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1 Introduction

Serverless is a new computing paradigm adopted by several cloud providers. It pro-
vides a new style of delivering cloud services by letting a user to mainly concentrate on
coding rather than managing backend-infrastructure and operations. In most cases,
commercial providers are not always the most favourable choices for researchers to
execute and evaluate their desired scenarios, due to having a costly and complex
environment (leading to non-reproducible results).

One alternative solution is simulators, which were opted by the research commu-
nities to evaluate scenarios in reduced-cost and easy-to-setup-environments. Over the
last years, numerous cloud simulators have been built to support the IaaS model.
They offer a flexible environment to experiment on various algorithms and scenarios
in the field of infrastructure management. To obtain respectable precision, simu-
lators use real traces often collected and offered by commercial providers. These
traces represent comprehensive information about executed tasks reflecting users’
behaviour within providers.

Despite the widespread use of cloud simulators, they are still mainly focused on
supporting more traditional IaaS scenarios, and this reduces their applicability in the
serverless and Functions-as-a-Service domains. There are several features essential
to support the serverless models that are missing from most [aaS frameworks. For
example, the need of simulating and execute multiple events in parallel. Moreover,
workload traces typically employed by laaS simulators are not well adoptable to
the new computing model. Thus, they do not represent the new kind of users’
behaviour. In addition to that, IaaS simulators are not designed to take responsibility
for managing the necessary infrastructure, complex provisioning, and configurations
on behalf of a user, which is how he/she deals with serverless systems.

The need for an integrated serverless environment capable of mimicking the be-
haviour of real providers is essential towards evaluating applications and scenarios
reliant on the concepts of this computing paradigm. To fulfil the researchers’ pur-
pose, the environment has to support the newly introduced features, computing style,
and resource constraints that led to exist of this computing type.

As serverless technology still based on underlying infrastructure that is abstracted
from a user, it is beneficial to extend existing IaaS simulators to support serverless
functionalities and features. The laaS simulator called DISSECT-CF [Kecl5] is se-
lected to fulfill this purpose as it is extensible, allows sharing low-level computing,
supports loading and managing several trace file formats, and its performance is sig-
nificantly higher than most simulators in the field. All these reasons are leading us
to the main aim of the research.
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1.1 Research goals

This research aims to develop a comprehensive serverless environment on DISSECT-
CF simulator. This new environment is capable of simulating and evaluating server-
less applications and scenarios. The research is divided into three goals.

1. The ability to generate realistic serverless workloads close to real users’ be-
haviour. Also supporting scaling such workloads to fit any researchers’ desired
scenario.

2. The ability to mimic real serverless providers in terms of provisioning resources
policy, internal mechanism, estimating costs and provided services.

3. The ability to perform parallel execution for revealing the internal behaviour
of large-scale simulation session.

2 Related work

Unfortunately, there are no established simulation frameworks that can supportre-
search on the challenges accompanying serverless computing. The few serverlesssim-
ulators that exist focus on specific functionality or aspects, but they could notcom-
prehensively support the above listed features,

Recently, few serverless simulators have been developed either by extending the
[aaS simulators’ functionalities or from scratch. To fulfil the researchers’ purpose
towards simulating FaaS, serverless simulators have to mimic a real provider by of-
fering the foundations and features of this new technology. Unfortunately, serverless
simulation is in its infancy, frameworks only partially support the features (e.g.,
auto-scaling) of the new model. Thus, using them for evaluating new approaches to
manage FaaS systems could still lead to potentially misleading research results.

DFaaSCloud [JCSY19] simulator extends CloudSim [CRB*11] to support some
serverless features. It allows defining FaaS functions with various profiles and char-
acteristics that determine their behaviour during simulation. However, it has the
following major limitations for its support of serverless environments: (i) establish-
ing and managing the virtual infrastructure backing functions is not fully supported
because it does not consider the providers’ policies, (i7) unable to utilise large scale
generated realistic serverless traces due to use synthetic workload, and (7ii) extracting
serverless performance metrics (e.g., probability of cold-start and average utilization)
from the simulation are missing.
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OpenDC serverless [Jou20] is a framework that was introduced based on the
OpenDC simulator. It allows to model and test custom FaaS patterns. It introduced
the essential architectural component, instance routing policy such as that imitates
the basic serverless platform. However, it lacks an important concept of server-
less,namely auto-scaling resources that responds to workload. It also doesn’t provide
information about the internal behaviour of infrastructure and function status.

SimFaaS [MK21] is a simulation platform that introduces a serverless environ-
ment to enable researchers to develop and optimise FaaS applications. It is designed
to extract performance metrics from simulation. However, one of the missing features
that make simFaaS, not-a-comprehensive-simulator, is the trigger, which defines how
FaaS functions will invoke during simulation. SimFaaS also doesn’t provide a founda-
tion for a cost model of real providers. Moreover, the provider’s resource constraints
cannot be applied to simFaaS. Extracting performance metrics in simFaaS mainly
relies on the already existing attributes of functions in the author’s proprietary trace
format, such as cold-start probability. Additionally, it calculates some metrics based
on the traces, not actually evaluating the results from the simulation session.

Based on the above points, there is a lack of features in existing serverless simu-
lators that are not covering this new computing paradigm’s needs. We can conclude
that the need to enrich the research community with a comprehensive serverless en-
vironment is crucial to fulfil researchers’ expectations towards this technology, by
offering the services behind serverless computing. Therefore, in this dissertation,
we addressed the aforementioned limitations by introducing an integrated serverless
environment (dubbed as DISSECT-CF-FaaS) able to generate and simulate large-
scale serverless workloads. This environment is capable of supporting several real
providers and mimicking their distinctive policies. It also provides parallel execu-
tion to foster analyzing the internal behaviour of our environment. The introduced
serverless environment was built based on DISSECT-CF simulator. The rest of this
dissertation is going to focus on these extensions.

3 Scientific Results

3.1 Generating Realistic Serverless Traces

Supporting serverless computing model by [aaS simulators necessitate the introduc-
tion of additional features. One of the significant features is to enable the simulator
to generate realistic-trace and predict the behaviour of such realistic serverless work-
loads. We introduced our serverless architecture based on DISSECT-CF that is
aimed at offering automated management of function-as-a-service workloads. The
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Figure 1: Architecture of proposed model

proposed architecture consists of three layers built on the top of DISSECT-CF, as
shown in Figure 1.

Configuration setup layer handles the user options by establishing proper in-
frastructure based on the selected provider’s plan. FaaS creation layer is responsi-
ble for generating serverless traces form a selected dataset file. Serverless manage-
ment layer is responsible for managing virtual infrastructure (that backs the server-
less computing platform), as well as providing just-enough resources for all the func-
tion invocations. Our approach are based on the Azure Functions dataset [SFGT20]
and it generates execution time and memory utilisation values via percentile values
that were provided on daily basis.

3.1.1 Evaluation of generator approach

To validate our approach that will act as a foundation for evaluation serverless model,
we picked randomly 5000 functions and we have generated 5000 invocations for each
function. For each function that has generated 5000 invocations, we calculated the
percentile values and average for both execution time and memory utilization. Then,
we measured the coefficient of determination (R?) between the generated and original
values to show data accuracy. For execution time, R? was 0.8438 for percentiles and
0.9956 for average. For memory, R? were 0.8999 and 0.9977 for percentiles and
average, respectively.
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Figure 2: Architecture of generator approach

3.1.2 Improving our previous generator approach

In our previous work, we have shown that this simple approach was capable of
providing realistic execution time and memory utilisation averages compared to the
original dataset. However, the limitations of the previous approach were as follows:
(7) The generated trace’s percentiles for execution time and memory utilisation were
not sufficiently close according to the coefficient of determination (R?). (i) The
approach was limited to single invocations, realistic representation of multiple users
was not supported. (7i7) It was problematic to reuse the generated traces due to its
strong link to DISSECT-CF.

3.1.3 Architecture of enhanced approach

To remedy the aforementioned limitations, we introduced independent architecture
that holds FaaS creation layer from the previous approach as well as adding three
further components, namely GA, User Behaviour and Standard Format as shown
in Figure 2. They are introduced to improve quality, enabling scaling workload and
providing reusability of generated traces respectively.

The previous approach generates one set of values (representing one individual
in genetic algorithm concept) for each unique function and its invocations. Although
our approach generates values within the range of percentiles, good values of (R?)
between the generated and original could not be produced by a single iteration as
they are generated randomly. To address this issue, we introduced a genetic algorithm
(GA component) to our previous approach. We produce several sets of values, and
then it selects optimal values to constitute a single set for function and its invocations.

Scaling-workload is essential to support researchers’ scenarios that require small
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infrastructure to achieve their desired purposes, such as predicting the consumption
behaviour of users to stimulate resource usage awareness. Therefore, we introduced
User Behavior component that enables scaling workloads by detecting users’ be-
haviour in terms of calculating the percentage of participation for each unique user
in a dataset.

Standard Format component enables the reusability of generated traces by con-
verting them to other formats as standalone traces, and getting rid of the process
of generating traces repeatedly. When the serverless functions are generated, this
component obtains each function’s invocation with all its attributes (e.g., execution
time, tasks’ id and amount of memory) to store in its repository. Then, for each
invocation, it arranges its attribute values based on the desired format, as each one
has its own ordering. Finally, it goes through this process till the end of functions,
then it produces standalone trace file.

3.1.4 Evaluation of improved percentiles

To validate our approach of generating realistic traces with the help of the ge-
netic algorithm, we used uniform randomly generator to pick up 5000 functions,
and we have generated 5000 invocations for each unique function based on the per-
centiles that disclosed in Azure dataset. We concluded with a very good result of
R?, which was 0.9994 for execution time and 0.9995 for memory utilisation.

3.1.5 Evaluation of users’ behavior

To validate users’ behaviour, we have chosen one day of the Azure dataset, which
contains comprehensive functions that executed in the Azure provider. Then, we in-
voked User Behavior component to analyse the selected file statistically. The User
Behavior component demonstrated that the file came with around 853 million invo-
cations, 36,456 services and 8,590 users. Moreover, it provided detailed information
regarding each user’s invocation number and the percentage of participation.

We validated the scaling approach by producing different workload sizes that
fit small and large infrastructure configurations. We, then, invoked User Behavior
component for statistical analysis of each generated workload. Finally, we compared
the percentage of users’ participation in all different workloads, with the original
dataset by using R? as shown in Table 1. We also measured R? between the average
of percentiles for execution time and memory utilisation for all generated workloads
against the original one to show data accuracy. The results show that our approach
enables scaling workloads efficiently with the real users’ behaviour. It also shows
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Table 1: Scaling workloads with real users’ behaviour

Workload Size R? (User’s percentage) R* (Execution time) R? (Memory)

10° 0.9999 0.9969 0.9986
10 1 0.9986 0.9984
10° 1 0.9993 0.9989
106 1 0.9993 0.9981
107 1 0.9995 0.9997
108 1 1 0.9998

that the generated execution time and memory utilisation percentiles resemble the
original values during scaling workloads.

3.1.6 Evaluation of converting approach

Converting generated traces is beneficial to computing simulators that only support
real traces and consider all the function’s attributes in trace. To validate our convert-
ing approach, we have generated traces with different formats and simulated them
by following simulators that belong to different fields, namely, DISSECT-CF (cloud
simulator), GridSim (Grid simulator) and simFaaS (serverless simulator).

3.1.7 DISSECT-CF

One of the approaches to verify the reliability of converting generated traces is mon-
itoring the internal behaviour of the simulation while simulating the same tasks in
from different formats. Therefore, we have selected DISSECT-CF simulator as it
is enabling observing the internal behaviour of the infrastructure during simulation
as well as offering precise results. To show the accuracy of converting traces to
other formats, we generated 20 thousand functions and we then asked to convert
the same generated trace to Grid Workload Format (GWF') and Standard Workload
Format(SWF) traces. First, we generated a workload from the Azure dataset (CSV)
that was directly simulated by DISSECT-CF. In the second round, we simulated the
transformed GWF and SWF traces.

We have observed the internal behaviour of the simulated infrastructure in terms
of simulated timespan, number of used virtual machines, average utilization of phys-
ical machines and total power consumption for all experiments. Table 2 shows that
simulation timespan and the number of used VMs are identical between the original
trace (CSV) and converted traces (GWF and SWF). However, there is a difference
of 1.3% and 0.08% for the average utilisation of PMs and total power consumption,
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Table 2: Simulating 20 k functions with different formats

Metrics CSV GWF SWF
Average utilization of PMs(%) 0.8119 0.8014 0.8014
Total power consumption (kWh)  73.5076  73.4451  73.4451
Simulated timespan (ms) 87792001 87792001 87792001
Number of used VMs 301 301 301

Table 3: Comparing simulating functions using DISSECT-CF and GridSim in terms
of simulated timespan

Simulator 1k 5k 10k 50k 100k 500k 1m
DISSECT-CF 33.6s 2.79m 5.58m 27.9m 55.9m 4.65h 9.31h
GridSim 34.3s 2.81m 5.59m 279m 559m 4.65h 9.31h
Difference 1.95% 04% 02% 0.04% 0.02% ~0% ~0%

respectively. This meets our expectations and shows that our approach of converting
is properly and realistic.

3.1.8 GridSim

To validate our approach of converting traces and demonstrating their usability by
other simulators, we explored the most popular open-source simulators in the com-
puting field that could use these traces. We have considered two factors while explor-
ing these simulators. First, the recent year these simulators were used by researchers
for evaluating real computing scenarios. Second, the types of workloads that are
supported by these simulators. Based on these,

We have selected the recent and popular simulator GridSim [BM02] for simulating
and validating our converting approach. GridSim considers all attributes of a task,
such as execution time, submit time, memory utilisation and others, as the same as
DISSECT-CF does. We have simulated different workload sizes starting from small-
scale trace to large-scale using DISSECT-CF and GridSim. As both were set to the
same configuration and have simulated identical workloads, the timespan will reflect
the overall execution time of the simulation session. We have calculated the percent
difference of simulated timespan for each workload, as shown in Table 3. The result
shows the average percent difference is 0.37% between both simulators, which shows
how accurately the traces are generated to match the original one and converted to
standard formats.

10
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3.1.9 SimFaaS

As our generator approach able to produce traces in different standard formats
that meet a user’s and a simulator requirements, we converted Azure dataset to AWS
Lambda traces to be used as input to simFaaS simulator. Our model also provides
performance metrics likes simFaaS, but it extracts them from simulation session. To
check the accuracy of our model output, We generated 15 AWS Lambda traces from
this Azure dataset. For each trace, we have randomly selected thousand unique
functions with their invocations. As a result, the generated traces contain around
500 thousand requests. After that, we simulated these traces with our model and
simFaaS framework to extract the performance metrics from the simulation.

To validate the converting approach, we measured R? of performance metrics for
both. The results of R? were 0.9999, 0.9960, 0.9177, and 0.9525 for arrival rate,
cold-start probability, average utilisation and average idle instances, respectively.
This indicates the accuracy of our approach for producing traces that used by the
simFaaS serverless simulator.

Thesis 1 Related Publications: [5, 6]

I proposed a novel approach for generating realistic serverless traces to enrich cloud
computing simulators with varying characteristic workload types. My approach ap-
plies a genetic algorithm to produce and select the best generated functions’ attributes
that resemble the behaviour in a real-life dataset. It also enables scaling-workload to
fit desired scenarios while maintaining the users’ behaviour disclosed in the real-life
dataset. Finally, it supports the reusability of the generated traces in other computing
simulators by adapting the traces to popular formats.

3.2 An Extension of DISSECT-CF to Simulate Function-as-
a-Service

In the research community, simulators are the most common environments for evalu-
ating algorithms and scenarios, as they provide easy-setup, low-cost and reproducible
environments. The foundation of modern computing technologies such as fog com-
puting, edge computing, and serverless computing, are built on the concept of cloud
computing. Thus, extending TaaS simulators to support other computing models is
an essential step towards offering a versatile solution for the research community.
In subsection 3.1, we introduced a rudimentary model for serverless systems based
on DISSECT-CF. However, it had noticeable limitations such as (i) focused only
on Azure Functions providers, which limited its use for other providers and theirs
policies, (i) the quintessential concept widely used by FaaS systems is not offered,

11
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Figure 3: Architecture of our serverless environment

(7i1) its cost model was not generic enough to support the newer providers, and (iv)
essential, serverless focused performance metrics such as the number of provisioned
instances at a specific time, are complicated to acquire.

3.2.1 Proposed architecture

To remedy the aforementioned limitations, we introduced new layers and compo-
nents to the architecture of the previous model, in addition we updated the internal
implementation of some components. This proposed architecture consists of four
layers built on top of the core DISSECT-CF simulator (see Figure 3).

Configuration setup layer provides direct interaction with a researcher to
establish underlying infrastructure and cost policies through provider selection and
configuration. FaaS Creation layer focuses on the functionality running on top of
the previously configured infrastructure. Primarily, this is done via the selection and
customisation of a trace/dataset used for modelling serverless function behaviour. It
also enables associating triggers to these functions. Serverless management layer
represents the internal implementation that reflect the policy of serverless providers.
This is achieved through the management of virtual infrastructures behind each
serverless function created earlier. In out final layer, Cost modeling and statistics,
we provide components to estimate the cost of the workload that passed through the
simulation.

12
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Table 4: Simulating 100k invocations using different memory sizes

Size  Cost($) Average run time(ms) Cold-start(%) Warm-start(%) Arrival Rate(s)

128 3.553 17329 1.059 98.941 0.0036
512 3.503 4321 0.614 99.386 0.0073
1024 3.517 2156 0.555 99.444 0.0103
2048  3.625 1114 0.523 99.477 0.0145
3072 3.504 717 0.510 99.490 0.0151

3.2.2 Evaluation

We evaluate the effectiveness of our extension by producing services that resemble
the AWS Lambda and Azure Functions providers, as they are most popular serverless
providers [RSBT19]. Moreover, mimicking the providers’ policies in terms of resource
constraints and associating triggers to serverless functions to reflect the realistic
internal behaviour of serverless computing.

3.2.3 Evaluation of cost model

We have evaluated our generic cost-model by imitating AWS Lambda provider, and
then we have conducted experiments to estimate the cost of 100k serverless function
invocations but using different memory configurations. The Table 4 shows that we
obtained similar cost for all experiments but with different running time as expected.
The reason is AWS Lambda provider offers a user trade-off between cost and running
time. Increasing memory size is costly but leads to reduced running time and cold-
start probability. Thus, a user can have a fast or slow wall time with almost the
same cost.

3.2.4 Evaluation of trigger

A trigger is used to provide different ways to invoke a function. To investigate the
timer trigger in our serverless environment, we imitate the Azure provider’s policy
and we then generated varying sized realistic traces and conducted an experiment
that involves five different groups of functions. Each group consists of 500 types
of functions and has different invocation intervals determined by their triggers as
shown in the Table 5. We ran the functions of all groups for one simulated day. The
result shows that the probability of cold-start for the group of functions that has
the smallest interval is less than for other groups. As our environment observes the
status of instances and measures their life-time, it allows more frequent reuse of their
instances than those belonging to other function groups.

13
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Table 5: Using timer trigger for five groups of functions with different trigger intervals

Interval (s) Prob. of cold-start (%) Prob. of warm-start (%) No invocations

Groupl 30 0.1945 99.8054 1440000
Group2 60 0.2461 99.7538 720000
Group3 300 1.0277 98.9722 144000
Group4 600 1.1013 98.8986 72000
Groupd 1200 2.3555 97.6444 36000

Table 6: Average performance metrics of the instances were extracted while simu-
lating different workload sizes

Workload size Concurrent no Lifetime(s) Running-time(s) Idle-time(s)

1k 65 1239 40 1199
10k 67 1381 197 1183
100k 98 1481 323 1158
200k 155 1541 408 1133

3.2.5 Evaluation of performance metrics

Our serverless environment enables extracting essential performance metrics to re-
veal the internal behaviour of the imitated provider in terms of applying its policy,
constraints and backend provisioning resources for understanding internal mecha-
nism. We have demonstrated our performance metrics through simulating different
workloads sized and we then simulated this workload by mimicking the Azure Func-
tions provider. The result shows that our serverless environment provisioned more
instances when the workload size was heavy, as shown in Table 6. The reason is
Azure Functions provider can scale up to 200 instances concurrently per function-
app type. The results also show that the utilisation of instances (running time) is
increased when workload size is heavy.

Thesis 2. Related Publications: [2, 3, 5, 7]
I proposed a comprehensive serverless extension (DISSECT-CF-FaaS) to the research
community for evaluating a wide range of real-case FaaS scenarios in an environ-
ment that imitates commercial providers’ behaviour. This environment is capable of
capturing real behaviour services to enable establishing a cost model, offering scal-
ing up-down function instances, introducing a trigger mechanism comparable to real
usage behaviour, and applying constrained on provisioning resources. It also extracts
performance metrics from the simulation session to reveal how the internal behaviour
of provisioning resources responds while serverless functions are simulated.

14
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3.3 Parallel Event System to Reveal the Internal Behavior
of our Serverless Environment

Most cutting-edge technologies such as serverless computing have designed to allow
multiple events such as serverless functions (FaaSs) and their invocations or com-
puting tasks in cloud, happen at the same time to obtain better performance. Its
paradigm encourages users to execute events in a parallel by managing the backend
infrastructure on their behalf. When we come to simulation environment to mimic
advanced technologies mechanism, the architecture of simulator is critical word to
demonstrate its capability towards parallelism. Although, the selected simulator
DISSECT-CF reduces the execution time of equal quality/detail simulations done
compared to several other simulators in the field, it still does so in a sequential fash-
ion. Therefore, we aim to set the foundations to support simulations that require
high performance.

Based on the existing API of DISSECT-CF, parallelisation could happen for
executing of simultaneously happening events (i.e., events that should happen in the
same time instance or tick of a simulation) in the event system of DISSECT-CF.

3.3.1 The parallelisation of simultaneous events

We introduced the new inner Parallel class to the event system of DISSECT-CF to
apply parallelism. Our approach includes two algorithms. Algorithm 1 determines
the need of executing list of events in sequential or parallel fashion based on the
number of events.

Algorithm 1 Determining the need for parallelism

: threshold = specified size
: list = all simultaneous events
if list.size < threshold then
while [ist.not Empty do
event = get single event from list
Execute event
end while
else
execute Parallel(list.lowIndex, list.upperIndex)
end if

._
@

After the decision to parallelise, the actual parallelisation is organised by algo-
rithm 2. When there are more simultaneous events than a single thread should

15
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handle, Parallel class sub-divide the list of events based on its size in equal parts
and pass them on to further threads.

Algorithm 2 Mechanism of Parallel class

Procedure Parallel( list.lowIndex, list.upperIndex )
lowerIndex = list.lowIndex
upperIndex = list.upperIndex
Funct compute ()
if upperIndex - lowerIndex < threshold then
while list.not Empty do
Execute events of list
end while
else
midIndexr = (lowerIndex + upperIndex | 2)
execute all  (Parallel(lowIndex,  midlndex),  Parallel(midlndez,
upperIndex))
: end if

— =
= O

—_
[\

3.3.2 Evaluation

We have designed several scenarios to test the performance of the parallel version
by focusing on time management while ensuring complete control over event occur-
rence. We also exploited our parallel version to foster the execution of our serverless
environment.

3.3.3 Validation of the parallel event system

To ensure that the behaviour of our evaluation is following real life simulation
patterns, we have instrumented the JobDispatchingDemo class of the dissect-cf-
examples project. This class was already validated before to produce realistic sim-
ulations e.g., comparable to CloudSim. Our instrumentation focused on how the
realistic simulation utilises the lowest abstraction layer of DISSECT-CF. We mea-
sured, the degree of parallelism, the typical event behaviour, the number of events
in total and the average execution time of a single tick method call in nanoseconds
(i.e., the single event workload) as shown in Figure 4a. To enable the comparison,
we have also instrumented our parallel event system in the same way allowing us to
acquire the typical workload of our synthetic tick methods.

16
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Figure 4: Boxplot diagrams for JobDispatchingDemo class and our classes

Figure 4b shows the behaviour of our best approximate synthetic workload. Our
median duration is within 3% of the realistic. The distribution of our workload is
a bit narrower and more even, but the upper and lower whiskers of our synthetic
experiment are within the typical range of the realistic simulation’s values. As a
result, from this point onwards, we will refer to synthetic workloads set up that used
as the original single event workload.

3.3.4 Performance of the parallel event system

Our evaluation scenarios create 35,000 recurrent event objects. The object count was
set so the minimum execution time of the sequential version is at least 5 minutes,
allowing sufficient time for the parallelisation to take effect.

With the respect to the number of cores, there are two factors that influence the
performance of the parallel version. First, the degree of parallelism (it denotes the
number of events that happens at a specific time instance) plays a significant role
to demonstrate the benefit of parallel version. We evaluated both the parallel and
sequential versions of the simulator with four different degrees of parallelism (25%,
50%, 75%, 100%).

In 25% of parallelism, the parallel version runs 1.72 faster than the sequential.
When the degree reaches 50%, the ratio increased to 1.74. The parallel version
executes simulations 1.84 faster than the sequential version when 75% of all sub-
scribed events occur recurrently during a simulation time. Finally, the parallel
version reaches 2.01 times faster than the sequential version when the degree of
parallelism is 100%.

Now let’s analyse the effect of the size of the single event workload. We tested
both of the parallel and sequential versions with various single event workload sizes,
commenced with threefold lower than the original one to show the behaviour of
simulating very low single event workload. Then reaching to threefold higher than
the original single event workload to demonstrate the advantage of parallel version.
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When the single event workload is threefold lower than original one, the parallel
version runs 1.33 faster than the sequential version. This ratio increases to 1.67
when the single event workload is two times lower than the original single event
workload. The parallel version even runs 2.11 faster than the sequential version
using original single event workload. When the single event workload size doubled,
the parallel version executes the simulation 2.32 times faster than the sequential
version. The ratio increases to 2.44 when the single event workload size becomes
threefold higher than the original one.

3.3.5 Evaluation of serverless environment using parallel event system

We exploited our parallel version to foster scenarios that happen in our serverless
environment, particularly the Cost Modeling and statistic layer that mainly
depends on the event system of DISSECT-CF. Our parallel version can be advanta-
geous to these scenarios that require high performance, such as revealing the internal
behaviour of provisioning resources and estimating the cost in our introduced envi-
ronment. To demonstrate the performance of our parallel event system, we have
conducted experiments on different workloads that require faster processing. We
have generated workloads with different numbers of functions’ invocations, namely,
light-workload (100 thousands), normal-workload (1 million), and heavy-workload
(10 million) by using our generator that we introduced in Subsection 3.1.

We then imitated the AWS Lambda provider and we simulated these workloads
by our serverless environment. After that, we then analyzed the internal behavior of
each simulation session, one times using the sequential event system and other using
parallel event system. As both sequential and parallel versions produce the same
simulation results (except execution time), Table 7 lists the performance metrics
extracted from simulation sessions for all different workloads.

When we come to the simulation time for these workloads, the workload size
and the degree of parallelism have significant influence in demonstrating the benefit
of using the parallel version. Table 8 shows the execution time of simulated light,
normal, and heavy workloads (the results listed in Table 7) in our serverless envi-
ronment using sequential and parallel versions. The results show that the parallel
version runs 1.24 faster than the sequential version during analyzing and simulating
light-workload. This ratio increased to 2.24 when the workload was normal. Finally,
the performance of the parallel version reaches 2.66 in heavy-workload compared to
the sequential version. The results show that the parallel version demonstrates bet-
ter performance for scenarios that engage heavy workload.
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Table 7: Extracted performance metrics of different workloads using our serverless
environment

Performance metrics Light Normal Heavy
Cold-start probability (%) 2.542  0.385  0.135
Warm-start probability (%) 97.458 99.614  99.864
Arrival rate (s) 0.031  0.115 0.442
Average execution time of function (ms) 512 476 626
Number of unique functions 1256 1639 4660
Estimated cost ($) 2.503  23.264 305
Average Number of Concurrent instances 389 770 3913
Average lifetime instance (s) 1218 2199 6671
Average running-time instance (s) 126 947 3882
Average idle-time (s) 1092 1251 2789

Table 8: The execution time (s) of our serverless environment using sequential and
parallel versions

Version Light-workload Normal-workload Heavy-workload
Sequential 56 850 23204
Parallel 45 378 8703
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Thesis 3 Related Publications: [1, 4]

I proposed a new parallel event system to foster the execution of DISSECT-CF-FaaS
towards stmulating large-scale scenarios. The introduced parallel version increases
resource utilisation capability by allocating all available cores for backing the cost
modelling and statistics of our serverless environment. The advantage of the paral-
lel version is demonstrated when the simulated workload involves a large number of
simultaneous events.

4 Summary

Simulators play a crucial role in the computing field by providing a flexible environ-
ment that could mimic real providers in the research area. As serverless computing is
in its infancy, the research community needs to explore this promising cloud paradigm
in a simulation environment to evaluate FaaS scenarios, and explore potential on ar-
chitectures, operations, and mechanisms that could foster this computing paradigm.

In this dissertation, we proposed the DISSECT-CF-FaaS serverless environment.
This integrated environment is capable of generating realistic traces that closely
matches the original dataset’s characteristics in terms of execution time, memory
utilisation as well as user participation percentage. The evaluation in Subsection
3.1 showed that our generator approach provided excellent values for predicting gen-
erated trace attributes and users’ invocations compared with the behaviour in the
real-life dataset.

Our serverless environment is able to mimic the provisioning of resources, ser-
vices, while also mimic the policy of the most well-known serverless providers. It
also reveals the internal mechanisms and behaviours of the imitated providers by
extracting performance metrics during simulation sessions. In Subsection 3.2, our
evaluation showed that our environment provided the expected experimental results
by, first, estimating the costs for various memory configurations. Second, reflecting
provisioning policy properly to reduce cold-start. Third, capturing the behaviour of
the trigger successfully. Finally, extracting average concurrent instances, running-
time, and idle-time of involved instances from the simulation session.

Our DISSECT-CF-FaaS offers parallel execution to foster the scenarios that re-
quire high performance in computing, such as revealing the internal behaviour of the
simulation session by extracting performance metrics. The evaluation of the parallel
version in Subsection 3.3 showed that the execution of the simulation session can
be sped up by 2.66 times compared to the sequential version. Thus, DISSECT-CF-
FaaS is able to meet the expectations of the research community towards experiment
various FaaS workloads and scenarios in a versatile environment.
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5 Future works

We have identified three future research directions, namely, first we have to investi-
gate other simulators that could use different trace formats, and exploit our genera-
tor to shift the generated realistic trace to these formats. To demonstrate to which
extent our introduced approach can support these formats as well as to introduce
modifications to adapt with them.

Second we hope to introduce other triggers such as the http trigger that enable
DISSECT-CF-FaaS to interact and communicate with real applications to support
other serverless scenarios such as dependent tasks in microservices applications. Fi-
nally we aim at focusing on the simulator’s second most heavily used component
in DISSECT-CF: the unified resource-sharing subsystem. This subsystem has high
compute complexity, and its parallelisation will enable our model to rapid estimation
of resource sharing on even larger scale-distributed systems. Applying these will lead
to the seamless transition of the entire DISSECT-CF-FaaS into simulating billions
of service invocations and their interactions in serverless computing situations.
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