommended approach. Third, I optimize roof inclination angles for energy efficiency across 

various climates and enhance roof designs by incorporating additional insulation and Trombe roof 

systems. These efforts aim to advance energy-efficient building design through rigorous 

computational analysis and innovative optimization strategies. 

2.1 Some Explicit Methods 

2.1.1 The Leapfrog–Hopscotch method 

The leapfrog-hopscotch (LH) method [11]. We have a structure consisting of two half and 

several full time steps. The calculation starts again by taking a half-sized time step for the odd 

nodes using the initial values Stage 0 (not repeated, green box), which uses 0 = . Then, for the 

even and odd nodes, full-time steps are taken strictly alternately until the end of the last timestep, 

The intermediate stages as well as the last stage (light and dark orange boxes) use 1 2/ =  Figure 

2.1. I used only the best already proven combination of formulas (L2 in [11]), which means that 

0 =  and 1 2/ = . 

 

Figure 2.1. Hopscotch-type space-time structures. The time elapses from the top ( )0t t=  to the bottom 

( )fint t= . 
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2.1.2 The Dufort–Frankel (DF) algorithm 

This method can be obtained from the so called leapfrog explicit scheme by a modification [12] 

(p. 313). It is a known explicit unconditionally stable scheme that has the formula in the special 

and general case:  

( ) ( )1
1 11

1 2 2

1 2

n n n
i i in

i

r u r u u
u

r

−
− ++

− + +
=

+
 and 

( ) 1
n 1 1 2

1

i i

i

n
i

i

r u A
u

r

−
+ − +
=

+
. 

As one can see, it is a one-stage but two-step method (the formula contains 1n
iu − ), which is not 

a self-starter, so another method must be applied to start the method by the calculation 1
iu . For this 

purpose, we apply the UPFD formula twice (with halved time step size).  

2.2 Comparison the ARE errors between positivity preserving methods as a function of ΔtMAX 

and stiffness ratio 

Figure 2.2. and Figure 2.3 show ARE errors as a function of MAXt  and stiffness ratio, 

respectively. I note the stiffness ratio affected the accuracy of methods when they increased, so 

the accuracy becomes worse compared to the cases of small stiff ratios. 

 
Figure 2.2. The ARE errors as a function of ΔtMAX in the case of the UPFD, CNe, CpC, LNe2, LNe3, the 

OEH-CNe, the SH-CNe, the LH-CNe and the ASH-CNe methods. 
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Figure 2.3.  The ARE errors as a function of Stiff Ratio in the case of the UPFD, CNe, CpC, LNe2, 

LNe3, the OEH-CNe, the SH-CNe, the LH-CNe and the ASH-CNe methods. 

I summarize the ARE error quantities, for both case studies in Table 2.1. 

Table 2.1. ARE (average relative error) quantities of different explicit stable algorithms. 

Numerical Method ARE (Mildly Stiff) ARE (Very Stiff) 

UPFD  37.4544−  23.1613−  

CNe 42.0347−  25.9−  

CpC 80.778−  40.07−  

LNe2 79.6922−  39.228−  

LNe3 84.346−  43.75−  

OEH-CNe 72.9442−  35.09−  

SH-CNe 81.467−  41.4367−  

LH-CNe 81.4812−  41.428−  

ASH-CNe   81.376−  41.394−  
 

2.3 PI Algorithms Comparison with Other Methods for a Large System with Strong 

Nonlinearity 

In this case study, I set 3iK rand=  , 2iq rand=   and 1000 = . The latter coefficient has been 

chosen so large because I would like to demonstrate the performance of the new method for a 

strongly nonlinear case, but the values of the variable u are typically between zero and one, thus 

their fourth power is usually a rather small number. I solve Eq. (1.1) in a 2-D, rectangle-structured 
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mesh the size of the system is fixed to 100xN =  and 120zN = , thus the total cell number is 12,000. 

Randomly generated cell capacities and thermal resistances,  

i x,i z,i
( ) ( ) ( )

10 1, ,0 10C C Rx Rx Rz Rzrand rand rand
C R R

     −  −  − 
= = = , 

I give new values to the α and β exponents:  

C3,  6,  3,  0C Rx Rz Rx Rz     = = = = = = .  

I calculate the stiffness ratio and the CFL limit in two different ways, both of them without taking 

into account the nonlinear term. If I use the full M matrix, I obtain that the stiffness ratio is 57.7 10  

much smaller than in the previous case, while the CFL limit for the standard FTCS was 

49.76 10EE
MAXt − =  , which, I stress again, holds for the Heun method as well. If I use only the DM  

matrix instead of M, the stiffness ratio is 96.8 10 , while the CFL limit is 49.75 10EE
MAXt − =  . The 

reason behind these numbers is that the eigenvalues close to zero have been significantly increased 

(in absolute value) by the new reaction term while those with large absolute values remained 

almost the same. All other parameters and circumstances, such as the size of the system and the 

range of the initial values are the same as in the previous subsection. I note that I were not able to 

adapt our previous methods CNe, LNe and CpC for the 0 0K ,   case, nor when the advection 

term is present, without losing their order of convergence (that is why I started to develop the 

current methods), thus they are not presented in this and the next subsection. In Figure 2.4 the 

energy and the average errors are presented as a function of the time step size and Figure 2.5 the 

total running time, respectively.  

 

Figure 2.4. Energy errors as a function of the time step size for the second (very stiff) system, in the case 

of the UPFD Algorithm 2, the Heun method and the new PI algorithms. 
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Figure 2.5. Energy (average) errors as a function of the running time for the second (very stiff) system, in 

the case of the new algorithms and some other methods. 

2.5 Results for the Cross-section of the Insulated Wall with Thermal Bridging  

Part Ⅰ: The equidistant mesh. Here the initial and boundary conditions of point (B) are applied to 

the multilayer wall. The maximum errors are plotted in Figure 2.6. The temperature distribution 

contour for final time moments is shown in Figure 2.8. The temperature on the right side of the 

wall is rising due to the higher outside temperature, but the insulator allows this heat to enter the 

wall at a very slow rate. 

 

Figure 2.6. The maximum errors as a function of h for the equidistant mesh (Part Ⅰ) in the case of 

convection and radiation boundary conditions. 
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Part Ⅱ: non-equidistant mesh, is the same as in (Part Ⅰ). The errors are presented in Figure 2.7. 

 

Figure 2.7.  The maximum errors vs. the time step size h for the non-equidistant mesh (Part Ⅱ) in the 

case of convection and radiation boundary conditions. 

while the temperature contours are presented in Figure 2.8, the non- equidistant mesh, in case of the 

multilayer cross-sectional area. The numbers on the vertical and horizontal axes of the contours are the 

coordinates in cm units. 

   

Figure 2.8. The temperature distribution contour in Kelvin for the final time (left) in the case of (Part Ⅰ) 

(equidistant mesh) and final time (right) (Part Ⅱ). 

 

2.6 Results for the Surface of the Wall 

Figure 2.9 shows the temperature distribution contour in Kelvin units for the surface area. The 

figure shows that in the case of the insulator (right-hand side of the figure), heat can hardly flow 
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from the top of the figure to the bottom, so there are large temperature gradients. Moreover, 

because the heat capacity of the insulation layer is smaller than that of the brick layer, its 

temperature increases faster from the original 270 K. 

 

Figure 2.9. The temperature distribution contour in Kelvin units for the surface area (upper half) constant 

convection and (lower half) the convection changes with time depending on weather data. 

The maximum errors of the cell-temperatures at the final time as a function of time step size 

are shown in Figure 2.10 for the systems 100 by 100. Figure 2.11 shows the running time for the 

system 100 by 100. I use many time steps for the explicit methods (LH and DF) and less for the 

implicit methods because they are much slower, and I see that LH and DF are faster and more 

accurate. 

 

Figure 2.10. The maximum errors as a function of the time step size h for the examined methods for the 

100 by 100 system. 
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Figure 2.11. The maximum errors as a function of the running time for the tested methods for the 100 by 

100 system. 

2.6.1 Applying MLP and RB neural networks 

To validate my results, I compared the predicted data with the experimental data collected by HAP, 

based on the CL and HL parameters. I used R2 as a criterion for the predicted data. Figure 2.12 

shows the comparison of the predicted data with the experimental data. The results indicate that 

the LM model has the best prediction performance among all models. The analytical results are 

also in good agreement with the experimental data, which confirms the reliability of the ANN 

training process using different algorithms. The RB model, however, has the lowest prediction 

accuracy and fails to optimize the ANN parameters effectively. The SCG model can be a suitable 

alternative to the LM model and provides accurate results and predictions, but it is still less 

accurate than the LM model. 

 
(a) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) 

Figure 2.12. The result of R2 values for the data predicted by three neural networks: MLP_LM, 
MLP_SCG, and RB (a) for the heating load and (b) for the cooling load. 
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2.6.2 Result for the Simulation of the Wall 
2.6.2.1 Winter Simulation 

This section presents the results of a simulation of heat transfer and temperature distribution 

in a four-layered wall (gypsum plaster, heavy weight concrete, insulation, and face brick) during 

the winter season (December). The simulation shows how the temperature varies across the layers 

and how much heat is lost from the inside to the outside of the wall per meter square. Figure 2.13 

shows the temperature distribution at the boundary surfaces of the layers when the wall faces 

North. 

 

Figure 2.13. The temperature distribution in °C as a function of time in days for the four-layer wall 

facing North.  

Figure 2.14 shows that the heat loss per meter squared is the highest for the wall facing North 

and lowest for the wall facing South. 

 

Figure 2.14.  Total heat loss distribution in W/m2 as a function of time in days for the wall simulation 

facing North, East, South, and West. 
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2.6.2.2 Summer Simulation 

This section shows the results of a simulation of heat transfer and temperature distribution in 

the four-layered wall during the summer season (July). The simulation shows how the temperature 

varies across the layers and how much heat is gained from the outside to the inside of the wall per 

meter squared. Figure 2.15 shows the temperature distribution at the boundary surfaces of the 

layers when the wall faces North. 

 

Figure 2.15. The temperature distribution in °C as a function of time in days for the four-layer wall 

facing North. 

Figure 2.16 illustrates that the heat gain per meter squared is lowest for the wall facing North and 

highest for the wall facing South, due to there being no radiation on the north side in the daytime.

 

Figure 2.16. Total heat gain distribution in W/m2 as a function of time in days for the wall simulation 

facing North, East, South, and West. 
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2.7 Comparative Analysis Between The Optimal Models And The Horizontal Roof 

 I conduct a comparative analysis between the optimal models and the horizontal model in 

Figure 2.17. Specifically, I take into account the orientations facing east and west, integrating them 

into the load calculations for the north and south directions. The resulting combined load is 

subsequently compared to the load associated with the horizontal configuration. Although an 

inclined roof has a larger surface area than a horizontal roof, it has reduced heat loss and gain. This 

is attributed to a shorter duration of exposure to solar radiation, resulting in lower heat gain, and 

to the consistent thermal convection on the sides of the inclined roof. Additionally, when exposed 

to solar radiation, it stores energy and re-radiates it, which minimizes heat loss compared to a 

horizontal roof. Consequently, the inclined design offers improved thermal performance despite 

its increased surface area. 

  

winter  summer 

Figure 2.17.  Roof heat loss and gain with time on left side winter season and right-side summer season. 

Figure 2.18 illustrates the optimal roof contour for temperature regulation during both winter and 

summer seasons. The subsequent two figures demonstrate the enhancements achieved by 

incorporating a Trombe wall and insulation on the effective side of the roof for both seasons. 
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1 4 

 
 

2 5 

  
3 6 

Figure 2.18.  Contour of temperature for the optimal roof cases, Trombe and with insulation on 

effective side on left side winter season Hungary, Miskolc and right-side summer season Baghdad, 

Iraq. 
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3. NEW SCIENTIFIC RESULTS – THESES 

T1. I analyzed nine numerical algorithms for solving the heat equation, focusing on positivity-

preserving methods stable across time step sizes and system stiffness. The study tested 2500-

cell, two-dimensional stiff systems with random, discontinuous parameters. I compared 

accuracy and CPU efficiency, finding the 3-stage LNe3 and LH-CNe methods most accurate. 

I examined how increasing stiffness ratios, decreasing CFL limits, and varying spatial 

anisotropy affected accuracy. The study assessed performance with growing horizontal-

vertical cell dimension differences. I recommended optimal methods for scenarios like OEH 

structure, unstructured meshes, and highly anisotropic systems, aiming to guide effective 

positivity-preserving method selection. [13].  

T2. I developed a novel, fully explicit, stable numerical algorithm for time-dependent diffusion 

equations with linear and nonlinear reaction terms. Based on the UPFD idea and theta-formula, 

it’s second order in time step size and unconditionally stable for linear cases. It outperforms 

other methods and MATLAB routines in accuracy and stability for nonlinear cases, though not 

positivity-preserving. Stable for large time steps even with strong nonlinearity, it’s easy to 

implement and suitable for unstructured grids. This pseudo-implicit algorithm combines key 

advantages of explicit and implicit methods.[14]. 

T3. I optimized the leapfrog-hopscotch method for the heat conduction equation, focusing on free 

convection and radiation terms. Best results treat convection 50% at old- and new-time levels, 

ensuring stability and second-order temporal convergence. The radiation term is best handled 

pseudo-implicitly for excellent stability. The algorithm performs well under low CFL limits. 

[15]. 

T4. I studied a diffusion-reaction PDE with a linear reaction term and space-time-dependent 

nonlinear coefficients. Nine numerical algorithms reproduced these, with Dufort-Frankel and 

leapfrog-hopscotch explicit schemes outperforming standard explicit and implicit methods. In 

a 2D case simulating wall surface temperature with wind-driven forced convection and rapidly 

varying material properties, explicit stable methods proved more efficient than implicit ones, 

with efficiency expected to grow with system size. [16]. 

T5. I compared MLP and RB neural networks using LM, SCG, and RB algorithms to predict 

heating and cooling loads in Miskolc, Hungary residences. The MLP with LM algorithm 

excelled in accuracy and error reduction. I also studied a four-layered wall’s thermal behavior 

across orientations in winter and summer using the leapfrog-hopscotch finite difference 

algorithm. Insulation and orientation significantly affect thermal performance, with North-

facing walls optimal in summer and South-facing in winter. Steady-state calculations 

overestimate winter heat loss and variably estimate summer heat gain. [17]. 

T6. I studied heat loss and gain in inclined roofs in Miskolc (cold winters) and Baghdad (hot 

summers). In Miskolc, optimal roof angles of 82° south and 55° north minimized heat loss. In 

Baghdad, 90° south and 45° north reduced heat gain. Trombe wall systems cut heat gain from 

29.939 to 16.234 W/m², and insulating the active roof side lowered it to 23.997 W/m² in 

summer. Winter heat loss in Miskolc was 24.43, 21.77, and 20.91 W/m². [18] [19].    
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