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1- Introduction 
1.1. Background 
The complex characteristics of the ground's soil layers are fundamental to the safety and success of many 
geotechnical engineering projects (Das, 2017). To do this, precise measurements of the properties of the 
soil that govern the behavior of the ground beneath our feet are crucial (Ameratunga, 2016). In the field of 
geotechnical practice, soil permeability—which is commonly evaluated as hydraulic conductivity—and 
strength characteristics are key components that have a major influence on the stability and operation of 
structures (Han, 2020).  

Critical to many engineering applications, hydraulic conductivity is especially important for hydrogeology, 
geotechnical engineering, and groundwater management. Engineers need to understand hydraulic 
conductivity in order to evaluate the flow of water through soil, which is necessary for managing 
groundwater resources, building efficient drainage systems, and assessing the possibility of pollutant 
transfer (Gao, 2024). For instance, accurate measurement of hydraulic conductivity aids in assessing the 
viability and effectiveness of different remediation methods, such as groundwater extraction and treatment, 
in groundwater remediation projects. Hydraulic conductivity is also useful in irrigation management for 
streamlining water distribution networks and guaranteeing correct irrigation of crops while reducing water 
waste (Gupta, 2024). 

Apart from that, a key soil characteristic that controls the safety and stability of civil engineering structures, 
such as retaining walls, slopes, and foundations, is shear strength (Hu, 2020). Shear strength is a crucial 
factor in the design of geotechnical engineering since it indicates the soil's resistance to deformation and 
failure under applied loads (Vanapalli, 2009). For example, in foundation engineering, understanding the 
parameters of shear strength is crucial to ascertaining the soil's carrying capability, which in turn affects the 
design of both shallow and deep foundations. Similar to this, in slope stability analysis, shear strength 
knowledge aids engineers in determining whether naturally occurring and artificially constructed slopes are 
stable, reducing the possibility of landslides and other slope collapses that could jeopardize infrastructure 
and human life. 

1.2. Problem statement 
Several direct methods exist for measuring hydraulic conductivity and shear strength parameters of soil. 
For hydraulic conductivity, these include the constant head permeability test, falling head permeability test, 
packer test, slug test, and pumping test. Also, for shear strength, the methods include the direct shear test, 
triaxial compression test, vane shear test, and unconfined compression test. However, due to the significant 
dependence on in situ and laboratory testing techniques, conventional methods for measuring these 
parameters frequently prove to be laborious and resource-intensive (Hicher, 1996). The installation of 
monitoring wells for hydraulic conductivity testing and the gathering of undisturbed soil samples for shear 
strength testing are two common fieldwork requirements for these technologies (Craig, 2004). While 
laboratory and in-situ measurements provide high safety and accuracy, they can be time-consuming and 
resource-intensive. Finding a way to estimate these parameters with an acceptable safety index and reduced 
time requirements would be advantageous, as it would help mitigate delays and lower project costs. 
Furthermore, it can be difficult to get representative samples due to the inherent regional heterogeneity in 
soil properties, which can result in inaccuracies in the measured data (Dołęgowska, 2016). Because of this, 
engineers frequently struggle to precisely describe the behavior of soil and forecast how it will react to 
various loading scenarios. The challenges in obtaining accurate measurements are made more difficult by 
the dependence on sophisticated equipment and specialist knowledge. Accurate performance and 
interpretation of test findings are crucial for in situ methods like cone penetration test and borehole 
permeability test, which call for specialized equipment and experts with advanced training (Elhakim, 2016). 
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Similar to this, in order to guarantee accurate results, laboratory tests for determining shear strength—such 
as direct shear tests and triaxial compression tests—require specific equipment and skilled personnel. The 
expense and complexity of testing are increased by the requirement for specialized tools and knowledge, 
which also restricts the methods' applicability in distant or resource-constrained places where these 
resources can be hard to come by or unavailable (Nam, 2011). Additionally, the time-consuming nature of 
traditional testing methods poses significant challenges in project planning and execution. Delays in 
obtaining test results can impede decision-making processes, leading to uncertainties in design parameters 
and construction schedules. In fast-paced construction environments, where timely decisions are crucial to 
project success, the prolonged testing procedures associated with traditional methods can hinder progress 
and increase project risks (Viana da Fonseca, 2015). As a result, there is a growing demand for alternative 
approaches that offer faster, more cost-effective, and reliable solutions for estimating soil parameters, such 
as hydraulic conductivity and shear strength. 

It is noteworthy to mention that getting soil samples for lab testing might be especially difficult in some 
situations, such as historical sites or places with restricted access. Strict preservation guidelines are 
frequently in place for historical sites, limiting the amount of infrastructure and soil disturbance (Prieto-
Taboada, 2014). In these situations, typical sample techniques cannot be practical, forcing engineers to use 
non-intrusive approaches to indirectly infer soil parameters, including geophysical surveys or remote 
sensing technology (Cozzolino, 2018). Although these techniques provide insightful information on 
subsurface conditions, they might not be as accurate or comprehensive as direct sampling and testing. 
Moreover, in the preliminary design phase of engineering projects, there is often a need for quick and 
reliable data to inform decision-making and design optimization. Laboratory testing methods, which 
involve sample collection, transportation, preparation, and analysis, can be time-consuming and may not 
align with the fast-paced nature of preliminary design processes (Sharma, 2021). Engineers face the 
challenge of balancing the need for comprehensive soil characterization with the time constraints of project 
schedules. Consequently, there is a growing demand for innovative techniques that can rapidly estimate soil 
parameters with minimal time and resource requirements, allowing for more efficient and informed 
decision-making during the early stages of project development. 

1.3. Research aims and significance 
To address the limitations of conventional approaches for measuring soil parameters, several scientists and 
researchers have attempted to create new strategies that use easily obtainable soil properties for estimation. 
Grain size distribution is one such feature that is frequently easy to find in any engineering project. Grain 
size distribution is a key indicator of soil's hydraulic conductivity and shear strength, offering important 
details about the composition and structure of the material (Belkhatir, 2013). Because of this, scientists have 
looked into a number of methods for estimating these characteristics using information on grain size. 

For estimating soil characteristics from grain size distribution, empirical approaches have been frequently 
used. Based on trends seen in empirical data, these methods create connections between hydraulic 
conductivity or shear strength and grain size measurements (Meskini-Vishkaee, 2018). Although empirical 
methods are straightforward and simple to apply, they might not be as robust and broadly applicable as 
models built on larger datasets. 

In addition to empirical approaches, researchers have employed statistical methods such as regression 
analysis to estimate soil parameters from grain size data. Regression models are developed by fitting 
mathematical equations to empirical data, allowing for the quantification of relationships between 
independent variables and dependent variables (Nemes, 2004). By analyzing large datasets of soil samples 
with known parameters, regression models can identify statistically significant correlations and derive 
predictive equations for parameter estimation. However, the accuracy of regression-based models depends 
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heavily on the quality and representativeness of the training data, as well as the appropriateness of the 
chosen model structure (Klein, 1999). 

The introduction of artificial intelligence (AI) has transformed the estimation of soil parameters based on 
grain size distribution, providing sophisticated methodologies that meet the issues associated with older 
methods (Khalili-Maleki, 2022). Among the many AI techniques, artificial neural networks (ANNs) have 
received a lot of attention due to their capacity to manage the complex and nonlinear correlations that exist 
in soil data. ANNs are computational models based on the structure and function of the human brain, with 
interconnected nodes (neurons) structured in layers (Citakoglu, 2017). These networks excel in extracting 
patterns and correlations from huge datasets, making them ideal for predicting soil characteristics based on 
grain size distributions. One of the primary advantages of utilizing ANNs for soil parameter estimation is 
their ability to capture complex correlations between input variables and output parameters. This versatility 
allows ANNs to account for complex soil behavior and environmental influences that simpler models may 
not fully capture. Moreover, ANNs demonstrate resilience and flexibility in the face of noisy or imperfect 
datasets, which are frequent problems in geotechnical engineering research (Park, 2011). ANNs are able to 
produce reliable predictions even in the face of uncertainty by adapting over time and learning from past 
events, which allows them to overcome data constraints (Prieto, 2016). Additionally, ANNs are scalable, 
which makes it possible to include a variety of input factors and ambient variables in the modeling process. 
This adaptability improves soil parameter estimations' accuracy and comprehensiveness, enabling 
researchers and engineers to make well-informed decisions in a range of geotechnical applications (Bolón-
Canedo, 2011). It is noteworthy to mention that the faster estimates provided by ANNs also enhance risk 
management by allowing for earlier identification of potential issues, enabling more proactive and effective 
mitigation strategies, and ultimately supporting project safety and success. 

In this study, I attempted to estimate the hydraulic conductivity of soil and shear strength parameters based 
on grain size distribution using artificial neural networks. Recognizing the challenges associated with 
traditional methods and the potential of ANNs to overcome them, a comprehensive dataset comprising 
laboratory-tested soil samples was collected. Subsequently, the collected data were utilized to train and 
validate ANN models for predicting hydraulic conductivity and shear strength parameters. Also, the 
performance of the ANN models was compared to other indirect methods. By evaluating the accuracy and 
reliability of ANN-based predictions compared to conventional methods, this study aims to highlight the 
effectiveness of artificial neural networks in soil parameter estimation. Additionally, it seeks to demonstrate 
how ANNs can advance geotechnical engineering practices by enhancing safety management and reducing 
risk levels.
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2- Methodology 
2.1. Data Collection and Preparation 
The soil samples and materials used in this study were collected from the Hejőpapi area shown in Figure 6, 
situated in Borsod-Abaúj-Zemplén County, Hungary. The geographical coordinates of the collection site 
are 47°54'00" North latitude and 20°55'00" East longitude. In the laboratory, the collected soil samples were 
systematically separated into their constituent particles: gravel, sand, silt, and clay. This separation process 
ensured that each type of particle could be individually analyzed and combined in precise proportions to 
create new soil samples for experimentation. 

The new soil samples were prepared by carefully combining varying quantities of each type of particle. The 
goal of this procedure was to reproduce different soil compositions and investigate their characteristics in 
a controlled environment. To ensure that the experimental results were free of biases or mistakes, great care 
was taken to preserve consistency across all samples, including maintaining uniform water content and unit 
weight. The precise ratios of gravel, sand, silt, and clay were adjusted to see how different soil compositions 
affected the characteristics under study. It is noteworthy that for the scope of this study, which focused on 
specific soil parameters, only small-sized gravel particles were used. All prepared samples were subjected 
to identical environmental conditions and handling procedures to ensure uniformity. This standardization 
was crucial for minimizing variability and enhancing the reliability of the experimental results. By 
maintaining these stringent preparation protocols, including consistent water content and unit weight, the 
study aimed to produce accurate and reproducible findings that could contribute valuable insights into soil 
behavior and characteristics. 

 
Figure 2-1. Collection Site of Soil Sample (Source: My Own Edit) 

In general, 205 soil compositions were reconstructed in the laboratory. Depending on the type of parameter 
under investigation, all or some of these samples were investigated. The percentages of each component 
were variable and included 0, 10, 15, 20, 25, 30, 40, 50, 75 and 100 percent (Annex 1). It should be noted 
that the naming order of the samples in this research was determined after obtaining the results and 
performing the final analysis, which will be discussed in detail in the next chapter. The desired tests were 
performed on each reconstructed sample according to the standard to obtain the investigated parameters. It 
should be mentioned that the laboratory work for this study was carried out across two institutions. The 
initial phase of the experiments was conducted in the soil mechanics laboratory at the University of Miskolc. 
The subsequent phase of the laboratory work was carried out at the Budapest University of Technology.  

2.2. Experiments 
2.2.1. Grain size distribution 
Following the creation of the desired soil combinations, the grain size distribution for each new soil sample 
was determined. To achieve this, both the sieve analysis test and the hydrometer test were conducted in 
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accordance with the Eurocode 7 standard. The grain size distribution analysis was crucial for providing a 
comprehensive understanding of the sample characteristics before conducting further experiments. It 
allowed for the categorization of samples, ensuring that each one was appropriate for specific experimental 
procedures. Additionally, it facilitated the separation of samples into coarse and fine grains, which is 
essential for tailoring experiments to different soil types. The analysis also enabled the determination of 
key parameters such as D10, D30 and D60. These parameters are critical for various aspects of my 
investigation, including the assessment of soil permeability and the mechanical behavior of the soil samples. 

2.2.2. Hydraulic conductivity 
Hydraulic conductivity, a crucial parameter for understanding water movement in soil, was measured for 
205 samples based on Eurocode 7 criteria in this study. It was tried to have a similar initial condition for all 
specimens before conducting the tests. Following the concepts outlined in Darcy's law in previous chapter, 
hydraulic conductivity, also known as coefficient of permeability or permeability, refers to the ease with 
which water permeates rock or soil. To capture soil type heterogeneity, two different laboratory procedures 
were used: the constant head permeability test for coarse-grained soils and the falling head permeability 
test for fine-grained soils. The constant head permeability test indicates soils with high permeability, such 
as sand. It involves measuring the discharge flow rate (Q) through the soil sample under a constant hydraulic 
head (Δh) during a set duration (t). Conversely, the falling head permeability test, suitable for soils with 
low to intermediate permeability like clays and silts, monitored the gradual decrease in water level (h1 to 
h2) within a standpipe installed on top of the soil sample. By recording the change in water level over time 
(t) and considering sample dimensions, hydraulic conductivity was computed using the pertinent equations. 

2.2.3. Shear strength parameters 
The soil's shear strength parameters were determined using direct shear tests on a total of 95 samples, in 
accordance with the Eurocode 7 criteria. These tests were critical in determining the soil's resistance to 
internal friction and cohesion, especially for coarse and fine-grained soils. Following Eurocode 7 protocols 
enhanced scientific accuracy and complying with international standards, hence increasing the reliability 
and credibility of the findings. Each direct shear test was methodically carried out, with special attention 
given to sample preparation, loading conditions, and testing techniques. To account for variability and 
assure the correctness of the data, each test was performed three times, as is standard practice in 
geotechnical engineering experiments. 

The direct shear test involves exposing soil samples to controlled shear stress along a designated plane to 
determine cohesion (c) and internal friction angle (ϕ). These characteristics were determined after a careful 
study of the test findings, which included calculations based on the measured shear stress and normal stress 
applied to the samples. The cohesion (c) was calculated using the intercept of the shear stress-normal stress 
plot, while the internal friction angle (ϕ) was found using the slope of the linear component of the curve. 
The complete investigation included differences in soil composition, grain size distribution, and other 
relevant parameters, resulting in a comprehensive understanding of the soil's shear strength behavior. 

2.3. Multiple linear regression 
In this study, Multiple Linear Regression (MLR) is initially utilized to estimate hydraulic conductivity based 
on the percentages of clay, silt, sand, and gravel in soil samples. Based on regression analysis, a linear 
relationship is established between the “response variable” and one or more “explanatory variables.” In 
multiple linear regression, the parameters of a linear model are estimated using an objective function and 
the values of the variables. Thus, if there are n observations from the P dimensional independent variable 
X and it is required to establish a relationship with the response variable Y, the multiple linear regression 
model can be used as shown in equation 1 (Uyanık, 2013). 
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Yi =  β0 + β1𝑥𝑥𝑖𝑖1 + β2𝑥𝑥𝑖𝑖2+. . . +β𝑝𝑝𝑥𝑥𝑖𝑖𝑝𝑝 + ϵ   (1) 

Where Yi is dependent variable, xi is explanatory variables, β0 is y-intercept (constant term), βp is the slope 
coefficients for each explanatory, and variable ϵ is the model’s error term (also known as the residuals) 

The coefficients in an MLR model are estimated using the method of least squares. This method aims to 
minimize the sum of the squared differences between the observed values and the values predicted by the 
model. The performance of the Multiple Linear Regression (MLR) model in my work was evaluated using 
several key metrics. One important metric was R-squared (R2), which represents the proportion of variance 
in the dependent variable explained by the independent variables. It is calculated as the ratio of the sum of 
squares due to regression (SSR) to the total sum of squares (SST). The coefficient of determination, R2, is 
interpreted as the proportion of the variability in the dependent variable accounted for by the regression 
model. This value is frequently expressed as a percentage, indicating the additional explanation of 
variability provided by the model among the total variability (Nathans, 2012).  In accordance with the 
classification proposed by (Chin, 1998) the range of R-squared values serves as a meaningful indicator of 
the explanatory power of a regression model. When R-squared is greater than or equal to 0.67, it is 
considered substantial, indicating that the independent variables explain a significant portion of the 
variability in the dependent variable. R-squared values between 0.33 and 0.67 are categorized as moderate, 
suggesting a moderate level of explanatory power. Lastly, R-squared values of 0.19 or higher but less than 
0.33 are classified as weak, indicating a relatively lower level of explanatory power. This classification 
provides valuable insight into the strength of the relationship between the independent and dependent 
variables captured by the regression model. Additionally, I examine the p-values of the coefficients to 
determine whether each independent variable significantly contributes to the model. Variables with low p-
values (typically less than 0.05) are considered significant predictors, indicating their strong influence on 
the dependent variable. Furthermore, I utilize the Mean Squared Error (MSE) to assess the average of the 
squared differences between observed and predicted values. MSE is a measure of the model's accuracy; 
lower MSE values indicate better fit, signifying that the predicted values are close to the actual values. By 
evaluating these metrics collectively—R-squared, adjusted R-squared, p-values of the coefficients, and 
MSE— it is possible to validate the robustness and reliability of the MLR model for estimating hydraulic 
conductivity based on grain size distribution. To ensure I developed a reliable model, I divided my data into 
two parts. I used 80% of the observations to train the Multiple Linear Regression (MLR) model and kept 
the remaining 20% for validation. This method helps us rigorously assess how well the model performs and 
how well it can generalize to new data. By training the model on the larger portion of the data, I make sure 
it effectively learns the underlying patterns and relationships between the independent variables 
(percentages of clay, silt, sand, and gravel) and the dependent variable (hydraulic conductivity). This way, 
I can be confident that my model isn't just fitting the specific data I have, but can also predict outcomes 
accurately for new, unseen data. 

2.4. Artificial Neural Networks (ANNs) 
Artificial neural networks contain artificial neurons known as units. These units are organized into a 
succession of layers that collectively form the entire artificial neural network in a system. A layer can have 
a dozen or millions of units, depending on how complicated neural networks are necessary to understand 
the dataset's underlying patterns. An artificial neural network typically consists of three layers: input, 
output, and hidden. The input layer collects inputs from the outside world that the neural network must 
interpret or learn about. The data is then passed through one or more hidden layers, which turns it into 
useful data for the output layer. Lastly, the artificial neural networks' reaction to the supplied input data is 
presented as an output by the output layer. Units are connected from one layer to another in most neural 
networks. The weights assigned to each of these relationships indicate how much effect one unit has upon 
the others (Abdolrasol, 2021). The neural network gains more and more knowledge about the data as it 
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moves from one unit to the next, ultimately producing an output from the output layer. Figure 2-2 shows a 
simple neural network architecture. 
 

 
Figure 2-2. A Simple Neural Network Structure (Source: www.mediasoft.ir). 

 

An artificial neural network's first layer, known as the input layer, transfers data from outside sources to 
the second layer, known as the hidden layer. Each neuron in the hidden layer takes in information from the 
neurons in the layer above, calculates the weighted sum, and then relays it to the neurons in the layer below. 
Because these connections are weighted, the effects of the inputs from the preceding layer are essentially 
maximized by giving each input a unique weight, which is then modified during training to improve model 
performance. These systems are designed to recognize patterns, process data, and learn from experience. 
An ANN consists of interconnected groups of artificial neurons (nodes), which work collaboratively to 
solve specific problems. Each neuron processes inputs and generates an output that is transmitted to other 
neurons in the network. Figure 2-3 shows a biological neuron and a conventional mathematical model of 
neurons. The main components of an artificial neural network are neurons, layers, weights (W), biases (b), 
and activation functions. Neurons (N) are the basic units of an ANN, analogous to biological neurons, 
receiving inputs (x), processing them, and producing outputs (y) using activation functions (f). A biological 
neuron consists of a cell body or soma for processing impulses, dendrites for receiving them, and an axon 
for transmitting them to other neurons.  Artificial neural networks' input nodes receive input signals; the 
hidden layer nodes compute these input signals; and the output layer nodes compute the final output by 
processing the hidden layer's results with activation functions. Synapses connect biological neurons and 
allow impulses to be transmitted from dendrites to the cell body. Synapses are the weights that connect one-
layer nodes to next-layer nodes in artificial neurons. Weight determines the strength of the linkages. 
Learning in biological neurons occurs in the cell body nucleus, also known as the soma, which contains a 
nucleus that aids in impulse processing. If the impulses are strong enough to cross the threshold, an action 
potential is generated and propagates via the axons. This is made possible by synaptic plasticity, which is 
the ability of synapses to strengthen or weaken over time in response to changes in their activity. 
Backpropagation is a learning approach in artificial neural networks that modifies node weights based on 
errors or disparities between expected and actual outcomes. When an impulse is strong enough to cross the 
threshold and cause a neuron to fire, this is known as activation in biological neurons. An activation function 
is a mathematical function that maps input to output and performs activations in artificial neural networks 
(Zou, 2009). 
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Figure 2-3.  A Biological Neuron (www. hamruyesh.com) and A Conventional Mathematical Model of Neurons  (Subhashini, 

2020)  

The output layer generates the final set of computations, estimates, or classifications based on the input 
data and outcomes processed by the hidden layers. Mathematically, the output of a neuron can be 
represented as 

𝑌𝑌 =  𝛴𝛴 (𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡 × 𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡)  + 𝑏𝑏𝑤𝑤𝑏𝑏𝑡𝑡    (2) 

Weights determine the signal (or strength of the link) between two neurons. In other words, the weight 
determines how much influence the input has on the output. Constant biases are an additional input into the 
following layer with a value of 1. Bias units are unaffected by the previous layer (there are no incoming 
connections), but they do have outbound connections with their own weights. The bias unit ensures that 
even if all inputs are zeros, the neuron will still be activated. 

Activation functions are applied to the weighted sum of inputs to determine the output of a neuron, allowing 
the network to handle non-linear transformations and complex patterns in data. Choosing the activation 
function for the hidden and output layers is an important decision when developing a neural network. It 
means that the activation functions play an important part in determining whether a neuron should be 
activated or not. Neural networks cannot function without activation functions; otherwise, the model's 
output would just be a linear function of the input. Stated differently, it would not be able to manage 
substantial amounts of intricate data. In every forward propagation layer, activation functions are an extra 
yet important step.  Even if the network had numerous layers, neurons, or nodes, problems between layers 
could not be analyzed without activation functions. By introducing nonlinearity via activation functions, 
neural networks may mimic more complex functions within each node, allowing the neural network to learn 
more efficiently. Activation functions can be mainly classed into three types: binary step, linear, and non-
linear, with several subcategories, derivatives, variants, and other calculations being employed in neural 
networks. The simplest sort of activation function is the binary step, which produces a binary output based 
on whether the input is greater than or less than a specific threshold. Linear functions are also generally 
simple, with the output proportionate to the input. Non-linear functions, like sigmoid and tanh functions, 
are more complex and bring nonlinearity into the model.  In each situation, the activation function is chosen 
based on the individual problem and challenge to be solved (Rasamoelina, 2020). It's not always clear which 
one data scientists and machine learning engineers should employ, so trial and error is sometimes necessary.  
However, that is always the beginning point for selecting the appropriate activation function for a neural 
network or any other complex algorithmic-based model that requires activation functions.  
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The activation function used in this study was hyperbolic Tangent Function. The hyperbolic tangent 
function (tanh) is a widely used activation function. It converts input numbers to a range of -1 to 1. The 
tanh activation function can be beneficial in artificial neural networks because it is zero-centered, which 
helps to mitigate the vanishing gradient problem. Also, the values are more easily transferred to a scale of 
extremely negative, neutral, or positive. Adding to a neuron's output introduces nonlinearity, allowing the 
network to acquire complicated representations. However, it is important to note that Tanh suffers from the 
same saturation problem as the sigmoid function, in which gradients become extremely small for large input 
values. Despite this drawback, tanh is still a good choice for hidden layers in neural networks because of 
its balanced behavior near zero.  Additionally, tanh is sigmoidal (s-shaped), as shown in figure 2-4. It is 
worth noting that feed-forward networks, which will be discussed later, use both the tanh and logistic 
sigmoid activation functions (Shakiba, 2020). 

 

Figure2-4. Hyperbolic Tangent Function (Source: www.ashutoshtripathi.com) 

The goal of this study was to use artificial neural networks (ANNs) to estimate hydraulic conductivity based 
on soil component weight percentages. A total of 205 soil samples were collected, with each sample's 
hydraulic conductivity and weight percentages of various soil components (such as sand, silt, clay, and 
gravel) determined. The dataset was divided into two subsets: 70% (144 samples) was utilized to train the 
neural network, and the remaining 30% (61 samples) was set aside for testing and validation. The data was 
divided at random to achieve a representative distribution of samples across both subsets. This split ratio 
seeks to offer enough data for training while keeping enough samples to assess the network's performance. 

A feedforward neural network was selected because of its simple architecture and its efficacy in related 
applications. FFNs' flexibility enables the integration of many input variables as well as model architecture 
optimization to obtain greater predictive performance when compared to classic regression techniques. This 
neural network is best suited for tabular data, as each input feature (soil component) helps estimate a 
continuous output (hydraulic conductivity). FFNs are also well-suited to this task because they can capture 
complex nonlinear relationships between input variables (such as soil components) and output variables 
(such as hydraulic conductivity) without requiring prior assumptions about the underlying data distribution. 
Furthermore, FFNs are very versatile and can handle big datasets with a variety of input features, making 
them ideal for dealing with the multidimensional nature of soil properties and interactions. It also was taken 
into account that; previously conducted studies have shown that FFNs have been widely used in soil science 
and hydrology research because of their capacity to accurately predict complicated and nonlinear 
interactions between soil parameters.  

The network's design consists of three layers: input, hidden, and output. MATLAB software, notably the 
Neural Network Toolbox, was utilized in this study to code and build the neural network. It offers a user-
friendly environment for developing, training, and evaluating neural networks, as well as support for 
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function approximation and nonlinear regression problems. The input layer contained nodes representing 
the number of soil components considered (e.g., sand, silt, clay, gravel). The output layer contained a single 
node indicating the estimated hydraulic conductivity. The neural network was trained using the Levenberg-
Marquardt backpropagation algorithm which is a popular method for training FFNNs by MATLAB because 
of its efficiency and speed in convergence to a solution. This method combines the benefits of gradient 
descent and Gauss-Newton methods, making it ideal for training networks on my dataset. After choosing 
the feedforward method for simulating soil hydraulic conductivity based on soil components, the 
investigation progressed to optimizing the neural network architecture by testing with different numbers of 
layers and neurons. This strategy is based on the observation that neural network performance can be highly 
sensitive to the architecture used, and determining the ideal configuration is critical for making correct 
predictions. Each architecture's performance was evaluated iteratively using criteria like prediction 
accuracy. The goal of carefully evaluating a variety of designs was to find the configuration that produced 
the optimal balance of model complexity and predictive performance. 

The same approach was used in other neural network models to predict the soil's shear strength 
characteristics, namely cohesion and internal friction angle. For this, values from experimental procedures 
were applied to a dataset consisting of 95 soil samples for each parameter. An input layer representing 
several soil components (sand, silt, clay, and gravel) and a single output node corresponding to the expected 
Cohesion or internal friction angle were used in the creation of the neural networks. To ensure a 
representative distribution across both subsets, the datasets for each parameter were divided into two 
groups: 70% for training and 30% for testing and validation. The feedforward neural network (FFN) 
technique, which had previously been validated for estimating hydraulic conductivity, was used separately 
to predict cohesion and internal friction angle. Each FFN's architecture was adjusted using iterative testing 
with varying numbers of layers and neurons, with the goal of balancing model complexity and prediction 
accuracy. The construction, training, and evaluation procedures were facilitated by MATLAB's Neural 
Network Toolbox, which utilized the Levenberg-Marquardt backpropagation algorithm for its convergence 
efficiency. 
 
3- Data analysis and results  
I used several approaches, such as indirect methods, the multiple linear regression (MLR) method, and the 
artificial neural networks method, to create a comprehensive comparison. Empirical calculations based on 
easily measured soil parameters are used in indirect approaches. The MLR approach entails creating a 
statistical model that links several soil properties to hydraulic conductivity, improving forecast accuracy by 
taking into account the combined impact of numerous variables. The primary objective was to identify the 
optimal ANN model architecture that provides the most accurate and reliable predictions. The ANNs 
method is a complex strategy that may increase prediction precision. It models complex, nonlinear 
relationships among soil parameters and hydraulic conductivity by utilizing machine learning methods. 
This section compares the ways in which these approaches work in order to assess how well they predict 
hydraulic conductivity. The task of selecting the optimal ANN architecture for predicting hydraulic 
conductivity is inherently challenging due to the numerous possible configurations and the need to balance 
model complexity with generalization ability. Below is a detailed comparison and analysis of the results 
obtained from each method 

3.1. Estimation of hydraulic conductivity by indirect method 
As it was discussed in second chapter, Numerous empirical formulas have been proposed by scientists to 
predict hydraulic conductivity for both fine-grained and coarse-grained soils. These formulas typically 
utilize soil properties such as grain size distribution, porosity, void ratio, and plasticity characteristics. For 
coarse-grained soils, formulas often rely on parameters like effective grain size and uniformity coefficient, 
while for fine-grained soils, plasticity index and liquid limit are more commonly used. The diversity in 
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empirical approaches reflects the complex nature of soil properties and their impact on hydraulic 
conductivity. To check the validation of the empirical formula, I used the Carrier and Beckman method to 
predict hydraulic conductivity for a range of fine-grained soil samples with different compositions. This 
method was chosen due to its close alignment with the initial properties of my samples, ensuring a relevant 
comparison. This method is particularly suitable for remolded or disturbed samples, making it highly 
applicable in practical scenarios where obtaining undisturbed samples is challenging. Its reliance on easily 
measurable soil properties like plasticity index and liquid limit makes it versatile for various types of clays, 
providing a reliable estimate of hydraulic conductivity under different conditions. The Carrier and Beckman 
method, developed in 1984, offers an empirical formula specifically tailored for fine-grained soils, 
particularly clays. The formula is: 

𝐾𝐾 =  0.174 ×  [𝑒𝑒 – 0.027 (𝑃𝑃𝑃𝑃 – 0.242𝑃𝑃𝑃𝑃) /(𝑃𝑃𝑃𝑃)]4.29

(1+𝑒𝑒)
  (𝑚𝑚/𝑡𝑡)    (3) 

where k is the hydraulic conductivity, (PL) is the liquid limit, (PI) is the plasticity index, and e is the void 
ratio.  

Figure 3-1 presents a comparison between the measured hydraulic conductivity data and the values 
predicted by the Carrier and Beckman method. The plot shows the measured data on the x-axis and the 
predicted data on the y-axis, with a trendline indicating the correlation between the two datasets. The 
coefficient of determination (R²) is 0.5187, suggesting a moderate correlation. While an R² value of 0.51 
indicates some level of predictive capability, it is not particularly strong, suggesting that the empirical 
formula may not fully capture the variability in the hydraulic conductivity of my soil samples. This 
discrepancy highlights the need for further refinement of empirical models or the use of complementary 
methods to improve the accuracy of hydraulic conductivity predictions for fine-grained soils. Furthermore, 
a significant portion of the data points, as shown in Figure 3-1, fell below the bisector line, demonstrating 
a persistent underestimation of the values predicted by the Carrier and Beckman approach in comparison 
to the measured data. So, the empirical formula might not be completely reliable for some factors impacting 
hydraulic conductivity in my samples, as suggested by this consistent underestimating. 

 

 
Figure 3-1. Comparison of (−LogK) Values Obtained by Empirical Formulae and Laboratory Tests (Source: My Own Edit) 

3.2. Estimation of hydraulic conductivity by Multiple linear regression analysis 
To conduct the Multiple linear regression analysis, I used SPSS software. Initially descriptive statistics 
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conductivity is approximately 1.212. After performing the multiple regression, the desired results were 
extracted, which I will continue to interpret. According to Table 4, since the correlation coefficient (R = 
0.906) and determination coefficient (R2= 0.822) as well as adjusted determination coefficient (Adjusted 
R2 = 0.819) were calculated, it seems that the regression model is appropriate. The closer these values are 
to 1, the more the model expresses the relationship between the dependent and independent variables. In 
other words, the regression model was able to cover or express a greater percentage of changes in the 
dependent variable. 

Table 3-1. MLR Model Summary 

Model R R 
Square 

Adjusted 
R 

Square 

Std. Error of the 
Estimate DW MSE 

1 0.906 0.822 0.819 0.515 1.797 0.266 

 

In Table 4-2, the variance analysis for the regression model has been done. Considering the size of F and 
the value of Sig=<0.0001, I conclude that the regression model will be appropriate. Because most of the 
changes in the dependent variable have been seen in the regression model. This means that the contribution 
of the model (Regression) in the total changes that can be seen in the last row (Total) of the column (Sum 
of Squares) is much higher than the contribution of error or residuals. 

Table 3-2. Analysis of variance. 

Source DF Sum of squares Mean 
squares F Sig p-values 

signification codes 

Model 3.000 246.050 82.017 308.691 <0.0001 *** 

Error 201.000 53.404 0.266    

Corrected Total 204.000 299.454     

Computed against model Y=Mean(Y)     
Signification codes: 0 < *** < 0.001 < ** < 0.01 < * < 0.05 <. < 0.1 < ° < 1  

Finally, the scatter plot depicted in figure 3-2 derived from the multiple linear regression (MLR) analysis 
which represents the relationship between predicted and real data. The coefficient of determination (R2) is 
0.81, indicating that 81% of the variability in the real data is explained by the model. This value suggests 
that the MLR model has a relatively good fit and effectively captures the relationship between the 
independent variables and the dependent variable. 

 
Figure 3-2. Multiple Linear Regression Analysis Result (Source: My Own Edit) 
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3.3. Artificial Neural Network model for hydraulic conductivity parameter 
In this section, I present the results of my analysis for estimating hydraulic conductivity based on the weight 
percentages of soil components (clay, silt, sand, and gravel) using artificial neural networks. The primary 
goal was to identify the optimal ANN model architecture that provides the most accurate and reliable 
predictions. The task of selecting the optimal ANN architecture for predicting hydraulic conductivity is 
inherently challenging due to the numerous possible configurations and the need to balance model 
complexity with generalization ability.  I evaluated multiple models with varying configurations of hidden 
layers and neurons. 

I began my exploration with two neurons in a single layer. Subsequently, I expanded my investigation by 
varying the number of neurons within this initial layer. Following this, I introduced an additional layer, 
increasing the depth of my network to two hidden layers. I conducted several iterations, adjusting the 
number of neurons in each layer to discern their impact on performance. In pursuit of further insights and 
more confident outcomes, I conducted a test by introducing a third hidden layer. Despite altering the number 
of neurons across these layers, my efforts did not yield any noticeable improvements in performance. 

All in all, I tested a total of ten different ANN models, each with a unique architecture. The architectures 
varied in terms of the number of hidden layers and the number of neurons within those layers. The selection 
of the optimal artificial neural network structure was guided by key performance metrics including the 
coefficient of determination (R2), Root Mean Square Error (RMSE), and Mean Squared Error (MSE). These 
metrics were employed as indicators of the model's predictive accuracy and goodness of fit. R2, also known 
as the coefficient of determination, measures the proportion of the variance in the dependent variable that 
is predictable from the independent variables, thus assessing the model's explanatory power. RMSE 
represents the square root of the average squared differences between predicted and observed values, 
providing a measure of the model's prediction error. Lastly, MSE calculates the average of the squared 
differences between predicted and observed values, offering insight into the variance of the prediction 
errors. In the context of ANN modeling, these metrics serve as crucial evaluation tools to iteratively refine 
and optimize the network architecture, ensuring robust and reliable predictions. The equations 4, 5, and 6 
correspond to these metrics. 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  �∑ (𝑦𝑦𝑖𝑖−𝑥𝑥𝑖𝑖)2
𝑛𝑛
𝑖𝑖=1

𝑛𝑛
 (4) ,    𝑅𝑅𝑅𝑅𝑅𝑅 = ∑ (𝑦𝑦𝑖𝑖−𝑥𝑥𝑖𝑖)2

𝑛𝑛
𝑖𝑖=1

𝑛𝑛
 (5),    𝑅𝑅2 =     ∑ (𝑦𝑦𝑖𝑖−𝑥𝑥𝑖𝑖)2

𝑛𝑛
𝑖𝑖=1
∑ (𝑦𝑦𝑖𝑖−ŷ)2𝑛𝑛
𝑖𝑖=1

 (6) 

 

Which, n represents the number of measurements, yi and xi are the observed and predicted values of the 
dependent variable, respectively, and 𝑦𝑦� is the mean of the observed values of the dependent variable. 
Table 3-3 shows the Regression analysis for all ten models across training, validation, testing, and overall 
datasets. Model number 4, highlighted in the table, performed the best across all phases, with highest R 
values. Figure 3-3 shows regression plots for the best-performing model (Model 4), with separate plots for 
training, validation, testing, and all data combined. 
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Table 3-3. ANN Models for Hydraulic Conductivity Prediction. 

 R Values 

Model 
no output 

Number of 
hidden 
layers 

Number of 
neurons  Training Validation Testing All  

1 -Log K 1 2 0.67245 0.7122 0.69542 0.6829 

2 -Log K 1 4 0.7157 0.72214 0.6519 0.70154 

3 -Log K 2 2,2 0.82521 0.8021 0.78025 0.8102 

4 -Log K 2 1,3 0.94939 0.96013 0.9373 0.95471 

5 -Log K 2 4,1 0.77591 0.7928 0.84146 0.79013 

6 -Log K 2 3,4 0.86813 0.84292 0.803 0.8562 

7 -Log K 3 2,5,1 0.88235 0.7452 0.80187 0.84094 

8 -Log K 3 4,1,6 0.8125 0.72491 0.8232 0.80191 

9 -Log K 3 3,2,2 0.87513 0.81793 0.7029 0.85517 

10 -Log K 3 1,4,1 0.88922 0.9032 0.87961 0.89183 
 
 

 
Figure 3-3. Regression Plots of the Best-Performing Model for (-Log K) Prediction (Source: My Own Edit) 
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Thus, the analysis shows that ANN model number 4 with two hidden layers correspondence number of 
neurons is the most effective for predicting hydraulic conductivity based on soil component weight 
percentages. 

 

 
Figure 3-4. Neural Network Structure for (-Log K) Prediction (Source: My Own Edit) 

Figure 3-5 compares the actual (-log K) values with the neural network's predictions for the testing dataset. 
To better visualize the model's performance, the data was sorted in descending order. This sorting allows 
for a clearer comparison and helps highlight the extent of the fitting between the predicted and actual values. 
According to the figure3-5, except for a few outliers, the neural network's predictions are very close to the 
actual values. The close alignment of the predicted values (red line) with the actual values (blue line) 
demonstrates the model's ability to accurately predict hydraulic conductivity based on soil composition. It 
indicates that the model has learned the complex relationships between soil components (clay, silt, sand, 
and gravel) and hydraulic conductivity. This high level of agreement between predicted and actual values 
confirms the accuracy of the ANN model.  

 
Figure 3-5. Comparison of (- Log K) Values Obtained by ANN and Experiments (Source: My Own Edit) 
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predictions. The high importance weight of these variables underscores their significant role in the 
underlying processes modeled by the ANN, demonstrating that accurate measurement and inclusion of these 
components are essential for reliable model performance. 

 
Figure 3-6.  Relationship Between Weight Percentage of clay and Gravel and Hydraulic Conductivity Value (Source: My Own 

Edit) 

In summary, I presented an analysis of estimating hydraulic conductivity based on the weight percentages 
of soil components (clay, silt, sand, and gravel) using artificial neural networks. I aimed to identify the 
optimal ANN model architecture that provides the most accurate and reliable predictions. I evaluated 
multiple models and found out the most effective, achieving R² values of 0.92. This high level of accuracy, 
with an RMSE value of 0.0768, underscores the model's effectiveness in capturing the underlying patterns 
in the data. Notably, I could not find any previous studies using the same input data to predict the K value, 
though various other modeling approaches exist. Comparison of my results with those from similar studies 
showed that my model achieved superior predictive accuracy with R² values consistently above 0.90, 
positioning it among the best-performing models. The analysis also highlighted the significant impact of 
clay and gravel on hydraulic conductivity, more so than silt and sand highlighting their essential role in the 
model's predictions. Regarding complexity, the MLR method is the least complex and easy to interpret, but 
it is limited in handling non-linear relationships. The empirical formula is simple to use but offers limited 
accuracy and flexibility. On the other hand, the ANN model is the most complex and computationally 
intensive, but it is highly flexible and capable of capturing intricate patterns in the data. According to figure 
3-7, the ANN approach has the best accuracy R2 value of 0.92, indicating better predictive accuracy. With 
an R2 value of 0.81, the MLR approach demonstrated moderate accuracy; this is a better fit but less precise 
than the ANN model. With an R2 value of 0.52 and the lowest accuracy of all investigated methods, the 
empirical formula proposed by Carrier and Beckman clearly needed improvement.  

 
Figure 3-7. Coefficient of Determination Value for the Best Model of ANN (Source: My Own Edit) 
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3.4. Artificial Neural Network model for cohesion parameter 
In this section, I extend the application of artificial neural networks to predict the shear strength 
characteristics of soil, specifically cohesion and internal friction angle. Following the methodology used in 
previous neural network models for hydraulic conductivity, I employed a dataset comprising 95 soil 
samples for each shear strength parameter. Each sample included the weight percentages of soil components 
(sand, silt, clay, and gravel) as input features. The datasets for both cohesion and internal friction angle 
were divided into training (70%) and testing/validation (30%) groups to ensure a representative distribution 
across both phases.  
The Feedforward Neural Network (FFN) technique, validated in the hydraulic conductivity study, was 
applied to predict cohesion and internal friction angle independently. Iterative testing with varying 
architectures was conducted to identify the optimal balance between model complexity and prediction 
accuracy. The construction, training, and evaluation of the neural networks were performed using 
MATLAB's Neural Network Toolbox, utilizing the Levenberg-Marquardt backpropagation algorithm for 
its efficient convergence properties. The neural network architecture for estimating soil cohesion is 
illustrated in figure 3-8. It comprises an input layer with four nodes corresponding to the weight percentages 
of clay, silt, sand, and gravel. This is followed by three hidden layers, each with 3, 1 and 4 neurons 
respectively, and a single-node output layer that estimates cohesion. Through iterative testing, the 
mentioned structure was identified as optimal, achieving a balance between underfitting and overfitting. 
The model's performance was evaluated using key metrics. According to figure 3-9, the correlation 
coefficient (R) for cohesion was approximately 0.90 which indicates a relatively good correlation between 
the predicted and actual values. Additionally, the Root Mean Square Error (RMSE) value for cohesion was 
found to be 0.53, presenting the model's predictive accuracy. 
 

 
Figure3-8. Neural Network Structure for cohesion Prediction (Source: My Own Edit) 

 
Figure 3-9. Regression Plots of the Best-Performing Model for Cohesion Prediction (Source: My Own Edit) 
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3.5. Artificial Neural Network model for internal friction angle parameter 

The same procedure was followed to estimate the other shear strength parameter, the internal friction angle, 
using the ANN model. The neural network architecture for predicting the internal friction angle is depicted 
in figure 3-10. It consists of an input layer with four nodes representing the weight percentages of clay, silt, 
sand, and gravel. This is followed by two hidden layers, each with different numbers of neurons, and a 
single-node output layer that estimates the internal friction angle. The optimal network architecture was 
determined to have [3 2] neurons, which provided a suitable balance between underfitting and overfitting 
for the data. The model's effectiveness in predicting the internal friction angle was similarly assessed using 
performance metrics. The correlation coefficient (R) for the internal friction angle was approximately 0.91 
that shows a good correlation between the predicted and actual values as shown in figure 3-11. Furthermore, 
the obtained RMSE value for the internal friction angle was 0.39, demonstrating the model's accuracy in 
prediction.  

 
Figure 3-10. Neural Network Structure for Prediction of Internal Friction Angle (Source: My Own Edit) 

 

 
Figure 3-11. Regression Plots of the Best-Performing Model for Prediction of Internal friction Angle (Source: My Own Edit) 
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predictive accuracy and computational efficiency. This approach is particularly advantageous in fields 
where outputs are inherently related, such as geotechnical engineering, where predicting both cohesion and 
friction angle together improves the understanding of soil behavior. The design of a joint model involves 
configuring the neural network architecture with multiple output neurons corresponding to each variable of 
interest and utilizing a multi-output loss function during training to optimize predictions across all outputs 
simultaneously. 

The decision to opt for a joint model was primarily driven by the understanding that cohesion and friction 
angle exhibit correlated behavior in soil mechanics. As friction angle increases, cohesion typically 
decreases, and vice versa. By modeling cohesion and friction angle together, rather than separately, the 
jointly model can capture synergistic effects and dependencies that affect both parameters simultaneously. 
This approach leads to more accurate predictions of soil behavior across a wide range of scenarios. 
Engineers and researchers can optimize geotechnical designs and analyses more effectively when they have 
a comprehensive understanding of both these parameters. This includes designing foundations, slopes, 
excavations, and other structures that rely on accurate soil parameter predictions. 

In traditional neural networks, each output corresponds to a single neuron in the output layer, predicting a 
single target variable. However, to model the parameters simultaneously, the output layer was configured 
to have multiple neurons, each representing a different output (cohesion and friction angle). By having 
multiple neurons in the output layer, the neural network learns to optimize weights and biases across all 
outputs simultaneously.  The shared input features (Weight percentage of clay, silt, sand and gravel) are 
processed through hidden layers that extract relevant patterns and relationships. These hidden layers act as 
shared representations, contributing to the prediction of both shear parameters and leveraging correlations 
between them. The network architecture comprises hidden layers with sizes [3, 2, 4], utilizing hyperbolic 
tangent sigmoid ('tansig') functions for activation in the hidden layers and a linear ('purelin') function for 
the output layer. 

 
Figure 3-12. Neural Network Structure for Simultaneous Model of shear strength parameters (Source: My Own Edit) 

Upon implementation, the joint neural network achieved significant improvements in predictive 
performance compared to previous independent modeling efforts. The new Root Mean Squared Error 
(RMSE) values were notably reduced: RMSE for cohesion was 0.41 and for friction angle was 0.25, 
indicating enhanced accuracy in predicting these soil parameters based on the input features. Moreover, the 
new R2 values exhibited substantial increases, with R2 value of 0.97 for cohesion and 0.90 for friction angle. 
These R2 values signify a marked improvement over the previous independent models, where R2 for 
cohesion was 0.81 and for friction angle was 0.82. 

To visualize the model's performance, the regression curves were plotted for both cohesion and friction 
angle by comparing actual values against predicted values. This is done using scatter plots, where each 
point represents an actual-predicted pair. Additionally, I incorporate trendlines to better illustrate the 
correlation between actual and predicted values. Specifically, for each subplot, I use the ‘polyfit’ function 
to compute the coefficients of a linear fit for the data points, and the ‘polyval’ function to evaluate this 
linear fit across the range of actual values.  
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The reduction in RMSE and increase in R2 values directly contribute to the reduction in the standard 
deviation of the errors. RMSE quantifies the average magnitude of prediction errors, where lower values 
indicate that predictions are closer to actual values, thus reducing the variability in prediction errors. 
Similarly, R2 measures the proportion of variance in the dependent variable that is predictable from the 
independent variables; higher R2 values indicate a better fit of the model to the data, thereby reducing the 
overall spread of errors around the fitted line. By achieving lower RMSE and higher R2 values, the joint 
neural network effectively minimizes the variability and standard deviation of prediction errors. This 
enhancement underscores the model's capability to leverage shared representations and correlations 
between outputs, thereby refining predictions and supporting more accurate and reliable decision-making 
in geotechnical engineering applications. Consequently, this joint neural network model stands out as the 
preferred choice for predicting both cohesion and friction angle due to its superior performance metrics and 
comprehensive approach to capturing soil behavior characteristics. 

 
Figure 3-13. Comparison of Cohesion Values Obtained by ANN and Laboratory Tests 

 
Figure 3-14. Comparison of Friction Angle Values Obtained by ANN and Laboratory Tests (Source: My Own Edit) 
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4- Theses 
In this chapter, the main achievements of this research have been highlighted and explained in a 
general context. To provide a clearer understanding, some of the visualized graphs and plots 
presented in previous chapters as well as some new ones are revisited here. 

 Thesis 1 
It is proven that artificial neural network (ANN) models can estimate the most important hydraulic and 
geotechnical parameters, hydraulic conductivity, cohesion and angle of internal friction, with an accuracy 
worth for preliminary phases of planning based on weight percentages of soil particles (clay, silt, sand and 
gravel).  
 
Figures 3-7, 3-13 and 3-14 show the accuracy of my models. My ANN models which employed the 
feedforward method predict values with higher accuracy than the other known and published methods. 
Based on my analysis, the ANN model for hydraulic conductivity, which has two hidden layers with 1 and 
3 neurons respectively, and the joint model for cohesion and internal friction angle, which has three hidden 
layers with 3, 2, and 4 neurons respectively as well as an output layer with 2 neurons, demonstrated the 
highest accuracy. 
My innovative programs utilize artificial neural networks (ANNs) to predict soil parameters, employing a 
specific function for neuron activation.  The designed Programs for predicting both hydraulic conductivity 
and shear strength parameters follow the below fundamental mathematical concepts. 

𝒚𝒚𝒌𝒌 =  𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕�� 𝒘𝒘𝒌𝒌𝒌𝒌𝒕𝒕𝒌𝒌 + 𝒃𝒃𝒌𝒌
𝒎𝒎

𝒌𝒌=𝟏𝟏
� 

𝒕𝒕𝒌𝒌 =  𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕�� 𝒘𝒘𝒌𝒌𝒋𝒋𝒙𝒙𝒋𝒋 + 𝒃𝒃𝒌𝒌
𝒕𝒕

𝒋𝒋=𝟏𝟏
� 

Where: 

• 𝒚𝒚𝒌𝒌 is the output of the k-th neuron in the output layer,  
•  𝒕𝒕𝒌𝒌 is the output of the j-th neuron in the hidden layer, computed using the tanh activation function,  
•  𝒘𝒘𝒌𝒌𝒋𝒋 is the weight connecting the i-th input to the j-th neuron, 
•  𝒙𝒙𝒋𝒋 is the i-th input to the network, 
•  𝒃𝒃𝒌𝒌 is the bias of the j-th neuron,  
• 𝒘𝒘𝒌𝒌𝒌𝒌 is the weight connecting the j-th neuron in the hidden layer to the k-th neuron in the output layer,  
• and 𝒃𝒃𝒌𝒌 is the bias of the k-th neuron in the output layer. 

 

Thesis 2  
The accuracy of the ANN model I developed and suggested for use is independent of grain size, unlike most 
other models and developed methods that are typically suitable only for fine-grain or coarse-grain soils. 

My ANN model has been designed to effectively predict soil parameters regardless of whether the soil is 
predominantly fine-grained or coarse-grained. This capability ensures that my model provides reliable 
results across a wide range of soil types. Importantly, my approach simplifies the initial assessment of site 
soils for preliminary design by focusing solely on essential soil components. This streamlined methodology 
not only enhances efficiency but also ensures that my model can swiftly provide reliable insights into soil 
behavior across diverse environmental conditions. Thus, my ANN-based approach represents a practical 
and effective tool for engineers and researchers seeking rapid and insightful soil assessments during early 
project phases. 
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Figure 4-1. Simplified Input and Output box of my Program 

The scatter plots for hydraulic conductivity, cohesion, and internal friction angle display residuals that are 
randomly distributed around the horizontal axis. This random distribution indicates that the residuals do not 
show any systematic pattern or trend. In other words, the errors in the predictions do not vary with the 
magnitude of the predicted values. This lack of systematic bias across the predicted values suggests that the 
model's performance is consistent and unbiased across different samples. The absence of such patterns 
confirms that the ANN model is robust, and its predictions are not dependent on the grain size of the soil. 
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Figure 4-2. Plot of Residuals vs. Predicted Values (Source: My Own Edit). 

Thesis 3  
It was proven that artificial neural network method provides more reliable and accurate predicted hydraulic 
conductivity values independently form grainsize distribution than multiple linear regression or any known 
empirical correlation or pedotransfer function.  

Considering figures 3-1, 3-2 and 3-7 and the results showed that artificial neural network model is more 
reliable than the others as it presented higher accuracy. I utilized laboratory measurements to evaluate the 
performance of various methods and models in predicting hydraulic conductivity. The indirect method, 
specifically the Carrier and Beckman approach, showed a moderate correlation with an R² value of 0.5187. 
However, this method consistently underestimated hydraulic conductivity values, highlighting the need for 
refinement or complementary methods. Multiple linear regression analysis demonstrated a better fit with 
an R² value of 0.81, indicating that 82% of the variability in the real data was explained by the model. My 
artificial neural network (ANN) models achieved superior accuracy with an R² value of 0.92 and an RMSE 
of 0.0768. This high level of accuracy underscores the effectiveness of ANNs in capturing the underlying 
patterns in the data.            

Thesis 4  
It is statistically proven by using the artificial neural network model that the extremities in grainsize (gravel 
and clay content) indicate a higher effect on the hydraulic conductivity of the material than weight 
percentages of silt and sand. 

By examining the effect of each parameter in the compositions and the amount of hydraulic conductivity 
changes, as shown in figure 3-6, it becomes evident that clay and gravel exhibit a considerable slope as well 
as less deviation, indicating their substantial influence. In contrast, silt and sand do not display a noticeable 
slope, suggesting their lesser impact on the hydraulic gradient parameter. This highlights the critical 
importance of gravel and clay, where even minor variations significantly affect the hydraulic conductivity 
predictions. To plot the figures, the data was sorted in descending order to help understand the performance 
of the model; this means that as the number of tests increases, the values of -Log K drop. 
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Figure 4-3. Effect of Each Component on Output (Source: My Own Edit). 

Thesis 5  
The simultaneous ANN model of cohesion and internal friction proved that contrary to separate ANN 
models, it achieved statistically significant improvements in predictive performance and accuracy as shown 
in figures 3-13 and 3-14.  

The joint approach not only delivered higher accuracy but also demonstrated greater consistency in 
predictions. This model effectively captures the complex interactions between cohesion and internal 
friction. Unlike traditional models that handle each output independently, my joint model captures 
interdependencies and correlations between outputs, enhancing predictive accuracy and computational 
efficiency. The design of a joint model involves configuring the neural network architecture with multiple 
output neurons corresponding to each variable of interest and utilizing a multi-output loss function during 
training to optimize predictions across all outputs simultaneously. The decision to opt for a joint model was 
primarily driven by the understanding that cohesion and friction angle exhibit correlated behavior in soil 
mechanics.  By having multiple neurons in the output layer, the neural network learned to optimize weights 
and biases across both outputs simultaneously.  The shared input features (Weight percentage of clay, silt, 
sand and gravel) are processed through hidden layers that extract relevant patterns and relationships. These 
hidden layers act as shared representations, contributing to the prediction of both shear parameters and 
leveraging correlations between them. The network architecture comprises hidden layers with sizes [3, 2, 
4], utilizing hyperbolic tangent sigmoid ('tansig') functions for activation in the hidden layers and a linear 
('purelin') function for the output layer. Comparison of Simultaneous Model and Separate Models 
statistically demonstrated higher accuracy as mentioned in table5-1.  

Table 4-1. Comparison of Simultaneous Model and Separate Models 

Model Year Method RMSE-c RMSE- φ R2-c R2 - φ 

Simultaneous Model 2024 ANN 0.41 0.25 0.97 0.90 
Separate Model- φ 2024 ANN - 0.39  0.82 
Separate Model- c 2024 ANN 0.53 - 0.81  
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