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1. Introduction 

The comprehension of soil moisture has evolved from historical agricultural knowledge to a 

pivotal focus in modern environmental and earth sciences. In the 3rd century BCE, agronomists 

like Mago of Carthage emphasized the importance of soil type, moisture retention, and irrigation 

scheduling in sustainable agriculture, principles subsequently reaffirmed by Roman scientists like 

Columella and Varro (Columella, 1941; Cato the Elder, 1934; Daniel J. Hillel., 1991; White, 1970). 

These early practices, grounded in empirical observation, demonstrate a fundamental 

understanding of the soil–water–plant relationship. 

In the 19th century, scientists confirmed the significance of soil water in plant growth and yield, 

particularly via the research of German agronomist Ewald Wollny, who studied soil water 

retention and its impact on crops. In the early 20th century, advancements in physics and soil 

science led to the establishment of concepts like field capacity, permanent wilting point, and soil 

water potential, formalized by L.A. Richards in 1931, who introduced the tension table and defined 

the soil water retention curve (Richards, 1931). 

The post-World War II era marked the development of soil physics as a quantitative science. The 

introduction of lysimeters, tensiometers, and neutron probes enabled more precise measurements 

of soil water content and dynamics (Daniel Hillel, 1980). During the period of 1970s and 1980s, 

soil moisture emerged as an essential component in agro-hydrological modeling and irrigation 

science. Nevertheless, field measurements continued to be challenging, costly, and significantly 

localized. This led in increase the interest in remote sensing methods that could provide a more 

comprehensive perspective on soil moisture monitoring. 

The launch of microwave satellites, including NASA's Skylab in the 1970s and following by 

the passive sensors on SMMR (1978), AMSR-E (2002), SMOS (2009), and SMAP (2015), 

enabled the integration of soil moisture into the domain application of remote sensing (Njoku & 

Entekhabi, 1996). These missions made a significant advancement in the global monitoring of 

surface soil moisture and frequent revisits, however at low spatial resolutions and limited depth 

sensitivity (Kerr et al., 2010; Zribi et al., 2011). Simultaneously, active radar missions (ERS, 

Envisat, Sentinel-1) provided greater resolution datasets but are influenced by surface roughness, 

vegetation, and dielectric characteristics and require advanced algorithms to derive dependable 

moisture signals. Optical sensors (e.g., Sentinel-2) offer indirect vegetation-derived measures of 



10 

moisture stress, such as NDVI and NDWI, which can enhance microwave observations but are 

constrained by cloud cover. Alongside advancements in satellite technology, the development of 

digital soil mapping and machine learning in the early 2000s created new opportunities for 

forecasting soil moisture and texture using multi-source environmental data (Minasny & 

McBratney, 2016; Grunwald, 2009). 

Today, soil moisture is considered as a key climatic and hydrological parameter essential for 

comprehending land-atmosphere interactions, ecosystem functionality, and for water resource 

management (Seneviratne et al., 2010). It controls infiltration, runoff, and evapotranspiration, and 

functions as an essential component in land surface models, hydrological forecasts, and 

agricultural decision-making systems. Soil moisture acts as a memory variable in the climate 

system, influencing extreme weather events, including droughts, flood and heatwaves (Koster et 

al., 2004). Moreover, it is a fundamental variable recognized by the Global Climate Observing 

System (GCOS). 

However, the spatial and temporal heterogeneity of soil moisture makes it difficult to observe 

comprehensively. Soil moisture is influenced by soil texture and structure, weather, vegetation 

cover, topography, irrigation, and land management practices. These vary not only in space but 

also across soil depth and time, making point measurements poorly representative of larger areas 

(Grayson & Western, 1998; Ochsner et al., 2013a). Although in-situ sensors like TDR, capacitance 

probes, and neutron moisture meters provide great precision, their application is limited to 

experimental sites and does not account for broad-scale variability. 

Soil texture is a fundamental property of the soil, referring to the proportions of sand, silt, and clay. 

It controls key hydrological and agricultural processes, including water retention, infiltration rates, 

and the plant-available water capacity. Consequently, soil texture is crucial for calibrating soil 

moisture sensors in the field, as sensor performance is dependent upon the dielectric characteristics 

of the soil matrix (Topp et al., 1980; Robinson et al., 2008). Conventional methods to determine 

soil texture, utilizing laboratory analyses such hydrometer or laser diffraction techniques, are time-

consuming, labor-intensive, and costly, particularly when applied over extensive areas (Minasny 

& McBratney, 2016). This constraint limits the spatial resolution especially in resource-

constrained areas. 
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To address the limitations of traditional laboratory-based texture analysis, inverse modeling 

approaches have gained increasing attention. In this context, soil texture is inferred indirectly from 

the dynamics of soil moisture, rather than measured directly. Soil texture influences the rate and 

magnitude of soil moisture fluctuations following precipitation or irrigation, allowing for the 

prediction of textural classes or fractions through the analysis of the temporal dynamics of soil 

moisture profiles (Mohanty et al., 2017; Vereecken et al., 2016). Inversion-based techniques, 

whether integrated with sensor data or remote sensing soil moisture, present an attractive method 

for non-invasive, scalable texture mapping. This method is especially beneficial in agricultural 

monitoring systems where the expense or practicality of frequent ground sampling is constrained. 

Moreover, soil moisture is affected not only by soil texture but also by various environmental 

variables, including vegetation cover, topography, land use, and climatic factors such as 

precipitation and evapotranspiration (Grunwald, 2009; Heung et al., 2014). These variables 

influence the surface energy balance and water flows, hence impacting soil moisture patterns even 

in homogeneous soils. Consequently, integrating multi-source environmental data into machine 

learning models may significantly improve the precision and resilience of soil texture forecasts 

(Wadoux et al., 2020). Integrating satellite data, ground-based sensors (e.g., Sentek EnviroSCAN), 

and environmental covariates enables the development of data-driven models that accurately map 

the texture at high spatial resolution, thereby enhancing water management and precision 

agriculture. 

Research Rationale and the Relevance of the study 

This research responds to the urgent need for integrated approaches that combine the strengths of 

remote sensing and ground-based measurements. It proposes a multi-source framework that 

merges Sentinel-1 SAR, Sentinel-2 optical indices, in-situ soil moisture from multi-depth Sentek 

EnviroSCAN sensors, and environmental variables (e.g., temperature, precipitation) using 

machine learning. This approach aims to enhance the accuracy, resolution, and scalability of soil 

moisture estimation in a cost-effective, transferable manner. 

The rationale for focusing on two climatically distinct regions, Tunisia (semi-arid, water-stressed) 

and Hungary (temperate, data-rich), is to evaluate and characterize the soil moisture across 

heterogeneous landscapes. Tunisia’s Merguellil basin offers a relevant test site for assessing the 
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potential of remote sensing in regions with limited monitoring infrastructure, whereas Hungary 

provides a reference environment with established datasets and field instrumentation. This dual-

site strategy allows for rigorous model calibration, validation, and transferability testing under 

varying soil textures, land cover types, and climatic gradients. 

The scientific contribution of this thesis lies in advancing digital soil mapping (DSM) techniques 

through a fusion of EO data, in-situ measurements, and machine learning. The relevance extends 

to precision agriculture, drought risk management, and climate adaptation. By providing spatially 

explicit soil moisture maps and texture predictions, the research supports data-driven decisions in 

water allocation, crop management, and land use planning. Furthermore, it aligns with global 

initiatives such as the FAO’s digital agriculture agenda, SDG 2 (Zero Hunger) and SDG 13 

(Climate Action). 

In summary, this study addresses critical scientific and operational gaps in soil moisture estimation. 

It demonstrates that remote sensing and AI-based models, when calibrated with reliable in-situ 

data, can generate high-resolution outputs for sustainable land and water management, particularly 

valuable in regions where traditional monitoring is scarce or fragmented. 

Aim and objectives 

The primary aim of this doctoral research is to develop an integrated framework for accurate, non-

invasive estimation of soil moisture using multi-source data, including Sentinel-1 SAR, Sentinel-

2 optical imagery, in-situ sensor networks, and meteorological variables, combined through 

machine learning techniques. The study targets operational soil moisture monitoring at multiple 

spatial scales and in contrasting agroecological contexts, specifically the semi-arid Merguellil 

basin in Tunisia and temperate agricultural zones in Hungary. 

To fulfil this aim, the research is structured around the following objectives: 

1. To assess the role of soil physical properties, including texture, porosity, structure, and surface 

characteristics, in controlling soil moisture dynamics, using both laboratory-measured and 

remote-sensing-derived parameters. 
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2. To support the calibration and validation of the in-situ soil moisture measurements from 

Sentek EnviroSCAN capacitance probes across different depths (10 cm, 20 cm, 30 cm), 

ensuring reliable ground-truth data for model training and validation. 

3. To extract and process Sentinel-1 backscatter coefficients (VV, VH) and Sentinel-2 vegetation 

indices (NDVI, NDWI) for monitoring vegetation–soil–water interactions at plot and 

watershed scales. 

4. To construct predictive models using Random Forest regression algorithms for estimating soil 

moisture and soil texture classes (sand, silt, clay) from environmental and satellite-derived 

covariates. 

5. To evaluate the spatio-temporal variability of soil moisture across the study area by integrating 

sensor data, topographic parameters, and climatic drivers (temperature, rainfall, 

evapotranspiration). 

6. To contribute to the advancement of digital soil mapping (DSM) by demonstrating the 

effectiveness of combining remote sensing, in-situ data, and machine learning for soil 

moisture and soil texture estimation. 

 

 

 

 

 

 

 

 

 

 

 



14 

2. Literature review 

2.1. Soil Moisture monitoring and measurements  

Soil moisture refers to the amount of water held within the soil pores, primarily in the unsaturated 

zone between the surface and the groundwater table. It is typically expressed as volumetric water 

content or gravimetric water content, depending on the measurement context. In the context of 

hydrology, soil moisture governs key processes such as infiltration, evapotranspiration, and 

surface runoff. It affects the partitioning of rainfall into infiltration and excess water, shaping flood 

dynamics and groundwater recharge. From a climatological perspective, near-surface soil moisture 

modulates land–atmosphere interactions by controlling latent and sensible heat fluxes, thereby 

influencing boundary layer development and weather patterns (Seneviratne et al., 2010). 

In agricultural systems, soil moisture determines water availability for plant uptake and is a major 

factor in crop yield variability. It controls seed germination, root development, nutrient transport, 

and susceptibility to drought stress. As such, accurate soil moisture information is essential for 

precision agriculture, irrigation scheduling, and drought early warning systems (Ochsner et al., 

2013; Dorigo et al., 2017). 

Despite its central role, continuous and large-scale monitoring of soil moisture remains a 

significant challenge. Traditional in-situ measurement methods, such as gravimetric sampling, 

time domain reflectometry (TDR), or capacitance sensors, provide accurate point-level 

observations but are limited in spatial coverage and scalability (Robock et al., 2000). In response, 

satellite-based remote sensing has emerged as a powerful tool to estimate surface soil moisture 

across broad geographic regions. Active microwave sensors, such as those on the Sentinel-1 

platform, measure the backscatter coefficient which is sensitive to changes in surface roughness 

and dielectric properties related to soil moisture. Passive microwave missions like SMOS and 

SMAP offer global soil moisture products with coarse spatial but high temporal resolution 

(Entekhabi et al., 2010; Kerr et al., 2010). 

In addition to radar systems, optical remote sensing provides indirect indicators of soil moisture 

via vegetation indices such as the Normalized Difference Vegetation Index (NDVI) and the 

Normalized Difference Water Index (NDWI). These indices capture vegetation health and canopy 
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water content, both of which are influenced by underlying soil moisture conditions (Gao, 1996; 

Tucker, 1979). 

To integrate these heterogeneous data sources and account for the nonlinear relationships between 

soil moisture and environmental variables, machine learning approaches, especially ensemble 

methods like Random Forest, have gained increasing attention. These models can combine satellite 

observations, topographic data, climatic inputs, and field measurements to generate high-

resolution soil moisture estimates with improved accuracy and generalizability (Belgiu & Drăguţ, 

2016) 

Ultimately, soil moisture remains one of the most influential and yet challenging environmental 

variables to monitor and model. As demands for sustainable water management, food security, and 

climate resilience grow, the ability to accurately estimate soil moisture at scale has become a 

scientific and operational priority. 

2.2. Soil Properties 

Soil properties are the foundation of terrestrial ecosystem functioning and play a critical role in 

determining the capacity of soils to support vegetation, regulate water movement, store carbon, 

and influence energy exchanges between the land surface and the atmosphere. These properties 

are generally classified into physical, chemical, and biological categories. Among these, physical 

soil properties, notably texture, structure, and porosity, are central to understanding the distribution 

and dynamics of soil moisture, which is essential for hydrological modeling, irrigation planning, 

and climate-related studies (Daniel Hillel, 2004; Weil & Brady, 2017) 

Soil physical properties influence key processes such as infiltration, percolation, 

evapotranspiration, root penetration, and aeration. They also govern the capacity of soil to store 

water and nutrients, buffer environmental changes, and support microbial communities. 

Understanding these parameters is therefore a prerequisite for accurately modeling soil water 

regimes, developing precision agriculture strategies, and designing nature-based solutions to 

address land degradation and climate vulnerability (Minasny & McBratney, 2016). 
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2.2.1. Soil Texture 

Soil texture refers to the relative proportion of mineral particles in three size classes: sand (2.0–

0.05 mm), silt (0.05–0.002 mm), and clay (<0.002 mm). These size fractions combine to determine 

a soil’s textural class, as defined by the USDA soil texture triangle (Nrcs, 2017). Texture is a 

fundamental and relatively stable property that governs a wide range of hydraulic and ecological 

functions. 

Textural composition directly influences soil moisture retention, infiltration rate, and drainage 

characteristics. Coarse-textured soils (e.g., sandy soils) have large pores that promote rapid 

drainage and high aeration but low water-holding capacity. In contrast, fine-textured soils (e.g., 

clay soils) have a predominance of micropores, which retain water effectively but limit air 

circulation and slow drainage. Loamy soils, often considered optimal for agriculture, strike a 

balance between these extremes by supporting both adequate water retention and good aeration 

(Saxton & Rawls, 2006). 

Soil texture also affects the thermal and dielectric properties of the soil matrix, which in turn 

influences the retrieval of soil moisture from radar and passive microwave remote sensing (Topp 

et al., 1980). Texture has also been shown to modulate vegetation response to moisture, indirectly 

influencing vegetation indices such as NDVI, which are frequently used in remote sensing models 

for soil moisture prediction. Texture class is also important in soil moisture sensor calibration and 

transformation of raw data reading to soil moisture value. Different texture classes have often 

different calibration equations. Therefore, information on soil texture is a prerequisite of soil 

moisture monitoring and accurate estimation. 

Traditional particle size analysis, such as sieve or hydrometer methods, though accurate, are labor-

intensive, time consuming and not scalable. Consequently, recent advances in machine learning 

and proximal sensing technologies offer viable alternatives for large-scale texture prediction. 

Algorithms such as Random Forest have demonstrated high performance in predicting soil texture 

classes from multispectral satellite imagery, terrain attributes, and in-situ moisture readings 

(Heung et al., 2014; Wadoux et al., 2020). 
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2.2.2. Soil Structure 

Soil structure describes the spatial arrangement of soil particles into aggregates or "peds" and the 

pore spaces between them. Unlike texture, which is determined by mineral composition, soil 

structure is a dynamic property influenced by organic matter content, microbial activity, wetting-

drying cycles, and anthropogenic factors such as tillage (Bronick & Lal, 2005). 

Different structural types, such as granular, blocky, platy, or prismatic, affect the geometry and 

continuity of pores in the soil. Well-structured soils have interconnected macropores that enhance 

infiltration and root penetration, while poorly structured or compacted soils exhibit low porosity 

and reduced water permeability. For instance, a platy structure may result in restricted vertical 

water movement, causing surface ponding and reduced gas exchange (Six et al., 2004). 

The stability of soil aggregates also influences soil erodibility, bulk density, and hydraulic 

conductivity, all of which are crucial for sustainable land management. Aggregate stability is often 

used as an indicator of soil health, as it reflects the soil’s ability to resist disintegration under 

rainfall and mechanical disturbance. Furthermore, structure significantly modulates the plant-

available water capacity (PAWC) by influencing the balance between micropores (which hold 

water) and macropores (which facilitate drainage and aeration). 

Because soil structure evolves over time and in response to management practices, it is a critical 

variable to monitor in long-term soil moisture studies and modeling. When integrated into 

hydrological or climate models, soil structure data can improve predictions of infiltration, runoff, 

and plant water availability (Reynolds et al., 2007). 

2.2.3. Soil Porosity 

Soil porosity refers to the proportion of the soil volume that consists of voids or pore spaces, and 

it is a critical property for determining the soil’s capacity to store water and air. Total porosity is a 

function of particle size distribution, bulk density, and soil structure. It typically ranges from 30% 

to 60% in natural soils (Daniel Hillel, 2004a). 

Pores are typically classified by their size: 

• Macropores (>0.08 mm) enable rapid water movement and gas exchange. 

• Mesopores (0.03–0.08 mm) retain plant-available water. 
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• Micropores (<0.03 mm) retain water tightly bound to particles and are less accessible to plants 

(Luxmoore, 1981). 

High porosity enhances water infiltration, root aeration, and microbial activity, but excessive 

macroporosity may result in nutrient leaching and poor water retention, particularly in sandy soils. 

Conversely, while clay-rich soils exhibit high total porosity due to the abundance of micropores, 

much of this water is held at high matric tensions and is unavailable for plant uptake. 

The spatial and vertical distribution of pores is also vital for understanding water movement 

through the soil profile. Capillary action in fine-textured soils supports water rise against gravity, 

whereas gravitational drainage dominates in coarse-textured soils. Porosity is often linked to 

hydraulic conductivity, which is a measure of the soil's ability to transmit water. Accurate 

estimation of porosity is essential in modeling soil water retention curves, unsaturated flow, and 

evapotranspiration dynamics. 

In field conditions, soil porosity is typically inferred from the relationship between bulk density 

and particle density, or estimated through in-situ sensors that track soil moisture fluctuations over 

time. In recent years, geophysical and remote sensing techniques, such as ground-penetrating radar, 

electromagnetic induction, and satellite-based reflectance data, have been increasingly utilized to 

estimate porosity indirectly across large spatial scales, contributing to the advancement of digital 

soil mapping and hydrological modeling (Pradipta et al., 2022). 

2.3. Soil Surface parameters 

Soil surface parameters are critical physical descriptors that govern the interaction between the 

land surface and the atmosphere, influencing key processes such as evaporation, runoff, energy 

exchange, and soil moisture dynamics. These parameters, such as surface roughness, albedo, crust 

formation, temperature, and soil cover characteristics, are essential for accurately modeling surface 

hydrological responses and for interpreting remote sensing data in soil moisture estimation 

(Verhoef et al., 1997). 

One of the most important surface parameters is surface roughness, which refers to the variability 

in micro-relief caused by tillage, erosion, aggregation, or vegetation residue. Surface roughness 

alters the aerodynamic properties of the soil-atmosphere interface and directly affects water 

infiltration, and the scattering of radar signals used in remote sensing. In radar remote sensing, 
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particularly with synthetic aperture radar (SAR), surface roughness is a major control on 

backscatter intensity, and distinguishing its effects from those of soil moisture is a key challenge 

in soil moisture retrieval algorithms (Zribi & Dechambre, 2003; Baghdadi et al., 2008). 

Albedo, the proportion of incident radiation reflected by the surface, is another vital surface 

parameter. Soils with lighter color, due to mineral composition or dryness, typically exhibit higher 

albedo, reducing net radiation absorption and influencing soil temperature. In contrast, darker, 

wetter soils absorb more radiation, increasing evaporation potential. Albedo also interacts with 

vegetation cover and surface crusting, altering the energy balance and soil thermal regime (Idso et 

al., 1975). 

Crust formation at the soil surface, often resulting from the impact of raindrops or irrigation, can 

significantly reduce water infiltration, increase runoff, and inhibit seedling emergence. Crusted 

soils often exhibit higher reflectance and reduced surface roughness, which can be detected using 

high-resolution optical or radar sensors. Crusting is particularly prevalent in fine-textured soils 

under arid and semi-arid conditions and is influenced by land management and rainfall intensity 

(Valentin & Bresson, 1992). 

Soil surface temperature, typically measured at depths of 2 to 5 cm or inferred from thermal remote 

sensing, is a critical parameter influencing evaporation and soil moisture distribution. It is 

dynamically affected by factors such as soil moisture content, solar radiation, and thermal 

conductivity. Wet soil generally exhibits lower surface temperatures due to evaporative cooling, 

whereas dry soils heat up more rapidly, especially under sparse vegetation cover. These 

temperature dynamics provide indirect indicators of surface soil moisture, making thermal infrared 

data valuable for soil moisture modeling. For instance, (D. Zhang et al., 2014) developed the 

Temperature Rising Rate Vegetation Dryness Index (TRRVDI), which utilizes the mid-morning 

land surface temperature rising rate and vegetation index to estimate regional soil water content, 

demonstrating the efficacy of thermal infrared remote sensing in soil moisture estimation. 

Vegetation cover, whether as live biomass, crop residue, or mulching, modifies the surface energy 

balance, reduces direct solar radiation on the soil, and affects evaporation rates. It also mitigates 

wind and water erosion, enhances infiltration, and changes radar backscatter properties. Vegetation 
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indices derived from remote sensing, such as the Normalized Difference Vegetation Index (NDVI), 

are commonly used as proxies for plant cover and can be linked to underlying soil moisture 

conditions (Carlson et al., 1995). 

Together, soil surface parameters shape the interface between soil processes and environmental 

forcing, thereby determining the fate of precipitation, influencing plant-available water, and 

controlling erosion susceptibility. Their importance in soil moisture estimation models, especially 

those integrating radar and optical remote sensing, cannot be overstated. Improving the 

characterization of these surface parameters, whether through field measurement, modeling, or 

remote sensing, is therefore crucial for enhancing the accuracy of soil moisture predictions across 

scales. 

 2.4. Spatio-temporal variability of soil moisture 

Soil moisture exhibits significant variability both in space and time due to a complex interplay of 

climatic, soil, topographic, land use, and vegetation factors. Understanding this spatio-temporal 

variability is fundamental to accurately modeling hydrological processes, optimizing irrigation, 

improving climate models, and interpreting remote sensing data. It also has practical implications 

for agricultural management, drought monitoring, and flood prediction (Western et al., 2002; 

Vereecken et al., 2008). 

 

2.4.1. Spatial Variability 

The spatial heterogeneity of soil moisture is driven primarily by intrinsic soil properties, such as 

texture, porosity, structure, and organic matter content, as well as topographic gradients, vegetation 

patterns, and microclimatic conditions. For example, coarse-textured soils drain faster and retain 

less water than fine-textured soils, leading to drier conditions under identical rainfall inputs 

(Brocca et al., 2009). Similarly, convex topographic features like ridges tend to be drier due to 

runoff and drainage, whereas concave depressions retain more moisture and often exhibit wetter 

conditions (Famiglietti & Wood, 1994). 

Land use and land cover significantly influence spatial variability as well. Cultivated areas, forests, 

and bare soils show different infiltration and evaporation behaviors. Vegetation canopies intercept 

rainfall and modulate evaporation, while root systems affect water uptake and soil hydraulic 
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properties, creating spatial patterns in moisture distribution at plot to watershed scales (Yang et al., 

2012). 

Moreover, spatial patterns may exhibit scale-dependent behavior. At fine scales (meters), 

variability is dominated by local soil characteristics and vegetation cover; at coarser scales 

(kilometers), climate gradients, soil types, and geomorphological units become the primary drivers 

(Grayson & Western, 1998). This scale dependency is critical in designing observation networks 

and modeling frameworks. 

 

2.4.2. Temporal Variability 

Temporally, soil moisture fluctuates in response to precipitation, evapotranspiration, irrigation, 

snowmelt, and drainage. These dynamics can occur at multiple time scales. from sub-daily diurnal 

cycles to seasonal and interannual trends (Entekhabi et al., 1996). Short-term changes are often 

driven by rainfall events and evapotranspiration cycles, while long-term variability is governed by 

climatic seasonality, land management, and changing vegetation cover. 

Soil moisture memory, defined as the persistence of moisture anomalies over time, plays a key 

role in land–atmosphere interactions. For instance, wet soil conditions can sustain higher latent 

heat fluxes, influencing local atmospheric boundary layer development and precipitation feedback 

(Seneviratne et al., 2010). Conversely, dry soils can amplify drought severity by reducing 

evaporation and increasing sensible heat flux. 

Soil depth also influences temporal variability. Surface layers (e.g., 0–10 cm) respond quickly to 

atmospheric conditions and rainfall, while deeper layers (e.g., >50 cm) change more slowly and 

reflect cumulative water balance over longer periods. This vertical gradient affects water 

availability to plants and the timing of recharge processes. 

 

2.4.3. Implications for Remote Sensing and Modeling 

Capturing the spatio-temporal variability of soil moisture is challenging, especially over large 

areas or in data-scarce regions. In-situ measurements offer high temporal resolution but are limited 

in spatial extent. In contrast, remote sensing methods, such as radar (e.g., Sentinel-1) and passive 

microwave sensors (e.g., SMAP, AMSR2), provide broader coverage but are sensitive to surface 

conditions and often limited to shallow depths (Mohanty et al., 2017). 



22 

To improve accuracy, data fusion approaches that integrate in-situ measurements, remote sensing, 

and model simulations (e.g., land surface models or machine learning models) are increasingly 

used to produce high-resolution soil moisture estimates with temporal continuity (Peng et al., 

2017). 

The study of spatio-temporal variability is not only theoretical but highly applied, supporting early 

warning systems, precision irrigation, land degradation monitoring, and climate adaptation 

strategies. Understanding and predicting soil moisture dynamics thus remains a central focus of 

earth system science and environmental engineering. 

2.5. In-situ Soil Moisture Measurement Methods 

In-situ soil moisture methods provide direct, point-based observations of volumetric or gravimetric 

water content within the soil profile. These methods can be broadly categorized into destructive 

(gravimetric) and non-destructive (sensor-based) techniques (Robinson et al., 2008). 

2.5.1. Gravimetric Method 

The gravimetric method is the most fundamental and direct approach for determining soil moisture 

content. It involves collecting undisturbed soil samples, weighing them before and after oven 

drying at 105°C for 24 hours, and calculating moisture content as the mass of lost water relative 

to the dry soil mass. Although accurate and reliable, this method is time-consuming, labor-

intensive, and not suitable for real-time or repeated measurements (Gardner, 1986). It is commonly 

used as a reference for calibrating other methods. 

2.5.2. Time Domain Reflectometry (TDR) 

TDR is a widely used non-destructive technique that measures soil moisture by analyzing the travel 

time of an electromagnetic pulse along metal probes inserted into the soil. The propagation velocity 

of the pulse is related to the dielectric constant of the soil, which is strongly correlated with 

volumetric water content. TDR sensors are valued for their accuracy, repeatability, and minimal 

salinity sensitivity, although they can be expensive and require calibration for different soil types 

(Topp et al., 1980; Evett, 2003). 
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2.5.3. Capacitance and Frequency Domain Reflectometry (FDR) 

Capacitance-based and FDR sensors measure the dielectric permittivity of soil using oscillating 

electrical fields. Unlike TDR, FDR uses a range of frequencies, and the measured signal is 

converted to soil moisture via calibration equations. These sensors are lower in cost, easier to 

install, and allow multi-depth profiling, but they are more sensitive to soil texture, temperature, 

and salinity (Dean et al., 1987;Bogena et al., 2007). 

One example of such a system is the Sentek EnviroSCAN probe, which includes multiple 

capacitance sensors along a vertical access tube. This system enables real-time monitoring of 

vertical soil moisture profiles, making it particularly useful for precision agriculture and irrigation 

management. 

2.5.4. Neutron Scattering 

The neutron probe is a nuclear-based method that measures hydrogen atoms in the soil, which are 

primarily associated with water. It involves placing a radioactive source into the soil and measuring 

neutron moderation. Neutron probes offer deep profile measurements and good accuracy but 

require strict regulatory control, radiation safety procedures, and periodic calibration (Greacen, 

1981; S. R. Evett & Steiner, 1995) . 

2.5.5. Tensiometers and Gypsum Blocks 

Tensiometers measure soil water potential by equilibrating the tension of water in a porous ceramic 

tip with the surrounding soil matrix. They are accurate in moist conditions (typically 0 to -80 kPa) 

but become ineffective in drier soil due to cavitation. Gypsum blocks, in contrast, estimate soil 

moisture tension by measuring the electrical resistance of the porous block as it equilibrates with 

soil water. While they operate over a wider moisture range, their accuracy is limited compared to 

tensiometers and they are prone to degradation over time (Cassel & Nielsen, 1986). 

2.6. Remote sensing soil moisture estimation 

Remote sensing has emerged as a pivotal tool for estimating soil moisture across large spatial 

extents and varying temporal resolutions. Unlike in-situ measurements, which provide accurate 
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but point-based data, remote sensing techniques offer spatial continuity, enabling regular 

monitoring of soil moisture at regional to global scales. This has important implications for 

agricultural water management, hydrological forecasting, and climate modeling (Entekhabi et al., 

2010; Kerr et al., 2010). 

Remote sensing techniques for soil moisture estimation are generally categorized into active and 

passive microwave methods. Passive microwave sensors measure naturally emitted microwave 

radiation from the Earth’s surface, with longer wavelengths (e.g., L-band at 1.4 GHz) being 

especially sensitive to surface soil moisture within the top 0–5 cm of the soil profile. Missions 

such as the Soil Moisture Active Passive (SMAP) and the Soil Moisture and Ocean Salinity 

(SMOS) satellites have provided valuable global soil moisture data products at moderate temporal 

resolution (2–3 days) and coarse spatial resolution (~40 km) (Kerr et al., 2010;Entekhabi et al., 

2010). These passive systems are advantageous due to their sensitivity to moisture variations, but 

their utility is limited in regions with dense vegetation or heterogeneous land cover due to signal 

attenuation. 

Active microwave remote sensing, particularly Synthetic Aperture Radar (SAR), is a valuable 

technique for soil moisture estimation due to its ability to operate in all weather conditions and 

during both day and night. SAR sensors, such as Sentinel-1 (C-band) and ALOS-2 PALSAR (L-

band), transmit microwave pulses and record the backscattered signal, which is influenced by 

surface moisture, roughness, and vegetation cover. While SAR offers valuable spatial resolution 

(10–100 m), retrieval accuracy is often limited by the complex interactions among these surface 

factors. To overcome this, machine learning approaches like artificial neural networks have been 

successfully applied to enhance soil moisture prediction from SAR data, as demonstrated by 

Chung et al., (2022) and supported by broader reviews such as Kornelsen & Coulibaly (2013). 

Beyond microwave sensing, optical and thermal remote sensing systems also contribute indirectly 

to soil moisture estimation. Indices such as the Normalized Difference Vegetation Index (NDVI) 

and the Normalized Difference Water Index (NDWI), derived from sensors like Sentinel-2 or 

Landsat, provide vegetation condition proxies that correlate with moisture availability. For 

instance, healthy and dense vegetation, as indicated by high NDVI values, typically reflects 

sufficient soil moisture, while reduced NDVI values and signs of vegetative stress may serve as 
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proxies for underlying water deficits. (Jiang et al., 2006; Gao, 1996). Similarly, thermal infrared 

data can provide insights into surface temperature dynamics and evapotranspiration, which are 

influenced by soil moisture levels  (Anderson et al., 2007). 

Nevertheless, several limitations affect the accuracy of remotely sensed soil moisture data. The 

primary constraint is the depth sensitivity of microwave sensors, which only capture surface soil 

moisture and may not reflect the conditions of deeper root zones. Additionally, the presence of 

dense vegetation and rough terrain can obscure or distort microwave signals, leading to 

uncertainties in retrievals. Furthermore, passive sensors, while reliable, lack spatial detail, whereas 

active sensors demand complex processing algorithms and ancillary data for accurate estimation 

(Njoku & Entekhabi, 1996). 

To overcome these limitations, current research trends emphasize the integration of remote sensing 

data with ancillary information such as in-situ sensor networks, digital elevation models (DEMs), 

land cover maps, and climate reanalysis data. Advanced modeling approaches, including machine 

learning algorithms have shown promise in improving soil moisture retrieval by fusing multi-

source environmental datasets (Peng et al., 2017; Wang & Gao, 2023). These hybrid approaches 

not only enhance spatial resolution and temporal consistency but also provide better generalization 

across diverse landscapes. 

In conclusion, remote sensing represents a non-invasive and scalable approach for soil moisture 

estimation, with significant advantages in terms of coverage and frequency. While no single sensor 

or technique can provide complete accuracy under all conditions, the combination of active and 

passive microwave data, optical indices, in-situ validation, and data-driven models offers a robust 

framework for soil moisture monitoring. These advancements are crucial for supporting 

sustainable land and water management, early warning systems, and climate adaptation strategies. 

2.7. Soil Moisture Mapping 

Soil moisture mapping refers to the spatial representation of water content within the soil, 

providing crucial information for applications in agriculture, hydrology, meteorology, and land 

management. The ability to generate accurate and timely maps of soil moisture is essential for 

monitoring drought, optimizing irrigation, assessing flood risks, and supporting climate models. It 
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also plays a key role in understanding land-atmosphere interactions and energy fluxes at different 

spatial and temporal scales (Brocca et al., 2017; Vereecken et al., 2008). 

Traditionally, soil moisture maps were generated using ground-based measurements from sparse 

in-situ sensor networks and gravimetric sampling. While these methods offer high accuracy, they 

are labor-intensive and insufficient for covering large areas. The spatial resolution is highly 

dependent on the number and distribution of monitoring stations, making it difficult to extrapolate 

measurements across heterogeneous landscapes (W. A. Dorigo et al., 2011). 

The emergence of remote sensing technologies has significantly enhanced soil moisture mapping 

capabilities. Satellite-based sensors such as SMAP, SMOS, Sentinel-1, and MODIS provide 

repetitive, spatially continuous observations at regional to global scales. Passive microwave 

sensors (e.g., SMAP, AMSR2) offer near-daily global coverage but at coarse spatial resolutions 

(~36–50 km), while active radar systems (e.g., Sentinel-1 SAR) deliver finer spatial resolution 

(~10–100 m) with sensitivity to surface roughness and vegetation (Entekhabi et al., 2010; Kerr et 

al., 2010). These datasets can be fused using data assimilation and downscaling techniques to 

improve spatial detail while maintaining temporal frequency (Peng et al., 2017). 

In recent years, the application of machine learning (ML) within digital soil mapping (DSM) 

frameworks has become increasingly important for soil moisture mapping. ML models such as 

Random Forest, Support Vector Machines, and Deep Neural Networks can learn complex, 

nonlinear relationships between soil moisture and environmental covariates including land cover, 

topography, climate variables, and vegetation indices (Gruber et al., 2019; Wadoux et al., 2020). 

These models, when trained on both remote sensing data and in-situ measurements, offer robust 

predictive maps of soil moisture at varying depths and spatial resolutions. 

An effective soil moisture mapping framework typically integrates multiple data sources: (1) 

remote sensing imagery, (2) point-based sensor data, (3) climatic variables (e.g., precipitation, 

temperature), (4) terrain attributes (e.g., slope, aspect), and (5) soil properties (e.g., texture, 

porosity). The fusion of these datasets enables the creation of high-resolution maps that capture 

spatial heterogeneity and temporal dynamics in soil moisture. These maps are particularly valuable 
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in semi-arid and data-scarce regions where decision-makers rely on spatial diagnostics for resource 

management and early warning systems (Kibaroglu, 2016). 

The spatial extension of soil water regime parameters can be effectively achieved by integrating 

geomorphological variables with point-based soil moisture observations. Terrain attributes such 

as slope, elevation, and curvature play a significant role in controlling soil moisture distribution, 

and their incorporation into geostatistical models enhances the capacity to upscale local 

measurements across heterogeneous landscapes. This method addresses the challenges associated 

with sparse sensor networks in operational monitoring systems (Deák et al., 2024). In addition, 

sensor calibration remains a critical step for ensuring the accuracy of soil moisture measurements. 

Off-site calibration approaches, which incorporate site-independent parameters such as soil texture 

and bulk density, have been shown to improve the reliability of capacitance-based sensors like the 

Sentek EnviroScan probe, particularly in diverse field conditions where in-situ calibration is not 

feasible (Kibirige & Dobos, 2021). 

In summary, soil moisture mapping has evolved from laborious field-based assessments to 

sophisticated remote sensing and modeling approaches. Advances in geospatial technologies, 

sensor networks, and artificial intelligence have enabled researchers to generate accurate, timely, 

and high-resolution maps of soil moisture. These developments contribute significantly to 

sustainable land use planning, agricultural productivity, climate resilience, and environmental 

monitoring on global and local scales. 
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3. Soil moisture characterization using optical and radar remote sensing data 

3.1. Study area 

The governorate of Kairouan, located in the central region of the country (Figure 1), occupies a 

strategic position at the regional and the national level. It extends over 658,000 ha and is in the 

form of a wide corridor of plains, which are limited to the west by mountainous areas and to the 

east by depressions made up of sebkhas. This natural environment is a made up of quite contrasting 

physical units (plains, hills, and mountains) offering climatic nuances and different resources, 

which necessarily generate specific uses and modes of occupation (Sarra Bel Haj Salem, 2013). 

The study area, corresponding to the Merguellil basin, is included in the Kairouan plain. It is one 

of the three largest river basins on the southern flank of the Tunisian ridge, flowing into the 

Kairouan plain (Zribi et al., 2020). It is a relatively large homogeneous valley, but is also very 

sensitive to erosion (Le Goulven et al., 2009). The basin consists of two geographically dissimilar 

parts. The upstream section, which corresponds to the El Haouareb Dams watershed, is 

mountainous. The Kairouan alluvial plain encompasses the downstream part (Hermassi et al., 

2014). 

 

 

Figure 1. Study area Merguellil downstream basin of the Kairouan plain  

The Merguellil upstream catchment (1200 km²) has a hilly topography (altitudes ranging from 200 

to 1200 m, with a median elevation of 500 m) and diverse geology, morphology, vegetation, and 
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land-use conditions. The Merguellil downstream watershed is part of the very large and flat 

Kairouan alluvial plain, which extends over about 3000 km² and with the altitude decreasing very 

gradually from 200 m to 80 m (Chulli, 2011). Our study area, the downstream part of the watershed, 

covered an area of 87 km² close to the dam, west of Kairouan city. 

3.1.1. Geology 

The upstream basin of Merguellil is composed of limestone, calcareous marl and marly 

sedimentary formations of the Cretaceous and Eocene (Figure 2). The oldest formation dates from 

the Triassic. Our study area, the Merguellil downstream basin of the Kairouan plain, corresponds 

to a collapsed basin, where the Plio-Quaternary continental detrital filling can exceed 700 m in 

thickness. A small Cretaceous limestone structure outcrops at the western part of the basin located 

in the El Haouareb mountain (Ammar et al., 2006). 

 

Figure 2. The geological map of the Kairouan Basin based on the 1/50,000 (Bédir et al., 2020) 

 

3.1.2. Climate of the Kairouan Region 

The climate of central Tunisia, particularly in the Kairouan region, is distinguished by significant 

year-to-year and intra-year variations in rainfall. This fluctuation, along with water scarcity and 

drought periods, has a negative impact on rain-fed agricultural productivity, resulting in 

unpredictable yields (Mougou et al., 2011). 
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The study of several parameters, namely precipitation and temperature, served to characterize the 

climate of the study area and to assess its degree of aridity. Indeed, these parameters have a 

significant impact on water availability (Sarra Bel Haj Salem, 2013). 

The weather data were obtained for this study from the World Meteorological Organization 

(WMO). The meteorological station is located in Kairouan, Tunisia, at an elevation of 65 meters 

above sea level. The station operates in the Africa/Tunis time zone and is geographically 

positioned at 35.6781° N latitude and 10.0963° E longitude. This location provides valuable 

climatic data representative of central Tunisia's inland semi-arid conditions. 

The annual precipitation in Kairouan shows considerable interannual variability, with total rainfall 

in 2023 remaining below 402 mm, characterized by irregular and concentrated events, particularly 

in May and November. Daily mean temperatures ranged from approximately 9 °C during the 

winter months to over 34 °C in the peak of summer, with July and August being the hottest periods, 

as reflected in the temperature trends. This thermal regime, combined with scarce and erratic 

rainfall, contributes to high atmospheric water demand. The annual potential evapotranspiration in 

the region is estimated at around 1460 mm (Hamdi et al., 2017), highlighting the strong water 

deficit typical of the semi-arid Mediterranean climate. 

Building on this climatic context, Figure 3 illustrated the daily variation in maximum, average, 

and minimum air temperatures throughout 2023. Maximum daily temperatures peaked at around 

47 °C in mid-summer, while winter minimum dropped to nearly 2 °C in January. Average daily 

temperatures fluctuated between approximately 9 °C in the coldest months and 34 °C during the 

hottest period. Clear seasonal patterns are evident, with pronounced peaks during the summer 

months (June to August) and lower values in the winter (December to February). A color-coded 

bar at the bottom enhances visualization of the temporal temperature gradient, offering insight into 

seasonal transitions. 
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Figure 3. Daily maximum, average, and minimum air temperature trends for the year 2023. Data 

source: World Meteorological Organization (WMO). 

Figure 4 presents daily precipitation patterns over the same period. Rainfall events were highly 

irregular, with intense peaks exceeding 65 mm/day in December and 30 mm/day in May. Most 

days recorded zero precipitation, especially between June and September, underscoring the 

prolonged dry season. These infrequent yet sometimes extreme rainfall events contribute to the 

uneven annual distribution of water resources in Kairouan. 

 

Figure 4. Daily precipitation recorded in 2023. The vertical bars represent rainfall amounts in 

millimeters. Data source: World Meteorological Organization (WMO). 

Daily wind speed measurements in Kairouan during 2023 (Figure 5) show notable variability 

across the year, with peaks exceeding 16 km/h particularly evident in the winter and spring months. 

Wind speeds tend to be more moderate and stable during the summer season, although fluctuations 
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persist. These patterns are influenced by seasonal atmospheric dynamics and the local topography, 

which modulate wind flow across the region. Monitoring wind speed is essential for understanding 

its impact on evapotranspiration, dust dispersion, and agricultural planning in semi-arid 

Mediterranean environments such as Kairouan. 

 

Figure 5. Daily Wind Speed in Kairouan (2023). Data source: World Meteorological 

Organization (WMO). 

Atmospheric pressure in Kairouan throughout 2023 (Figure 6) fluctuated between approximately 

1000 and 1035 hPa, with higher values typically observed during the cooler months (January–

March and November–December). Sudden drops and spikes indicate the passage of weather 

systems such as high- and low-pressure fronts. The relatively stable pressure patterns observed 

during summer suggest calm, settled weather, consistent with the Mediterranean climate of the 

region. These pressure trends are critical for understanding weather dynamics and forecasting in 

semi-arid environments. 
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Figure 6. Daily Air Pressure Variations in Kairouan (2023). (Source: World Meteorological 

Organization (WMO))         

3.2. Materials and methods 

3.2.1. Materials 

3.2.1.1. Sentinel 1 Imagery 

SENTINEL-1 is an imaging radar mission providing continuous all weather, day-and night 

imagery at C-band (Table 1). The Sentinel-1 mission offers a range of distinct imaging modes, 

each with its own resolution, ranging from as low as 5 meters, and coverage extending up to 400 

kilometers. It encompasses double polarization capability, rapid revisit times, and expedited 

product delivery. Additionally, precise spacecraft position and attitude measurements accompany 

every observation (Fletcher & Karen, 2012). Sentinel-1B satellite imagery was used to characterize 

soil moisture in this study. The Sentinel-1B data used in the study has the following specifications: 

Table 1. Specifications of the Sentinel-1B data used in the study (Roland Meynart et al., 2013) 

Specifications Sentinel-1B 

Polarization VV-VH 

Imaging frequency C-Band (5.4 GHz) 

Resolution mode 5 meters 

Acquisition times January 2018–June 2020 
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3.2.1.2. Sentinel 2 Imagery 

SENTINEL-2 is a European multi-spectral imaging mission with a wide and high-resolution swath. 

The twin satellites, which are in the same orbit but phased at 180°, are designed to have a high 

revisit frequency of 5 days at the Equator. SENTINEL 2 is equipped with an optical payload that 

samples 13 spectral bands: four at 10 m, six at 20 m, and three at 60 m spatial resolution. The 

orbital swath is 290 kilometers wide (Franks & Rengarajan, 2023). During this research, the 

Sentinel 2 image will be used to calculate the values of the Normalized Difference Vegetation 

Index (NDVI) and Normalized Difference Water Index (NDWI). 

3.2.1.3. Digital elevation data 

Digital Elevation Models (DEMs) are fundamental datasets in geographic information systems 

(GIS) used to represent terrain elevation and generate relief maps. Since 2019, the Copernicus 

Programme has provided a global, high-resolution, and consistent DEM freely available to the 

scientific community for diverse geospatial applications. DEMs are generally classified into two 

main categories: Digital Surface Models (DSM) and Digital Terrain Models (DTM). The DSM 

captures the elevation of the Earth’s surface, encompassing both natural elements (e.g., vegetation, 

landforms) and anthropogenic structures (e.g., buildings, infrastructure), while the DTM 

represents the bare ground elevation without above-ground objects (F. Chen et al., 2021).  

The Copernicus Digital Elevation Model (DEM) is delivered as a high-resolution DSM derived 

primarily from TanDEM-X mission data, offering global coverage with exceptional vertical 

consistency. The GLO-30 product, distributed by the European Space Agency (ESA), provides a 

spatial resolution of 30 m, making it particularly valuable for a wide range of applications such as 

hydrological and geomorphological modeling, land cover mapping, flood risk assessment, and 

terrain characterization (Figure 7). 
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Figure 7. The DEM of the study area using Copernicus DEM GLO-30 m 

The elevation showed that the study area is at the limit of the mountain range, it is mainly 

consolidated materials, colluvial and alluvial materials coming from the mountain. This is what 

fills up our study area. 

The geography of this study site is primarily defined by geology, with the plain dominating and 

the presence of mountains such as Jebel Trozza from the north-south direction. Clayey and clayey-

sandy textures may be observed in the agricultural areas. As a result, topography is the main factor 

affecting soil formation in the study area. 

3.2.2. Methods 

The diagram (Figure 8) illustrates the used workflow for characterizing soil moisture through the 

integration of multi-source remote sensing and environmental data. It begins with a preliminary 

area analysis, followed by the collection of three main data types: Sentinel-1 radar imagery, 

Sentinel-2 optical imagery, and climate data (e.g., ERA5, GPM). Following, covariates were 

extracted from these sources, the backscatter coefficients from Sentinel-1, the vegetation and water 

indices (NDVI, NDWI) from Sentinel-2, and environmental parameters from climatic datasets. 
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These covariates are then integrated and subjected to data analysis, including statistical methods 

such as linear correlation, to establish relationships between the derived indices and observed soil 

moisture. The final output of the research is the spatial and temporal characterization of soil 

moisture conditions across the study area. This integrated approach leverages the complementary 

strengths of radar, optical, and climate data for a comprehensive understanding of soil hydrological 

dynamics. 

 

 

Figure 8. Methodological diagram of the soil moisture characterization 
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3.2.2.1. Data collection 

The environmental covariates, Sentinel-1 (Backscatter coefficient), Sentinel-2 (NDVI and NDWI) 

and Digital terrain data were chosen as target explanatory variables to integrate. NDI (Normalized 

Difference Index) is calculated as the difference between reflectance values in two bands divided 

by the sum of those values (Dobos & Luca Montanarella, 2010) 

3.2.2.2. Extraction of Covariates 

A combination of literature and statistical processing was used to select certain factors. According 

to the literature, covariates had to follow three criteria: first, they had to represent soil-forming 

elements; second, they had to have a direct link with SM; and third, they had to be readily available 

(Dobos et al., 2000). On the basis of these specifications, three kinds of data were chosen as 

environmental covariates: Sentinel-1 C-band, terrain data derived from DEM, and Sentinel-2 data 

to explain the biomass/vegetation influence on the SM (Kibirige & Dobos, 2020). 

3.4.3. Statistical Methods 

In this chapter, the statistical method used to describe and analyze soil moisture is the linear 

correlation. In a data-poor environment, linear regression produces more realistic spatial patterns 

over the landscape (Q. Zhang et al., 2021). 

3.2.2.4. Characterization of Soil Moisture 

Many researchers have developed models to characterize soil moisture, and these models showed 

that soil moisture and backscattering coefficient have a fundamental relationship, e.g. (Q. Zhang 

et al., 2021). The backscatter coefficient and Sentinel-2 data are considered main parameters that 

can help to characterize the soil moisture. 

 3.3. Results and Discussion 

3.3.1. Radar remote sensing 
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An optical image and a Sentinel-1 radar image shown in Figure 9 to visually analyze the area. The 

radar image (polarizations) is colored with an RGB composite: red = VH, green = VV, and blue = 

NDI, where NDI refers to the Normalized Difference Index of the VH and VV polarizations. The 

dominance of bluish tones, greenish tones, and the presence of reddish tones in the southern part 

of the study area can be immediately distinguished. 

 

Figure 9. Optical image from the Bing Map (Left) and Sentinel-1B imagery (Right) of the study 

area 

First, a visualization exercise was performed using the RGB composite. A more detailed analysis 

of the different polarizations (Figure 10) was then carried out as follows: 

 

(a) Polarization VV 
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(b) Polarization VH 

 

(c) Elevation 

 

(d) Optical Image 
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(e) RGB (VV, VH, VV) 

 

(f) RGB (VH, VV, NDI) 

Figure 10. (a) Polarization VV; (b) Polarization VH; (c) Elevation; (d) Optical Image; (e) RGB 

(VV, VH, VV); (f) RGB (VH, VV, NDI) 
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Because SAR signals are prone to multiple scattering at various layers of vegetation, as well as at 

the subsurface or terrain level, interpreting vegetated parts of a SAR image demands a high level 

of understanding. The intensity of such scattering is heterogeneous in nature, varying from one 

SAR image to another, due to the changing nature of plant structures and closures. The VH 

polarization produces comparable results to VV polarization, with the exception of greater 

separation of water masses and more precise information about the water region in the generated 

image. The VV polarization is more informative for land use and for vegetal cover analysis which 

is related to the soil moisture. The wide histogram of the VV and the VH polarization image helps 

for a better discrimination of thematic classes including possible differentiation of identifying the 

open water, Irrigated area, soil roughness and the urban area. Although the RGB exercise of like-

polarized and cross-polarized data can be considerably more informative. Figure 10e and 10f 

present a false-color composite of the Merguellil watersheds downstream. These images were 

acquired by the Sentinel-1 radar satellite. To aid visual interpretation, the multiple channels of 

polarimetric data can be used to present the data in a colored image, in which certain image features 

are recognizable. As a simple example, a color image can be made using a VV = Red, VH = Green 

and VV = Blue channel assignment (Figure 10e). This tends to look realistic, as soil water content 

reflections have a higher VH component than VV, and vegetation has a higher average than VH 

backscatter. The Sentinel-1 SAR image in VV and HV polarization modes (Figure 10f) was used, 

with the VH, VV, and NDI layers presented in RGB mode. Changes in the intensity of each color 

are related to surface conditions and covers; such as variations in surface roughness, biomasses, 

plant density, soil wetness, and soil types. Higher radar reflectance represented in VH/VV (yellow) 

is found in semi-consolidated and consolidated rocky material; lower backscatter in NDI 

polarization (dark blue) and VV/NDI (reddish) appears where erosional deposits and material 

related to fluvial erosion are abundant. Brighter colors are dominant where distinct bedrock 

layering can be observed. The units in bright yellow are typically caused by strong backscatter and 

VH polarization modes with VV represented as blue approaches zero. The reddish areas in the 

image are the ploughed terrain. The yellow-greenish areas are cultivated areas with high soil 

moisture. The green areas are due to the relatively high intensity of the VV channel, which is 

strongly correlated with the amount of biomass. The C-band VV and VH channels show the 

biomass variations over the entire region.  
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Three major units, dark violet, bright violet, and green, were distinguished in the Sentinel-1 SAR 

image in VV and HV polarization modes (Figure 10e), represented as VH/VV/VV in RGB. Higher 

VV/VV (violet) radar backscatter was observed over plowed terrain with high surface roughness, 

whereas lower backscatter in VV polarization (dark violet) was associated with areas dominated 

by uncultivated soils. Bedrock layering in the mountainous areas was identifiable through the 

predominance of brighter tones. Units in bright yellow were generally linked to high backscatter 

in VH polarization relative to VV, while the blue channel approached zero. Such patterns may also 

indicate high soil moisture conditions and the presence of cultivated areas. 

Nevertheless, the interpretation of SAR signals remains challenging due to their sensitivity to 

multiple scattering processes in vegetation, subsurface layers, and terrain features. Therefore, 

further acquisition of ground-truth datasets and more comprehensive analysis are required in future 

research to validate these findings and strengthen the reliability of SAR-based soil moisture and 

land cover assessments. 

3.3.2. Optical Remote Sensing 

3.3.2.1. Characterization of the vegetation cover using the vegetation index (NDVI) 

Figure 11 presents two normalized difference vegetation index (NDVI) images derived for the 

eastern part of the study area. 

Figure 11. Normalized difference vegetation index (NDVI) of the study area during the wet 

season (January) and dry season (July) 
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The image from January 2018 depicts wet conditions, while the one from July 2019 presented dry 

conditions. A difference in vegetation cover between the two seasons was observed; the first image 

displayed relatively dense vegetation cover, whereas the second image revealed sparse vegetation 

cover. Figure 12a shows the variation of the normalized difference vegetation index (NDVI) of the 

study area. The graphs were generated using the Misbar Platform. The maximum, minimum, and 

mean NDVI values from January 2018 to December 2020 were analyzed. A large difference 

between the maximum and minimum values was observed, explained by the contrast between 

cultivated and non-cultivated areas, as well as by differences in plant life cycles. The variation of 

NDVI between 2018 and 2020 is presented in Figure 12b, where the three curves exhibit a similar 

seasonal trend, attributable to plant phenological cycles and cultivation practices adopted by 

farmers in the region. 

 

NDVI of the AOI =
∑Pixel Value

𝑁
                                                                                     (𝟏) 

                                                                   

 

 

(a) 
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(b) 

Figure 12. (a) The maximum and the minimum of the NDVI value of the study area, (b) 

variation of the NDVI value as a function of time 

3.3.2.2. Characterization of soil moisture using the water index (NDWI) 

Figure 13 shows two images of the Normalized Difference Water Index (NDWI) of the study 

region. The image for June 2018 shows the dry time, but the image of October 2018 marks the 

beginning of the wet season. The first image depicts several moist fields, likely corresponding to 

irrigated areas, while the second image reflects land surface conditions following rainfall. Based 

on the observed soil moisture patterns, it can be inferred that precipitation occurred less than 48 

hours prior to the image acquisition date.  

 

Figure 13. Normalized difference water index (NDWI) of the study area 
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The temporal variation of the Normalized Difference Water Index (NDWI) within the study area 

from January 2018 to December 2020 is presented in Figure 14a, illustrating the maximum, 

minimum, and mean values over the period. A substantial gap between the maximum and 

minimum values is evident, reflecting considerable heterogeneity in land use, vegetation cover, 

and soil properties. This suggests that soil moisture dynamics are more strongly influenced by land 

use patterns and soil variability than by climatic factors alone. Figure 14b depicts the interannual 

changes in NDWI between 2018 and 2020, where the three curves exhibit a consistent seasonal 

pattern, largely driven by vegetation phenology and prevailing meteorological conditions in the 

region.  The NDVI and NDWI results showed that the study area is classified into several basic 

categories, which represent variations in land use /land cover and different crops. In the study area, 

conventional irrigation is dominant. The results showed that vegetable crops such as tomatoes, 

peppers and plots of olive trees are the dominant crops in the study area. 

 

(a)                                                                           (b) 

Figure 14. (a) The maximum and the minimum of the NDWI value of the study area, (b) 

variation of the NDWI value as a function of time 

 

Pilot Area Sub-pilot areas 

To gain deeper insights into the soil moisture regime and the influence of environmental 

parameters, the analysis was narrowed to a specific parcel within the study area. Within this parcel, 

two sub-pilot zones were selected, both subjected to identical environmental and management 

conditions. Despite these similarities, visual inspection reveals a clear contrast in vegetation cover: 

Pilot 1 exhibits less developed and sparser vegetation compared to Pilot 2. To quantify these 
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differences, a three-year analysis (2018–2020) of the Normalized Difference Vegetation Index 

(NDVI) and the Normalized Difference Water Index (NDWI) was carried out for both sub-pilots 

(Figure 15). 

 

 

Figure 15. True-Color Imagery (Left) and NDVI (Right) for Pilot Sites 1 and 2 

During the rainy season, the NDVI of Pilot 1 is lower than that of Pilot 2 (Figure 16), while it is 

higher during the dry seasons. 

 

Pilot 1                                                                               Pilot 2 

Figure 16. Comparison between the NDVI (top) and the NDWI (bottom) of sub-pilot areas 

The NDWI values for Pilot 1 consistently exceed those of Pilot 2 in both dry and rainy seasons. 

This suggests that the soils in the two sub-pilots differ in their physical properties, with Pilot 1 

exhibiting a higher water retention capacity than Pilot 2. However, despite this greater capacity for 

  

Pilot 1 

Pilot 2 
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moisture retention, the NDVI values in Pilot 1 remain lower than those in Pilot 2. This apparent 

contradiction may be explained by the fact that the soil in Pilot 1 approaches water saturation more 

frequently, creating conditions that are less favorable for optimal vegetation growth. 

3.3.2.3. Correlation between the NDVI and the NDWI 

A statistical analysis was made between the NDVI and NDWI values of the study area between 

2018 and 2020. Figure 17 shows the results of the linear correlation between the two indices NDVI 

and NDWI. A strong positive correlation is observed between the two parameters, with R = 0.79 

and R² = 0.64. 

 

 

Figure 17. Correlation between NDVI and NDWI 

This result is explained by the strong correlation between the water and the biomass in nature and 

also technically the two parameters are based on the near-infrared as one of the major points. 

Some data points deviate noticeably from the correlation line, prompting further investigation to 

identify the underlying causes of these anomalies. As shown below, a measure of the correlation 

coefficient was performed between the means of NDWI-NDVI, the maximums of NDWI-NDVI 

and the minimums of NDWI-NDVI. 
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 (a) Pilot 3                                    (b) Pilot 4                                    (c) Pilot 5 

Figure 18. Delimitation of Pilot 3, Pilot 4 and Pilot 2 

The results reveal that maximums and means have a higher correlation, whereas minimums have 

a lower correlation. Furthermore, a small pilot area (Figure 18a) is used for validation; its 

correlation coefficients were calculated as shown in the pilot curves below (Figure 19), and this 

pilot reveals strong correlations between maximums, means, and minimums. The weak correlation 

between the minimums in the study area (Figure 19) can be explained by the presence of free water 

or by the presence of certain urban areas. In addition, the out-of-range points could be explained 

by a technical error while the output results are symbolic of the same date, this error could be 

considered as noise. 

To validate this assumption, the analysis was extended to two additional small pilot areas (Pilots 

4 and 5) characterized by similar land use. Pilot 4 is predominantly covered by olive trees, whereas 

Pilot 5 is dedicated to horticultural crops. The results revealed a strong correlation between the 

mean NDWI–NDVI and the maximum NDWI–NDVI values. In contrast, the minimum NDWI–

NDVI exhibited a lower correlation coefficient than both the mean and the maximum, and its 

behavior appeared less predictable. This weaker and less consistent relationship can be attributed 

to the presence of diverse land cover types, some of which may retain moisture without supporting 

vegetation, rendering the minimum values less representative. Furthermore, Pilots 4 and 5 (Figures 

21 and 22) displayed similar outlier points to those observed in the first and second analyses. 

Consequently, these outliers can reasonably be considered as noise in the dataset. 
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           R = 0.79 R² = 0.64                     R = 0.859 R² = 0.638               R = 0.28 R² = 0.079 

Figure 19. Correlation between the NDWI and NDVI of the study area 

 

 

            R = 0.87 R² = 0.89                     R = 0.94 R² = 0.76                   R = 0.764 R² = 0.58 

Figure 20. Correlation between the NDWI and NDVI of Pilot 3 

 

 

            R = 0.94 R² = 0.89                     R = 0.87 R² = 0.76                     R = 0.76 R² = 0.58 

Figure 21. Correlation between the NDWI and NDVI of Pilot 4 
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            R = 0.91 R² = 0.84                     R = 0.91 R² = 0.84                 R = 0.41 R² = 0.17 

Figure 22. Correlation between the NDWI and NDVI of Pilot 5 

3.3.3. Conclusion 

In this study, the correlation method was used to characterize the soil moisture regime using 

Sentinel-1B C-band SAR satellite data, the Normalized difference vegetation index (NDVI), and 

the Normalized difference water index (NDWI). Five pilots in the study area were chosen and 

analyzed to identify the relation between the optical and radar satellite data and the soil moisture. 

In order to extract the highest correlation and most informative data sources, 

To validate this assumption, the analysis was extended to two additional small pilot areas (Pilots 

4 and 5) characterized by similar land use. Pilot 4 is predominantly occupied by olive trees, 

whereas Pilot 5 is covered by horticultural crops. The correlation between different backscatters 

(V, H), optical data, DEM, and environmental variables was evaluated. The Normalized difference 

vegetation index (NDVI), the Normalized difference water index (NDWI), the Radar data (VV 

and VH polarization) and the soil types showed a strong correlation with the wetness and the 

vegetation conditions. The applied basic cognitive and statistical tools combined with local 

knowledge has demonstrated that these datasets have comparative potential in explaining the soil 

water regime and its relationship to the vegetation condition. The method is a promising and useful 

tool that may be used to characterize the soil moisture regime in the region. The environmental 

covariates should be statistically tested through the correlation methods to determine which 

covariates had the highest correlation with soil moisture. 

Based on the conclusions above the following theses were formulated: 
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Thesis 1 

The synergistic integration of Sentinel-1 C-band SAR backscatter (VV/VH), Sentinel-2-derived 

vegetation and water indices (NDVI, NDWI), and digital elevation data enables robust 

spatiotemporal characterization of soil moisture in the semi-arid Merguellil Basin. By capturing 

complementary signals related to vegetation structure, surface roughness, water content and water 

retention variability, this approach delineates soil wetness patterns across physiographic zones and 

land use types with minimal ground-based input. The method is particularly effective for 

characterizing topsoil moisture (0–5 cm), where SAR backscatter is most responsive, and its 

performance remains sensitive to vegetation density. However, limitations may arise under dense 

canopy cover or highly rough surfaces, where multiple scattering and signal saturation can reduce 

accuracy. 

 

Thesis 2 

Strong statistical correlations between radar backscatter coefficients, spectral vegetation and water 

indices, and topographic parameters demonstrate the capacity of multi-source remote sensing to 

infer soil moisture regimes under data-scarce conditions. The observed divergence in NDVI–

NDWI dynamics across pilot sites further reveals the influence of soil texture, land use, and water 

retention variability, supporting the use of integrated optical-radar analysis for hydrological 

monitoring in heterogeneous agro-ecosystems. Nevertheless, performance declines under dense 

vegetation or highly rough surfaces, where signal penetration and retrieval accuracy are reduced. 
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4. Non-Invasive Soil Texture Prediction Using Random Forest and Multi-Source 

Environmental Data 

4.1. Introduction 

Traditionally, soil texture is determined through laboratory-based methods such as particle size 

analysis and sedimentation tests, which are labor-intensive, time-consuming, and costly (Gee & 

Bauder, 1986). Moreover, these methods are not always feasible for large-scale or real-time 

monitoring, especially in data-scarce or resource-limited regions. 

Recent advances in in-situ soil sensing and remote sensing technologies have enabled the 

development of alternative approaches for non-invasive and scalable estimation of soil properties) 

(Adamchuk et al., 2004; Minasny & McBratney, 2016). Soil moisture dynamics are closely linked 

to soil texture, as finer-textured soils (e.g., clayey) typically exhibit greater water-holding capacity 

compared to coarser-textured soils (e.g., sandy) (Saxton & Rawls, 2006). In addition, vegetation 

indices such as the Normalized Difference Vegetation Index (NDVI), derived from satellite 

platforms like Sentinel-2, can serve as indirect indicators of soil conditions by capturing vegetation 

responses influenced by moisture and texture (Jiang et al., 2006). 

Machine learning (ML) algorithms offer powerful tools for modeling complex and nonlinear 

relationships among environmental variables and soil properties. Among these, Random Forest 

Regression (RFR) has shown particular promise due to its robustness to noise, ability to model 

interactions, and interpretability via feature importance analysis (Breiman, 2001a) It has been 

successfully applied in soil science for mapping soil organic carbon, bulk density, and texture 

(Heung et al., 2014; Wadoux et al., 2020). 

This study aims to develop a Random Forest-based predictive model for soil texture classification 

and fraction estimation by integrating in-situ soil moisture measurements from Sentek 

EnviroSCAN sensors with Sentinel-2 NDVI and atmospheric data. The objectives are threefold: 

(1) to demonstrate the feasibility of predicting soil particle size that defines the soil texture class 

without laboratory measurements, (2) to identify the most influential environmental predictors of 

textural variability, and (3) to assess the model’s potential to support automated calibration of soil 

moisture sensors. The proposed approach contributes to advancing digital soil mapping and 

enhancing decision-making in precision agriculture and climate-resilient land management. 
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4.2. Study area  

Hungary is located in Central Europe, within the Carpathian Basin, between 45°48′ and 48°35′ N 

latitude and 16°05′ and 22°58′ E longitude. The country’s topography varies from lowlands to 

mountainous regions, with its highest peak reaching 1014 m, while the lowest point is at 78 m 

above sea level. The entire territory falls within the Danube River basin, which significantly 

influences its hydrological and geomorphological characteristics (Kocsis et al., 2021). 

The landscape of Hungary is primarily characterized by low elevation and minimal vertical 

dissection (Figure 23). Approximately 82.4% of the country lies below 200 m, predominantly 

forming the Great Hungarian Plain (Alföld). In contrast, only 0.5% of the land area exceeds 500 

m in elevation, with medium-height mountains (200–500 m) covering 2.1% of the terrain. 

Additionally, hills and foothills constitute 15.5% of the country's relief, contributing to the diverse 

topographical and ecological conditions across the region (Gábris et al., 2018). 

 

Figure 23. Location and (DEM-based) topography of the study area (Hungary) 

Hungary lies within the northern temperate climatic zone, yet its weather patterns are shaped by 

the interaction of three major climate influences: oceanic, continental, and Mediterranean systems. 

The country experiences four distinct seasons, marked by significant temporal variability in 

temperature and precipitation. Typically, summer is the warmest season and receives the most 
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precipitation, whereas winter is the coldest and driest. However, precipitation patterns are highly 

variable, both in space and time. Notably, 2010 was the wettest recorded year, featuring an average 

of 9 days with intense rainfall events exceeding 20 mm (Spinoni et al., 2015). 

4.3. Materials and Methods 

4.3.1. Materials 

4.3.1.1. Soil Texture 

Soil particle size distribution was analyzed from samples collected in the upper 0–30 cm soil layer 

at 25 field sites across Hungary, selected to represent a broad spectrum of geographic and 

geological conditions. The geographical distribution of these sampling locations, along with the 

positions of the in-situ sensors, is presented in Figure 24, highlighting the spatial variability of soil 

properties and monitoring points across the study region. 

 

Figure 24. Sensor’s locations in the study areas 

Soil samples were analyzed using standard granulometric procedures to determine the relative 

proportions of sand, silt, and clay fractions. These values were subsequently used to classify the 

soils according to the United States Department of Agriculture (USDA) soil texture classification 
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system (Figure 25), which is widely used for its precision in categorizing soil types based on 

particle size distribution (Nrcs, 2017). 

 

Figure 25. USDA Soil Texture Triangle used to classify soil based on proportions of sand, silt, 

and clay. Source: Soil Science Society of America. 

The soil particle size and the soil texture classes of our dataset is provided in Table 2, showing 

how soil texture of this study is classified within the USDA framework. 

Table 2. Soil particle size and soil texture (USDA System) 

Soil Site Reference Name Sand Silt Clay Soil Texture Class 

Tiszavasvari_01 37.6 38.8 23.6 Loam 

Tiszavasvari_02 32.7 43.2 24.2 Loam 

Tiszavasvari_03 34.4 41.6 24.0 Loam 

Tiszavasvari_04 64.8 23.9 11.3 Sandy Loam 

Tiszavasvari_05 25.9 46.9 27.3 Clay Loam 
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Tiszavasvari_17 56.3 26.2 17.5 Sandy Loam 

Somodor_4 59.4 21.7 19.1 Sandy Loam 

Somodor_13 52.2 26.3 21.5 Sandy Clay Loam 

Somodor_21 69.0 18.6 12.4 Sandy Loam 

Urbán_4 12.4 27.3 60.3 Clay 

Urbán_17 51.3 22.1 26.6 Sandy Clay Loam 

Tépe_06 30.3 40.4 29.3 Clay Loam 

Tépe_08 38.0 39.9 22.2 Loam 

Tépe_09 45.6 27.3 27.2 Sandy Clay Loam 

Tépe_12 47.7 20.9 31.5 Sandy Clay Loam 

Tépe_13 39.2 32.1 28.8 Clay Loam 

Magyaregregy_10 60.9 19.8 19.4 Sandy Loam 

Magyaregregy_11 48.6 27.7 23.7 Sandy Clay Loam 

Magyaregregy_14 47.1 34.9 18.0 Loam 

Kunszentmárton_7 21.0 44.5 34.5 Clay Loam 

Kunszentmárton_18 22.0 30.2 47.7 Clay 

Kunszentmárton_19 25.3 32.6 42.1 Clay 

Matyo_12 32.5 31.4 36.1 Clay Loam 

Matyo_17 26.6 27.5 45.9 Clay 

Matyo_21 27.5 31.9 40.6 Clay 

Figure 26 shows the USDA soil texture triangle with the distribution of 25 analyzed samples. The 

samples span a wide range of textural classes, including sandy loam, loam, clay loam, sandy clay 

loam, and clay. Most samples cluster within the loam to clay loam classes, while a few occupy 
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sandy loam and sandy clay loam categories. This distribution reflects the heterogeneity of soil 

particle size composition across the study sites. 

 

Figure 26. Soil Textiure Distribution of Soil Samples Plotted on the USDA Soil Texture 

Triangle 

4.3.1.2. EnviroScan Sensor 

The Sentek EnviroScan sensor consists of multiple capacitance-based sensors installed at 10 cm 

intervals (Figure 27) along an extruded plastic framework  (Paltineanu & Starr, 1997); Hajdu et 

al., 2019). The probe had sensors at six depths, namely 10, 20, 30, 40, 60 and 100 cm.  Each sensor 

comprises two brass rings forming a capacitor, connected to an LC oscillator, where frequency 

variations correspond to changes in soil capacitance (Hajdu et al., 2019). The sensor generates an 

oscillating capacitance field, extending beyond the PVC access pipe into the surrounding soil, 

allowing measurement of soil moisture content based on frequency shifts. A data logger records 

output counts, which are scaled between air (dry) and water (saturated) reference readings to 

determine soil moisture (Provenzano et al., 2020) (Z. Gao et al., 2018). 
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Capacitance probes are valued for their robustness, accuracy, and fast response times (Dane & 

Topp, 2002). However, their performance is highly dependent on good contact between the access 

tube and the surrounding soil, as poor contact reduces sensitivity (Kelleners et al., 2004); (de Rosny 

et al., 2001); (Scobie, 2006)  

 

Figure 27. Sentek EnviroSCAN® Sensor for Profiling Water Content Along an Access Tube 

(Sentek Pty Ltd., 2011) 

A total of twenty-five distinct field sites across Hungary, representing different soil textures, were 

selected for this study. At each site, one Sentek EnviroScan sensor access pipe was installed.  

To ensure minimal soil disturbance and optimal sensor-soil contact, the installation process 

followed a rigorous methodology. A dedicated installation kit was employed to insert the PVC 

access tubes, which were stabilized using a tripod with vertical leveling capability anchored 

securely to the ground. A soil auger was systematically used to remove soil from within the tube, 

facilitating deeper penetration and ensuring a precise cut. The PVC tube was then progressively 

inserted into the prepared borehole until a depth of 120 cm was reached. 

Following installation, the interior of the PVC tube was meticulously cleaned, and a compression 

rubber plug was inserted at the bottom to act as a barrier against water and vapor infiltration. To 

maintain structural integrity and prevent contamination, the male-threaded section at the top, 

designed to secure the probe’s removable screw cap, was sealed with silicone glue. These measures 
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were critical to ensuring optimal soil-tube contact, eliminating air gaps, and preventing preferential 

water flow, which could otherwise compromise measurement accuracy (Starr & Paltineanu, 1998). 

 

4.3.1.3. Remote sensing data  

While vegetation can influence soil moisture dynamics, its effects are highly dependent on site-

specific conditions and soil depth. According to Yang et al., 2012, slope position and aspect 

primarily affect soil moisture content (SMC) in shallow layers, whereas slope gradient exerts a 

significant control on both shallow and deep layers. The planted vegetation exhibits a negative 

relationship with deep soil moisture, largely due to transpiration and root water uptake, which 

drive spatial variability in deep SMC. Given this interaction, vegetation dynamics play a crucial 

role in soil moisture variability, making the assessment of vegetation conditions essential for 

understanding soil water distribution. On the other hand, better water supply results in better plant 

condition, reflecting the differences of the water supplying capacity of the soils. 

The Normalized Difference Vegetation Index (NDVI) serves as a key indicator for analyzing 

vegetation conditions and their impact on soil moisture (Myneni et al., 1995).  

The Normalized Difference Vegetation Index (NDVI) is widely recognized as a reliable indicator 

of vegetation health and has also been shown to exhibit a relationship with soil moisture variability 

under different environmental conditions (Gu et al., 2008). It is computed using the formula: 

 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅

𝑁𝐼𝑅 + 𝑅
                                                                                                                 (2) 

  

where: 

• NIR represents the reflectance in the near-infrared band (Sentinel-2 Band 8). 

• R represents the reflectance in the red band (Sentinel-2 Band 4). 

3.3.1.4. Data Description  

Figure 28 presents the set of input variables used in the machine learning framework together with 

the target feature, soil texture. 
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Figure 28. Input Features and Target Variable for Soil Texture Prediction 

4.3.1.4.1. Target variables  

The target variables in this study are the soil particle size classes, as defined by the United States 

Department of Agriculture (USDA). It is essential to distinguish between soil particle size and soil 

texture. While soil texture refers to the relative proportion of sand, silt, and clay particles and 

determines many physical behaviors of the soil (e.g., water retention, aeration, tillage suitability), 

particle size classes refer strictly to the classification of mineral particles based on their diameters, 

independent of their relative abundance or combined behavior (Nrcs, 2017). 

According to USDA classification (Nrcs, 2017) mineral particles are grouped into three major 

particle size classes: 

Sand: Particles with diameters between 0.05 mm and 2.00 mm. Sand particles are large and result 

in soils with high permeability, rapid drainage, and low water- and nutrient-holding capacities. 

Sandy soils are generally well-aerated but are more prone to erosion and leaching (Weil & Brady, 

2017). 

Silt: Particles ranging from 0.002 mm to 0.05 mm. Silt imparts a smooth, floury texture to soil and 

contributes to improved water-holding capacity and fertility. Silty soils retain moisture better than 

sandy soils and provide moderate permeability, although they are susceptible to surface crusting 

and compaction (Nrcs, 2017). 
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Clay: Particles less than 0.002 mm in diameter. Clay has the highest surface area and strong 

electrochemical activity. Soils dominated by clay are highly retentive of water and nutrients but 

have low infiltration rates and are often subject to swelling, shrinking, and structural limitations 

(Weil & Brady, 2017; Nrcs, 2017). 

These USDA-defined particle size classes serve as the foundation for determining soil texture 

classes using the USDA Textural Triangle, which integrates the percentages of sand, silt, and clay 

to classify soils into texture classes such as loam, clay loam, or sandy loam (Nrcs, 2017). 

4.3.1.4.2. Input features  

Temperature: The Sentek EnviroSCAN probe is an advanced multi-depth soil moisture 

monitoring system that integrates temperature measurements as a key component of its data 

collection capabilities. By continuously measuring soil temperature and moisture at multiple 

depths, the probe provides comprehensive insights into thermal dynamics, soil-water interactions, 

and plant root-zone conditions (Sentek, 2023). These parameters are essential for understanding 

soil hydrological behavior, optimizing irrigation strategies, and assessing plant stress levels under 

varying environmental conditions. 

The temperature measurement in the Sentek EnviroSCAN probe is typically performed using a 

thermistor or resistance temperature detector (RTD), both of which offer high-precision detection 

of soil temperature fluctuations. The sensor is positioned within the probe’s sensor array at  10 cm 

depths, ensuring that temperature variations are captured concurrently with soil moisture levels. 

This integrated approach enables a more accurate assessment of soil-water balance, 

evapotranspiration rates, and thermal conductivity, all of which significantly influence water 

retention capacity, microbial activity, and root development (Paltineanu & Starr, 1997). 

The combined measurement of temperature and soil moisture is particularly valuable in precision 

agriculture, climate modeling, and environmental monitoring. By correlating temperature 

fluctuations with soil moisture dynamics, the Sentek EnviroSCAN system facilitates the prediction 

of drying trends, frost risks, and soil permeability changes, contributing to data-driven decision-

making in sustainable land and water management. 
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T_10_Days_Avr: T_10_Days_Avr represents a 10-day moving window average of temperature, 

where the mean temperature is computed continuously over a sliding 10-day period. This approach 

smooths short-term fluctuations and highlights progressive trends in temperature variation. 

 

Humidity: The capacitance-based sensors within the Sentek EnviroSCAN probe detect changes 

in soil dielectric properties, which are strongly influenced by soil humidity and moisture levels. 

Higher soil moisture content correlates with higher soil humidity, reducing evaporation rates and 

influencing plant water uptake efficiency. Conversely, drier soils exhibit lower humidity levels, 

affecting microbial activity and increasing the likelihood of water stress conditions for vegetation 

(Paltineanu & Starr, 1997). 

By continuously monitoring soil moisture variations, the Sentek EnviroSCAN system provides an 

indirect assessment of soil humidity, supporting irrigation optimization, drought monitoring, and 

soil health analysis. This capability makes it a valuable tool for precision agriculture, climate 

modeling, and environmental research, where understanding soil moisture-humidity interactions 

is critical for sustainable land and water management. 

 

H_10_Days_Avr: H_10_Days_Avr represents the 10-day moving window average humidity, 

calculated by averaging humidity values over a continuously updating 10-day period. This moving 

average method smooths short-term fluctuations while capturing long-term trends in humidity 

variation. 

 

SF_10, SF_20, SF_30: The Sentek EnviroSCAN probe operates on a capacitance-based sensing 

principle, where the scaled frequency (SF) is a key parameter used to determine soil moisture 

content. The probe emits an electromagnetic signal that interacts with the surrounding soil, and the 

resulting resonant frequency is influenced by the dielectric properties of the soil-water matrix 

(Sentek, 2023). This frequency is then scaled and calibrated to provide an accurate estimation of 

volumetric water content (VWC) across different soil types and conditions. 

The scaled frequency (SF) is derived from the raw frequency output of the sensor and is normalized 

to minimize variations caused by sensor drift, environmental conditions, and soil texture 

differences (Paltineanu & Starr, 1997). 
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By continuously monitoring SF values, the Sentek EnviroSCAN system enables precise tracking 

of soil moisture fluctuations, which is crucial for irrigation management, drought assessment, and 

soil hydrology studies. The integration of scaled frequency data with other environmental 

parameters further enhances soil-water modeling, making the probe a valuable tool in agricultural 

and environmental research. 

SF_10 is the scaled frequency at 10 cm depth, SF_20 is the scaled frequency at 20 cm depth and 

SF_30 is the scaled frequency at 30 cm depth,  

 

SM_10, SM_20, SM_30: The Sentek EnviroSCAN probe determines soil moisture content using 

scaled frequency (SF), which is derived from the sensor’s raw frequency response influenced by 

the dielectric properties of the soil-water matrix (Sentek, 2023). This relationship allows the probe 

to provide real-time, depth-specific soil moisture readings, which are essential for irrigation 

management, drought monitoring, and soil hydrology assessments (Paltineanu & Starr, 1997). 

The SM_10 is the soil moisture at 10 cm depth, The SM_20 is the soil moisture at 20 cm depth 

and the SM_30 is the soil moisture at 30 cm depth. 

 

SF_30 / SF_10: The ratio of SF30 / SF10 represents the relative difference in scaled frequency 

(SF) values between the 30 cm and 10 cm soil depths, providing insights into the vertical trend of 

soil moisture distribution. Since SF is directly related to soil moisture content, rather than inversely, 

a higher SF_30 / SF_10 ratio suggests that the deeper layer (30 cm) has relatively higher SF values 

than the upper layer (10 cm). 

 

Max SM_10 5 Days range: The Max SM_10 5 Days Range represents the maximum recorded 

soil moisture (SM) value at 10 cm depth over a 5-day moving window. This metric is continuously 

updated as a moving value, capturing short-term fluctuations in soil moisture due to precipitation 

events, irrigation cycles, and evapotranspiration processes. 

 

Min SM_10 5 Days range: The Min SM_10 5 Days Range represents the minimum recorded soil 

moisture (SM) value at 10 cm depth over a 5-day moving window. This metric is dynamically 

updated, reflecting short-term variations in surface soil moisture due to factors such as 

evapotranspiration, drainage, and water uptake by plant roots. 



64 

 

Range SM_10 5 Days: The Range SM_10 5 Days is defined as the difference between the Max 

SM_10 5 Days Range and the Min SM_10 5 Days Range over a 5-day moving window. This 

metric quantifies short-term fluctuations in soil moisture at the 10 cm depth, providing insights 

into moisture dynamics, infiltration efficiency, and evaporation rates. 

 

Max SM_20 5 Days range: The Max SM_20 5 Days Range represents the highest recorded soil 

moisture (SM) value at 20 cm depth over a 5-day moving window. This metric captures short-term 

variations in subsurface moisture, reflecting water infiltration, retention capacity, and plant root-

zone availability.  

 

Min SM_20 5 Days range: The Min SM_20 5 Days Range represents the lowest recorded soil 

moisture (SM) value at 20 cm depth over a 5-day moving window. This metric reflects short-term 

trends in subsurface soil drying, providing insights into water depletion, root water uptake, and 

percolation losses. 

 

Range SM_20 5 Days: The Range SM_20 5 Days is defined as the difference between the Max 

SM_20 5 Days Range and the Min SM_20 5 Days Range over a 5-day moving window. This 

metric quantifies short-term soil moisture fluctuations at the 20 cm depth, offering insights into 

subsurface water dynamics, infiltration rates, and plant root-zone moisture variability. 

 

Max SM_30 5 Days range: The Max SM_30 5 Days Range represents the highest recorded soil 

moisture (SM) value at 30 cm depth over a 5-day moving window. This metric provides insights 

into subsurface moisture retention, deep infiltration dynamics, and water availability for deeper-

rooted vegetation. 

 

Min SM_30 5 Days range: The Min SM_30 5 Days Range represents the lowest recorded soil 

moisture (SM) value at 30 cm depth over a 5-day moving window. This metric is crucial for 

assessing deep soil drying trends, water availability for deep-rooted plants, and subsurface 

moisture retention over time. 
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Range SM_30 5 Days: The Range SM_30 5 Days is defined as the difference between the Max 

SM_30 5 Days Range and the Min SM_30 5 Days Range over a 5-day moving window. This 

metric quantifies short-term fluctuations in deep soil moisture, providing insights into water 

infiltration, retention capacity, and plant root-zone stability at 30 cm depth. 

 

Range SM_10 SM_20: The Range SM_10 SM_20 is calculated as the difference between the soil 

moisture content at 10 cm (SM_10) and 20 cm (SM_20). This metric provides insights into the 

vertical gradient of soil moisture between shallow and intermediate soil layers, helping assess 

water infiltration, retention, and plant root-zone moisture availability. 

 

Range SM_10 SM_30: The Range SM_10 SM_30 is defined as the difference between the soil 

moisture content at 10 cm (SM_10) and 30 cm (SM_30). This metric provides insights into vertical 

soil moisture distribution, infiltration efficiency, and subsurface water retention over time. 

 

Range SM_20 SM_30: The Range SM_20 SM_30 is calculated as the difference between the soil 

moisture content at 20 cm (SM_20) and 30 cm (SM_30). This metric provides insights into 

moisture distribution and water movement between intermediate and deeper soil layers, aiding in 

the assessment of subsurface infiltration, retention, and plant water uptake efficiency.  

 

Range Range SM_10 SM_20 5 days: The Range Range SM_10 SM_20 5 days is calculated as 

the difference between the Range SM_10 5 Days and the Range SM_20 5 Days, providing insights 

into short-term moisture variability between shallow (10 cm) and intermediate (20 cm) soil layers 

over a 5-day moving window. 

A higher Range Range SM_10 SM_20 5 Days suggests that moisture fluctuations at 10 cm depth 

are more pronounced compared to 20 cm depth, often due to surface evaporation, rainfall events, 

or irrigation cycles affecting the upper soil layer more rapidly. Conversely, a lower value indicates 

similar moisture variability at both depths, suggesting balanced infiltration, consistent soil 

moisture retention, or similar drying rates across these layers. 

 

Range Range SM_10 SM_30 5 days: The Range Range SM_10 SM_30 5 days is calculated as 

the difference between the Range SM_10 5 Days and the Range SM_30 5 Days, providing insights 
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into short-term moisture variability between the shallow (10 cm) and deeper (30 cm) soil layers 

over a 5-day moving window. 

A higher Range Range SM_10 SM_30 5 Days indicates that moisture fluctuations at 10 cm depth 

are more pronounced compared to 30 cm depth, often due to surface evaporation, precipitation 

events, or irrigation cycles that impact the upper soil layer more rapidly. Conversely, a lower value 

suggests more uniform moisture fluctuations between the two depths, indicating consistent 

infiltration, stable deep moisture retention, or minimal difference in drying rates. 

 

Range Range SM_20 SM_30 5 days: The Range Range SM_20 SM_30 5 days is calculated as 

the difference between the Range SM_20 5 Days and the Range SM_30 5 Days, providing insights 

into short-term moisture variability between intermediate (20 cm) and deeper (30 cm) soil layers 

over a 5-day moving window. 

A higher Range Range SM_20 SM_30 5 Days suggests that moisture fluctuations at 20 cm depth 

are greater than at 30 cm, indicating differences in water infiltration rates, root-zone water uptake, 

or varying soil retention capacities between these layers. Conversely, a lower value implies similar 

moisture variability across both depths, suggesting consistent water movement, uniform soil 

structure, or stable subsurface moisture conditions. 

 

CDiff Slope 10: The CDiff Slope 10 represents the rate of change of the soil moisture at 10 cm 

depth, calculated using the central difference method. This metric quantifies how the slope varies 

between consecutive depth measurements, providing insights into gradients in soil properties, 

moisture dynamics, or other related environmental factors at this depth. 

Mathematically, CDiff Slope 10 is computed as: 

 

𝐶𝐷𝑖𝑓𝑓 𝑆𝑙𝑜𝑝𝑒 10 =
𝑆𝐿10𝑖+1 

−  𝑆𝐿10𝑖−1 
 

2
                                                                        (𝟑) 

where: 

• SL_10i+1 is the next SL_10 value, 

• SL10i−1 is the previous SL_10 value, 

• The denominator 2 ensures a centered approximation of the slope. 
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A higher CDiff Slope 10 indicates steeper changes in SL_10 values, suggesting rapid variations in 

soil conditions at 10 cm depth, while a lower slope suggests a more stable and uniform SL_10 

distribution.  

 

CDiff Slope 20: The CDiff Slope 20 represents the rate of change of soil moisture at 20 cm depth, 

calculated using the central difference method. This metric quantifies how the slope varies relative 

to its neighboring values, providing insights into moisture distribution, soil compaction effects, 

and subsurface hydrological gradients at this depth. 

Mathematically, CDiff Slope 20 is computed as: 

 

𝐶𝐷𝑖𝑓𝑓 𝑆𝑙𝑜𝑝𝑒 20 =
𝑆𝐿20𝑖+1 

−  𝑆𝐿20𝑖−1 

2
                                                                         (𝟒) 

                             

where: 

• SL_20i+1 is the next SL_20 value, 

• SL_20i−1 is the previous SL_20 value, 

• The denominator 2 ensures a centered approximation of the slope. 

A higher CDiff Slope 20 suggests rapid variations in SL20, indicating changes in subsurface water 

movement, soil structural shifts, or variations in infiltration patterns. Conversely, a lower slope 

suggests a more uniform SL20 profile, indicative of stable moisture retention and minimal vertical 

fluctuations. 

 

CDiff Slope 30: The CDiff Slope 30 represents the rate of change of the soil moisture  at 30 cm 

depth, calculated using the central difference method. This metric quantifies the variation in slope 

values relative to its neighboring points, providing insights into deep soil moisture movement, 

infiltration dynamics, and subsurface hydrological behavior. 

Mathematically, CDiff Slope 30 is expressed as: 

 

𝐶𝐷𝑖𝑓𝑓 𝑆𝑙𝑜𝑝𝑒 30 =
𝑆𝐿30𝑖+1 

−  𝑆𝐿30𝑖−1 

2
                                                                          (𝟓) 

                      

where: 
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• SL_30i+1 is the next SL_30 value, 

• SL_30i−1 is the previous SL_30 value, 

• The denominator 2 ensures a centered approximation of the slope. 

A higher CDiff Slope 30 indicates significant variations in soil moisture or structural changes at 

30 cm depth, which may suggest deep percolation, subsurface compaction effects, or differential 

water retention. Conversely, a lower slope suggests more uniform conditions, indicating consistent 

deep moisture retention and minimal subsurface fluctuations. 

 

Season_value: The Season_Value is a normalized time variable that represents the progression of 

a specific seasonal interval, ranging from January 30 at 23:00 to July 15 at 23:00, covering 

approximately 165 days or 3960 hours (165 days × 24 hours). This variable provides a continuous, 

scaled representation of time, where: 

• January 30, 23:00 is assigned a value of 0 (seasonal start). 

• July 15, 23:00 is assigned a value of 1 (seasonal end). 

• Every hour within this interval is assigned a proportional value between 0 and 1, ensuring a 

smooth, normalized transition across the time range. 

This seasonal normalization ensures that even if there are missing hourly records, each hour retains 

an interpolated value within the defined time scale. Season_Value is useful for capturing seasonal 

variations in environmental or meteorological studies, allowing for time-dependent trend analysis 

in soil moisture dynamics, temperature fluctuations, or climate-driven agricultural assessments. 

 

Day_Night: The Day_Night variable, also referred to as Night_Value, is a normalized, scaled 

variable representing a fixed daily time interval between 23:00 (11 PM) and 04:00 (4 AM). This 

period spans 5 hours, and the normalization is applied consistently for every day in the dataset, 

ensuring a standardized representation of night-time conditions. 

Mathematically, the normalization follows: 

• 23:00 (11 PM) is assigned a value of 0. 

• 04:00 (4 AM) is assigned a value of 1. 

• Each hour within this range is assigned an incremental value based on its position within the 

5-hour interval. 
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This approach allows Day_Night to be used as a continuous feature in modeling diurnal variations 

in environmental conditions, particularly in soil moisture fluctuations, temperature dynamics, 

evapotranspiration, and energy balance assessments. 

 

NDVI: The Normalized Difference Vegetation Index (NDVI) is a widely used remote sensing 

metric for assessing vegetation health, biomass, and photosynthetic activity, which is closely 

linked to soil moisture availability and variability. Sentinel-2 Level-2A is a surface reflectance 

products, with 10 meters spatial resolution, it is a high-resolution satellite operated by the 

European Space Agency (ESA), provides multispectral imagery. The NDVI was pre-processed 

and calculated on the cloud platform using Sentinel Hub services, which provide on-demand 

access to Sentinel-2 Level-2A data with standardized atmospheric correction and quality filtering.  

Since vegetation vigor is directly influenced by soil moisture conditions, NDVI serves as a 

valuable proxy for monitoring soil moisture dynamics. Higher NDVI values indicate dense, 

healthy vegetation, which suggests adequate soil moisture availability, while lower NDVI values 

may indicate vegetation stress due to insufficient moisture. In this study, NDVI is utilized to assess 

soil moisture variability, helping to capture the spatial and temporal patterns of soil water 

availability.  

 

4.3.1.5. Variable importance 

The feature importance of predictor variables was evaluated using the Random Forest Regressor 

(RFR) algorithm. The importance of each feature was determined based on the mean decrease in 

impurity (MDI), which is computed as the total reduction in variance (or impurity) attributed to 

each feature across all decision trees within the ensemble model. Specifically, the scikit-learn 

implementation of Random Forest calculates feature importance by assessing how much each 

predictor variable contributes to improving the accuracy of the model’s predictions. 

For each soil property (sand, silt, and clay content), an independent Random Forest Regressor was 

trained using 200 estimators (decision trees) with a maximum depth of 10. After training, the 

feature importance scores were extracted using the .feature_importances_ attribute, which 

quantifies the relative contribution of each input variable to the predictive performance of the 

model. The features with higher scores had a greater influence on the model’s predictions, whereas 

features with lower importance scores had a minimal impact. 
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4.3.1.6. Model Performance Evaluation 

In machine learning, model evaluation is a crucial step to ensure the predictive reliability and 

generalizability of the model. In this study, the evaluation process was conducted at two levels. 

First, during the training phase, different hyperparameter configurations were tested using cross-

validation, where the model was repeatedly trained on subsets of the data and validated on the 

remaining portions to optimize its predictive capability. Second, once the final model was trained 

using the best hyperparameter settings, it was assessed on an independent test set to evaluate its 

real-world performance. This two-tiered approach ensured both effective model training and a 

robust evaluation of its predictive accuracy (Hastie et al., 2009). 

Since the Random Forest Regressor (RFR) is used for continuous variable prediction rather than 

classification, regression-specific evaluation metrics were employed to assess model performance. 

The key performance indicators used in this study include Mean Squared Error (MSE), Root Mean 

Squared Error (RMSE), Mean Absolute Error (MAE), and the Coefficient of Determination (R² 

Score). These metrics provide a quantitative measure of how well the predicted soil properties 

(Sand, Silt, and Clay fractions) align with actual observed values.   

• Mean Squared Error (MSE): Measures the average squared difference between actual and 

predicted values. A lower MSE indicates better model performance. 

𝑴𝑺𝑬 =
𝟏

𝒏
∑ (𝒚𝒐𝒃𝒔𝒊 −  𝒚𝒑𝒓𝒆𝒊)

𝟐𝒏

𝒊=𝟏
                                                                            (6) 

 

• Root Mean Squared Error (RMSE): The square root of MSE, providing a metric in the same 

unit as the target variable, making interpretation more intuitive.  

𝑹𝑴𝑺𝑬 = √
𝟏

𝒏
∑ (𝒚𝒊

𝒐𝒃𝒔 −  𝒚𝒊
𝒑𝒓𝒆

)
𝟐𝒏

𝒊=𝟏
                                                                         (7) 
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• Mean Absolute Error (MAE): Computes the absolute average of prediction errors, 

representing the model’s average deviation from the true values. 

 

𝑴𝑨𝑬 = (∑_(𝒊 = 𝟏)^𝒏▒|𝒚_𝒐𝒃𝒔𝒊 − ┤ ├ 𝒚_𝒑𝒓𝒆𝒊 ┤| )/𝒏                                            (8) 

 

• Coefficient of Determination (R² Score): Measures the proportion of variance in the dependent 

variable explained by the model. An R² value close to 1 indicates strong predictive 

performance, while lower values suggest greater unexplained variability. 

𝑹𝟐 = 𝟏 −
∑ (𝒚𝒊

𝒐𝒃𝒔− 𝒚𝒊
𝒑𝒓𝒆

)
𝟐𝒏

𝒊=𝟏

∑ (𝒚𝒊
𝒐𝒃𝒔− 𝒚𝒊

−𝒐𝒃𝒔)
𝟐𝒏

𝒊=𝟏

                                                                                    (9) 

By leveraging these evaluation metrics, this study provides a comprehensive assessment of the 

Random Forest model’s predictive capabilities, ensuring its reliability in soil particle size 

classification and environmental modeling. The inclusion of multiple regression performance 

indicators allows for a balanced evaluation of accuracy, consistency, and error distribution, 

ultimately strengthening the model’s applicability in geospatial and soil science research. 

4.3.2. Methods 

The flowchart (Figure 29) illustrates the methodological framework adopted in this study, 

organized into three main phases: data preparation, model construction, and data prediction. In the 

data preparation phase, field-based measurements, satellite observations, and ancillary 

environmental datasets were collected, pre-processed, and harmonized into a consistent spatial and 

temporal framework. Relevant features were extracted and compiled to create the input dataset. 

The model construction phase involved partitioning the dataset into training and testing subsets, 

followed by the implementation of three machine learning algorithms—Random Forest Regressor 

(RF), Extreme Gradient Boosting (XGBoost), and Gradient Boosting Regressor (GBR). 

Hyperparameter tuning and cross-validation were applied to optimize model performance and 

minimize overfitting. In the data prediction phase, the trained models were applied to generate 
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spatially continuous predictions of soil properties, which were then validated against independent 

in situ measurements. 

 

Figure 29. Soil texture prediction workflow 

4.3.2.1. Retrieval of SF from the Measured Soil Moisture 

In soil moisture monitoring using Sentek’s EnviroSCAN, the Scaled Frequency (SF) serves as a 

normalized indicator of soil moisture content derived from sensor response characteristics. 

However, in cases where only the Volumetric Soil Water Content (SM) is available, it is necessary 

to retrieve the corresponding SF values through an inverse application of the default calibration 

equation. 

The Sentek EnviroSCAN soil moisture sensors, manufactured by Sentek, use a standard default 

calibration equation to derive the Scaled Frequency (SF) from the Volumetric Soil Water Content 

(SM). The default calibration equation provided by Sentek for sands, loams, and clay loams 

follows the form: 
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𝑆𝐹 = 𝐴 ∗ 𝑆𝑀𝐵 + 𝐶                                                                                                  (10) 

   

where: 

• SF = Scaled Frequency 

• SM = Volumetric Soil Water Content (mm) 

• A = 0.19570, B = 0.40400, C = 0.02852 (default calibration coefficients) 

 

 

Figure 30. Empirical Relationship Between Scaled Frequency and Volumetric Soil Water 

Content (Sentek Pty Ltd., 2011) 

Given that SF is typically obtained from sensor field measurements, the inverse approach applies 

when SF values must be retrieved solely from available SM data. 
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4.3.2.2. Remote sensing image selection and processing 

4.3.2.2.1. Sentinel 2 Data: Spatial and Temporal Characteristics 

Sentinel-2 satellite imagery was selected for this study due to its high spatial, spectral, and 

temporal resolution, which makes it a powerful tool for analyzing soil properties, vegetation 

dynamics, and environmental conditions. The Sentinel-2 mission, managed by the European Space 

Agency (ESA) under the Copernicus Program, provides multispectral imagery with optimized 

spectral bands for applications in vegetation monitoring, soil moisture estimation, and land cover 

classification. 

One of the key advantages of Sentinel-2 is its multi-scale spatial resolution, which enhances the 

ability to analyze land surface features at different scales. The 10-meter resolution of the Visible 

(Red, Green, Blue) and Near-Infrared (NIR) bands allows for detailed vegetation and soil moisture 

analysis.  

The temporal resolution of Sentinel-2 is another critical factor in its selection. The 5-day revisit 

time provided by the dual satellite system (Sentinel-2A and Sentinel-2B) ensures frequent image 

acquisitions, enabling the monitoring of seasonal changes in soil moisture, vegetation health 

(NDVI), and land surface dynamics. This high revisit frequency is essential for tracking soil-

vegetation-atmosphere interactions and detecting short-term variations in hydrological and 

environmental processes. 

4.3.2.2.2. Preprocessing of Sentinel-2 Data 

To ensure the accuracy and reliability of the remote sensing analysis, Sentinel-2 images undergo 

multiple preprocessing steps to correct for atmospheric, radiometric, and geometric distortions. 

These corrections improve the comparability of images over time, reducing errors caused by sensor 

inconsistencies or atmospheric interference (SUHET, 2021). 

Atmospheric Correction 

Sentinel-2 Level-2A products are preferred for analysis as they provide surface reflectance values 

that have already undergone atmospheric correction using the Sen2Cor processor. This correction 

removes the effects of aerosol scattering, water vapor absorption, and atmospheric distortions, 

allowing for more accurate spectral analysis of soil and vegetation properties.  

Geometric and Radiometric Corrections 
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Sentinel-2 data is georeferenced to the Universal Transverse Mercator (UTM) coordinate system, 

ensuring precise spatial alignment between different image acquisitions. Radiometric corrections 

are also applied to normalize reflectance values, compensating for sensor calibration differences 

and variations in illumination conditions. These preprocessing steps ensure that the extracted 

spectral data is consistent and suitable for temporal comparisons. 

Cloud Masking 

To improve the quality of the dataset, cloud-contaminated pixels are removed using the Scene 

Classification Map (SCL band) provided in Sentinel-2 products. This band helps distinguish 

cloudy, shadowed, and snow-covered areas, ensuring that only valid surface reflectance values are 

used in further analysis. Additional cloud removal techniques, such as the Fmask algorithm, can 

be employed to refine the cloud-masking process and minimize the impact of cloud-related noise 

in the dataset. 

Band Selection and Index Computation 

Specific spectral bands from Sentinel-2 are selected for further analysis, particularly for soil 

moisture estimation and vegetation assessment. The Near-Infrared (NIR) and Red bands are 

utilized to compute the Normalized Difference Vegetation Index (NDVI), which serves as an 

indicator of vegetation health, biomass productivity, and soil moisture availability. Higher NDVI 

values indicate denser vegetation cover and better soil moisture conditions, while lower values 

suggest drier soil and stressed vegetation. 

4.3.2.2.3. Predictive Modeling 

The predictive modeling process using the Random Forest Regressor (RFR) for soil composition 

estimation follows a structured approach, summarized as follows: 

Data Acquisition and Preprocessing: The dataset contains a range of environmental and geospatial 

predictor variables along with soil texture components (sand, silt, and clay fractions). Initial 

preprocessing steps include handling missing values, standardizing variables, and ensuring 

consistency across all observations. 

Data Splitting and Model Training: The preprocessed dataset is partitioned into training and test 

subsets to assess model generalizability. The Random Forest algorithm is implemented, where 

multiple decision trees are trained using randomly selected samples from the training set. The 

predictions from these trees are aggregated, reducing variance and improving predictive accuracy. 
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Model Evaluation and Optimization: The trained model is evaluated using Mean Squared Error 

(MSE), R² score, and feature importance analysis to assess prediction reliability. Hyperparameter 

tuning, including adjustments to tree depth, the number of estimators, and feature selection, is 

performed to optimize model performance. 

The model was developed using Python 3.11.5, employing the scikit-learn library for training and 

evaluation. The dataset integrates environmental and soil moisture parameters, selected based on 

their relevance to soil texture classification. Feature importance analysis was conducted to identify 

the most influential predictors. The model selection module was used for data partitioning, cross-

validation, and hyperparameter tuning, while the metrics module computed accuracy scores for 

performance evaluation. The ensemble module facilitated the implementation of the Random 

Forest Regressor, ensuring robust prediction capabilities. 

4.3.2.2.4. RFR model application 

The Random Forest Regressor (RFR) is widely recognized as one of the most effective ensembles 

learning methods for regression tasks. It constructs an ensemble of decision trees using bootstrap 

samples of the training data and aggregates their outputs to generate final predictions. This 

approach mitigates overfitting and enhances predictive accuracy by leveraging the diversity of 

individual trees (Breiman, 1996; Bakshi, 2020; Zhang et al., 2022). 

Numerous studies have highlighted the RFR's robustness to noise and its strong generalization 

capability, which makes it particularly suitable for complex and heterogeneous datasets (Zhang et 

al., 2014). By averaging the outputs of multiple decision trees, RFR significantly reduces 

prediction variance, leading to improved model stability and reliability. 

The general architecture of the RFR algorithm, illustrated in Figure 31, involves training a large 

number of decision trees and computing the average of their individual predictions.  
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Figure 31. General diagram of a random forest regressor (Bakshi, 2020) 

4.3.2.2.5. Preliminary Analysis of the Features and Targets 

The dataset consists of multiple input features related to soil and environmental parameters, with 

the target variables being Sand, Silt, and Clay fractions. The preliminary analysis ensures that the 

dataset is structured, balanced, and representative of the variability in soil composition. 

Model Training 

The Random Forest model was employed as the predictive framework due to its robustness in 

handling nonlinear relationships and high-dimensional data. The training process follows these 

steps: 

• Construction of Multiple Decision Trees: The model creates multiple decision trees, each 

trained on randomly selected subsets of the dataset. 

• Learning Feature-Target Relationships: Each tree learns patterns between the input features 

and the target variables (Sand, Silt, Clay), capturing complex dependencies within the soil 

properties. 

• Ensemble Prediction: The predictions from all trees are aggregated (averaged) to generate the 

final predicted values, reducing overfitting and improving generalization. 
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Dataset Splitting 

To make sure the model was tested well, the dataset was split into training (80%) and testing (20%) 

sets. This follows a widely adopted convention in machine learning and data science. This splitting 

is common because it gives the model an adequate enough training set to learn patterns effectively, 

while retaining a statistically meaningful hold-out test set for fair performance evaluation.  

The ratio often depends on the size of the dataset, its variability, and how complex the learning 

task is. The 80/20 split is an optimal balance between training efficiency and validation robustness 

for datasets that are medium to large size (Joseph, 2022).  

Hyperparameter Optimization 

To enhance the predictive accuracy and generalizability of the Random Forest Regressor (RFR) 

model, a systematic hyperparameter optimization process was conducted using Randomized 

Search Cross-Validation (RandomizedSearchCV). This approach enables efficient exploration of 

the hyperparameter space by randomly sampling from a predefined range of values, thereby 

identifying optimal model configurations without the computational burden of exhaustive grid 

search. The optimization targeted key hyperparameters, including: 

• Number of estimators (nestimatorsn_{estimators}nestimators): Specifies the number of trees 

in the ensemble, influencing the model’s variance and stability. 

• Maximum tree depth (maxdepthmax_{depth}maxdepth): Controls the depth of individual 

decision trees, preventing excessive complexity and mitigating overfitting. 

• Minimum samples per split (minsamples_splitmin_{samples\_split}minsamples_split): 

Defines the minimum number of samples required to split a node, affecting model flexibility. 

• Minimum samples per leaf (minsamples_leafmin_{samples\_leaf}minsamples_leaf): 

Determines the minimum number of observations required at a leaf node, balancing model 

complexity and generalization. 

• Feature selection strategy (maxfeaturesmax_{features}maxfeatures): Regulates the number of 

predictor variables considered at each split, promoting diversity among decision trees. 
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A 5-fold cross-validation procedure was employed to ensure the robustness of the 

optimization process, systematically partitioning the dataset to evaluate model performance 

across multiple subsets. The optimal hyperparameters identified for each target variable were 

as follows: 

• Sand: nestimators=100, minsamples_split=5, minsamples_leaf=1, maxfeatures=′sqrt′, 

maxdepth=Nonen 

• Silt: nestimators=300, minsamples_split=2, minsamples_leaf=1, 

maxfeatures=′sqrt′,maxdepth=20n 

• Clay: nestimators=300, minsamples_split=2, minsamples_leaf=1, 

maxfeatures=′sqrt′,maxdepth=20n 

A systematic approach was employed to optimize the Random Forest Regressor (RFR) algorithm 

by selecting and fine-tuning key hyperparameters. Four critical hyperparameters were considered 

for optimization: the number of estimators (nestimatorsn_{estimators}nestimators), maximum tree 

depth (maxdepthmax_{depth}maxdepth), minimum samples per leaf 

(minsamples_leafmin_{samples\_leaf}minsamples_leaf), and minimum samples required for a 

split (minsamples_splitmin_{samples\_split}minsamples_split). 

To explore an optimal configuration, a range of values was tested for each hyperparameter: five 

values for nestimatorsn_{estimators}nestimators, four values for 

maxdepthmax_{depth}maxdepth, three values for 

minsamples_leafmin_{samples\_leaf}minsamples_leaf, and three values for 

minsamples_splitmin_{samples\_split}minsamples_split, leading to a total of 180 unique 

hyperparameter combinations. The candidate values were selected based on default settings and 

prior studies, ensuring an efficient balance between model complexity and computational cost. 

The tested hyperparameter ranges are summarized in Table 3. 

A Randomized Search Cross-Validation (RandomizedSearchCV) approach was implemented to 

efficiently explore the hyperparameter space while avoiding exhaustive grid search computations. 

Five-fold cross-validation was used to validate model performance across different subsets of the 

dataset, ensuring that the final hyperparameter selection was robust and generalizable. The 
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optimized hyperparameters were then applied to train the final Random Forest models for soil 

particle size prediction (Sand, Silt, and Clay fractions), enhancing predictive accuracy and model 

stability. 

Table 3. Hyperparameters of the grid search RF algorithm. 

Hyperparameters Candidate values 

N estimators 100, 200, 300, 400, 500 

MAX depth 5, 10, 20, None 

MIN samples_leaf 1, 2, 4 

MIN samples_split 2, 5, 10 

 

By systematically tuning these hyperparameters, the Random Forest model usually shows 

significant improvements in predictive accuracy, reducing mean squared error and increasing R2 

scores across all target variables.  

Prediction & Model Output 

Once the best-performing Random Forest model was selected through hyperparameter 

optimization, it was deployed to predict soil composition on the test dataset. The prediction process 

followed these steps: 

• Input Feature Processing: For each test sample, the selected input features (such as soil 

moisture, temperature, and other environmental variables) were passed through the trained 

model. 

• Independent Tree Predictions: Each individual decision tree within the Random Forest 

generated a separate prediction based on the relationships it learned during training. 

• Ensemble Averaging: The final predicted soil composition (Sand, Silt, and Clay fractions) 

was computed as the average output across all decision trees, ensuring stability and accuracy 

in the results. 
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Model Selection and Cross-Validation 

The best-performing Random Forest model was identified based on cross-validation scores, 

ensuring that the chosen configuration generalizes well across different subsets of the data. By 

optimizing hyperparameters, the model is expected to achieve a balance between bias and variance, 

improving accuracy in predicting the target variables while mitigating overfitting risks. 

4.3.3. Results & Discussion 

4.3.3.1. Variable Influence  

The Pearson correlation coefficient was employed to evaluate the linear relationships among the 

predictor variables, with values ranging between -1 and 1. The correlation matrix, visualized in 

Figure 32, highlights the degree of association between different environmental and geospatial 

factors. The heatmap reveals strong positive correlations among temperature-related variables, 

such as Temperature and T_10_Days_Aver, with a correlation coefficient close to 0.96, indicating 

a strong linear dependence. Similarly, soil moisture measurements at different depths (SM_10, 

SM_20, and SM_30) exhibit high correlations, suggesting consistent moisture distribution patterns 

across layers. 

Conversely, certain variables demonstrate negative correlations, such as soil moisture variability 

and sand content, reinforcing the expected inverse relationship between sand fraction and water 

retention capacity. Additionally, NDVI (vegetation index) exhibits a moderate positive correlation 

(0.4) with soil moisture vertical variation, indicating a potential relationship between vegetation 

cover and soil water fluctuation. The heatmap also highlights the interdependencies between 

multiple predictor variables, emphasizing the need for multi-variable analysis to accurately capture 

soil property variations. The observed correlation structure confirms that soil composition and 

environmental conditions are influenced by complex interactions among multiple factors, 

validating the selection of predictor variables for robust modeling. 
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Figure 32. Correlation coefficient heatmap of the variables 

4.3.3.2. Soil particle size class (Sand, Clay, Silt) Prediction Using Random Forest Regressor: 

Model Performance and Feature Importance Analysis 

4.3.3.2.1. Model Performance Analysis 

The predictive accuracy of the Random Forest model was evaluated using Mean Squared Error 

(MSE), Root Mean Squared Error (RMSE), and the Coefficient of Determination (R² Score) across 

the three target variables: Sand, Silt, and Clay soil fractions. The results are summarized in table 

4 below:  
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Table 4. Model Performance Metrics for Soil particle size class Prediction 

Target Variable MSE RMSE R² Score 

Sand 14.97 3.87 0.92 

Silt 4.85 2.2 0.93 

Clay 11.8 3.44 0.85 

The Random Forest model demonstrated a high predictive performance (Table 4), with R² values 

exceeding 0.85 for all soil types, indicating its strong explanatory power in modeling soil 

composition. The model effectively captured complex relationships between input features and 

target variables, demonstrating its reliability in soil particle size class prediction. 

Among the three soil types, silt prediction achieved the highest accuracy (R² = 0.93) and the lowest 

error values (MSE = 4.85, RMSE = 2.20). These results suggest that silt is more predictable 

compared to sand or clay classes, likely due to its relatively uniform moisture distribution and 

intermediate particle size, which contribute to more consistent model behavior. 

Sand particle size class prediction exhibited moderate accuracy (R² = 0.92), with a slightly higher 

error margin (MSE = 14.97, RMSE = 3.87). The higher variability in sand soil class predictions 

may be attributed to its coarse texture and rapid moisture drainage, making it more sensitive to 

environmental fluctuations such as temperature changes, evapotranspiration, and infiltration 

dynamics. 

In contrast, clay prediction showed the lowest accuracy (R² = 0.85) and a high error (MSE = 11.80, 

RMSE = 3.44), indicating greater modeling challenges for clay content estimation. The higher 

degree of uncertainty in clay predictions may stem from its complex moisture retention properties, 

low permeability, and high susceptibility to compaction and shrink-swell behavior. These factors 

introduce nonlinear relationships that are more difficult for the model to capture with precision. 

Overall, the findings indicate that silt is the most predictable, while clay content presents the 

greatest challenges for accurate modeling. The observed performance discrepancies highlight the 
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importance of soil texture-specific modeling approaches and the need for further refinement in 

feature selection and data representation to improve predictions for clay-rich soils. 

4.3.3.2.2. Model Learning Curve Analysis 

The learning curve (Figure 33) illustrates the performance of the Random Forest model in 

predicting soil fractions, specifically clay, sand, and silt contents, based on environmental and 

sensor-derived input features. The green line represents the model's performance (R² score) on the 

training data, while the red line shows the cross-validation (CV) performance on unseen data. The 

shaded red area denotes the standard deviation of CV scores across folds, providing insight into 

model stability. 

Initially, the training score is high (~0.91), suggesting that the model quickly fits the training data 

even with small sample sizes. As the number of training examples increases, the training R² slightly 

improves and plateaus around 0.96, indicating a strong fit to the known data and low bias. However, 

this high performance on training data may also reflect some overfitting, particularly at lower 

sample sizes. 

The cross-validation curve starts low (~0.25) but increases steadily as more training data are added, 

reaching ~0.76 at 400 examples. This trend indicates that the model benefits significantly from 

additional data, improving its generalization capability across all three soil texture components. 

The gap between the training and CV curves is most prominent at lower sample sizes, which is 

typical of overfitting scenarios where the model learns training patterns well but fails to generalize. 

As the training size grows, the gap narrows, implying that model variance is reduced and that the 

predictions for sand, silt, and clay content become more stable. 

The red shaded area around the CV curve is wide at small sample sizes, indicating high variability 

across validation folds, likely due to inconsistent patterns in small subsets. This variability 

decreases as the dataset grows, suggesting improved reliability and robustness in the model's 

predictions. 

Overall, this learning curve confirms that Random Forest is an effective approach for predicting 

soil fractions. The model achieves strong predictive performance with increasing data availability, 

though some overfitting is present at lower sample sizes. 
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Figure 33. Learning Curve – Random Forest 

4.3.3.2.3. Feature Importance Relates to Soil particle size class (Sand, Silt, Clay) 
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Figure 34. Feature Importance Ranking for Silt, Clay and Sand classes 

The feature importance analysis (Figure 34) highlights the key environmental variables influencing 

the Random Forest model's ability to predict soil particle size classes, namely sand, silt, and clay. 
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The importance scores quantify each variable’s relative contribution to the model’s predictive 

performance. 

For sand fraction prediction, the most influential variable is Range SM_20_SM_30 (importance 

score: 0.1989), underscoring the role of soil moisture variability between 20 cm and 30 cm depth 

in characterizing sandy soils. Additional important predictors include NDVI (0.1086), reflecting 

vegetation health, and T_10_Days_Aver.1 (0.0969), representing the average temperature over the 

preceding 10 days. 

For silt fraction, Range SM_20_SM_30 again emerges as the strongest predictor (0.2765), 

indicating that subsurface moisture fluctuations are critical in identifying silty textures. 

T_10_Days_Aver.1 (0.1178) and SF_30 (0.0859), a surface factor at 30 cm depth, also contribute 

significantly. 

In the case of clay prediction, the leading predictor is Range SM_10_SM_30 (0.2152), which 

captures the vertical gradient in moisture from shallow to deeper soil layers, an important factor 

in clay-rich profiles. Humidity (0.1322) and NDVI (0.1312) further enhance the model’s accuracy 

for this class. 

These findings reinforce the rationale for modeling soil texture classes, as texture governs the 

soil’s water retention and supply capacity, which in turn interacts with temperature to influence 

plant physiological response. Temperature modulates evapotranspiration rates and thus the 

demand for water, while soil texture determines how effectively moisture is retained or transmitted 

to the root zone. The use of moisture range between depths (e.g., 10–30 cm or 20–30 cm) as a 

predictor is especially insightful. These values indicate the vertical moisture gradient, which 

reflects both water transport capacity and differential wetting/drying dynamics. For instance, sandy 

soils exhibit rapid moisture changes due to high permeability, whereas clay soils display slower 

moisture dynamics and smaller fluctuations. 

This pattern aligns well with physical expectations: coarse-textured soils (sand) offer limited water 

buffering, while fine-textured soils (clay) can better sustain plant water needs under fluctuating 

temperature regimes. The strong predictive role of temperature, while not directly altering soil 

moisture, serves as a proxy for the atmospheric demand placed on the soil–plant system, creating 

a three-dimensional interaction among soil, plant, and atmosphere. 
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4.3.3.2.4. Evaluation of Model Predictions: True vs. Predicted Soil Composition 
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Figure 35. True vs Predicted Values of Sand, Silt, and Clay class 

The scatter plots (Figure 35) illustrate the relationship between the true and predicted values for 

sand, silt, and clay soil compositions, providing an assessment of the model’s predictive accuracy 

and consistency. The dashed black line represents the ideal fit line (1:1 ratio), where a perfect 

prediction would align all data points along with this diagonal. 

The sand predictions show a strong correlation with the true values, with data points generally 

aligning along the ideal fit line. However, there is noticeable scatter at lower sand values, 

suggesting a degree of variability in the model’s ability to predict lower sand content accurately. 

Despite this, the model maintains a consistent trend with limited extreme deviations, indicating 

moderate prediction reliability. 

Among all soil particle size classes, the silt model exhibits the highest predictive accuracy, as 

evidenced by the tight clustering of points around the ideal fit line. The spread of predicted values 

is relatively uniform, with fewer outliers compared to sand and clay classes predictions. This result 

aligns with the high R² score (0.93) obtained during model evaluation, indicating that silt is the 

most predictable using the selected features. 
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The clay predictions demonstrate the highest level of dispersion, particularly for higher clay 

content values. While the model captures general trends, there is a wider deviation from the ideal 

fit line, suggesting greater difficulty in accurately predicting clay composition. This aligns with 

the lower R² score (0.85), indicating that clay variability presents greater modeling challenges, 

likely due to complex moisture retention properties and heterogeneous distribution in the dataset. 

The model performs best in predicting silt, followed by sand, with clay class predictions exhibiting 

the highest uncertainty. The general alignment of points with the ideal fit line, however, confirms 

that the Random Forest model effectively captures soil composition trends, making it a reliable 

tool for soil texture prediction. 

4.3.3.2.5. Hyperparameter Optimization Results 

The optimized models were subsequently evaluated using Mean Squared Error (MSE) and the 

coefficient of determination (R2), key statistical metrics for assessing regression model 

performance. The results demonstrated high predictive accuracy, with R² values close to 1, 

indicating a strong correlation between predicted and observed values: 

Table 5. Model Performance Metrics 

Soil particle size class MSE RMSE R² Score 

Sand 5.13 2.27 0.97 

Silt 1.01 1 0.99 

Clay 4.88 2.21 0.94 

These findings underscore the effectiveness of hyperparameter tuning in optimizing model 

performance, minimizing prediction error, and ensuring robust generalization to data. The results 

confirm that Random Forest, when systematically optimized, provides a highly reliable and 

scalable approach for soil composition prediction. Furthermore, the implementation of cross-

validation in hyperparameter selection reinforces the stability and reproducibility of the model, 

ensuring that the identified parameter configurations are not biased toward a specific data subset. 
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By leveraging machine learning-based hyperparameter optimization, this study establishes a 

robust predictive framework, demonstrating that an ensemble learning approach, when properly 

tuned, significantly enhances soil property estimation. The findings highlight the potential of 

Random Forest regression in geospatial and environmental modeling, facilitating data-driven 

decision-making in soil texture classification and land resource management. 

4.3.4. Conclusions 

This study presents a robust machine learning framework for predicting soil texture composition, 

by prediction the sand, silt, and clay fractions, by integrating in-situ soil moisture data with 

Sentinel-2 derived vegetation indices and environmental variables. Among the tested models, 

Random Forest Regression (RFR) demonstrated a good performance, achieving coefficient of 

determination (R²) values exceeding 0.90 for all soil particle size classes and peaking at 0.99 for 

silt class, underscoring the model's predictive accuracy and generalization capability. 

The feature importance analysis revealed that short-term soil moisture dynamics at multiple depths, 

in combination with Range of the SM, NDVI and humidity, are key determinants of soil texture 

variability. These results validate the hypothesis that soil water availability and vegetative response 

are reliable proxies for underlying textural properties, offering a novel perspective on indirect soil 

characterization. 

The scientific contribution of this work lies in its demonstration of a non-invasive, data-driven 

methodology for high-resolution soil texture prediction, with significant implications for precision 

agriculture, hydrological modeling, and sustainable soil management. By leveraging widely 

accessible remote sensing data and in-situ sensors, this approach enables scalable and cost-

effective monitoring of spatial soil variability, particularly valuable in regions where traditional 

soil surveys are limited or impractical. 

Future work will aim to enhance model transferability across diverse agroecological zones and to 

integrate this predictive framework into decision support systems for climate-smart land and water 

resource management. 

Based on the conclusions above the following theses were formulated: 
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Thesis 3 

The integration of multi-depth in-situ soil moisture dynamics from capacitance-based Sentek 

EnviroSCAN sensors with Sentinel-2-derived vegetation indices and environmental parameters 

enables the indirect, non-invasive prediction of soil texture composition. By leveraging Random 

Forest regression, this framework captures the complex interactions between soil moisture 

behavior, vegetative response, and particle size distribution, providing a scalable alternative to 

traditional laboratory-based soil texture analysis. Furthermore, the potential for site-specific model 

transferability remains an important consideration, as variations in parent material, climatic 

conditions, and land use may influence model performance. Addressing these factors in future 

research will enhance the robustness and applicability of this methodology for digital soil 

characterization across diverse environments. 

Thesis 4 

Vertical gradients and short-term variability in soil moisture, quantified through sensor-derived 

scaled frequency metrics and multi-depth moisture fluctuation indices, exhibit strong predictive 

relationships with USDA-defined soil particle size classes. The soil moisture fluctuation indices 

were derived from Sentek EnviroSCAN probe data, including maximum, minimum, and range 

values over 5-day moving windows at 10, 20, and 30 cm depths, as well as inter-depth gradients 

(e.g., Range SM_10–30). When combined with NDVI and environmental features within a 

machine learning framework, these spatiotemporal dynamics allow for accurate, high-resolution 

mapping of soil texture, demonstrating the viability of sensor- and satellite-based approaches for 

digital soil characterization in heterogeneous environments. 
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5. Clay Ratio prediction using Machine learning, in situ and remote sensing data 

5.1. Introduction 

Soil texture, particularly the clay fraction, plays a pivotal role in controlling key soil functions 

such as water retention, nutrient dynamics, cation exchange capacity, and root development 

(Daniel Hillel, 2004b). Accurate estimation of clay content is essential for informed decision-

making in agriculture, hydrology, and land use planning. However, traditional methods for 

assessing clay ratio, such as hydrometer or pipette analyses, are often limited in spatial coverage 

and labor-intensive, restricting their utility for regional-scale applications. 

To address these limitations, recent studies have increasingly explored the integration of in-situ 

sensor data, remote sensing indicators, and machine learning algorithms. Remote sensing offers 

spatially continuous and temporally frequent observations, such as vegetation indices (e.g., NDVI) 

and surface temperature, which are indirectly influenced by soil properties (Peng et al., 2017). 

When combined with in situ soil moisture measurements and environmental variables, these data 

streams enable the development of predictive models capable of estimating soil texture 

components with high spatial resolution. 

Machine learning models, particularly ensemble methods like Random Forest, have demonstrated 

strong capabilities in predicting soil properties by capturing complex, non-linear interactions 

among environmental variables. Recent studies, such as Wang & Gao, 2023, have shown that 

combining Radar and optical remote sensing data with ensemble learning techniques can 

significantly enhance soil moisture retrieval under vegetated conditions. Building on this 

foundation, this section presents a Random Forest-based framework for predicting the clay ratio 

using a dataset that integrates remote sensing indicators, meteorological variables, and in-situ soil 

moisture measurements at multiple depths. Model performance is evaluated using standard 

regression metrics and feature importance analysis, illustrating the potential of this approach for 

digital soil mapping and decision support in precision agriculture. 

5.2. Materials and Methods 

For this chapter, the study area, datasets, and preprocessing workflow are identical to those 

described in the previous chapter. The key distinction lies in the prediction target: while the earlier 
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chapter focused on soil texture classes, the present analysis specifically aims to predict the Clay 

Ratio. Furthermore, this chapter evaluates and compares the performance of three machine 

learning algorithms, Random Forest Regressor (RF), Extreme Gradient Boosting (XGBoost), and 

Gradient Boosting Regressor (GBR). 

The workflow illustrated in Figure 36 outlines the sequential steps of the study, which are 

structured into three main phases: data preparation, model construction, and data prediction. In the 

data preparation phase, field measurements, remote sensing products, and ancillary datasets are 

integrated, processed, and harmonized. The model construction phase involves splitting the dataset 

into training and testing subsets, followed by the implementation of machine learning algorithms. 

Finally, in the data prediction phase, the trained models are applied to estimate the target variable, 

Clay Ratio, with subsequent accuracy assessment and validation against independent observations. 

 

Figure 36. Clay Ration prediction workflow 

The Clay Ratio was computed as the proportion of clay content to the combined content of sand 

and silt, following the equation: 
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Clay Ratio =
Clay (%)

Sand (%) + Silt (%)
                                                                                (𝟏𝟏) 

                                                 

This derived variable serves as a normalized indicator to assess the relative abundance of fine 

particles within the soil matrix. All predictive features, comprising in situ soil moisture 

measurements at multiple depths, meteorological data, and remote sensing indices, were retained 

to ensure methodological consistency. The Random Forest regression model was again employed 

due to its robustness in handling non-linear relationships and heterogeneous data sources. This 

consistent approach facilitates comparative analysis across different soil texture attributes within 

the same modeling framework. 

Random Forest Regressor (RFR) 

Random Forest Regressor (RFR) was employed to predict the clay ratio. RFR is an ensemble 

learning algorithm that operates by constructing a multitude of decision trees during training and 

outputs the mean prediction of the individual trees. This method reduces overfitting and increases 

prediction robustness by combining multiple learners trained on bootstrapped datasets and feature 

subsets (Breiman, 2001b). 

The RFR model was implemented using the Random Forest Regressor module from the 

sklearn.ensemble library. A grid search was conducted to tune hyperparameters, and the final 

model was trained using n_estimators=200 and max_depth=10, which offered a balanced trade-

off between bias and variance. The input features included a set of 26 predictors derived from in 

situ soil moisture, weather data, and remote sensing indices such as NDVI. 

The dataset was split into training (80%) and test (20%) sets using random sampling. Model 

performance was assessed using standard evaluation metrics: Mean Squared Error (MSE), Root 

Mean Squared Error (RMSE), and coefficient of determination (R²). 

Gradient Boosting Regressor (GBR) 

Gradient Boosting Regressor (GBR) was employed as a machine learning model to predict the 

clay ratio in the soil profile using the selected feature set. GBR is an ensemble learning technique 

that builds a predictive model by sequentially adding decision trees, where each new tree attempts 



96 

to correct the residual errors made by the previous ones. It combines weak learners into a strong 

learner by minimizing a specified loss function using gradient descent (Friedman, 2001). 

In this study, the model was implemented using the GradientBoostingRegressor module from the 

sklearn.ensemble library. The selected hyperparameters included n_estimators=200, max_depth=6, 

and a learning_rate=0.1, based on empirical tuning. The model was trained on 80% of the dataset 

and validated on the remaining 20% using random sampling. 

Model performance was evaluated using Mean Squared Error (MSE), Root Mean Squared Error 

(RMSE), and the coefficient of determination (R²). Feature importance scores were also derived 

to assess the relative contribution of each predictor variable.  

Extreme Gradient Boosting (XGBoost) 

XGBoost Regressor (XGB) was also employed to predict the clay ratio, providing a high-

performance alternative to traditional boosting methods. XGBoost is an optimized, distributed 

gradient boosting library designed to maximize computational efficiency while offering flexibility 

for complex datasets. It incorporates advanced regularization techniques to mitigate overfitting 

and can handle missing data internally, making it suitable for environmental modeling applications 

(T. Chen & Guestrin, 2016). 

The model was implemented using the XGBRegressor from the xgboost Python library with key 

parameters set as n_estimators=200, max_depth=6, and learning_rate=0.1. Similar to GBR, the 

training dataset represented 80% of the total samples, and the remaining 20% was used for model 

evaluation. 

Data Description  

Figure 37 presents the set of input variables used in the machine learning framework together with 

the target feature, Clay Ratio. 
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Figure 37. Input Features and Target Variable for the Clay Ratio Prediction 

5.3. Results and Discussion 

5.3.1.  Model Performance Analysis 

The comparative evaluation of the three ensemble models for Clay Ratio prediction, Random 

Forest, Gradient Boosting Regressor (GBR), and XGBoost Regressor (XGB), is presented in the 

table 6 below, based on three standard regression performance metrics: Mean Squared Error 

(MSE), Root Mean Squared Error (RMSE), and the coefficient of determination (R² Score). 

Table 6. Comparison of Model Performance Metrics for Clay Ratio Prediction 

Target Variable 
MSE (Mean Squared 

Error) 

RMSE (Root Mean Squared 

Error) 
R² Score 

Random Forest 0.003 0.054 0.936 

Gradient Boosting 0.0015 0.038 0.9747 

XGBoost 0.0015 0.038 0.9748 

The Random Forest model achieved an R² of 0.936, indicating that it explains 93.6% of the 

variance in clay ratio. However, compared to the other two boosting-based models, it yielded a 
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higher error (MSE = 0.003, RMSE = 0.054), which suggests lower precision in capturing more 

complex relationships in the data. 

In contrast, Gradient Boosting and XGBoost outperformed Random Forest on all metrics, both 

achieving an R² of approximately 0.975, which signifies that they explain over 97% of the variance 

in the clay ratio. The RMSE of 0.038 in both models reflects a substantial improvement in 

predictive accuracy over the Random Forest. 

The slightly better R² score for XGBoost (0.9748) compared to Gradient Boosting (0.9747) 

highlights the marginal edge of XGBoost, which can be attributed to its regularization techniques 

and scalability. XGBoost also tends to be more robust to overfitting, particularly in high-

dimensional datasets, due to its built-in shrinkage and column subsampling strategies. 

These results demonstrate that boosting models, particularly XGBoost, are more effective than 

bagging methods like Random Forest in predicting soil clay content from integrated datasets. The 

enhanced performance is likely due to the ability of boosting algorithms to sequentially correct 

prediction errors and focus on difficult-to-predict observations. 

5.3.2. Learning Curve Analysis of the Predictive Models 

To assess the generalization performance and robustness of the models trained for Clay Ratio 

prediction, learning curves were constructed for the three ensemble regressors: Random Forest 

(RF), Gradient Boosting Regressor (GBR) and XGBoost Regressor (XGB). These curves plot the 

training and cross-validation R² scores as a function of increasing training set size, providing 

insights into potential underfitting, overfitting, and data sufficiency. 

As shown in Figures 37, 38, and 39, all three models exhibit stable and consistently high training 

R² scores (0.91–0.93), indicating a strong fitting capacity. However, noticeable disparities are 

observed in the cross-validation scores, particularly at smaller training set sizes, where all models 

show significant performance variance, reflecting high sensitivity to data partitioning. 

Among the models, XGBoost demonstrated the best generalization capability, achieving a 

smoother increase in cross-validation R² scores with a final value approaching 0.97. The reduced 

gap between training and validation scores at larger sample sizes indicates superior bias-variance 
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tradeoff. Gradient Boosting followed closely, showing similar convergence behavior but with 

slightly lower validation stability, suggesting marginally higher variance. 

Random Forest, while achieving high training scores, lagged behind in validation performance, 

especially with smaller training sets, showing greater divergence between training and cross-

validation scores. This suggests a higher tendency toward overfitting in data-scarce regimes. 

The shaded confidence intervals for all models decrease as training size increases, confirming that 

more data improves the reliability and stability of predictions. Despite fluctuations at lower data 

volumes, all models ultimately converge toward strong R² values with sufficient data, highlighting 

the viability of ensemble learning approaches for clay fraction estimation. 

In conclusion, the learning curve analysis confirms that while all three ensemble regressors are 

effective, XGBoost offers the most balanced performance, combining high accuracy with 

generalization stability, making it particularly well-suited for the task of clay ratio prediction using 

integrated environmental features. 

 

Figure 38. Learning Curve – Clay Ratio Prediction using Gradient Boosting Regressor 
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Figure 39. Learning Curve – Clay Ratio Prediction using XGBoost Regressor 

 

Figure 40. Learning Curve – Clay Ratio Prediction using Random Forest Regressor 

5.3.3. Feature Importance Relates to Clay Ratio Prediction 

5.3.3.1. Feature Importance for Predicting Clay Ratio of Random Forest Regressor 
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The Random Forest model highlights Range SM_10 SM_30 as the most influential feature (Figure 

40), indicating that vertical moisture gradients between shallow and deeper soil layers are critical 

for predicting clay content. Vegetation index (NDVI), Humidity, and 10-day averaged temperature 

metrics (T_10_Days_Aver, T_10_Days_Aver.1) also show high importance, reflecting their role 

in controlling soil moisture dynamics and vegetation stress responses associated with clay-rich 

soils. Features related to frequency-scaled moisture (e.g., SF_30 / SF_10) and seasonal effects 

(Season_value) follow closely. 

 

Figure 41. Feature Importance for Predicting Clay Ratio - Random Forest Regressor  

5.3.3.2. Feature Importance for Predicting Clay Ratio of Gradient Boosting Regressor 

Gradient Boosting confirms the dominance of Range SM_10 SM_30 as the top feature, followed 

by NDVI, Humidity, and T_10_Days_Aver.1, consistent with Random Forest. However, this 

model attributes relatively higher importance to frequency-scaled features such as SF_30 / SF_10 

and SF_20, as well as moisture ranges at various depths. The distribution of importance is more 

gradual, showing the model’s sensitivity to a broader set of hydrometeorological variables. Low 

influence remains with slope change metrics (CDiff Slope 10/20/30) and Day_Night. 
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Figure 42. Feature Importance for Predicting Clay Ratio - Gradient Boosting Regressor 

5.3.3.3.Feature Importance for Predicting Clay Ratio of XGBoost Regressor 

XGBoost places the strongest emphasis on Range SM_10 SM_30, assigning it the highest 

individual score among all models, followed by SF_30 / SF_10. This underlines the significance 

of vertical moisture distribution and signal frequency as key indicators of clay content. While 

Humidity, T_10_Days_Aver.1, and NDVI remain important, the sharp drop in importance among 

mid-ranked features suggests that the model relies more heavily on a few dominant variables. 
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Figure 43. Feature Importance for Predicting Clay Ratio - XGBoost Regressor 

5.3.4. Evaluation of Model Predictions: True vs. Predicted Soil Composition 

5.3.4.1. Random Forest Regressor 

The scatter plot for the Random Forest Regressor shows a moderate alignment between predicted 

and actual clay ratio values. Although most predictions follow the general trend of the ideal 1:1 

line, the distribution exhibits noticeable dispersion, particularly at higher clay ratio levels. This 

spread suggests the model has difficulty generalizing for extreme values and may suffer from 

moderate overfitting. The reported R² of 0.936 and RMSE of 0.054 support this observation, 

indicating acceptable but limited predictive accuracy compared to more advanced methods. 

 

Figure 44. Random Forest Regressor: Predicted vs. True Clay Ratio Values 

5.3.4.2. XGBoost Regressor 

The XGBoost Regressor demonstrates a high degree of predictive accuracy. The predicted values 

closely follow the diagonal reference line, with minimal deviation throughout the entire range of 

clay ratios. The model achieves an R² of 0.993 and an RMSE of 0.019, reflecting its ability to 
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capture complex, non-linear relationships between soil features and clay content. This performance 

highlights XGBoost’s strength in modeling intricate patterns with high fidelity and low error rates. 

 

Figure 45. XGBoost Regressor: Predicted vs. True Clay Ratio Values 

5.3.4.3. Gradient Boosting Regressor 

The Gradient Boosting Regressor yields highly accurate predictions with a tightly clustered point 

distribution along the perfect fit line. It also attains an R² of 0.993, with a slightly lower RMSE of 

0.018. The results suggest that Gradient Boosting offers both low bias and low variance, making 

it especially suitable for clay ratio prediction in datasets characterized by subtle variations and 

interactions among input features. 
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Figure 46. Gradient Boosting Regressor: Predicted vs. True Clay Ratio Values 

Boosting-based models (XGBoost and Gradient Boosting) outperform Random Forest in terms of 

both precision and reliability. Their superior alignment with actual values and significantly lower 

RMSE values underscore their suitability for high-resolution clay content mapping, soil 

classification, and precision agricultural applications. The consistency in performance between 

XGBoost and Gradient Boosting also indicates their robustness in handling spatial and temporal 

heterogeneity in environmental data. 

Model selection 

Based on the comprehensive evaluation of model performance using scatter plots, error metrics, 

and learning curves, the Extreme Gradient Boosting (XGBoost) model emerged as the most 

accurate and robust algorithm for predicting the Clay Ratio among the tested machine learning 

methods. 

The performance metrics clearly demonstrate that both the Gradient Boosting Regressor (GBR) 

and XGBoost models significantly outperformed the Random Forest (RF) model. The R² scores 

for GBR and XGBoost reached 0.9747 and 0.9748 respectively, compared to 0.936 for the Random 

Forest. Similarly, the Mean Squared Error (MSE) and Root Mean Squared Error (RMSE) values 
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were substantially lower for XGBoost and GBR (MSE = 0.0015; RMSE = 0.038) compared to the 

Random Forest (MSE = 0.003; RMSE = 0.054). These results indicate that ensemble gradient-

based methods are better suited for capturing the complex, non-linear relationships between 

environmental predictors and soil texture attributes. 

The scatter plots of predicted versus observed Clay Ratio values reinforce these findings. XGBoost 

predictions aligned more closely along the 1:1 line with minimal dispersion, indicating high 

precision and low bias across the prediction range. GBR also exhibited strong agreement, though 

with slightly greater variance than XGBoost. In contrast, the Random Forest model showed more 

deviation from the 1:1 line, particularly at extremes, suggesting a tendency to underpredict or 

overpredict under certain conditions. 

Learning curve analysis further confirmed the superior generalization ability of the XGBoost 

model. Both XGBoost and GBR demonstrated rapid convergence of training and validation scores 

with minimal overfitting. However, the learning curve for Random Forest revealed a wider gap 

between training and validation performance, suggesting some degree of overfitting and limited 

scalability when trained on smaller subsets. 

In summary, XGBoost is identified as the best-performing model for Clay Ratio prediction in this 

study. Its higher predictive accuracy, strong generalization, and interpretability make it the most 

suitable algorithm for soil texture modeling using remote sensing, meteorological, and in-situ data 

in heterogeneous agro-environmental contexts. 

Interpretation 

The feature importance analysis of the XGBoost model for predicting the clay fraction reveals a 

coherent pattern grounded in the physical and functional properties of the soil–plant–atmosphere 

continuum. The most influential predictor, Range SM_10 SM_30 (importance = 0.2731), captures 

the vertical gradient of soil moisture between shallow and deeper layers. This range reflects the 

differential capacity of soils to store and transmit water, attributes strongly governed by soil texture. 

In clay-rich soils, water moves more slowly and tends to accumulate in deeper horizons due to the 

small pore size and high retention capacity. In contrast, sandy soils permit rapid infiltration and 

exhibit sharper moisture gradients, making this variable an effective indicator of underlying texture 

composition. 
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The significant contribution of the SF_30 / SF_10 ratio (0.1694) further emphasizes the relevance 

of vertical profiling in capturing subsurface textural transitions. Such indices likely encapsulate 

stratification effects and variations in soil compaction, which modulate water movement and 

retention across horizons, key determinants of clay content. 

Climatic and biophysical variables such as humidity (0.0830), temperature (T_10_Days_Aver.1 

and T_10_Days_Aver), and NDVI (0.0456) play important secondary roles. These features 

influence or reflect evapotranspiration demand and vegetation status, which are intimately linked 

to soil hydraulic behavior. Temperature, in particular, governs evapotranspiration and hence the 

rate at which soil moisture is depleted, while vegetation indices offer indirect cues about soil 

fertility and water availability, both affected by texture. 

The consistent appearance of range-based moisture indicators, whether between depths (e.g., 

Range SM_20 SM_30) or over time (e.g., Range SM_30 5 Days), highlights the dynamic behavior 

of moisture redistribution. These variables capture the temporal and spatial heterogeneity of water 

movement, which is texture-dependent. Fine-textured soils like clay exhibit slower wetting and 

drying cycles, leading to more stable moisture profiles over time, while sandy soils show sharper 

fluctuations. These dynamics are effectively leveraged by the model to infer texture. 

The minimal importance of absolute soil moisture values (e.g., SM_10, SM_20, SM_30 all at 0) 

underscores the added value of using relative and dynamic indicators instead. Static measurements 

fail to capture the complexity of water retention behavior across depth and time, especially when 

used in isolation. Likewise, topographic proxies such as CDiff Slope and diurnal patterns like 

Day_Night contribute little, indicating that under controlled or homogeneous terrain conditions, 

their utility in predicting textural variability is limited. 

Overall, the XGBoost model's structure reveals an intricate interplay among moisture dynamics, 

climatic demand, and vegetative response. This reinforces the rationale for using integrated multi-

source environmental data when modeling soil texture, where both vertical water movement and 

seasonal plant–soil–climate interactions become critical predictors. 

5.4. Conclusion  

In conclusion, the prediction of the clay fraction using machine learning models demonstrates the 

strong potential of data-driven approaches for soil texture characterization. Among the tested 
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algorithms, XGBoost achieved the highest predictive performance, with an R² score of 0.9748 and 

the lowest error metrics, confirming its robustness in capturing complex, non-linear relationships 

between environmental predictors and clay content. The analysis of feature importance revealed 

that dynamic indicators of soil moisture variability, particularly the vertical moisture gradient 

between 10 cm and 30 cm depth, were the most informative variables. These findings emphasize 

the relevance of moisture-related features over static measurements, reflecting the intrinsic link 

between water retention behavior and soil texture. Additionally, variables representing climatic 

demand and vegetative status, such as humidity, temperature, and NDVI, further enhanced model 

accuracy by capturing the soil–plant–atmosphere interactions. Overall, this section illustrates the 

effectiveness of combining multi-source environmental data with ensemble learning techniques to 

improve the spatial and temporal assessment of soil physical properties, supporting precision 

agriculture and hydrological modeling efforts. 

Based on the conclusions above the following thesis was formulated: 

 Thesis 5 

The vertical gradient of soil moisture, quantified as the differential between shallow and 

subsurface layers (e.g., Range SM_10–SM_30), encapsulates the moisture behavior governed by 

fine particle distribution and thus emerges as a key predictor of clay ratio. When integrated with 

spectral vegetation proxies (NDVI) and environmental variables, this dynamic moisture signal 

enables physically informed, non-invasive estimation of clay-enriched soils through ensemble 

learning frameworks. However, in coarse-textured soils, where infiltration is rapid and vertical 

moisture gradients are less distinct, the predictive strength of this indicator may be reduced, 

highlighting the need for context-specific calibration and validation. 
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6. SUMMARY 

This research develops and validates an integrated, machine learning–driven framework for soil 

moisture characterization and soil texture prediction using multi-source environmental data. By 

combining radar and optical remote sensing data, in-situ soil moisture profiles from Sentek 

EnviroSCAN sensors, and meteorological variables, the research addresses critical gaps in the 

spatial monitoring of soil hydrophysical properties, particularly in data-scarce and semi-arid 

environments. 

The core innovation of this work lies in its non-invasive and data-driven approach to soil texture 

prediction, achieved entirely without the need for laboratory particle size analysis. This marks a 

significant advancement in digital soil mapping (DSM), enabling accurate estimation of sand, silt, 

clay fractions and Clay Ration based solely on environmental proxies derived from remote sensing 

and in-situ soil moisture dynamics. 

For soil moisture characterization, the study leverages Sentinel-1 C-band polarizations (VV, VH) 

alongside vegetation (NDVI) and water indices (NDWI) from Sentinel-2, coupled with elevation 

and climatic data. In the Tunisian test site, temporal and spatial patterns of radar backscatter and 

vegetation response are found to correlate strongly with soil moisture variability, enabling 

effective mapping of wetness regimes across land uses and seasons. 

For soil texture prediction, the thesis applies Random Forest, Gradient Boosting, and XGBoost 

regressors trained on a curated set of in-situ and remote sensing features, achieving high predictive 

accuracy for all soil fractions (R² > 0.90), with the XGBoost model reaching R² = 0.9748 for the 

clay ratio. Feature importance analysis reveals that dynamic and relative indicators, such as vertical 

soil moisture gradients (e.g., Range SM_10–30), NDVI, and short-term temperature averages, are 

the most powerful predictors of soil texture. These variables outperform static moisture values by 

capturing the nuanced interplay of infiltration, retention, and vegetation–climate–soil interactions. 

The scientific contribution of this thesis is twofold: 
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1. It establishes a new paradigm for soil texture estimation that eliminates the need for physical 

sampling and lab testing, reducing cost, time, and logistical constraints. 

2. It enhances the scalability of digital soil monitoring through a fusion of earth observation, 

sensor data, and ensemble machine learning, offering a transferable framework for agricultural, 

hydrological, and environmental applications. 

Policy and Practical Implications 

The framework has strong relevance for drought early warning systems, agricultural advisory 

services, and irrigation optimization. At the same time, the use of remotely derived soil texture 

prediction for sensor calibration without laboratory analysis opens new opportunities for low-cost, 

large-scale deployment of soil monitoring networks. At the policy level, the framework provides 

actionable information for climate adaptation, land-use planning, and sustainable groundwater 

management, particularly in semi-arid and data-limited regions. It also aligns with international 

development goals, including SDG 2 (Zero Hunger), SDG 6 (Clean Water and Sanitation), and 

SDG 13 (Climate Action), by promoting efficient and sustainable land and water resource 

management. 

Limitations and Future Research 

Limitations include the regional scope of the case studies (Tunisia and Hungary) and the use of C-

band SAR, which limits subsurface sensitivity under dense vegetation. Future research should 

expand validation across diverse climates and soil types, incorporate multi-frequency SAR (L- and 

P-band) and thermal data, and test operational integration with real-time IoT sensor networks. 

Field trials should further evaluate the effectiveness of texture-driven sensor calibration under 

varying soil and climate conditions. 
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