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1 Summary 

Despite the advance of the work proposed by previous researchers to study the intermittent gas 

lift system, the interaction operating parameters of the process remains poorly understood and 

need more investigation. A computational fluid dynamics model (CFD) and machine learning 

algorithms are used in this research to accurately predict the single and multiphase flow 

parameters of intermittent gas lift process. 

The CFD simulation is conducted for a test section of 18 m vertical tube with 0.076 m in 

diameter using air as injected gas and oil as a formation fluid. Also, the well parameters are 

organized into dimensionless ratios to reduce the complexity of the system and the required 

computational time. The liquid production rate is noted to increase with increases the injection 

pressure, tubing size and submergence length and the results obtained from the simulation 

model were validated with the results from the literature. Pressure and velocity profile are often 

the most important parameter for the design and efficiency of the intermittent process and by 

using the present developed model, the pressure profile can be easily obtained for different 

positions and conditions along the production tube.  

In intermittent producing system, the pilot gas-lift valve is extremely used to control the point 

of compressed gas entry into the production tubing and acts as a pressure regulator. A novel 

approach using computational fluid dynamics simulation was performed in this study to 

develop a dynamic model for the gas passage performance of a 1-in., nitrogen-charged, pilot 

gas-lift valve. This study investigates the effect of internal pressure, velocity and temperature 

distribution within the pilot valve that cannot be predicted in the experiments and mathematical 

models during the flow-performance studies. A general equation of the nonconstant discharge 

coefficient has been developed for 1-inch pilot valve to be used for further calculation in the 

industry without using CFD model. 

Tubing pressure at gas injection depth in intermittent wells is one of the most critical 

parameters for production engineers to evaluate the performance of the system. However, 

monitoring of the tubing pressure is not usually carried out in real time. Machine learning (ML) 

algorithms is utilized in this research to develop a model that can accurately predict tubing 

pressure in artificial intermittent gas lift wells. All the tubing pressures obtained from ML 

models were compared with the actual field values to ensure the effectiveness of the work. The 

developed model shows that it can predict the pressure with more than 99.9% accuracy. This 
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is an interesting result, as such outcome accuracy has not been reported usually in the open 

literature. 

2 Thesis Contribution 

The contribution to research is the development of a computational fluid dynamic model to 

study the liquid production rate with different gas injection conditions. This model is a novel 

model to physically describe the transient flow in intermittent lift and predict the effect of 

intermittent parameters on the slug velocity and liquid production rate. The pilot valve, 

discharge coefficient correlation is developed in this study to calculate the actual gas flow rate 

through 1-inch pilot valve in the petroleum industry. This correlation is efficiently correct the 

gas rate from the analytical to actual flow because it based on the numerical model that consider 

the change in the velocity, temperature, and pressure gradient around the valve piston. Finally, 

machine learning model is developed in this research based on the field data to predict the 

tubing pressure at the gas injection depth.  

3 Thesis Objectives 

Intermittent gas lift is considered as complex process and contains many interaction parameters 

that required trial and error procedure to find the best and optimum operation conditions that 

is good on case by case. The work on the intermittent gas lift should be proceeded to find a 

good computer model which can accurately describe the whole intermittent cycle and the 

effects of interaction parameters on the system efficiency. The main objectives of this research 

are: 

1- To construct a numerical simulation model using Computational Fluid Dynamics 

(CFD) that investigate the effect of injected time on the liquid production rate and to 

calculate the velocity and pressure profile of the slug flow in intermittent process. 

2- Carry out a dimensionless analysis model to reduce the complexity of the system and 

the required computational time.  

3- To develop CFD simulation procedure for pilot valves, based on the conditions similar 

to those find in the industry. This procedure is used to propose a numerical correlation 

equation of the discharge coefficient of 1-inch pilot valve. 

4- To build artificial machine learning model using different algorithms to predict the 

tubing pressure at the gas injection depth. 
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4 CFD Model of Intermittent Two-Phase Flow 

4.1 Numerical CFD Modelling Stages  

There are three main stages for typical CFD model: pre-processing, solving, and post-

processing. Figure 1. describe the CFD method used in this research. 

 

Figure 1. CFD simulation flow chart (edited by the Author) 

4.2 Scenarios of CFD simulation  

In this research two scenarios of intermittent gas lift have been studied and compared with 

experiment results. The geometry dimensions and the solution set up in each case are the same 

as those of the experiment conditions in order to validate the CFD model. Table 1 shows the 

summary of different variables for the two cases. 
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Table 1. Parameters for Intermittent gas lift cases (edited by the Author) 

Parameters Tubing size port size Injected 

Gas 

Liquid 

Slug 

Injection pressure 

Case 1 0.076 m 

(3 in) 

0.025 m 

(1 in) 

Air Oil 2.7&3.5 bar 

(40&50 psig) 

Case 2 0.051&0.060 m 

(2&2.375 in.) 

0.013 m 

(0.5 in) 

Natural 

gas 

Water 2&3 times Pt 

(tubing pressure) 

Figure 2 shows the details of the domain parts used in this study to simulate the intermittent 

gas lift process. In the industry, the gas injection is ceased when the liquid slug reaches the 

wellhead, user define function is written to set the pressure inlet based on the liquid volume 

fraction in the tubing outlet. Hexahedral computation mesh was created with enough mesh 

resolution near the wall as shown in Figure 3 to capture the liquid film flow near the pipe wall. 

 
Figure 2. The different domain parts used for simulation. (edited by the Author) 

 

Figure 3. The structured mesh used for intermittent gas lift (Case 2) (edited by the Author) 
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5 CFD Simulation of Pilot Operated Intermittent Gas Lift Valve 

The domain considered in this study is shown in Figure 4. The important part to be simulated 

is the power part, since the injected gas flows through this section to the production tubing and 

it is responsible for the gas flow rate. To simplify the geometry, the following assumptions are 

made. 

(a) The gas flow through the bleed hole has not been modeled, in fact the gas flow through 

the bleed hole is not that much significant compared to the total gas flow rate. 

(b) The inlet boundary condition is located on the wall that separates the piston seal ring 

and the gas entrance to the main part. 

Mesh independence study is conducted, to establish the accuracy of the solution and reduce 

the simulation run time without affecting the calculation accuracy. Also, the effect of the 

distance that power piston travels inside the power section of the pilot valve on the gas flow 

rate had been studied. Three different travels measured from the boundary wall to the end 

of the piston had been studied as shown in Figure 5 For each piston travel, the gas flow 

rate is measured. The results show that the piston travels of 32, 34, and 36 mm have no 

significant effect on the gas flow through the pilot valve for different production pressure. 

 

Figure 4. Physical pilot valve domain for CFD simulation (edited by the Author) 
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Figure 5. Different piston travel geometry for pilot valve (edited by the Author) 

6 Machine Learning Algorithms for Predicting Tubing Pressure  

A total of 9594 intermittent gas lift test data were obtained from Algyo oil wells located in the 

southern part of Hungary. These wells are artificially flow using intermittent gas lift process. 

The first most imperative step taken in the process of data analysis of this study was to plot the 

attributes correlation matrix as shown in Figure 6. The filter method is selected in this study 

to reduce the number of the input data. The correlation between each input parameters was 

calculated using Pearson’s correlation coefficient method. The filter process based on 

correlated parameters reduces the number of elements from 105534 to 67158 and reduces the 

number of the independent variables from 10 to 6. 

Data analysis and preprocessing performed carefully in this study since, the prediction 

performance of any machine learning models is highly depending on the quality of the data. 

Figure 7 shows a summary of data preprocessing and models training used in this research. 
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Three different machine learning algorithms namely, Decision Tree (DT), Random Forest 

(RF)and K-Nearest-Neighbors (KNN) are used in order to predict the tubing pressure at the gas 

injection depth in intermittent gas lift wells. 

 
Figure 6. Correlation plot of all attributes in intermittent dataset. (edited by the Author) 

 

Figure 7. Flowchart of Machine learning models procedure. (edited by the Author) 
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Grid-search is used to find the optimal hyperparameters of a model which results in the most 

‘accurate’ predictions. To select the optimum hyperparameters, each model is trained and 

evaluated for different set of parameters to select the optimum one. Cross validation technique 

is used to split the data for the train and test. In this technique the dataset is divided into K-

folds, the model is train in K-1 folds and test in 1 K as shown in Figure 8. By iteration through 

the train/test comparison several times, a better estimation of the model performance is 

achieved. This checks that the model is not performing differently after being trained on new 

labeled data. The result of hyper parameters is shown in Table 2. 

Table 2. Optimum Machine learning models parameters (edited by the Author) 

Model score Best parameters 

Decision Tree 0.99982 Max-depth=50 

Random forest 0.99987 Bootstrap=True, max feature= auto 

K-Nearest Neighbors  0.9992 K=2 

 
Figure 8. Cross validation of machine learning models using 5 K-Folds. (edited by the 

Author) 

7 Scientific Results 

7.1 Study the Slug Velocity Profile with Gas Injected Time  

The slug velocity with the gas injected time is shown in Figure 9. for two different injection 

pressures (40 psig and 50 psig). As the injection pressure increases from 40 psig to 50 psig the 

slug velocity increase and this is due to the expansion of the gas injected under the slug which 

causes the slug to rise to the surface rapidly. Also, when the pressure of the injected gas 

increased, the time required for pushing the slug to the surface decreased.  
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Figure 9. Liquid slug velocity vs. injection time, The CFD results developed in this study. 

(edited by the Author) 

7.2 Study the Liquid production with Gas Injected Time. 

The liquid recovery with gas injected time is obtained from two different gas injection 

pressures. Figure 10 shows the fraction of liquid produced from the slug core is about 0.366 

(36.6% of the total liquid) for injection pressure of 40 psig and about 0.392 (39.2 % of the total 

liquid) for injection pressure of 50 psig. It is observed that when the injection pressure increases 

the liquid production increase. Also, when the injection time increases, the liquid production 

increase because of the liquid production from the film. From the figure, it can be seen that the 

larger portion of production is coming from the liquid after flow.  

7.3  Modeling of Gas Flow Rate Through the Pilot Valve 

The valve performance curve describes the dynamic behavior of the pilot valve and represents 

the gas flow rate through the valve for different injection and production pressure. The gas flow 

rate is calculated for different conditions using CFD simulation as shown in Figure 11.  
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Figure 10. Liquid production vs. injection time, The CFD results developed in this study 

(edited by the Author) 

 

Figure 11. Pilot valve performance curve from CFD model. (edited by the Author) 

Using CFD results the following steps are used to develop a general equation of the non-

constant discharge coefficient (CdY) of 1-inch pilot valve that can be used for further 

calculations without using CFD model: 

1. Gas rate is calculated from CFD simulation for different conditions. 
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2. CdY is back calculated for different values of gas flow rates using the following 

equation: 

𝑄𝑄𝑠𝑠𝑠𝑠 = 1240.3 ∙ 𝐶𝐶𝑑𝑑𝑌𝑌 ∙ 𝐴𝐴𝑣𝑣 ∙ �
𝑃𝑃𝑖𝑖 ∙ (𝑃𝑃𝑖𝑖 − 𝑃𝑃𝑝𝑝 )
𝑇𝑇𝑣𝑣 ∙ 𝑧𝑧𝑣𝑣 ∙ 𝛾𝛾𝑔𝑔

 

3. CdY is plotted against   (𝑃𝑃𝑖𝑖 − 𝑃𝑃𝑃𝑃)/𝑃𝑃𝑖𝑖𝑘𝑘 as shown in Figure 12. 

4. A general equation for CdY is obtained using linear regression. 

𝐶𝐶𝑑𝑑𝑌𝑌 = −0.217
�𝑃𝑃𝑖𝑖 − 𝑃𝑃𝑝𝑝�
𝑃𝑃𝑖𝑖𝑘𝑘

+ 0.322 

Where CdY is the non constant discharge coefficient (dimensionless), Av is effective flow area 

(in2), Pi is injection pressure (psi), Pp is the production pressure (psi), k is ratio of specific heats 

(dimensionless), Tv upstream gas temperature (oR), zv is gas compressibility factor at upstream 

condition (dimensionless), γg is gas specific gravity (dimensionless). 

 

Figure 12. CdY correlation of 1-inch pilot valve (edited by the Author) 

7.4 Prediction of Tubing Pressure Using Machine Learning Algorithms 

After the data preprocessing steps, the selected machine learning models were built on the 

training dataset. The evaluation of each algorithm was essential to ensure the quality of the 

employed model. The models are fit to the training dataset and then used to predict the tubing 
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pressure for the training and testing dataset. A graphical description of the results is presented 

in Figure 13. which show a comparison between the actual tubing pressure and ML model 

predicted values for both the training and testing data and also the figure displays the 

correlation of determination (R2) for each model. 

  

  

  
Figure 13 Cross-Plot between Actual and Predicted tubing pressure at the valve depth (edited 

by the Author) 

The comparison between all the ML methods which were used in this study is based on 

minimum root mean square error (RMSE) and highest coefficient of determination. This 

comparison clearly shows the power of the ML models in predicting tubing pressure during 
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intermittent process in our case. Figure 14 and Figure 15 show the comparison between the 

machine learning models based on RMSE and R2 respectively. From the values of the RMSE, 

R2 and the residuals, it can be concluded that the decision tree model performs better than the 

others model in the prediction the tubing pressure from training data set, whereas the Random 

forest model perform better than the others in the prediction of the testing dataset. The KNN 

model give the highest RMSE, lowest R2 and highest residual range than the other models. 

 
Figure 14. Root mean square error for the developed machine learning models. (edited by the 

Author) 

 

Figure 15. Coefficient of determination for the developed machine learning models. (edited 

by the Author) 
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8 NEW SCIENTIFIC RESULTS 

Thesis #1 

Developed a computational fluid dynamics model for intermittent gas lift systems, this 

simulation is a proven program for predicting intermittent gas lift characteristics and the 

transient flow parameters that are changing with time and position in the coordinate system. 

This model is applied for a long tubing string with a length of 236 times the diameter which is 

not yet reported in the open literature. 

The velocity profile of the liquid slug is calculated using CFD simulation for two different gas 

injection pressures. Also, the pressure profile inside the tubing string is calculated for different 

positions with the gas injection time. These calculations using the developed CFD model show 

good agreement with the experiment results. 

Thesis #2 

The dimensionless analysis procedure is developed in this research by organizing the well 

parameters into dimensionless ratios to reduce the complexity of the system and the required 

computational time. The initial variables of injection pressure, tubing pressure, submergence 

length, and valve depth are related to the liquid production fraction for certain tubing sizes and 

valve diameters using CFD.  

Thesis #3 

A novel approach using computational fluid dynamics simulation was performed to develop a 

dynamic model for the gas passage performance of a 1-in., nitrogen-charged, pilot gas-lift 

valve. Dynamic performance curves were obtained by using methane as an injection gas with 

flow rates reaching up to 4.5 MMscf/day (127 em3/day). This study investigates the effect of 

internal pressure, velocity, and temperature distribution within the pilot valve that cannot be 

predicted in experiments and mathematical models during the flow-performance studies. 

Thesis #4 

A successive procedure is introduced to develop a general equation of the nonconstant 

discharge coefficient for a 1-inch pilot valve to be used for further calculation in the industry 

without using the CFD model. The developed model calculates the nonconstant discharge 

coefficient taking into account the pressure, temperature, and velocity gradient around the 
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piston. This model reduces the complexity of the data required to calculate the discharge 

coefficient. 

Thesis #5 

Machine learning (ML) algorithms are utilized to develop an artificial intelligence model that 

can accurately predict tubing pressure in intermittent gas lift wells. Intelligent algorithms built 

on the field data from Algyo wells in Hungary, provide a solution that is easy to use and 

universally applicable to calculate such a complex parameter in the industry. This model is 

capable of predicting the tubing pressure at the gas lift valve with high accuracy (~99%). 

Filter method of feature selection is used to find the most variables that affect the tubing 

pressure at the gas lift valve. By using this method, the number of input variables is reduced 

from ten to six. It is found that temperature at the casing surface, injection depth, oil density, 

and tubing diameter are not necessary to be included in the machine learning algorithm since 

they are highly correlated with other input parameters. 
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