
UNIVERSITY OF MISKOLC

FACULTY OF MECHANICAL ENGINEERING AND
INFORMATICS

A Simulation Environment for Modelling and
Analysis of Scientific Workflows

PhD dissertation

Author:
ALI AL-HABOOBI

MSc in Advanced Computer Science

“József Hatvany” DOCTORAL SCHOOL OF INFORMATION SCIENCE,
ENGINEERING AND TECHNOLOGY

Head of Doctoral School: Prof. Dr. Jenő SZIGETI

Academic Supervisor: Prof. Dr. Gabor KECSKEMETI

Miskolc
2024

Declaration

I hereby declare that this thesis is my own work unless otherwise stated. No part of
this thesis has been previously submitted for a degree or any other qualification at
University of Miskolc or any other institution.

Ali Al-Haboobi
Miskolc, 2023. July, 01

i

Acknowledgments

First of all, I would like to thank my Lord (Allah) for everything He has given me.
I would like to thank my supervisor for guiding my doctoral studies. I would like
to thank Professor Dr László Kovács for supporting me during my doctoral studies.
I would like to thank my parents, my wife and my family for their constant love,
prayers and support. Last but not least, I would like to thank my colleagues and
friends who helped me to realise the results presented here and to enjoy the time of
my studies.

ii

Contents

1 Introduction 1
1.1 Problem Statement . 2
1.2 Aims of Research . 3
1.3 Dissertation Guide . 4

2 Research Background 5
2.1 Introduction . 5
2.2 Scientific Workflow Representations 5
2.3 Workflow Management Systems . 8
2.4 Workflow scheduling . 9
2.5 Cloud Computing . 10
2.6 Function as a Service . 11
2.7 Cloud and Workflow Simulators . 13
2.8 Summary . 15

3 Simulation-based analysis of Internal IaaS behavioural knowledge for a
Workflow Management System 16
3.1 Introduction . 16
3.2 Related Works . 18
3.3 The DISSECT-CF Workflow Management System 20

3.3.1 Parser . 23
3.3.2 Engine . 23
3.3.3 Scheduler . 24
3.3.4 JobRunner . 25
3.3.5 Dynamic behaviour . 25
3.3.6 Auto-Scaling Mechanism . 26
3.3.7 A simple Model of FaaS Simulation 28

3.3.7.1 DEWE v3 . 28
3.3.7.2 The Serverless Simulation Implementation 30

3.4 Evaluation . 31
3.4.1 Utilisation of Internal Cloud Infrastructure Details 32

iii

3.4.2 Simulation Times . 36
3.4.3 Simulation versus Execution . 38
3.4.4 Auto-Scaling Mechanism . 39
3.4.5 The FaaS Workflow Experiments 44

3.4.5.1 Real-World Experiments 44
3.4.5.2 Simulation Experiments 44

3.5 Summary . 48

4 Structure-Aware Scheduling Algorithm for Deadline-Constrained Scien-
tific Workflows in the Cloud 49
4.1 Introduction . 49
4.2 Related Works . 51
4.3 The Proposed Scheduling Algorithm 53

4.3.1 An illustrative example . 58
4.4 Evaluation . 61
4.5 Summary . 68

5 Conclusion 69
5.1 Future Research Directions . 70
5.2 Contributions to Science . 72

5.2.1 Author’s Publications Related to the Dissertation 72
5.2.2 Other Publications . 73

Bibliography 74

iv

List of Figures

2.1 A sample workflow. 6
2.2 Basic workflow structures [8]. 7
2.3 The structure of the Montage, CyberShake, LIGO, Epigenomics and

Sipht workflows [8]. 8
2.4 Architectural view of DISSECT-CF [39]. 14

3.1 Class diagram shows the DISSECT-CF-WMS simulator and its connec-
tion to DISSECT-CF. The DISSECT-CF simulator and Helper support
the covered area in white colour. 22

3.2 A task state diagram. 24
3.3 The interactions between the DISSECT-CF-WMS components and DISSECT-

CF for the task’s lifecycle till it is completed. 26
3.4 The overview of the DISSECT-CF-WMS simulator integrated with the

auto-scaling mechanisms of the DISSECT-CF simulator. 28
3.5 The scheduling steps of the original algorithm with a sample workflow

example. 29
3.6 The scheduling steps of the improved algorithm with a sample work-

flow example. 30
3.7 The total power consumption of PM schedulers for the Montage work-

flow on DISSECT-CF-WMS with different numbers of VMs. 34
3.8 The total power consumption of PM schedulers for the CyberShake

workflow on DISSECT-CF-WMS with different numbers of VMs. 34
3.9 The total power consumption of PM schedulers for the Sipht workflow

on DISSECT-CF-WMS with different numbers of VMs. 35
3.10 The total power consumption of PM schedulers for the LIGO workflow

on DISSECT-CF-WMS with different numbers of VMs. 35
3.11 The provisioning time of VMs for three PM schedulers on DISSECT-CF-

WMS with different numbers of VMs. 36
3.12 The simulation time of the DISSECT-CF-WMS and WorkflowSim simu-

lators with different numbers of Montage workflow tasks. 37

v

3.13 Task execution Gantt chart for sample real-world (“pegasus”) execu-
tion of the Montage-2.0 workflow on the AWS-m5.xlarge platform [15]. 39

3.14 Task execution Gantt chart for simulated Dissect-cf-WMS executions of
the Montage-2.0 workflow on the AWS-m5.xlarge platform. 39

3.15 Makespan of auto-scaling mechanisms and static 50 VMs. 41
3.16 Resource consumption patterns of auto-scaling mechanisms and static

50. 41
3.17 The total accounted for hours of virtual machines of auto-scaling mech-

anisms and static 50 VMs. 42
3.18 The virtual machines creation patterns of auto-scaling mechanisms. . . 42
3.19 The total power consumption (kWh) of auto-scaling mechanisms and

static 50 VMs. 43
3.20 The total accounted for the number of virtual machines (2 cores each)

of auto-scaling mechanisms and static 50 VMs. 43
3.21 The makespan of the two algorithms with Montage workflow running

on different Lambda memory sizes. 45
3.22 The makespan of the two algorithms with CyberShake workflow run-

ning on different Lambda memory sizes. 46
3.23 The makespan of the two algorithms with Inspiral (LIGO) workflow

running on different Lambda memory sizes. 47
3.24 The makespan of the two algorithms with Sipht workflow running on

different Lambda memory sizes. 47

4.1 A sample workflow. 62
4.2 The makespan and execution cost of the three algorithms with the

Montage application. 65
4.3 The makespan and execution cost of the three algorithms with the

CyberShake application. 65
4.4 The makespan and execution cost of the three algorithms with the

LIGO application. 66
4.5 The makespan and execution cost of the three algorithms with the

Epigenomics application. 67

vi

List of Tables

3.1 Comparison of the related workflow simulators 20

4.1 Comparison of algorithms for the scheduling model. 53
4.2 Notations for the symbols used in the algorithms. 55
4.3 The scheduling of the workflow tasks for each step of executing DSAWS

on the sample workflow of Figure 4.1 62
4.4 The characteristics values for each workflow application 63
4.5 Types of VM based on Google Compute Engine offering 63
4.6 The maximum rank values in seconds for each scientific workflow. . . . 64

vii

Chapter 1

Introduction

From the field of manufacturing and business processes, the workflow [60] has
evolved into a broader concept that points to a structured design of process flows.
The complexity of task execution can vary from sequential execution to highly paral-
lel execution with many inputs from different tasks. Workflows [65] are commonly
used in several scientific fields, such as Montage [33] in astronomy, CyberShake [30]
in physics and LIGO [1] in astrophysics, to describe complex computational prob-
lems and capture data between them. In the scientific community, a scientific work-
flow consists of many dependent tasks with complex precedence constraints between
them. The scientific workflow consists of hundreds or thousands of interdependent
computational tasks.

Scientific workflows can be run on distributed computing platforms such as High-
Performance Computing (HPC)[32, 66], Grid[7, 57] and Cloud[52]. These platforms
offer significant advantages in terms of computing power and scalability, making
them ideal for running large-scale scientific applications. However, running work-
flows on such platforms can be complex and challenging. Workflow management
systems (WMS) aim at answering these challenges. WMSs such as Pegasus[22],
Kepler[6], and DEWE v3[35] provide a way to manage and handle the execution
of workflows through resource selection, job scheduling, appropriate resource allo-
cation and data management. Overall, WMS can significantly improve the efficiency
and effectiveness of workflow execution on distributed computing platforms and al-
low researchers to focus on their scientific goals rather than the technical details of
managing and executing their workflows.

Cloud computing is an evolving approach to computing that allows users to ac-
cess resources based on a usage-based payment model, with the system dynamically
adapting to different workload demands. Cloud computing can play an important
role in addressing the challenges of scientific workflow applications due to its scala-
bility, reliability and cost-effectiveness.

Scientific workflows have been an increasingly important research area of dis-

1

1.1 Problem Statement 2

tributed systems (such as cloud computing). Researchers have shown an increased
interest in the automated processing of scientific applications such as workflows.
Function as a Service (FaaS) has recently emerged as a novel distributed systems
platform for processing non-interactive applications. FaaS has limitations in resource
use (e.g., CPU and RAM) and state management. Despite these, several studies
[35, 41, 46] have already demonstrated using FaaS for processing scientific work-
flows. DEWE v3 [35] can process scientific workflows using AWS Lambda and Google
Cloud Functions (GCF). DEWE v3 has three different execution modes: a traditional
cluster, a FaaS (serverless), and a hybrid mode (combining the previous two modes).

Conducting real-world experiments for large-scale workflows is challenging. Es-
pecially when a statistically significant number of experimental results are required
to inform us about possible WMS improvements, this limits the scope of WMS re-
search and development. Therefore, researchers can run a relatively small number
of scenarios to substantiate research with real measurements. Moreover, it is very
expensive to reproduce experimental results in different real-world scenarios due to
resource costs. Therefore, researchers often turn to simulations. The use of comput-
ing simulations has become widespread in developing novel techniques, conducting
comparative analyses, and understanding and improving the performance of work-
flow management systems.

Workflow scheduling is an important area for WMS. It plays a critical role in the
optimal allocation of resources to all tasks. The problem of scheduling in distributed
environments is known to be NP-hard [69]. Therefore, no algorithm can achieve an
optimal solution in polynomial time, while some algorithms can give approximate
results in polynomial time. When scheduling scientific workflows in the cloud, the
deadline constraint refers to the time frame set by the user within which each task
must be completed. The scheduling algorithm must consider these deadlines and
guarantee that the workflow will be executed within the specified time constraints.
Failure to meet these deadlines may result in the workflow being considered failed
or incomplete, impacting scheduling algorithms that do not meet the user’s deadline.

1.1 Problem Statement

A simulation is an alternative approach to a real experiment that can help evaluate
the performance of workflow management systems (WMS) and optimise workflow
management techniques. Although several workflow simulators are available today,
they [13, 52, 55] are often user-oriented and treat the cloud as a black box. Other
workflow simulators [14, 31, 68] cannot meet the requirements of workflow manage-
ment systems. These requirements include information on virtual machine creation,
placement policies, and physical machine schedulers. Unfortunately, this behaviour
prevents evaluating the infrastructure-level impact of the various decisions made by

1.2 Aims of Research 3

WMSs. In contrast to the above problems, DISSECT-CF [39] is a cloud simulator
that captures the internal details of cloud infrastructures. It can be used to develop
a more informed WMS simulation. It also provides information on virtual machine
creation, placement, and physical machine schedulers. However, DISSECT-CF alone
does not provide workflow support.

Function as a Service (FaaS) has recently emerged as a novel distributed sys-
tems platform for processing non-interactive applications. FaaS has limitations in
resource use (e.g., CPU and RAM) and state management. Despite these, several
studies [35, 41, 46] have already demonstrated using FaaS for processing scientific
workflows. The workflow management system DEWE v3 executes scientific work-
flows using FaaS but often suffers from duplicate data transfers while using FaaS.
This behaviour is due to handling intermediate data dependency files after and be-
fore each function invocation. These data files could fill the temporary storage of the
function environment.

Although cloud computing resources can help scientific workflow applications,
the problem is finding scheduling algorithms that can optimise the execution of
workflows. In the cloud, the cost of executing such workflows depends not only
on the number of virtual machines (VMs) but also on the type of these VMs [62].
Selecting the appropriate type and the exact number of VMs is a major challenge for
researchers, as tasks in workflow applications are distributed very differently [37].
Algorithms must decide when to provision or de-provision VMs depending on work-
flow requirements without violating the user’s deadline.

1.2 Aims of Research

I. The initial research aim is to introduce an infrastructure simulation for WMS
research.

(a) It should enable researchers to study the internal details of cloud infras-
tructures and the impact of WMS decisions.

(b) It should reproduce real-world experiments’ behaviours and show our sim-
ulation’s validity.

(c) It should simulate serverless execution for scientific workflows based on
the behaviour of real-world experiments of Amazon Lambda on DEWE v3.

II. The second research aims to develop a new workflow scheduling algorithm to
predict workflow demands in terms of VMs to meet deadlines.

(a) It should be able to determine the number of VMs and their appropriate
type to meet the user’s deadline.

1.3 Dissertation Guide 4

(b) It should be able to determine when VMs need to be added or removed to
meet the user’s deadline.

(c) It should be able to reduce the workflow execution cost without violating
the user’s deadline.

1.3 Dissertation Guide

Below is the arrangement of the chapters that comprise this dissertation.
Chapter 2 provides the relevant background information and the essential con-

cepts and definitions to fulfil our research aims. It presents the characteristics and
structures of scientific workflows. It also contains information about the workflow
management systems used in our dissertation. It explains how scientific workflows
are scheduled on resources using three scheduling algorithms. Finally, it gives an
overview of the cloud environment that is being modelled, an overview of Function
as a Service (FaaS), and information about the cloud and workflow simulators used
in our dissertation.

Chapter 3 provides the related works of current cloud simulators. It then presents
the design and implementation of the DISSECT-CF-WMS simulator. It next provides
the performance evaluation of DISSECT-CF-WMS. Finally, we conclude the chapter.

Chapter 4 provides the related works of several deadline-scheduling algorithms
for scientific workflows. It then introduces the design and implementation of a Dead-
line and Structure-Aware Workflow Scheduler (DSAWS). It next provides the perfor-
mance evaluation of DSAWS with two competitive algorithms. Finally, we conclude
the chapter.

Chapter 5 concludes the dissertation, discusses future work and highlights the
research efforts of this dissertation.

Chapter 2

Research Background

2.1 Introduction

This chapter explores the relevant background information of this dissertation. The
purpose of this chapter is to provide the essential concepts and definitions required
to fulfil the aims of our research. It gives an overview of scientific workflows, which
are the main topic of this dissertation. We provide background on the structure and
characteristics of scientific workflows and the simulator used in the evaluation.

The chapter is structured as follows: Section 2.2 provides a detailed background
to scientific workflows, presenting the characteristics and structures of real scien-
tific workflows. Section 2.3 provides information about the workflow management
systems used in our dissertation. Section 2.4 explains how scientific workflows are
scheduled on resources using three scheduling algorithms. Section 2.5 provides an
overview of the cloud environment that is being modelled. Section 2.6 provides an
overview of Function as a Service (FaaS). Section 2.7 provides information about the
cloud and workflow simulators used in our dissertation. Section 2.8 concludes the
chapter.

2.2 Scientific Workflow Representations

A workflow can be represented as a directed acyclic graph (DAG) G = (T,E) consist-
ing of a collection of connected tasks/jobs. Each task/job represents a single work
step consisting of a logical step in the overall process. As shown in Figure 2.1, the
vertices of the workflow are a set of tasks T={t1, t2, ..., tn}, while the workflow edges
E represent data dependencies between these tasks [67]. For example, during the
execution of the workflow, the successor task t4 waits for its predecessor task t1 to
complete its processing and produce its output data. When t1 finishes, some of its
output data become input data dependencies for t4. When t4 is scheduled, its input

5

2.2 Scientific Workflow Representations 6

data dependencies are sent to its target host to enable the successful execution of t4.
Scientific workflows have been widely implemented to allow scientists and en-

gineers to implement more complex applications for accessing and processing large
data repositories and running scientific experiments on the Grid or Cloud [64]. How-
ever, workflows can be executed in a different environment, where they behave some-
what differently when the same software (applications) runs in a different environ-
ment. Therefore, many efforts have been devoted to developing scientific workflow
tools that discover their behaviour and information about the current state of the
workflow running.

t3 t2 t1

t6 t5

t9

t4

t7t8

Figure 2.1: A sample workflow.

The term dependency in scientific workflows usually refers to a data transfer,
such as moving a file. As a result, the five operations that can be depicted in scien-
tific workflows are shown in Figure 2.2: (1) Processing involves one incoming and
one outgoing dependency. (2) Pipeline involves each job using the output generated
data by the predecessor job, and the output generated serves as input to the succes-
sor job for the subsequent stage. (3) Data distribution involves one incoming and
multiple outgoing dependencies. (4) Data aggregation involves multiple incoming
and one outgoing dependency. (5) Data redistribution involves multiple incoming
and outgoing dependencies.

Scientific Workflows [65] are commonly used in several scientific fields, such as
Montage [33], CyberShake [30] and LIGO [1], to describe complex computational
problems and capture data between them. Workflows can be run on distributed com-
puting platforms such as High-Performance Computing (HPC)[32, 66], Grid[7, 57]
and Cloud[52]. These platforms offer significant computing power and scalability

2.2 Scientific Workflow Representations 7

Figure 2.2: Basic workflow structures [8].

advantages, making them ideal for running large-scale scientific applications.
In this dissertation, we used a library of realistic workflows introduced by Bharathi

et al. [8] to evaluate our research work. All experiments will be evaluated with
synthetic/real workflows derived from the applications Montage (astronomy), Cy-
berShake (earthquake science), LIGO (gravitational physics), Epigenomics (bioin-
formatics), and SIPHT (biology), taking into account data transfers. We used these
workflows because they have different structures based on real scientific workflow
applications. The Montage[22] workflow is an astronomical application used to gen-
erate custom mosaics of the sky based on a set of input images. The CyberShake
[30] workflow is used to characterise earthquake hazards by generating synthetic
seismograms. The Laser Interferometer Gravitational-Wave Observatory (LIGO) [11]
workflow is used to analyse data on the coalescing of compact binary systems such as
binary neutron stars and black holes. The Epigenomics workflow represents a largely
pipelined application with multiple pipelines operating on distinct chunks of data.
The sRNA Identification Protocol using High-throughput Technology (SIPHT) pro-
gramme [45] uses a workflow to automate the search for sRNA encoding- genes for
all bacterial replicons in the National Center for Biotechnology Information (NCBI)
database. The structure of the five workflow applications is shown in Figure 2.3.

Over the past decade, the scientific research community has extensively used
scientific workflows to take advantage of coarse-grained parallelism in applications
running on distributed infrastructures such as clusters[5], grids[7, 57], and clouds
[65]. However, these infrastructures have become increasingly complex, diverse,
and prone to failure. In addition, scientific workflows have grown in terms of the
volume and complexity of data and computations. As a result, numerous techniques,
heuristics, and mechanisms have been developed to overcome these challenges and
optimise workflow execution.

2.3 Workflow Management Systems 8

Text

Montage

CyberShake

LIGO

Epigenomics

Sipht

Figure 2.3: The structure of the Montage, CyberShake, LIGO, Epigenomics and Sipht
workflows [8].

2.3 Workflow Management Systems

Workflow management systems (WMS) are software tools or platforms that enable
the design, execution and monitoring of workflows or business processes. They pro-
vide a way to streamline and automate the coordination of tasks and data between
an organisation’s people, departments and systems. WMS typically involves mod-
elling a workflow and managing the execution of those tasks. WMS aims to increase
efficiency, reduce errors and improve the quality of results by automating manual
processes and providing real-time visibility into the status of work [23].

WMSs such as Pegasus[22], Kepler[6], and DEWE v3[35] provide a way to man-
age and handle the execution of workflows through resource selection, job schedul-
ing, appropriate resource allocation and data management. Overall, WMS can signif-
icantly improve the efficiency and effectiveness of workflow execution on distributed
computing platforms and allow researchers to focus on their scientific goals rather
than the technical details of managing and executing their workflows.

Several WMSs are being utilised for research and real-life and industry devel-
opments. However, we will discuss only Pegasus and DEWE v3, which are directly
related to our research. We will highlight them because we used them in our disser-
tation.

One of the earliest workflow management systems is Pegasus [20], which was
initially proposed to execute workflows in grid environments. However, the founda-
tion of Pegasus was laid in 2001, and it is clearly seen in the literature that it is still
an active research area thanks to the unfolding of different computing paradigms,
such as Cloud Computing and Fog Computing. To execute various workflows with

2.4 Workflow scheduling 9

Pegasus, they offer a description format called DAX (Directed Acyclic Graph in XML).
DEWE v3 can run scientific workflows in three different ways (traditional clusters

(VMs), cloud functions, and a hybrid mode that combines both). The FaaS platform
supports AWS Lambda and Google Cloud Functions. It has large-scale workflows
running on a hybrid approach that combines traditional clusters with the FaaS plat-
form. DEWE v3 runs a workflow engine on a virtual machine. Using AWS Lambda,
DEWE v3 reads the workflow definition from an XML file and loads the job binaries
and input files into the Amazon S3 object storage. Since Lambda has a temporary
storage limit of 500 MB in the execution environment, some jobs cannot be sent to
Lambda due to the size of their data files. Jobs that are ready for execution (i.e. ac-
cording to their precedence constraints) are scheduled into Amazon Kinesis Shards.
Each shard acts as an independent queue that can send tasks to its own function in-
stance. The Kinesis batch size determines the number of tasks a function can process
in a single invocation. This can be configured before the workflow is executed. Then,
the Lambda function pulls a batch of tasks from its own shard to execute them in
sequence in a single function invocation. The number of running function instances
and the associated kinesis shards can also be configured before the workflow is run
and directly influences the maximum degree of parallelism that the execution of the
workflow can have.

2.4 Workflow scheduling

Workflow scheduling is an increasingly important area for WMS. It plays a critical
role in the optimal allocation of resources to all tasks. The problem of scheduling
in distributed environments is known to be NP-hard [69]. Therefore, no algorithm
can achieve an optimal solution in polynomial time, while some algorithms can give
approximate results in polynomial time. There are several known algorithms for
scheduling; we will use the following three in the rest of the dissertation because
researchers have widely used them.

MaxMin[10] is a three-stage heuristic algorithm for scheduling. First, it filters all
ready tasks (i.e., those for which all input dependencies are met). Then, it sorts
the filtered tasks in ascending order according to their expected running time
length. Finally, it schedules the task with the longest expected runtime on the
best available resource. Consequently, it favours tasks with long runtimes over
those with short runtimes.

MinMin[9] is a very similar heuristic algorithm to MaxMin, the difference being
mainly in the sort order: unlike MaxMin, MinMin sorts tasks in descending
order (again, by their expected runtime). The task with the shortest expected

2.5 Cloud Computing 10

runtime is then selected to run again on the best available resource. This heuris-
tic aims to create an optimal local path to reduce the total execution time.

Heterogeneous Earliest Finish Time algorithm - HEFT [67] - calculates the aver-
age expected execution time of each task on the resources (VMs) and the aver-
age communication time of two tasks between all resources. In the first phase,
it uses a ranking function to rank the tasks based on the sum of the average
execution time and communication time. In the second phase, it assigns a task
with the highest ranking value (highest priority) to a resource that would result
in minimum execution time.

To execute complex workflows effectively in terms of application makespan, util-
isation cost, network utilisation and energy consumption, workflow scheduling al-
gorithms are applied. However, different scenarios may require different scheduling
policies. Finding the optimal scheduling for cloud/fog resources is challenging be-
cause (i) the availability of resources cannot be foreseen at the time when a task is
ready to be executed, (ii) the best fitting resource is hard to find for a task in the case
of its migration, and (iii) the maximal utilisation of the resource-constrained fog en-
vironment is difficult to manage to achieve the shortest makespan of the workflow
application. Finally, (iv) the execution of the workflow has to meet multi-objective
criteria [34].

Many scheduling algorithms used in cloud computing systems focus on reducing
the execution time of workflow applications, often neglecting other factors such as
monetary costs (budgets) or deadlines. Scheduling algorithms aim to establish an
appropriate mapping between the tasks of a workflow and the available resources to
achieve the application’s objective function. This objective function may include or be
constrained by optimising a single or multiple Quality of Service (QoS) parameters.
The workflow deadline refers to the latest possible time to complete the last task.
While a budget is a maximum amount, a user is willing to spend to run a workflow
application using computing resources.

2.5 Cloud Computing

Cloud computing [27] refers to the delivery of computing services over the internet,
allowing users to access and utilize various resources, such as virtual machines, stor-
age, databases, and software applications, without the need for local infrastructure
and hardware. Cloud computing offers several advantages, including cost savings,
scalability, and reduced operational overhead. It enables businesses and individuals
to focus on their core activities without managing complex infrastructure.

There are many cloud computing service models. We will focus exclusively on the
Infrastructure as a Service (IaaS) model, one of the most important service models

2.6 Function as a Service 11

in cloud computing. IaaS refers to a cloud computing model in which virtualised
computing resources are delivered over the internet. In an IaaS configuration, users
can access and manage virtual machines, storage, network infrastructure, and other
basic computing resources without investing in or maintaining physical hardware.
This allows companies to scale their IT infrastructure dynamically, pay for resources
on demand, and focus on their core business without worrying about managing the
underlying infrastructure.

Cloud computing is increasingly becoming an important tool for executing work-
flows [65]. Running workflows on Infrastructure as a Service (IaaS) leads to the
challenge of determining the number of virtual machines (VMs) to back the jobs of
the workflow. At each workflow stage, there are a different number of jobs, all of
which may require different computing resources. Static provisioning (i.e., where a
fixed set of VMs are provided for the execution of the workflow from the beginning
of its execution to the end) may reduce resource waste and financial expenditure,
but it can not improve the performance of the workflow. WMSs must manage the
available infrastructure and decide when and how to allocate the resources needed
to execute a workflow and how to use them effectively. This requires dynamic provi-
sioning approaches (such as Amazon Auto Scaling 1) to dynamically add or remove
resources based on the workload of the workflow’s stages.

2.6 Function as a Service

Function as a Service (FaaS) is a cloud computing model that allows developers to de-
ploy and run code as individual functions. FaaS is a recent development in the field
of cloud computing. FaaS is a commercial cloud platform running distributed ap-
plications with highly scalable processing capabilities. It promises a simple function-
oriented execution environment for non-interactive web application tasks. Like other
cloud computing technologies, commercial platforms (such as Amazon Web Services
(AWS) Lambda and Google Cloud Functions) are designed to provide FaaS function-
alities. These allow functions to run in environments with some limitations. While
FaaS offers several benefits, such as scalability, cost-effectiveness, and reduced oper-
ational overhead, it also has some limitations. Here are a few limitations of FaaS:

1. Execution Time Limits: FaaS platforms often impose execution time limits on
functions. For example, AWS Lambda has a default limit of 15 minutes. Long-
running tasks or processes that exceed this limit may not be suitable for FaaS
and may require a different approach.

2. Stateless Nature: FaaS functions are stateless, meaning they do not maintain
any internal state or memory between invocations. Each function invocation

1https://aws.amazon.com/autoscaling/

https://aws.amazon.com/autoscaling/

2.6 Function as a Service 12

is independent of others. While this design promotes scalability and parallel
processing, it can limit applications that rely on maintaining a state or require
long-lived connections.

3. Cold Start Overhead: FaaS platforms may need to provision a new container or
compute resource to run the function when a function is invoked. This process,
known as a cold start, can introduce latency and overhead. Cold starts can
be problematic for applications with strict latency requirements or experience
sporadic, infrequent invocations.

4. Resource Limitations: FaaS platforms often impose resource limits on functions,
such as maximum memory allocation, CPU usage, and disk space. These limits
can impact the performance and capabilities of applications that require signif-
icant computational resources or have specific hardware requirements.

Considering these limitations when designing and developing applications using FaaS
is important. While FaaS can be a powerful tool for certain use cases, it may not be
suitable for all applications and workloads.

AWS introduced Lambda2 in 2014, while Google introduced Cloud Functions
(GCF3) in 2016. The advantage of using cloud functions is that it dynamically auto-
mates resource provisioning by scaling up or down depending on workflow execution
requirements. In addition, the billing interval for cloud functions is based on 100 ms,
whereas Google Compute Engine and Microsoft Azure recently changed the billing
interval for virtual machines from by the hour to by the minute. The function is
stateless, and its runtime environment is instantiated and terminated each time the
function invokes. In addition, Microsoft and IBM have introduced their own versions
of FaaS, namely Microsoft Azure Functions4 and IBM OpenWhisk Functions5.

When workflows are run on one of the above FaaS systems, dynamic manage-
ment of backing VMs by WMS becomes unnecessary, as FaaS systems include auto-
matic resource management in the background. Therefore, the number of concurrent
invocations into the infrastructure can better adapt to the actual workflow.

Four FaaS providers, such as Lambda, GCF, Microsoft Azure Functions and Open-
Whisk, were evaluated in [26, 43]. The authors proposed multiple hypotheses con-
cerning the expected performance of cloud functions and designed several bench-
marks to confirm them. Their function platforms have been tested by invoking CPU,
memory, and disk-intensive functions. In addition, data transfer times were also
measured for these function providers. They observed different resource allocation
policies at the providers. The execution performance of Lambda and GCF is based

2https://aws.amazon.com/lambda/
3https://cloud.google.com/functions/
4https://docs.microsoft.com/en-us/azure/azure-functions/functions-overview
5https://cloud.ibm.com/docs/openwhisk?topic=openwhisk-getting-started

https://aws.amazon.com/lambda/
https://cloud.google.com/functions/
https://docs.microsoft.com/en-us/azure/azure-functions/functions-overview
https://cloud.ibm.com/docs/openwhisk?topic=openwhisk-getting-started

2.7 Cloud and Workflow Simulators 13

on the size of memory allocated for the invocation. They identified that Amazon was
more flexible and performant at the time of writing. Moreover, they also reported
that computing with cloud functions is more cost-effective than virtual machines due
to practically zero delay in booting up new resources. They also indicated that virtual
machines would have to sit idle in between invocations due to the more fine-grained
invocation patterns to functions. This behaviour results in more costs incurred by
virtual machine-based function-oriented solutions. Consequently, we expect more
users would prefer Lambda-based workflows due to their efficiency and effectiveness
compared with other platforms.

FaaS imposes limitations on the execution of scientific workflows. Since FaaS is
designed to execute short-lived, event-driven functions, it may not be suitable for
running complex, long-running scientific workflows. The inherent nature of FaaS
platforms, where specific events or requests trigger functions, makes it challenging to
handle scientific workflows that involve multiple interconnected tasks and potentially
long durations. Scientific workflows often require orchestration, coordination, and
data dependencies between various computational steps, which may not align well
with the stateless and ephemeral nature of FaaS. Moreover, FaaS platforms typically
enforce resource limitations, such as execution time limits and memory constraints,
to ensure scalability and cost-effectiveness. These limitations can further hinder the
execution of scientific workflows that demand significant computational resources or
extended processing times.

2.7 Cloud and Workflow Simulators

A simulation-based approach is of great interest in the field of scientific workflow re-
search. DIScrete event-based Energy Consumption simulaTor for Clouds and Federa-
tions (DISSECT-CF) has been successfully used to simulate the internals of cloud in-
frastructures. Figure 2.4 shows the architecture of the currently available 6 0.9.6 ver-
sion. The figure groups the main components into subsystems, indicated by dashed
lines. Each subsystem is implemented as independently from the others as possible.
To perform such simulations, DISSECT-CF has five major subsystems, each respon-
sible for a particular aspect of internal IaaS functionality: (i) event system - for a
unified time reference; (ii) unified resource sharing - for solving low-level bottleneck
situations; (iii) energy modelling - for analysing the energy utilisation patterns of
individual resources (e.g.., network connections, CPUs) or their aggregations; (iv)

infrastructure simulation - for modelling PMs, VMs and networked entities; and (v)

infrastructure management - to provide infrastructure management.
Using these subsystems, simulations can estimate energy consumption, network

6https://github.com/kecskemeti/dissect-cf

https://github.com/kecskemeti/dissect-cf

2.7 Cloud and Workflow Simulators 14

Figure 2.4: Architectural view of DISSECT-CF [39].

behaviour, and the impact of virtual machine sharing CPU in various scenarios.
DISSECT-CF has shown promising performance gains over popular simulators (e.g.
CloudSim, SimGrid). Finally, and most importantly for our workflow simulation
goals, DISSECT-CF also provides a simplified network model that allows the mod-
elling of data transfers between workflow tasks. As a result, scheduling techniques
based on DISSECT-CF can lead to improved workflow execution times.

This type of information is, at best, only partially available in current commer-
cial and academic cloud (ware) offerings - e.g. Amazon EC27, OpenNebula [50] -
but DISSECT-CF enables the analysis of user-side schedulers from new perspectives.
Based on the results of this analysis, IaaS providers will be able to provide the most
useful information to such schedulers in the future.

To optimally support workflows, cloud systems are often used in the background.
To increase cost and energy efficiency, workflow systems could build on auto-scaling
mechanisms integrated into the clouds. DISSECT-CF’s ecosystem also offers several
auto-scaling mechanisms that aim to meet the application’s requirements running on
the infrastructure. In our case, the application would be either a single workflow
instance or all workflow instances managed by a particular WMS. Since the simula-
tor’s auto-scaling mechanisms are essential for the modern simulation of workflow
systems, in the next paragraph, we give an overview of the existing approaches pro-

7https://aws.amazon.com/ec2

https://aws.amazon.com/ec2

2.8 Summary 15

vided by the DISSECT-CF-examples project8.
The existing auto-scaling mechanisms consider the possible changes to the virtual

infrastructure hosted in the cloud every two simulated minutes. Here, we discuss
the way the changes are decided. The system automatically collects usage metrics
(e.g., CPU usage percentage) for all VMs in the virtual infrastructure. Three different
auto-scaling mechanisms currently use this data. First, the ThresholdBasedVI mecha-
nism destroys underutilised VMs and creates a new one only when all other VMs are
heavily utilised. The mechanism user can set the threshold that determines which
VM is underutilised. Secondly, the VMCreationPriorityBasedVI mechanism applies
the same thresholds but favours the creation of VMs over their destruction. Finally,
the PoolingVI mechanism keeps some unused VMs in the virtual infrastructure. So,
unlike the previous approaches that have to queue tasks, the Pooling approach can
accept new jobs at any time during the simulation (since it always has some free
virtual machines to which it can direct new jobs). As soon as no more tasks need to
be executed by the WMS, the virtual infrastructure is completely dismantled.

WorkflowSim[19], an extension of the widely used CloudSim[13] simulator, is
designed to simulate cloud infrastructures and services using the Java programming
language. While CloudSim does not support workflow-based simulation by default,
WorkflowSim offers several workflow management modules similar to those of Pega-
sus WMS. These modules include the workflow mapper, which links abstract work-
flows to concrete jobs in the execution environment. The workflow engine manages
dependencies between workflow jobs and the workflow scheduler, which allocates
jobs to computing resources. In addition, this tool uses a clustering engine to manage
scheduling overhead by merging tasks. However, since WorkflowSim can only run Pe-
gasus trace files via importing DAX files, it is limited to running scientific workflows
on cloud resources.

2.8 Summary

In this chapter, we discussed the research background related to our dissertation. In
the background, we have discussed concepts that are applied in the later chapters of
our dissertation. The chapter provided background information on the structure and
characteristics of scientific workflows and the simulator used for the evaluation. This
included concepts related to running scientific workflows on a Function as a Service
(FaaS) platform, scientific workflow simulators, and designing and implementing a
workflow scheduling algorithm.

8https://github.com/kecskemeti/dissect-cf-examples

https://github.com/kecskemeti/dissect-cf-examples

Chapter 3

Simulation-based analysis of Internal
IaaS behavioural knowledge for a
Workflow Management System

3.1 Introduction

In the previous chapter, we improved the scheduling algorithm of DEWE v3 on the
FaaS platform (Lambda). We discussed the advantages of running these workflows
on FaaS platforms, i.e., Lambda. We have also highlighted the limitations of running
scientific workflows on the Lambda platform. Conducting real-world experiments
to improve the behaviour of WMSs is a challenge when running large-scale work-
flows. Especially when a statistically significant number of experimental results are
required to inform us about possible WMS improvements, this limits the scope of
WMS research and development. Therefore, researchers can run a relatively small
number of scenarios to substantiate research with real measurements. Moreover, it
is very expensive to reproduce experimental results in different real-world scenarios
due to resource costs. Therefore, researchers often turn to simulations.

In this chapter, we focus on the simulation of cloud computing, which has become
an important platform for executing workflows because it provides the ability to rent
resources on demand in a simple way. Simulation is an emerging area for cloud
computing that allows evaluating system performance and improving the behaviour
of cloud-based applications. Workflow management systems also use simulation to
optimise workflow techniques (e.g., scheduling algorithms). Scientific workflow ap-
plications can be evaluated in a simulation environment, resulting in a repeatable
and controlled environment. Although the accuracy and validity of simulated results
always require final validation, in reality, simulation offers many advantages, such
as reproducibility of results, cost efficiency and flexibility. Although many workflow
simulators [14, 31, 68] are available today, they cannot meet the requirements of

16

3.1 Introduction 17

workflow management systems. These requirements include information about the
virtual machine’s creation, placement, and scheduling of the physical machine’s state.
Other cloud simulators [13, 52, 55] are often user-focused and treat clouds as black
boxes. Unfortunately, this behaviour prevents the study of the impact of the various
decisions made by WMSs at the infrastructure level. Even if a simulator provides
insight into the internal workings of clouds, it focuses on some areas (such as pre-
cise CPU or network sharing and energy modelling) and ignores others. They thus
limit the use cases for these simulators in cloud-aware WMSs [69]. Many workflow
simulators [12, 19, 28, 54] do not consider the provisioning delay of a VM in the
cloud. This can significantly impact simulation results, especially with auto-scaling
that needs to provision and de-provision VMs while a workflow runs in the infras-
tructure. In contrast to the above problems, DISSECT-CF [39] captures the internal
details of cloud infrastructures, which can be used to develop a more informed WMS
simulation. It also provides information about virtual machine creation, placement,
and schedulers for the physical machine. However, DISSECT-CF alone does not pro-
vide workflow support.

Recently, FaaS has been used to run computationally and data-intensive scientific
workflows. It provides several desirable features, including (a) automatic provision-
ing of resources (including CPU, memory, network and temporary storage), (b) auto-
matic scaling as the number of function executions fluctuates over time, and (c) fine-
grained pricing model (100 ms). Scientific workflows use these features to solve the
problem of over-provisioning, which drives up costs while under-provisioning leads
to violation of service level agreements (SLA) and poor quality of service (QoS). How-
ever, the use of computing simulations has become widespread in developing novel
techniques, conducting comparative analyses, and understanding and improving the
performance of workflow management systems.

To address this gap, in this chapter, we present DISSECT-CF-WMS1, which is built
on DISSECT-CF. It was developed to run scientific workflow simulations and investi-
gate internal IaaS behavioural knowledge. First, DISSECT-CF-WMS enables the eval-
uation of the impact of three physical machine schedulers of a given infrastructure
on energy consumption. In addition, it enables better energy awareness by exposing
the choice of physical machine schedulers. Second, it can also perform large-scale
workflows with good execution simulation performance. Thirdly, DISSECT-CF-WMS
has been integrated with the auto-scaling mechanisms of DISSECT-CF to execute sci-
entific workflows allowing WMSs to consider the provisioning delay of a VM in the
cloud. Finally, DISSECT-CF-WMS provides a Function as a Service (FaaS) simulation
model for running scientific workflows on serverless simulation.

We evaluated our extension by running different workflow applications with the
three pre-existing physical machine schedulers of DISSECT-CF and comparing their

1https://github.com/Ali-Alhaboby/Dissect-cf-WMS

https://github.com/Ali-Alhaboby/Dissect-cf-WMS

3.2 Related Works 18

energy consumption. We used well-known workflows for our evaluation: Montage,
CyberShake, LIGO and SIPHT. This makes our results comparable with future stud-
ies. In the past, they also have been used for various benchmarks and performance
evaluations [36]. We have demonstrated the integration of the auto-scaling mecha-
nisms into a larger-scale Montage workflow. Finally, we compared the experimental
results of DISSECT-CF-WMS with those of WorkflowSim [19] regarding simulation
accuracy and performance. We also evaluated our serverless simulation to replicate
our experiments from the previous chapter.

The experimental results show that workflow researchers can investigate different
PM schedulers of a given infrastructure with different numbers of VMs to achieve
lower energy consumption. DISSECT-CF-WMS performs better than WorkflowSim
when the number of tasks in the workflow increases. The experiments also show
that DISSECT-CF-WMS is up to 295× faster than WorkflowSim and still produces
equivalent results. The experimental results of the auto-scaling mechanism show that
the integration has the potential to optimise makespan, energy consumption and VM
utilisation compared to static deployment. The results of our serverless simulation
validated the real-life experiments from the previous chapter.

Structure of the chapter: Section 3.2 summarizes the related works and briefly
presents previous results. The details of the design and implementation of the DISSECT-
CF-WMS simulator are given in section 3.3. We show the performance evaluation of
our approach in section 3.4. In section 3.5, we conclude the chapter.

3.2 Related Works

Several simulators [19, 31, 47, 53, 68] have been developed for modelling the exe-
cution of scientific workflows on distributed platforms such as HPC, Grid, and Cloud.
Some simulators [40, 54] have integrated with a particular WMS to obtain more
advanced simulation.

Although several workflow simulators [14, 31, 68] exist today, they cannot meet
the requirements of workflow management systems. These requirements include
physical machine state scheduling, virtual machine creation details, and virtual ma-
chine placement. This behaviour does not allow analysing the impact of the various
decisions made by workflow management systems at the infrastructure level. In ad-
dition, many workflow simulators [12, 19, 28, 54] do not take into account the pro-
visioning delay of a VM in the cloud. This can have a significant impact on simulation
results. This is especially true for auto-scaling, which requires VMs to be provisioned
and de-provisioned while a workflow runs in the infrastructure.

Workflow integration has been demonstrated for DISSECT-CF by GroudSim and
ASKALON [40]. DISSECT-CF was integrated with GroudSim to improve GroudSim’s
network model and cloud infrastructure simulation accuracy. This was achieved by

3.2 Related Works 19

introducing internal IaaS behavioural knowledge into GroudSim using DISSECT-CF.
The integration allowed ASKALON WMS to interact with the simulated cloud-like
with real systems. An evaluation using a 3000-core simulated cloud showed the po-
tential to improve ASKALON’s behaviour in networking, energy metering, VM instan-
tiation, and CPU partitioning accuracy. On the other hand, this integration caused
significant additional work due to the required joint coordination between the two
simulators and ASKALON. In contrast, our newly developed DISSECT-CF-WMS sim-
ulator extension relies directly on DISSECT-CF without incurring any coordination
overhead. This new direct extension approach also enables the use of previously
unavailable auto-scaling mechanisms that can be integrated into the execution of
workflow applications on simulation infrastructures.

In [19], the authors presented the WorkflowSim simulator as an extension of
the CloudSim simulator. It is designed to run scientific workflows and investigate
scheduling and clustering techniques. It includes a task/job fault generator and mon-
itor. It adds queuing/clustering delays to the workflow simulation to more accurately
estimate the total execution time of the workflow. WorkflowSim does not capture all
the relevant details of the system and its execution [17]. In comparison, we devel-
oped a WMS simulator on DISSECT-CF that captures the internal details of the cloud
infrastructure and enables the evaluation of WMS execution on three PM schedulers.
In addition, DISSECT-CF-WMS has better performance than WorkflowSim when the
number of tasks in the workflow is increased. Finally, WorkflowSim does not support
an auto-scaling technique or a delay in deploying VMs to the cloud, while DISSECT-
CF-WMS does.

The authors introduced the WRENCH simulator in [17], which builds on SimGrid
[16], a versatile, accurate, and scalable simulator. WRENCH implemented the Pega-
sus production WMS as a case study. Compared to WorkflowSim, it was found to be
slower by a factor of ∼1.81 for 10,000 task workflows. This was considered accept-
able since WorkflowSim’s simulation results were found to be inaccurate. However,
we show that our simulator approach is significantly faster than WorkflowSim. Tran-
sitively, based on the measurements of [17] measurements, we can conclude that our
approach would also be faster than WRENCH.

NetworkCloudSim [28] is a CloudSim extension mainly used for simulating schedul-
ing mechanisms. It does not support dynamic auto-scaling and provisioning delay of
a VM in the cloud. In contrast, DISSECT-CF-WMS has dynamic auto-scaling that con-
siders the start-up time of a virtual machine in the cloud.

ElasticSim [12] is a toolkit based on CloudSim for simulating workflows with sup-
port for auto-scaling techniques. It does not take into account the start-up time of a
virtual machine in the cloud, which could have a major impact on simulation results.
On the other hand, DISSECT-CF-WMS has auto-scaling mechanisms that consider the
time needed to provision a VM in the cloud.

3.3 The DISSECT-CF Workflow Management System 20

Table 3.1: Comparison of the related workflow simulators

Simulator Published Based on
Programming

Auto Scaling
Language

NetworkCloudSim 2011 CloudSim Java -
WorkflowSim 2012 CloudSim Java -

GroudSim 2014 - Java -
ElasticSim 2017 CloudSim Java

√

WRENCH 2018 SimGrid C++ -

To overcome the above limitations, we developed DISSECT-CF-WMS as an exten-
sion of DISSECT-CF for analysing internal IaaS behavioural knowledge. This exten-
sion enables the evaluation of three physical machine schedulers of a given infrastruc-
ture through fine-grained energy consumption modelling. Furthermore, it can also
perform large-scale workflows with good execution simulation performance. Finally,
it provides an auto-scaling mechanism to dynamically provision and de-provision re-
sources when running workflows, considering the provisioning delay of a VM in the
cloud. It also provides a serverless simulation for executing scientific workflows on
Lambda.

The comparison of the discussed simulators can be seen in Table 3.1. For the com-
parison, we listed the dependencies of the concrete simulator and the programming
language, and we also indicated the year when its source code was published. Fur-
thermore, we depicted with

√
the Cloud if they have considered it in the simulators

and the auto-scaling feature.

3.3 The DISSECT-CF Workflow Management System

We implemented our WMS simulation approach on DISSECT-CF, a simulator focus-
ing on internal infrastructure. We chose DISSECT-CF because of its compact API:
(i) enables easy extensibility, (ii) supports IaaS energy consumption evaluation, and
(iii) enables quick evaluation of different scenarios for IaaS scheduling and internal
behaviour. The APIs of DISSECT-CF support the modelling of cloud computing, net-
work resources, job executions and file transfers. DISSECT-CF allows the definition
of many types and quantities of physical machines, energy consumption properties
and custom VM and physical machine schedulers. In addition, DISSECT-CF provides
a virtual machine abstraction that includes migration and consolidation features.
DISSECT-CF, therefore, provides all the basic abstractions required to implement
classes of cloud resources relevant to the execution of scientific workflows. We de-
veloped DISSECT-CF-WMS to focus on the user side of the clouds, while DISSECT-CF

3.3 The DISSECT-CF Workflow Management System 21

focuses on the internal behaviour of the IaaS systems. We extended the DISSECT-CF
simulator with an extension that was built on top of the cloud system.

DISSECT-CF-WMS handles all interactions related to the execution of workflows
with DISSECT-CF, e.g., transferring data, executing jobs and completing notifications.
The DISSECT-CF-WMS API provides a higher-level simulation focused on WMS re-
search. This API provides several relevant higher-level interactions with the DISSECT-
CF simulator:

• To characterise the datacentre configurations for the simulated workflows, de-
tails of networks, hosts and data centre-level scheduling (e.g. VM placement
policies and PM schedulers) must be provided.

• To enable parsing of workflow descriptions. This allows the loading and han-
dling of task details and dependencies.

• To provide a custom workflow scheduling algorithm. Researchers can develop
new approaches for mapping tasks to the virtual infrastructure supporting the
workflow.

• To specify and set up the auto-scaling mechanism that manages the simulated
virtual infrastructure hosting and running the workflow.

• To select the time to start the workflow. This helps to identify the transient
behaviour of the workflow.

• To instrument the simulation for future analysis. For example, it is possible to
configure the collection of details such as the total execution time of a workflow,
energy consumption, resource utilisation and information about custom VM
and physical machine schedulers.

The shaded part of Figure 3.1 shows the main components of the DISSECT-CF-
WMS architecture. The figure also shows the main connections between the existing
components of the simulator and our new WMS extensions. The figure shows how
the scheduler uses virtual infrastructures to send workflow jobs. While the figure
also shows that the virtual infrastructures are modelled on pre-configured clouds,
our additions and their detailed connections with DISSECT-CF are explained in the
following subsections.

The right side of Figure 3.1 shows the relevant components of DISSECT-CF, which
manage all models for computation, storage, network and data location. The archi-
tectural novelty of our simulation extension is its use of the VirtualInfrastructure
class (instead of directly interacting with lower-level components), which enables
static and dynamic provisioning of VMs. Dynamic provisioning allows scaling VMs
while the workflow runs. Virtual infrastructures can instantiate and terminate a spe-
cific type of VM when a user’s resource needs are more dynamic and sometimes

3.3 The DISSECT-CF Workflow Management System 22

Figure 3.1: Class diagram shows the DISSECT-CF-WMS simulator and its connection to
DISSECT-CF. The DISSECT-CF simulator and Helper support the covered area in white
colour.

unpredictable. The VirtualInfrastructure class provides interfaces to all relevant in-
ternal components to create clouds, storage and virtual machines. The Timed class
provides time-related notifications and enables control of the entire simulation. The
IaaSService class represents a single IaaS cloud that can host the virtual machines
for our virtual infrastructure and workflows. The tasks of the IaaSService are to
maintain and manage the physical machines and schedule VM requests among PMs.
Through the IaaSService class, DISSECT-CF supports the cloud as one of the most
common execution environments, such as a commercial cloud (e.g., Amazon Web
Services (AWS)2) and private cloud infrastructures (e.g., those managed by Open-
Stack3). The Repository class represents the storage entities in the system and is
responsible for modelling data dependency. Such repositories also simulate data
storage. The VirtualMachine class simulates the behaviour of a virtual machine on a
physical machine.

DISSECT-CF has two types of events: time-dependent and state-dependent. First,
the time-dependent events are placed in the event queue of the Timed class. The
event subsystem of DISSECT-CF is used to maintain time within the simulated system.
Second, the state-dependent events are fired by the entities whose states have been
observed. We have used state-dependent events in our WMS that allow DISSECT-
CF-WMS to be notified when a task has been completed during the execution of a

2https://aws.amazon.com
3https://www.openstack.org/

https://aws.amazon.com
https://www.openstack.org/

3.3 The DISSECT-CF Workflow Management System 23

workflow. The DISSECT-CF-WMS simulator subscribes to all tasks to be notified when
a task is completed. This allows DISSECT-CF-WMS to provide the execution time of
each task within the workflow and the input/output times of the data transfer files
of their data dependency.

3.3.1 Parser

The parser component reads the workflow definition from widely used DAX (Di-
rected Acyclic Graph in XML) files (Pegasus’ workflow description [21]). Parsing
creates a list of WorkflowJob instances based on the workflow description files. The
WorkflowJob class is an extension of the original Job class of the DistSysJavaHelpers
project4, which allows the capture of job usage metrics but lacks the dependency-
related information required for workflows. Each instance of WorfklowJob stores
the important information needed to process each task, such as runtime, predecessor
tasks and data dependencies (input/output files).

3.3.2 Engine

After the Parser component reads the workflow definition information, the Engine
component receives and processes the information by checking the predecessor tasks
of each task. The Engine has information about the complete structure of the work-
flow. Its main task is to determine which tasks are ready for execution. A task can
only be ready in two ways: (i) A task without predecessors is always ready. (ii) A
task with predecessors is only ready when all its predecessors have finished their
execution.

Some tasks have one or more data files that are not from their predecessor tasks.
Therefore, we modelled these task inputs by transferring them from a data staging
site to the selected task execution site (VM). Generally, the data staging site is a
shared file system at the execution site, such as NFS, or in some cases, a file storage
service for the execution site, such as Amazon S3. This site is modelled as central
data storage and is used to stage data in and out for a workflow. Then, the next
component will maintain task dependency constraints for managing the scheduling
process.

Our engine only checks the first readiness criterion to simplify the engine’s task.
To ensure that we still process all ready tasks of the second criterion, we ensure that
DISSECT-CF notifies the engine about the task completion for all previously detected
ready tasks. When the engine receives the notification of task completion, it updates
the task’s successor tasks by removing itself from the predecessor list of successors.

4https://github.com/kecskemeti/DistSysJavaHelpers

https://github.com/kecskemeti/DistSysJavaHelpers

3.3 The DISSECT-CF Workflow Management System 24

This allows the successors to be eligible for scheduling by the workflow scheduler
chosen by the simulator user.

Our WMS extension also provides different task states. Figure 3.2 shows the
sequence of task states from an unavailable state (not a ready task) to a ready state
when all predecessor tasks have been completed. Next, it is either in a running state
if scheduled on a resource (VM) or in a waiting state if no resource is available.

One of the problems in developing a WMS is how to deal with failures. Com-
puting resources have a small likelihood of failure during the execution of the WMS.
As demonstrated via the DCF-Exercises project5, DISSECT-CF can mimic arbitrary in-
frastructure failures by using a random failure generator. Our WMS extension builds
on this capability by specifying each failure’s cause, which allows triggering a task if
its computation fails. This capability is introduced in the Engine component, which
monitors the status of a task and takes appropriate action, i.e., a failed task is auto-
matically resubmitted for execution after a timeout. For example, if a task fails, our
WMS sends it to the queue and resubmits it to another computing resource. This
method is part of DISSECT-CF-WMS and can be used to simulate VM failure proba-
bility and error handling capabilities for simulated workflow executions. This can be
used to create more robust fault tolerance mechanisms. Finally, when the task has
successfully finished its execution, it will be in a completed state.

Unavailable Ready

Running Completed

Waiting Failed

Figure 3.2: A task state diagram.

3.3.3 Scheduler

The scheduler receives ready tasks in a local queue from the Engine component to
schedule them. In this step, we need to select appropriate resources for the ready
tasks using the scheduling algorithm specified by the user. The user can implement
his/her algorithm, or it can be one of the pre-implemented solutions, i.e., HEFT
[67], MinMin, [9], and MaxMin, [10] (these were introduced in section 2.4). We

5https://github.com/kecskemeti/dcf-exercises

https://github.com/kecskemeti/dcf-exercises

3.3 The DISSECT-CF Workflow Management System 25

support two types of scheduling algorithms: static (e.g., HEFT) and dynamic (e.g.,
MaxMin, MinMin and DataDependency). Static algorithms start with assigning tasks
to VMs in the workflow planning stage. Assignment of tasks to VMs occurs before the
start of workflow execution. In this case, the Engine component is still responsible
for releasing tasks whose predecessor tasks have completed execution. However,
the Scheduler component assigns a task to its corresponding resource beforehand.
In contrast, the dynamic algorithms start assigning tasks to VMs during workflow
execution. Tasks are assigned to VMs when the tasks are ready, and VMs are free
during the workflow execution phase.

We have developed the DataDependency scheduling algorithm that takes into
account data transfers. It selects several ready tasks from a list of task objects stored
in the data structure for execution based on the free available resources (VMs). The
scheduler component is also responsible for storing information about which VM to
execute each task on. This informs the JobRunner component about the location of
files with data dependencies (e.g., where the predecessors stored their outputs). This
step enables the actual execution of the task on a virtual machine, which is covered
in the next section.

3.3.4 JobRunner

The JobRunner component is responsible for the execution of each task on a pre-
viously selected resource (VM). It transfers all files on which a task depends to the
execution VM. The transfer is done using the network APIs of DISSECT-CF. If a task
is assigned to the same VM executing a predecessor task, the corresponding depen-
dency transfer does not occur. After notification of the completion of the dependency
transfer, the execution of the task on the VM begins. DISSECT-CF provides the task-
level resource sharing and execution model. This allows DISSECT-CF-WMS to obtain
accurate and reliable information about task completion.

If necessary, JobRunner transfers the output files from an execution site to the
central storage site (staging data out) after a task is completed. After completing
all these activities, the JobRunner notifies the Engine component that the task is
complete. This step enables the engine to schedule successor tasks.

3.3.5 Dynamic behaviour

Figure 3.3 shows the basic interaction required in our extension to execute a sin-
gle workflow task. DISSECT-CF-WMS simulates the exchange of a large number of
messages between its components about the state of the task.

When the process is complete, the Engine component receives the details of the
workflow information in a data structure. It then forwards the ready tasks to the

3.3 The DISSECT-CF Workflow Management System 26

scheduling process. Before scheduling takes place, the Scheduler retrieves informa-
tion about the available resources (VMs) from the VirtualInfrastructure component of
DISSECT-CF. Based on the dynamic information about resource availability, a ready
task is assigned to a VM using the selected workflow scheduler. Then the JobRunner
component manages the transfer of files with data dependencies to an execution site
(VM) to start the execution of a task. Finally, the JobRunner component sends a
task completion notification to acknowledge the engine component. This allows the
successor tasks of the completed task to update their precedence conditions and be
ready for scheduling. Therefore, the scheduling process continues till all tasks are
scheduled. The Engine component is also responsible for completing the execution
of the workflow. It counts the number of completed tasks. Once all parsed tasks
have received a completion notification of execution from JobRunner, the Engine
shuts down the other WMS components (i.e., the Scheduler and the Job Runner)
associated with the execution of the workflow.

Figure 3.3: The interactions between the DISSECT-CF-WMS components and DISSECT-
CF for the task’s lifecycle till it is completed.

3.3.6 Auto-Scaling Mechanism

We integrated the DISSECT-CF-WMS simulator with the existing auto-scaling mecha-
nisms of DISSECT-CF. We have adapted DISSECT-CF-WMS to provide auto-scaling for
a workflow execution environment. We have considered the delay in provisioning a
VM in the cloud, which can significantly impact simulation results. After a virtual
machine is requested, it is not immediately available for use. The provisioning delay
of a VM is the time it takes to be provisioned and booted on a physical host. This
enables analysis of the dynamic provisioning of resources while running scientific

3.3 The DISSECT-CF Workflow Management System 27

workflows in the cloud to overcome issues of under or over-utilisation of resources.
The auto-scaler behind our WMS extension provides dynamic provisioning and de-
provisioning of the number of VM instances based on user-selected criteria.

We have integrated our WMS into the virtual infrastructure of an auto-scaler,
which is presented in section 2.7. The auto-scaler can automatically scale up or
down resources based on the auto-scaling approach to better meet the demands of
newly arrived tasks. We modified the JobRunner component to accommodate data
transfers. Since the auto-scaled virtual infrastructure creates and destroys VMs at
will, the memory of these VMs is volatile and cannot be used for long-term storage
of data dependencies during workflow execution. Therefore, our approach places
data files in a central data storage for staging data to and from a workflow. To avoid
bottlenecking the tasks that access the same central storage to store and retrieve the
data files. Therefore, we store the intermediate data on VMs during workflow execu-
tion. However, when we need to destroy a VM, we transfer the data on this VM to a
central storage before destroying it. DISSECT-CF provides three basic mechanisms for
auto-scaling (we discussed these in detail in section 2.7). When configuring work-
flow experiments, the auto-scalers can be selected, and their effects on the WMS
analysed.

Auto-scaling provides a dynamic and scalable way of scheduling multiple work-
flows simultaneously with different virtual machine images to facilitate the execu-
tion of several tasks from various workflow applications. Users can develop novel
auto-scaling policies by extending the base VirtualInfrastructure class to override its
methods, such as the three mechanism classes (PoolingVI, VMCreationPriorityVI, and
ThresholdBasedVI), as shown in Figure 3.4. Users can develop an approach to store
their intermediate data on the VMs used for execution, but the data on a particular
VM should be moved to central storage when a mechanism needs to de-provision
that VM. Some users require a dynamic provisioning technique for developing some
workflow scheduling algorithms that need this technique. This concept applies to
algorithms that use either static or dynamic resource provisioning. This technology
allows algorithms to dynamically adjust the number and type of virtual machines
used to schedule jobs while workflows are running.

DISSECT-CF-WMS can query the CPU utilisation for any period during workflow
execution to identify the current VM utilisation pattern. Therefore, this behaviour
results in either de-provisioning some unused VMs or provisioning VMs when the
current VM utilisation is high, e.g. when the three auto-scaling mechanisms use this
feature (VM request, VM termination). More mechanisms could be added to reflect
the environment in real life.

3.3 The DISSECT-CF Workflow Management System 28

Figure 3.4: The overview of the DISSECT-CF-WMS simulator integrated with the auto-
scaling mechanisms of the DISSECT-CF simulator.

3.3.7 A simple Model of FaaS Simulation

To develop a simple serverless workflow simulation (AWS Lambda) for executing
scientific workflows, we chose DEWE v3 due to two factors: (i) it is an open-source
WMS, and (ii) it already has the implementation of Lambda as its serverless execution
environment. To understand our simulation model, we briefly overview DEWE v3’s
original and improved scheduling behaviours in the following Section 3.3.7.1.

3.3.7.1 DEWE v3

DEWE v3 runs a workflow engine on a virtual machine. When using AWS Lambda,
DEWE v3 reads the workflow definition from an XML file and loads the job bina-
ries and input files into the Amazon S3 object storage based on the information it
contains. Since Lambda has a temporary storage limit of 500 MB in the execution
environment, some jobs cannot be sent to Lambda due to their size. Jobs that are
ready for execution (i.e., according to their precedence constraints) are scheduled
into Amazon Kinesis shards.

Each shard acts as an independent queue that can send tasks to its own function
instance. The Kinesis batch size determines the number of tasks a function can pro-
cess in a single invocation. This can be configured before the workflow is executed.
Then, the Lambda function pulls a batch of tasks from its own shard to execute them
in sequence in a single function invocation. The number of running function in-
stances and the associated kinesis shards can also be configured before the workflow
is run and directly influences the maximum degree of parallelism that the execution
of the workflow can have.

When a function instance starts processing a job, DEWE v3 downloads its input
data from Amazon S3. When the job is finished processing, it also uploads its output
data to S3 so that other jobs in the workflow can be scheduled when its input data is
ready. This can result in a large amount of transfer-dependent data during workflow
execution. The transfers occur between S3 and the FaaS environment and directly
increase the communication costs of the workflow. Figure 3.5 illustrates the steps of

3.3 The DISSECT-CF Workflow Management System 29

the original scheduling algorithm of DEWE v3.

Figure 3.5: The scheduling steps of the original algorithm with a sample workflow
example.

To avoid these transfers, we have focused on improving the scheduling algorithm
of DEWE v3, which uses the Lambda platform as the execution environment. To
reduce data transfers, we have considered scheduling not only the jobs that are cur-
rently ready but also their successors so that they can be executed sequentially in a
single function instance. The following paragraph explains our changes in detail.

To improve the data transfers of DEWE v3, we have transferred some behaviours
of the workflow management system to Amazon’s Kinesis shards and Lambdas. We
have taken advantage of the sequencing behaviour of shards and Lambdas. First,
some jobs and their successors are scheduled for the same shard and function in-
stance. The order of the schedule in the shard corresponds to the order of the jobs in
the workflow as specified by the precedence constraints for jobs. In addition, we used
the parameter SequenceNumberForOrdering, which guarantees the order of jobs on a
shard6. This allows successive jobs to be executed in the same Lambda invocation
without transferring output and input if these transfers are only used between those
jobs. This behaviour is due to Lambda pulling a batch of jobs based on the batch size
of Kinesis to execute them sequentially in one invocation. When the first job in the
batch begins processing, it reads its input data from Amazon S3. Then, intermediate
data (output data) is uploaded to S3, which other jobs outside batch jobs might need.
Finally, Lambda also finishes processing the batch by uploading the final data files to
S3. Figure 3.6 illustrates the steps of the improved scheduling algorithm of DEWE
v3.

6https://docs.aws.amazon.com/kinesis/latest/APIReference/API_PutRecord.html

https://docs.aws.amazon.com/kinesis/latest/APIReference/API_PutRecord.html

3.3 The DISSECT-CF Workflow Management System 30

Figure 3.6: The scheduling steps of the improved algorithm with a sample workflow
example.

3.3.7.2 The Serverless Simulation Implementation

We implemented the Function as a Service (FaaS) behaviour of Amazon Lambda to
replicate our real-world experiments of serverless execution on DEWE v3. We have
implemented the behaviour of the original and improved algorithms of DEWE v3,
which we explained them in the previous section. First, we implemented Lambda
memory sizes of 512, 1024, 1536, 2048 and 3008 MB. We assumed that 512, 1024,
1536, 2048, and 3008 memory sizes have 1, 2, 3, 4, and 5 CPU cores, respectively.
We also considered each function instance as a virtual machine. Second, we limited
the Lambda execution time to a maximum of 900 seconds (15 minutes). Thirdly, we
implemented the batch size of the Lambda function, i.e. the number of jobs that are
executed for each single function invocation. Fourthly, we implemented the number
of Kinesis shards so that each shard is a specific queue for each function instance.
The number of function instances depends on the number of Kinesis shards during
workflow execution. Finally, we implemented Amazon S3, which is modelled as
central data storage and used to stage data in and out for a workflow.

We have developed a WMS simulation to run workflows on the FaaS and IaaS
simulations. We used the concept of virtual machines to run Lambda invocations on
them with the Lambda constraints: Memory Limit (CPU cores), Maximum Execution
Duration Limit and Temporary Storage Limit (500 MB storage space). The FaaS
execution environment has only 500 MB of storage space. In addition, we used the
batch size to set the maximum number of jobs that Lambda can pull from the shard
to execute in a single invocation. We added a feature to calculate queuing delays
that occur when scheduled jobs in Lambda invocations to shards are waiting to be

3.4 Evaluation 31

processed. We have added more features to calculate execution costs, total power
consumption, and average utilisation of function instances.

We have developed a simple serverless workflow simulation (AWS Lambda) for
executing scientific workflows with different scenarios. Our approach provides the
expected time and cost of executing scientific workflows on FaaS, IaaS, and a hybrid
approach combining both. The scientific community can compare the execution time
and cost of workflows on IaaS, FaaS, and the hybrid approach with different config-
urations in the simulation. The scalability of our approach can simulate thousands
of concurrent function invocations that are dynamically allocated depending on the
workflow demand changes and according to the users’ requirements and preferences.
Our approach provides the ability to accommodate hybrid workloads using FaaS and
IaaS in a single simulation. If the function invocation fails to execute a batch of jobs,
these jobs are sent to IaaS to be executed on the available resource (VM).

3.4 Evaluation

We demonstrate the capabilities of DISSECT-CF-WMS using the following evalua-
tion experiments. First, we evaluated how the pre-existing three physical machine
schedulers influence the energy consumption of various workflows. Second, we com-
pared the simulation of DISSECT-CF-WMS with WorkflowSim regarding simulation
accuracy and performance. Third, we have shown the advantages of using the auto-
scaling mechanisms of DISSECT-CF-WMS to optimise makespan, energy consumption
and VM utilisation over static provisioning. Finally, we also evaluated our serverless
simulation to replicate our real-world experiments of serverless execution on DEWE
v3. The simulations were run on a laptop with 12 CPUs of Intel Core i7-8750H CPU
@ 2.20GHz, 16GB RAM and 119GB SSD.

All experiments were evaluated with synthetic workflows derived from the Mon-
tage (astronomy), CyberShake (earthquake science), LIGO (gravitational physics)
and SIPHT (biology) applications, taking into account data transfers. These work-
flows are available7.

To simplify the configuration of the simulated cloud, we used the DCCreation
class from DISSECT-CF. We configured the simulated infrastructure for our WMS
experiments by setting up a homogeneous cloud with 100 physical machines (each
configured with 32 CPU cores, 256 GiB of memory and 256GB of storage, and a
linear power model ranging from an idle power draw of 296 watts to a maximum
power draw of 493 watts) and also configured central data storage of 36 TB. The
machines and central storage were simulated to be connected via a single switch
(we set the bandwidth between the machines and the switch to 2 Gbit). All created

7https://github.com/wrench-project/pegasus/tree/master/examples/evaluation/

scalability

https://github.com/wrench-project/pegasus/tree/master/examples/evaluation/scalability
https://github.com/wrench-project/pegasus/tree/master/examples/evaluation/scalability

3.4 Evaluation 32

physical machines are connected via a cloud-level network. Three physical machine
schedulers potentially control the physical machines.

To evaluate the energy efficiency, we used the IaaSEnergyMeter class from DISSECT-
CF, which allowed us to monitor the energy of the entire IaaS system generated by the
DCCreation class. We set up our energy metre to monitor the entire cloud and collect
energy-related details in every simulated hour. In addition, we used the HourlyVM-
Monitor class, which can monitor the utilisation of each VM’s CPU at an hourly rate.

We collected the data centre metrics after the first task of the workflow was
started. We instrumented the following simulation experiments to capture the fol-
lowing metrics: (i) the makespan (total workflow execution time), i.e., the start time
of the first task to the completion time of the last task, (ii) the average VM utilisation,
i.e., the average of the hourly reports for each VM during the complete execution of a
workflow, and (iii) the total energy consumption of the data centre in kilowatt hours
(kWh) as reported by the IaaSEnergyMeter.

3.4.1 Utilisation of Internal Cloud Infrastructure Details

We configured a virtual infrastructure with a static number of VMs (in a single ex-
periment, we set the number of VMs between 30 and 100; all VMs were homoge-
neous regarding the number of CPU cores and memory). We used FirstFitScheduler
as a VM scheduler and the DataDependency algorithm as a task scheduler on VMs.
The FirstFitScheduler is a VM scheduler that implements one of the simplest VM
schedulers. It places each VM at the first PM that would actually accept it. We ran
each static virtual infrastructure on the cloud mentioned above, but we replaced
the schedulers for the physical machines with the three offered by the simulator:
(i) AlwaysOnMachines (AOM), (ii) SchedulingDependentMachines (SDM) and (iii)

MultiPMController (MPMC). First, AlwaysOnMachines ensures that all PMs are con-
trolled to always remain on. Second, SchedulingDependentMachines increases or
decreases the power of the PM set according to the requirements of the VM sched-
uler (this scheduler changes the power of the PM set by one PM at a time). Finally,
MultiPMController is very similar to SDM but immediately increases the number of
machines needed to run the current infrastructure (i.e. if four newly powered-on
PMs are needed to host the current demand of VMs, all four are powered on imme-
diately). We set a linear power model for physical machines created by DISSECT-CF-
WMS, which assumes that power consumption depends on the degree of use of the
CPU, ranging from an idle power consumption of 296 watts to a maximum power
consumption of 493 watts. We recorded the power consumption for DISSECT-CF-
WMS from the start time of the first task to the completion time of the last task of the
workflow.

Figures 3.7, 3.8, 3.9 and 3.10 show the collected energy consumption for each

3.4 Evaluation 33

experiment of DISSECT-CF-WMS when running 1000 tasks each of the Montage, Cy-
berShake, Sipht and LIGO workflows. With a small number of 30 VMs (4 cores) using
only slightly less than 4% of the total infrastructure, the MPMC and SDM schedulers
have much better energy consumption than the AOM scheduler (i.e., they consume
more than 11 times, 15 times, 7 times, and 8 times of energy for the same compu-
tation of the Montage, CyberShake, Sipht and LIGO workflows, respectively). This
pattern repeats (with smaller advantages) for almost all larger VM numbers, except
when the VMs use the entire infrastructure. In all cases, AOM’s strategy of switching
on all machines regardless of workload pays off, as it makes all VMs available for
workflow at the earliest opportunity. In contrast, the SDM and MPMC schedulers
significantly reduce energy consumption. SDM uses a strategy of switching on all
machines in the data centre one by one (at a time), resulting in a long overall simu-
lation time due to the provisioning delay, as shown in Figure 3.11. The MPMC policy,
on the other hand, immediately switches on the number of machines needed for the
current operation of the infrastructure. Static VM allocation policies for workflows
are unsuitable for data centres using a PM scheduler such as SDM.

First, AOM has the same energy consumption patterns for all workflow applica-
tions because it never considers switching off machines, and thus it results in energy
consumption for the entire infrastructure, even for the PMs that do not host VMs. In
the case of AOM, increasing the number of VMs also decreases the makespan, which
reduces energy consumption. Second, all PM schedulers have the same energy con-
sumption when using the entire infrastructure, as they use all machines. Moreover,
the MPMC and SDM schedulers have similar patterns for the Montage and Cyber-
Shake applications. However, the Sipht and LIGO applications have reduced energy
consumption by increasing the number of VMs because they have not used all the
statically created VMs at all times. In the experiments with 30, 40 and 50 VMs, the
workflow scheduler reused VMs during workflow execution. In the case of the Sipht
experiment with 100 VMs, however, which only uses a maximum utilisation of the
VMs of 70%, because there are 64 jobs in the second phase of Sipht, while the number
of VMs is 100 and therefore 36 VMs are unused. This leads to a significant under-
utilisation of resources in this phase. The idle time in these resources leads to the
highest energy consumption. This behaviour is also repeated in the last two phases
of the Sipht workflow. In addition, some tasks in Sipht have significant differences
in their runtimes, so the time difference can be up to 19×. In the LIGO experiments,
this pattern is repeated, but the time difference can be up to 3×, resulting in lower
energy consumption.

If we compare the experiments from the cloud users’ point of view, the results
show the advantage of the AOM and MPMC schedulers. As our base WMS waits for
all statically allocated VMs to start up, the VMs behind our workflows can start faster
thanks to AOM’s always-ready physical machines. This reduces VM provisioning time,

3.4 Evaluation 34

0

200

400

600

800

1000

1200

1400

1600

30 VMs (4 cores)
32GiB of RAM

40 VMs (8 cores)
64GiB of RAM

50 VMs (16 cores)
128GiB of RAM

100 VMs (32 cores)
256GiB of RAM

P
o

w
e

r
C

o
n

su
m

p
ti

o
n

 (
W

h
)

Number of VMs

AlwaysOnMachines

MultiPMController

SchedulingDependentMachines

Figure 3.7: The total power consumption of PM schedulers for the Montage workflow
on DISSECT-CF-WMS with different numbers of VMs.

0

300

600

900

1200

1500

1800

2100

30 VMs (4 cores)
32GiB of RAM

40 VMs (8 cores)
64GiB of RAM

50 VMs (16 cores)
128GiB of RAM

100 VMs (32 cores)
256GiB of RAM

P
o

w
e

r
C

o
n

su
m

p
ti

o
n

 (
W

h
)

Number of VMs

AlwaysOnMachines

MultiPMController

SchedulingDependentMachines

Figure 3.8: The total power consumption of PM schedulers for the CyberShake workflow
on DISSECT-CF-WMS with different numbers of VMs.

as shown in Figure 3.11. Note that despite AOM’s significant energy penalty, the
improvements in provisioning time are equally significant. The weakness of the SDM
strategy is also evident in the waiting time. Our WMS has to wait significantly longer
for the requested VMs to be ready before assigning tasks to them. The waiting time
difference can be as high as 17× as shown in Figure 3.11. The differences are mainly

3.4 Evaluation 35

0

1500

3000

4500

6000

7500

9000

10500

12000

13500

15000

30 VMs (4 cores)
32GiB of RAM

40 VMs (8 cores)
64GiB of RAM

50 VMs (16 cores)
128GiB of RAM

100 VMs (32 cores)
256GiB of RAM

P
o

w
e

r
C

o
n

su
m

p
ti

o
n

 (
W

h
)

Number of VMs

AlwaysOnMachines

MultiPMController

SchedulingDependentMachines

Figure 3.9: The total power consumption of PM schedulers for the Sipht workflow on
DISSECT-CF-WMS with different numbers of VMs.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

30 VMs (4 cores)
32GiB of RAM

40 VMs (8 cores)
64GiB of RAM

50 VMs (16 cores)
128GiB of RAM

100 VMs (32 cores)
256GiB of RAM

P
o

w
e

r
C

o
n

su
m

p
ti

o
n

 (
W

h
)

Number of VMs

AlwaysOnMachines

MultiPMController

SchedulingDependentMachines

Figure 3.10: The total power consumption of PM schedulers for the LIGO workflow on
DISSECT-CF-WMS with different numbers of VMs.

because SDM is very slow in starting machines (one VM at a time). As a result,
the execution of the entire workflow is delayed with fewer physical machines turned
on (but those few are turned on for a significantly longer time, as shown by the
provisioning times in Figure 3.11). These differences show that switching on all PMs
required for the workflow is advisable for dedicated private cloud infrastructures.

3.4 Evaluation 36

This way, we get the results back the fastest and also do not consume too much
energy during the runtime of the workflow, like the MPMC scheduler. Moreover, all
workflows in SDM started executing the tasks after all required PMs were switched
on. Therefore, SDM and MPMC consume the same energy despite having different
strategies. Thus, DISSECT-CF-WMS can offer insight for analysing different workflow
execution scenarios and instrumenting the execution environment to gain insight
into the impact of the chosen infrastructure configuration.

119 119 119 119119 119 119 119

297

564

920

2078

0

500

1000

1500

2000

30 VMs (4 cores)
32GiB of RAM

40 VMs (8 cores)
64GiB of RAM

50 VMs (16 cores)
128GiB of RAM

100 VMs (32 cores)
256GiB of RAM

Th
e

 p
ro

vi
si

o
n

in
g

ti
m

e
 o

f
V

M
s

(s
e

c)

Number of VMs

AlwaysOnMachines

MultiPMController

SchedulingDependentMachines

Figure 3.11: The provisioning time of VMs for three PM schedulers on DISSECT-CF-
WMS with different numbers of VMs.

3.4.2 Simulation Times

We have demonstrated the benefits of a WMS simulation extension for evaluating
WMS behaviour. We move on to the evaluation of the core functions of the WMS.
We have compared the performance and accuracy of the simulation results of our
DISSECT-CF-WMS with version 1.1.0 of WorkflowSim, using the same laptop as men-
tioned above. We chose WorkflowSim because it is an open-source workflow simula-
tor providing a higher workflow management layer. DISSECT-CF-WMS does not use
logging mechanisms, but we printed the execution details as messages. To ensure
a fair comparison, WorkflowSim’s logging mechanisms were disabled. We ran two
experiments, one in each simulator, with exactly the same settings. First, we ensured
the simulated data centres had the same characteristics. Again, we used the same
cloud mentioned earlier. We requested a static VM configuration that occupied the

3.4 Evaluation 37

entire data centre: 100 virtual machines with 32 cores each. For our WMS, we used
FirstFitScheduler as the VM scheduler, AOM as the PM scheduler and DataDepen-
dency as the scheduling algorithm. For WorkflowSim, we used DATA as the schedul-
ing algorithm, LOCAL as the local file system for storing the data dependency files
and the time-shared model as the policy for VMs and jobs. We have evaluated both
simulators with synthetically generated Montage workflows of different sizes (the
number of tasks ranged from 1K to 15K).

We compared the total execution times reported by both simulators for all the
workflows. We have obtained very similar execution times in both simulators. The
difference between the two had a mean absolute percentage error (MAPE) of less
than 0.16%. This difference in execution time is because our workflow scheduler in
DISSECT-CF-WMS assigns tasks to VMs slightly differently than the approach taken
by WorkflowSim. As a result, the dependent data’s transfer time may differ. Despite
the more accurate and detailed simulation (i.e., we provide more insight into the
internals of the data centre behind the workflow), DISSECT-CF-WMS delivers the
results in significantly less time. Figure 3.12 illustrates the performance differences
between the simulators.

0.01

0.1

1

10

100

1000

10000

1000 3000 5000 7000 9000 11000 13000 15000

Se
co

n
d

s
(l

o
ga

ri
th

m
ic

 s
ca

le
)

Number of workflow tasks

DISSECT-CF-WMS

WorkflowSim

Figure 3.12: The simulation time of the DISSECT-CF-WMS and WorkflowSim simula-
tors with different numbers of Montage workflow tasks.

We see that our measurements of the real duration of the simulation show that the
performance advantage of DISSECT-CF-WMS is between 18 and 295× (i.e., we can
get to the same quality results at most two orders of magnitude faster). Moreover,
WRENCH took 13 minutes to simulate a Montage workflow with 10,000 tasks[15],
while DISSECT-CF-WMS took about 5 seconds to simulate the execution of the same
workflow. WorkflowSim builds on CloudSim, which uses a process-based paradigm
where each entity in the system has its own thread, resulting in poor scalability as
the number of entities in the system grows [56]. DISSECT-CF, however, requires

3.4 Evaluation 38

only one simulation thread (instead of one thread per entity). As a result, our WMS
outperforms WorkflowSim, as shown in Figure 3.12.

3.4.3 Simulation versus Execution

In this experiment, we compared our simulation result to an existing execution of a
real-world Pegasus workflow (Montage-2.0) on the AWS-m5.xlarge platform to vali-
date the simulation environment [15]. The Montage workflow contains 1240 tasks,
and we compared the real execution of five traces to the simulated one. We replicated
the identical execution environment, which performs similarly to AWS-m5.xlarge in-
stances. The execution environment includes a submission node that runs Pegasus
and DAGMan and four worker nodes (4 cores per node with a shared file system).
In these instances, the bandwidth between the data node and the submit node was
0.44 Gbps, while the bandwidth between the submit and worker nodes was 0.74
Gbps and 1.24 Gbps, respectively. Figure 3.13 depicts Gantt charts of the real exe-
cution, whereas Figure 3.14 depicts the simulated execution. On the vertical axis,
task executions are shown as a line segment on the horizontal time axis, covering
the time interval between the task’s start and end times. Different kinds of tasks are
indicated in different colours. We have tried to assign the same colours to these task
types as in the real execution. The average time for real-world execution was 2911.8
seconds, whereas the average time for simulated execution was 2980 seconds. The
results of the experiment demonstrate that the scheduling and execution of the simu-
lated workflow are similar to the actual workflow execution. The runtime difference
of 68.2 seconds is due to the errors of the prediction service utilised for choosing
the activity and file transfer execution timings in the simulation, which inaccuracy is
within a 3% range.

All tasks of the same type in this workflow have the same priority and are in-
dependent. For example, the shapes of the yellow areas differ in the two figures.
The implementation-based behaviour of the workflow scheduler explains these dif-
ferences. During the execution of the workflow, it is often possible to select several
ready tasks for execution, e.g., groups of independent tasks on the same workflow
level. If the number of computing resources, n, is less than the number of ready
tasks, the scheduler immediately executes n-ready tasks. In most WMSs, these tasks
are selected from the first n tasks returned during iteration through the data struc-
tures in which the task objects are placed. To create an identical replica of a WMS, it
needs to develop and use the same data structures as the real implementation. De-
pending on the data structures, languages, and/or libraries used, this can be tedious
or impossible. In this Pegasus case study, the real DAGMan scheduler uses a custom
priority list to hold ready tasks, while our simulation version stores workflow tasks in
a Java hashmap indexed by task string IDs. The consequence is that the real sched-

3.4 Evaluation 39

Figure 3.13: Task execution Gantt
chart for sample real-world (“pegasus”)
execution of the Montage-2.0 workflow
on the AWS-m5.xlarge platform [15].

Figure 3.14: Task execution Gantt
chart for simulated Dissect-cf-WMS ex-
ecutions of the Montage-2.0 workflow
on the AWS-m5.xlarge platform.

uler, when selecting the first n-ready tasks, generally selects different tasks than the
simulated version of the scheduler. The differences that can be seen in Figure 3.13
and 3.14 can be attributed to this factor.

3.4.4 Auto-Scaling Mechanism

We focused on demonstrating the benefits of the auto-scaling mechanisms behind
DISSECT-CF-WMS. We re-ran our large-scale (15K tasks) Montage workflow. We
used the same cloud we mentioned earlier. We compared the dynamic VM allocation
strategies of the different auto-scalers with the completely static virtual infrastructure
allocation (thus allowing a comparison to the previously acquired statically allocated
Workflowsim Scenario). In the static scenario (dedicated cluster), we set up 50 vir-
tual machines with two cores each before the workflow executes and kept all VMs
until the end. For this experiment, we used FirstFitScheduler as the VM scheduler,
MPMC as the PM scheduler, and the DataDependency algorithm as the task scheduler.
DISSECT-CF also simulates a single repository for a specific type of virtual appliance
from which all VMs can be derived. In this experiment, we modified the Pooling VI to

3.4 Evaluation 40

ensure the efficiency of the auto-scaling mechanism. First, we adjusted the pooling VI
to have 50 VMs with two cores each at the beginning of the workflow execution since
Montage has 12,495 tasks in the first and second phases. The structure of Montage is
shown in Figure 2.3. Second, we set the threshold for pooling VI to 80 VMs to reduce
the cost while maintaining the makespan. Finally, the number of VMs is reduced to
two if the single-threaded tasks of the Montage workflow are executed sequentially.
In this case, one VM is used while the second is idle because Pooling VI is designed
to have a certain number of completely unused VMs available for executable jobs.

Figure 3.15 shows the results of executing the workflow. Pooling VI has the short-
est total execution time compared to a dedicated cluster and the other auto-scaled
virtual infrastructures. In terms of VM resource utilisation, Figure 3.16 also shows
that pooling VI has the best average VM utilisation across all auto-scaling mecha-
nisms and static 50 VMs. This is because pooling VI has been configured to always
keep one VM ready in the virtual infrastructure (so this is a compromise between
the fully static and dynamic scenarios that the others implement). It is also worth
noting that Pooling VI follows an almost static allocation of VMs, while the other two
approaches frequently destroy and recreate VMs (in fact, they only reuse VMs for
about six tasks before discarding them). These approaches thus significantly increase
execution time, as most workflow tasks initially have no VMs to execute and must
wait for their respective VMs to come to life. It should also be noted that the ad-
ditional transfers required for staging data also lengthen execution, unlike the static
VM allocation approach. In addition, the VMs access the same central storage to read
and write the data dependency files. Montage is a data-intensive scientific workflow.
To avoid bottlenecking the tasks that access the same central storage to store and
retrieve the data files. Therefore, we store the intermediate data on VMs during
workflow execution. However, when we need to destroy a VM, we transfer the data
on this VM to a central storage before destroying it.

A concept similar to Amazon EC2 is being considered, where VMs are rented on
demand and charged hourly, with partial hours rounded up to the next full hour.
Pooling VI reduced total billed hours by 41.5% compared to the dedicated cluster
with 50 VMs, as shown in Figure 3.17. The Montage workflow consists of six single-
threaded tasks executed sequentially, as shown in Figure 2.3, with a total execution
time of about 4.5 hours. As a result, when VMs were statically allocated, only one
VM was used for 4.5 hours, while the other VMs were idle due to the single-thread
tasks. Another consideration was related to Pooling VI, which describes the ability of
mechanisms to allocate many VMs efficiently (see Figure 3.18). Static provisioning
is inefficient when the number of VMs remains constant over time. In this case, the
scheduling algorithm does not provide a way to increase or decrease the number of
VMs in response to a dynamic workload of workflows. In Figure 3.19, Pooling VI
reduced energy consumption by more than 82% compared to static allocation. In

3.4 Evaluation 41

465

1298
1261

472

0

200

400

600

800

1000

1200

1400

PoolingVI ThresholdBasedVI VMCreationPriorityVI Static 50 VMs

M
ak

e
sp

an
 (

m
in

)

Auto-scaling Mechanisms with Static Allocation of VMs

Figure 3.15: Makespan of auto-scaling mechanisms and static 50 VMs.

0

20

40

60

80

100

0

4
4

8
8

1
3
2

1
7
6

2
2
0

2
6
4

3
0
8

3
5
2

3
9
6

4
4
0

4
8
4

5
2
8

5
7
2

6
1
6

6
6
0

7
0
4

7
4
8

7
9
2

8
3
6

8
8
0

9
2
4

9
6
8

1
0
1
2

1
0
5
6

1
1
0
0

1
1
4
4

1
1
8
8

1
2
3
2

1
2
7
6

R
e

so
u

rc
e

 u
ti

liz
at

io
n

 (
%

)

Makespan (min)

PoolingVI ThresholdBasedVI VMCreationPriorityVI Static 50 VMs

Figure 3.16: Resource consumption patterns of auto-scaling mechanisms and static 50.

addition, Pooling VI reduced energy consumption by about 54% compared to the
other auto-scaling mechanisms. Although Pooling VI has used the most significant

3.4 Evaluation 42

total number of VMs compared to static allocation and the other mechanisms (see
Figure 3.20), it has the lowest total number of hours billed, as shown in Figure 3.17.

234

267 269

400

0

75

150

225

300

375

450

PoolingVI ThresholdBasedVI VMCreationPriorityVI Static 50 VMs

Ti
m

e
 (

h
)

Auto-scaling Mechanisms with Static Allocation of VMs

Figure 3.17: The total accounted for hours of virtual machines of auto-scaling mecha-
nisms and static 50 VMs.

0

20

40

60

80

0

4
4

8
8

1
3
2

1
7
6

2
2
0

2
6
4

3
0
8

3
5
2

3
9
6

4
4
0

4
8
4

5
2
8

5
7
2

6
1
6

6
6
0

7
0
4

7
4
8

7
9
2

8
3
6

8
8
0

9
2
4

9
6
8

1
0
1
2

1
0
5
6

1
1
0
0

1
1
4
4

1
1
8
8

1
2
3
2

1
2
7
6

V
M

s
cr

e
at

io
n

 (
n

u
m

)

Makespan (min)

PoolingVI

ThresholdBasedVI

VMCreationPriorityVI

Figure 3.18: The virtual machines creation patterns of auto-scaling mechanisms.

3.4 Evaluation 43

23.99

52.98 53.27

135

0

20

40

60

80

100

120

140

PoolingVI ThresholdBasedVI VMCreationPriorityVI Static 50 VMs

To
ta

l p
o

w
e

r
co

n
su

m
p

ti
o

n
 (

kW
h

)

Auto-scaling Mechanisms with Static Allocation of VMs

Figure 3.19: The total power consumption (kWh) of auto-scaling mechanisms and
static 50 VMs.

119

81

66

50

0

20

40

60

80

100

120

PoolingVI ThresholdBasedVI VMCreationPriorityVI Static 50 VMs

N
u

m
b

e
r

o
f

V
M

s

Auto-scaling Mechanisms with Static Allocation of VMs

Figure 3.20: The total accounted for the number of virtual machines (2 cores each) of
auto-scaling mechanisms and static 50 VMs.

3.4 Evaluation 44

3.4.5 The FaaS Workflow Experiments

The FaaS simulation model aims to reproduce what we observed in our real-world
experiments of serverless execution on DEWE v3. Also, we obtain the same results
from the simulation as from the real-world experiments. Real-world experiments
are good to start with, but they cost so much money, and we cannot scale them up.
However, we have implemented the original and improved algorithms of DEWE v3,
which we explained in Sections 3.3.7.1 and 3.3.7.2.

3.4.5.1 Real-World Experiments

We evaluated the improved and original algorithms of DEWE v3 with a 6.0-degree
Montage workflow considering data transfers between jobs. The 6.0-degree Montage
workflow has 8,586 jobs with a data dependency size of 38GB. All the jobs are exe-
cuted on Lambda except the mAdd jobs executed on a single virtual machine. The VM
is needed because the size of the input/output files of mAdd exceeds the temporary
storage space offered in a single Lambda function invocation. The configurations of
the experiment are as follows:

1. Lambda Memory size was 3008 MB

2. Lambda execution duration was 900 seconds.

3. The batch size of the Lambda function was 20.

4. The number of Kinesis shards was set to 30.

5. The virtual machine was t2.xlarge, which has the following properties: 16 GiB
of memory and four vCPUs.

The makespan of the improved algorithm is 1001 seconds, while the original
algorithm was 1109 seconds. The improved algorithm reduced the total execution
time of the large-scale workflow by about 10% compared to the DEWE v3 original
algorithm. Thus, this experiment shows that our improved algorithm benefits larger-
scale workflows.

3.4.5.2 Simulation Experiments

Next, we evaluated both the original and the improved algorithms with scientific
workflows considering data transfers between jobs. The configurations of the exper-
iment are as follows:

1. The Lambda Memory sizes were 512, 1024, 1536, 2048 and 3008 MB

2. The Lambda execution duration limit was limited to 900 seconds.

3.4 Evaluation 45

3. The batch size of the Lambda function was 20.

4. The number of Kinesis shards was set to 30.

5. One VM consisted of 4 CPU cores and 8 GiB of memory.

We used the same workflow applications that were run in the previous experiments.
We set the speed for each CPU core to 1000 MIPS in the simulation. The bandwidth
between FaaS and Amazon S3 was set to 1 Gbit. The scientific workflows have about
1000 tasks from the Montage, CyberShake, Sipht and LIGO workflows. Figures 3.21,
3.22, 3.23 and 3.24 show the total execution time (makespan) of Montage, Cyber-
Shake, Inspiral (LIGO) and Sipht workflows, respectively.

In the case of Montage, the improved algorithm schedules jobs with priority con-
straints to be executed in a single function invocation. Therefore, successor jobs can
use the output files generated by their predecessor job in the same invocation. The
improved algorithm has the potential to reduce workflow execution time by more
than 10% compared to the original DEWE v3 algorithm, as shown in Figure 3.21.
This demonstrates the validity of our work in the previous section. We excluded the
workflow jobs (namely mAdd) from running on Faas because of the expected large
dependency files and their runtimes. Consequently, all mAdd jobs were run on the
VM.

0

200

400

600

800

1000

1200

1400

1600

512 1024 1536 2048 3008

Ex
e

cu
ti

o
n

 T
im

e
 (

m
in

s)

Memory Size (MB)

Original Improved

Figure 3.21: The makespan of the two algorithms with Montage workflow running on
different Lambda memory sizes.

In the case of CyberShake, the improved algorithm reduced the makespan by 15%
compared to the original DEWE v3 algorithm, as shown in Figure 3.22. Our improved

3.4 Evaluation 46

0

50

100

150

200

250

300

350

400

450

500

512 1024 1536 2048 3008

Ex
e

cu
ti

o
n

 T
im

e
 (

m
in

s)

Memory Size (MB)

Original Improved

Figure 3.22: The makespan of the two algorithms with CyberShake workflow running
on different Lambda memory sizes.

algorithm relies on two important factors for workflow execution. First, its approach
depends on the workflow structure where jobs with precedence constraints can be
scheduled with their predecessor job in a single function invocation. For example,
in CyberShake, there are many jobs that have a single predecessor job that they can
schedule with their successor. Secondly, the reduction in makespan depends on the
data size of the data dependencies. For example, the average data size of CyberShake
is 102 MB.

In the case of Inspiral (LIGO), the improved algorithm reduced the makespan by
11% compared to the original DEWE v3 algorithm, as shown in Figure 3.23. This
pattern repeated (with almost gradual decreases) the same as for CyberShake. In
LIGO, there are many jobs that have a single predecessor job that they can schedule
with their successor at the same time. Furthermore, LIGO’s average data size is 8.9
MB.

In the case of Sipht, the improved algorithm reduced the makespan by 5% com-
pared to the original DEWE v3 algorithm, as shown in Figure 3.24. This pattern
repeated (with almost significant decreases), the same as for LIGO. In Sipht, few jobs
have a single predecessor job that they can schedule with their successor simultane-
ously. Furthermore, Sipht’s average data size is 5.91 MB.

3.4 Evaluation 47

0

500

1000

1500

2000

2500

3000

3500

4000

512 1024 1536 2048 3008

Ex
e

cu
ti

o
n

 T
im

e
 (

m
in

s)

Memory Size (MB)

Original Improved

Figure 3.23: The makespan of the two algorithms with Inspiral (LIGO) workflow run-
ning on different Lambda memory sizes.

0

500

1000

1500

2000

2500

3000

3500

512 1024 1536 2048 3008

Ex
e

cu
ti

o
n

 T
im

e
 (

m
in

s)

Memory Size (MB)

Original Improved

Figure 3.24: The makespan of the two algorithms with Sipht workflow running on
different Lambda memory sizes.

Finally, the improved algorithm outperforms the original DEWE v3 algorithm in
all scientific workflows. The improved algorithm has achieved the best reduction
with CyberShake and the least with Sipht. It has achieved a significant reduction
with Montage, whose average data size is 4 MB. The most important factor for the
improved algorithm is the workflow structure, which ensures that the improved algo-

3.5 Summary 48

rithm schedules jobs with precedence requirements into the same invocation. These
results are consistent with what was expected for Montage’s improved algorithm in
Section 3.4.5.1.

3.5 Summary

A scientific workflow application consists of many dependent jobs with complex pri-
ority constraints between them. Cloud workflow simulators do not provide sufficient
support for the underlying virtualised infrastructure. This includes physical machine
state scheduling, virtual machine creation details and virtual machine placement.
Other simulators are often user-centric and treat the cloud as a black box. Unfor-
tunately, this behaviour prevents assessing the impact on the infrastructure of the
various decisions made by the WMS.

This chapter presented DISSECT-CF-WMS, a workflow management system sim-
ulation built on DISSECT-CF. We developed DISSECT-CF-WMS to focus on the user
side of the clouds, while DISSECT-CF focuses on the internal behaviour of the IaaS
systems. DISSECT-CF-WMS enables better energy awareness by allowing the investi-
gation of physical machine schedulers and customisable consumption characteristics.
It also provides dynamic provisioning to meet the resource needs of the workflow ap-
plication as it runs on the infrastructure, taking into account the provisioning delay
of a VM in the cloud. It also provides a serverless simulation for executing scientific
workflows on Lambda.

We evaluated our simulator by running several workflow applications with dif-
ferent schedulers of physical machines for a given infrastructure. The experimental
results show that workflow researchers can investigate different PM schedulers on
infrastructure configurations to achieve lower energy consumption.

The experiments also show that DISSECT-CF-WMS is up to 295× faster than Work-
flowSim and still delivers accurate results. The experimental results of the auto-
scaling mechanism show that the integration has the potential to optimise makespan,
energy consumption, and VM utilisation over static provisioning. This work also
allowed us to investigate Internal IaaS behavioural knowledge, such as different
scheduling strategies for physical machines in a simulated environment; DISSECT-CF-
WMS proved very useful. The experimental results of serverless simulation validated
our real-life experiments from the previous chapter.

Workflow scheduling is an increasingly important area for WMS. Therefore, the
next chapter will focus on developing a scheduling algorithm using our DISSECT-
CF-WMS extension. The developed algorithm can provide further evidence for the
benefit of our extension for optimising workflow techniques.

Chapter 4

Structure-Aware Scheduling
Algorithm for Deadline-Constrained
Scientific Workflows in the Cloud

4.1 Introduction

In the previous chapter, we developed the DISSECT-CF-WMS extension to capture the
internal details of cloud infrastructures when executing workflows. We discussed the
advantages of using our extension over other workflow simulators. Furthermore, one
of the goals of DISSECT-CF-WMS is to enable workflow techniques (e.g., scheduling
algorithms). In the previous chapter, We implemented three popular scheduling algo-
rithms (e.g., HEFT, MinMin, and MaxMin). Workflow scheduling is an increasingly
important area for WMS. Therefore, this chapter focuses on developing a schedul-
ing algorithm using our DISSECT-CF-WMS extension. The developed algorithm can
provide further evidence for the benefit of our extension for optimising workflow
techniques.

The objective of the workflow scheduling problem in the cloud is to map tasks
to resources to maintain task precedence while achieving certain performance met-
rics [62]. In the cloud, faster and more powerful computing resources are often
more expensive than slower ones. On the other hand, using powerful computing
resources can shorten workflow execution time. Consequently, the trade-off between
time and cost is a major challenge for cloud-based workflow scheduling [25]. Two
typical approaches are used to solve this: reducing the total execution time under a
budget constraint [51] and reducing the financial cost under a time constraint [24].
This dissertation presents an approach to the problem of time-constrained workflow
scheduling. The objective is to develop a workflow schedule for a given workflow
that reduces the monetary cost of running the workflow in the cloud within a given
time limit.

49

4.1 Introduction 50

Creating an optimal schedule in a heterogeneous cloud environment is NP-hard
[69]. On the other hand, workflow scheduling aims to reduce the overall time.
Consequently, no algorithm can achieve an ideal solution in polynomial time, while
certain algorithms can provide approximate results in polynomial time. Therefore,
heuristics are required to find near-optimal solutions effectively.

In a cloud computing environment, it is challenging to select the type and amount
of resources to use for the cost-effective execution of scientific workflows [62]. A
shorter execution time can be achieved using many resources, but this could come at
a significant financial cost. In recent years, a significant amount of research has been
conducted on algorithms for scheduling scientific workflows, which are essential for
maximising the benefits of cloud computing. However, these algorithms must focus
not only on assigning tasks to resources but also on determining the amount and
type of resources to be used (i.e., provisioning resources) during the execution of
the workflow [61]. Moreover, it is necessary to determine when these resources
should be provisioned and when they should be de-provisioned during the workflow
execution.

This chapter presents a Deadline and Structure-Aware Workflow Scheduler (DSAWS),
which is a heuristic. The algorithm is a static assignment of tasks to VMs with an
elastic VM pool that provisions and de-provisions VMs for scheduling tasks as the
workflow executes. The algorithm analyses the workflow structure to determine the
type and amount of VMs to deploy and when to provision and de-provision them.
The algorithm’s first phase (the planning phase) selects the number and type of VMs
to be used and the allocation of tasks to these resources. In the second phase, the
algorithm provisions the VMs selected in the planning phase at the specified times.
It also releases these VMs based on the times set in the first phase, considering the
delay in provisioning/de-provisioning a VM in the cloud. Its main objective is to use
these resources effectively to keep costs down without compromising deadlines.

We evaluated our algorithm using well-known workflows such as Montage, Cy-
berShake, Inspiral, and Epigenomics, as this makes our results comparable to future
studies. Finally, the experimental results of the DSAWS algorithm are compared with
different scheduling algorithms such as Dyna[73] and CGA[44].

This approach reduces the overall execution cost of a workflow while meeting
a user-defined deadline. Experimental results show that DSAWS outperforms other
state-of-the-art algorithms in terms of meeting workflow deadlines while reducing ex-
ecution costs. The experiments have shown that DSAWS delivers more cost-efficient
schedules for various workflow applications than Dyna and CGA.

Structure of the chapter: Section 4.2 summarizes the related works and briefly
presents previous results. The details of the design and implementation of the DSAWS
algorithm are described in section 4.3. The experiment results are shown and dis-
cussed in section 4.4. Section 4.5 concludes the chapter.

4.2 Related Works 51

4.2 Related Works

Many scheduling algorithms have focused on reducing the execution time of work-
flow applications in cloud computing. Heuristics and meta-heuristics-based approaches
have been studied for the workflow scheduling problem.

Genetic algorithms (GA) [72] and Particle Swarm Optimisation (PSO) [58] are
well-known meta-heuristic techniques. Moreover, meta-heuristic techniques such as
GA and PSO can be found in the literature for workflow scheduling in the cloud.
Verma et al.[70] presented a genetic algorithm that schedules cloud-based work-
flows depending on their importance to reduce the execution cost while meeting
the workflow deadline. However, this algorithm does not consider the virtual ma-
chines’ start-up time in the cloud. The paper [44] presents a genetic algorithm for
deadline-constrained scheduling of workflows using the co-evolution technique to
modify crossover and mutation probabilities to accelerate convergence and prevent
prematurity. These approaches have the potential to be implemented in a cloud en-
vironment, although the waiting time might require the use of a computationally
intensive meta-heuristic optimisation technique. The pre-processing duration may
increase as the workflow size increases, leading to significant queuing delays.

Several heuristic algorithms [2, 18, 29, 38, 71] in the cloud computing environ-
ment are presented for workflow scheduling. Saeid et al.[2] presented a deadline-
constrained approach for scheduling workflows that allocates an entire critical path
to a single VM instance to reduce data transfer time between successive jobs. This
technique does not consider allocating jobs from a single path to many VM instances
in search of better scheduling options. This technique also does not consider the
time it takes a provisioned VM instance to send all output data to the local storage
of the VMs running the child tasks before it is de-provisioned. Therefore, this is not
practical during the period of process execution.

Xiumin et al.[74] have proposed a technique for extending HEFT [67]. It uses a
two-step approach to reduce workflow makespan and execution costs simultaneously.
However, it does not consider the startup time of a VM instance or the actual data
transfer time between successive jobs. This algorithm selects the final scheduling
solution from the K best solutions. However, the optimal determination of the value
of K is not addressed. In the meantime, comparing the K scheduling solutions to
choose the best one results in the scheduling algorithm’s inefficiency.

The Coevolutionary Genetic Algorithm (CGA) [44] was proposed based on the bi-
ological evolutionary method (genetic algorithm), where the adaptive penalty func-
tion for strict deadlines was introduced. It assigns partial deadlines to each task and
executes them on currently rented or existing VMs to reduce the total cost. CGA’s
static approach has the potential to generate optimal solutions. However, its disad-
vantage is its inability to meet deadlines when unexpected delays occur.

4.2 Related Works 52

Dyna [73] is a scheduling technique developed with auto-scaling capabilities for
the cloud to dynamically provision and de-provision VMs depending on the current
state of tasks. It was presented to develop a scheduling system that reduces the
expected monetary cost under user-defined probabilistic scheduling constraints. It
selects VM types for each workflow task to reduce costs based on an A-star search.
It is designed to schedule many workflows simultaneously but can also be modified
to schedule only one. Dyna is periodically improved by adjusting the number of VMs
requested in each category to ensure the timely completion of tasks at a lower cost.

ARPS [59] is an algorithm for adaptive resource provisioning and scheduling for
scientific workflows in Infrastructure as a Service (IaaS) clouds. It was designed to
address cloud-specific issues such as unlimited on-demand access, heterogeneity, and
pay-per-use (i.e., per-minute billing). Consequently, their strategy was also designed
to consider a user’s deadline and reduce the cost of the environment by using the
resource provisioning and scheduling service. Finally, their experimental results show
that they perform a workflow more effectively than other sophisticated algorithms to
meet deadlines and reduce costs.

Mao et al.[48] proposed a workflow scheduling heuristic for the cloud environ-
ment that allows them to dynamically generate the lowest schedule while meeting
the user’s deadline. They investigated multiple VM types and cloud characteristics,
such as alternative pricing models and acquisition delays. However, they did not
consider data transfer time between linked jobs, which is one of the most important
criteria and significantly impacts data-intensive workflows.

By analysing the workflow structure, [37] proposes a resource provisioning and
scheduling technique that determines the required number and configuration of VMs.
They claimed that their approach addresses data-intensive workflows to minimise
data transfer. However, they did not consider the data transfer time between tasks
during the execution of the two examples presented, which is one of the most im-
portant factors and significantly impacts workflow execution time. In addition, they
neglected resource provisioning and de-provisioning delays in their experiments.

Researchers in [42] have presented a two-step method for provisioning cloud
resources for workflows by minimising makespan and wastage of resources based
on their structural characteristics. The proposed method considers the nature of
the tasks, which may be computational, memory-, or storage-intensive. The per-
formance of the presented algorithm is evaluated using five scientific workflows as
benchmarks. Simulation results show that the proposed method outperforms two
existing algorithms for each workflow.

Although there are several workflow scheduling techniques, there is a need for
resource estimation for workflow execution because the above approaches have not
analysed the workflow structure in depth. In this chapter, we propose DSAWS, which
is a complete full-ahead scheduling algorithm that considers the structure of the

4.3 The Proposed Scheduling Algorithm 53

workflow. We discuss a method to deal with under- and over-provisioning issues.
The comparison of the discussed scheduling algorithms can be seen in Table 4.1.

For the comparison, we listed the scheduling type and the scheduling objectives, and
we also indicated the evaluation if they have considered simulation or real-world
experiments.

Table 4.1: Comparison of algorithms for the scheduling model.

Algorithm Scheduling
Type

Scheduling Ob-
jectives

Evaluation

Saeid et al. [2] Static Deadline & Cost Simulation with synthetic
workflows of arbitrary size

Xiumin et al. [74] Static Makespan & Cost Simulation with real-world
and synthetic workflows

CGA [44] Static Deadline & Cost Simulation on Work-
flowSim with 4 scientific
workflows

Dyna [73] Dynamic Amazon EC2 with 3 scien-
tific workflows

ARPS [59] Static &
Dynamic

Deadline & Cost Simulations on CloudSim
with 4 scientific workflows

Mao et al.[48] Dynamic Deadline & Cost Simulation with Pipeline,
Parallel and Hybrid appli-
cations

Kanagaraj et al. [37] Static Makespan & Re-
sources utilization

Simulation with data-
intensive workflows

4.3 The Proposed Scheduling Algorithm

Several objectives associated with task scheduling issues need to be addressed. The
approach suggested in this chapter focuses on running workflow applications in a
cloud environment to lower overall execution costs while still meeting the user-set
deadline. The proposed technique analyses the workflow structure, determines the
number of tasks at each level, and provides a rank value for all workflow tasks.
To determine the quantity and configuration of resources needed to complete the
workflow execution by the user-set deadline, use this rank value.

4.3 The Proposed Scheduling Algorithm 54

In this chapter, two approaches are discussed. First, in the planning phase, the
exact number and configuration of VMs that need to be rented from cloud service
providers are determined based on the deadline constraint and the ranking value of
the tasks. It also uses the remaining time (leftover time) in the current billing period
to avoid wasting resources. The plan to reuse cloud resources can eliminate the need
for further provisioning and deployment costs.

The second approach concerns the execution phase (the second phase). It aims to
provision or de-provision the resources of the selected services for tasks in the plan-
ning phase. These resources are maintained until they have completed all the previ-
ously assigned tasks. However, if some resources are not needed for the subsequent
tasks, they are terminated immediately after the output data is transferred. This sig-
nificantly reduces execution time and resource costs, which is crucial for workflow
users. We will explain the steps of Algorithms 1 and 2 in the next paragraph using
Table 4.2, which contains the notations used in our algorithms.

Algorithm 1 calculates the rank value of each task, starting with the exit tasks
(tasks without any child). First, the runtime of each exit task became its rank value
for those tasks that have no child tasks (lines 2-6), and then the rank value is assigned
to the parent tasks of the exit tasks (lines 7-15), which involves calling Algorithm 2
(line 11).

Second, Algorithm 2 assigns to each parent task the maximum rank value of the
rank values of its child tasks (lines 2-8) with the maximum data size of the data
sizes of its child tasks (lines 9-12). Algorithm 2 continues assigning the rank value
for each task recursively until it reaches the entry tasks that have no parent tasks
(lines 15-19). Finally, after Algorithm 2 completes its steps, Algorithm 1 sorts all
tasks in descending order according to their rank values to determine the order in
which workflow tasks should be scheduled (line 16). In the next paragraphs, we will
explain the steps of the Algorithms 3 and 4.

The pseudocode of the entire DSAWS algorithm for workflow scheduling is shown
in Algorithm 3. The proposed algorithm uses the rank value to support each task by
selecting the appropriate VM to execute it within the deadline. In the first phase, the
algorithm selects the appropriate type and the exact number of VMs needed to exe-
cute workflow tasks to meet the deadline set by the user. After the basic initialisation
in lines 2-8 of Algorithm 3, it receives the workflow tasks arranged from Algorithm 1
while the deadline D is set by the user. Line 2 identifies the available instance types
of VMs the service provider offers. In line 3, the rented set rentedVMs is empty at
the beginning of the execution of the algorithm. We have initialised a variable called
success that changes when a task finds its matching VM to meet the deadline. In line
6, vmminTime is the earliest available VM time in the currently leased VMs. In line 7,
although all tasks are arranged in descending order of their rank values, Algorithm 3
selects ready tasks from the rankList and adds them periodically to the readyList in

4.3 The Proposed Scheduling Algorithm 55

Table 4.2: Notations for the symbols used in the algorithms.

Notations Meanings
T (G) Set of tasks in workflow graph.
D User-defined deadline of the workflow.
E Set of edges between tasks in the workflow.
tentry Task without any parent.
texit Task without any child.
tEST Earliest Start Time of task t.
tp Predecessors (parents) of task t.
pp Predecessors of predecessor p.
tch Successors (children) of task t.
truntime Runtime of task t.
trank Rank value of task t.
chmaxRank Maximum rank value of child task ch.
chmaxData Maximum data size of child task ch.
chrank Rank value of child task ch.
chdata Data size of child task ch.
pruntime Runtime of parent task p.
prank Rank value of parent task p.
S Set of available instance types of VMs the service provider of-

fers.
rentedVMs Set of virtual machines currently rented by the algorithm.
vmbooting Booting time of virtual machine vm.
vmshutdown Shutdown time of virtual machine vm.
vmminTime the earliest available time of vm in VM .
readyList List of the ready tasks in the workflow.
rankList List all tasks in descending order of their rank values.
timeLine The difference of subtracting vmminTime or tEST from D.
sspeed Performance capacity of service type s.
vmspeed Performance capacity of virtual machine vm.
VMsList List of selected VMs with scheduled tasks on them during the

planning phase.
m Number of VM types.
n Number of currently leased VMs.
vmstart Start time of virtual machine vm.
vmstop Stop time of virtual machine vm.
vmidleT ime Idle time of virtual machine vm.
vmbillingPeriod Billing period of virtual machine vm.
ttransferT ime Transfer time of all output data of task t to the VMs of its suc-

cessors ch.
vmidleT ime Calculated idle time between two consecutive tasks on virtual

machine vm.
tstartvm Start time of task t on virtual machine vm.
tendvm End time of task t on virtual machine vm.

4.3 The Proposed Scheduling Algorithm 56

Algorithm 1 Workflow Ranking

1: procedure ASSIGNRANKING(T (G))
2: for all t ∈ T (G) do
3: if t has no children then
4: trank:= truntime

5: end if
6: end for
7: for all t ∈ T (G) do
8: if t has no children then
9: for each parent p of t do

10: if p has no rank value then
11: call TaskRank(p)
12: end if
13: end for
14: end if
15: end for
16: Arrange all tasks in the list rankList in decreasing order of rank values.
17: end procedure

Algorithm 2 Task Ranking

1: procedure TASKRANK(p)
2: chmaxRank := 0
3: chmaxData := 0
4: for each child ch of p do
5: if ch has rank value then
6: if chrank > chmaxRank then
7: chmaxRank := chrank

8: end if
9: if chdata > chmaxData then

10: chmaxData := chdata

11: end if
12: end if
13: end for
14: prank:= pruntime+maxRank+maxData
15: if p has parent then
16: for each parent pp of p do
17: call TaskRank(pp)
18: end for
19: end if
20: end procedure

4.3 The Proposed Scheduling Algorithm 57

order. In line 8, timeLine is the difference between the earliest available time of the
VM or the earliest start time of a task and a deadline D. The while loop in line 9 is
used to find a suitable VM for each task in the workflow. In line 12, the timeLine

is the difference resulting from subtracting vmminTime from the deadline because the
task begins its execution by selecting a VM instance that has already been rented.
First, the ready tasks check the available rented VMs to meet the deadline. If a task
does not find a suitable VM to meet the deadline, it selects a new suitable VM to meet
the deadline. At the beginning of the execution of the algorithm, there are no rented
VMs in line 13. Therefore, the algorithm skips lines 13-20. In line 22, the timeLine

is the difference resulting from subtracting the earliest start time of a task (tEST)
from the deadline since the task begins its execution by selecting a new VM instance.
Line 23 tries to select a new VM by comparing timeLine with the task’s rank value
divided by the VM speed (lines 13 and 23). For cost-effective task scheduling, the
task searches for a VM at the service provider, starting with the slowest VM until it
reaches the appropriate VM that meets the deadline (lines 24-25). In line 26, the
task is removed from the unscheduled readylist, while in line 28, the selected new
VM is added to the set of rented VMs (rentedVMs). The algorithm updates the EST
for all successors of a task (line 16 or 27) after finding a suitable resource in line 15
or 25. This update may change the readiness of the tasks based on the completion
time of their predecessor tasks. When all tasks are assigned to VMs, the algorithm
calls algorithm 4 in line 33.

Algorithm 4 shows the pseudocode of the TimelineVMS algorithm for provisioning
and de-provisioning resources. In the second phase, the algorithm first determines
the time for provisioning the VMs and the time at which each VM is de-provisioned by
taking into account the delays in provisioning and de-provisioning a VM in the cloud.
Second, the algorithm determines the idle time between two scheduled, consecutive
tasks on each VM. During the execution of the workflow, the algorithm dynamically
adds and removes resources from its pool.

Algorithm 4 represents the second phase, where workflow tasks are scheduled on
the selected resources (VMsList) during the planning phase. It receives from Algo-
rithm 3 a schedule for all tasks about the types and number of their VMs (VMsList).
After initialisation in lines 2-5, the booting and shutdown times of resources and the
VM’s billing period are set. In line 5 of the algorithm, vmidleT ime is used to find the
idle time between any two scheduled consecutive tasks on a VM to shut down this
VM.

To do this, the VM’s billing period is taken into account to determine whether the
idle time is greater than the billing period of a VM. For example, if workflow tasks
are scheduled on VMs in the first phase, the algorithm determines when to start a
VM and when to shut it down in the second phase by checking the schedule of the
tasks on their VMs. This reduces the idle time of VMs. In lines 6 and 7, the algorithm

4.3 The Proposed Scheduling Algorithm 58

identifies the tasks of each VM by reading the start and end times of each task on
it. The algorithm then attempts to prepare tasks’ resources before the tasks begin
their execution (lines 9-12), as the provisioning process is still significant due to the
overhead associated with leasing virtual machines (lines 8–14). The consequences
of VM provisioning and de-provisioning delays are greatly mitigated and are much
easier to manage.

First, the algorithm uses resource elasticity to meet the user’s deadline but knows
when to rent and release resources. If a new VM needs to be provisioned during
the execution of the workflow, the algorithm can start VMs earlier before the task
starts by taking into account the delay in provisioning a VM instance to speed up the
execution of the workflow because provisioning a VM takes time. Secondly, it uses
the cloud billing model to optimise resource utilisation while reducing the number
of rented resources. It also tries to schedule tasks on currently rented VMs to reduce
the need for further VM provisioning costs.

Furthermore, the algorithm checks the timeline of each VM to see if the idle time
is greater than the instance’s billing period (lines 16-20). It then sends the output
data to the VMs performing the successor tasks (line 17) before de-provisioning that
VM instance in line 19. Finally, it sends the output data to the VMs executing the
successor tasks, if any (line 22), before de-provisioning that VM instance in line 24
because the VM has completed its tasks.

4.3.1 An illustrative example

To illustrate how the proposed algorithm works, we apply its steps to a sample work-
flow shown in Figure 4.1. The workflow consists of nine tasks in the nodes of the
graph: t1 − t9. The value within the node of each task indicates the estimated time
of its execution (in seconds), while the number in parentheses represents the rank
value. The estimated time for data transfer between VMs is also shown on the edges
between nodes.

The following sections explain how to use the new algorithm to perform the work-
flow. Before the algorithm starts, the rank value for all tasks should be calculated
using Algorithms 1 and 2. Then, the tasks are sorted in descending order of their
rank value. We assume that the cloud provider offers three types of VM computing
services (vm1, vm2 and vm4) to execute the workflow tasks. The billing period for
computing services is set to 10 seconds, and the costs for vm1, vm2 and vm4 are 2,
4 and 6 respectively. The speeds for vm1, vm2 and vm4 are 1, 2 and 4, respectively.
The VM instance provisioning and shutdown delays are set to 2 and 1 second, re-
spectively, and the workflow deadline is set to 35, which is the maximum rank value
(32) in the workflow, plus the provisioning (2) and de-provisioning delays (1).

For the example workflow in Figure 4.1, we call the DSAWS scheduling algorithm,

4.3 The Proposed Scheduling Algorithm 59

Algorithm 3 The DSAWS scheduling algorithm

1: procedure DSAWS(G(T ,E),D)
2: m= available instance types of VMs (S)
3: rentedVMs = ∅ the currently leased virtual machines
4: success = false.
5: vmbooting = the booting time of VM
6: vmminTime = the earliest available time of vm in rentedVMs.
7: readyList = receives repeatedly ready tasks from rankList.
8: timeLine = represents the difference of subtracting vmminTime or tEST from

the deadline D.
9: while (there exists unscheduled t in readyList) do

10: t = find the earliest EST in readyList
11: vmminTime= find the earliest available time of vm in rentedVMs.
12: timeLine := D - vmminTime

13: for all vmj ∈ VM do where j = 1, 2, . . . , n
14: if timeLine >= trank

vmspeed
j

then

15: select vmspeed
j to run t

16: update EST for all successors of t
17: remove t from readyList
18: success := true
19: end if
20: end for
21: if success==false then
22: timeLine := D - tEST

23: for all si ∈ S do where i = 1, 2, . . . ,m
24: if timeLine >= (trank

sspeedi

) then

25: select a new instance vmspeed
i to run t

26: remove t from readyList
27: update EST for all successors of t
28: add vmspeed

i to rentedVMs
29: end if
30: end for
31: end if
32: end while
33: call TimelineVMs(VMs)
34: end procedure

i.e., Algorithm 3. At the beginning of the workflow execution, t1 − t3 are the ready
tasks that need to be scheduled and steps 13-20 of Algorithm 3 are not applied since
no VMs have been provisioned yet. Therefore, steps 21-31 are executed, running the
for loop in line 23 one or more times until each task finds its appropriate resource
(s11) to execute that meets the user’s deadline. The value EST is calculated for the

4.3 The Proposed Scheduling Algorithm 60

Algorithm 4 Provisioning resources

1: procedure TIMELINEVMS(VMsList)
2: vmbooting = the booting time of VM
3: vmshutdown= the de-provisioning time of VM
4: vmbillingPeriod = the billing period for VM
5: vmidleT ime= the idle time between two consecutive tasks on the VM.
6: for all vm ∈ VMsList do
7: for each task t on vm do
8: if vm has not provisioned then
9: vmstart=(tstart − vmbooting)

10: if vmstart < 0 then
11: vmstart=0
12: end if
13: provision vm on the time of vmstart

14: end if
15: vmidleT ime= vmidleT ime - vmshutdown

16: if vmidleT ime >= vmbillingPeriod then
17: transfer output data of t to the VMs of its successors.
18: vmstop= tend+ttrasferT ime

19: de-provision vm on the time vmstop

20: end if
21: end for
22: transfer output data of t to the VMs of its successors.
23: vmstop= tend+ttrasferT ime

24: de-provision vm on the time vmstop

25: end for
26: end procedure

successor tasks of t2 in step 25.
Steps 13-20 can be executed if some resources are available. A task checks the

available rented resources (vm1
1), starting with the slowest and then the fastest (in

ascending order by speed). If a task (t1) does not find a suitable resource that com-
pletes execution within the deadline, it decides to start a new instance of available
services (s12) considering the speed of the resource in step 24. Similarly, t3 will select
a new instance (s13) that can complete execution within the deadline. Table 4.3 shows
the scheduled tasks, the selected VMs, and the execution time (in seconds) of each
task.

Step 1: First, the DSAWS algorithm assigned t2, t1, and t3 to vm1
1, vm

1
2, and vm1

3,
respectively. The algorithm started three VMs to meet the user’s deadline, and the
current simulation time was two due to the VM booting time.

Step 2: The algorithm assigned t5 to the available instance vm1
1, so no data trans-

fer occurred. The same is occurred for steps 3 and 4: t4 and t6 were assigned to

4.4 Evaluation 61

the instances of their predecessor tasks vm1
2 and vm1

3, respectively. Finally, the last
three steps used the same available instances of their predecessor tasks without data
transfer. After all, tasks have been scheduled. The next step is to invoke Algorithm 4
in step 33 to provision and de-provision the resources of the services assigned to the
tasks during the previous phase (the planning phase).

Finally, Algorithm 4 receives from Algorithm 3 the schedule (e.g., Table 4.3) in-
dicating the time of execution of each workflow task on each resource of the service
type. In lines 2-5, the algorithm sets several variables, e.g., the periods for starting
up (e.g., 2) and shutting down (e.g., 1) of the resource. The variable in line 4 is the
instance’s billing period (e.g., 10). In line 5, this variable will check the idle time
between any two consecutive tasks on each VM. The for loop in line 6 is executed for
all VMs assigned during the planning phase (vm1

1 − vm1
3). Then, the for loop in line

7 is executed for all tasks on each VM (e.g., t2, t5 and t8 on vm1
1). Since no VM is

provisioned at the beginning of the workflow execution, the delay in booting the VM
cannot be avoided (lines 8-14).

However, the other tasks (t4−t9) that start at a time greater than the booting delay
can start executing and thus avoid the VM booting delay. The algorithm provisions
VMs (vmstart) in advance of the tasks’ start times (line 9), taking into account the
VM provisioning delay (vmbillingPeriod). Finally, if a VM has subtracted the shutdown
delay time from the VM idle time (line 16) and the difference is greater than or equal
to the instance’s billing period (line 16), the VM is terminated immediately after the
output data is transferred to the VMs of its successors (lines 15-19).

Furthermore, if no more tasks are running on a VM, the VM is also terminated
immediately after the output data has been transferred to the VMs of its successors
(lines 22-24). The makespan for the workflow with the selected VMs (vm1

1 − vm1
3)

is 30 seconds. Taking into account the data transfer time and the delay times for
booting and shutting down the VM instances, the total cost of the sample workflow
is 18.

4.4 Evaluation

Our experiment evaluated DSAWS with other competitive algorithms like CGA as a
static algorithm and Dyna as a dynamic algorithm. CGA was chosen for comparison
in our evaluation because of its static approach, which has the potential to generate
optimal solutions. Dyna was chosen for comparison in our evaluation because the
algorithm is periodically improved by adjusting the number of VMs requested in
each category to ensure the timely completion of tasks at a lower cost. The aim
is to show how the static component of DSAWS enables the creation of schedules
that outperform the Dyna algorithm in terms of meeting workflow deadlines while
reducing execution costs.

4.4 Evaluation 62

6 (30)
t3

4 (32)
t2

5 (31)
t1

3 (20)
t6

9 (25)
t5

14 (14)
t9

8 (25)
t4

10 (10)
t7

12 (12)
t8

1324

5243

Figure 4.1: A sample workflow.

Table 4.3: The scheduling of the workflow tasks for each step of executing DSAWS on
the sample workflow of Figure 4.1

Step Task Rank Current
Sim
Time

timeLine trank

vmspeed
j

VM
selec-
tion

Start End VM
cycle

1 t2 32 2 32 32 vm1
1 2 6 1

1 t1 31 2 32 31 vm1
2 2 7 1

1 t3 30 2 32 30 vm1
3 2 8 1

2 t5 25 6 28 25 vm1
1 6 15 2

3 t4 25 7 27 25 vm1
2 7 15 2

4 t6 20 8 26 20 vm1
3 8 13 2

5 t9 14 13 21 14 vm1
3 13 27 3

6 t8 12 15 19 12 vm1
1 15 29 3

6 t7 10 15 19 10 vm1
2 15 25 3

The experiment was conducted in the DISSECT-CF-WMS [4] simulator, which is an
extension of the DISSECT-CF simulator. It is useful for running scientific workflows
on cloud resources. DISSECT-CF-WMS focuses on the user-side behaviour of clouds,
while DISSECT-CF focuses on the internal behaviour of IaaS systems. It also supports
dynamic provisioning to meet the resource requirements of the workflow application
while running on the infrastructure, taking into account the provisioning and de-
provisioning delays of a cloud-based VM.

4.4 Evaluation 63

We analysed the most widely used workflows to demonstrate the importance of
the DSAWS algorithm. We chose the well-known workflows Montage from the field
of astronomy, CyberShake from the field of physics, Inspiral (LIGO) from the field of
astrophysics and Epigenomics from the field of bioinformatics. Workflows with about
1,000 tasks were used for the evaluation. All relevant characteristic values required
for the above algorithms are listed in Table 4.4 for the analysis of experiments. The
performance of the four workflows in DSWAS is compared with the Dyna and CGA
approaches.

Table 4.4: The characteristics values for each workflow application

Workflow
type

Number
of levels

Number
of tasks

Number of
dependencies

Mean run-
time (sec.)

Mean data
size (MB)

Montage 9 1000 4485 11.37 3.21
CyberShake 5 1000 3988 22.75 102.29
LIGO 6 1000 3246 227.7 8.9
Epigenomics 8 997 3228 3866.4 388.59

We created a model of the cloud infrastructure of Google Cloud Engine1 with dif-
ferent VM configurations selected from the predefined machine types of the cloud.
An IaaS provider with a single data region and seven types of VMs was set up. Ta-
ble 4.5 shows the VM setup type based on Google Compute Engine offerings. For
Google Cloud Engine, the core of Compute Engine CPU provides a minimum pro-
cessing capacity of 2.75 GCEUs (2.75 ECUs), or about 2750 MIPS [3]. A billing slot
of 60 seconds was modelled, as service providers such as Google Compute Engine
and Microsoft Azure offered. Provisioning delay was set to 30 seconds [63] and de-
provisioning delay to 3 seconds [49] for all types of VMs. The bandwidth between
VMs was set to 1 Gbit.

Table 4.5: Types of VM based on Google Compute Engine offering

Name Memory
(GB)

Google compute en-
gine units

Price per
minute ($)

n1-standard-1 3.75 2.75 0.00105
n1-standard-2 7.5 5.5 0.0021
n1-standard-4 15 11 0.0042
n1-standard-8 30 22 0.0084
n1-standard-16 60 44 0.0168
n1-standard-32 120 88 0.0336
n1-standard-64 240 176 0.0672

1https://cloud.google.com/compute/all-pricing

https://cloud.google.com/compute/all-pricing

4.4 Evaluation 64

To evaluate the ability of each approach to achieve a valid solution that meets the
deadlines, we set the success rate metric, which is calculated as the proportion of
the current execution times to the given deadlines. For the evaluation, we set three
deadline factors based on the maximum rank value of each workflow. The maximum
rank value represents the strict deadline factor (1), as shown in Table 4.6. In contrast,
the moderate and relaxed deadlines are obtained by multiplying the maximum rank
values by (1.5) and (2), respectively.

Table 4.6: The maximum rank values in seconds for each scientific workflow.

Workflow type The maximum rank value (strict Deadline factor)
Montage 369 seconds
CyberShake 736 seconds
LIGO 625 seconds
Epigenomics 27232 seconds

Figures 4.2a, 4.3a, 4.4a, and 4.5a show the results of the success ratios for each
workflow with the three algorithms. On the other hand, Figures 4.2b, 4.3b, 4.4b, and
4.5b show the execution costs (in $) for each workflow with the same algorithms.

In the case of Montage workflow, DSAWS and Dyna algorithms completed the
execution of the workflow within the deadline, while CGA failed to meet the strict
deadline factor, as shown in Figure 4.2a. Dyna met all deadline factors, as shown
in Figure 4.2a. The DSAWS approach met all deadlines with the lowest cost com-
pared to the other algorithms, as seen in Figure 4.2b. The Montage workflow has
many parallel tasks with a short execution time in the second level. This drastically
increases the overall cost of the workflow as more resources are consumed by Dyna,
as shown in Figure 4.2b. However, DSWAS overcomes this disadvantage by using the
leftover time of resources to save costs. Furthermore, Montage has nine levels and
six of these levels are controlled by the single-thread jobs with a total execution time
of 332 seconds. Levels 3 and 4 have 142 seconds, which is more than two instance
cycles, with the billing period being 60 seconds. Levels 6-9 have 190 seconds, which
is equivalent to three instance cycles. Therefore, the DSAWS algorithm keeps only
one VM during these periods to reduce the execution cost and meet the deadline.

In the case of the CyberShake workflow, which has a data transfer bottleneck for
most scheduling algorithms. This drawback is eliminated by the DSAWS described
in this chapter, which allocates resources to all tasks based on their rank value. It
guarantees that all tasks are completed within the deadline and starts new instances
only when needed. Therefore, DSAWS reduces data transfer by assigning tasks to
the same set of resources. The CGA scheduler could not meet the deadline for all
deadline factors successfully. While Dyna met the relaxed deadline factor, it failed
to meet the other deadline factors. DSAWS, on the other hand, meet all deadlines

4.4 Evaluation 65

0

20

40

60

80

100

120

1 1.5 2

Su
cc

e
ss

 R
at

e
 (

%
)

Deadline Factor

DSAWS CGA Dyna

(a) Makespan

0

0.05

0.1

0.15

0.2

0.25

0.3

1 1.5 2

Ex
e

cu
ti

o
n

 C
o

st
 (

$
)

Deadline Factor

DSAWS CGA Dyna

(b) Cost

Figure 4.2: The makespan and execution cost of the three algorithms with the Montage
application.

with the lowest execution cost, as shown in Figure 4.3a and Figure 4.3b, respectively.
CyberShake has five levels, with most tasks at levels 2 and 3 totalling 994 tasks
out of 1000. This results in high concurrency and a large amount of data transfers.
CyberShake is a compute- and data-intensive workflow. In addition, level two has
497 tasks with 95.35% of the total execution time of the workflow tasks. As a result,
the Dyna and CGA algorithms launched many instances of the computation service,
and this has led to an increase in the makespan and execution cost of the workflow
due to the increase in data transfers between resources.

0

20

40

60

80

100

120

140

1 1.5 2

Su
cc

e
ss

 R
at

e
 (

%
)

Deadline Factor

DSAWS CGA Dyna

(a) Makespan

0

0.5

1

1.5

2

2.5

3

1 1.5 2

Ex
e

cu
ti

o
n

 C
o

st
($

)

Deadline Factor

DSAWS CGA Dyna

(b) Cost

Figure 4.3: The makespan and execution cost of the three algorithms with the Cyber-
Shake application.

4.4 Evaluation 66

In LIGO, DSAWS successfully met all deadline factors, while CGA failed to meet all
deadline factors. Dyna met the relaxed deadline factor but failed to meet the other
deadline factors, as shown in Figure 4.4a. CGA and Dyna perform badly because
fewer resources are available for tasks with long execution times. LIGO is a data
and CPU-intensive workflow, and this slowed down the execution of the workflow
significantly. However, the proposed technique analyses the workflow structure, de-
termines the number of tasks at each level and provides a rank value for all workflow
tasks. The algorithm then assigns the appropriate type of resources to these tasks
in the workflow and executes them to meet the user-specified deadline, as shown in
Figure 4.4a. Also, unlike the other algorithms, DSAWS achieved the cheapest cost
among all schedules, as shown in Figure 4.4b. LIGO has 483 tasks with runtimes
greater than the mean execution time (e.g. 227.7). The time difference between
tasks can be up to 3 times the mean runtime of the workflow tasks. This results in
idle time for other resources.

0

20

40

60

80

100

120

140

160

1 1.5 2

Su
cc

e
ss

 R
at

e
 (

%
)

Deadline Factor

DSAWS CGA Dyna

(a) Makespan

0

1

2

3

4

5

6

1 1.5 2

Ex
e

cu
ti

o
n

 C
o

st
 (

$
)

Deadline Factor

DSAWS CGA Dyna

(b) Cost

Figure 4.4: The makespan and execution cost of the three algorithms with the LIGO
application.

In the Epigenomics workflow, the CGA scheduler did not successfully meet the
deadline for the strict and moderate deadline factors, but it was able to meet the
relaxed deadline factor. Similarly, Dyna has met the relaxed deadline factor but
failed to meet the moderate and strict deadline factors. For some Epigenomics tasks,
there are significant differences in execution times by 15000 times or even more.
Therefore, the CPU performance reduction will significantly impact the processing
time of these tasks and lead to delays for CGA and Dyna. The DSAWS algorithm, on
the other hand, met all deadlines, as shown in 4.5a. Furthermore, unlike the other
two algorithms, DSAWS has the lowest execution cost, as shown in Figure 4.5b. This
pattern is repeated in Epigenomics experiments, but the time difference can be up to
7 times of the average runtime of the workflow tasks (e.g. 3866.4). Epigenomics has

4.4 Evaluation 67

eight levels, with most tasks at level 5 comprising 245 tasks and 99.8% of the total
workflow execution time. These differences show that there is a significant need for
resources at this level of the workflow for CGA and Dyna.

0

20

40

60

80

100

120

140

160

1 1.5 2

Su
cc

e
ss

 R
at

e
 (

%
)

Deadline Factor

DSAWS CGA Dyna

(a) Makespan

0

20

40

60

80

100

120

140

160

1 1.5 2

Ex
e

cu
ti

o
n

 C
o

st
($

)

Deadline Factor

DSAWS CGA Dyna

(b) Cost

Figure 4.5: The makespan and execution cost of the three algorithms with the Epige-
nomics application.

Finally, the DSAWS algorithm met all the deadline factors of each workflow, while
the CGA and Dyna approaches met 25% and 50% of all the deadline factors of all
workflows, respectively. These results are consistent with what was expected for
each algorithm. The static heuristic (e.g., CGA) was not more successful in meeting
deadlines, but the adaptability of Dyna allows it to meet its aim more frequently.
The experiment’s results also show the efficiency of DSAWS in terms of its ability to
produce more cost-effective schedules. DSAWS outperformed all other algorithms
we compared it with in all situations. DSAWS succeeds at the lowest cost compared
to CGA and Dyna algorithms. Moreover, CGA showcases its ability to generate more
cost-effective schedules and surpasses Dyna by about 92% regardless of whether the
deadline was met or not. For some workflow structures (e.g., CyberShake and Epige-
nomics), our proposed algorithm uses the initial leased VMs to schedule all tasks
of the same workflow to minimise data transfer costs. Other structures (e.g., Mon-
tage and LIGO) have many tasks with a short execution time, and many instances of
the computation service are launched while only a small part of their time interval
is used. Therefore, the proposed algorithm uses the remaining time in the current
billing period of the VMs to avoid wasting resources. An additional feature of DSAWS
evident in the results is its ability to increase the time required to execute the work-
flow incrementally. The significance of these relationships is that many users are
willing to trade off execution time for lower costs, while others are willing to pay
higher costs for faster execution. The algorithm must behave within this logic so that
the deadline number is perceived as fair by the users.

4.5 Summary 68

There are different structures for scientific workflows. In this chapter, the struc-
ture of the receiving workflow is analysed to determine the type and number of
VMs while meeting the deadline for the workflow. We consider execution time as a
form of Quality of Service (QoS) metric. Our goal is to optimise the performance of
the workflow in the cloud system by allowing the user to constrain the previously
mentioned QoS parameter, namely the deadline. In addition, the user can set op-
timisation goals such as the minimum makespan. Our timely resource provisioning
optimises the execution of workflows within a deadline. Resource selection ensures
tasks are completed without delay by comparing rank values with the deadline to
select the appropriate VM that meets the deadline.

4.5 Summary

When scheduling workflows in the cloud, resource allocation is important. A good
resource estimation method helps the user to reduce the cost and time of work-
flow execution. Numerous algorithms face the challenge of meeting the user’s dead-
line requirements while minimising the cost of running the workflow. The DSAWS
scheduler presented in this chapter analyses the structure of the incoming workflow
and assigns an optimal resource provisioning mechanism based on the deadline con-
straint and the rank values of the tasks in the workflow. The main implementation
of this algorithm is to make the second phase follow the schedule of the first phase
(scheduling of workflow tasks on selected resources). We evaluate the performance
of our algorithm by simulating it with four synthetic workflows based on real sci-
entific workflows with different structures. For some structures (e.g., CyberShake
and Epigenomics), our proposed algorithm uses the initial leased VMs to schedule
all tasks of the same workflow to minimise data transfer costs. Other structures
(e.g., Montage and LIGO) have many tasks with a short execution time, and many
instances of the computation service are launched while only a small part of their
time interval is used. Therefore, the proposed algorithm uses the remaining time in
the current billing period of the VMs to avoid wasting resources. The proposed algo-
rithm reduces the overall execution cost of a workflow while achieving a deadline set
by the user. Experimental results show that DSAWS outperforms the Dyna and CGA
algorithms in terms of meeting workflow deadlines while reducing execution costs.
DSAWS met all the deadline factors of each workflow, while CGA and Dyna met 25%
and 50%, respectively, of all the deadline factors of all workflows.

Chapter 5

Conclusion

This dissertation focused on simulation to model and analyse workflows on the cloud.
As such, two research efforts were conducted. These are discussed below.

The initial research focused on the simulation-based analysis of internal IaaS be-
havioural knowledge alongside a workflow management system. Cloud workflow
simulators do not provide sufficient support for the underlying virtualised infras-
tructure, such as physical machine state scheduling, virtual machine creation details
and virtual machine placement. Other simulators are often user-centric and treat
the cloud as a black box. Unfortunately, this behaviour prevents assessing the im-
pact on the infrastructure of the various decisions made by the WMS. This disserta-
tion presents DISSECT-CF-WMS, a workflow management system simulation built on
DISSECT-CF. We developed DISSECT-CF-WMS to focus on the user-side behaviour of
the clouds, while DISSECT-CF focuses on the internal behaviour of the IaaS systems.
It enables better energy awareness by allowing the investigation of physical machine
schedulers and customisable consumption characteristics. It also provides dynamic
provisioning to meet the resource needs of the workflow application as it runs on the
infrastructure, taking into account the provisioning delay of a VM in the cloud. It
also provides a serverless simulation for executing scientific workflows based on the
behaviour of real-world experiments of Amazon Lambda on DEWE v3.

We evaluated our simulator by running several workflow applications with dif-
ferent schedulers of physical machines for a given infrastructure. The experimental
results show that workflow researchers can investigate different PM schedulers on
infrastructure configurations to achieve lower energy consumption. The experiments
also show that DISSECT-CF-WMS is up to 295× faster than WorkflowSim and still de-
livers accurate results. The experimental results of the auto-scaling mechanism show
that the integration has the potential to optimise makespan, energy consumption,
and VM utilisation over static provisioning. This work also allowed us to investigate
Internal IaaS behavioural knowledge, such as different scheduling strategies for phys-
ical machines in a simulated environment; DISSECT-CF-WMS proved very useful. The

69

5.1 Future Research Directions 70

experimental results of our real-life experiments have validated the serverless simu-
lation of DISSECT-CF-WMS.

We also presented a structure-aware scheduling algorithm for scientific workflows
in the cloud with deadline constraints. When scheduling workflows in the cloud, re-
source allocation is important. A good resource estimation method helps the user
to reduce the cost and time of workflow execution. Numerous algorithms face the
challenge of meeting the user’s deadline requirements while minimising the cost of
running the workflow. The DSAWS scheduler presented in this dissertation analyses
the structure of the incoming workflow and assigns an optimal resource provisioning
mechanism based on the deadline constraint and the rank values of the tasks in the
workflow. The main implementation of this algorithm is to make the second phase
follow the schedule of the first phase (scheduling of workflow tasks on selected re-
sources). We evaluate the performance of our algorithm by simulating it with four
synthetic workflows based on real scientific workflows with different structures. For
some structures (e.g., CyberShake and Epigenomics), our proposed algorithm uses
the initial leased VMs to schedule all tasks of the same workflow to minimise data
transfer costs. Other structures (e.g., Montage and LIGO) have many tasks with a
short execution time, and many instances of the computation service are launched
while only a small part of their time interval is used. Therefore, the proposed al-
gorithm uses the remaining time in the current billing period of the VMs to avoid
wasting resources. The proposed algorithm reduces the overall execution cost of
a workflow while achieving a deadline set by the user. Experimental results show
that DSAWS outperforms the Dyna and CGA algorithms in terms of meeting work-
flow deadlines while reducing execution costs. DSAWS met all the deadline factors
of each workflow, while CGA and Dyna met 25% and 50%, respectively, of all the
deadline factors of all workflows.

Although we have successfully achieved our original goals with our current re-
search, some tasks still need to be done. Let us now discuss our future research
direction.

5.1 Future Research Directions

In future works, we will extend the DISSECT-CF-WMS scheduling algorithm for dy-
namic provisioning to consider cost, makespan, resource utilisation, and energy con-
sumption simultaneously. Multi-objective optimisation is a hot research area in work-
flow scheduling. Users might want to create algorithms for multi-objective schedul-
ing optimisation by leveraging their knowledge of IaaS internals. These insights can
optimise key workflow objectives (such as energy consumption, time, and resource
utilisation). DISSECT-CF-WMS offers opportunities for scientific workflow applica-
tions that can be used for the upcoming research areas:

5.1 Future Research Directions 71

Resource Usage. Different allocation strategies of PMs to VMs can be developed
to study their impact on performance, resource utilisation, energy consump-
tion and fairness of workflows. More mechanisms could be added to reflect
the environment in real life. An open research topic that cannot be discussed
with commercial cloud companies because their VM placement technique is
not public is the impact of background load on virtual resource performance.
Performance degradation is always possible when multiple instances exist on a
physical machine. If the network, memory or CPU become bottlenecks, virtual
machine performance can be affected by this behaviour.

Data Centre Configurations. The DISSECT-CF simulator allows the properties of
data centres (DCs) to be specified using the CloudLoader class. For our work-
flow executions, we can define both homogeneous and heterogeneous comput-
ing resources. Therefore, the base simulator allows the evaluation of different
types of data centres to determine the best option for a specific type of workflow
application. This allows the impact of the DC configuration on scientific work-
flow applications to be investigated through a series of experiments. The rest
of the DISSECT-CF-WMS configuration remains the same, but the DC features
change from one experiment to the next.

Moreover, we plan to improve our algorithm to consider not only the user’s dead-
line but also other QoS objectives, such as resource utilisation and energy consump-
tion, simultaneously. We also plan to extend our algorithm to support other cloud
computing providers such as AWS Amazon and Azure. Finally, we plan to extend
our algorithm to adapt to unforeseen delays resulting from the uncertainties of cloud
frameworks.

5.2 Contributions to Science 72

5.2 Contributions to Science

This work contributes to the field of Cloud Computing, Distributed Systems and Sci-
entific Workflows.

Thesis I: I proposed DISSECT-CF-WMS, a user-focused workflow simulation tool
built upon an existing Infrastructure-as-a-Service simulation platform (DISSECT-CF).
DISSECT-CF-WMS can run scientific workflow simulations and enable investigating
internal IaaS behaviour. It also enables better energy awareness by investigating
physical machine schedulers. It provides dynamic virtual machine provisioning to
meet resource needs to execute scientific workflows, allowing WMSs to consider the
provisioning delay of a VM in the cloud. DISSECT-CF-WMS also provides a server-
less simulation for executing scientific workflows on AWS Lambda. Experimental
results show that DISSECT-CF-WMS is up to 295 times faster than the competitor
WorkflowSim simulation without affecting accuracy results. [P1, P2, P3, P4]

Thesis II: I proposed a new scheduling algorithm that optimizes resource provi-
sioning based on the workflow structure, task ranking, and deadline constraints. The
implementation ensures that the practical workflow execution follows the theoreti-
cal schedule, including the provisioning overheads. I evaluated the algorithm on four
real-world scientific workflows with different structures. The algorithm’s strength is
to use the remaining time in the current virtual machine billing period at maximum
to avoid wasting resources for other workflow structures and task execution time.
Experimental results show that the proposed method outperforms the related algo-
rithms regarding deadline satisfaction while reducing execution costs. [P5]

5.2.1 Author’s Publications Related to the Dissertation

(P1) Al-Haboobi, Ali ; Kecskemeti, Gabor: “Reducing Execution Time of an Existing
Lambda based Scientific Workflow System” In: The 12th Conference of PhD
Students in Computer Science: Volume of short papers Szeged, Hungary : SZTE
(2020) pp. 3-6. , 4 p. Scientific

(P2) Al-Haboobi, Ali ; Kecskemeti, Gabor: ”Improving Existing WMS for Reduced
Makespan of Workflows with Lambda” In: Euro-Par 2020: Parallel Processing
Workshops : Euro-Par 2020 International Workshops, Warsaw, Poland: Springer
(2021) 373 p. pp. 261-272. , 12 p. Web of Science (WoS), (Q2 Scopus Index),
Impact Factor (0.969), (Conference paper) Scientific

(P3) Al-Haboobi, Ali ; Kecskemeti, Gabor: ”Execution Time Reduction in Function
Oriented Scientific Workflows” ACTA CYBERNETICA 25 : 2 pp. 131-150. , 20
p. (2021). Web of Science (WoS), (Q3 Scopus Index), Impact Factor (0.636),
Journal Article

5.2 Contributions to Science 73

(P4) Al-Haboobi, Ali ; Kecskemeti, Gabor: ”Developing a Workflow Management
System Simulation for Capturing Internal IaaS Behavioral Knowledge” JOUR-
NAL OF GRID COMPUTING 21 : 1 Paper: 2 , 26 p. (2023). Web of Science
(WoS), (Q1 Scopus Index), Impact Factor (4.111), Journal Article

(P5) Al-Haboobi, Ali ; Kecskemeti, Gabor: ”Structure-Aware Scheduling Algorithm
for Deadline-Constrained Scientific Workflows in the Cloud” International Jour-
nal of Advanced Computer Science and Applications (IJACSA). Web of Science
(WoS), (Q3 Scopus Index), Impact Factor (1.16), Journal Article. Accepted for
publication.

5.2.2 Other Publications

(P6) András, Márkus ; Al-Haboobi, Ali ; Kecskeméti, Gábor ; Attila, Kertész: ”Sim-
ulating IoT Workflows in DISSECT-CF-Fog” SENSORS 23 : 3 Paper: 1294 , 16
p. (2023). Web of Science (WoS), (Q1 Scopus Index), Impact Factor (4.352),
Journal Article

Bibliography

[1] Alex Abramovici, William E Althouse, Ronald WP Drever, Yekta Gürsel, Seiji
Kawamura, Frederick J Raab, David Shoemaker, Lisa Sievers, Robert E Spero,
Kip S Thorne, et al. Ligo: The laser interferometer gravitational-wave observa-
tory. science, 256(5055):325–333, 1992.

[2] Saeid Abrishami, Mahmoud Naghibzadeh, and Dick HJ Epema. Deadline-
constrained workflow scheduling algorithms for infrastructure as a service
clouds. Future generation computer systems, 29(1):158–169, 2013.

[3] Sanjay P Ahuja and Bhagavathi Kaza. Performance evaluation of data inten-
sive computing in the cloud. International Journal of Cloud Applications and
Computing (IJCAC), 4(2):34–47, 2014.

[4] Ali Al-Haboobi and Gabor Kecskemeti. Developing a workflow management
system simulation for capturing internal iaas behavioural knowledge. Journal
of Grid Computing, 21(1):2, 2023.

[5] Michael Albrecht, Patrick Donnelly, Peter Bui, and Douglas Thain. Makeflow:
A portable abstraction for data intensive computing on clusters, clouds, and
grids. In Proceedings of the 1st ACM SIGMOD Workshop on Scalable Workflow
Execution Engines and Technologies, pages 1–13, 2012.

[6] Ilkay Altintas, Chad Berkley, Efrat Jaeger, Matthew Jones, Bertram Ludascher,
and Steve Mock. Kepler: an extensible system for design and execution of
scientific workflows. In Proceedings. 16th International Conference on Scientific
and Statistical Database Management, 2004., pages 423–424. IEEE, 2004.

[7] William H Bell, David G Cameron, A Paul Millar, Luigi Capozza, Kurt Stockinger,
and Floriano Zini. Optorsim: A grid simulator for studying dynamic data repli-
cation strategies. The International Journal of High Performance Computing Ap-
plications, 17(4):403–416, 2003.

[8] Shishir Bharathi, Ann Chervenak, Ewa Deelman, Gaurang Mehta, Mei-Hui Su,
and Karan Vahi. Characterization of scientific workflows. In 2008 third work-
shop on workflows in support of large-scale science, pages 1–10. IEEE, 2008.

74

Bibliography 75

[9] James Blythe, Sonal Jain, Ewa Deelman, Yolanda Gil, Karan Vahi, Anirban Man-
dal, and Ken Kennedy. Task scheduling strategies for workflow-based applica-
tions in grids. In CCGrid 2005. IEEE International Symposium on Cluster Com-
puting and the Grid, 2005., volume 2, pages 759–767. IEEE, 2005.

[10] Tracy D Braun, Howard Jay Siegel, Noah Beck, Ladislau L Bölöni, Muthucumaru
Maheswaran, Albert I Reuther, James P Robertson, Mitchell D Theys, Bin Yao,
Debra Hensgen, et al. A comparison of eleven static heuristics for mapping a
class of independent tasks onto heterogeneous distributed computing systems.
Journal of Parallel and Distributed computing, 61(6):810–837, 2001.

[11] Duncan A Brown, Patrick R Brady, Alexander Dietz, Junwei Cao, Ben Johnson,
and John McNabb. A case study on the use of workflow technologies for sci-
entific analysis: Gravitational wave data analysis. In Workflows for e-Science,
pages 39–59. Springer, 2007.

[12] Zhicheng Cai, Qianmu Li, and Xiaoping Li. Elasticsim: A toolkit for simulating
workflows with cloud resource runtime auto-scaling and stochastic task execu-
tion times. Journal of Grid Computing, 15(2):257–272, 2017.

[13] Rodrigo N Calheiros, Rajiv Ranjan, Anton Beloglazov, César AF De Rose, and
Rajkumar Buyya. Cloudsim: a toolkit for modeling and simulation of cloud
computing environments and evaluation of resource provisioning algorithms.
Software: Practice and experience, 41(1):23–50, 2011.

[14] Junwei Cao, Stephen A Jarvis, Subhash Saini, and Graham R Nudd. Gridflow:
Workflow management for grid computing. In CCGrid 2003. 3rd IEEE/ACM
International Symposium on Cluster Computing and the Grid, 2003. Proceedings.,
pages 198–205. IEEE, 2003.

[15] Henri Casanova, Rafael Ferreira da Silva, Ryan Tanaka, Suraj Pandey, Gautam
Jethwani, William Koch, Spencer Albrecht, James Oeth, and Frédéric Suter.
Developing accurate and scalable simulators of production workflow manage-
ment systems with wrench. Future Generation Computer Systems, 112:162–175,
2020.

[16] Henri Casanova, Arnaud Giersch, Arnaud Legrand, Martin Quinson, and
Frédéric Suter. Versatile, scalable, and accurate simulation of distributed
applications and platforms. Journal of Parallel and Distributed Computing,
74(10):2899–2917, 2014.

[17] Henri Casanova, Suraj Pandey, James Oeth, Ryan Tanaka, Frédéric Suter, and
Rafael Ferreira da Silva. Wrench: A framework for simulating workflow man-

Bibliography 76

agement systems. In 2018 IEEE/ACM Workflows in Support of Large-Scale Sci-
ence (WORKS), pages 74–85. IEEE, 2018.

[18] Wei-Neng Chen and Jun Zhang. An ant colony optimization approach to a grid
workflow scheduling problem with various qos requirements. IEEE Transactions
on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 39(1):29–
43, 2008.

[19] Weiwei Chen and Ewa Deelman. Workflowsim: A toolkit for simulating sci-
entific workflows in distributed environments. In 2012 IEEE 8th international
conference on E-science, pages 1–8. IEEE, 2012.

[20] E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, K. Vahi, K. Blackburn,
A. Lazzarini, A. Arbree, R. Cavanaugh, and S. Koranda. Mapping abstract com-
plex workflows onto grid environments. Journal of Grid Computing, 1:25–39,
2003.

[21] Ewa Deelman, James Blythe, Yolanda Gil, Carl Kesselman, Gaurang Mehta,
Sonal Patil, Mei-Hui Su, Karan Vahi, and Miron Livny. Pegasus: Mapping scien-
tific workflows onto the grid. In European Across Grids Conference, pages 11–20.
Springer, 2004.

[22] Ewa Deelman, Karan Vahi, Gideon Juve, Mats Rynge, Scott Callaghan, Philip J
Maechling, Rajiv Mayani, Weiwei Chen, Rafael Ferreira Da Silva, Miron Livny,
et al. Pegasus, a workflow management system for science automation. Future
Generation Computer Systems, 46:17–35, 2015.

[23] Ann DiCaterino, Kai Larsen, Mei-Huei Tang, and Wen-Li Wang. An introduction
to workflow management systems. Technical report, STATE UNIV OF NEW
YORK AT ALBANY, 1997.

[24] Mahdi Ebrahimi, Aravind Mohan, and Shiyong Lu. Scheduling big data work-
flows in the cloud under deadline constraints. In 2018 IEEE Fourth International
Conference on Big Data Computing Service and Applications (BigDataService),
pages 33–40. IEEE, 2018.

[25] Hamid Reza Faragardi, Mohammad Reza Saleh Sedghpour, Saber Fazliahmadi,
Thomas Fahringer, and Nayereh Rasouli. Grp-heft: A budget-constrained re-
source provisioning scheme for workflow scheduling in iaas clouds. IEEE Trans-
actions on Parallel and Distributed Systems, 31(6):1239–1254, 2019.

[26] Kamil Figiela, Adam Gajek, Adam Zima, Beata Obrok, and Maciej Malawski.
Performance evaluation of heterogeneous cloud functions. Concurrency and
Computation: Practice and Experience, 30(23):e4792, 2018.

Bibliography 77

[27] Borivoje Furht, Armando Escalante, et al. Handbook of cloud computing, vol-
ume 3. Springer, 2010.

[28] Saurabh Kumar Garg and Rajkumar Buyya. Networkcloudsim: Modelling par-
allel applications in cloud simulations. In 2011 Fourth IEEE International Con-
ference on Utility and Cloud Computing, pages 105–113. IEEE, 2011.

[29] Arash Ghorbannia Delavar and Yalda Aryan. Hsga: a hybrid heuristic algorithm
for workflow scheduling in cloud systems. Cluster computing, 17(1):129–137,
2014.

[30] Robert Graves, Thomas H Jordan, Scott Callaghan, Ewa Deelman, Edward
Field, Gideon Juve, Carl Kesselman, Philip Maechling, Gaurang Mehta, Kevin
Milner, et al. Cybershake: A physics-based seismic hazard model for southern
california. Pure and Applied Geophysics, 168(3-4):367–381, 2011.

[31] Adan Hirales-Carbajal, Andrei Tchernykh, Thomas Röblitz, and Ramin
Yahyapour. A grid simulation framework to study advance scheduling strategies
for complex workflow applications. In 2010 IEEE International Symposium on
Parallel & Distributed Processing, Workshops and Phd Forum (IPDPSW), pages
1–8. IEEE, 2010.

[32] Torsten Hoefler, Timo Schneider, and Andrew Lumsdaine. Loggopsim: sim-
ulating large-scale applications in the loggops model. In Proceedings of the
19th ACM International Symposium on High Performance Distributed Comput-
ing, pages 597–604, 2010.

[33] Joseph C Jacob, Daniel S Katz, G Bruce Berriman, John Good, Anastasia C
Laity, Ewa Deelman, Carl Kesselman, Gurmeet Singh, Mei-Hui Su, Thomas A
Prince, et al. Montage: a grid portal and software toolkit for science-grade
astronomical image mosaicking. arXiv preprint arXiv:1005.4454, 2010.

[34] L. Jhajj and S. Singh. A survey of workflow scheduling algorithms and research
issues. International Journal of Computer Applications, 74, 2013.

[35] Qingye Jiang, Young Choon Lee, and Albert Y Zomaya. Serverless execution of
scientific workflows. In International Conference on Service-Oriented Computing,
pages 706–721. Springer, 2017.

[36] Gideon Juve and Ewa Deelman. Resource provisioning options for large-scale
scientific workflows. In 2008 IEEE Fourth International Conference on eScience,
pages 608–613. IEEE, 2008.

Bibliography 78

[37] K Kanagaraj and S Swamynathan. Structure aware resource estimation for
effective scheduling and execution of data intensive workflows in cloud. Future
Generation Computer Systems, 79:878–891, 2018.

[38] Ali Husseinzadeh Kashan. League championship algorithm: a new algorithm
for numerical function optimization. In 2009 international conference of soft
computing and pattern recognition, pages 43–48. IEEE, 2009.

[39] Gabor Kecskemeti. Dissect-cf: a simulator to foster energy-aware scheduling in
infrastructure clouds. Simulation Modelling Practice and Theory, 58:188–218,
2015.

[40] Gabor Kecskemeti, Simon Ostermann, and Radu Prodan. Fostering energy-
awareness in simulations behind scientific workflow management systems. In
2014 IEEE/ACM 7th International Conference on Utility and Cloud Computing,
pages 29–38. IEEE, 2014.

[41] Joanna Kijak, Piotr Martyna, Maciej Pawlik, Bartosz Balis, and Maciej Malawski.
Challenges for scheduling scientific workflows on cloud functions. In 2018 IEEE
11th International Conference on Cloud Computing (CLOUD), pages 460–467.
IEEE, 2018.

[42] Madhu Sudan Kumar, Anubhav Choudhary, Indrajeet Gupta, and Prasanta K
Jana. An efficient resource provisioning algorithm for workflow execution in
cloud platform. Cluster Computing, pages 1–23, 2022.

[43] Hyungro Lee, Kumar Satyam, and Geoffrey Fox. Evaluation of production
serverless computing environments. In 2018 IEEE 11th International Confer-
ence on Cloud Computing (CLOUD), pages 442–450. IEEE, 2018.

[44] Li Liu, Miao Zhang, Rajkumar Buyya, and Qi Fan. Deadline-constrained coevo-
lutionary genetic algorithm for scientific workflow scheduling in cloud com-
puting. Concurrency and Computation: Practice and Experience, 29(5):e3942,
2017.

[45] Jonathan Livny, Hidayat Teonadi, Miron Livny, and Matthew K Waldor. High-
throughput, kingdom-wide prediction and annotation of bacterial non-coding
rnas. PloS one, 3(9):e3197, 2008.

[46] Maciej Malawski, Adam Gajek, Adam Zima, Bartosz Balis, and Kamil Figiela.
Serverless execution of scientific workflows: Experiments with hyperflow, aws
lambda and google cloud functions. Future Generation Computer Systems, 2017.

Bibliography 79

[47] Maciej Malawski, Gideon Juve, Ewa Deelman, and Jarek Nabrzyski. Algorithms
for cost-and deadline-constrained provisioning for scientific workflow ensem-
bles in iaas clouds. Future Generation Computer Systems, 48:1–18, 2015.

[48] Ming Mao and Marty Humphrey. Auto-scaling to minimize cost and meet ap-
plication deadlines in cloud workflows. In Proceedings of 2011 International
Conference for High Performance Computing, Networking, Storage and Analysis,
pages 1–12, 2011.

[49] Ming Mao and Marty Humphrey. A performance study on the vm startup time
in the cloud. In 2012 IEEE Fifth International Conference on Cloud Computing,
pages 423–430. IEEE, 2012.

[50] Dejan Milojičić, Ignacio M Llorente, and Ruben S Montero. Opennebula: A
cloud management tool. IEEE Internet Computing, 15(2):11–14, 2011.

[51] Aravind Mohan, Mahdi Ebrahimi, Shiyong Lu, and Alexander Kotov. Schedul-
ing big data workflows in the cloud under budget constraints. In 2016 IEEE
International Conference on Big Data (Big Data), pages 2775–2784. IEEE, 2016.

[52] Alberto Nunez, Jose Luis Vazquez-Poletti, Agustin C Caminero, Jesus Carretero,
and Ignacio Martin Llorente. Design of a new cloud computing simulation plat-
form. In International Conference on Computational Science and Its Applications,
pages 582–593. Springer, 2011.

[53] Simon Ostermann, Gabor Kecskemeti, and Radu Prodan. Multi-layered simula-
tions at the heart of workflow enactment on clouds. Concurrency and Compu-
tation: Practice and Experience, 28(11):3180–3201, 2016.

[54] Simon Ostermann, Kassian Plankensteiner, Daniel Bodner, Georg Kraler, and
Radu Prodan. Integration of an event-based simulation framework into a sci-
entific workflow execution environment for grids and clouds. In European Con-
ference on a Service-Based Internet, pages 1–13. Springer, 2011.

[55] Simon Ostermann, Kassian Plankensteiner, and Radu Prodan. Using a new
event-based simulation framework for investigating resource provisioning in
clouds. Scientific Programming, 19(2-3):161–178, 2011.

[56] Simon Ostermann, Kassian Plankensteiner, Radu Prodan, and Thomas
Fahringer. Groudsim: An event-based simulation framework for computational
grids and clouds. In European Conference on Parallel Processing, pages 305–313.
Springer, 2010.

Bibliography 80

[57] Simon Ostermann, Radu Prodan, and Thomas Fahringer. Dynamic cloud pro-
visioning for scientific grid workflows. In 2010 11th IEEE/ACM International
Conference on Grid Computing, pages 97–104. IEEE, 2010.

[58] Suraj Pandey, Linlin Wu, Siddeswara Mayura Guru, and Rajkumar Buyya. A
particle swarm optimization-based heuristic for scheduling workflow applica-
tions in cloud computing environments. In 2010 24th IEEE international con-
ference on advanced information networking and applications, pages 400–407.
IEEE, 2010.

[59] P Rajasekar and Yogesh Palanichamy. Adaptive resource provisioning and
scheduling algorithm for scientific workflows on iaas cloud. SN Computer Sci-
ence, 2(6):1–16, 2021.

[60] Hajo A Reijers. Design and control of workflow processes: business process man-
agement for the service industry, volume 2617. Springer, 2003.

[61] Maria A Rodriguez and Rajkumar Buyya. Scheduling dynamic workloads in
multi-tenant scientific workflow as a service platforms. Future Generation Com-
puter Systems, 79:739–750, 2018.

[62] Maria Alejandra Rodriguez and Rajkumar Buyya. A taxonomy and survey on
scheduling algorithms for scientific workflows in iaas cloud computing environ-
ments. Concurrency and Computation: Practice and Experience, 29(8):e4041,
2017.

[63] Sebastian Stadil, Scalr. Stadill s. by the numbers: How google compute
engine stacks up to amazon ec2. https://old.gigaom.com/2013/03/15/

by-the-numbers-how-google-compute-engine-stacks-up-to-amazon-ec2/,
2013. Accessed 12 Jul 2022.

[64] Domenico Talia. Workflow systems for science: Concepts and tools. Interna-
tional Scholarly Research Notices, 2013, 2013.

[65] Ian J Taylor, Ewa Deelman, Dennis B Gannon, Matthew Shields, et al. Workflows
for e-Science: scientific workflows for grids, volume 1. Springer, 2007.

[66] Mustafa M Tikir, Michael A Laurenzano, Laura Carrington, and Allan Snavely.
Psins: An open source event tracer and execution simulator for mpi applica-
tions. In European Conference on Parallel Processing, pages 135–148. Springer,
2009.

[67] Haluk Topcuoglu, Salim Hariri, and Min-You Wu. Performance-effective and
low-complexity task scheduling for heterogeneous computing. IEEE transactions
on parallel and distributed systems, 13(3):260–274, 2002.

https://old.gigaom.com/2013/03/15/by-the-numbers-how-google-compute-engine-stacks-up-to-amazon-ec2/
https://old.gigaom.com/2013/03/15/by-the-numbers-how-google-compute-engine-stacks-up-to-amazon-ec2/

Bibliography 81

[68] Meng-Han Tsai, Kuan-Chou Lai, Hsi-Ya Chang, Kuan Fu Chen, and Kuo-Chan
Huang. Pewss: A platform of extensible workflow simulation service for work-
flow scheduling research. Software: Practice and Experience, 48(4):796–819,
2018.

[69] Jeffrey D. Ullman. Np-complete scheduling problems. Journal of Computer and
System sciences, 10(3):384–393, 1975.

[70] Amandeep Verma and Sakshi Kaushal. Deadline constraint heuristic-based ge-
netic algorithm for workflow scheduling in cloud. International Journal of Grid
and Utility Computing, 5(2):96–106, 2014.

[71] Xin-She Yang. A new metaheuristic bat-inspired algorithm. In Nature inspired
cooperative strategies for optimization (NICSO 2010), pages 65–74. Springer,
2010.

[72] Jia Yu and Rajkumar Buyya. Scheduling scientific workflow applications with
deadline and budget constraints using genetic algorithms. Scientific Program-
ming, 14(3-4):217–230, 2006.

[73] Amelie Chi Zhou, Bingsheng He, and Cheng Liu. Monetary cost optimizations
for hosting workflow-as-a-service in iaas clouds. IEEE transactions on cloud
computing, 4(1):34–48, 2015.

[74] Xiumin Zhou, Gongxuan Zhang, Jin Sun, Junlong Zhou, Tongquan Wei, and
Shiyan Hu. Minimizing cost and makespan for workflow scheduling in cloud
using fuzzy dominance sort based heft. Future Generation Computer Systems,
93:278–289, 2019.

	Introduction
	Problem Statement
	Aims of Research
	Dissertation Guide

	Research Background
	Introduction
	Scientific Workflow Representations
	Workflow Management Systems
	Workflow scheduling
	Cloud Computing
	Function as a Service
	 Cloud and Workflow Simulators
	Summary

	Simulation-based analysis of Internal IaaS behavioural knowledge for a Workflow Management System
	Introduction
	Related Works
	The DISSECT-CF Workflow Management System
	Parser
	Engine
	Scheduler
	JobRunner
	Dynamic behaviour
	Auto-Scaling Mechanism
	A simple Model of FaaS Simulation
	DEWE v3
	The Serverless Simulation Implementation

	Evaluation
	Utilisation of Internal Cloud Infrastructure Details
	Simulation Times
	Simulation versus Execution
	Auto-Scaling Mechanism
	The FaaS Workflow Experiments
	Real-World Experiments
	Simulation Experiments

	Summary

	Structure-Aware Scheduling Algorithm for Deadline-Constrained Scientific Workflows in the Cloud
	Introduction
	Related Works
	The Proposed Scheduling Algorithm
	An illustrative example

	Evaluation
	Summary

	Conclusion
	Future Research Directions
	Contributions to Science
	Author’s Publications Related to the Dissertation
	Other Publications

	Bibliography

