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1. INTRODUCTION 

There are lots of numerical methods to solve the heat conduction equation, such as several finite 

difference schemes (FDM) [1], finite element methods (FEM) [2], or a combination of these [3]. 

However, they can be computationally demanding since they require the full spatial discretization 

of the examined system which converts the Partial Differential Equation (PDEs) into a system of 

Ordinary Differential Equation (ODEs). After that one can solve the system of ODEs at each time 

level [4]. If the eigenvalues of the problem have a range of several orders of magnitude due to 

differences in material properties, then the problem is rather stiff and the so-called Courant–

Friedrichs–Lewy (CFL) limit can be very small. When the tolerance is not enough small, instability 

can occur even in professional commercial adaptive time-step size solvers like MATLAB's ode23 

and ode45 [5]. This means that almost all explicit finite difference methods are unstable when the 

time step size is larger than this small threshold. On the other hand, implicit methods work with 

whole system matrix, thus they can be extremely slow with huge memory usage when the number 

of cells is large. Still, these methods are used for solving these kinds of equations, [6]. 

The main issue with the implicit methods is that they cannot be easily parallelized because it 

requires the solution of an algebraic equation system at each time step. However, when the implicit 

methods are employed to handle more complex systems, the numerical calculations can be time-

consuming. One can observe that the trend toward increasing parallelism in high-performance 

computing is reinforced, since unfortunately the CPU clock frequencies nowadays increase much 

slower than a few decades ago [7], [8]. That is one of the reasons why I believe that the importance 

of easily parallelizable explicit and unconditionally stable methods is going to increase, even if 

currently not too many scholars work with them (see [9], [10]). 

The second problem with most explicit or implicit methods is that they can produce 

qualitatively unacceptable solutions, such as unphysical oscillations or negative values for 

variables that would otherwise be non-negative. We explained in our previous investigations [11], 

[12], that the widely used conventional solvers, either explicit or implicit, have serious difficulties. 

This information highlights the fact that finding effective numerical methods is still important.  

One of the very few easily parallelizable explicit and unconditionally stable methods is the odd-

even hopscotch (OEH) algorithm [13], [14]. In the works [11], [13], we showed that this method 

is robust and powerful for spatially homogeneous grids but, in the case of stiff systems, it can be 

disastrously inaccurate for large time step sizes. I constructed new hopscotch combinations and 

found [11] that some of them behave much better, not only for large, but also for medium and 

small-time step sizes. I extend my research by further modifying the underlying space and time 

structure. Our research group developed several explicit unconditionally stable methods to 

calculate heat conduction in arbitrary space dimensions [11]. Unconditional stability here means 
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that the temperature remains finite for arbitrary time step size. These methods either belong to the 

family of FDMs or are like them. In our original papers, we tested the algorithms under general 

cases using discontinuous random parameters and initial conditions and using analytical as well as 

numerical reference solutions, and I have shown that they can provide quite accurate results, and 

they are much faster than the professionally optimized MATLAB ‘ode’ routines. 

In my research, I worked with my supervisor on investigating and improving families of novel 

and conventional explicit methods for solving linear and nonlinear heat conduction equations, 

depending on a new way of thinking. Adapt the most successful methods (especially the Leapfrog 

and the original hopscotch methods) to cases where there is heat transfer by convection and 

(Stefan-Boltzmann-type, thus nonlinear) radiation, especially the problems of real-life heat 

transfer in buildings. In addition, I compare my results and running times with those of the 

appropriate software, e.g., ANSYS. I investigated the explicit type of all methods. After the heat 

conduction equation was spatially discretized, they were applied to it.  The phenomenon of the 

simplest Fourier-type heat conduction within a homogeneous medium with a heat source is 

described using a parabolic PDE as follows: 

 2u
u q

t



=  +


  (1.1) 

The law of Newton's cooling states that the term 𝐾(𝑢𝑎 − 𝑢) indicates to the convective heat 

transfer that occurs between a moving fluid and a surface [15]. This calls for the term 𝐾𝑢𝑎 to be 

included in the equation q. The Stefan-Boltzmann equation [16] states that the radiative heat loss 

from a surface may be expressed using the term −𝜎𝑢4, when the surface area and the Stefan-

Boltzmann constant, both of which are positive, yield the proportionality constant. Like the 𝐾𝑢𝑎 

term stated before, the incoming radiation, may be included into the source term q. The terms for 

convection, radiation, and the heat source are added to the heat conduction Eq.(1.1), we obtain:  

 2 4u
u q Ku u

t
 


=  + − −


  (1.2) 

Note that all terms in Eq.(1.2) are local, except the conduction term. In the case of Eq.(1.1) in 

one space dimension, I apply to the 
2u  term the most common central difference equation 
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which is second order in x , where 1i ,...,N=  and N is the overall number of nodes. 

By doing this, we can derive the spatially discretized version of the heat transfer Eq.(1.2) in one 

space dimension as follows: 

 4

2

1 12i ii i
i i

u u udu
q Ku u

dt x
 − +− +

= + − −


  (1.4) 
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Let us now present the discretization of the heat transfer equation assuming that the quantities 

describing the properties of materials, namely α, k, c, and ρ, are functions of the space, rather than 

a fixed value. Now in one space dimension, instead of the 
2u  term, we must deal with:  

 
( ) ( )

( )
1 u

k x
c x x x x

  
 

  
  (1.5) 

In this case, the heat conduction equation can be discretized as follows: 

( ) ( ) ( ) ( )1
( ) ( ) .
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i

i i i i
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The discretized equation attains the following form: 

 41 1
, 1 1,

1i i i i i
i i i i i i

i i
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k k q Ku u

dt c x x x



+ −

+ −
− − 

= + + − − 
   

  (1.6) 

The dimensions of a cell, measured along its length and across its (typical) cross-section, are 

represented as x  and S . Where iu  is the temperature of the cell i , i i iC c V=  is the heat 

capacity of that cell in  J/K  units, and V S x=   is the volume of the cell. I introduce two other 

quantities, the heat source term q , 

i
i

1
in units,

iV

K
q qdV q

V s

 
=   

 
  

The thermal resistance between the two neighbouring nodes can be determined as  

( ), 1 , 1/i i i iR x k S+ +   in ( )/K W  units. The distances between the cells center in case of non-

equidistant grid are ( )1i, 1 i / 2iid x x ++ =  +   and the resistances can be determined by this 

approximation as ( ), 1 , 1ij ij/i i i iR d k S+ + . If the material properties or the sizes of the two neighboring 

cells are different, we can write for the resistance between cells i and i+1 that 

( ) ( )1 1 1/ /i i i i i i iRx x k S x k S+ + +     +     , and if the cell j is below the cell i, we have 

( ) ( )/ /i i i i j j jRz x k S x k S    +    
 for the vertical resistance.  

One can obtain the following expression for the time derivative of each cell variable: 

 
4

1, 1,

1 1i i i i i
i i

i i i i i i

du u u u u
q Ku u

dt R C R C


− +

− +− −
= + + − −   (1.7) 

It is not hard to generalize Eq. (1.7) even more for the case of arbitrary number of neighbours 

to obtain the following spatially discretized version of Eq.(1.2): 

 4

, j

j ii
i i
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−
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2. METHODOLOGY OF THE STUDY  

My goal is to elaborate and optimize numerical methods, and then, using these methods, to 

efficiently investigate heat transfer problems in building walls. These will be the tools by which I 

can perform optimizations of building envelopes not only from a thermodynamic but also from an 

economic point of view. The work can be classified into three directions. In the first direction, I 

increased the efficiency of some methods, by combining the hopscotch with the leapfrog technique 

and performing numerical experiments to investigate the performance of those methods, and 

choose the best combinations, and testing these algorithms on both small and large systems, and 

for stiff and non-stiff system. In the second direction, I tested the methods on real-life applications 

to examine how the performance of the individual methods changes and which of them is the best 

choice under different circumstances. In the third direction, I compared the performance of 

traditional and recent efficient numerical methods for long-term heat transfer simulations in walls 

with different shapes of thermal bridges, in addition to optimize thermal insulation. 

2.1 Some Explicit Methods 

2.1.1 The original odd-even hopscotch (OOEH) 

Over half a century has passed since the discovery of the original odd–even hop-scotch (OOEH) 

algorithm [14]. Its temporal and spatial organization has been described in [17]. It is designed to 

be a quick, all-purpose algorithm that produces results with little effort from the user or the 

computer. This completely explicit two-stage approach has, as far as we know, undergone 

modification and generalization procedures to increase its accuracy, but always in the direction of 

implicitness. After the first step by the FTCS formula (which is based on explicit Euler time 

discretization) for the odd cells, the BTCS formula (which is based on implicit Euler time 

discretization) is used for the even cells. The labels odd and even are interchanged after each time 

step. If we would like to apply an odd-even hopscotch method, we need a bipartite grid, where all 

the nearest neighbours of the odd cells are even and vice versa as is shown in Figure 2.1. I modify 

this method here to include the convection component, which is always considered at the new time 

level for enhanced stability. The radiation term is handled first explicitly and then implicitly [18]. 

These are the equations that are being used: 

First stage: 

 
( ) ( )

4

1
1

1

i i
n n
i in

i

r u A t u
u

tK


+

− + −
=

+ 
  (2.1) 

Second stage: 
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where Ai
new is calculated as following: 

1
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j i
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i
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=  =    

 

Figure 2.1. The stencil of the original odd-even hopscotch algorithm. Thin blue arrows and thick green 
arrows indicate operations at the first stage and second stage, respectively. 

2.1.2 The Leapfrog–Hopscotch method 

In the leapfrog-hopscotch (LH) method, we have a structure consisting of two half and several 

full time steps. The calculation starts again by taking a half-sized time step for the odd nodes using 

the initial values, then, for the even and odd nodes, full-time steps are taken strictly alternately 

until the end of the last timestep (orange box in Figure 2.2 B), which should be halved for odd 

nodes to reach the same final time point as the even nodes.  

 

Figure 2.2. (A) The shifted-hopscotch structure. (B) The leapfrog-hopscotch structure. 

2.3 Stable, Explicit, Leapfrog-Hopscotch Algorithms for the Heat Equation 

I construct novel numerical algorithms to solve the heat or diffusion equation. I combined the 

hopscotch space structure with leapfrog time integration. By applying the theta method with nine 

different values of   and the recently invented CNe method, I constructed 105 different leapfrog-
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hopscotch algorithm combinations and via subsequent numerical investigations, this huge number 

was decreased by excluding the combinations that underperformed and, finally, only the top five 

of these were retained. I used two two-dimensional stiff systems containing 10,000 cells with 

completely discontinuous random parameters and initial conditions, I demonstrate the 

performance of these top five methods in the case of large systems with random parameters and 

discontinuous initial conditions, by comparing them with other methods. My current work was 

inspired by the well-known leapfrog method [19] used by the molecular dynamics community to 

solve Newton’s equations of motion. 

The computer program calculated the aggregated relative error (ARE) quantities and then sorted 

the algorithms in descending order according to this quantity to obtain a ranking list of the 105 

algorithm combinations. Finally, I manually checked the top of these lists for all of the four small 

systems to select the best 20 combinations, which have the following short form: 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

0

C, C, C, C, C , ¼, ½, C, ½, ½ , ¼, ½, C, ½, ½ , ¼, ½, ½, ½, C ,

¼, ½, C, ½, C , C, ½, C, ½, C ,    C, ¼, ½, C, ½ , C, ½, C, ½, ½ ,

C, ½, C, C, ½ , C, , ½, , C , ¼, C, ¼, C, ¾ , , C, ½, ½, ½, ½

C, ½, ½, ½, ½ , ¼, 

,⅓ ⅔

( ) ( ) ( )

( ) ( ) ( ) ( )1
5

0 1C, ¼, ½, ¾ , , ½, ½, ½, ½ , , ½, ½, ½, ½ ,

¼, ½, ½, ½, ½ , , ½, ½, ½, ½ , ½, ½, ½, ½, ½ , , ½, ½, ½, ½ .⅓

  (2.3) 

Comparison with Other Methods for a Large, Very Stiff System 

I plotted the L , 1L , and energy errors as a function of the effective time step size EFFh , and 

based on this (and on similar data that are presented in the next subsection), I selected the following 

top five combinations from those listed in Eq. (2.3) and discarded the reminder: 

( ) ( )

( ) ( )

( )

1
5

1
5

1 ,  ,  ,  ,  ,   2 0,  ½,  ½,  ½,  ½ ,

3 ,  ½,  ½,  ½,  ½ ,   4 ¼,  ½,  ,  ½,  ½ ,

5 ,  ½,  ,  ½,  ½ .

L C C C C C L

L L C

L C

 

In Figure 2.3 and Figure 2.4 the energy and the L
errors is presented as a function of the time 

step size and the total running time, respectively. It is not surprising that the implicit methods 

gained a slight advantage compared to the less stiff case, but the new L2 method outperforms all 

other examined method if not only the accuracy, but the speed is taken into account. 
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Figure 2.3. Energy errors as a function of the time step size for the second (very stiff) system, in the case 

of the original OEH method (OEH REF), the new algorithms L1-L5 and some other methods. 

 

Figure 2.4.  L∞ errors as a function of the running time for the second (very stiff) system, in the case of 
the original OEH method (OEH REF), one stage CNe method, the new algorithms L1-L5 and a couple of 

other methods. 

I found that, in general, the L2 (0, 1/2, 1/2, 1/2, 1/2) combination is the most competitive. This 

combination yields accurate results orders of magnitude faster than the well-optimized MATLAB 

routines, and it is more accurate than all of the other examined explicit and stable methods. 

Although, unlike the L1 (C, C, C, C, C) algorithm, L2 is not positivity preserving, it is also 

surprisingly robust for relatively large time step sizes, which is not that case for the original OEH 

algorithm. Moreover, this new L2 algorithm is easy to implement and requires an even smaller 

amount of function evaluation and computer memory than the conventional explicit second order 
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Runge–Kutta methods, such as the Heun method. I can conclude that it combines has the most 

important advantages of the standard explicit and the implicit methods. Now I present the final 

formula of the leapfrog-hopscotch method for conduction with the best already proven 

combination of formulas (L2) as follows: 

 The first stage has the length of a halved time step, thus we have the following special and 

general formulas 

 
( )

0

1 1

2 2

0 0 0 0
1 1

2 2 2 2,      
1

1
2

i
i i

i

i ii i

i i

Ar h h
u u u q u q

u and u
rr

− ++ + + + +

= =
+

+

  (2.4) 

Then a full-time step is made for the even nodes using 

 
( ) ( )

1
1 1 2

2 2
00
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i
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i

i

ii i i
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r
u A hqr u r u u hq

u and u
rr
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− + + − + + +

 = =
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+

  (2.5) 

After this, full time steps are taken alternately for the odd and even nodes. Finally, a half-length 

time step must close the calculations for the odd nodes 

 
( )1/2 1/2

1 1(1 ) (1 )
2 2 2 4 2 2,      

1 1
2 4

T
i i

i i
T

i

T T T T
i ii i

T
i i

r Ar r h h
u u u q u q

u and u
r r

− −
− +− + + + − + +

= =

+ +

  (2.6) 

2.4 A Comparative Study of Explicit and Stable Time Integration Schemes for Heat Conduction 

in an Insulated Wall 

I extensively examine 13 numerical methods to solve the linear heat conduction equation in 

building walls. Eight of the used methods (including the previously examined leapfrog-hopscotch) 

are recently invented explicit algorithms which are unconditionally stable. First, I performed 

verification tests in a 2D case by comparing them to analytical solutions using equidistant and non-

equidistant grids. Then I tested them on real-life applications in the case of one-layer (brick) and 

two-layer (brick and insulator) walls to determine how the errors depend on the real properties of 

the materials, the mesh type, and the time step size. I applied space-dependent boundary conditions 

on the brick side and time-dependent boundary conditions on the insulation side. The results show 

that the best algorithm is usually the original odd-even hopscotch method for uniform cases and 

the leapfrog-hopscotch algorithm for non-uniform cases. So, I perform systematic tests in the 

building walls by varying some parameters of the system and the mesh to examine how the 

performance of the individual methods changes and which of them is the best choice under 

different circumstances. I note that no comparative study has been conducted until my work even 
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about the four already known explicit and stable methods examined in this work, namely the 

UPFD, odd-even hopscotch, Dufort-Frankel, and rational Runge-Kutta methods. 

2.4.1 Brick wall with Insulation 

The errors are plotted for non-equidistant mesh in Figure 2.5. One can now visualize that the LH 

method is accurate for this large time step size.  

I observed that if we apply the insulator or go from equidistant mesh to increasingly non-

equidistant meshes (both increase the stiffness), the LH method will be the most accurate among 

the unconditionally stable methods. 

 

Figure 2.5. The maximum errors as a function of the time step size Δt in the case of non-equidistant mesh 
for a wall with insulation. 

2.5 Comparison of the Performance of Traditional and New Numerical Methods for Long-

Term Heat Transfer Simulations in Walls with Thermal Bridges 

I extensively measure the running times of the most successful methods and compare them to 

the performance of other available solvers, for example, ANSYS transient thermal analysis and 

the built-in routines of MATLAB, where three different mesh resolutions are used. I show that the 

running time of our methods changes linearly with mesh size, unlike in the case of other methods. 

After that, I make a long-term simulation (one full winter month) of two-dimensional space 

systems to test the two best versions of the methods. The real-life engineering problem I solve is 

the examination of thermal bridges with different shapes in buildings to increase energy efficiency. 

I work on transient heat transfer calculations using fundamental physical laws (ab initio 

approach). Therefore, it is expected that these results are much more accurate than those based on 
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the usual (ISO) standards, which are steady-state calculations without solving the transient PDE 

and therefore cannot properly consider. My long-term goal is to revolutionize these simulations 

(at this stage by the numerical methodology) to make transient simulations more available due to 

reduced computational cost and programming difficulty. In this work, I continue the above-

mentioned investigations. I use ANSYS’ thermal analysis solutions that help engineers solve the 

most complex thermal challenges and predict how their designs will perform with temperature 

changes. However, because simulation by this kind of software takes a long time and requires 

serious computer resources, I compare my methods with ANSYS to investigate runtime, stability, 

and other features [20]. Now the goal is to systematically evaluate how the performance of the 

various solvers (including MATLAB routines and ANSYS) depends on the mesh settings to see 

which one is optimal for certain accuracy requirements. 

2.5.1 Comparing ANSYS Solvers and MATLAB Methods for the Fine Mesh System 

The errors for the fine mesh are represented as a function of the running time in Figure 2.6. It 

is observed that the mesh smoothing has a positive effect on the ANSYS solvers' accuracy; the 

errors are decreasing with the time step size. Despite this, some of the suggested explicit methods 

coded in MATLAB are still the best in both speed and accuracy. If there is a large system, the 

ANSYS solvers are very slow. However, it is believed that with increasing the system size, the 

MATLAB built-in routines would be slower at a larger rate, so it is also believed they would be 

the slowest for even finer mesh. The two best methods are the Dufort-Frankel schemes with the 

pseudo-implicit treatment of both the convection and the radiation term (DF-D) and the leapfrog-

hopscotch with the pseudo-implicit treatment of the radiation term (LH-PseudoImp). In fact, their 

benefits grow as the size of the system increases. For this reason, these two methods are chosen to 

create a long-term simulation in the following part. 

 
Figure 2.6. The maximum errors for the tested methods in the fine mesh case as a function of the running 

time. 
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2.5.2 Long-Term Simulations 

Figure 2.7 illustrates a comparison between the energy losses. The largest thermal loss is shown 

in the case of a one-layer case, and these losses decrease with the presence of insulation. In the 

presence of a thermal bridge, the losses are larger than those without, and the losses are slightly 

larger when the thermal bridge is straight compared to a bent bar. The costs of energy consumption 

and heat loss are displayed in Table 2.1. 

 
Figure 2.7. The distribution of total heat loss in Watt units as a function of time in days for the long-term 

simulation of all wall cases. 

Table 2.1. Heat loss through the 1 m2 part of the wall and the energy cost in USD and HUF. 

 
One 

Layer 

Two  

Layers 

Two Layers with a 

Straight Bridge 

Two Layers with 

Bent Bridge 

Heat loss (full month, kWh) 19.14 1.99 5.29 5.01 

The cost in USD (full month) 1.9 0.2 0.53 0.5 

The cost in HUF (full month) 717.19 74.63 198.24 187.8 
 

The analysis suggest that my methods are better than all ANSYS solvers and MATLAB routines, 

whereas ANSYS was less accurate and slower, and it was observed that the best performance was 

achieved by the leapfrog–hopscotch and the Dufort–Frankel algorithms with the pseudo-implicit 

treatment of the nonlinear radiation term. Therefore, these two methods were applied to real 

problems, and a long-term simulation of four cases was performed. The temperature distribution 

and total heat losses of all cases were calculated. I found the straight thermal bridge to be 

energetically worse than others, and the total heat loss during the month (one-layer, two-layer, 

two-layer with a straight thermal bridge, and two-layer with a bent thermal bridge) was, 

respectively, 19.14, 1.99, 5.29, and 5.01 kWh for a 1 m2 wall surface. I can conclude that the 

numerical simulation methodology is established in this work. 
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2.6 Applying Recent Efficient Numerical Methods for Long-Term Simulations of Heat Transfer 

in Walls to Optimize Thermal Insulation 

Since transient simulations need a lot of resources, the heat loss through the walls of buildings 

in winter is often estimated by a simple steady-state calculation based on methods like the Degree-

days, which is frequently rather inaccurate. So, I carried out transient simulations using the new 

leapfrog-hopscotch and the modified Dufort-Frankel algorithms, which are the most efficient, 

stable, and explicit numerical methods to deal with heat transfer problems, according to previous 

investigations. The optimum thickness of insulation, energy savings, and payback time are 

determined using an economic model that considers the orientation of the external walls, solar 

radiation, the cost of insulation materials, the present cost of energy consumption, and the cost 

over the 25-year lifetime of a building in Miskolc City, and a case is analysed in the cold season. 

Three materials and a range of thicknesses are investigated: Expanded Polystyrene (EPS), glass-

wool, and rock-wool. I found the transient way to calculate heat loss to be quick and accurate. 

Additionally, it was looked at how well the walls conducted heat under optimal conditions. 

Comparing this study to others of a similar type, one of its unique characteristics was the use of 

less expensive local materials, to optimize investment on insulation. I use an ab-initio approach to 

compute transient heat transfer using fundamental physical rules. It is anticipated that these 

findings will be substantially more accurate than those based on the common (ISO) standards [21], 

[22], which use steady-state calculations without solving the transient PDE. To make transient 

simulations more accessible owing to decreased processing cost and programming difficulties, my 

long-term aim is to revolutionize these simulations. 

Figure 2.8 displays the optimum insulation thicknesses for the three walls according to total life 

cycle saving and payback time. 

 

Figure 2.8. The optimum insulation thickness for the three walls according to total life cycle saving and 
payback time, where the right axis refers to time in years, and the left one refers to the cost in USD. 
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I chose the best insulation, which is in Wall (C), in terms of the best total life cycle saving and 

payback time, and I compared the four directions of this wall , and the optimal thicknesses is shown 

in the Figure 2.9. 

 
Figure 2.9. The optimum insulation thickness for the four orientations of the wall (C) according to total 
life cycle saving and payback time, where the right axis refers to time in years , and the left one refers to 

the cost in USD. 

I found the total heat loss (without insulation, with a thickness of 10 cm EPS, glass-wool, and 

Rock-wool) was, respectively, 2792.628, 470.145, 480.45, and 449.7 kWh for a full flat. The 

optimum insulation thicknesses for the north-facing wall are 17, 22, and 12 cm, and the life cycle 

energy savings are 142.5, 153, and 132.12 kWh/m2 for the EPS, glass-wool, and rock-wool, 

respectively, and the payback times are 3.73, 3.14, and 4.33 years. The optimal insulating 

properties can be achieved with 22 cm of thick glass wool, which only slightly depends on the wall 

orientation, according to the life cycle analysis. During optimization, it was assumed that the 

insulation cost increases linearly with insulation thickness, whereas the energy cost is found to 

decrease as insulation thickness increases, while the principle of diminishing returns is fulfilled. 

The optimum thickness varies based on the substance and how it interacts with the outdoor 

environment. The current conclusions and results, and particularly the relative performance of 

glass wool, depend on the specific values of the parameters employed in the economic and thermal 

analysis. 
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3. NEW SCIENTIFIC RESULTS – THESES 

T1. I tested 105 different leapfrog-hopscotch algorithm combinations to solve the heat or diffusion 

equation by combining the hopscotch space structure with leapfrog time integration. I applied 

the well-known theta method with nine different values of   and the recently invented CNe 

method. Then I generated preliminary numerical results, and using these as a basis, I selected 

the five most effective methods for more research. The effectiveness of the chosen methods 

was evaluated for two 2-dimensional systems containing 10000 cells in the case of large 

systems with completely discontinuous random parameters and initial conditions. I showed 

the competitiveness of the suggested methods by demonstrating that they can provide results 

with acceptable accuracy orders of magnitude quicker than the well-optimized MATLAB 

routines (4).  

 

T2. I extensively investigated 13 numerical methods to solve the linear heat conduction equation 

in building walls. Eight of the used methods are recently invented explicit algorithms 

including those mentioned in T1 which are unconditionally stable. First, I performed 

verification tests in a 2D case by comparing them to analytical solutions, using non-equidistant 

grids. Then I tested them on real-life applications in the case of one-layer (brick) and two-

layer (brick and insulator) walls to determine how the errors depend on the real properties of 

the materials, the mesh type, and the time step size. I applied zero Dirichlet boundary on the 

walls. The results show that the best algorithm is usually the original odd-even hopscotch 

method for uniform cases and the leapfrog-hopscotch and the Dufort-Frankel algorithms for 

non-uniform cases (3). 

 

T3. I extensively measured the running times of the most successful methods and compared them 

to the performance of other available solvers, for example, ANSYS transient thermal analysis 

and the built-in routines of MATLAB. I systematically evaluated how the performance of the 

various solvers (including MATLAB routines and ANSYS) depends on the mesh settings to 

see which one is optimal for certain accuracy requirements. I used three mesh sizes: 40 × 40, 

80 × 80, and 120 × 120. I showed that the running time of my methods changes linearly with 

mesh size, unlike in the case of other methods. Three simple analytical solutions of the heat 

equation were used with an equidistant mesh for verification in the case of homogeneous 

material properties (one brick layer). All the methods used and the ANSYS solvers are 

confirmed to be convergent. These experiments suggested that my methods are better than all 

ANSYS solvers and MATLAB routines, whereas ANSYS was less accurate and slower, and 

I observed that the best performance was achieved by the leapfrog–hopscotch and the Dufort-

Frankel algorithms with the pseudo-implicit treatment of the nonlinear radiation term (2).  
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T4. I developed and tested a simulation methodology based on fundamental physical principles 

and laws (ab initio approach) to study transient heat transfer in a two-dimensional wall without 

an insulator, with an insulator, and different types of thermal bridges. I made a long-term 

simulation (one full winter) of two-dimensional space systems to test the two best versions of 

the methods mentioned in T3. The real-life engineering problem I solved is the examination 

of thermal bridges with different shapes in buildings to increase energy efficiency. The 

temperature distribution and total heat losses of all cases were calculated. I found the straight 

thermal bridge to be energetically worse than others. I conclude that the numerical simulation 

methodology is established in my work (2), (11). 

 

T5. I made transient heat transfer simulations through multilayer walls with different materials 

and thicknesses that is subject to the typical external temperature and solar radiation specific 

to Hungary's environment using the leapfrog-hopscotch and modified Dufort-Frankel 

algorithms. I calculated the winter heating loss (across the walls) and temperature distribution 

of all cases according to wall orientations. I found the transient way to calculate the heat loss 

to be quick and accurate more than steady-state calculations based on methods like the 

Degree-days, which is frequently rather inaccurate (1).  

 

T6. Using the leapfrog-hopscotch and modified Dufort-Frankel algorithms to make transient heat 

transfer simulations through multilayer walls, I determined the optimum thickness of 

insulation, energy savings, and payback time using an economic model that considers the 

orientation of the external walls, solar radiation, the cost of insulation materials, the present 

cost of energy consumption, and the cost over the 25-year lifetime of a building in Miskolc 

City, and a case is examined in the cold season. Additionally, it was looked at how well the 

walls conducted heat under optimal conditions. Comparing this study to others of a similar 

type, one of its unique characteristics was the use of less expensive local materials, to optimize 

investment on thermal insulation. I investigated three materials and a range of thicknesses: 

Expanded Polystyrene (EPS), glass-wool, and rock-wool. The results demonstrated a small, 

but noticeable impact of wall orientation on the thermal efficiency of the walls during the 

winter season of the environment under consideration. The small difference between northern 

and southern orientation can be explained by the fact that the first part of the winter is typically 

rather cloudy in Hungary. The optimal insulating properties can be achieved with 22 cm of 

thick glass wool, which only slightly depends on the wall orientation, according to the life 

cycle energy savings analysis (1). 
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