
UNIVERSITY OF MISKOLC

FACULTY OF MECHANICAL ENGINEERING AND
INFORMATICS

A Simulation Environment for Modelling and
Analysis of Scientific Workflows

PhD dissertation

Author:
ALI AL-HABOOBI

MSc in Advanced Computer Science

“József Hatvany” DOCTORAL SCHOOL OF INFORMATION SCIENCE,
ENGINEERING AND TECHNOLOGY

Head of Doctoral School: Prof. Dr. Jenő SZIGETI

Academic Supervisor: Prof. Dr. Gabor KECSKEMETI

Miskolc
2024

Contents

1 Introduction 1
1.1 Problem Statement . 2

2 Simulation-based analysis of Internal IaaS behavioural knowledge for a Work-
flow Management System 3
2.1 The DISSECT-CF Workflow Management System 3

2.1.1 Auto-Scaling Mechanism . 3
2.1.2 A simple Model of FaaS Simulation 4
2.1.3 DEWE v3 . 4
2.1.4 The Serverless Simulation Implementation 6

2.2 Evaluation . 6
2.2.1 Utilisation of Internal Cloud Infrastructure Details 7
2.2.2 Simulation Times . 9
2.2.3 Simulation versus Execution . 10
2.2.4 Auto-Scaling Mechanism . 12
2.2.5 Scheduling Experiments . 14
2.2.6 The FaaS Workflow Experiments . 15
2.2.7 Real-World Experiments . 15
2.2.8 Simulation Experiments . 16

3 Structure-Aware Scheduling for Deadline-Constrained Scientific Workflows in
the Cloud 18
3.1 The Proposed Scheduling Algorithm . 18
3.2 Evaluation . 21

4 Summary 25
4.1 Contributions to Science . 26
4.2 Author’s Publications Related to the Dissertation 27
4.3 Other Publications . 28

References 28

2

1 Introduction

From the field of manufacturing and business processes, the workflow [24] has evolved
into a broader concept that points to a structured design of process flows. The complexity
of task execution can vary from sequential execution to highly parallel execution with
many inputs from different tasks. Workflows [27] are commonly used in several scientific
fields, such as Montage [13] in astronomy, CyberShake [10] in physics and LIGO [1]
in astrophysics, to describe complex computational problems and capture data between
them. In the scientific community, a scientific workflow consists of many dependent tasks
with complex precedence constraints between them. The scientific workflow consists of
hundreds or thousands of interdependent computational tasks.

Scientific workflows can be run on distributed computing platforms such as High-
Performance Computing (HPC)[12, 28], Grid[5, 23] and Cloud[20]. These platforms offer
significant advantages in terms of computing power and scalability, making them ideal for
running large-scale scientific applications. However, running workflows on such platforms
can be complex and challenging. Workflow management systems (WMS) aim at answer-
ing these challenges. WMSs such as Pegasus[9], Kepler[4], and DEWE v3[14] provide
a way to manage and handle the execution of workflows through resource selection, job
scheduling, appropriate resource allocation and data management. Overall, WMS can sig-
nificantly improve the efficiency and effectiveness of workflow execution on distributed
computing platforms and allow researchers to focus on their scientific goals rather than
the technical details of managing and executing their workflows.

Cloud computing is an evolving approach to computing that allows users to access
resources based on a usage-based payment model, with the system dynamically adapting
to different workload demands. Cloud computing can play an important role in addressing
the challenges of scientific workflow applications due to its scalability, reliability and cost-
effectiveness.

Scientific workflows have been an increasingly important research area of distributed
systems (such as cloud computing). Researchers have shown an increased interest in the
automated processing of scientific applications such as workflows. Function as a Service
(FaaS) has recently emerged as a novel distributed systems platform for processing non-
interactive applications. FaaS has limitations in resource use (e.g., CPU and RAM) and
state management. Despite these, several studies [14, 17, 18] have already demonstrated
using FaaS for processing scientific workflows. DEWE v3 [14] can process scientific work-
flows using AWS Lambda and Google Cloud Functions (GCF). DEWE v3 has three different
execution modes: a traditional cluster, a FaaS (serverless), and a hybrid mode (combining
the previous two modes).

Conducting real-world experiments for large-scale workflows is challenging. Especially
when a statistically significant number of experimental results are required to inform us
about possible WMS improvements, this limits the scope of WMS research and develop-
ment. Therefore, researchers can run a relatively small number of scenarios to substantiate
research with real measurements. Moreover, it is very expensive to reproduce experimen-
tal results in different real-world scenarios due to resource costs. Therefore, researchers
often turn to simulations. The use of computing simulations has become widespread in
developing novel techniques, conducting comparative analyses, and understanding and
improving the performance of workflow management systems.

Workflow scheduling is an important area for WMS. It plays a critical role in the optimal
allocation of resources to all tasks. The problem of scheduling in distributed environments
is known to be NP-hard [30]. Therefore, no algorithm can achieve an optimal solution
in polynomial time, while some algorithms can give approximate results in polynomial
time. When scheduling scientific workflows in the cloud, the deadline constraint refers to
the time frame set by the user within which each task must be completed. The scheduling
algorithm must consider these deadlines and guarantee that the workflow will be executed
within the specified time constraints. Failure to meet these deadlines may result in the
workflow being considered failed or incomplete, impacting scheduling algorithms that do
not meet the user’s deadline.

1.1 Problem Statement

A simulation is an alternative approach to a real experiment that can help evaluate the per-
formance of workflow management systems (WMS) and optimise workflow management
techniques. Although several workflow simulators are available today, they [6, 20, 21]
are often user-oriented and treat the cloud as a black box. Other workflow simulators [7,
11, 29] cannot meet the requirements of workflow management systems. These require-
ments include information on virtual machine creation, placement policies, and physical
machine schedulers. Unfortunately, this behaviour prevents evaluating the infrastructure-
level impact of the various decisions made by WMSs. In contrast to the above problems,
DISSECT-CF [16] is a cloud simulator that captures the internal details of cloud infras-
tructures. It can be used to develop a more informed WMS simulation. It also provides
information on virtual machine creation, placement, and physical machine schedulers.
However, DISSECT-CF alone does not provide workflow support.

Function as a Service (FaaS) has recently emerged as a novel distributed systems plat-
form for processing non-interactive applications. FaaS has limitations in resource use (e.g.,
CPU and RAM) and state management. Despite these, several studies [14, 17, 18] have
already demonstrated using FaaS for processing scientific workflows. The workflow man-
agement system DEWE v3 executes scientific workflows using FaaS but often suffers from
duplicate data transfers while using FaaS. This behaviour is due to handling intermediate
data dependency files after and before each function invocation. These data files could fill
the temporary storage of the function environment.

Although cloud computing resources can help scientific workflow applications, the
problem is finding scheduling algorithms that can optimise the execution of workflows.
In the cloud, the cost of executing such workflows depends not only on the number of
virtual machines (VMs) but also on the type of these VMs [25]. Selecting the appropriate
type and the exact number of VMs is a major challenge for researchers, as tasks in work-
flow applications are distributed very differently [15]. Algorithms must decide when to
provision or de-provision VMs depending on workflow requirements without violating the
user’s deadline.

2

2 Simulation-based analysis of Internal IaaS behavioural
knowledge for a Workflow Management System

2.1 The DISSECT-CF Workflow Management System

We implemented our WMS simulation approach on DISSECT-CF, a simulator focusing on
internal infrastructure.

2.1.1 Auto-Scaling Mechanism

We integrated the DISSECT-CF-WMS simulator with the existing auto-scaling mechanisms
of DISSECT-CF. We have adapted DISSECT-CF-WMS to provide auto-scaling for a workflow
execution environment. We have considered the delay in provisioning a VM in the cloud,
which can significantly impact simulation results. After a virtual machine is requested, it
is not immediately available for use. The provisioning delay of a VM is the time it takes
to be provisioned and booted on a physical host. This enables analysis of the dynamic
provisioning of resources while running scientific workflows in the cloud to overcome
issues of under or over-utilisation of resources. The auto-scaler behind our WMS extension
provides dynamic provisioning and de-provisioning of the number of VM instances based
on user-selected criteria.

We have integrated our WMS into the virtual infrastructure of an auto-scaler. The auto-
scaler can automatically scale up or down resources based on the auto-scaling approach
to better meet the demands of newly arrived tasks. We modified the JobRunner compo-
nent to accommodate data transfers. Since the auto-scaled virtual infrastructure creates
and destroys VMs at will, the memory of these VMs is volatile and cannot be used for
long-term storage of data dependencies during workflow execution. Therefore, our ap-
proach places data files in a central data storage for staging data to and from a workflow.
DISSECT-CF provides three basic mechanisms for auto-scaling. When configuring work-
flow experiments, the auto-scalers can be selected, and their effects on the WMS analysed.

Auto-scaling provides a dynamic and scalable way of scheduling multiple workflows
simultaneously with different virtual machine images to facilitate the execution of several
tasks from various workflow applications. Users can develop novel auto-scaling policies
by extending the base VirtualInfrastructure class to override its methods, such as the three
mechanism classes (PoolingVI, VMCreationPriorityVI, and ThresholdBasedVI), as shown in
Figure 1. Users can develop an approach to store their intermediate data on the VMs used
for execution, but the data on a particular VM should be moved to central storage when
a mechanism needs to de-provision that VM. Some users require a dynamic provisioning
technique for developing some workflow scheduling algorithms that need this technique.
This concept applies to algorithms that use either static or dynamic resource provisioning.
This technology allows algorithms to dynamically adjust the number and type of virtual
machines used to schedule jobs while workflows are running.

DISSECT-CF-WMS can query the CPU utilisation for any period during workflow exe-
cution to identify the current VM utilisation pattern. Therefore, this behaviour results in
either de-provisioning some unused VMs or provisioning VMs when the current VM utili-
sation is high, e.g. when the three auto-scaling mechanisms use this feature (VM request,
VM termination). More mechanisms could be added to reflect the environment in real life.

3

Figure 1: The overview of the DISSECT-CF-WMS simulator integrated with the auto-scaling
mechanisms of the DISSECT-CF simulator.

2.1.2 A simple Model of FaaS Simulation

To develop a simple serverless workflow simulation (AWS Lambda) for executing scientific
workflows, we chose DEWE v3 due to two factors: (i) it is an open-source WMS, and (ii)
it already has the implementation of Lambda as its serverless execution environment. To
understand our simulation model, we briefly overview DEWE v3’s original behaviour in
the following Section 2.1.3.

2.1.3 DEWE v3

DEWE v3 runs a workflow engine on a virtual machine. When using AWS Lambda, DEWE
v3 reads the workflow definition from an XML file and loads the job binaries and input files
into the Amazon S3 object storage based on the information it contains. Since Lambda has
a temporary storage limit of 500 MB in the execution environment, some jobs cannot be
sent to Lambda due to their size. Jobs that are ready for execution (i.e., according to their
precedence constraints) are scheduled into Amazon Kinesis shards.

Each shard acts as an independent queue that can send tasks to its own function in-
stance. The Kinesis batch size determines the number of tasks a function can process in
a single invocation. This can be configured before the workflow is executed. Then, the
Lambda function pulls a batch of tasks from its own shard to execute them in sequence in
a single function invocation. The number of running function instances and the associated
kinesis shards can also be configured before the workflow is run and directly influences
the maximum degree of parallelism that the execution of the workflow can have.

When a function instance starts processing a job, DEWE v3 downloads its input data
from Amazon S3. When the job is finished processing, it also uploads its output data to S3
so that other jobs in the workflow can be scheduled when its input data is ready. This can
result in a large amount of transfer-dependent data during workflow execution. The trans-
fers occur between S3 and the FaaS environment and directly increase the communication
costs of the workflow. Figure 2 illustrates the steps of the original scheduling algorithm of
DEWE v3.

4

Figure 2: The scheduling steps of the original algorithm with a sample workflow example.

To avoid these transfers, we have focused on improving the scheduling algorithm of
DEWE v3, which uses the Lambda platform as the execution environment. To reduce data
transfers, we have considered scheduling not only the jobs that are currently ready but also
their successors so that they can be executed sequentially in a single function instance. The
following paragraph explains our changes in detail.

To improve the data transfers of DEWE v3, we have transferred some behaviours of the
workflow management system to Amazon’s Kinesis shards and Lambdas. We have taken
advantage of the sequencing behaviour of Shards and Lambdas. First, some jobs and
their successors are scheduled for the same shard and function instance. The order of the
schedule in the shard corresponds to the order of the jobs in the workflow as specified by
the precedence constraints for jobs. In addition, we used the parameter SequenceNumber-
ForOrdering, which guarantees the order of jobs on a shard1. This allows successive jobs to
be executed in the same Lambda invocation without transferring output and input if these
transfers are only used between those jobs. This behaviour is due to Lambda pulling a
batch of jobs based on the batch size of Kinesis to execute them sequentially in one invoca-
tion. When the first job in the batch begins processing, it reads its input data from Amazon
S3. Then, intermediate data (output data) is uploaded to S3, which other jobs outside
batch jobs might need. Finally, Lambda also finishes processing the batch by uploading the
final data files to S3. Figure 3 illustrates the steps of the improved scheduling algorithm
of DEWE v3.

Figure 3: The scheduling steps of the improved algorithm with a sample workflow example.

1https://docs.aws.amazon.com/kinesis/latest/APIReference/API_PutRecord.html

5

https://docs.aws.amazon.com/kinesis/latest/APIReference/API_PutRecord.html

2.1.4 The Serverless Simulation Implementation

We implemented the Function as a Service (FaaS) behaviour of Amazon Lambda to repli-
cate our real-world experiments of serverless execution on DEWE v3. We have imple-
mented the behaviour of the original and improved algorithms of DEWE v3, which we
explained them in the previous section. First, we implemented Lambda memory sizes of
512, 1024, 1536, 2048 and 3008 MB. We assumed that 512, 1024, 1536, 2048, and 3008
memory sizes have 1, 2, 3, 4, and 5 CPU cores, respectively. We also considered each
function instance as a virtual machine. Second, we limited the Lambda execution time
to a maximum of 900 seconds (15 minutes). Thirdly, we implemented the batch size of
the Lambda function, i.e. the number of jobs that are executed for each single function
invocation. Fourthly, we implemented the number of Kinesis shards so that each shard is
a specific queue for each function instance. The number of function instances depends on
the number of Kinesis shards during workflow execution. Finally, we implemented Ama-
zon S3, modelled as central data storage and used to stage data in and out for a workflow.

We have developed a WMS simulation to run workflows on the FaaS and IaaS simula-
tions. We used the concept of virtual machines to run Lambda invocations on them with
the Lambda constraints: Memory Limit (CPU cores), Maximum Execution Duration Limit
and Temporary Storage Limit (500 MB storage space). In addition, we used the batch
size to set the maximum number of jobs that Lambda can pull from the shard to execute
in a single invocation. We added a feature to calculate queuing delays that occur when
scheduled jobs in Lambda invocations to shards are waiting to be processed. We have
added more features to calculate execution costs, total power consumption, and average
utilisation of function instances.

We have developed a simple serverless workflow simulation (AWS Lambda) for execut-
ing scientific workflows with different scenarios. Our approach provides the expected time
and cost of executing scientific workflows on FaaS, IaaS, and a hybrid approach combining
both. The scientific community can compare the execution time and cost of workflows on
IaaS, FaaS, and the hybrid approach with different configurations in the simulation. The
scalability of our approach can simulate thousands of concurrent function invocations that
are dynamically allocated depending on the workflow demand changes and according to
the users’ requirements and preferences. Our approach provides the ability to accommo-
date hybrid workloads using FaaS and IaaS in a single simulation. If the function invo-
cation fails to execute a batch of jobs, these jobs are sent to IaaS to be executed on the
available resource (VM).

2.2 Evaluation

We demonstrate the capabilities of DISSECT-CF-WMS using the following evaluation ex-
periments. First, we evaluated how the pre-existing three physical machine schedulers
influence the energy consumption of various workflows. Second, we compared the sim-
ulation of DISSECT-CF-WMS with WorkflowSim regarding simulation accuracy and per-
formance. Third, we have shown the advantages of using the auto-scaling mechanisms
of DISSECT-CF-WMS to optimise makespan, energy consumption and VM utilisation over
static provisioning. Finally, we evaluated the three built-in scheduling algorithms with
four popular workflow applications in terms of energy consumption. We also evaluated
our serverless simulation to replicate our real-world experiments of serverless execution

6

on DEWE v3. The simulations were run on a laptop with 12 CPUs of Intel Core i7-8750H
CPU @ 2.20GHz, 16GB RAM and 119GB SSD.

2.2.1 Utilisation of Internal Cloud Infrastructure Details

We configured a virtual infrastructure with a static number of VMs (in a single experiment,
we set the number of VMs between 30 and 100; all VMs were homogeneous regarding the
number of CPU cores and memory). We used FirstFitScheduler as a VM scheduler and
the DataDependency algorithm as a task scheduler on VMs. The FirstFitScheduler is a
VM scheduler that implements one of the simplest VM schedulers. It places each VM at
the first PM that would actually accept it. We ran each static virtual infrastructure on the
cloud mentioned above, but we replaced the schedulers for the physical machines with the
three offered by the simulator: (i) AlwaysOnMachines (AOM), (ii) SchedulingDependent-
Machines (SDM) and (iii) MultiPMController (MPMC). First, AlwaysOnMachines ensures
that all PMs are controlled to always remain on. Second, SchedulingDependentMachines
increases or decreases the power of the PM set according to the requirements of the VM
scheduler (this scheduler changes the power of the PM set by one PM at a time). Finally,
MultiPMController is very similar to SDM but immediately increases the number of ma-
chines needed to run the current infrastructure (i.e. if four newly powered-on PMs are
needed to host the current demand of VMs, all four are powered on immediately). We set
a linear model for DISSECT-CF-WMS, which assumes that power consumption depends on
the degree of use of the CPU, ranging from an idle power consumption of 296 watts to
a maximum power consumption of 493 watts. We recorded the power consumption for
DISSECT-CF-WMS from the start time of the first task to the completion time of the last
task of the workflow.

Figure 13 shows the collected energy consumption for each experiment of DISSECT-
CF-WMS when running 1000 tasks each of the Montage, CyberShake, Sipht and LIGO
workflows. With a small number of 30 VMs (4 cores) using only slightly less than 4% of the
total infrastructure, the MPMC and SDM schedulers have much better energy consumption
than the AOM scheduler (i.e., they consume more than 11 times, 15 times, 7 times, and
8 times of energy for the same computation of the Montage, CyberShake, Sipht and LIGO
workflows, respectively). This pattern repeats (with smaller advantages) for almost all
larger VM numbers, except when the VMs use the entire infrastructure. In all cases, AOM’s
strategy of switching on all machines regardless of workload pays off, as it makes all
VMs available for workflow at the earliest opportunity. In contrast, the SDM and MPMC
schedulers achieve a large reduction in energy consumption, as SDM’s strategy of switching
on all machines in the data centre one by one (at a time) results in a long overall simulation
time due to the provisioning delay, as shown in Figure 5. The MPMC policy, on the other
hand, immediately switches on the number of machines needed for the current operation
of the infrastructure. Static VM allocation policies for workflows are unsuitable for data
centres using a PM scheduler such as SDM.

First, AOM has the same energy consumption patterns for all workflow applications
because it never considers switching off machines, and thus it results in energy consump-
tion for the entire infrastructure, even for the PMs that do not host VMs. Second, all PM
schedulers have the same energy consumption when using the entire infrastructure, as
they use all machines. Moreover, the MPMC and SDM schedulers have similar patterns

7

0

200

400

600

800

1000

1200

1400

1600

30 VMs (4 cores)
32GiB of RAM

40 VMs (8 cores)
64GiB of RAM

50 VMs (16 cores)
128GiB of RAM

100 VMs (32 cores)
256GiB of RAM

P
o

w
e

r
C

o
n

su
m

p
ti

o
n

 (
W

h
)

Number of VMs

AlwaysOnMachines

MultiPMController

SchedulingDependentMachines

((a)) Montage

0

300

600

900

1200

1500

1800

2100

30 VMs (4 cores)
32GiB of RAM

40 VMs (8 cores)
64GiB of RAM

50 VMs (16 cores)
128GiB of RAM

100 VMs (32 cores)
256GiB of RAM

P
o

w
e

r
C

o
n

su
m

p
ti

o
n

 (
W

h
)

Number of VMs

AlwaysOnMachines

MultiPMController

SchedulingDependentMachines

((b)) CyberShake

0

1500

3000

4500

6000

7500

9000

10500

12000

13500

15000

30 VMs (4 cores)
32GiB of RAM

40 VMs (8 cores)
64GiB of RAM

50 VMs (16 cores)
128GiB of RAM

100 VMs (32 cores)
256GiB of RAM

P
o

w
e

r
C

o
n

su
m

p
ti

o
n

 (
W

h
)

Number of VMs

AlwaysOnMachines

MultiPMController

SchedulingDependentMachines

((c)) Sipht

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

30 VMs (4 cores)
32GiB of RAM

40 VMs (8 cores)
64GiB of RAM

50 VMs (16 cores)
128GiB of RAM

100 VMs (32 cores)
256GiB of RAM

P
o

w
e

r
C

o
n

su
m

p
ti

o
n

 (
W

h
)

Number of VMs

AlwaysOnMachines

MultiPMController

SchedulingDependentMachines

((d)) LIGO

Figure 4: The total power consumption of PM schedulers for four scientific applications on
DISSECT-CF-WMS with different numbers of VMs.

for the Montage and CyberShake applications. However, the Sipht and LIGO applications
have reduced energy consumption by increasing the number of VMs because they have
not used all the statically created VMs at all times, except for the Sipht experiment with
100 VMs, which only uses a maximum utilisation of VMs of 70% because Sipht has some
tasks with significant differences in their running times so that the time difference can be
as much as 19×. In addition, In the second phase of Sipht, there are 64 jobs, while the
number of VMs is 100. This results in idle time in other resources and scheduling gaps
between tasks in the workflow, leading to the highest energy consumption. This pattern is
repeated in LIGO’s experiments, but the time difference can be as high as 3×, resulting in
lower energy consumption.

If we compare the experiments from the cloud users’ point of view, the results show
the advantage of the AOM and MPMC schedulers. As our base WMS waits for all statically
allocated VMs to start up, the VMs behind our workflows can start faster thanks to AOM’s
always-ready physical machines. This reduces VM provisioning time, as shown in Figure 5.
Note that despite AOM’s significant energy penalty, the improvements in provisioning time
are equally significant. The weakness of the SDM strategy is also evident in the waiting

8

time. Our WMS has to wait significantly longer for the requested VMs to be ready before
assigning tasks to them. The waiting time difference can be as high as 17× as shown in
Figure 5. The differences are mainly because SDM is very slow in starting machines. As
a result, the execution of the entire workflow is delayed with fewer physical machines
turned on (but those few are turned on for a significantly longer time, as shown by the
provisioning times in Figure 5). These differences show that switching on all PMs required
for the workflow is advisable for dedicated private cloud infrastructures. This way, we get
the results back the fastest and also do not consume too much energy during the runtime
of the workflow, like the MPMC scheduler. Thus, DISSECT-CF-WMS can offer insight for
analysing different workflow execution scenarios and instrumenting the execution envi-
ronment to gain insight into the impact of the chosen infrastructure configuration.

119 119 119 119119 119 119 119

297

564

920

2078

0

500

1000

1500

2000

30 VMs (4 cores)
32GiB of RAM

40 VMs (8 cores)
64GiB of RAM

50 VMs (16 cores)
128GiB of RAM

100 VMs (32 cores)
256GiB of RAM

Th
e

 p
ro

vi
si

o
n

in
g

ti
m

e
 o

f
V

M
s

(s
e

c)

Number of VMs

AlwaysOnMachines

MultiPMController

SchedulingDependentMachines

Figure 5: The provisioning time of VMs for three PM schedulers on DISSECT-CF-WMS with
different numbers of VMs.

2.2.2 Simulation Times

Now that we have demonstrated the benefits that a WMS simulation extension can provide
for the evaluation of WMS behaviour, we move on to the evaluation of the core functions
of the WMS. We have compared the performance and accuracy of the simulation results
of our system with version 1.1.0 of WorkflowSim, using the same laptop as mentioned
above. We present the results of the simulation in this section. DISSECT-CF-WMS does not
use logging mechanisms, but we printed the execution details as messages. To ensure a fair
comparison, WorkflowSim’s logging mechanisms were disabled. We ran two experiments,
one in each simulator, with exactly the same settings. First, we ensured the simulated
data centres had the same characteristics. Again, we used the same cloud mentioned
earlier. We requested a static VM configuration that occupied the entire data centre: 100
virtual machines with 32 cores each. For our WMS, we used FirstFitScheduler as the VM

9

scheduler, AOM as the PM scheduler and DataDependency as the scheduling algorithm.
For WorkflowSim, we used DATA as the scheduling algorithm, LOCAL as the local file
system for storing the data dependency files and the time-shared model as the policy for
VMs and jobs. We have evaluated both simulators with synthetically generated Montage
workflows of different sizes (the number of tasks ranged from 1K to 15K).

We compared the total execution times reported by both simulators for all the work-
flows. We have obtained very similar execution times in both simulators. The difference
between the two had a mean absolute percentage error (MAPE) of less than 0.16%. This
difference in execution time is because our workflow scheduler in DISSECT-CF-WMS as-
signs tasks to VMs slightly differently than the approach taken by WorkflowSim. As a
result, the dependent data’s transfer time may differ. Despite the accurate and more de-
tailed simulation (i.e., we provide more insight into the internals of the data centre behind
the workflow), DISSECT-CF-WMS delivers the results in significantly less time. Figure 6
illustrates the performance differences between the simulators.

0.01

0.1

1

10

100

1000

10000

1000 3000 5000 7000 9000 11000 13000 15000

Se
co

n
d

s
(l

o
ga

ri
th

m
ic

 s
ca

le
)

Number of workflow tasks

DISSECT-CF-WMS

WorkflowSim

Figure 6: The simulation time of DISSECT-CF-WMS and WorkflowSim simulators with differ-
ent numbers of tasks in Montage workflows.

We see that our measurements of the real duration of the simulation show that the
performance advantage of DISSECT-CF-WMS is between 18 and 295× (i.e., we can get to
the same quality results at most two orders of magnitude faster). Moreover, WRENCH took
13 minutes to simulate a Montage workflow with 10,000 tasks[8], while DISSECT-CF-WMS
took about 5 seconds to simulate the execution of the same workflow. WorkflowSim builds
on CloudSim, which uses a process-based paradigm where each entity in the system has
its own thread, resulting in poor scalability as the number of entities in the system grows
[22]. DISSECT-CF, however, requires only one simulation thread (instead of one thread
per entity). As a result, our WMS outperforms WorkflowSim, as shown in Figure 6.

2.2.3 Simulation versus Execution

The previous simulation experiment demonstrated the performance and accuracy of our
system’s simulation results to WorkflowSim. We compared our simulation result to an ex-
isting execution of a real-world Pegasus workflow (Montage-2.0) on the AWS-m5.xlarge

10

platform to validate the simulation environment [8]. The Montage workflow contains
1240 tasks, and we compared the real execution of five traces to the simulated one.
We replicated the identical execution environment, which performs similarly to AWS-
m5.xlarge instances. The execution environment includes a submission node that runs
Pegasus and DAGMan and four worker nodes (4 cores per node with a shared file system).
In these instances, the bandwidth between the data node and the submit node was 0.44
Gbps, while the bandwidth between the submit and worker nodes was 0.74 Gbps and 1.24
Gbps, respectively. Figure 7 depicts Gantt charts of the real execution, whereas Figure 8
depicts the simulated execution. On the vertical axis, task executions are shown as a line
segment on the horizontal time axis, covering the time interval between the task’s start
and end times. Different kinds of tasks (executables) are indicated in different colours.
We have tried to assign the same colours to these task types as in the real execution. The
average time for real-world execution was 2911.8 seconds, whereas the average time for
simulated execution was 2980 seconds. The results of the experiment demonstrate that
the scheduling and execution of the simulated workflow are similar to the actual workflow
execution. The runtime difference of 68.2 seconds is due to the errors of the prediction ser-
vice utilised for choosing the activity and file transfer execution timings in the simulation,
which inaccuracy is within a 3% range.

Figure 7: Task execution Gantt chart for
sample real-world (“pegasus”) execution
of the Montage-2.0 workflow on the AWS-
m5.xlarge platform [8].

Figure 8: Task execution Gantt chart
for simulated Dissect-cf-WMS executions
of the Montage-2.0 workflow on the AWS-
m5.xlarge platform.

All tasks of the same type in this workflow have the same priority and are independent.
For example, the shapes of the yellow areas differ in the two figures. The implementation-
based behaviour of the workflow scheduler explains these differences. During the execu-

11

tion of the workflow, it is often possible to select several ready tasks for execution, e.g.,
groups of independent tasks on the same workflow level. If the number of computing
resources, n, is less than the number of ready tasks, the scheduler immediately executes
n-ready tasks. In most WMSs, these tasks are selected from the first n tasks returned dur-
ing iteration through the data structures in which the task objects are placed. To create
an identical replica of a WMS, you would need to develop and use the same data struc-
tures as the real implementation. This can be tedious or impossible depending on the data
structures, languages, and/or libraries used. In this Pegasus case study, the real DAGMan
scheduler uses a custom priority list to hold ready tasks, while our simulation version stores
workflow tasks in a Java hashmap indexed by task string IDs. The consequence is that the
real scheduler, when selecting the first n-ready tasks, generally selects different tasks than
the simulated version of the scheduler. The differences that can be seen in Figure 7 and 8
can be attributed to this factor.

2.2.4 Auto-Scaling Mechanism

We focused on demonstrating the benefits of the auto-scaling mechanisms behind DISSECT-
CF-WMS. We re-ran our large-scale (15K tasks) montage workflow. We used the same cloud
we mentioned earlier. We compared the dynamic VM allocation strategies of the different
auto-scalers with the completely static virtual infrastructure allocation (thus allowing a
comparison to the previously acquired statically allocated Workflowsim Scenario). In the
static scenario (dedicated cluster), we set up 50 virtual machines with two cores each be-
fore the workflow executes and kept all VMs until the end. For this experiment, we used
FirstFitScheduler as the VM scheduler, MPMC as the PM scheduler, and the DataDepen-
dency algorithm as the task scheduler. DISSECT-CF also simulates a single repository for
a specific type of virtual appliance from which all VMs can be derived. The virtual appli-
ance repository can significantly reduce the time required to create virtual machines. In
this experiment, we modified the Pooling VI to ensure the efficiency of the auto-scaling
mechanism. First, we adjusted the pooling VI to have 50 VMs with two cores each at
the beginning of the workflow execution since Montage has 12,495 tasks in the first and
second phases. Second, we set the threshold for pooling VI to 80 VMs to reduce the cost
while maintaining the makespan. Finally, the number of VMs is reduced to two if the
single-threaded tasks of the Montage workflow are executed sequentially. In this case,
one VM is used while the second is idle because Pooling VI is designed to have a certain
number of completely unused VMs available for executable jobs.

Figure 9(a) shows the results of executing the workflow. Pooling VI has the shortest
total execution time compared to a dedicated cluster and the other auto-scaled virtual
infrastructures. In terms of VM resource utilisation, Figure 9(b) also shows that pooling
VI has the best average VM utilisation across all mechanisms and static 50 VMs. This
is because pooling VI has been configured to always keep one VM ready in the virtual
infrastructure (so this is a compromise between the fully static and dynamic scenarios
that the others implement). It is also worth noting that Pooling VI follows an almost static
allocation of VMs, while the other two approaches frequently destroy and recreate VMs (in
fact, they only reuse VMs for about six tasks before discarding them). These approaches
thus significantly increase execution time, as most workflow tasks initially have no VMs to
execute and must wait for their respective VMs to come to life. It should also be noted that

12

465

1298
1261

472

0

200

400

600

800

1000

1200

1400

PoolingVI ThresholdBasedVI VMCreationPriorityVI Static 50 VMs

M
ak

e
sp

an
 (

m
in

)

Auto-scaling Mechanisms with Static Allocation of VMs

((a)) Makespan

0

20

40

60

80

100

0

4
4

8
8

1
3
2

1
7
6

2
2
0

2
6
4

3
0
8

3
5
2

3
9
6

4
4
0

4
8
4

5
2
8

5
7
2

6
1
6

6
6
0

7
0
4

7
4
8

7
9
2

8
3
6

8
8
0

9
2
4

9
6
8

1
0
1
2

1
0
5
6

1
1
0
0

1
1
4
4

1
1
8
8

1
2
3
2

1
2
7
6

R
e

so
u

rc
e

 u
ti

li
za

ti
o

n
 (

%
)

Makespan (min)

PoolingVI ThresholdBasedVI VMCreationPriorityVI Static 50 VMs

((b)) Resource consumption patterns

234

267 269

400

0

75

150

225

300

375

450

PoolingVI ThresholdBasedVI VMCreationPriorityVI Static 50 VMs

Ti
m

e
 (

h
)

Auto-scaling Mechanisms with Static Allocation of VMs

((c)) The total accounted for hours of VMs

0

20

40

60

80

0

4
4

8
8

1
3
2

1
7
6

2
2
0

2
6
4

3
0
8

3
5
2

3
9
6

4
4
0

4
8
4

5
2
8

5
7
2

6
1
6

6
6
0

7
0
4

7
4
8

7
9
2

8
3
6

8
8
0

9
2
4

9
6
8

1
0
1
2

1
0
5
6

1
1
0
0

1
1
4
4

1
1
8
8

1
2
3
2

1
2
7
6

V
M

s
cr

e
at

io
n

 (
n

u
m

)

Makespan (min)

PoolingVI

ThresholdBasedVI

VMCreationPriorityVI

((d)) The VMs creation patterns

Figure 9: The experiments of auto-scaling mechanisms and static 50 VMs with a large-scale
Montage workflow (15000 tasks).

the additional transfers required for staging data also lengthen execution, unlike the static
VM allocation approach. In addition, the VMs access the same central storage to read and
write the data dependency files. Montage is a data-intensive scientific workflow. However,
the network bandwidth is fast enough to avoid bottlenecking the tasks that access the
same central storage to store and retrieve the data files. Montage data sizes range from 4
to 1031 MB, with most being 4.2 MB, but a few are over 4.2 MB.

A concept similar to Amazon EC2 is being considered, where VMs are rented on de-
mand and charged hourly, with partial hours rounded up to the next full hour. Pooling
VI reduced total billed hours by 41.5% compared to the dedicated cluster with 50 VMs,
as shown in Figure 9(c). The Montage workflow consists of six single-threaded tasks exe-
cuted sequentially with a total execution time of about 4.5 hours. As a result, when VMs
were statically allocated, only one VM was used for 4.5 hours, while the other VMs were
idle due to the single-thread tasks. Another consideration was related to Pooling VI, which
describes the ability of mechanisms to allocate many VMs efficiently (see Figure 9(d)).
Static provisioning is inefficient when the number of VMs remains constant over time. In
this case, the scheduling algorithm does not provide a way to increase or decrease the

13

23.99

52.98 53.27

135

0

20

40

60

80

100

120

140

PoolingVI ThresholdBasedVI VMCreationPriorityVI Static 50 VMs

To
ta

l p
o

w
e

r
co

n
su

m
p

ti
o

n
 (

kW
h

)

Auto-scaling Mechanisms with Static Allocation of VMs

((a)) Total power consumption (kWh)

119

81

66

50

0

20

40

60

80

100

120

PoolingVI ThresholdBasedVI VMCreationPriorityVI Static 50 VMs

N
u

m
b

e
r

o
f

V
M

s

Auto-scaling Mechanisms with Static Allocation of VMs

((b)) Total accounted for the number of VMs
(2 cores each)

Figure 10: The experiments of auto-scaling mechanisms and static 50 VMs with a large-scale
Montage workflow (15000 tasks).

number of VMs in response to a dynamic workload of workflows. In Figure 10(a), Pool-
ing VI reduced energy consumption by more than 82% compared to static allocation. In
addition, Pooling VI reduced energy consumption by about 54% compared to the other
auto-scaling mechanisms. Although Pooling VI has used the most significant total number
of VMs compared to static allocation and the other mechanisms (see Figure 10(b)), it has
the lowest total number of hours billed, as shown in Figure 9(c).

2.2.5 Scheduling Experiments

In this experiment, we evaluate the energy consumption of three scheduling algorithms on
DISSECT-CF-WMS without considering data transfers between jobs. We focused on energy
consumption, which is one of the most important new objectives to optimise in the work-
flow scheduling area. Users can create algorithms for multi-objective scheduling optimi-
sation by considering energy consumption alongside traditional cost and time objectives.
Multi-objective optimisation is a hot research area in workflow scheduling. We tested the
algorithms on the same cloud that we defined earlier. We tested the three algorithms with
the workflow applications on ten VMs. The VMs were heterogeneous regarding the num-
ber of CPU cores, ranging from 1 to 10, with the first VM having one core and the last VM
having 10 cores. We collected the energy consumption of DISSECT-CF-WMS as shown in
Figure 11. We specifically note the need to collect energy consumption data for scheduling
algorithms to evaluate their impact on energy consumption. We used the MPMC sched-
uler of the infrastructure and FirstFitScheduler as the VM scheduler. The algorithm HEFT
has the best energy consumption over the other algorithms for all workflow applications
except CyberShake, where MaxMin reduced energy consumption by 8% over HEFT. HEFT
reduced the energy consumption of LIGO by 45% and 50% over MaxMin and Minmin,
respectively. Also, HEFT has reduced the energy consumption of Sipht by 9% and 10%
compared to MaxMin and MinMin, respectively.

14

0

500

1000

1500

2000

2500

3000

3500

Montage-1000 CyberShake-1000 Sipht-1000 LIGO-1000

P
o

w
e

r
C

o
n

su
m

p
ti

o
n

 (
W

h
)

Workflow applicationsMaxMin MinMin HEFT

Figure 11: The total power consumption of four workflow applications with three scheduling
algorithms of DISSECT-CF-WMS on heterogeneous VMs.

2.2.6 The FaaS Workflow Experiments

The FaaS simulation model aims to reproduce what we observed in our real-world exper-
iments of serverless execution on DEWE v3. Also, we obtain the same results from the
simulation as from the real-world experiments. Real-world experiments are good to start
with, but they cost so much money, and we cannot scale them up. However, we have
implemented the original and improved algorithms of DEWE v3, which we explained in
Sections 2.1.3 and 2.1.4.

2.2.7 Real-World Experiments

We evaluated the improved and original algorithms of DEWE v3 with a 6.0-degree Mon-
tage workflow considering data transfers between jobs. The 6.0-degree Montage workflow
has 8,586 jobs with a data dependency size of 38GB. All the jobs are executed on Lambda
except the mAdd jobs executed on a single virtual machine. The VM is needed because
the size of the input/output files of mAdd exceeds the temporary storage space offered in
a single Lambda function invocation. The configurations of the experiment are as follows:

1. Lambda Memory size was 3008 MB

2. Lambda execution duration was 900 seconds.

3. The batch size of the Lambda function was 20.

4. The number of Kinesis shards was set to 30.

15

5. The virtual machine was t2.xlarge, which has the following properties: 16 GiB of
memory and four vCPUs.

The makespan of the improved algorithm is 1001 seconds, while the original algorithm
is 1109 seconds. The improved algorithm reduced the total execution time of the large-
scale workflow by about 10% compared to the DEWE v3 original algorithm. Thus, this
experiment shows that our improved algorithm benefits larger-scale workflows.

2.2.8 Simulation Experiments

Next, we evaluated both the original and the improved algorithms with scientific work-
flows considering data transfers between jobs. The configurations of the experiment are
as follows:

1. The Lambda Memory sizes were 512, 1024, 1536, 2048 and 3008 MB

2. The Lambda execution duration limit was limited to 900 seconds.

3. The batch size of the Lambda function was 20.

4. The number of Kinesis shards was set to 30.

5. One VM consisted of 4 CPU cores and 8 GiB of memory.

We used the same workflow applications that were run in the previous experiments. We
set the speed for each CPU core to 1000 MIPS in the simulation. The bandwidth between
FaaS and Amazon S3 was set to 1 Gbit. The scientific workflows have about 1000 tasks
from the Montage, CyberShake, Sipht and LIGO workflows. Figure 12 shows the total
execution time (makespan) of Montage, CyberShake, Inspiral (LIGO) and Sipht workflows,
respectively.

In the case of Montage, the improved algorithm schedules jobs with priority constraints
to be executed in a single function invocation. Therefore, successor jobs can use the output
files generated by their predecessor job in the same invocation. This has the potential to
reduce workflow execution time by more than 10% compared to the original DEWE v3
algorithm, as shown in Figure 13(b). This demonstrates the validity of our work in the
previous section. We excluded the workflow jobs (namely mAdd) from running on Faas
because of the expected large dependency files and their runtimes. Consequently, all mAdd
jobs were run on the VM.

In the case of CyberShake, the improved algorithm reduced the makespan by 15%
compared to the original DEWE v3 algorithm, as shown in Figure 14(b). Our improved
algorithm relies on two important factors for workflow execution. First, its approach de-
pends on the workflow structure where jobs with precedence constraints can be scheduled
with their predecessor job in a single function invocation. For example, in CyberShake,
there are many jobs that have a single predecessor job that they can schedule with their
successor. Secondly, the reduction in makespan depends on the data size of the data de-
pendencies. For example, the average data size of CyberShake is 102 MB.

In the case of Inspiral (LIGO), the improved algorithm reduced the makespan by 11%
compared to the original DEWE v3 algorithm, as shown in Figure 15(b). This pattern
repeated (with almost gradual decreases) the same as for CyberShake. In LIGO, there are

16

0

200

400

600

800

1000

1200

1400

1600

512 1024 1536 2048 3008

Ex
e

cu
ti

o
n

 T
im

e
 (

m
in

s)

Memory Size (MB)

Original Improved

((a)) Montage

0

50

100

150

200

250

300

350

400

450

500

512 1024 1536 2048 3008

Ex
e

cu
ti

o
n

 T
im

e
 (

m
in

s)

Memory Size (MB)

Original Improved

((b)) CyberShake

0

500

1000

1500

2000

2500

3000

3500

4000

512 1024 1536 2048 3008

Ex
e

cu
ti

o
n

 T
im

e
 (

m
in

s)

Memory Size (MB)

Original Improved

((c)) LIGO

0

500

1000

1500

2000

2500

3000

3500

512 1024 1536 2048 3008

Ex
e

cu
ti

o
n

 T
im

e
 (

m
in

s)

Memory Size (MB)

Original Improved

((d)) Sipht

Figure 12: The makespan of the two algorithms with four scientific applications running on
different Lambda memory sizes.

many jobs that have a single predecessor job that they can schedule with their successor
at the same time. Furthermore, LIGO’s average data size is 8.9 MB.

In the case of Sipht, the improved algorithm reduced the makespan by 5% compared
to the original DEWE v3 algorithm, as shown in Figure 16(b). This pattern repeated
(with almost significant decreases), the same as for LIGO. In Sipht, few jobs have a single
predecessor job that they can schedule with their successor simultaneously. Furthermore,
Sipht’s average data size is 5.91 MB.

Finally, the improved algorithm outperforms the original DEWE v3 algorithm in all
scientific workflows. The improved algorithm has achieved the best reduction with Cy-
berShake and the least with Sipht. It has achieved a significant reduction with Montage,
whose average data size is 4 MB. The most important factor for the improved algorithm
is the workflow structure, which ensures that the improved algorithm schedules jobs with
precedence requirements into the same invocation. These results are consistent with what
was expected for Montage’s improved algorithm in Section 2.2.7.

17

3 Structure-Aware Scheduling for Deadline-Constrained
Scientific Workflows in the Cloud

3.1 The Proposed Scheduling Algorithm

Several objectives associated with task scheduling issues need to be addressed. The ap-
proach suggested in this chapter focuses on running workflow applications in a cloud en-
vironment to lower overall execution costs while still meeting the user-set deadline. The
proposed technique analyses the workflow structure, determines the number of tasks at
each level, and provides a rank value for all workflow tasks. To determine the quantity
and configuration of resources needed to complete the workflow execution by the user-set
deadline, use this rank value.

In this chapter, two approaches are discussed. First, in the planning phase, the exact
number and configuration of VMs that need to be rented from cloud service providers are
determined based on the deadline constraint and the ranking value of the tasks. It also uses
the remaining time (leftover time) in the current billing period to avoid wasting resources.
The plan to reuse cloud resources can eliminate the need for further provisioning and
deployment costs.

The second approach concerns the execution phase (the second phase). It aims to
provision or de-provision the resources of the selected services for tasks in the planning
phase. These resources are maintained until they have completed all the previously as-
signed tasks. However, if some resources are not needed for the subsequent tasks, they
are terminated immediately after the output data is transferred. This significantly reduces
execution time and resource costs, which is crucial for workflow users.

The pseudocode of the entire DSAWS algorithm for workflow scheduling is shown in
Algorithm 1. The proposed algorithm uses the rank value to support each task by selecting
the appropriate VM to execute it within the deadline. In the first phase, the algorithm
selects the appropriate type and the exact number of VMs needed to execute workflow
tasks to meet the deadline set by the user. After the basic initialisation in lines 2-8 of Algo-
rithm 1, it receives the workflow tasks arranged from Algorithm ?? while the deadline D
is set by the user. Line 2 identifies the available instance types of VMs the service provider
offers. In line 3, the rented set rentedVMs is empty at the beginning of the algorithm’s
execution. We have initialised a variable called success that changes when a task finds
its matching VM to meet the deadline. In line 6, vmminTime is the earliest available VM
time in the currently leased VMs. In line 7, although all tasks are arranged in descending
order of their rank values, Algorithm 1 selects ready tasks from the rankList and adds
them periodically to the readyList in order. In line 8, timeLine is the difference between
the earliest available time of the VM or the earliest start time of a task and a deadline
D. The while loop in line 9 is used to find a suitable VM for each task in the workflow.
In line 12, the timeLine is the difference resulting from subtracting vmminTime from the
deadline because the task begins its execution by selecting a VM instance that has already
been rented. First, the ready tasks check the available rented VMs to meet the deadline.
If a task does not find a suitable VM to meet the deadline, it selects a new suitable VM to
meet the deadline. At the beginning of the algorithm’s execution, no rented VMs are in
line 13. Therefore, the algorithm skips lines 13-20. In line 22, the timeLine is the differ-
ence resulting from subtracting the earliest start time of a task (tEST) from the deadline

18

since the task begins its execution by selecting a new VM instance. Line 23 tries to select a
new VM by comparing timeLine with the task’s rank value divided by the VM speed (lines
13 and 23). For cost-effective task scheduling, the task searches for a VM at the service
provider, starting with the slowest VM until it reaches the appropriate VM that meets the
deadline (lines 24-25). In line 26, the task is removed from the unscheduled readylist,
while in line 28, the selected new VM is added to the set of rented VMs (rentedVMs).
The algorithm updates the EST for all successors of a task (line 16 or 27) after finding a
suitable resource in line 15 or 25. This update may change the readiness of the tasks based
on the completion time of their predecessor tasks. When all tasks are assigned to VMs, the
algorithm calls algorithm 2 in line 33.

Algorithm 2 shows the pseudocode of the TimelineVMS algorithm for provisioning and
de-provisioning resources. In the second phase, the algorithm first determines the time
for provisioning the VMs and the time at which each VM is de-provisioned by taking into
account the delays in provisioning and de-provisioning a VM in the cloud. Second, the
algorithm determines the idle time between two scheduled, consecutive tasks on each
VM. During the execution of the workflow, the algorithm dynamically adds and removes
resources from its pool.

Algorithm 2 represents the second phase, where workflow tasks are scheduled on the
selected resources (VMsList) during the planning phase. It receives from Algorithm 1 a
schedule for all tasks about the types and number of their VMs (VMsList). After initialisa-
tion in lines 2-5, the booting and shutdown times of resources and the VM’s billing period
are set. In line 5 of the algorithm, vmidleT ime is used to find the idle time between any two
scheduled consecutive tasks on a VM to shut down this VM.

To do this, the VM’s billing period is taken into account to determine whether the
idle time is greater than the billing period of a VM. For example, if workflow tasks are
scheduled on VMs in the first phase, the algorithm determines when to start a VM and
when to shut it down in the second phase by checking the schedule of the tasks on their
VMs. This reduces the idle time of VMs and gaps in scheduling between workflow tasks.
In lines 6 and 7, the algorithm identifies the tasks of each VM by reading the start and end
times of each task on it. The algorithm then attempts to prepare tasks’ resources before the
tasks begin their execution (lines 9-12), as the provisioning process is still significant due
to the overhead associated with leasing virtual machines (lines 8–14). The consequences
of VM provisioning and de-provisioning delays are greatly mitigated and are much easier
to manage.

First, the algorithm uses resource elasticity to meet the user’s deadline but knows when
to rent and release resources. If a new VM needs to be provisioned during the execution
of the workflow, the algorithm can start VMs earlier before the task starts by taking into
account the delay in provisioning a VM instance to speed up the execution of the workflow
because provisioning a VM takes time. Secondly, it uses the cloud billing model to optimise
resource utilisation while reducing the number of rented resources. It also tries to schedule
tasks on currently rented VMs to reduce the need for further VM provisioning costs.

Furthermore, the algorithm checks the timeline of each VM to see if the idle time is
greater than the instance’s billing period (lines 16-20). It then sends the output data to
the VMs performing the successor tasks (line 17) before de-provisioning that VM instance
in line 19. Finally, it sends the output data to the VMs executing the successor tasks,
if any (line 22), before de-provisioning that VM instance in line 24 because the VM has

19

completed its tasks.

Algorithm 1 The DSAWS scheduling algorithm

1: procedure DSAWS(G(T ,E),D)
2: m= available instance types of VMs (S)
3: rentedVMs = ∅ the currently leased virtual machines
4: success = false.
5: vmbooting = the booting time of VM
6: vmminTime = the earliest available time of vm in rentedVMs.
7: readyList = receives repeatedly ready tasks from rankList.
8: timeLine = represents the difference of subtracting vmminTime or tEST from the

deadline D.
9: while (there exists unscheduled t in readyList) do

10: t = find the earliest EST in readyList
11: vmminTime= find the earliest available time of vm in rentedVMs.
12: timeLine := D - vmminTime

13: for all vmj ∈ VM do where j = 1, 2, . . . , n
14: if timeLine >= trank

vmspeed
j

then

15: select vmspeed
j to run t

16: update EST for all successors of t
17: remove t from readyList
18: success := true
19: end if
20: end for
21: if success==false then
22: timeLine := D - tEST

23: for all si ∈ S do where i = 1, 2, . . . ,m
24: if timeLine >= (trank

sspeedi

) then

25: select a new instance vmspeed
i to run t

26: remove t from readyList
27: update EST for all successors of t
28: add vmspeed

i to rentedVMs
29: end if
30: end for
31: end if
32: end while
33: call TimelineVMs(VMs)
34: end procedure

20

Algorithm 2 Provisioning resources

1: procedure TIMELINEVMS(VMsList)
2: vmbooting = the booting time of VM
3: vmshutdown= the de-provisioning time of VM
4: vmbillingPeriod = the billing period for VM
5: vmidleT ime= the idle time between two consecutive tasks on the VM.
6: for all vm ∈ VMsList do
7: for each task t on vm do
8: if vm has not provisioned then
9: vmstart=(tstart − vmbooting)

10: if vmstart < 0 then
11: vmstart=0
12: end if
13: provision vm on the time of vmstart

14: end if
15: vmidleT ime= vmidleT ime - vmshutdown

16: if vmidleT ime >= vmbillingPeriod then
17: transfer output data of t to the VMs of its successors.
18: vmstop= tend+ttrasferT ime

19: de-provision vm on the time vmstop

20: end if
21: end for
22: transfer output data of t to the VMs of its successors.
23: vmstop= tend+ttrasferT ime

24: de-provision vm on the time vmstop

25: end for
26: end procedure

3.2 Evaluation

Our experiment evaluated DSAWS with other competitive algorithms like CGA and Dyna
for scheduling the selected scientific workflow applications. CGA was chosen for compar-
ison in our evaluation because of its static approach, which has the potential to generate
optimal solutions. Dyna was chosen for comparison in our evaluation because the algo-
rithm is periodically improved by adjusting the number of VMs requested in each category
to ensure the timely completion of tasks at a lower cost. The aim is to show how the
static component of DSAWS enables the creation of schedules that outperform the Dyna
algorithm in terms of meeting workflow deadlines while reducing execution costs.

The experiment was conducted in the DISSECT-CF-WMS [3] simulator, which is an
extension of the DISSECT-CF simulator. It is useful for running scientific workflows on
cloud resources. DISSECT-CF-WMS focuses on the user-side behaviour of clouds, while
DISSECT-CF focuses on the internal behaviour of IaaS systems. It also supports dynamic
provisioning to meet the resource requirements of the workflow application while running
on the infrastructure, taking into account the provisioning and de-provisioning delays of a
cloud-based VM.

21

Table 1: The maximum rank values in seconds for each scientific workflow.

Workflow type The maximum rank value (strict Deadline factor)
Montage 369 seconds
CyberShake 736 seconds
LIGO 625 seconds
Epigenomics 27232 seconds

We analysed the most widely used workflows to demonstrate the importance of the
DSAWS algorithm. We chose the well-known workflows Montage from the field of astron-
omy, CyberShake from the field of physics, Inspiral (LIGO) from the field of astrophysics
and Epigenomics from the field of bioinformatics. Workflows with about 1,000 tasks were
used for the evaluation.

We created a model of the cloud infrastructure of Google Cloud Engine2 with differ-
ent VM configurations selected from the predefined machine types of the cloud. An IaaS
provider with a single data region and seven types of VMs was set up. For Google Cloud
Engine, the core of Compute Engine CPU provides a minimum processing capacity of 2.75
GCEUs (2.75 ECUs), or about 2750 MIPS [2]. A billing slot of 60 seconds was modelled,
as service providers such as Google Compute Engine and Microsoft Azure offered. Provi-
sioning delay was set to 30 seconds [26] and de-provisioning delay to 3 seconds [19] for
all types of VMs. The bandwidth between VMs was set to 1 Gbit.

To evaluate the ability of each approach to achieve a valid solution that meets the
deadlines, we set the success rate metric, which is calculated as the proportion of the
current execution times to the given deadlines. For the evaluation, we set three deadline
factors based on the maximum rank value of each workflow. The maximum rank value
represents the strict deadline factor (1), as shown in Table 1. In contrast, the moderate
and relaxed deadlines are obtained by multiplying the maximum rank values by (1.5) and
(2), respectively.

Figures 13(a), 14(a), 15(a), and 16(a) show the results of the success ratios for each
workflow with the three algorithms. On the other hand, Figures 13(b), 14(b), 15(b), and
16(b) show the execution costs (in $) for each workflow with the same algorithms.

In the case of Montage workflow, all algorithms completed the execution of the work-
flow within the deadline, except CGA, with the strict deadline factor, as shown in Fig-
ure 13(a). Dyna met all deadline factors, as shown in Figure 13(a). The DSAWS approach
met all deadlines with the lowest cost compared to the other algorithms, as seen in Fig-
ure 13(b). The Montage workflow has many parallel tasks with a short execution time
in the second level. This drastically increases the overall cost of the workflow as more
resources are consumed by Dyna, as shown in Figure 13(b). However, DSWAS overcomes
this disadvantage by using the leftover time of resources to save costs. Furthermore, Mon-
tage has nine levels and six of these levels are controlled by the single-thread jobs with a
total execution time of 332 seconds. Levels 3 and 4 have 142 seconds, which is more than
two instance cycles, with the billing period being 60 seconds. Levels 6-9 have 190 seconds,
which is equivalent to three instance cycles. Therefore, the DSAWS algorithm keeps only
one VM during these periods to reduce the execution cost and meet the deadline.

In the case of the CyberShake workflow, which has a data transfer bottleneck for most

2https://cloud.google.com/compute/all-pricing

22

https://cloud.google.com/compute/all-pricing

0

20

40

60

80

100

120

1 1.5 2

Su
cc

e
ss

 R
at

e
 (

%
)

Deadline Factor

DSAWS CGA Dyna

((a)) Makespan

0

0.05

0.1

0.15

0.2

0.25

0.3

1 1.5 2

Ex
e

cu
ti

o
n

 C
o

st
 (

$
)

Deadline Factor

DSAWS CGA Dyna

((b)) Cost

Figure 13: The makespan and execution cost of the three algorithms with the Montage appli-
cation.

scheduling algorithms. This drawback is eliminated by the DSAWS described in this chap-
ter, which allocates resources to all tasks based on their rank value. It guarantees that
all tasks are completed within the deadline and starts new instances only when needed.
Therefore, DSAWS reduces data transfer by assigning tasks to the same set of resources.
The CGA scheduler could not meet the deadline for all deadline factors successfully. While
Dyna met the relaxed deadline factor, it failed to meet the other deadline factors. DSAWS,
on the other hand, meet all deadlines with the lowest execution cost, as shown in Fig-
ure 14(a) and Figure 14(b), respectively. CyberShake has five levels, with most tasks at
levels 2 and 3 totalling 994 tasks out of 1000. This results in high concurrency and a
large amount of data transfers. CyberShake is a compute- and data-intensive workflow. In
addition, level two has 497 tasks with 95.35% of the total execution time of the workflow
tasks. As a result, the Dyna and CGA algorithms launched many instances of the compu-
tation service, and this has led to an increase in the makespan and execution cost of the
workflow due to the increase in data transfers between resources.

0

20

40

60

80

100

120

140

1 1.5 2

Su
cc

e
ss

 R
at

e
 (

%
)

Deadline Factor

DSAWS CGA Dyna

((a)) Makespan

0

0.5

1

1.5

2

2.5

3

1 1.5 2

Ex
e

cu
ti

o
n

 C
o

st
($

)

Deadline Factor

DSAWS CGA Dyna

((b)) Cost

Figure 14: The makespan and execution cost of the three algorithms with the CyberShake
application.

In LIGO, DSAWS successfully met all deadline factors, while CGA failed to meet all

23

deadline factors. Dyna met the relaxed deadline factor but failed to meet the other dead-
line factors, as shown in Figure 15(a). CGA and Dyna perform badly because fewer re-
sources are available for tasks with long execution times. LIGO is a data and CPU-intensive
workflow, and this slowed down the execution of the workflow significantly. However, the
proposed technique analyses the workflow structure, determines the number of tasks at
each level and provides a rank value for all workflow tasks. The algorithm then assigns
the appropriate type of resources to these tasks in the workflow and executes them to meet
the user-specified deadline, as shown in Figure 15(a). Also, unlike the other algorithms,
DSAWS achieved the cheapest cost among all schedules, as shown in Figure 15(b). LIGO
has 483 tasks with runtimes greater than the mean execution time (e.g. 227.7). The time
difference between tasks can be up to 3 times the mean runtime of the workflow tasks.
This results in idle time for other resources and gaps in scheduling between workflow tasks
in the case of CGA and Dyna.

0

20

40

60

80

100

120

140

160

1 1.5 2

Su
cc

e
ss

 R
at

e
 (

%
)

Deadline Factor

DSAWS CGA Dyna

((a)) Makespan

0

1

2

3

4

5

6

1 1.5 2

Ex
e

cu
ti

o
n

 C
o

st
 (

$
)

Deadline Factor

DSAWS CGA Dyna

((b)) Cost

Figure 15: The makespan and execution cost of the three algorithms with the LIGO applica-
tion.

In the case of the Epigenomics workflow, the CGA scheduler did not successfully meet
the deadline for the strict and moderate deadline factors, but it was able to meet the re-
laxed deadline factor. Similarly, Dyna has met the relaxed deadline factor but failed to
meet the moderate and strict deadline factors. For some Epigenomics tasks, there are sig-
nificant differences in execution times of 15000 times or even more. Therefore, the CPU
performance reduction will significantly impact the processing time of these tasks and lead
to delays for CGA and Dyna. The DSAWS algorithm, on the other hand, met all deadlines,
as shown in 16(a). Furthermore, unlike the other two algorithms, DSAWS has the lowest
execution cost, as shown in Figure 16(b). This pattern is repeated in Epigenomics experi-
ments, but the time difference can be up to 7 times of the average runtime of the workflow
tasks (e.g. 3866.4). Epigenomics has eight levels, with most tasks at level 5 comprising
245 tasks and 99.8% of the total workflow execution time. These differences show that
there is a significant need for resources at this level of the workflow for CGA and Dyna.

Finally, the DSAWS algorithm met all the deadline factors of each workflow, while the
CGA and Dyna approaches met 25% and 50% of all the deadline factors of all workflows,
respectively. These results are consistent with what was expected for each algorithm. The
static heuristic (e.g., CGA) was not more successful in meeting deadlines, but the adapt-
ability of Dyna allows it to meet its aim more frequently. The experiment’s results also

24

0

20

40

60

80

100

120

140

160

1 1.5 2

Su
cc

e
ss

 R
at

e
 (

%
)

Deadline Factor

DSAWS CGA Dyna

((a)) Makespan

0

20

40

60

80

100

120

140

160

1 1.5 2

Ex
e

cu
ti

o
n

 C
o

st
($

)

Deadline Factor

DSAWS CGA Dyna

((b)) Cost

Figure 16: The makespan and execution cost of the three algorithms with the Epigenomics
application.

show the efficiency of DSAWS in terms of its ability to produce more cost-effective sched-
ules. DSAWS outperformed all other algorithms we compared it with in all situations.
DSAWS succeeds at the lowest cost compared to CGA and Dyna algorithms. Moreover,
CGA showcases its ability to generate more cost-effective schedules and surpasses Dyna
by about 92% regardless of whether the deadline was met or not. For some structures
(e.g., CyberShake and Epigenomics), our proposed algorithm uses the initial leased VMs
to schedule all tasks of the same workflow to minimise data transfer costs. Other struc-
tures (e.g., Montage and LIGO) have many tasks with a short execution time, and many
instances of the computation service are launched while only a small part of their time
interval is used. Therefore, the proposed algorithm uses the remaining time in the current
billing period of the VMs to avoid wasting resources. An additional feature of DSAWS
evident in the results is its ability to increase the time required to execute the workflow in-
crementally. The significance of these relationships is that many users are willing to trade
off execution time for lower costs, while others are willing to pay higher costs for faster
execution. The algorithm must behave within this logic so that the deadline number is
perceived as fair by the users.

4 Summary

This dissertation focused on simulation to model and analyse workflows on the cloud. As
such, two research efforts were conducted. These are discussed below.

The initial research focused on the simulation-based analysis of internal IaaS behavioural
knowledge alongside a workflow management system. Cloud workflow simulators do not
provide sufficient support for the underlying virtualised infrastructure, such as physical
machine state scheduling, virtual machine creation details and virtual machine placement.
Other simulators are often user-centric and treat the cloud as a black box. Unfortunately,
this behaviour prevents assessing the impact on the infrastructure of the various decisions
made by the WMS. This dissertation presents DISSECT-CF-WMS, a workflow management
system simulation built on DISSECT-CF. We developed DISSECT-CF-WMS to focus on the
user-side behaviour of the clouds, while DISSECT-CF focuses on the internal behaviour

25

of the IaaS systems. It enables better energy awareness by allowing the investigation of
physical machine schedulers and customisable consumption characteristics. It also pro-
vides dynamic provisioning to meet the resource needs of the workflow application as it
runs on the infrastructure, taking into account the provisioning delay of a VM in the cloud.
It also provides a serverless simulation for executing scientific workflows based on the
behaviour of real-world experiments of Amazon Lambda on DEWE v3.

We evaluated our simulator by running several workflow applications with different
schedulers of physical machines for a given infrastructure. The experimental results show
that workflow researchers can investigate different PM schedulers on infrastructure config-
urations to achieve lower energy consumption. The experiments also show that DISSECT-
CF-WMS is up to 295× faster than WorkflowSim and still delivers accurate results. The
experimental results of the auto-scaling mechanism show that the integration has the po-
tential to optimise makespan, energy consumption, and VM utilisation over static provi-
sioning. This work also allowed us to investigate Internal IaaS behavioural knowledge,
such as different scheduling strategies for physical machines in a simulated environment;
DISSECT-CF-WMS proved very useful. The experimental results of our real-life experiments
have validated the serverless simulation of DISSECT-CF-WMS.

We also presented a structure-aware scheduling algorithm for scientific workflows in
the cloud with deadline constraints. When scheduling workflows in the cloud, resource
allocation is important. A good resource estimation method helps the user to reduce the
cost and time of workflow execution. Numerous algorithms face the challenge of meet-
ing the user’s deadline requirements while minimising the cost of running the workflow.
The DSAWS scheduler presented in this dissertation analyses the structure of the incoming
workflow and assigns an optimal resource provisioning mechanism based on the deadline
constraint and the rank values of the tasks in the workflow. The main implementation of
this algorithm is to make the second phase follow the schedule of the first phase (schedul-
ing of workflow tasks on selected resources). We evaluate the performance of our algo-
rithm by simulating it with four synthetic workflows based on real scientific workflows
with different structures. For some structures (e.g., CyberShake and Epigenomics), our
proposed algorithm uses the initial leased VMs to schedule all tasks of the same workflow
to minimise data transfer costs. Other structures (e.g., Montage and LIGO) have many
tasks with a short execution time, and many instances of the computation service are
launched while only a small part of their time interval is used. Therefore, the proposed
algorithm uses the remaining time in the current billing period of the VMs to avoid wasting
resources. The proposed algorithm reduces the overall execution cost of a workflow while
achieving a deadline set by the user. Experimental results show that DSAWS outperforms
the Dyna and CGA algorithms in terms of meeting workflow deadlines while reducing ex-
ecution costs. DSAWS met all the deadline factors of each workflow, while CGA and Dyna
met 25% and 50%, respectively, of all the deadline factors of all workflows.

4.1 Contributions to Science

This work contributes to the field of Cloud Computing, Distributed Systems and Scientific
Workflows.

Thesis I: I proposed DISSECT-CF-WMS, a user-focused workflow simulation tool built
upon an existing Infrastructure-as-a-Service simulation platform (DISSECT-CF). DISSECT-

26

CF-WMS can run scientific workflow simulations and enable investigating internal IaaS
behaviour. It also enables better energy awareness by investigating physical machine
schedulers. It provides dynamic virtual machine provisioning to meet resource needs to
execute scientific workflows, allowing WMSs to consider the provisioning delay of a VM in
the cloud. DISSECT-CF-WMS also provides a serverless simulation for executing scientific
workflows on AWS Lambda. Experimental results show that DISSECT-CF-WMS is up to
295 times faster than the competitor WorkflowSim simulation without affecting accuracy
results. [P1, P2, P3, P4]

Thesis II: I proposed a new scheduling algorithm that optimizes resource provision-
ing based on the workflow structure, task ranking, and deadline constraints. The imple-
mentation ensures that the practical workflow execution follows the theoretical schedule,
including the provisioning overheads. I evaluated the algorithm on four real-world scien-
tific workflows with different structures. The algorithm’s strength is to use the remaining
time in the current virtual machine billing period at maximum to avoid wasting resources
for other workflow structures and task execution time. Experimental results show that
the proposed method outperforms the related algorithms regarding deadline satisfaction
while reducing execution costs. [P5]

4.2 Author’s Publications Related to the Dissertation

(P1) Al-Haboobi, Ali ; Kecskemeti, Gabor: “Reducing Execution Time of an Existing Lambda
based Scientific Workflow System” In: The 12th Conference of PhD Students in Com-
puter Science: Volume of short papers Szeged, Hungary : SZTE (2020) pp. 3-6. , 4
p. Scientific

(P2) Al-Haboobi, Ali ; Kecskemeti, Gabor: ”Improving Existing WMS for Reduced Makespan
of Workflows with Lambda” In: Euro-Par 2020: Parallel Processing Workshops :
Euro-Par 2020 International Workshops, Warsaw, Poland: Springer (2021) 373 p.
pp. 261-272. , 12 p. Web of Science (WoS), (Q2 Scopus Index), Impact Factor
(0.969), (Conference paper) Scientific

(P3) Al-Haboobi, Ali ; Kecskemeti, Gabor: ”Execution Time Reduction in Function Ori-
ented Scientific Workflows” ACTA CYBERNETICA 25 : 2 pp. 131-150. , 20 p. (2021).
Web of Science (WoS), (Q3 Scopus Index), Impact Factor (0.636), Journal Article

(P4) Al-Haboobi, Ali ; Kecskemeti, Gabor: ”Developing a Workflow Management System
Simulation for Capturing Internal IaaS Behavioral Knowledge” JOURNAL OF GRID
COMPUTING 21 : 1 Paper: 2 , 26 p. (2023). Web of Science (WoS), (Q1 Scopus
Index), Impact Factor (4.111), Journal Article

(P5) Al-Haboobi, Ali ; Kecskemeti, Gabor: ”Structure-Aware Scheduling Algorithm for
Deadline-Constrained Scientific Workflows in the Cloud” International Journal of
Advanced Computer Science and Applications (IJACSA). Web of Science (WoS), (Q3
Scopus Index), Impact Factor (1.16), Journal Article. Accepted for publication.

27

4.3 Other Publications

(P6) András, Márkus ; Al-Haboobi, Ali ; Kecskeméti, Gábor ; Attila, Kertész: ”Simulating
IoT Workflows in DISSECT-CF-Fog” SENSORS 23 : 3 Paper: 1294 , 16 p. (2023).
Web of Science (WoS), (Q1 Scopus Index), Impact Factor (4.352), Journal Article

References

[1] Alex Abramovici, William E Althouse, Ronald WP Drever, Yekta Gürsel, Seiji Kawa-
mura, Frederick J Raab, David Shoemaker, Lisa Sievers, Robert E Spero, Kip S
Thorne, et al. Ligo: The laser interferometer gravitational-wave observatory. sci-
ence, 256(5055):325–333, 1992.

[2] Sanjay P Ahuja and Bhagavathi Kaza. Performance evaluation of data intensive com-
puting in the cloud. International Journal of Cloud Applications and Computing (IJ-
CAC), 4(2):34–47, 2014.

[3] Ali Al-Haboobi and Gabor Kecskemeti. Developing a workflow management system
simulation for capturing internal iaas behavioural knowledge. Journal of Grid Com-
puting, 21(1):2, 2023.

[4] Ilkay Altintas, Chad Berkley, Efrat Jaeger, Matthew Jones, Bertram Ludascher, and
Steve Mock. Kepler: an extensible system for design and execution of scientific
workflows. In Proceedings. 16th International Conference on Scientific and Statistical
Database Management, 2004., pages 423–424. IEEE, 2004.

[5] William H Bell, David G Cameron, A Paul Millar, Luigi Capozza, Kurt Stockinger,
and Floriano Zini. Optorsim: A grid simulator for studying dynamic data replication
strategies. The International Journal of High Performance Computing Applications,
17(4):403–416, 2003.

[6] Rodrigo N Calheiros, Rajiv Ranjan, Anton Beloglazov, César AF De Rose, and Rajku-
mar Buyya. Cloudsim: a toolkit for modeling and simulation of cloud computing
environments and evaluation of resource provisioning algorithms. Software: Practice
and experience, 41(1):23–50, 2011.

[7] Junwei Cao, Stephen A Jarvis, Subhash Saini, and Graham R Nudd. Gridflow: Work-
flow management for grid computing. In CCGrid 2003. 3rd IEEE/ACM International
Symposium on Cluster Computing and the Grid, 2003. Proceedings., pages 198–205.
IEEE, 2003.

[8] Henri Casanova, Rafael Ferreira da Silva, Ryan Tanaka, Suraj Pandey, Gautam Jeth-
wani, William Koch, Spencer Albrecht, James Oeth, and Frédéric Suter. Developing
accurate and scalable simulators of production workflow management systems with
wrench. Future Generation Computer Systems, 112:162–175, 2020.

28

[9] Ewa Deelman, Karan Vahi, Gideon Juve, Mats Rynge, Scott Callaghan, Philip J
Maechling, Rajiv Mayani, Weiwei Chen, Rafael Ferreira Da Silva, Miron Livny, et al.
Pegasus, a workflow management system for science automation. Future Generation
Computer Systems, 46:17–35, 2015.

[10] Robert Graves, Thomas H Jordan, Scott Callaghan, Ewa Deelman, Edward Field,
Gideon Juve, Carl Kesselman, Philip Maechling, Gaurang Mehta, Kevin Milner, et al.
Cybershake: A physics-based seismic hazard model for southern california. Pure and
Applied Geophysics, 168(3-4):367–381, 2011.

[11] Adan Hirales-Carbajal, Andrei Tchernykh, Thomas Röblitz, and Ramin Yahyapour. A
grid simulation framework to study advance scheduling strategies for complex work-
flow applications. In 2010 IEEE International Symposium on Parallel & Distributed
Processing, Workshops and Phd Forum (IPDPSW), pages 1–8. IEEE, 2010.

[12] Torsten Hoefler, Timo Schneider, and Andrew Lumsdaine. Loggopsim: simulating
large-scale applications in the loggops model. In Proceedings of the 19th ACM In-
ternational Symposium on High Performance Distributed Computing, pages 597–604,
2010.

[13] Joseph C Jacob, Daniel S Katz, G Bruce Berriman, John Good, Anastasia C Laity,
Ewa Deelman, Carl Kesselman, Gurmeet Singh, Mei-Hui Su, Thomas A Prince, et al.
Montage: a grid portal and software toolkit for science-grade astronomical image
mosaicking. arXiv preprint arXiv:1005.4454, 2010.

[14] Qingye Jiang, Young Choon Lee, and Albert Y Zomaya. Serverless execution of sci-
entific workflows. In International Conference on Service-Oriented Computing, pages
706–721. Springer, 2017.

[15] K Kanagaraj and S Swamynathan. Structure aware resource estimation for effective
scheduling and execution of data intensive workflows in cloud. Future Generation
Computer Systems, 79:878–891, 2018.

[16] Gabor Kecskemeti. Dissect-cf: a simulator to foster energy-aware scheduling in in-
frastructure clouds. Simulation Modelling Practice and Theory, 58:188–218, 2015.

[17] Joanna Kijak, Piotr Martyna, Maciej Pawlik, Bartosz Balis, and Maciej Malawski.
Challenges for scheduling scientific workflows on cloud functions. In 2018 IEEE 11th
International Conference on Cloud Computing (CLOUD), pages 460–467. IEEE, 2018.

[18] Maciej Malawski, Adam Gajek, Adam Zima, Bartosz Balis, and Kamil Figiela. Server-
less execution of scientific workflows: Experiments with hyperflow, aws lambda and
google cloud functions. Future Generation Computer Systems, 2017.

[19] Ming Mao and Marty Humphrey. A performance study on the vm startup time in
the cloud. In 2012 IEEE Fifth International Conference on Cloud Computing, pages
423–430. IEEE, 2012.

[20] Alberto Nunez, Jose Luis Vazquez-Poletti, Agustin C Caminero, Jesus Carretero, and
Ignacio Martin Llorente. Design of a new cloud computing simulation platform. In

29

International Conference on Computational Science and Its Applications, pages 582–
593. Springer, 2011.

[21] Simon Ostermann, Kassian Plankensteiner, and Radu Prodan. Using a new event-
based simulation framework for investigating resource provisioning in clouds. Scien-
tific Programming, 19(2-3):161–178, 2011.

[22] Simon Ostermann, Kassian Plankensteiner, Radu Prodan, and Thomas Fahringer.
Groudsim: An event-based simulation framework for computational grids and
clouds. In European Conference on Parallel Processing, pages 305–313. Springer, 2010.

[23] Simon Ostermann, Radu Prodan, and Thomas Fahringer. Dynamic cloud provisioning
for scientific grid workflows. In 2010 11th IEEE/ACM International Conference on Grid
Computing, pages 97–104. IEEE, 2010.

[24] Hajo A Reijers. Design and control of workflow processes: business process management
for the service industry, volume 2617. Springer, 2003.

[25] Maria Alejandra Rodriguez and Rajkumar Buyya. A taxonomy and survey on schedul-
ing algorithms for scientific workflows in iaas cloud computing environments. Con-
currency and Computation: Practice and Experience, 29(8):e4041, 2017.

[26] Sebastian Stadil, Scalr. Stadill s. by the numbers: How google compute
engine stacks up to amazon ec2. https://old.gigaom.com/2013/03/15/

by-the-numbers-how-google-compute-engine-stacks-up-to-amazon-ec2/,
2013. Accessed 12 Jul 2022.

[27] Ian J Taylor, Ewa Deelman, Dennis B Gannon, Matthew Shields, et al. Workflows for
e-Science: scientific workflows for grids, volume 1. Springer, 2007.

[28] Mustafa M Tikir, Michael A Laurenzano, Laura Carrington, and Allan Snavely. Psins:
An open source event tracer and execution simulator for mpi applications. In Euro-
pean Conference on Parallel Processing, pages 135–148. Springer, 2009.

[29] Meng-Han Tsai, Kuan-Chou Lai, Hsi-Ya Chang, Kuan Fu Chen, and Kuo-Chan Huang.
Pewss: A platform of extensible workflow simulation service for workflow scheduling
research. Software: Practice and Experience, 48(4):796–819, 2018.

[30] Jeffrey D. Ullman. Np-complete scheduling problems. Journal of Computer and Sys-
tem sciences, 10(3):384–393, 1975.

30

https://old.gigaom.com/2013/03/15/by-the-numbers-how-google-compute-engine-stacks-up-to-amazon-ec2/
https://old.gigaom.com/2013/03/15/by-the-numbers-how-google-compute-engine-stacks-up-to-amazon-ec2/

	Introduction
	Problem Statement
	Simulation-based analysis of Internal IaaS behavioural knowledge for a Workflow Management System
	The DISSECT-CF Workflow Management System
	Auto-Scaling Mechanism
	A simple Model of FaaS Simulation
	DEWE v3
	The Serverless Simulation Implementation
	Evaluation
	Utilisation of Internal Cloud Infrastructure Details
	Simulation Times
	Simulation versus Execution
	Auto-Scaling Mechanism
	Scheduling Experiments
	The FaaS Workflow Experiments
	Real-World Experiments
	Simulation Experiments
	Structure-Aware Scheduling for Deadline-Constrained Scientific Workflows in the Cloud
	The Proposed Scheduling Algorithm
	Evaluation
	Summary
	Contributions to Science
	Author’s Publications Related to the Dissertation
	Other Publications
	References

