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1. INTRODUCTION 

1.1. General  
 Energy efficiency in the building sector is crucial for addressing the challenges of 

climate change and fostering a sustainable economy. Buildings are significant energy consumers 
and have the potential to make substantial contributions to reducing energy consumption and 
greenhouse gas emissions. Enhancing the energy efficiency of buildings requires a multifaceted 
approach, with a particular emphasis on optimizing the thermal behavior of building 
components. The efficient management of heat transfer within buildings is fundamental to 
achieving energy sustainability and cost-effectiveness. Building envelopes, including walls, 
roofs, and floors, exhibit different thermal performances depending on their position within the 
building. To optimize energy efficiency, it is essential to accurately calculate heat transfer within 
these building components. 

The heat transfer in building components can be calculated by using the heat transfer 
equation, which depends on various parameters, most importantly material properties and 
boundary conditions. Utilizing materials with excellent thermal properties such as thermal 
conductivity, density, and specific heat capacity determines how effectively heat is transferred 
through a material can significantly enhance heat transfer performance, thereby improving the 
overall energy efficiency. Boundary conditions, determined by the internal and external 
environments of the building, play a crucial role in heat transfer calculations. These conditions, 
including temperature, humidity and airflow, serve as input parameters for accurately modeling 
the thermal behavior of building components. 

To conduct a precise thermal analysis of building walls, accurate numerical methods are 
essential. Several studies in the literature have focused on heat transfer through walls to analyze 
the thermal behavior of a multilayer medium in a transient regime. These studies have developed 
mathematical models that calculate temperature and thermal contact resistance distributions. 
Some research proposes MATLAB-based numerical solution models for simulations, while 
others utilize computational fluid dynamics (CFD) methods. 

1.2. Literature Review 
1.2.1. Literature Review of Numerical Methods 

The diffusion equation, incorporating a diffusion term, has been extensively studied, 
resulting in numerous analytical solutions [1-6]. However, these solutions generally assume 
constant parameters such as the diffusion coefficient or heat conductivity, which do not vary 
with space, time, or the dependent variable u. A notable exception is the work of Zoppou and 
Knight, who derived analytical solutions for the two- and three-dimensional advection-diffusion 
equation with specific forms of spatially variable coefficients [7]. Nevertheless, for general cases 
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with space-dependent coefficients, numerical methods are essential. This is particularly true for 
systems where physical properties vary significantly even within close proximity [8]. Such 
variations often result in eigenvalues spanning several orders of magnitude, leading to severely 
stiff problems. 

When partial differential equations (PDEs) are spatially discretized, they are transformed 
into systems of ordinary differential equations (ODEs). Solving these systems numerically 
becomes particularly challenging when dealing with many variables, especially in three-
dimensional spaces. Traditional explicit methods, such as the Runge-Kutta method, are 
conditionally stable, meaning they require very small time steps to maintain stability, which can 
be computationally expensive for large-scale problems. In contrast, implicit methods are 
typically unconditionally stable, allowing for larger time steps, but they require solving systems 
of algebraic equations at each time step. These algebraic systems can be computationally 
intensive, especially when the matrices involved are non-tridiagonal or have complex structures. 
To address these challenges, significant efforts have been directed toward developing advanced 
modifications to improve the efficiency of implicit methods [9]. Currently, implicit methods with 
these extensions are commonly used to solve stiff problems, such as those involving rapid 
temperature changes, high thermal diffusivity materials, or systems with multiple heat transfer 
mechanisms (e.g., conduction, convection, and radiation). These methods are particularly 
effective for problems where stability and accuracy are critical, such as heat transfer in 
multilayer walls, phase change materials (PCMs), and other complex building components.[10-
12]. Despite these advancements, parallelizing implicit methods remains challenging, though 
some progress has been made [13,14]. The shift towards increased parallelism in high-
performance computing [15,16], driven by the stagnation in CPU clock frequency 
improvements, further emphasizes this issue.  

Given these challenges, a part of my work focuses on developing novel, easily 
parallelizable, explicit, and unconditionally stable methods. A key example is the two-stage odd-
even hopscotch (OEH) algorithm, introduced by Gordon [17] and later reformulated and 
analyzed by Gourlay [18-20] (see also [21]). This method has been modified to enhance its 
reliability and accuracy, typically by increasing its implicitness. This has led to a hierarchy of 
algorithms, from the fully explicit OEH to the alternating direction implicit (ADI) hopscotch, 
each offering greater accuracy at the cost of increased programming complexity and runtime 
[19]. Morris and Nicoll applied these methods to thermal print head calculations and found that, 
while the OEH method was faster than its more implicit versions for isotropic media, it produced 
inaccurate results for anisotropic cases, necessitating the use of the ADI hopscotch for 
meaningful solutions [22]. 

The OEH method has since been applied to various problems, including the 
incompressible Navier-Stokes equations [23], the Frank-Kamenetskii [24] and Gray-Scott 
reaction-diffusion equations [25], and even the nonlinear Dirac equation [26]. Goede and 
Boonkkamp implemented a vectorized OEH scheme for the two-dimensional Burgers’ equations, 
significantly increasing speed and solver performance [27]. Recently, Maritim et al. developed 
hybrid algorithms incorporating the hopscotch, Crank-Nicolson, Du Fort-Frankel, and other 
schemes for the two-dimensional Burgers’ equations, finding their implicit algorithms stable and 
accurate [28,29]. 
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In a series of papers [30-32], new hopscotch combinations were developed using 
alternative formulas to the original explicit and implicit Euler schemes. Tests showed [30] that 
for stiff systems, the original OEH method could produce significant inaccuracies for large time 
steps, with relative errors reaching up to 104, which could be more problematic than instability if 
unnoticed by inexperienced users. Two of the three new combinations, however, demonstrated 
much better performance. 

1.2.2. Literature review of energy efficiency in building 

The efficient management of heat transfer in buildings is paramount for achieving energy 
sustainability and cost-effectiveness in the built environment. The comfortable interior 
environment of the building is a crucial issue for most people living or working inside, and it 
largely depends on the wall structure. So to understand how the wall structure is affected in the 
interior zone I will focus on the thermal analysis of the wall structure by using very efficient 
algorithms. The integration of advanced materials and technologies into building envelopes has 
gotten significant attention from researchers and practitioners alike. Among these innovations, 
the combination of phase change materials (PCMs) and thermal insulation holds great promise 
for enhancing energy efficiency and occupant comfort. PCMs are known for their high heat 
capacity and outstanding energy storage potential, as well as low heat transfer coefficient. The 
integration of PCM within building envelopes offers the ability to store and release latent heat 
during phase transitions, thereby mitigating temperature fluctuations and reducing the reliance 
on mechanical heating and cooling systems. Concurrently, thermal insulation serves to minimize 
heat transfer, further enhancing the overall energy performance of the building. Historically, 
numerical simulations have played an important role in understanding the nature of heat transfer 
within building structures.  

X. Geng et al. [33] explored the optimization of the location combination for thermal 
insulation material (TIM) and PCM in multi-layer walls during both continuous and intermittent 
air-conditioning operations. These walls typically incorporate TIM or PCM layers to enhance 
thermal performance. Four wall models were constructed for evaluation, considering temperature 
and heat flow on inner surfaces. Placing the PCM layer inside the wall proves better for outdoor 
thermal environments during continuous air-conditioning, while situating the TIM layer inside is 
preferable for higher energy-saving contributions during intermittent operation. Despite 
intermittent operation yielding energy savings of 46.69–64.73%, it raises the peak load on the 
urban electricity system compared to continuous operation. Notably, for multi-layer walls with 
the TIM layer inside, this negative effect is negligible in comparison to their superior energy-
saving benefits.  

Z. Liu et al. [34] showed that the PCM can enhance lightweight building walls' (LBW) 
thermal performance, but optimal parameters vary by wall orientation due to outdoor thermal 
variations. A study tested a small-scale LBW in different orientations and analyzed PCM's 
impact using a heat transfer model. The results suggest that east and south-facing walls benefit 
from PCM in the middle temperature range (20–30°C), while west and north-facing walls 
perform best with inner (18–28°C) and outer (24–34°C) PCM placement. East and west-facing 
walls see the most significant thermal improvement, reducing peak and average heat flux by 
62.8–66.4% and 28.2–29.5%, respectively, and increasing delay time by 5–5.34 hours compared 
to reference walls.  
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E. Tunçbilek et al. [35] explored combining PCMs and conventional thermal insulation 
for enhanced energy savings in building walls. PCM on the interior side with layer thicknesses 
LPCM ≤ 16 mm outperformed insulation saving up to 38.2% more energy than insulation with 
layer thickness LINS =6 mm.  A parameter ψ defining the ratio of LPCM to LPCM + LINS was 
introduced. Combining PCM and insulation (a configuration labeled by C5 in their paper, ψ = 
0.05) saved up to 7.3% more energy compared to insulation alone. Overall, combined designs 
with 0 < ψ ≤ 0.6 showed improved energy savings compared to insulation only, with latent heat 
activation being crucial for better thermal performance.  

Y. Cascone et al. [36] conducted a study on optimizing PCMs in retrofitting office 
buildings for energy efficiency in Mediterranean climates, crucial for achieving EU's 2020 
sustainability goals. PCMs, with careful consideration of properties, quantity, and placement, are 
recommended for effective and economically feasible use. The paper presents multi-objective 
optimization analyses for retrofitting with PCM-enhanced opaque building envelope 
components. Objectives included minimizing primary energy consumption, global costs, 
building energy needs for heating and cooling, and investment costs. The research variables 
encompassed PCM properties, window type, insulation materials, and wall configuration. Post-
optimization analyses provided insights for designers, revealing that optimal PCM properties are 
notably influenced by the HVAC system's operation.  

R. F. Jam et al. [37] conducted a study for optimization of the PCMs location and 
thickness in building walls with an energy-economic analysis. The research emphasizes the 
significance of thermal insulation for reducing energy consumption in buildings. CMS are 
investigated as a form of insulation in an educational building at Hakim Sabzevari University, 
Iran. Through numerical simulations, the study explores the effects of PCM integration during 
the hot months of the year. Optimal PCM placement within the wall and various thicknesses (2, 
3, 4, and 5 cm) are analyzed. Results indicate heat exchange reductions of 9.8%, 13.4%, 17.5%, 
and 20.4%, respectively, for different PCM thicknesses. Additionally, a thermo-economic 
analysis calculates energy savings and payback periods. The study identifies a 3 cm PCM 
thickness as optimal, resulting in a 50-month payback period through Pareto solutions and the 
TOPSIS method.  

M. J. Abden et al. [38] conducted research on the combined use of PCM and thermal 
insulation to improve energy efficiency of residential buildings, applying thermal insulation to 
external walls and ceilings in standard practice. The study evaluates the approach by combining 
expanded polystyrene with PCM gypsum board in a typical Australian standalone house. 
Numerical simulations are conducted considering the house's location in three distinct Australian 
cities—Darwin, Alice Springs, and Sydney—representing tropical savanna, hot semi-arid, and 
humid subtropical climates, respectively. Results indicate significant cost savings over a 10-year 
lifecycle: AU$167.0, $162.3, and $39.7/m2 in Darwin, Alice Springs, and Sydney, respectively. 
Additionally, energy ratings improve by 3.5, 3.8, and 4.3 stars in the three cities. Payback 
periods for the renovation vary from 2.2 to 7.5 years, contingent on climate conditions. 

E. Iffa et al. [39] conducted thermal energy storage systems in buildings serve to store 
cooling/heating energy during non-peak load hours or when renewable energy sources are 
available, aiding in peak load shaving, reducing electric grid burdens, and enhancing occupant 
thermal comfort. While thermal lag in systems like thermally activated building systems often 
leads to passive energy release, integrating active insulation systems can enhance flexibility in 
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charging and discharging energy. That study designed a wall system equipped with both active 
insulation and thermally activated storage systems to evaluate its performance in contributing to 
active cooling energy. The results showed that the thermal properties of the storage core material 
and the spacing of embedded pipes in both the storage and active insulation systems significantly 
influenced wall performance. During discharging, heat flux into the wall reached up to 
81.92W/m2, with the dynamic R-value of the active insulation system varying from less than 
1ft2·◦F·h/BTU (0.18 m2·K/W) to 98% of equally thick foam insulation's R-value.  

P. Arumugam et al. [40] aimed to optimize PCM and insulation placement in building 
envelopes for improved thermal performance and reduced cooling load demand in Indian office 
buildings across different climates. Models integrated with PCM or insulation on outer walls 
showed more comfortable indoor temperatures than those on inner walls. The selection of PCM 
and insulation depended on location temperatures. The recommended techniques resulted in 
cooling load reductions of 64%, 61%, 57%, 63%, and 58/59% for Bangalore, Delhi, Jodhpur, 
Pune, and Guwahati, respectively, compared to basic buildings. 

1.3. The Aim of The Dissertation  
The dissertation aims to elaborate and optimize new, efficient explicit numerical methods 

for solving linear and nonlinear heat equations, encompassing heat conduction, convection, 
radiation, and heat generation across Cartesian, cylindrical, and spherical coordinate systems. 
The work builds on the modification of well-known numerical methods, such as the Explicit-
Euler-based FTCS (forward time central space), the Implicit-Euler method, the Crank-Nicolson 
method, the Rational Runge–Kutta method, the Dufort–Frankel (DF) method, the UPFD 
(unconditionally positive finite difference) method, Heun’s method, and the original hopscotch 
method, to enhance their efficiency and stability. Building on these modifications, improved 
numerical schemes were developed, including the constant neighbor method, the two and three-
linear neighbor method, and the CpC method. The core novelty of this work lies in the invention 
of entirely new numerical methods, such as the Shifted-Hopscotch method, Leapfrog-Hopscotch 
method, Asymmetric-Hopscotch method, Reversed-Hopscotch method, and Pseudo-Implicit 
method, which represent significant advancements over existing explicit numerical schemes, 
offering superior stability, accuracy, and computational efficiency for solving complex heat 
transfer problems. These methods were implemented and tested using MATLAB 2020b, 
rigorously verified and validated against analytical solutions and experimental measurements, 
and applied to real-life heat transfer problems in various engineering applications. They serve as 
powerful tools for thermal analysis, enabling the calculation of temperature and heat energy 
distributions in complex geometries and systems. In this dissertation, the methods were applied 
to analyze heat transfer in different building walls and heated cylinders, ranging from simple 
geometries (low stiffness systems), such as insulated walls, to highly complex geometries (high 
stiffness systems), such as multilayer walls composed of different materials (e.g., insulators, 
phase change materials (PCMs), and base materials like brick or concrete). The goal was to 
control the amount of heat transfer between indoor and outdoor environments, contributing to the 
development of sustainable and energy-efficient buildings. By achieving these objectives, this 
research advances ongoing efforts to improve energy efficiency and sustainability in building 
design. 
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2. THE  HEAT TRANSFER EQUATION 

In the current study, I aim to calculate the heat transfer in different geometries. First, I 
start to derive the heat transfer equation (conduction, convection, and radiation equation) based 
on energy balance in Cartesian coordinates and then in cylindrical and spherical coordinates.  

2.1. The  heat transfer equation in Cartesian Coordinates  
For the Cartesian coordinate, consider a small rectangular element , ,x y z∆ ∆ ∆ , as shown in 

Fig.2.1. The energy balance on this element during a small-time interval t∆  can be expressed as:  

Rate of heat conduction Rate of heat conduction at Rate of heat generation  Rate of covection at Rate of radiation 
at x, y, and z  x+ x,y+ y, and z+ z inside the element x,y,z 
       

− + + +       ∆ ∆ ∆       

at 
x,y,z 

Rate of change of energy
 content of the element 

 
 
 

 
=  
 

 

Or 

element
x y z x x y y z z gen Convection Radiation

E
Q Q Q Q Q Q Q Q Q

t+∆ +∆ +∆
∆

+ + − − − + + + =
∆

             (2.1)   

 

 

 

 

 

 

 

 

 

 

Figure 2.1. 3D rectangular element 

I use the following three well-known laws:  

Fourier’s law of heat conduction: 

                        . . , . . , . .x x y y z z
u u uQ k S Q k S Q k S
x y z

∆ ∆ ∆
= − = − = −

∆ ∆ ∆
                                   (2.2)  

where u u( r ,t )=
   is the temperature,  k k( r )=

  is the thermal conductivity of material and the 
surface area of heat conduction in x,y and z are  xS y. z= ∆ ∆ ,  yS x. z= ∆ ∆  and zS x. y= ∆ ∆  respectively 
. 

Newton’s law of heat convection: 

                                         ( )convection c c aQ h S u h S u u= ∆ = − ,                                                (2.3)  
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where hc represents convection heat transfer coefficient, S is the surface area, and the ambient 
temperature au  does not depend directly on u, and the term ahSu  therefore it is included into the 
heat generation term. 

The law of Stefan–Boltzmann for the incoming and  outgoing radiation heat: 

                                     4 4( )radiation iQ S u uσ ∗= −   ,                                                        (2.4)  

where SBσ ε∗ = ⋅ , i.e., the universal constant of Stefan-Boltzmann 8 2 45.67 10 W/(m K )SB −= × ⋅  is 
multiplied by the suitable constant of emissivity ε  where the surface is not a black body,ui is the 
temperature of the incoming heat radiation, and u is the temperature of the outgoing radiation  by 
the surface elements. The incoming heat radiation, which includes direct sunlight, is similarly 
included in the heat source term q as the 4

iSuσ ∗  term. 

                      ( ) ( )element t t t t t t t t tE E E mc u u c V u uρ+∆ +∆ +∆∆ = − = − = ∆ − ,                            (2.5)  

where ( r )ρ ρ=
 , c c( r )=

  and V x zy∆ = ∆ ∆ ∆  are the density, the specific heat and the elementary 
volume, respectively. Substituting Eqs (2.2-2.5). into Eq. (2.1), dividing by . .x y z∆ ∆ ∆  and taking 
the limit as , , , 0x y z t∆ ∆ ∆ ∆ → yields: 

    
4 4( ) ( )

. . . . . .
gen c a iQ h S u u S u uu u u uk k k c

x x y y z z x y z x y z x y z t
σ

ρ
∗− − ∂ ∂ ∂ ∂ ∂ ∂ ∂   + + + + + =    ∂ ∂ ∂ ∂ ∂ ∂ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∂    

              (2.6)  

Eq. (2.6) is divided by (ρc) and if k is constant, I obtain 

    
4 42 2 2

2 2 2
( ) ( )1 1 1gen c a iQ h S u u S u uk u k u k u u

c c c c x y z c x y z c x y z tx y z
σ

ρ ρ ρ ρ ρ ρ

∗− −∂ ∂ ∂ ∂
+ + + + + =

∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∂∂ ∂ ∂
                (2.7)  

where the property k
c

α
ρ

=   is the thermal diffusivity of the material. In this work do not consider 

volumetric heat generation, so the heat generation represented by all incoming heat crosses the 
surface element. I introduce *q , which is the incoming heat by radiation and convection for a 
unit area. In all of our cases, the direction of the radiative and conductive heat transfer will 
always be horizontal, thus S y z= ∆ ∆ and ( )4*

gen a iQ q hu u Sσ ∗= + + . With these I obtain 

* 42 2 2 * * 4

2 2 2
1 1 1 1 1c a i ch y zu y z u h y z uu u u q y z y z u u
c x y z c x y z c x y z c x y z c x y z tx y z

σ σα α α
ρ ρ ρ ρ ρ

∆ ∆ ∆ ∆ ∆ ∆∂ ∂ ∂ ∆ ∆ ∆ ∆ ∂
+ + + + + − − =

∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∂∂ ∂ ∂
  (2.8)       

After simplification, I have 
2 2 2 * * *

4 4
2 2 2

c c
a i

h hu u u q uu u u u
c x c x c x c x c x tx y z

σ σα
ρ ρ ρ ρ ρ

 ∂ ∂ ∂ ∂
+ + + + + − − =   ∆ ∆ ∆ ∆ ∆ ∂∂ ∂ ∂ 

                              (2.9)  

The equation for the temperature which includes the source of heat generation, conduction, 
convection and radiation can be expressed as follow: 

                2 4u u q Ku u
t

α σ∂
= ∇ + − −

∂
                                                          (2.10)  
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where 4
a

*
c

i
hqq u u

c x c x c x
σ

ρ ρ ρ

∗

= + ⋅ +
∆ ∆ ∆

 is the heat generation or heat source coming from the outside 

of the wall structure, ( ) ch
K K r

c xρ
= =

∆
  is the heat transfer convection term, and 

*
( )r

c x
σσ σ
ρ

= =
∆

  is 

the radiation heat transfer term, where K and σ are exist at the interface surfaces (interface 
between the solid and liquid or gas) otherwise it set as zero at the interior elements within the 
solid body. The terms q, Ku and 4uσ  in Eq. (2.10) are nonnegative and still in [ ]K s/ . If there is a 
multilayer wall, then the material properties depend on space, so an equation with a more general 
form can be used as follows:  

                41 ( )u k u q Ku u
t c

σ
ρ

∂
= ∇ ∇ + − −

∂
                                                   (2.11)  

2.2. The Spatial Discretization in Cartesian Coordinates 
The standard central difference formula in two space dimensions is applied for the 

second-order derivative ( 2u∇ ). The space steps are x∆  and z∆  as shown in Figure 2.2 . Now for 
the nodes of a homogeneous material, one obtains 

                      
2

2 2

1 -1
-1 1

( ) ( ) ( ) ( )
2

( )
i ii i

ii i
i

u x u x u x u x
u u ux xu x

xx x

+
+

− −
+ − +∂ ∆ ∆≈ =
∆∂ ∆

                                      (2.12) 

                      
2

2 2

-
-

( ) ( ) ( ) ( )
2

( )
i ii Nx i Nx

ii Nx i Nx
i

u z u z u z u z
u u uz zu z

zz z

+
+

− −
+ − +∂ ∆ ∆≈ =
∆∂ ∆

                               (2.13) 

I obtain the spatially discretized form Eq. (2.11) in two dimensions:  

                      4
2 2

-1 12 2i i ii i i Nx i Nx
i i

u u u u u udu
q Ku u

dt x z
α α σ+ − +− + − +

= + + − −
∆ ∆

                                     (2.14) 

Now to be more realistic, so let the k, c, and ρ quantities be a function of space. Then Eqs. (2.12), 
and (2.13) can be written using a two-dimensional, equidistant grid in the following form: 

        
2

2
( ) ( ) ( ) ( ) ( )1

( ) ( ) 2 2
i i i i

i i
i i

iu x u x x u x u x x u xx xk x k x
c x x x x xx ρ

 ∂ + ∆ − − ∆ −∆ ∆   = + + −    ∆ ∆ ∆∂     
                   (2.15) 

        
2

2
( ) ( ) ( ) ( ) ( )1

( ) ( ) 2 2
i i i i

i i
i i

iu z u z z u z u z z u zz zk z k z
c z z z z zz ρ

 ∂ + ∆ − − ∆ −∆ ∆   = + + −    ∆ ∆ ∆∂     
                     (2.16) 

I now change from node to cell variables, which means that iu , ic , and iρ  will be the 
temperature, specific heat, and density of cell i, respectively. Furthermore, since the material 

boundaries will always coincide with the cell borders, I write the average 1
2

i ik k ++  instead of 

2i
xk x ∆ + 

 
. Now the discretized form of Equation (2.11) will take the form 
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4

-1 1 1 -11 1
2 2 2 2

x x x xi i N i N i i i N i N ii i i ii i i i i

i i i i

i i

k k u u k k u uk k u u k k u udu
dt c x x x c z z z

q Ku u

ρ ρ

σ

+ + −+ + − + − + − + − + − = + + +    ∆ ∆ ∆ ∆ ∆ ∆   

+ − −

 

(2.17) 

The distance between the centres of neighbouring cells is the same as the mesh spacings, and the 
interface area between cell i and its right neighbour is always S. Now I have 

4

1 1 1 1
1 2 2

2 2
x x x x

i i i ii i i i

i
i i

i i N i N i i i N i N ii i

k k u u k k u u
y z y z

du x x q Ku u
k k u u k k u udt c x y z

x y x y
z z

σ
ρ

+ + − −

+ + − −

+ − + − ∆ ∆ + ∆ ∆ ∆ ∆ = + − −
+ − + −∆ ∆ ∆  

+∆ ∆ + ∆ ∆ 
 ∆ ∆ 

           (2.18) 

The heat capacity of the cell can be calculated as i i iC c Vρ= . I calculate the horizontal and vertical 

thermal resistances between the neighbouring cells, as , 1
12 2i i

i i

x xR
k z k z+

+

∆ ∆
≈ +

∆ ∆
, and  

, 2 2x
x

i i N
i i N

z zR
k x k x+

+

∆ ∆
≈ +

∆ ∆
 respectively, where i and j represented the cells index in x-axis and z-

axis. Semi-discretized form of Equation (2.14) can be expressed as below: 

     4

1, 1, , ,

1 1 x x

x xN N

i N i i N ii ii i i
i i

i i i i i i i i i i i i

u u u uu u u udu
q Ku u

dt R C R C R C R C
σ

− + − +

− +− + − −− −
= + + + + − −                      (2.19) 

The time is discretized uniformly with time-step size t∆   and represents the temperature of cell i 
at the time n t∆ , 0 1n , ,...,T= .  Now the formulae of the used methods are presented for the 
general discretization (2.19) only. For the simpler formula, I need to define the following 
quantities: 

new
pred

1  ,  andi i i i i
j i j i j i

n
j j

i ij i ij i ij

uu
mr t A t t q A t t q

C R C R C R≠ ≠ ≠
= ∆ = ∆ + ∆ ⋅ = ∆ + ∆ ⋅∑ ∑ ∑  

Where mri is the general mesh-ratio, while Ai  reflects the state and the effect of the neighbors of 
cell i.We prefer to use the ODE system for a general grid, which gives the time derivative of 
each temperature independently of any coordinate system 

                                   4

,

j
i

i j

ii
i i

i j i

u udu
q Ku u

dt R C
σ

≠

−
= + − −∑                                               (2.20) 

Which can be written in matrix form 

                                              du Mu Q
dt

= +


 ,                                                                  (2.21) 

where 4
i i iQ q Ku uσ= − −
   , and the diagonal element of matrix M can be written as follows 

,

1
ii

j neighbour i j i
m

R C∈

−
= ∑ . The off-diagonal ,1ii i j im R C=  element of the M matrix can be nonzero only 

if the cells i and j are neighbours. From this point, all summations are going over the neighbours 
of the actual cell, which will be denoted by ( )j n i∈ . Unless stated otherwise, we consider closed 
(zero Neumann) boundary conditions, i.e., the edge of the examined domain is thermally isolated 
regarding conductive type heat transfer. To help the reader to imagine, we present the 
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arrangement of the variables in Figure 2.2 for a 2D system. We emphasize that the shape and 
arrangement of the cells are not necessarily regular. 

 

 

 
 

 

 

 

 

 

 

Figure 2.2. Arrangement of the generalized variables 

For example this 4×4 system, the system of ODEs in matrix form can be written as 

1 1
2 2
3 3
4 4

1 12 1 13 1 12 1 13

2 21 2 21 2 23 2 24 2 23 2 24

3 31 3 32 3 31 2 32 2 34 3 34

4 42 4 43 4 42 4 43

1 1 1 1 0

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 10

C R C R C R C R
u u

d C R C R C R C R C R C Ru u
u udt
u uC R C R C R C R C R C R

C R C R C R C R

− − + 
 − − − −    + +
    =    − − − −

+ +       
− − + 

 

1
2
3
4

.
Q
Q
Q
Q

 
 =  

  
 

 

2.3. The  heat transfer equation in Cylindrical and Spherical Coordinates  
In a similar way, the  heat transfer equation in cylindrical coordinates can be obtained from an 
energy balance on a volume element in cylindrical coordinates, considering a small 3D 
cylindrical element as shown in Fig. 2.3. The energy balance in this element during a time 
interval can be expressed as: 

 

 

 

 

 

 

 

 

 
Figure 2.3. The cylindrical (left) and spherical (right) elements 
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Rate of heat conduction Rate of heat conduction at Rate of heat generation inside  Rate of convection 
at  , ,   ,   ,  and on the surface of the element at the , ,  eler z r r z z r zφ φ φ φ
     

− + ±     + ∆ + ∆ + ∆      ment

Rate of radiation Rate of change of energy
at the , ,  element  content of the element r zφ

 
 
 

   
± =   
   

 

or briefly, 

   element
r z r r z z gen convection radiation

E
Q Q Q Q Q Q Q Q Q

tφ φ φ+∆ +∆ +∆
∆

+ + − − − + ± ± =
∆

           (2.22) 

To fill Eq. (2.22) with concrete formulas, the following three well-known laws are used.  

Fourier’s law of heat conduction:  

                                 , ,r z
u u uQ kS Q kS Q kS
r zφ φ

∆ ∆ ∆
= − = − = −

∆ ∆ ∆
                                        (2.23) 

The heat convection, radiation and the change in energy of an element over a specific time 
interval are the same in Cartesian coordinate except the element volume being 

( )2
rV r r zφ ∆∆ = ∆ + ∆ ×∆ . In the case of full cylindrical symmetry, it is better to choose a full ring-

shaped element, which yields ( )2 22 ( ) ( )2
rV r r z r r r zπ π∆∆ = + ∆ ×∆ = + ∆ − ∆ . 

From these equations, one can derive the heat-transport equation in a 3D cylindrical coordinate 
system, which can be written as: 

             
* 4

2
1 1 genQu u u hSu Su uk r k r k c
r r r z z V V V tr

σ ρ
φ φ
 ∂ ∂ ∂ ∂ ∂ ∂ ∂   + + + − − =    ∂ ∂ ∂ ∂ ∂ ∂ ∆ ∆ ∆ ∂    

                      (2.24) 

In the case of spherical coordinates, a small 3D spherical element can be seen in Figure 2.2 The 
heat-transport equation for this case can be expressed as follows: 

  
* 4

2
2 2 2 2

1 1 1 sin
sin sin

genQu u u hSu Su uk r k r k c
r r V V V tr r r

σθ ρ
φ φ θ θθ θ
 ∂ ∂ ∂ ∂ ∂ ∂ ∂   + + + − − =    ∂ ∂ ∂ ∂ ∂ ∂ ∆ ∆ ∆ ∂    

       (2.25) 

2.4. The Spatial Discretization in Cylindrical and Spherical Coordinate 

In the case of cylindrical geometry, I consider tube-shaped cells with height z∆  and 
thickness r∆ . For spheres, the cells have spherical-shell shapes with thickness r∆  again. The 
temperature is considered at the middle of the cell layer, where the radial distance from the 
origin (the mean radius of the cells) is denoted by ir , while the subsequent radius of the cell 
border is denoted by / 2i ir r r∗ = + ∆ . 

The cell’s heat capacity in the cylindrical and in the spherical case is approximated as 
( )2 2

1i i i i iC c r r zρ π ∗ ∗
+= − ∆  and ( )3 3

1
4

3i i i i iC c r rρ π ∗ ∗
+= − , respectively.  

Let us denote the area of the cylindrical cell-surface perpendicular to r with rS , which can be 
given as 2rS r zπ= ∆ . Now, for the thermal resistance in the r-direction, the approximate formula 

1 1 1

, 1
, 1

, 1 , 1

ln ln
2 2

i i

i i

r r i i
r r

i i r
i i

i i i i

r rdr drR
k S k r z k zπ π

+ + +

+
+

+ +

−
≈ = =

∆ ∆∫ ∫  (2.26) 
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is used. For the thermal resistance in the z-direction, the approximate formula 
( )

2 2
1

, ( )
r

x

i

i i

i N
i i N

i

z z
R

k r rπ +

+
+

−
≈

−
 is used, where the cell i + Nr is below the cell i.  

In the spherical case, rS  can be given as 24rS rπ= . Using this, the thermal resistance is 
calculated similarly as that in the cylindrical case, but now the integration yields 

1

1
, 1

, 1

1
4

i i

i i
i i

i i

r r
R

k r rπ
+

+
+

+

−
≈ . From Equations (2.24) and (2.25) it is easy to obtain the ODE system  

* 4

,

gen i i

j

j ii

i i i i ij i

u u Qdu hSu Su
dt R C C C C

σ

≠

−
= + − −∑  (2.27) 

to determine the time-evolution of the cell temperatures. Here, S is the area of the surface on 
which the convection and radiation occur, which will be the outer surface of the cylinder in Fig 
2.3. If one neglects the higher powers of r∆ , one can easily derive that i i iC / S c rρ= ∆  in both 
cases. Inserting these into (2.27), I can write Equation (2.27) in a simpler form: 

 4

,
i i i

j

j ii

i ij i

u udu
q Ku u

dt R C
σ

≠

−
= + − −∑ ,       

(2.28) 

which will be solved numerically. 
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3. NUMERICAL METHODS TO SOLVE THE HEAT EQUATION 

There are plenty of numerical methods used to solve the heat equation, such as finite 
difference schemes (FDM) [41-43] and finite element methods (FEM) [44]. However, they can 
be extremely time-consuming since the examined system must be fully discretized both in space 
and time. Due to material inhomogeneities, the eigenvalues of the problem can have a very wide 
range (several orders of magnitude). In these cases, the problem is rather stiff, and the so-called 
CFL (Courant–Friedrichs–Lewy) threshold for the time step size is very small. When 
conventional explicit finite difference methods are applied to these problems, they will be 
unstable when the used time step size is larger than this small limit. That is why implicit 
methods, which have much better stability properties, are typically used for solving these kinds 
of equations, for example [45-51]. They solve equation systems containing the whole system 
matrix; thus, they can use a lot of CPU time and computer memory, especially when the number 
of cells is large, which is always the case in three dimensions.  

It is well known that the former rapid increase in CPU clock frequencies is over, and the 
tendency toward increasing parallelization in high-performance computing is powerful [52,53]. 
Thus, I think time is on the side of explicit methods because they can be much more 
straightforwardly parallelized. That is why I started to investigate explicit algorithms with 
improved stability properties. These explicit methods can also serve as a basis for implicit 
methods. 

3.1. Existing Numerical Methods  
 Many explicit algorithms are developed for heat conduction, convection, and radiation 

equations. While some methods adopt a purely explicit calculation strategy, others employ a 
mixed approach, integrating explicit and implicit calculations to balance computational 
efficiency and stability. Some of them are unconditionally stable for the linear heat conduction 
equation, and have special characteristics to deal with nontrivial cases., more detail in the 
following:  

3.1.1. The Explicit-Euler Method 

The most widespread explicit algorithm to solve the heat equation is the FTCS (forward 
time central space) scheme, in which the time integration is based on the Explicit Euler Method 
[42]. Now I adapt this to the  heat transfer equation in the most standard way, thus the general 
formula is the following:  

                                  ( ) 41 1 ( )i i i i
n n n n
i i i iu mr u A t K u t uσ+ = − + − ∆ ⋅ ⋅ − ∆ ⋅ ⋅    .                                                     (3.1) 

In case the convection and radiation terms move to the denominator, then the Explicit Euler is 
called the Non-Standard Explicit Euler NS-ExpE.  

3.1.2. The Crank- Nicolson Method 

The Crank-Nicolson method [28] provides an alternative implicit scheme, to provide 
accuracy, difference approximations are developed at the midpoint of the time increment, and it 
is unconditionally stable, second-order accurate in both space and time, suitable for stiff systems, 
thus the general formula is the following:  
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( )

4

1
2

n
n 1

1 1 ( )2
1 1

i
i i i

i

n n
i i i

i

mr u A t K u t u
u

mr

σ
+

 − + + − ∆ ⋅ ⋅ − ∆ ⋅ ⋅ 
 =

+ −
   .                                    (3.2) 

3.1.3. The Uniformly Positively Fractionalized Difference (UPFD) Method 

The UPFD method is constructed by Chen-Charpentier and Kojouharov [54] for the 
linear diffusion-advection-reaction equation. Recently I adapted it to the  heat transfer equation 
as follows:  

                                   3
1

n1 ( )
i

i i i

n
n i
i

i

u A
u

mr t K t uσ
+ +

=
+ + ∆ ⋅ + ∆ ⋅ ⋅

.                                           (3.3) 

3.1.4. The Dufort–Frankel Method 

The Dufort–Frankel (DF) algorithm is a known but non-traditional explicit scheme [55] 
that is unconditionally stable for the linear heat equation. Now the formula for the case of Eq. 
(2.20) and (2.28) is as follows:  

( ) 41 n n
n 1 1 2 2 2 ( )

1
ii i

ii

n
i i i

i
mr u A t K u t u

u
mr

σ−
+ − + − ⋅∆ ⋅ ⋅ − ⋅∆ ⋅ ⋅
=

+
 (3.4) 

One can see that the formulas contain 1n
iu − , thus it is a two-step but one-stage method. Since it is 

not a self-starter, another method must be used to start the DF method by the calculation of 1
iu . 

For this purpose, I apply the UPFD formula (3.3). 

In case of the convection and radiation terms move from the numerator to the denominator, then 
the DF is called Non-Standard Dufort–Frankel  NS-DF.  

3.1.5. The Rational Runge–Kutta Methods 

From the family of the Rational Runge-Kutta methods, I chose a two-stage version [56] 
with the following definition. In the first stage, a full step is taken by the explicit Euler (FTCS) 
scheme to obtain the predictor value. The increment for Eq. (2.20) is calculated as  

( )1 4n n n n n
1 12 + ( )  i i i ii ig mr u u u t q t K u t uσ− += − + ∆ ⋅ − ∆ ⋅ ⋅ − ∆ ⋅ ⋅ , 

and  
1 4n n  ( )i i

n
i i ig mru A t K u t uσ= − + − ∆ ⋅ ⋅ − ∆ ⋅ ⋅ . 

Using these 1
ig  values, the predictor values can be obtained for all grid types as  

1pred i
n
iiu u g= + .  

After this, using the predictor values obtained above, the increment of a second Euler step is 
calculated: 

( )2 4pred pred pred pred pred
1 12 + ( )i i i ii ig mr u u u t q t K u t uσ− += − + ∆ ⋅ − ∆ ⋅ ⋅ − ∆ ⋅ ⋅ ,  

and 2 4pred pred prednew ( )i i ii i ig mr u A t K u t uσ= − + − ∆ ⋅ ⋅ − ∆ ⋅ ⋅ . 
 

Now one needs to calculate the following scalar products 
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( ) ( ) ( )1 1 1 1 1 2 1 2 2 2 2 2
1 12 2

1 1 1
, , , , , ,

N N N

i i i i i i
i i i

p g g g g p g g g g p g g g g
= = =

= = = = = =∑ ∑ ∑        

and with them one obtains the final expression for the new values of the variable: 

                         
1 1 2

1 12 1

1 12 2

1 2 2
4 4

i i in n
i i

p g p g p g
u u

p p p
+ − +
= +

− +
                                                   (3.5) 

3.1.6. The Heun’s Method 

Heun’s method, sometimes called explicit trapezoidal rule, is probably the most common 
second-order Runge-Kutta (RK) scheme for ODEs and ODE systems [57], so it is 
straightforward to use it as a component of method of lines. It starts with a predictor step, which 
is an explicit Euler stage. In the cases of Eq. (2.20) and (2.28), it has the form: 

 ( ) 4pred n n1 ( )i i
n
i i iiu mr u A t K u t uσ= − + − ∆ ⋅ ⋅ − ∆ ⋅ ⋅ .  

Now the corrector step follows, which uses the average of the obtained and the old values 
of the u variable: 

( ) ( )4new
pred

pred pred1
2 2i i i

n
in n n ni

i i i ii i
u u tu u mr A A K u u u uσ+ + ∆  = − + + − ⋅ + − ⋅ + 

 
              (3.6) 

3.1.7.  The Original Odd-Even Hopscotch Method 

To use an odd-even hopscotch method, a special, so-called bipartite spatial grid is 
necessary, where the cells are labelled as odd and even, and similarly to a checkerboard, all the 
nearest neighbors of the odd cells are even and vice versa. The odd-even labels are interchanged 
in each time step as is shown in Fig. 3.1A. Originally, the standard Explicit Euler formula was 
applied in the first stage and the implicit Euler formula was applied in the second stage [58]. The 
general formulas are the following:  

Explicit Euler:   ( ) 41 n n1 ( )i i i i
n n
i i i iu mr u A t K u t uσ+ = − + − ∆ ⋅ ⋅ − ∆ ⋅ ⋅          (3.7) 

         Implicit Euler:   
new

3
1

n1 ( )
i

i i i

n
n i
i

i

u A
u

mr t K t uσ
+ +
=

+ + ∆ ⋅ + ∆ ⋅ ⋅
,   (3.8) 

Note that the implicit formula is effectively explicit since the 1n
ju +  values have been just obtained 

at Stage 1. I call this version the original odd-even hopscotch (OOEH) method. This algorithm is 
unconditionally stable for the linear heat conduction equation. However, in the nonlinear cases, 
the new temperatures can be negative for large r, which can cause unstable behavior for large 
time step sizes due to the possibly large negative value of the term 3n( )iu  in the denominator. To 
avoid this, I apply a simple trick of forbidding negative values by the following simple 
conditional statement:  

if 1 0n
iu + <  then 1 0n

iu + = .     (3.9) 

This trick will be applied in all cases in this method and the remaining methods when there is a 
possibility of negative temperatures.  

In case the of use the Non-Standard Explicit Euler is modified, then the OOEH is called Non-
Standard odd-even hopscotch NS-OEH.  
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3.1.8.  The Reversed Odd-Even Hopscotch Method  

The reversed odd-even hopscotch method (ROEH) is different from the OOEH method 
because it applies the formulas in the opposite order: first the implicit Euler (3.8), then the 
nonstandard explicit Euler formulas (3.7), with condition (3.9). However, when first-stage 
calculations begin with the implicit formula, the new values of the neighbors are not known. In 
the ROEH method, they are taken into account in the old time level, which is the same trick as 
the UPFD method uses.  

 
Figure 3.1. Space-time structure of (A) The original hopscotch and the reversed hopscotch methods. (B) The 

leapfrog-hopscotch method. (C)The shifted-hopscotch method. (D) The asymmetric hopscotch method. 

3.2.  The Developed Numerical Methods  
3.2.1.  The Constant Neighbor Method 

 The constant neighbor (CNe) method [28] for Equation (2.20) and (2.28) is:  

( ) 4i i1 n n

i
1 ( )m min n

i i i i
r rA

u u e e t q t K u t u
mr

σ− −+ = ⋅ + − + ∆ ⋅ − ∆ ⋅ ⋅ − ∆ ⋅ ⋅ .  (3.10) 

To proceed, let us recall that the following general time discretization implies the so-called theta 
method: 

( ) ( )( ) 4
2

n 1 n
n n n n+1 n+1 n+1 n n

1 1 1 12 1 2 ( )i i
i i i ii i i i

u u
u u u u u u q K u u

t x
α θ θ σ

+

− + − +
−  = − + + − − + + − ⋅ − ⋅ ∆ ∆

,     (3.11)  

where [ ]0 1,θ∈ . After rearrangement we have

For 1
20  and 1, ,θ = one has the (standard) implicit Euler, the Crank–Nicolson, and the explicit 

Euler (FTCS) schemes, respectively [59]. If 1θ < , the theta method is implicit. It can be modified 
to be explicit by taking the neighbors into account at the old-time level, where their values are 

( ) ( )( ) 4n 1 n n n n n+1 n+1 n+1 n n
1 1 1 12 1 2 ( )i i i i i ii i i iu u mr u u u u u u t q t K u t uθ θ σ+
− + − +

 = + − + + − − + + ∆ ⋅ − ∆ ⋅ ⋅ − ∆ ⋅ ⋅  ,   (3.12) 
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already calculated. Thus, one can insert 1
n
iu ±  into the theta-scheme (3.12) instead of 1

1
n
iu +
±  to 

obtain 

                    ( ) ( ) 41 1 n n
1 12 2 1 ( )n n n n n n

i i i i i ii iu u mr u mr u mr u u t q t K u t uθ θ σ+ +
− += − − − + + + ∆ ⋅ − ∆ ⋅ ⋅ − ∆ ⋅ ⋅     (3.13) 

With this modification, the final formula is completely explicit: 

                    
( ) ( )

( )

41 1 n n
1 1n 1

1 2 ( )

1 2 1

n n n
i i ii i

i
mr u mr u u t q t K u t u

u
mr

θ σ

θ

+ +
− ++

− + + + ∆ ⋅ − ∆ ⋅ ⋅ − ∆ ⋅ ⋅
=

+ −
                       (3.14) 

3.2.2.  The Two-Stage and Three-Stage Linear-Neighbor Method 

The next method is the two-stage linear-neighbor (LNe or LNe2) method [60]. It is based 
on the CNe method, which is used as a predictor to calculate new pred

iu  values valid at the end of 
the actual time step. Using them I can calculate slopes for the special equidistant case: 

( )2
pred pred n n

1 11 1i i ii i
mrs u u u u
t − +− += + − −

∆
  

and then the corrector values for the two-stage LNe method: 

( )
2 2

2 2 41 n n1 1 11 1 ( )
2 2 2

m
m m

i

n n
n n i i
i i i i

r
r ru u t eu e e s t q t K u t u

mr mr
u σ

−
− −+ − +  + ∆ −

+ − + − + ∆ ⋅ − ∆ ⋅ ⋅ − ∆ ⋅ ⋅  
 

=   

For the general case, I can make the corrector step as follows:  

i 4i
new new

n+1 n n ni i i i
i i i

i i i

1 ( )
m

m
i i

r
r A A A Aeu e A t K u t u

mr mr mr
u σ

−
−  − −−

+ − + − ∆ ⋅ ⋅ − ∆ ⋅ ⋅  
 

= . (3.15) 

The values given in Equation (3.13) can be used to recalculate new
iA  again, which makes sense to 

repeat (3.15) to obtain new results. In this case, I have three stages altogether, thus the method is 
called the LNe3 method [60]. This algorithm is still second order, but more accurate than LNe2.  

3.2.3.  The CpC Algorithm  

Two-stage Constant-neighbour CpC [61], generally starts with a fractional time step with 
length p t∆ , and Constant-neighbour with full time step briefly: CpC , but here I take 1

2p = , 

because this version usually has better accuracy than for other values of p. So, in the first stage, I 
calculate new predictor values of the variables with the CNe formula, but with a 1 2t t /∆ = ∆  time 
step:  

( ) 4pred n n1 1 1 ( )
2

m m
n n

n i i
i i ii

r ru u
u u e e t q t K u t uσ− −− ++

= ⋅ + − + ∆ ⋅ − ∆ ⋅ ⋅ − ∆ ⋅ ⋅   

And ( )/2 /2 4pred n n
i 1 ( )i imr mrn i

i i i
i

A
u u e e t K u t u

mr
σ− −= + − − ∆ ⋅ ⋅ − ∆ ⋅ ⋅ .           

 

         (3.16)         

In the second stage, I can use new
pred

i
j i

j

i ij

u
A t

C R≠
= ∆ ∑  with 1t∆ and take a full-time step size corrector step 

using the CNe formula again. Thus, the final values at the end of the time step are 
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( )2 2 4
pred pred

1 n n1 1 1 ( )
2

m mn n i i
i i i i

r ru u
u u e e t q t K u t uσ− −+ − ++

= ⋅ + − + ∆ ⋅ − ∆ ⋅ ⋅ − ∆ ⋅ ⋅  

                   ( )
new

4i i1 n n

i
1 ( )m min n

i i i i
r rA

u u e e t K u t u
mr

σ− −+ = ⋅ + − − ∆ ⋅ ⋅ − ∆ ⋅ ⋅                                 (3.17) 

3.3.  The Invented Numerical Methods  
3.3.1.  The Shifted-Hopscotch Method 

The shifted-hopscotch (SH) method [62], is a new method invented by me that has the 
repeating block consisting of five stages, two of them are half, and three of them are full-time 
steps. These altogether span two integer time steps for the odd and the even cells as well, as one 
can see in Figure 3.1C. The first half-sized time step is taken for the odd cells with the following 
general formula: 

                          
( )

1
2

3
1 2

i
nn i

i n
i

u A t q
u

mr t K t uσ

+ + + ∆ ⋅
=

+ + ∆ ⋅ + ∆ ⋅ ⋅
                                                      (3.18)     

 Which is symbolized by a yellow box with the number 1 in the figure. Then, full-time steps are 
taken strictly alternately with  the following formula: 

                 ( )

( )

1
2

3
1 1 / 2 +

1   

i ii
i

i

mr u A t q
u

mr t K t u

µµ
µ

µσ

+
+ − + ∆ ⋅
=

+ + ∆ ⋅ + ∆ ⋅ ⋅
                                                         (3.19) 

The upper index µ is n for the even nodes and n+1 for the odd nodes. for the even, the odd, and 
the even cells follow again, which are symbolized by green boxes with the numbers 2, 3, and 4 in 
the figure. Finally, a half-length time step (pink box with number 5 inside) for the odd cells 
closes the calculation with the formula 

                        ( )

( )

3
2

3

1
2

1

1 +

1

n
i i

n
in

i
n
i

mr u A t q
u

t K t uσ

++
+

+

− + ∆ ⋅
=

+ ∆ ⋅ + ∆ ⋅ ⋅
                                                    (3.20) 

with condition (3.9) again. 

3.3.2.  The Leapfrog-Hopscotch Method 

The leapfrog-hopscotch (LH) method [63] is a new method invented and elaborated by 
our research team with my strong participation. It has a structure consisting of two half and 
several full-time steps as one can see in Fig. 3.1B. In the first stage (yellow box in the figure), 
the general formulas (3.18) are used. Then, for the even and odd nodes, full-time steps (denoted 
by green boxes in the figure) are taken strictly alternately with the formulas (3.19) with condition 
(3.9). It is important that always the latest available values of the neighbors are used (for 
example in 1

2
iA
µ+ ) when the new values of u are calculated, regardless of the size of the time 

step. This alternation goes on until the end of the last timestep (purple box in Figure 3.1B), 
where (3.19) is used again, but with a halved time step size, in order to reach the same final time 
point as the even nodes. 

3.3.3.  The Asymmetric Hopscotch Method 
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The Asymmetric Hopscotch (ASH) Method is also a new method similar to the SH 
method but contains less integer stages, thus using three stages instead of five (see Fig. 3.1D). 
The calculation starts with a half-time step size for the odd cell with (3.18). Then a full-time step 
is coming for the even cell with formula (3.19) and condition (3.9), and finally a half-time step 
size with (3.20), again with condition (3.9) for the last odd cell closes the calculation of the 
values. 

3.3.4.  The Pseudo-Implicit Method 

The pseudo-implicit (PI) method is a new explicit method called Algorithm 5 in [64] with 
parameter 1λ = . I heavily took part in the elaboration of this method. For Eq. (2.20) and (2.28) 
the following two-stage algorithm is applied:  

Stage 1: 3
pred

n
2

1 ( )

i

i

n
i

i
i

Au
u

mr t K t uσ

+
=

+ + ∆ ⋅ + ∆ ⋅ ⋅
                                              (3.21)  

Stage 2: ( )
2

new
1

pred n
1

1 ( )
i

i

n
i in

i
ii

mr u A
u

mr t K t u uσ
+ − +
=

+ + ∆ ⋅ + ∆ ⋅ ⋅ ⋅
                                     (3.22)  

One can see that this algorithm is fully explicit, and the convection and the radiation term is 
treated in a quite sophisticated way at the second stage, since both the n

iu  and the pred
iu  values 

are used.  

3.4.  The Optimization of  Shifted-Hopscotch Method Combinations 
I constructed and tested innovative numerical algorithms to solve the non-stationary diffusion (or 
heat conduction) equation, These methods represent a novel approach to addressing this class of 
problems 

                                              2u u
t

α∂
= ∇

∂
                                                                     (3.23) 

The new algorithms are fully explicit time-integrators obtained by a half-time step and applied 
different formulas in different stages. All of the algorithms consist of five stages, but they are 
one-step methods in the sense that when the new values of the unknown function u are 
calculated, only the most recently calculated u values are used, thus the methods can be 
implemented such that only one array of storage is required for the u variable, which means that 
the memory requirement is very low. I applied the conventional theta-method with 9 different 
values of θ  and the non-conventional CNe method to construct 105 combinations in the case of 
small systems with random parameters, and examined the competitiveness of the best algorithms 
by testing them in case of large systems against popular solvers. 

The calculation starts with taking a half-sized time step for the odd nodes (subset A) 
using the already calculated n

iu  values. Then a full-time step is made for the even nodes (subset 
B), then for the odd cells and the even nodes again. Finally, a half-size time step closes the 
calculation of the values, as one can see in Figure 3.1.C. In each stage, I use the latest available u 
values of the neighbors, which means that the constructed methods are fully explicit and the 
previous values needn’t to be stored at all. Thus, I have a structure consisting of 5 stages, which 
correspond to 5 partial time steps, which altogether span two time steps for odd and even cells, 
too. 
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By applying the well-known central difference formula (2.12) to Eq. (3.23) in one dimension, a 
system of ordinary differential equations (ODEs) can be obtained for nodes 1 2i ,...,N= − :  

2
i i-1 i i+12du u u u

dt x
α

− +
=

∆
. (3.24) 

The form of this equation for the first and last node depends on the concrete boundary conditions 
which will be discussed later. I define a matrix M with the following elements: 

ii i,i+1 i,i 12 2 2
2 (1 ), (1 ), (1 )m i N m i N m i N
x x x
α α α

−= − < < = ≤ < = < ≤
∆ ∆ ∆

, (3.25) 

which is tridiagonal in the currently discussed one-dimensional case. Now equation-system 
(3.24) can be written into a condensed matrix-form:  

du Mu
dt

=


  (3.26) 

I recall that the following general time-discretization  

( ) ( )( )2

n 1 n
n n n n+1 n+1 n+1

1 1 1 12 1 2i i
i ii i i i

u u
u u u u u u

t x
α θ θ

+

− + − +
−  = − + + − − + ∆ ∆

,  

leads to the so-called theta-method:  

( ) ( )( )n 1 n n n n n+1 n+1 n+1
1 1 1 12 1 2i i i ii i i iu u mr u u u u u uθ θ+
− + − +

 = + − + + − − +  , (3.27) 

where 2 0, 0 1
2
iim ttr i N

x
α ∆∆

= = − > < < −
∆

 is the usual mesh ratio and [ ]0 1,θ∈ . For 1
20  and 1, ,θ =  one 

obtains the implicit Euler, the Crank-Nicolson and the explicit Euler (or, more concretely, the 
forward-time central-space, FTCS) schemes, respectively [59]. If 0θ > , the theta-method is 
implicit. Now, in our shifted-hopscotch scheme, the neighbors are always taken into account at 
the same, latest time level, thus I insert m

1iu ±  into (3.27) instead of 1
n
iu ±  and 1

1
n
iu +
± , where 

1 , or 1
2

m n, n n= + +  at the first, middle and last stages, respectively. Now, instead of (3.27) I can 

write  

( ) ( )n 1 n n n+1
1 12 2 1 m m

i i i i i iu u mr u mr u mr u uθ θ+
− += − − − + + , (3.28) 

i.e. my final formula reads as follows:  

( ) ( )
( )

n
1 1n 1

1 2

1 2 1

m m
i i i

i
mr u mr u u

u
mr

θ

θ
− ++

− + +
=

+ −
. (3.29) 

In the case of 0θ = , this formula gives back the UPFD method [37], [38] with m=n, which takes 
the form for a half and a full time step, respectively:  

( ) ( )n n
1 1 1 1n 1 n 12  ,  

1 1 2

m m m m
i ii i i i

i i

mru u u u mr u u
u u

mr mr
− + − ++ +

+ + + +
= =

+ +
. (3.30) 

The other formula I use is the constant neighbor (CNe) method, which is introduced in section 
3.2.1 and now briefly restated here. The starting point is Eq. (3.24), where an approximation is 
made: when the new value of a variable n+1

iu  is calculated, I neglect the fact that the neighbors 



NUMERICAL METHODS TO SOLVE THE HEAT EQUATION 

25 
 

n
1iu −  and n

1iu +  are also changing during the time step. It means that the values of uj ( )j i≠  are 
considered as constants (that is why I call it constant-neighbor method). Taken into account the 
spatial discretization of heat equation in section 2.2 the general form of Equation (3.28) will be: 

( )
j i

jn 1 n n n+1

ij
1i i

m

i i i i
i

u
u u mr u mr u h

C R
θ θ

≠

+ = − − − + ∑ ;  

thus, the generalized theta-method for integer time steps reads as follows:  

( )
( )

n
n 1 1

1 1
i i

i

i
i

mr u A
u

mr
θ

θ
+ − +
=

+ −
  (3.31) 

Similarly, the generalized CNe formula is 

( )i in 1 n

i
1m mi

i i
r rA

u u e e
mr

− −+ = ⋅ + −  (3.32) 

and of course, for halved time steps ri and Ai must be divided by 2.  

For the sake of brevity, I will use a compact notation of the individual combinations, where 5 
data is given in a bracket, the numbers are the values of the parameter θ, while the letter ‘C’ is 
for the CNe constant neighbor method. For example (¼, ½, C, ½, ¾) means the following 5-
stage algorithm, which will be selected into the top 5 algorithm in section 3.4., and named as A2.  

Example 1. Algorithm A2 (¼, ½, C, ½, ¾), general from. 

Stage 1. Take a half time step with the (3.31) formula with θ=¼ for odd cells:  

( )

,half

1
4

n
n 1

1 8

1 12

i
i

i

i
i

mr u A
u

mr
+

 − + 
 =

+ −
, ,half

j i

j

ij2i

m

i

utA
C R≠

∆
= ∑ .  

Stage 2. Take a full-time step with the (3.31) formula with θ=½ for even cells:  

( )1
2

n
n 1

1 2
1 1

i
i

i

i
i

mr u A
u

mr
+

 − + 
 =

+ −
, 

j i

j

ij
i

m

i

u
A t

C R≠
= ∆ ∑ .  

Stage 3. Take a full-time step with the (3.32) formula for odd cells:  

( )i in 1 n

i
1m mi

i i
r rA

u u e e
mr

− −+ = ⋅ + − , 
j i

j

ij
i

m

i

u
A t

C R≠
= ∆ ∑ .  

 Stage 4. The same as Stage 2. 

Stage 5. Take a half time step with the (3.31) formula with θ= ¾ for odd cells:  

( )
( )

3
,half8

3
4

n
n 1 1

1 12

i i

i

i
i

mr u A
u

mr
+ − +
=

+ −
, ,half

j i

j

ij2i

m

i

utA
C R≠

∆
= ∑ .  

All other combinations can be constructed in this manner straightforwardly. 

3.4.1. General Definitions and Circumstances of The Examination 
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I examine 2-dimensional rectangle-structured lattices with x zN N N= ×  cells similar to 
what can be seen in Figure 3.2. I solve Eq. (2.20) subjected to randomly generated initial 
conditions i (0)u rand= , where rand is a (pseudo)random number with a uniform distribution in 
the interval (0, 1), generated by the MATLAB for each cell. I also generate different random 
values for the heat capacities and thermal resistances but with a log-uniform distribution as 
follow:  

i x,i z,i
( ) ( ) ( )10 1, ,0 10C C Rx Rx Rz Rzrand rand randC R Rα β α β α β− × − × − ×= = =  

where the coefficients C Rz,...,α β  in the exponents will be concretized later. 

I use zero Neumann boundary conditions, i.e., the system is thermally isolated. This is 
implemented naturally at the level of Eq. (2.19) since it is enough to omit those terms of the sum 
which have infinite resistivity in the denominator due to the isolated border. This implies that the 
system matrix M has one zero eigenvalue, belongs to the uniform distribution of temperatures, 
all other eigenvalues must be negative. 

 
Figure 3.2. Arrangement of the generalized variables. The double-line red arrows symbolize conductive (heat) 
transport through the resistances Rij. The blue line symbolizes thermal isolation at the boundaries of the system. 

I calculate the numerical error by comparing our numerical solutions num
ju  with the reference 

solution ref
ju  at final time fint . In Subsection 3.4.5 the reference solution will be an analytical 

solution, otherwise it is a very accurate numerical solution which has been calculated by the 
ode15s built-in solver of MATLAB with very strict error tolerance. I use the following three 
types of (global) error. The first one is the maximum of the absolute differences:  

ref num
j fin j fin0 j

Error( ) max ( ) ( )
N

L u t u t∞
≤ ≤

= − . (3.33) 

The second one is the average absolute error:  

ref num
1 j fin j fin

0 j

1Error( ) ( ) ( )
N

L u t u t
N ≤ ≤

= −∑ . (3.34) 

The third one gives the error in terms of energy in case of the heat equation. It takes into account 
that an error of the solution in a cell with a large volume or heat capacity has more significance 
in practice than in a very small cell 

ref num
j fin j fin

0 j
j

1Error( ) ( ) ( )
N

Energy C u t u t
N ≤ ≤

= −∑ . (3.35) 
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It is well known that the true solution always follows the maximum and minimum principles          
[59]. We say a method is positivity preserving if it never violates this principle, i.e., in our case 
no value of u is outside of the [ ]0 1,  interval. I am interested in how these errors depend on the 
time step size in different concrete situations. As one can see in Figure 3.1C, there are 5-time 
steps (5 stages) altogether instead of 4 in the shifted hopscotch structure, so for the sake of 
honesty I must calculate the effective time step size as 4

EFF 5t t∆ = ∆  and the errors will be plotted 
as a function of this quantity.   

3.4.2. Preliminary Tests 

I apply the following 9 different values for parameter theta: { }31 1 1 1 2 4
5 4 3 2 3 4 50, , , , , , , ,1θ ∈  

in Eq. (3.31). It means that together with the CNe formula, I have 10 different formulas and I 
insert all of these into the shifted-hopscotch structure in all possible combinations. As there are 5 
stages in the structure, I have 105=100000 different algorithm combinations. The code 
systematically constructs and tests all these combinations. After some tests, a few best 
combinations choose and continue the work only with them. For this an automatic assessment of 
the performance of the combinations is needed. The difficulty lies in the fact that methods which 
are very inaccurate or even unstable for large-time step sizes can be the most accurate for small 
time step sizes. Therefore, I choose two different final times fin 0.1, 10t = , and calculate the 
solution with a large time step size (typically fin / 4t ), then repeat the calculation for subsequently 
halved time step sizes until reaches a small value (typically around 62 10−× ). I introduce 
aggregated relative error (ARE) quantities for each type of errors defined above, which can be 
calculated for the L∞  error as follows:  

( ) ( )( )OEH shifted
1

1ARE( ) log Error( ) log Error( )
R

i

L L L
R∞ ∞ ∞

=

= −∑ , (3.36) 

which means that ARE( )L∞  is the average of the difference between the error of the original OEH 
method and the actual shifted combination in terms of orders of magnitude. Then the code 
calculates the simple average of these errors:  

( )1
1ARE ARE( ) ARE( ) ARE( )
3

L L Energy∞= + + , (3.37) 

and finally sorts the 100000 combinations in descending order according to this quantity. In the 
obtained list usually positive ARE values have been assigned the first few thousands of 
combinations, the largest ones have been typically around 2, which means that some 
combinations are roughly two orders of magnitude more accurate than the original OEH method. 
I performed this procedure in case of 4 different small systems with 

x z 2 2, 2 6, 4 4, and 3 5N N× = × × × × . The parameters C C Rx Rx Rz Rz, , , , ,α β α β α β  of the distribution of 
the mesh-cells data have been chosen to construct test problems with various stiffness ratios 
which is MAX MINλ λ , where MINλ , and MAXλ are the (nonzero) smallest and largest absolute value 
eigenvalues of matrix M.  The maximum possible time step size for the FTCS (Explicit Euler) 
scheme (from the point of view of stability) can be exactly calculated as FTCS

MAXh , for example 
1 2 or 3 2 4 or 6C C, , , , ,α = β = . I give the best 12 combinations in their short form:  

(0, ½, ½, ½, 1),    (½, ½, ½, ½, ½),     (0, C, ½, C, 1),     (0, C, C, C, 1), 
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            (¾, ⅔, ½, ⅓, ¼),   (¼, ½, C, ½, ¾),     (⅓, ⅔, C, ⅓, ⅔),   (C, ½, C, ½, C),    (3.38) 

 (⅕, ½, ½, ½, ⅘),   (¼, ½, ½, ½, ¾),     (⅓, ½, ½, ½, ⅔),   (0, ½, ½, C, 1). 

Later preserves the positivity of the solution prove for  formulas θ=1 and CNe and therefore if 
only these two formulas are used in a combination, the whole algorithm will preserve positivity. 
Since this property is considered valuable [65-70], I repeated the above experiments for these 
25=32 combinations (instead of the 100000 above). I concluded that the (C, C, C, C, C) 
combination is the most accurate among these, therefore I further investigate 13 combinations 
altogether. I emphasize that these are the results of only preliminary (one might say tentative) 
tests, with the sole purpose of reducing the huge number of combinations into a manageable 
number, and I haven’t stated anything exactly until this point. 

3.4.3. Case study I and Comparison with Other Solvers 

I examine a grid similar to the one in Figure 3.2 with isolated boundary, but the sizes 
were fixed to 100xN = and 100zN = , thus the total cell number was 10000, while the final time 
was 0.1fint = . 

C2,  4,  1,  2,C Rx Rz Rx Rzα β α α β β= = = = = =                                                               (3.39) 

The exponents introduced above have been set to the following values which means that log-
uniformly distributed values between 0.01 and 100 have been given to the capacities. The 
generated system can be characterized by its stiffness ratio and FTCS

MAXh  values, which are 73.1 10×  
and 47.3 10−× , respectively. The performance of new algorithms was compared with the following 
widely used MATLAB solvers:  

• ode15s, a first to fifth order (implicit) numerical differentiation formulas with 
variable-step and variable order (VSVO), developed for solving stiff problems;  

• ode23s, a second order modified (implicit) Rosenbrock formula; 

• ode23t, applies (implicit) trapezoidal rule with using free interpolant;   

• ode23tb, combines backward differentiation formula and trapezoidal rule;   

• ode45, a fourth/fifth order explicit Runge-Kutta-Dormand-Prince formula; 

• ode23, second/third order explicit Runge-Kutta-Bogacki-Shampine method;  

• ode113, 1 to 13 order VSVO Adams-Bashforth-Moulton numerical solver.                      

For all used MATLAB solvers, tolerances have been changed over many orders of magnitude, 
from the maximum value 3'AbsTol' = 'RelTol'  'Tol' = 10 to the minimum value 

5'AbsTol' = 'RelTol'  'Tol' = 10− . I have plotted the L∞ errors and energy errors as a function of the 
effective time step size EFFt∆ , and based on this, I selected the following top 5 combinations from 
those listed in (3.38) and after that:   

S1 (C, C, C, C, C), 

S2 (¼, ½, C, ½, ¾), 

S3 (¼, ½, ½, ½, ¾), 

S4 (0, ½, ½, ½, 1), 
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S5 (0, ½, ½, C, 1) 

In Figures 3.3 and 3.4, I present the error and energy error functions only for these top 5 
combinations, while in Figure 3.5 one can see the energy errors vs. the total running times. 
Furthermore, Table 3.1 presents some results that were obtained by our numerical schemes and 
the “ode” routines of MATLAB. Notably, the results demonstrate that the best combination of 
the shifted-hopscotch method achieved a maximum error of 10−8, an energy error of 10−6, and a 
running time can reach  10−2 which represents approximately four orders of magnitude better 
performance compared to the ordinary and MATLAB routines. 

 
Figure 3.3. L∞  errors as a function of the effective time step size for the first (moderately stiff) system, in the case 

of the original OEH method (OEH REF), the original one stage CNe method, the new algorithms A1-A5. 

 
Figure 3.4. Energy errors as a function of the effective time step size for the first (moderately stiff) system, in the 

case of the original OEH method (OEH REF), one stage CNe method, the new algorithms A1-A5. 



NUMERICAL METHODS TO SOLVE THE HEAT EQUATION 

30 
 

 
Figure 3.5. Energy errors as a function of the running time for the first (moderately stiff) system, in the case of the 

original OEH method (OEH REF), one stage CNe method, the new algorithms A1-A5, and different MATLAB 
routines. 

Table 3.1. Comparison of different shifted hopscotch algorithms and MATLAB routines for the moderately stiff 
system of ten thousand cells.  

Numerical Method Running Time (sec) ( )LError ∞  1( )LError  Energy Error  

ode15s, 3Tol 10=    23.97 10×  21.3 10−×  31.1 10−×  15.62 10×  

ode23s, 3Tol 10=    34.346 10×  44.2 10−×  53.0 10−×  11.5 10−×  

ode23t, 8Tol 10−=    28.49 10×  72.9 10−×  82.0 10−×  41.0 10−×  

ode23tb, 2Tol 10=    24.28 10×  44.1 10−×  52.9 10−×  41.4 10−×  

ode45, 1Tol 10−=  12.1 10×  33.3 10−×  56.5 10−×  32.7 10−×  

ode23, 6Tol 10−=    12.7 10×  73.7 10−×  99.6 10−×  54.8 10−×  

ode113, 6Tol 10−=  11.91 10×  76.7 10−×   104.2 10−×  61.9 10−×  

A1, 41.25 10t −∆ = ×  11.97 10−×  69.06 10−×  72.63 10−×  32.56 10−×  
A2, 31.25 10t −∆ = ×  22.02 10−×  43.39 10−×  66.93 10−×  25.08 10−×  

A3, 42.5 10t −∆ = ×  11.01 10−×  51.88 10−×  73.64 10−×  33.44 10−×  

A4, 45 10t −∆ = ×  25.03 10−×  41.06 10−×  61.07 10−×  31.42 10−×  
A5, 52.5 10t −∆ = ×  19.75 10−×  72.62 10−×  94.44 10−×  53.15 10−×  
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3.4.4. Case Study II and Comparison with Other Solvers 

I tested our new algorithms and the conventional solvers for a harder problem as well. 
Thus, new values have been set for the α and β exponents:    

C3,  6,  3,  1,  4C Rx Rz Rx Rzα β α α β β= = = = = = . (3.40) 

This means that the width of the distribution of the capacities and thermal resistances have been 
increased and the system has been acquired some anisotropy, since the resistances in the x 
direction are two orders of magnitude larger than in the z direction on average. With this 
modification I have gained a system with much higher stiffness ratio, 112.5 10× , while the 
maximum allowed time step size for the standard FTCS was 61.6 10EE

MAXh −= × . All other 
parameters and circumstances remained the same as in Subsection 3.4.3. In Figure 3.6 and 3.7 
the L∞ errors and energy errors have been presented as a function of the total running time. Also, 
the results are approximately three to four orders of magnitude better performance compared to 
the ordinary and MATLAB routines.    

 
Figure 3.6. L∞  errors as a function of the running time for the second (very stiff) system, in the case of the original 

OEH method (OEH REF), one stage CNe method, the new algorithms A1-A5 and different MATLAB routines. 
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Figure 3.7. Energy errors as a function of the running time for the second (very stiff) system, in the case of the 
original OEH method (OEH REF), one stage CNe method, the new algorithms A1-A5, and different MATLAB 

routines. 

Table 3.2. Comparison of different shifted hopscotch algorithms and MATLAB routines for the very stiff system of 
ten thousand cells.  

Numerical Method Running Time (sec) ( )LError ∞  1( )LError  Energy Error  

ode15s, 3Tol 10=  26.8 10×  74.1 10−×  81.5 10−×  57.5 10−×  

ode23s, 3Tol 10=  35.694 10×  44.7 10−×  42.4 10−×  11.2 10−×  

ode23t, 3Tol 10=  33.1 10×  28.1 10−×  32.1 10−×  11.06 10×  

ode23tb, 3Tol 10=  32.037 10×  72.3 10−×  81.2 10−×  55.8 10−×  

ode45, 3Tol 10=  39.480 10×  28.1 10−×  51.5 10−×  27.0 10−×  

ode23, 3Tol 10=  35.317 10×  61.2 10−×  102.3 10−×  61.1 10−×  

ode113, 3Tol 10=  36.046 10×  48.9 10−×  71.7 10−×  47.7 10−×  

A1, 41.25 10t −∆ = ×  11.98 10−×  28.46 10−×  44.55 10−×  06.72 10×  
A2, 65.0 10t −∆ = ×  04.17 10×  44.81 10−×  63.69 10−×  26.65 10−×  

A3, 62.5 10t −∆ = ×  09.85 10×  41.99 10−×  77.65 10−×  21.31 10−×  

A4, 41.25 10t −∆ = ×  11.95 10−×  33.28 10−×  68.88 10−×  32.68 10−×  
A5, 75 10t −∆ = ×  14.95 10×  61.55 10−×  98.71 10−×  41.69 10−×  
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3.4.5. Verification by Comparison to Analytical Results 

I consider very recent nontrivial analytical solutions of Eq. (3.23) found by Barna and 
Mátyás [4] by a similarity transformation technique. Both of them are given on the whole real 
number line for positive values of t as follows  

2

4
1 3/2( , )

x
exact txu x t e

t
α

−
= , (3.41) 

and 
2

2
4

2 5/2 1
6

x
exact tx xu e

tt
α

α

− 
= −  

 
. (3.42) 

I reproduce these solutions only in finite space and time intervals [ ]1 2x x ,x∈  and [ ]0 fint t , t∈ , 
where 1 2 0 fin5 5 0 5 1x , x , t . , t= − = = = . The space interval is discretized by creating nodes as follows: 

1 0 1000 0 01jx x j x , j ,..., , x .= + ∆ = ∆ = . I prescribe the appropriate Dirichlet boundary conditions at the 
two ends of the interval:  

2

4
1 3/2( , )

bx
b t

b
x

u x x t e
t

α
−

= = , (3.43) 

and 
2

2
4

2 5/2( , ) 1
6

bx
b b t

b
x x

u x x t e
tt

α
α

− 
= = −  

 
, (3.44) 

where { }1 2bx x , x∈ . I obtained that the new methods are convergent and the order of convergence 
is two. In Figure 3.8 the L∞  errors as a function of the effective time step size hEFF are presented 
for the case of the u2 solution for the top 5 algorithms and a first-order “reference-curve” for the 
original CNe method. I note that very similar curves have been obtained for the u1 solution, as 
well as for other space and time intervals.  
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Figure 3.8. The L∞  errors as a function of EFFt∆  for the u2 solutions. 

3.5.  The Optimization of  Leapfrog -Hopscotch Method Combinations 
In a manner similar to the Shifted-Hopscotch method, the hopscotch space structure was 

combined with leapfrog time integration. Using the theta method with nine different values of θ, 
along with the recently invented CNe method.  105 combinations were constructed. Via 
subsequent numerical experiments, this huge number was decreased by excluding the 
combinations that underperformed and, finally, only the top five of these were retained. two-
dimensional stiff systems containing 10,000 cells with completely discontinuous random 
parameters and initial conditions, so the results presented just for these five algorithms. 

The best algorithms were compared with other methods for a large, moderately stiff 
system with the same procedure of 3.4.3, and for a large, very stiff system with the same 
procedure of 3.4.4.  for the same system size and final time. The following top 5 combinations 
are chosen based on the best performance of the maximum and energy error.  

L1 (C, C, C, C, C), 

L2 (0, ½, ½, ½, ½), 

L3 (⅕, ½, ½, ½, ½), 

L4 (¼, ½, C, ½, ½), 

L5 (⅕, ½, C, ½, ½). 

3.5.1.Verification by Comparison to Analytical Results Using a Non-Uniform Mesh 

 The nontrivial analytical solution [4] in section 3.4.5 of Eq. (3.23) is used here, given on 
the whole real number line for positive values of t as in Eq. (3.42), where the value 1α =  is used, 
this solution was reproduced by prescribing the Dirichlet boundary conditions calculated using 
the analytical solution at the two ends of the interval. Now this kind of information is not used, 
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but construct a large-scale non-equidistant spatial grid according to the following procedure. 
First the coordinates of the cell borders are define by the formula 

( )4
1 1 0 0 00 0 01 exp 1 1000j j j jx x x , x , x . , x x j , j ,...,− −= + ∆ = ∆ = ∆ = ∆ γ = .  

where 1110−γ = . Thus I have a quite dense system of nodes close to the origin which becomes less 
and less dense as one is getting further from the origin, towards 5922 3.+ , which is the right 
boundary of the mesh. Then the cell-centers are calculated straightforwardly:  

1 0 0 1 1000
2

j
j j

x
X X , X , j ,...,−

∆
= + = = .  

Now it is straightforward to reflect this structure to the origin to create the mirror image of the 
mesh at the negative side of the x-axis obtaining 2000 cells altogether. Now at the vicinity of the 
origin the diameter of a cells are 0.01, which are increasing as it is getting further from the 
origin, first very slowly, then more and more rapidly until it reaches 1000 211 6x .±∆ = . The 
resistances and the cell capacities then can be calculated as: 

, 1,..., 2000i iC x i= ∆ =  and 1 , 1,...,1999i i iR X X i+= − =  

zero Neumann boundary conditions are taken into account which is a good approximation 
because the values of the initial function are very close to zero far from the origin. The stiffness 
ratio is 115 7 10. ×  for this mesh, while FTCS 5

MAX  5 10t −∆ = × . As in shifted hopscotch, the analytical 
solution is reproduce in finite time interval [ ]0 fint t , t∈ , where 0 fin0 5 1t . , t= = . In Figure 3.9 the L∞  
errors as a function of the time step size are presented for the case of the u solution for the top 5 
leapfrog-hopscotch algorithms, a first-order “reference-curve” for the original CNe method and 
the Heun method. These results verify not only the second order convergence of the numerical 
methods, but the procedure of generalizing the calculations to non-uniform grids. One can also 
see that the L2 and L3 algorithms reach the minimum error (determined by the space 
discretization) for larger ∆t than the CFL limit for the Heun method. 
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Figure 3.9. The L∞  errors as a function of time step size for the space-dependent mesh to reproduce the exact 
solution given in (3.42). 

3.6.  The Optimization of Pseudo-Implicit  Method Combinations 
 By the iteration of the theta-formula and treating the neighbors explicitly, a new 2-stage 

explicit algorithm was constructed to solve partial differential equations containing a diffusion 
term and two reaction terms. One of the reaction terms is linear, which may describe heat 
convection, the other one is proportional to the fourth power of the variable, which can represent 
radiation.  analytically prove for the linear case that the order of accuracy of the method is two 
and that it is unconditionally stable. The diffusion-reaction equation (2.20) is going to be studied. 

Algorithm 1, UPDF for the diffusion-reaction-radiation equation  

                          ( )
( )3

1 11

1 2

i

i

n n n
i i in

i
n
i

u mr u u q t
u

mr K t t uσ

− ++
+ + + ∆

=
+ + ∆ + ∆

.                                                     (3.45) 

 It is easy to see that this formula preserves positivity similarly to the original UPFD formula for 
arbitrary nonnegative values of i ir , q , K  and σ , thus for the strongly nonlinear case as well. Its 
accuracy is not very good, thus a two-stage method proceeds to construct as well. 

the UPFD idea with the so-called θ -method is going to be combined, which can be applied to the 
diffusion term in the following way:  

( ) ( )( )n 1 n n n n n+1 n+1 n+1
1 1 1 12 1 2i i i ii i i iu u mr u u u u u uθ θ+
− + − +

 = + − + + − − +  ,           (3.46) 

Where [ ]0 1,θ∈ . If 1θ = , this scheme is the forward-time central-space (FTCS) scheme, which is 
basically the explicit Euler time integration. For smaller values of θ , this formula is implicit, and 
for 1

20,θ =  one has the implicit (Euler) and the Crank-Nicolson method, respectively [61]. Using 
the trick above and incorporating the reaction and the source terms I can write: 

( ) ( )3n 1 n n n+1 n n 1 1
1 12 2 1 i i

n n n
i i i i i i ii iu u mr u u u u tK u tq u uθ θ σ+ + +

− + = + − − − + + − ∆ + ∆ +  .      (3.47) 

If one takes 0θ = , the original UPFD treatment is obtained back. The point is that this more 
general formula can also be easily rearranged to obtain an explicit formula, according to which 
the new value of the u variable has the following form in the 1D equidistant case: 

Algorithm 2, theta-generalization of Algorithm 2 

( ) ( )
( ) ( )3

1 11
1 2

1 2 1

i

i

n n n
i i in

i
n
i

mr u mr u u tq
u

mr tK t u

θ

θ σ

− ++
− + + + ∆

=
+ − + ∆ + ∆

. (3.48) 

Since started from an implicit formula (3.46) formally but made it fully explicit, these methods 
started to be called pseudo-implicit. The main novelty of this study is that formula (3.48) is 
organized into a two-stage method as follows. The calculation starts with taking a fractional-
sized time step using the already known n

iu  values, and then a full-time step is made.  

Algorithm 3, 2-stage pseudo-implicit method for the diffusion-reaction-radiation equation  

Stage 1. Take a partial time step 1 0t p t , p∆ = ∆ >  using formula (3.48) with parameter θ1:  
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( ) ( )
( ) ( )

1 1 1 1

3
1 2 1 1

1 1pred 1 2

1 2 1

i i

i

n n n n
i ii i

i n
i

pmr u pmr u u q t v K t u
u

pmr v K t t u

θ

θ σ

− +− + + + ∆ − ∆
=

+ − + ∆ + ∆
.  

Stage 2.  pred
iu  is redefine by calculating the linear combination with 0 1λ< ≤ :  

( )pred pred 1 n
ii iu u uλ λ= + − .         (3.49) 

 Take a full time step with the (3.48) formula with parameter θ2 :  

( ) ( ) ( )
( ) ( ) ( )

2 1 2

2
2 1 2

pred pred pred
1 11

pred

1 2

1 2 1 1

i i

i

n n
i i ii in

i
n
ii

mr u mr u u q t K t w u w u
u

mr w w K t t u u

θ

θ σ

− ++
− + + + ∆ − ∆ +

=
+ − + − − ∆ + ∆

,                  (3.50)         

Where 1 2 1 2v , v , w , w  are real numbers which are considered as free parameters.The 
mathematically correct form of (3.49) would be ( )predlin 1 n

i iiu u uλ λ= + − , but it is  immediately put 
down in the form which is to be used in a computer code to spare memory. also note that with 
this treatment of the nonlinear term a second-order method is obtain with very good stability 
properties. 

Algorithm 4: for the diffusion-reaction-radiation equation  

Stage 1. Take a partial time step 1 02
tt ,λλ

∆∆ = > :  

( )( ) ( )
( )

1

3
1 1

1 1pred
11 1 2

1

i

i

n n n
i i i

i n
i

mrmr u u u q t
u

mr K t t u

λ λ

σ

− ++ − + + + ∆
=

+ + ∆ + ∆
.                             (3.51)  

Stage 2. Calculate the linear combination ( )pred pred 1 n
ii iu u uλ λ= + −  

Take a full-time step:  

( ) ( ) ( )
( )2

pred pred pred
1 11

pred

1

1

i i

i

n n
i iii in

i
n
ii

mr u mr u u q t K t u u
u

mr K t t u uσ

− ++
− + + + ∆ + ∆ −

=
+ + ∆ + ∆

.                (3.52)  

3.6.1. Verification Using an Analytical Solution 

The following analytical solution  of Eq. (2.20) is constructed for 1 2, Kα = =  and 
( ) 4 4 4x t x tq x,t t e eσ − −= + :  

exact ( , ) x tu x t te −= . (3.53) 

Here this analytical solution numerically reproduces for ( ) [ ] [ ]0 5 1 1 1t ,x . , ,∈ × −  and 3σ = . The initial 
condition  

0.5( , 0.5) 0.5 xu x t e −= = ,  

and the Dirichlet boundary conditions at the ends of the interval 
1 1( 1, ) ,   and ( 1, )t tu x t te u x t te− − −= − = = =   
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are obtained using the analytical solution. The (global) numerical error is the absolute difference 
of the numerical solutions num

ju  produced by the examined method and the reference solution ref
ju  

(which is the analytical solution here) at final time fint . I use these individual errors of the nodes 
or cells to calculate the maximum error Eq.(3.33).  

 
Figure 3.10. The L∞ for the numerical solutions of the diffusion-reaction-radiation equation in the case of 

Algorithm 1 and the new pseudo-implicit Algorithm 3 for three different values of parameter λ . 

 



USE EFFICIENT METHODS TO SOLVE REAL-LIFE HEAT TRANSFER PROBLEMS 

39 
 

4. USING EFFICIENT METHODS TO SOLVE REAL-LIFE HEAT TRANSFER 
PROBLEMS   

In the previous sections, the algorithms have been tested under general circumstances 
using discontinuous random parameters and initial conditions. I have shown that they can 
provide quite accurate results and are much faster than the professionally optimized MATLAB 
‘ode’ routines. In this section, I perform systematic tests on the building walls by varying some 
parameters of the system and the mesh to examine how the performance of the individual 
methods changes and which of them is the best choice under different circumstances. 

4.1. Calculate The Heat Conduction in an Insulated Wall  
Calculating heat transfer in building components is an important and nontrivial task. 

Thus, in this current work, 13 numerical methods (CN, UPFD, OOEH, ROEH,  LNe2, LNe3, 
CpC, Heun, PI, DF, RRK, SH, and LH) were extensively examined to solve the heat conduction 
equation (2.20) in building walls. Eight of the used methods are recently invented explicit, 
unconditionally stable algorithms. 

 
4.1.1. The Geometry and Mesh Generation:  

As one can see in Figure 4.1, a one-layer wall consisting of brick only and two-layer 
walls consisting of brick and glass wool insulator is considered. 

 
Figure 4.1. (A) One-layer wall, (B) and (C) wall with insulator. 

A piece of wall with volume 1 m ×  1 m ×  1 m is considered. However, no physical quantities 
are changing in the y-direction (perpendicular to the surface of Figures 4.1 and 4.2), thus that 
dimension is irrelevant. It means I deal only with a cross-section, which is a two-dimensional 
problem from the mathematical point of view and thus 1iy∆ =  can be used. So, several meshes of 
size 1m2 are constructed, which means ( ) [ ] [ ]0 1 0 1x,z , ,∈ × . The shape of the cells is square in the 



USE EFFICIENT METHODS TO SOLVE REAL-LIFE HEAT TRANSFER PROBLEMS 

40 
 

equidistant mesh and rectangular in the non-equidistant meshes. The heat capacity of the cells 
can be given as i i i i iC c x zρ= ∆ ∆ , while the thermal resistance in the x-direction has the approximate 

formula i
i

i i

x
Rx

k Ax
∆

≈ , where iAx  is the surface element perpendicular to x. Since now it can be given 

as i i i iAx y z z= ∆ ∆ = ∆ , the horizontal and vertical resistances can be given in case of a 
homogeneous material and uniform mesh as 

i
i

i i

x
Rx

k z
∆

≈
∆

 and i
i

i i

z
Rz

k x
∆

≈
∆

,  

respectively. If the material properties or the sizes of the two neighboring cells are different, for 
the resistance between cells i and i + 1 one can write  

1

1 12 2
i i

i
i i i i

xx
Rx

k z k z
+

+ +

∆∆
≈ +

∆ ∆
,  

and if the cell j is below the cell i, I have 

2 2
ji

i
i i j j

zz
Rz

k x k x
∆∆

≈ +
∆ ∆

  

for the vertical resistance. 

 
Figure 4.2. (A) Abrupt change. (B) Gradual change in the x direction. 

An equidistant grid and non-equidistant grids are applied to discretize the space variables in both 
the one layer and the multilayer cases. The cell number along axis x is set to Nx = 100. Similarly, 
the cell number along axis z is Nz = 100, except in Section 4.1.3.2 where 80x zN N= = . Thus, I 
have a grid with a total cell number 10000x zN N N= =  (and 6400N =  in Section 4.1.3.2). It should 
be noted that the temperature in the middle of the cell was considered the temperature of the cell. 
However, Dirichlet boundary conditions are used to reproduce an analytical solution, therefore 
the boundary of the system should be in the middle of the cells belonging to the boundary. This 
issue is solved by increasing the size of the cells, so in the case of an equidistant grid and 

100x zN N= = , and 0 0101x z .∆ = ∆ =  instead of just 0.01. 
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In the case of non-equidistance, I consider wide cells on the left side of the wall and small ones 
on the right side of the wall. This is implemented in two different ways. In case of abrupt change, 
an equidistant coarse mesh 0 0105x .∆ = at the left 50% of the cells, and an equidistant fine mesh 

0 0097x .∆ =  at the right side are used. 

For a gradual change, the width of the cells were decreased as a geometric series as follows. For 
1r ≠ , the sum of the first n + 1 terms of a geometric series, up to and including the rn term, is 

1
2 3

0

1......
1

n n
n k

k

a a a a a a a γγ γ γ γ γ
γ

+

=

 −
+ + + + + = =   − 

∑   

The 0.98γ = , 1xn N= − , and a = 0.0234 used. This means that on the left side 1 0.0234x∆ =  and it 
is gradually decreased to 99

10.98 0.00317
xNx x∆ = ⋅∆ = . The same abrupt and gradual change can be 

implemented in the z-direction. 

In the multilayer case, the left 50% of the cells were always brick and the right 50% were 
insulator. It implies that, if the mesh is equidistant, the volume of the brick and the insulator is 
the same as in Figure 4.1.C. However, if abrupt or gradual change in the x-direction, the 
thickness of the insulator is smaller, similar to the case in Figure 4.1.B. 

I always use equidistant temporal discretization with time step size, and n
iu  denotes the 

temperature of cell i at time moment n t∆ . 

4.1.2. The Materials, and Boundary Conditions:  

In the present work, real material properties are listed in Table 4.1. 

Table 4.1. The properties of the materials used.  

 ( )3kg mρ −⋅  ( )1 1  W m Kk − −⋅ ⋅  ( )1 1  J kg Kc − −⋅ ⋅  

Brick 1600 0.73 800 
Glass wool 200 0.03 800 

 

Different initial and boundary conditions are applied for both the one-layer and the multilayer 
cases as follows: 

I. Sinusoidal initial condition with zero Dirichlet boundary condition. 

The initial condition is the product of two sine functions:  

( , , 0) sin( )sin( )u x z t x zπ π= = . (4.1) 

The simplest zero Dirichlet boundary conditions are used:  

( 0, , ) ( 1, , ) ( , 0, ) ( , 1, ) 0u x z t u x z t u x z t u x z t= = = = = = = = . (4.2) 

Anyone can easily check that the analytical solution to this problem is  
22( , , ) sin( )sin( ) e tu x z t x y ππ π −= , (4.3) 

valid only in homogeneous material, i.e., in a one-layer wall. 

II. Linear initial condition with combined boundary conditions. 
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The initial condition is a linear function of the z variable: 

( ), , 0 30 15u x z t z= = − .  

Neumann boundary condition at the top and bottom of the wall, meaning thermal isolation:  

( , 0, ) ( , 1, ) 0z zu x z t u x z t= = = = .  

The space-dependent temperature at the left boundary:  
( )0, , 30 15u x z t z= = − .  

The time-dependent temperature at the right boundary:  

( ) ( ) t1, , u 1, 0, 0 eu x z t x z t λ= = = = = ⋅ ,  

where λ  = 0.00004. The final time was 10,000, which means that the temperature at the right 
boundary is gradually increased from 30 C°  to 44 75 C. ° . 

I note that in case II, I chose such complicated boundary conditions to demonstrate that the 
methods perform well even in these cases. 

4.1.3. The Simulation Results  

I have used Heun’s method as a reference solution to calculate the maximum error and 
energy error with an extremely small-time step size 0 002t .∆ = . I have chosen Heun’s method for 
reference because this is the most widely tested algorithm among the examined methods. 

4.1.3.1. Verification Using the Analytical Solution 

I simulated a one-layer brick wall (see Figure 4.1.A). As it is written in point I. above, I applied 
sinusoidal initial temperature distribution Eq.(4.1) and zero Dirichlet boundary condition (4.2) 
using the analytical solution Eq.(4.3) at ( )fin 10000 st = . I made the simulations in all the possible 
six cases, which are the following:  

(a) Equidistant mesh. 
(b) Abrupt change in the x-direction, equidistant mesh in the z-direction. 
(c) Abrupt change in both x and z directions. 
(d) Gradual changing in the x-direction, equidistant mesh in the z-direction. 
(e) Gradual changing in both x and z directions. 
(f) Abrupt change in x-direction, gradual changing in z-direction. 

The obtained results are very similar for all the cases and the residual error (the error for very 
small time step sizes due to space discretization) is below 10−4. This means that the codes for 
equidistant and non-equidistant meshes are successfully verified. In Figures 4.3 and 4.4, the 
errors as a function of the time step sizes are presented in log-log diagrams for cases (a) and (f), 
respectively. One can see that the UPFD and the CNe methods are first order while the others are 
second order in the time step size, as is expected. Note that the hopscotch algorithms, especially 
the original OOEH, are more accurate than the other algorithms. The Heun’s method is quite 
accurate once I am below the CFL limit, but above this limit it produces no meaningful results. 
In Figures 4.5 and 4.6, the errors as a function of the running times are presented for the same 
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cases. To reduce the effect of the fluctuations in running time measurements, I averaged out the 
running times of five different runs. As I expected, the differences of the running times for a 
fixed time step size are mostly caused by the different number of stages, e.g. the LNe3 method 
consists of three stages and therefore its curve is shifted slightly to the right relative to all other 
methods in Figures 4.5 and 4.6. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3. The maximum errors as a function of the time step size for the 13 examined methods in the case of an 
equidistant mesh. 

 
Figure 4.4. The maximum errors as a function of the time step size for the abrupt change in the x-direction and 

gradual change in the z-direction. 
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Figure 4.5. The maximum errors as a function of the running time for the 13 examined methods in the case of an 
equidistant mesh. 

 

 

 

 

 

 

 

 

 

Figure 4.6. The maximum errors as a function of the running time for the abrupt change in the x-direction and 
gradual change in the z-direction. 

4.1.3.2. Realistic Case with Nontrivial Boundary Conditions 

In this subsection, the initial condition is a linear function of space, while the boundary 
conditions are complicated as it is written in point II. The Neumann boundary conditions for 
upper and lower boundaries are implemented by setting the appropriate resistances to infinity, 
implying that the matrix elements describing heat transfer through the boundary vanish. First, I 
perform the simulation for the one-layer wall for two different grids (equidistant and gradual 
change in both directions), and only then for the insulated wall.  
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In Figure 4.7, I present the maximum errors for a multi-layer wall with an equidistant mesh. For 
the non-equidistant mesh, the maximum errors and the energy errors are presented in Figures 4.8 
and 4.9, respectively. From the figures, it is evident that the LH method can easily cope with this 
complicated heat-conduction problem as well. 

Figure 4.10 presents the final temperature contours in the case of simple wall and insulated wall, 
while the right-side temperature profile at medium height can be seen in Figure 4.11. One can 
also observe that the heat from the outer side of the insulator penetrates more slowly into the 
wall in the case of the insulated wall.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7. The maximum errors as a function of the time step size for the equidistant mesh for a wall with 
insulation. 

 

 

 

 

 

 

 

 

 

Figure 4.8. The maximum errors as a function of the time step size for the non-equidistant mesh for a wall with 
insulation. 
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Figure 4.9. The energy errors as a function of the time step size  for the non-equidistant mesh for a wall with 
insulation 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10. The temperature distribution contour for the equidistant mesh at the final time in case of: a wall (left), 
and a wall with insulation (Right) 
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Figure 4.11. The temperature u °C as a function of the cell index in the x direction at the middle row ( )0 5z .≈  in 

the case of the reference solution (Ref) and the leapfrog-hopscotch (LH) method for 400t∆ =  in the case of the 
one-layer wall and the insulated wall using an equidistant grid. 

4.1.4. The Summary of The Present Section 

I conducted a numerical study on transient heat conduction in a two-dimensional wall, 
both with and without insulation. I employed eight newly developed and four traditional explicit 
and stable algorithms, along with the well-known Heun method. 

To verify my results, I used an analytical solution of the heat equation with one equidistant and 
five non-equidistant grids for a wall with homogeneous material properties (a single brick layer). 
I then examined the insulated wall using the same grid configurations. The boundary condition 
varied spatially on the brick side and temporally on the insulator side. All methods demonstrated 
convergence, but their performance varied depending on the conditions. 

The methods have the following advantages and disadvantages: 

1. The CNe and UPFD are first-order methods and thus less accurate, whereas the other 
methods are second-order. However, the RRK behaves as a first-order method for large 
and medium-time step sizes. 

2. For uniform (non-stiff) problems, the OOEH method is the most accurate for large and 
medium-time step sizes. However, with increased stiffness, it can produce larger errors 
for large-time steps. The LH method consistently produces acceptable errors and is 
usually the most accurate for stiff systems. 

3. Heun’s method is conditionally stable and was divergent for most of the time step sizes 
used, while all other methods are unconditionally stable. 

4. The CNe, UPFD, LNe2, LNe3, and CpC methods preserve positivity for any time step 
size, although they are the least accurate for medium and small-time step sizes. 
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5. The hopscotch methods (OOEH, ROEH, SH, and LH) require a special bipartite grid but 
do not need an additional array for temperature storage, minimizing memory 
requirements. Other methods require at least one extra array for temperature storage. 

6. The CNe, UPFD, OOEH, ROEH, DF, SH, and LH methods require only one calculation 
of the new temperature values per cell per time step, making them the fastest. The LNe2, 
CpC, Heun, PI, and RRK methods require two calculations per cell per time step, and the 
LNe3 requires three, making it approximately three times slower than the CNe method. 

7. The DF method is a two-step method that needs to be initiated by another method. 

In conclusion, I recommend using the OOEH or possibly the LH method for homogeneous 
material properties and an equidistant grid. For other cases, the LH, and possibly the SH and DF 
algorithms, are advisable. These methods provide accurate results with significantly larger time 
step sizes, making them much faster than standard explicit methods prone to instability. 
However, if unconditional positivity is essential, the LNe3 method should be used for simulating 
heat conduction. 

4.2. Calculate The Heat Conduction, Convection, and Radiation in an 
Insulated Wall with Thermal Bridging 

In the current work, I examined 14 numerical methods (ExpE, NS-ExpE, Heun, UPFD, 
DF, NS-DF, RRK, PI, OOEH, NS-OEH, ROEH, LH, SH, and ASH ) to solve the heat equation 
(2.20) inside building walls. I considered heat conduction, convection, and radiation, in addition 
to heat generation. Five of the used methods are recently invented explicit algorithms that are 
unconditionally stable for conducting problems 

4.2.1. The Geometry and Mesh Generation:  

As one can see in Figure 4.12, I consider the following cases:  

A) The surface of the wall is made of brick only. 

B) Two-layer cross-section of a wall consisting of brick and glass wool insulator. 

C) The same two-layer cross-section with a steel structure thermal bridge. 

 
 

 

 

 

 

 

 

 

 

Figure 4.12. (A) One-layer wall, (B) wall with insulator, and (C) wall with insulator and thermal bridge. 
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In a similar way to generate the mesh in section 4.1.1, I generate the mesh of the current 
geometries. I apply an equidistant grid in the case of the surface of the wall, while equidistant 
and non-equidistant grids to the cross-section of the wall with an insulator. In the cross-section 
case, the left 50% of the cells are always brick and the right 50% are insulator for programming 
simplicity. It implies that the volume of the brick and the insulator is the same in the equidistant 
case. However, if I have a gradual change in the x-direction, the thickness of the insulator is 
smaller (0.269m). The thermal bridge has the same thickness as the insulator in the x direction, 
thus the horizontal position of the bridge is from x=0.5m to x=1m for equidistant and from 
x=0.731m to x=1m for the non-equidistant mesh. The height of the bridge is one cell (1cm) in the 
z direction, i.e., 0.01m, while it is positioned in row number 50 from z=0.49m to z=0.50m.  

4.2.2. The Materials, and Boundary Conditions:  

In the present study, real material properties are taken into account. For the conduction 
term, they are listed in Table 4.2.  

Table 4.2. The properties of the materials used [65]. 

 ( )3kg mρ −⋅  ( )1 1  W m Kk − −⋅ ⋅  ( )1 1  J kg Kc − −⋅ ⋅  

Brick 1600 0.73 800 

Glass wool 200 0.03 800 

Steel structure 7800 16.2 840 

I use zero Neumann boundary conditions in all cases for all boundaries, which forbids 
conductive heat transfer at the boundaries: 

( , 0, ) ( , 1, ) ( , 0, ) ( , 1, ) 0u u u ux z t x z t x z t x z t
x x z z
∂ ∂ ∂ ∂

= = = = = = = =
∂ ∂ ∂ ∂

. 

This is implemented by setting zero for the matrix elements describing heat conduction through 
the boundary via the setting of the appropriate resistances to infinity.  

I. Surface area. In this case, the radiation and convection transfer heat to the y 
direction, i.e., perpendicular to the plane of Fig. 4.12. 

The initial condition is a linear function of the z variable:  

( ), , 0 303 293u x z t z= = − .  

I know that this vertical change of initial temperatures may be rare in the reality, but with this, I 
can avoid the case when nothing is changing along the z direction which would be a 1D problem 
mathematically.  

For the heat convection, I have used values from the literature [65] for the convection heat 
transfer coefficient hc, as shown in Table 4.3. The universal Stefan-Boltzmann constant 

2 4
85

K
67 10 W

m
. −

⋅
⋅  is multiplied by the appropriate emissivity constant since the surface is not a 

black body. With this, I obtain realistic values for σ ∗ . The heat generation contains a fraction of 
the solar radiation, with which I obtain the value of q∗  as shown below. The ambient temperature 
of the air is taken to be 30 C 303K° ≈ .  
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Table 4.3. The heat source, convection, and radiation parameters on the wall in case of surface area [65]. 

   hc
2
W 

m K
 
 ⋅ 

 σ ∗  8
2 4
W 10

m K
− × ⋅ 

 ∗
sunnyq  

2
W
m

 
 
 

 ∗
shadowq

2
W
m

 
 
 

 

All elements 4 4 800 300 

The term q contains also the convective heat gain due to the nonzero temperature au  of the air (in 
Kelvin), with which I obtain the value of q as follows. The convective and radiative energy 
transfer is perpendicular to the surface, it is happening in the y direction. Therefore, these are 
proportional to the free surface area of the element, which is x z∆ ∆  here. Using this the values of 
the coefficients in equations (2.20) and (2.28) I obtain: 

a
c ch hqK , , q u

c y c y c y c y
σσ

ρ ρ ρ ρ

∗ ∗
= = = + ⋅

∆ ∆ ∆ ∆
, 

where, as it was mentioned, 1my∆ = .  

I supposed that the right half of the surface is in the shadow, thus the incoming heat is much less 
there. More precisely, I have 

- For the first half of N (sunny part):   2
1 800 303Kch

q
c c

W
mρ ρ

= × + × ; 

- For the second half of N (shadow part):  2
1 300 303Kch

q
c c

W
mρ ρ

= × + × . 

II. Cross Sectional Area: In this case, the interior elements cannot gain or lose heat 
by the heat source, heat convection, or radiation. Elements on the right and left 
sides can transfer heat by radiation and convection to the x direction with the 
values shown in Table 4.4. 

Table 4.4. The heat source, convection, and radiation parameters on both sides of wall elements in case of cross-
sectional area. 

    hc 
2
W

m K

 
   

 σ ∗  8
2 4
W 10

m K
− × ⋅ 

 q∗  ( )W  

Right Elements  2 5 500 

 Left Elements 4 4 500   

I supposed that the right elements and left elements have the following heat source convection 
and radiation as follows: 

- For the left elements (interior side):  2
1 500 293Kch

q W
mc c xρ ρ

= × + ×
⋅∆

 

- For the right elements (external side):   2
1 500 303Kch

q W
mc c xρ ρ

= × + ×
⋅∆

 

The initial condition is again a linear function of the z variable: 

( ), , 0 303 288u x z t z= = − .  
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4.2.3. The Simulation Results 
4.2.3.1. In Case of Surface Area of The Wall 

I simulated a one-layer brick wall (see Figure 4.12.A). As it is written in point I. above, I 
applied linear initial and zero Neumann boundary conditions. I have performed the simulations 
with the equidistant mesh. In Fig. 4.13 the maximum errors as a function of the time step sizes 
are presented for all methods. Note that the hopscotch-type algorithms, especially the original 
OOEH and the NS-OEH, are more accurate than the other algorithms. Heun’s method is very 
accurate only below the CFL limit, but above this limit, it cannot give any meaningful results. In 
Fig. 4.14 I presented the initial and the final temperature distribution, where both the effect of the 
initial condition and the shadow on the right side of the wall can be observed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.13. The maximum errors as a function of the time step size for the 14 examined methods in the case of a 
surface area. 
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Figure 4.14. The temperature distribution contour in Kelvin for the equidistant mesh at initial (left) and final time 
(right), in the case of multilayer cross-sectional area. The numbers on the vertical and horizontal axes of the 
contours are the indices of the cells, which are the same as the coordinates in cm units. 

 

4.2.3.2. The Results of Cross-Section of a Brick Wall with Insulation 

I applied the linear initial and Neumann boundary condition of point II for the multilayer 
wall. The maximum errors are plotted for equidistant and non-equidistant meshes in Fig. 4.15 
and 4.16, while the energy errors for the non-equidistant mesh can be seen in Fig. 4.17. The 
temperature distribution contours for the initial and final time moments are shown in Figure 
4.18. One can see that the temperature of the right-hand side of the wall is increasing due to the 
larger temperature outside, but the insulator lets this heat to penetrate the wall only very slowly.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.15. The maximum errors as a function of the time step size for the equidistant mesh. 
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Figure 4.16. The maximum errors as a function of the time step size for the non-equidistant mesh. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.17. The energy errors as a function of the time step size for the non-equidistant mesh 
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Figure 4.18. The temperature distribution contour in Kelvin for the equidistant mesh at initial (left) and final time 
(right), in the case of the multilayer cross-sectional area. The numbers on the vertical and horizontal axes of the 
contours are the indices of the cells. 

4.2.3.3. The Results of Cross-Section of a Brick Wall with Insulation and Thermal 
Bridging 

I apply again the conditions enlisted in point II for the multilayer wall with thermal 
bridging. The maximum errors are plotted for equidistant and non-equidistant meshes in Fig. 
4.19 and 4.20, respectively, while the energy errors for the non-equidistant mesh can be seen in 
Fig. 4.21. The maximum and the energy error curves are very similar, the most noticeable 
difference is that the SH and the ASH methods have larger maximum errors but smaller energy 
errors than the DF and the NS-DF methods.  

In Fig. 4.22, the temperature contour is presented for the initial and the final time moments, for 
the equidistant mesh. To highlight the thermal bridge's impact, I constructed Figure 4.23, which 
shows the final temperature at z=0.495 as a function of x, comparing results with and without the 
thermal bridge. This allows readers to clearly see its effect on temperature distribution.  
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Figure 4.19. The maximum errors as a function of the time step size  for the equidistant mesh and thermal bridging. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.20. The maximum errors as a function of the time step size for the non-equidistant meshand thermal 
bridging. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.21. The .s as a function of the time step size for the non-equidistant meshand thermal bridging. 
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Figure 4.22. The temperature distribution contour for the equidistant mesh at initial (left) and final time (right) in 
case of multilayer cross-sectional area with thermal bridging. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.23. The temperature as a function of the space variable x at the middle row ( )0 5z .≈  in the case of the 

multilayer insulated wall with and without thermal bridging using an equidistant grid. 

4.2.4. The Summary of The Present Section 

I adopted 14 fully explicit numerical algorithms to solve transient heat transfer problems 
including heat conduction, convection, and radiation. I applied the algorithms to two-
dimensional systems of a surface area and a cross-sectional area of a wall. This latter one 
consisted of a brick wall with a glass wool insulator layer, and it contained a thermal bridging 
steel structure. I used equidistant and non-equidistant grids for the cross-section area. Zero 
Neumann boundary conditions were applied and the ode15s MATLAB routine was used as a 
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reference solution. I showed that all of the methods can be used for these simulations, but those 
that were proven to be unconditionally stable for the heat conduction equation have much better 
stability properties in this more general case as well. These methods can be used by quite large 
time step sizes without stability problems, thus the traditional explicit time integrators are 
severely outperformed by them. For less stiff systems, the non-standard version of the odd-even 
hopscotch and the leapfrog-hopscotch methods are the most accurate. However, as stiffness 
increases due to material inhomogeneities or the non-equidistant grid, the odd-even hopscotch 
method becomes less accurate and the leapfrog-hopscotch takes the lead, while the Dufort-
Frankel scheme and the shifted- and asymmetric hopscotch methods also perform well. The 
UPFD method is the least accurate, but it has the advantage that it preserves positivity of the 
temperatures for arbitrary time step size even for this highly nonlinear case. I note that for very 
small-time step sizes, Heun’s method can be extremely accurate, but this level of accuracy is 
redundant in most fields of engineering, including building energetics. 

4.3. Calculate The Heat Transfer in Cylindrical and Spherical Shaped Bodies 

In this part, I reproduced new analytical solutions with high accuracy using recent 
explicit and unconditionally stable finite difference methods. After this, real experimental data 
from the literature regarding a heated cylinder are reproduced using the explicit numerical 
methods as well as using Finite Element Methods (FEM) ANSYS workbench. Convection and 
nonlinear radiation are also considered on the boundary of the cylinder. 

The heat-transport equation in a 3D cylindrical coordinate system, which can be written as: 

 

 

 

In the case of spherical coordinates, a small 3D spherical element can be seen in Figure 2.3 The 
heat transport equation for this case can be expressed as follows: 

* 4
2

2 2 2 2
1 1 1 sin

sin sin
genQu u u hSu Su uk r k r k c

r r V V V tr r r
σθ ρ

φ φ θ θθ θ
 ∂ ∂ ∂ ∂ ∂ ∂ ∂   + + + − − =    ∂ ∂ ∂ ∂ ∂ ∂ ∆ ∆ ∆ ∂    

.  (4.5)  

If one does not consider the convection, radiation, and source terms in Equation (4.4) and 
assumes that the material properties are homogeneous, one obtains the form of the heat 
conduction equation in cylindrical and spherical coordinate systems. Symmetrical systems only 
are investigated, which means no relevant physical quantities depend on coordinate φ  in the 
cylindrical and on coordinates φ  and θ  in the spherical case, which can be considered as a 
limitation of this study. If I temporarily also assume that nothing depends on the z coordinate in 
the cylindrical case, only the radius r remains as a spatial variable, which yields  

1 n
n

u ur
t r rr

α∂ ∂ ∂ =  ∂ ∂ ∂  , 
(4.6) 

where n = 0, 1 and 2, which means Cartesian, cylindrical, and spherical coordinates, 

respectively, while k
c

α
ρ

=  is the (thermal) diffusivity. Equation (4.6) is also used for particle 

diffusion, where the diffusivity is usually denoted by D. 

* 4

2
1 1 genQu u u hSu Su uk r k r k c
r r r z z V V V tr

σ ρ
φ φ
 ∂ ∂ ∂ ∂ ∂ ∂ ∂   + + + − − =    ∂ ∂ ∂ ∂ ∂ ∂ ∆ ∆ ∆ ∂      

(4.4) 
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4.3.1. The Geometry, Materials, Mesh Generation, and Boundary Conditions 

I am going to reproduce the experimental results of Cabezas et al. [66], where heat 
transfer was studied in a steel C45 cylinder of 168 mm total height with properties shown in 
Table 4.5 below. 

Table 4.5. The properties of the steel used [66]. 

Material ( )3kg mρ −⋅  ( )1 1  W m Kk − −⋅ ⋅  ( )1 1  J kg Kc − −⋅ ⋅  

Steel C45 7800 40 480 

The bottom of the cylinder was heated for 30 s at the beginning of the experiment with P = 
1500W power. However, in the original work [66], the position of the lowest thermocouple was 
50mm higher than the heated surface. The top 118 mm and not the bottom 50 mm of the cylinder 
was examined either experimentally or numerically, and I followed this in my work. This means 
that the simulated volume of the cylinder segment is 341.0087 10 mV −×= , while 
( ) [ ] [ ], 0, 0.0165m 0, 0.118mr z ∈ × . In my approximation, physical quantities did not change in the ϕ-
direction, thus, that 3D was irrelevant and, computationally, I dealt with a two-dimensional 
problem. The number of the cells along the r axis and z axis were set to Nr = 15 and Nz = 100; 
thus, the total number of the cells in the system was 1500r zN N N= = .  

I used a constant initial condition in all cases. 

( ), , 0 30.7 Cu r z t = =    

I used different boundary conditions on different sides. On the left side, the center of the 
cylinder, I applied Neumann boundary conditions in all cases, which do not allow conductive 
heat transfer at the boundary 

( 0, , ) ( , , ) ( , , ) 0r r r z zu r z t u r L z t u r z L t= = = = = = .  

On the right (external) and upper boundaries, I used two types of boundary conditions. The first 
one was zero-Neumann, when there was no heat exchange with the environment. The second 
one, when there was a heat exchange with the environment via convection and radiation, 
considered the heat convection coefficient ( )2 14 5  W m Kch . − −= ⋅ ⋅ [38] and the emissivity constant 

as 0.85 to obtain realistic values for σ ∗ . The convective and radiative energy transfer was 
perpendicular to the surface. The interior elements cannot gain or lose heat by the heat source, 
heat convection, or radiation.On the lower boundary, I applied changing Dirichlet boundary 
conditions based on the temperature measurement results taken from a report I asked from the 
authors of [66]. That report contained data from every two minutes, and I used linear 
interpolation between these data points in all cases to follow the experimental setup of the paper 
[66]. 

The heat generation contained incoming heat via convection and radiation depending on the 
ambient temperature. Since the steel cylinder was placed in a closed box, this ambient 
temperature changed during the measurement. Instead of the ambient temperature functions, I 
used their averages taken from the report mentioned above. The ambient temperature of the air 
was taken as (30.7, 31.1, and 31.7 °C) in the cases of measurements at 20 min, 24 min, and 30 
min duration, respectively.  
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4.3.2. Verification Using the Analytical Solution 

In this section, I take the height of the cylinder as well as z∆  unity. It means that, 
computationally, there is one space dimension only in both the cylindrical and the spherical case. 
The solution parameters are:  

{ }
0

0 fin 0

500 1 500 0 0003 0 999 0 002 1

1 1 2 2 0 1 0 1
r z r z maxN , N , N N N , r . , r . , r . , ,

a , . , , t . , t t . .

α= = = × = = = ∆ = =

∈ = = +
  

Here, N represents the total number of cells, a self-similar exponents, while 0r  and maxr  are the 
radial coordinates of the center of the first and last cells. The CFL limit (maximum allowed time-
step size for the standard first order forward Euler method) was around 62 10−⋅  in all cases. The 
initial condition was obtained by substituting the initial t and boundary r values into the 
analytical solution, respectively. The Dirichlet boundary conditions on the right side (the 
circumference of the cylinder and sphere) were obtained simply by substituting the radius maxr  
into the analytical solution and calculating the function value at each time step. On the left side 
(the cylinder and sphere center, 0r r= ), zero-Neumann boundary was applied, since no heat can 
disappear from the center of the cylinder or the sphere. This boundary was applied only 
computationally and not physically. I remind the reader that the analytical solutions are 
constructed for Equation (4.6).  

The obtained maximum errors are displayed as a function of the time-step size in Figures 4.24 
and 4.25 for two values of parameter a in cylindrical coordinates, it is clear with a=1, the results 
more accurate than a=2. Figure 4.26 presents the temperature value as a function of r. For the 
case of spherical coordinates, Figure 4.27 shows the maximum error as a function of the time 
step, and Figure 4.28 presents the temperature as a function of r. The fact that we obtained very 
small errors in all cases verifies not only the numerical algorithms, but the equivalence of the 
two mathematical treatments of the physical problem. 
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Figure 4.24. The maximum errors as a function of the time step size for the 9 numerical methods in case of 
cylindrical coordinates for a = 1. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.25. The maximum errors as a function of the time step size for the 9 numerical methods in case of 
cylindrical coordinates for a = 2. 

 
Figure 4.26. The values of temperature as a function of variable r in case of the initial function u0, the analytical 

solution Uexact, the DF method, and the LH method in case of cylindrical coordinates for a = 1. 
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Figure 4.27. The maximum errors as a function of the time step size for the 9 numerical methods in the case of 
spherical coordinates for a = 1.2. 

 
Figure 4.28. The values of temperature as a function of r variable in case of the initial function u0, the analytical 

solution Uexact, the DF method, and the LH method in case of spherical coordinates for a = 1.2. 
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4.3.3. The Simulation Results  

In this section, I present the results at the end of the examined time interval, which is 
defined as fin 1200, 1440 and 1800st = in both the numerical methods and Ansys simulation and 
then compare between them with the experimental results.  

4.3.3.1. The Results of Numerical Methods 

For the simulation, I chose the top five algorithms, namely DF, OOEH, LH, SH, and 
ASH. The simulation of a steel C45 cylinder was conducted using these selected algorithms 
considering different boundary conditions, as previously mentioned. Among these algorithms, 
the shifted-hopscotch method was chosen to visualize the temperature contour due to its high 
accuracy at small time-step size. Figures 4.29 and 4.30 display the final temperature distribution 
obtained from this method. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.29. The final temperature distribution contour for different time values (t = 20, 24, and 30 min, 
respectively, from left to right) presented by the SH method when there is no heat exchange with the environment 
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Figure 4.30. The temperature distribution contour for different time values (t = 20, 24, and 30 min) presented by the 
SH method when there is heat exchange with the environment via convection and radiation. 

4.3.3.2. The Results of Ansys Simulation 

Ansys workbench 19.2 transient thermal analysis with Mechanical APDL solver was 
used to simulate the steel C45 cylinder. The mesh size was 31 10−×  , and the total number of 
elements was 197,183 since it was a computationally 3D problem. In Figures 4.31 I present the 
sample of temperature contour at the final time. 

 

Figure 4.31. The temperature contour at time (t = 20 min) presented by Ansys when there is no heat 
exchange with the environment (left) and when there is a heat exchange (right) 

4.3.3.3. Comparison The Results 

The results of the experimental measurements, the finite element method (FEM) using 
Ansys Workbench, and the explicit numerical methods (exemplified by the shifted hopscotch 
method) were compared. Both FEM and SH were subjected to two types of tests, one 
considering convection and radiation effects, and the other excluding them. First, I employed 
steady-state thermal analysis using FEM Ansys Workbench to follow the original paper [66] to 
reach the same results. The maximum deviation was 0.07, which was a kind of verification for 
setup. Then, I used transient thermal analysis to follow the real physical processes of the 
experiment. All results below are for this transient simulation. In Tables 4.6–4.7, the comparison 
was conducted at two specific spatial points (z = 75, and 95 mm, which are the distance from the 
bottom measurement point), and the results were measured at three different time moments. The 
temperatures are compared at two space points via plots in Figures 4.32–4.34. 

Table 4.6. The temperature at z = 125 mm at three different time moments. 

Time 
Temperature in °C, at z = 75 mm 

Experiment SH with CR SH FEM with CR FEM 

20 min 33.9 33.941 34.298 33.796 34.316 
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24 min 34.6 34.668 35.087 34.534 35.128 

30 min 35.7 35.514 36.07 35.283 36.036 

Table 4.7. The temperature at z = 145 mm at three different time moments. 

Time 
Temperature in °C, at z = 95 mm 

Experiment SH with CR SH FEM with CR FEM 

20 min 33.7 33.71 34.099 33.563 34.095 

24 min 34.5 34.427 34.88 34.285 34.88 

30 min 35.5 35.30 35.92 35.093 35.856 

 

 

 

 

 

 

 

 

 

 

Figure 4.32. The temperature at the 4 selected measurement points in z at time t = 20 min. 
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Figure 4.33. The temperature at the 4 selected measurement points in z at time t = 24 min. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.34. The temperature at the 4 selected measurement points in z at time t = 30 min. 

The figures and tables presented above illustrate a comparison of results obtained from the 
current numerical methods and the FEM ANSYS, utilizing experimental data from the literature 
study [37]. The findings indicate that the numerical methods employed in this study demonstrate 
superior accuracy compared with the FEM ANSYS used in both the current investigation and the 
same literature study [68] [37]. 

4.3.4. The Summary of The Present Section 

This work was devoted to solving heat transfer problems in cylindrical and spherical 
geometries. Using the self-similar Ansatz, novel analytical solutions of the heat-conduction PDE 
were constructed, which contained the Kummer’s functions. Nine numerical algorithms were 
presented, most of which are recently introduced unconditionally stable explicit methods. To 
perform the verification, the novel analytical solutions of the heat-conduction PDE containing 
the Kummer’s functions were reproduced by these methods with high accuracy.  

After these, experimental work was considered from the literature where a cylinder is heated 
from below, and the results were attempted to be reproduced using Ansys commercial software, 
but without considering convection and radiation on the surface of the cylinder. In contrast to 
that, I reproduced the experimental results by considering convection and radiation as well, not 
only using the Ansys, but the explicit methods as well. Since, in reality, convection and radiation 
are present, taking them into account makes the results closer to the experimental ones, 
especially for the first two measurement times. Moreover, the explicit and stable schemes were 
more accurate and effective than the finite element software in all cases. The LH algorithm was 
usually the most accurate among the studied methods. However, similarly to all hopscotch 
methods, it needs a special mesh, which can be hard or maybe impossible to implement for 
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problems with irregular shapes. This limitation of these methods is probably more restrictive in 
complicated 3D problems.  

4.4. Calculate The Heat Transfer in Multilayer Walls with Photovoltaic Cell 
and Air. 

This section explores the simulation of non-linear transient heat transfer equation (2.20)  
in multilayer walls subjected to various heat loads using efficient numerical algorithms (UPFD, 
NS-DF, PI, NS-OEH, LH, SH, and ASH ). The study considers conduction, free and forced 
convection, and nonlinear radiation involving a two-phase material composed of solid (wall 
construction) and fluid (air). Different wall geometries and heat load scenarios are examined, 
encompassing both cooling and heating cases. The objective is to evaluate algorithm 
performance for outdoor surface convection and an air gap between insulation and PVC. 

4.4.1. Geometry Model and Mesh Generation  

Figure 4.35 helps to visualize the geometry and the environment for inside and outside of 
the wall section, with zooming on the selection cross-sectional area in the middle of the wall (the 
upper half is sunny and the lower half is in shadow) that will be simulated. 

  
Figure 4.35. Visualization of the studied case, the selected wall cross-section 

The geometry is a multilayer wall with an air gap. The order of the media is the following: 
gypsum board, brick, glass wool, air gap, Photovoltaic Cell (PVC), and then air. I also 
investigated free and forced convection with cooling as well as heating process. In this scenario, 
there are different kinds of convection depending on the air status on both sides of the PVC, 
when the air is moving (forced convection) and when the air is stationary (free convection). 
From this point of view, there are three subcases: 

A.  free-free convection means the air is stationary on both sides of the PVC,  
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B.  free-forced convection: the air is stationary in the air gap zone and the air is moving 
on other side of the PVC.  

C. forced-forced convection: the air is moving on both sides of the PVC, so in this case 
there is a forced convection on both sides of the PVC. This case is useful in cooling 
of photovoltaic when it warms up due to the hot weather especially in summer or in a 
hot climate area, when the solar cell’s temperature exceeds the optimum operation 
temperature.  

I consider a wall segment with a cross section area X ZS L L= ×  with value 0.5 m ×0.5 
m. ( ) [ ] [ ]0 0 5 0 0 5x,z , . , .∈ × , thus the meshes total area is 0.25m2. I have constructed an equidistant 
grid with square cells shaped for all cases. The number of the cells along the x and z axes are set 
to Nx = 100 and Nz = 100, thus, I have a mesh with a total cell number 10 000x zN N N ,= = . The 
cells are indexed as a linear sequence, starting from the top left corner horizontally and ending at 
the bottom right corner. Due to this the cell indexed by xi N+  is just below the cell labelled by i, 
etc. 

4.4.2. Materials and Boundary Conditions  

In the current study, I use real material properties for wall construction, as shown in Table 4.8. 
Table 4.8. The materials used properties [67]-[69] . 

Material   ( )3kg mρ −⋅  ( )1 1  W m Kk − −⋅ ⋅  ( )1 1  J kg Kc − −⋅ ⋅  

Gypsum Board 805 0.292 977 
Brick 1600 0.730 800 

Glass wool 200 0.030 800 
 PVC, Silicon 2330 148 710.08 

    PVC, Glass 2500 1.7 780.33 
Air, at 283K 1.2474 0.024840 1005.8 
Air, at 288K 1.2257 0.025219 1005.9 
Air, at 303K 1.1649 0.026341 1006.5 

The initial conditions are constant for all cases as follows: 

- Cooling case: solid temperature = 303 K, air gap temperature = 288K, air 
temperature= 283 K.  

- Heating case: solid temperature = 283 K, air gap temperature = 288K, air 
temperature= 303 K.  

I apply zero Neumann boundary conditions in all cases for the right, the top and the bottom 
boundary, which do not allow any heat transfer at those boundaries. 

 There are two types of incoming radiation: one of them is coming from outside of the studied 
system and it is independent of the temperatures in the system, thus I denote it by from outq∗ . The 
second type is coming from another part of the system and thus it is a temperature time-
dependent variable, which can be denoted by from inq∗ . At the left-hand side of the system, the 
conduction is neglected, but the wall loses heat by radiation and convection to the interior of the 
building, and also gain the appropriate heat, which are included into the heat generation term. 
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The intensity of the incoming radiation will be considered as a constant 2
from out 400W/mq∗ = . The 

ambient temperature of the room is always 293Kau = which is considered as a comfortable 
temperature for a living space. The interior elements of the solid material cannot lose or gain 
heat by the heat convection, radiation, and heat source, only by conduction.  

In case of free convection boundary the elements on the left and right sides in the interface 
between solid and fluid can transfer heat by convection and radiation with the values shown in 
Tables (4.9) [70]. I use realistic values for σ ∗  as it was explained above. The heat source 
generation contains a part of the solar radiation, with which I obtain the value of from outq∗  as 
shown in table below. For the heat generation for the interface elements 1 and 2, I put (-) in the 
table because it receives from inq∗  type radiation. The air ambient temperature (on the right side) is 
taken to be 30 C 303K° ≈  in case of heating and 10 C 283K° ≈ in case of cooling. Here interface 1 is 
the interface between the insulator and the air gap, and interface 2 is the interface between the 
PVC and airgap, while interface 3 is the interface between the PVC and the surrounding air. 
Table 4.9. The heat convection, radiation, and source parameters on right and left sides of the wall elements 

    hc 
2
W

m K

 
   

 σ ∗  8
2 4
W 10

m K
− × ⋅ 

 from outq∗ ( )2W / m  

 Left Elements  2 5 400 
 Interface 1 (insulator) 4 4 -   
 Air gap elements 4 0 0 
 Interface 2 (silicon) 4 4 -   
 Interface 3 (glass) sunny part 4 4 600   
 Interface 3 (glass) shaded part 4 4 100   
 Surrounding air elements 4 0 0 

There is an air gap between the insulator and PVC, those two surfaces radiate each other with a 
from inq∗  type radiation. The quantity of the radiative heat transfer changes with the temperature of 

each surface. In this case the heat generation (incoming heat) of the surface elements can be 
calculated as follows:  

- For Interface elements 1: 4 c
Silicon air _ gap

h
q u u

c x c x
σ
ρ ρ

∗

= ⋅ + ⋅
∆ ∆

 .  

- For air gap: c
air _ gap

h
q u

c xρ
= ⋅

∆
.  

- For Interface 2: 4 c
Insutator air _ gap

h
q u u

c x c x
σ
ρ ρ

∗

= ⋅ + ⋅
∆ ∆

 . 

While in case of forced convection, all the boundaries have the same expressions for heat 
transfer. However, the heat transfer coefficient in forced convection is not a constant but depends 
on air velocity which I take in the z direction. The convection coefficient h for the air elements 
depends on the nondimensional parameters Nu and Re, which are derived based on the energy 
balance at thermal boundary layer of air (for more details see [71]). The procedure is as follows:  
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The heat transfer coefficient: c
z

kh Nu
L

 
=  

 
, where zL   is the length of the surface in the z 

direction.  

Nusselt number:                
11

320 664Nu . Re Pr=  

Reynolds number:            zvLRe ρ
µ

= , where v is the air velocity which is 0.5m/s and μ is the 

dynamic viscosity. 

Prandtl number:                 pc
Pr

k
µν

α
= = , I can get it from an air properties table. 

For the forced convection the values of Reynolds Number Re are as follows: 

- free-forced; the surrounding air moving at velocity v=0.5m/s, and Re= 17596.95 for 
cooling, Re= 15589.9 heating.  

- forced-forced the air moving on both sides of the PVC at velocity v=0.5m/s, Re= 
17056.69 for the air gap zone, Re= 17596.95 cooling, and Re= 15589.9 heating for 
surrounding air. 

4.4.3. The Simulation Results   

I applied the initial condition and boundary condutions of section 4.4.2 with tfin = 
20,000s, the cases of study in both cooling and heating in free and forced convection. The 
maximum errors are plotted in Figures 4.36– 4.38, where it can be seen that the DF and the 
hopscotch methods lose their advantage with respect to the PI method if there is forced 
convection in the air gap. The main reason of this is that there is a rapid heat exchange between 
the air and the inner surface of the PVC, which consists of silicon that has a large heat 
conductivity and this makes the required time step size smaller. Figures 4.39-4.42 show the 
contours of temperature distribution for the initial and final time step for both forced and free 
convection, it is showed clearly the effect of the used insulator preventing the heat from 
penetrating inside and the air gap is a key rule in circulation the air and enhancing the heat 
transfer performance. Figure 4.43 shows the effect of the air gap and that of forced convection in 
cooling down the PVC (silicon) layer.  
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Figure 4.36. The maximum errors as a time step size function for the 7 tested methods in the case of free-free 
convection cooling. 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4.37. The maximum errors as a time step size function for the 7 tested methods in the case of free-forced 
convection cooling. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.38. The maximum errors as a time step size function for the 7 tested methods in the case of forced-forced 

convection cooling . 
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Figure 4.39. The contour of initial temperature distribution in Kelvin for free and forced convection in Case 3, in 
case of Cooling (left), and Heating (right). 

Figure 4.40. The contour of final temperature distribution in Kelvin for free-free convection in Case 3, in case of 
Cooling (left), and Heating (right). 
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Figure 4.41. The contour of final temperature distribution in Kelvin for free-forced convection in Case 3, in case of 
Cooling (left), and Heating (right). 

 

Figure 4.42. The contour of final temperature distribution in Kelvin for forced-forced convection in Case 3, in case 
of Cooling (left), and Heating (right). 

Figure 4.43. The temperature at the PVC (silicon) border in Kelvin for Case 3 in case of Cooling 

4.4.4. The Summary of The Present Section  

I numerically studied transient heat transfer in the form of conduction, convection, and 
radiation in two-dimensional systems  of gypsum board, brick, glass wool, air gap, PVC, and air. 
I used seven stable numerical algorithms for this purpose. The ode15s MATLAB routine served 
with the reference solution in all examined cases.  

The tested methods’ advantages and disadvantages are listed in the following: 
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1. The UPFD is first order of magnitude, and generally not accurate enough, but it can treat 
convection and radiation terms very well. For arbitrary time-step size it is positivity 
preserving, all others methods are not. However, it is by far the least accurate for medium 
and small-time step sizes. 
2. The Hopscotch family  (NS-OOEH, SH, LH, and ASH), the NS-DF, and the pseudo-
implicit methods are second order, but this latter one is usually much less accurate due to the 
extra terms in its truncation error. 
3. The LH is typically the most efficient algorithm to handle these kinds of problems. 
However, when there is a forced convection in the air gap, the LH as well as other accurate 
methods lose most of their advantage and the PI method can also be effectively used.  
4. The current algorithms successfully deal with very stiff systems, thus they are expected to 
be able to cope with any kind of materials or boundary conditions. 

To conclude, the LH, ASH, and NS-DF algorithms can be proposed to solve these problems. All 
of them give very accurate results with tremendously larger time step sizes, thus they are faster 
than the standard explicit methods plagued by instability.  

The conclusions from the engineering point of view are the following:  

5. The used insulator at the outside of the brick prevents the heat from penetrating inside 
and, in this way, I keep the inside environment within comfort limit. 
6. The heat transfer in convection and radiation can be controlled at the boundary by applied 
forced convection. 
7. The forced convection heat transfer has a significant effect on improving the heat 
transfer, especially in the case of cooling to cool down the PVC, which has a performance 
temperature limit to work in.  
8. The temperature of the PVC exposed to sunshine is reduced significantly even by a light 
wind. 
9.  The air gap between the PVC and insulator reduces the temperature at the insulator 
border and the PVC borders. 

Related to the wall construction I could recommend using both the insulator and the air gap to 
reduce the heat going inside the building due to hot weather and strong sunshine.  

4.5. Calculate The Heat Transfer in Building Walls with PCMs Using 
Effective Heat Capacity Model 

I employ efficient explicit numerical methods, and validate my approach against 
established mathematical expressions and models in the literature. My research investigates 
various building wall geometries and boundary conditions, primarily focusing on employing the 
Effective Heat Capacity model to manage heat loads. The objective is to maintain interior 
temperatures within comfort zones. I compare two types of paraffin wax PCMs. The first one is 
characterized by a lower melting temperature and higher latent heat capacity, thus it can 
efficiently store external heat when combined with brick or concrete. 

4.5.1. Theory and Considerations of the Present Study 

I perform the thermal analysis of PCM integrated with building components by using the 
effective heat capacity (EHC) model with two phases (solid: So and liquid: Li). It implies that 
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the specific heat c, the heat conductivity k, and the density ρ depend on not only the space (due 
to material inhomogeneities) but on the temperature itself. In one dimension, the following PDE, 
the heat conduction equation can be used to predict the behaviour of the temperature:  

( ) ( ) ( )1 ( , )
, ,

u k x u u q
t x u c x uρ

∂
= ∇ ∇ +

∂
.                                                (4.10) 

To determine the heat capacity of the cell, I consider two types of heat capacity: sensible heat 
capacity (SHC) and latent heat capacity (LHC). Standard materials, such as brick and concrete, 
which cannot change their phase in normal conditions have only sensible heat capacity. For 
PCMs, the EHC is computed as the sum of SHC and LHC at each phase, while taking phase 
transitions into account, as follows: 

So So So
i i i iC c Vρ= , and  Li Li Li

i i i iC c Vρ= .                                                (4.11)  

Those represent the SHC for liquid and solid state of material.  

For the EHC, I define g as the Gaussian function[72] centered at the melting temperature ucr of 
material with the standard deviation σ: 

( )2
2

1( ) exp
2 2

i cru u
g i

σ π σ

 − −
 =
 
 

.                                                  (4.12)  

At the phase transition region cr cru u uσ σ− ≤ ≤ + , I used the following functions to represent the 
thermal properties: 

( )( ) ( )( )
2

Li So Li So
i i i cr i i

i

k k u u k k
k

σ

σ

− − + +
= ,                                             (4.13)  

( )( ) ( )( )
2

Li So Li So
i i i cr i i

i

u uρ ρ σ ρ ρ
ρ

σ

− − + +
= ,                                            (4.14)  

( )( ) ( )( )
2

Li So Li So
i i i cr i i

i

c c u u c c
c

σ

σ

− − + +
= ,                                               (4.15)  

 where c is the specific heat capacity of the material and it depends on the material’s state (solid, 
mixed solid and fluid, and liquid) and I used to calculate the sensible heat capacity as shown in 
the following equations. These functions are linear in the temperature variable and continuous in 
all of the parameters.   

At the phase transition I used EHC as follow: 

i i iEHC SHC LHC= +  ,                                                         (4.16)  

i i i iSHC c Vρ=  ,                                                                    (4.17)  

i i i i iLHC H g Vρ=  .                                                                (4.18)  
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All quantities calculated by equations (4.11-4.18) are updating at each time step and at each 
stage contributing to the overall time consumption of the calculations. In Figure 4.44, there are 
some plotted examples of Gaussian function at different σ values and ucr=320 K.  

Figure 4.44. Gaussian function representative of the heat capacity with temperature 

Keeping in mind the above-mentioned considerations, the time-development of the temperatures 
can be calculated by solving the system of ordinary differential equation (ODE):    

, j

j ii
i

i ij i

u udu q
dt R C≠

−
= +∑  ,                                                    (4.19) 

which is the spatially discretized form of the nonlinear heat equation. After the temperatures are 
calculated, the total heat QT, sensible heat QSe and total latent heat QLa of thermal systems can be 
given as follow: 

( )1 1

1

N
t t t t
T T i i

i
Q Q EHC u u− −

=
= + −∑  ,                                             (4.20)  

( )1 1

1

N
t t t t
Se Se i i

i
Q Q SHC u u− −

=
= + −∑  ,                                              (4.21)  

( )1 1

1

N
t t t t
La La i i

i
Q Q LHC u u− −

=
= + −∑  .                                              (4.22)  

Here t is the index of the time level after the discretization of the time variable, which will be 
explained later. Those data measure the ability of PCM to store the energy during the phase 
transition that has the advantage to reduce the energy consumption in the building and keeping 
the comfort indoor temperature. From this point of view, I also calculate the cooling load in term 
of total heat transfer from outside to inside (x direction) as follow: 
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( )2 11

1

t t
Cooling Cooling

t u u
Q Q

R
− ∆ −

= +  ,                                        (4.23)  

where u1 and u2 are the first and second cells of internal surface layers respectively, thus they 
approximate well the heat transfer from the room to the wall and outside. 

4.5.2. The 1D Analytical Solution 

In the current section, I explain the heat transfer in a PCM by using Stefan-tape problems 
which have an explicit analytical solution [73]. The Paraffin wax PCM with properties shown in 
Table 4.10 is inside the container. Within this setup, a Paraffin wax slab, is presumed to possess 
a semi-infinite length along the x-axis. The boundary condition (BC) is zero-Neumann 
(insulated) on all boundaries except the left side (x=0), where it is Dirichlet BC with constant 
temperature (u-face). This allows the heat to flow into or out of the system, which therefore 
undergoes the melting or solidification process from the left side toward the right, as shown in 
Figure 4.45. The thermal conductivity is the same for the solid and liquid states of the PCM. The 
interaction between the solid and fluid components depends upon the applied temperature and 
exposure duration. Consequently, temperature calculations are determined by the specific region 
within the body. 
Table 4.10. The Paraffin wax PCM1 properties [73] . 

Material ( )3kg mρ −⋅  ( )1 1 W m Kk − −⋅ ⋅  ( )1 1  J kg Kc − −⋅ ⋅  ( )1 J kgLatent Heat −⋅  

PCMSolid 856 0.15 2210 
247000 

PCMLiquid 778 0.15 2010 

 
Figure 4.45. The paraffin wax inside the container 

The PCM initially has a temperature u0, and has a melting or solidification temperature ucr, 
where: 

0face cru u u> >  
 in case of melting with initially solid PCM, and   

0face cru u u< <  
in case of solidification with initially liquid PCM. 

The location of phase interaction between liquid and solid at time t is ( )x X t=  
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( ) 2 LX t tλ α= .                                                                   (4.24)  

The temperature ( , )u x t  of the liquid zone, where 0 ( )x X t< < , is  

( , ) ( )2( )
cr face

face L
u u xu x t u erf t

erf
α

λ
−

= +  ,                                             (4.25)  

while the temperature of solid zone ( )x X t>  

0
0

( ) (1  ( ))2( , )
1  ( )

cr L

L

s

xu u erf t
u x t u

erf

α
α

λ
α

− − −
= +

−
 .                                          (4.26)  

Here λ is the root of the transcendental equation 

( )
22

0( )

( ) ( )( ) 1  ( / )

L sS L cr

L face crL S cr face L s

k u ue e H
erf c u uk u u erf

α λ αλ α λ π
λ α λ α α

−− −
− =

−− −
.                     (4.27)  

The total heat transfer into the system by the time t can be calculated by: 

( )
0

2
( ) ( )

( )
t L face cr

T
L

k u u t
Q t q t dt

erfα π λ

−
= =∫ .                                                (4.28)  

The total heat latent through the melting process:   

( ) ( )La LaQ t HX tρ= .                                                                          (4.29)  

Then the sensible heat is the difference between the total heat input and the latent heat 

( ) ( ) ( )Se T LaQ t Q t Q t= − .                                                                       (4.30)  
 

4.5.3. Geometry and Mesh Generation 

In the current work, I have conducted multiple geometries study focused on thermal 
analysis. The primary structural elements of the buildings under investigation predominantly 
consist of brick walls and concrete roofs, or both concrete walls and roofs in the case of precast 
construction. Additionally, I have integrated a PCM layer on the exterior surfaces of both the 
walls and roofs to enhance their thermal properties, as shown in Figure 4.46. 

Figure 4.46. The selected section geometries of studies 



USE EFFICIENT METHODS TO SOLVE REAL-LIFE HEAT TRANSFER PROBLEMS 

78 
 

The value of mesh spacing will be 43 334 10.x −∆ = ×  in all cases. It has been selected based on the 
mesh dependency study, whose details will be provided in Section 4.5.5.1.2. For brick and 
concrete, I consider a wall segment with a cross section area X ZArea L L= ×  with value 0.2 m 
×0.1m. I set ( ) [ ] [ ]0 0 2 0 0 1x,z , . , .∈ × , thus the meshes total area is 0.02m2. The number of the cells 
along the x and z axes are set to Nx = 600 and Nz = 1, thus, I have a mesh with a total cell 
number 600x zN N N= = . For the other cases I consider a wall segment with a cross section area 

X ZArea L L= ×  with value 0.25m ×0.1 m, where 0.2 the wall thickness and 0.05 the PCM layer 
thickness. ( ) [ ] [ ]0 0 25 0 0 1x,z , . , .∈ × , thus the meshes total area is 0.025m2. I have constructed an 
equidistant grid for all cases. The number of the cells along the x and z axes are set to Nx = 750 
and Nz = 1, thus, I have a mesh with a total cell number 750x zN N N= = .  

4.5.4. Materials and Boundary Conditions 

Table 4.11 displays the material properties utilized in my current study, which primarily 
consist of structural materials like brick and concrete, with properties shown in Table 4.12. 
Meanwhile, I used two types of PCM, and both of them are a kind of Paraffin wax. The first one 
is  PCM1 [73] with properties shown in Table 4.10 and a melting temperature 309.7 K, and the 
second one is  PCM2 [4] with properties shown in Table 4.12 and a melting temperature 313 K, 
and with standard deviation σ=1 for both kinds of PCMs. I chose these two kinds of PCM due to 
the high environment temperature outside which needs the PCMs to have high melting 
temperature (the time of temperature exposing range is high) and high latent heat properties.  
 Table 4.11. The Structural Materials Properties. 

 
 
 
 
 
 
Table 4.12 The Paraffin wax PCM2 with following Properties. 

Material   ( )3kg mρ −⋅  ( )1 1 W m Kk − −⋅ ⋅  ( )1 1  J kg Kc − −⋅ ⋅  ( )1 J kgLatent Heat −⋅  

PCMSolid 830 0.48 2210 
190000 

PCMLiquid 878 0.22 2300 
 

I used a linear relation to calculate the initial temperature by applying the recorded temperature 
at each one-hour taken by a weather-forecast website [74], for Basra-Iraq city on the 25 of 
August and on the 25 of September shown in Table 4.13 and Table 4.14 on different days (day1 
is Case 1, and day2 is  Case 2). I used linear relation of temperature changing with time to get 
the temperature distribution matrix: 

( ), , 0u x z t Matrix values= = . 

I applied different BCs on different sides. On the upper and lower sides, I applied Neumann 
boundary conditions in all cases:  

( , 0, ) ( , , ) 0z z zu x z t u x z L t= = = =  

Material   ( )3kg mρ −⋅  ( )1 1  W m Kk − −⋅ ⋅  ( )1 1  J kg Kc − −⋅ ⋅  

Brick 1600 0.73 800 
Concrete 2300 1.70 840 
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On the left side I applied Dirichlet BC with constant temperature which represented the interior 
comfort temperature with value equal to 298 K:   

( 0, , ) 298xu x z t= =  
On the right side I applied Dirichlet BC, by applying the same recorded temperature that I used 
to calculate the initial temperature to get the right boundary temperature distribution array: 

( , , )x xu x L z t Array values= =  
Table 4.13 The Right Boundary Temperatures in Case1. 

Time/h 1 2 3 4 5 6 7 8 9 10 11 12 

uRight/K 309 308 307 306 305 304 303 305 307 310 311 313 

Time/h 13 14 15 16 17 18 19 20 12 22 23 24 

uRight/K 314 316 317 316 316 314 313 311 310 309 308 308 

Table 4.14 The Right Boundary Temperatures in Case 2. 

Time/h 1 2 3 4 5 6 7 8 9 10 11 12 

uRight/K 302 300 298 297 296 297 299 304 308 313 315 316 

Time/h 13 14 15 16 17 18 19 20 12 22 23 24 

uRight/K 317 318 318 317 316 313 311 309 308 307 306 305 

So, with these two cases and different scenario I simulated the wall section with 12 subcases, as 
shown in Table 4.15. 

Table 4.15. Subcases for each Main Case (day) 

Left Dirichlet Boundary 

Brick 

Concrete 

Brick+PCM1 

Concrete+PCM1 

Brick+PCM2 

Concrete+PCM2 

 
4.5.5. The Results of Current Study 

4.5.5.1. The Numerical Methods Verification with Two Steps for PCM   
4.5.5.1.1. First Step of Verification 

In the initial verification step, I validated the numerical methods by employing the analytical 
solution given in Eqs. (4.24), (4.25), and (4.26). To use the analytical solution, one needs to 
solve the complicated transcendental equation (4.27). To enable myself to change the 
parameters, I first analytically reproduced that solution, but it could be done by some small error. 
This error, i.e. the difference between the literature and my analytical values, is much smaller 
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than the difference between the exact analytical and approximate solution used in the literature 
[73], as one can see in Table 4.16.     

The system considered was one-dimensional, with the height of the geometry as well as the 
corresponding space step set to unity. The key parameters for the solution were as follows: 

0
8 8

0

1 , 1 , 3000, 1, 3000, 0.00033, 1, 294, 309.7 , 368

9.59 10 , 7.92 10 , 0, 3600, 0.036s

x z x z cr face

L s fin

L L N N N x z u u u

t t tα α− −

= = = = = ∆ = ∆ = = = =

= × = × = = ∆ =
 

The results I got by solving equations (4.24), (4.27), (4.28), (4.29), and (4.30) are shown in Table 
4.16, while the results for the verification of the numerical methods are shown in Table 4.17.  

Table 4.16. The results of verification. 

Parameters Present Analytical 
values 

Present Numerical 
values 

Literature Analytical 
Values [11] 

Literature Approximate 
Values [8] 

λ 0.4037 - 0.4033 0.42 
( )X t  m 1.5×10-2 1.5×10-2 1.5×10-2 1.56 ×10-2 

2( / )TQ KJ m  4426.6 4459.7 4446 4252 
2( / )LaQ KJ m  2882.6 2977 2883 2998 
2( / )SeQ KJ m  1544 1482.6 1563 1254 

 
Table 4.17. The results of the verification of the numerical methods. 

Parameters Explicit ASH SH LH 
( )X t  m 1.5×10-2 1.5×10-2 1.5 ×10-2 1.5 ×10-2 

2( / )TQ KJ m  4459.701 4459.704 4459.706 4459.708 
2( / )LaQ KJ m  2977.010 2977.012 2977.013 2977.014 
2( / )SeQ KJ m  1482.690 1482.692 1482.693 1482.694 

MaxError  1.0580 1.0576 1.0579 1.0582 
 

I calculated the maximum error (maximum absolute temperature differences along the x-axis 
between the analytical reference solution and the numerical solution) depending on the time step 
size. As shown in the table above, the current values are close enough to the literature values, 
which means I successfully verified the numerical methods based on the literature. The results of 
the used four numerical algorithms are very close to one another, thus the deviation from the 
analytical values are mostly the consequence of the discretization and the EHC model.     

The errors are presented in Figure 4.47. It is evident that all numerical methods exhibit an 
acceptable accuracy in handling PCM scenarios. This outcome instills confidence in my ability 
to address similar heat-related challenges in future endeavors [75].  

In Figure 4.48, temperature values along the x-axis are depicted with a focused view on the 
transient phase zone for both the analytical result and the numerical methods (Explicit, ASH, SH, 
and LH). Remarkably, the values align closely, with differences seldom exceeding 1 degree. 
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Additionally, Figure 4.49 illustrates the EHC values in conjunction with temperature (on the left 
side) and along the x-axis (on the right side) for the numerical solution, where σ is set to 1 and 
the melting temperature is 309.7 K.   

Figure 4.47. The maximum error as a time step function for numerical methods Explicit, ASH, SH and LH. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.48. The values of temperature u along x-axis in case of the analytical solution and the numerical methods 
(Explicit, ASH, SH, and LH). 
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Figure 4.49. The EHC for Paraffin wax slab plotted with the final temperature u (left) and with Cell Number (right). 

4.5.5.1.2. Second Step of Verification 

In the second phase of verification, the explicit method was employed as a reference 
solution, serving as a benchmark to evaluate other numerical methods. This comprehensive 
assessment aimed to measure mesh dependency, time dependency, and validate the applicability 
of a new PCM. Mesh dependency was scrutinized to understand the impact of mesh size on 
result accuracy. Following extensive analysis, an optimal mesh size of 3000 elements was 
identified, as demonstrated in Figure 4.50, and was subsequently applied across all study cases. 

Figure 4.50. The mesh dependency examination, number of mesh elements with max error (Left), and with total 
penetrated heat (Right) 

Regarding time discretization dependency, meticulous analysis was conducted to select an 
appropriate time step size to meet stringent engineering precision standards, which corresponds 
to errors less than 10-2. As illustrated in Figure 4.51 (Left), a time step size of ∆t=0.86s is enough 
and it is implemented across all ongoing study cases. 
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In addition, a secondary verification step was undertaken for the new PCM material within the 
same computational framework, conditions and system scales. Remarkably, Figure 4.51 (Right) 
illustrates the maximum error over time step size, displaying striking similarities to curves 
associated with the other PCM material depicted in Figure 4.51 (Left). This observation 
underscores the versatility of the numerical methods within my updated framework, making 
them highly effective for various types of PCM materials, irrespective of their specific properties 
or the boundary conditions. 

Figure 4.51. The maximum error as a function of time step size of three numerical methods for PCM1 (Left), and 
for PCM2 (Right). 

4.5.5.2. The Simulation Results 

In this section, I present the results of my study in terms of total heat, heat storage, and 
heat transfer from the outside to the inside. These factors signify the cooling load or the amount 
of heat that needs to be removed using electric devices or other methods to maintain the interior 
environment at a comfortable zone temperature, set at 298 K. Figures 4.52-4.60 displays the 
results of Case 1 and Case 2 using two types of PCMs. In Figure 4.52 and 4.53 I provide samples 
of Effective Heat Capacity (EHC), Latent Heat Capacity (LHC), and Sensible Heat Capacity 
(SHC) plotted along the x-axis for the comparison of walls made of brick and PCMs. These 
graphs illustrate the behavior of melting and the storage heat hump. Similar results were obtained 
for concrete and PCMs. Due to the consistency in behavior across various cases, additional 
figures are unnecessary. Instead, I have compiled the data, including total, latent, and sensible 
heat values, in Tables 4.18-4.21 for reference and further analysis. 
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Figure 4.52. The heat capacity in Case1 for  Brick+PCM1 (Left), Concrete +PCM1 (Right) 

 
Figure 4.53. The heat capacity in Case of Brick+PCM2 (Left), Concrete +PCM2 (Right) 

Figure 4.54 illustrates samples of the effective heat capacity history plotted at selected points 
through the PCM (x=0.246, 0.233, and 0.2166 m) to allow the reader understanding the 
mechanism of heat saving during the phase transition which considering as a latent heat.  
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Figure 4.54. The Effective Heat Capacity history through PCM for Brick+ PCM1 in Case1 (Left), and Case2 
(Right). 

 Figures 4.55 and 4.56 illustrate the temperature history profiles at the middle of brick part of the 
wall. I can notice that the construction wall without PCM the temperature profile follows the 
outdoor temperature profile (applied boundary) with a small-time delay which represent the time 
of heat transfer against place. The utilization of PCM1 demonstrates a remarkable effect in 
maintaining the interior temperature close to comfort zone temperature and the initial values 
(308 K and 302 K) [76]. This indicates that a significant portion of the heat originating from the 
outside is efficiently stored inside PCM1 in the form of latent heat. Conversely, in the case of 
PCM2, the storage of heat is not as efficient due to its higher melting temperature (313 K) 
compared to the maximum applied temperature (317 K). Additionally, the latent heat capacity of 
PCM2 is considerably lower than that of PCM1. Consequently, a portion of the heat from the 
outside transfers indoors, leading to a noticeable impact on the indoor temperature.  

 
Figure 4.55. The temperature history in the middle of brick or concrete part in Case1 with PCM1 (Left), PCM2 

(Right) 
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Figure 4.56. The temperature history in the middle of brick or concrete part in Case2 with PCM1 (Left), PCM2 
(Right) 

Figures 4.57 and 4.58 depict the instantaneous total heat transfer observed throughout the 
duration of the study for both cases involving PCMs. These figures highlight a significant 
disparity in heat transfer between concrete and brick. Notably, the majority of this energy is 
directed inward, contributing to the interior environment. The influence of PCM usage on energy 
storage during the melting process is evident. However, it is essential to note that this increase in 
heat transfer does not imply that all of this energy directly infiltrates the interior space. A 
substantial portion of this heat is retained within the PCM during the transition phase, primarily 
in the form of latent heat. 

Figure 4.57. The total heat content in Case 1 with PCM1 (Left), PCM2 (Right) 
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Figure 4.58. The total heat content in Case 2 with PCM1 (Left), PCM2 (Right) 

Figures 4.59 and 4.60 provide a comprehensive overview of the cooling load, representing the 
heat transfer from the outdoor environment to the indoor space across the wall structure. In 
Figure 4.59 (left), the significant impact of using PCM1 in conjunction with brick or concrete is 
evident. PCM1 efficiently stores the heat from the outside, preventing it from infiltrating the 
interior space. In contrast, Figure 4.59 (right) illustrates that PCM2 does not store as much heat 
due to its higher melting temperature, leading to a comparatively lower heat retention. Upon 
examining the values in the tables, it becomes apparent that the use of PCMs reduces the heat 
transfer to the interior, with the extent of reduction varying from total to partial. This reduction is 
contingent upon factors such as environmental temperature, melting temperature, and the latent 
heat properties of the PCM materials. For instance, Tables (4.18-4.21) listed the concrete values 
of the results’ parameters for all cases, I observed that integrating PCMs (PCMs) into 
construction walls significantly reduces the heat flow from outside to inside. PCM1, in 
particular, greatly decreases the interior heat flow due to its high latent heat capacity and 
appropriate melting temperature range, allowing it to melt and efficiently store energy. 
Additionally, it is noted that the cooling heat transfer values for both brick and concrete 
integrated with PCM are approximately halved. This demonstrates the effectiveness of PCM in 
storing most of the heat energy as latent heat, thereby minimizing heat transfer into the indoor 
environment.  
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 Figure 4.59. Cooling load in Case 1 with PCM1 (Left), PCM2 (Right) 

Figure 4.60. Cooling load in Case 2 with PCM1 (Left), PCM2 (Right) 

Table 4.18. The results in Case 1 with PCM1 

Parameters Brick Concrete Brick+PCM1 Concrete+PCM1 
2max( ) /TotalQ kJ m  389.509 10×  3150.07 10×  3204.41 10×  3159.42 10×  

2( ) /Totalmean Q kJ m  3  39.245 10×  364.070 10×  384.962 10×  387.624 10×  
2max( ) /SensibleQ kJ m  389.509 10×  3251.80 10×  324.668 10×  3 9.7919 10×  

2( ) /Sensiblemean Q kJ m  3  39.245 10×  3131.98 10×  314.752 10×  36.8909 10×  
2max( ) /LatentQ kJ m  0  0  3182.59 10×  3149.63 10×  

2( ) /Latentmean Q kJ m  0  0  380.930 10×  3 80.734 10×  
2max( ) /CoolingQ J m  

3  377.78 10×  3  879.75 10×  3  188.70 10×  3  239.28 10×  
2( ) /Coolingmean Q J m  

3  168.26 10×  3  391.83 10×  3  98.121 10×  3 123.19 10×  
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Table 4.19. The results in Case 1 with PCM2 

Parameters Brick Concrete Brick+PCM2 Concrete+PCM2 
2max( ) /TotalQ kJ m  389.509 10×  3150.07 10×  3285.77 10×  3270.17 10×  

2( ) /Totalmean Q kJ m  3  39.245 10×  364.070 10×  397.638 10×  389.696 10×  
2max( ) /SensibleQ kJ m  389.509 10×  3251.80 10×  380.829 10×  3 77.298 10×  

2( ) /Sensiblemean Q kJ m  3  39.245 10×  3131.98 10×  338.437 10×  342.473 10×  
2max( ) /LatentQ kJ m  0  0  3239.81 10×  3204.90 10×  

2( ) /Latentmean Q kJ m  0  0  360.884 10×  3 48.082 10×  
2max( ) /CoolingQ J m  

3  377.78 10×  3  879.75 10×  3  274.02 10×  3   467.4 10×  
2( ) /Coolingmean Q J m  

3  168.26 10×  3  391.83 10×  3 129.64 10×  3  213.78 10×  
 
Table 4.20. The results in Case 2 with PCM1 

Parameters Brick Concrete Brick+PCM1 Concrete+PCM1 
2max( ) /TotalQ kJ m  3140.83 10×  3251.80 10×  3226.89 10×  3254.19 10×  

2( ) /Totalmean Q kJ m  3  77.542 10×  3131.98 10×  3125.23 10×  3123.75 10×  
2max( ) /SensibleQ kJ m  3140.83 10×  3251.80 10×  395.532 10×  3 113.35 10×  

2( ) /Sensiblemean Q kJ m  3  77.542 10×  3131.98 10×  332.880 10×  342.238 10×  
2max( ) /LatentQ kJ m  0  0  3229.94 10×  3255.16 10×  

2( ) /Latentmean Q kJ m  0  0  3105.85 10×  3 100.61 10×  
2max( ) /CoolingQ J m  

3  304.19 10×  3  708.39 10×  3  136.57 10×  3  263.04 10×  
2( ) /Coolingmean Q J m  

3 110.86 10×  3  252.76 10×  3  69.906 10×  3  128.71 10×  
 
Table 4.21. The results in Case 2 with PCM2 

Parameters Brick Concrete Brick+PCM2 Concrete+PCM2 
2max( ) /TotalQ kJ m  389.509 10×  3251.80 10×  3381.24 10×  3 365.72 10×  

2( ) /Totalmean Q kJ m  3  39.245 10×  3131.98 10×  3155.68 10×  3 148.85 10×  
2max( ) /SensibleQ kJ m  389.509 10×  3251.80 10×  3 76.041 10×  3 156.69 10×  

2( ) /Sensiblemean Q kJ m  3  39.245 10×  3131.98 10×  376.041 10×  3 83.155 10×  
2max( ) /LatentQ kJ m  0  0  3301.16 10×  3 258.61 10×  

2( ) /Latentmean Q kJ m  0  0  383.240 10×  3 68.074 10×  
2max( ) /CoolingQ J m  

3  377.78 10×  3  708.39 10×  3  220.39 10×  3   376.23 10×  
 

4.5.5.3. Computational Time of The Numerical Methods 

Table 4.22 presents the computational time for recent numerical methods applied to two 
distinct geometries: brick and brick integrated with PCM. The inclusion of only these two types 



USE EFFICIENT METHODS TO SOLVE REAL-LIFE HEAT TRANSFER PROBLEMS 

90 
 

of geometries stems from the fact that computational times for brick and concrete are identical, a 
consistency maintained even when integrated with PCMs due to their equivalent system sizes. 
The tabulated values indicate that LH methods demonstrate quicker computational times. 
Nevertheless, it becomes evident that LH methods emerge as the optimal choice, striking a 
balance between speed and stability across all time step sizes.  
Table 4.22. The computational time of numerical methods  

Geometry 
Computational time (s) 

ASH SH LH 
Brick or Concrete 

 
  

29.1569  24.2810  19.7127  
Brick or Concrete+PCM  

  
  

549.5274  451.4683  373.3887  
 

4.5.6. The Summary of The Present Section  

The present work summarizes the following:  

1. The novelty of recent numerical methods in effectively addressing the complexities 
associated with phase change, showcasing their proficiency in handling this intricate 
problem. 

2. The study establishes the reliability of the Effective Heat Capacity model, serving as a 
robust computational tool for simulating PCMs. 

3. Emphasizing the substantial impact of PCMs on cooling loads and heat transfer dynamics 
between outdoor and indoor environments, particularly in diverse wall structures, the 
findings underscore the crucial role of PCMs in energy management. 

4. Performance Disparities between PCM1 and PCM2: PCM1, distinguished by its lower 
melting temperature and higher latent heat, excels in proficiently storing external heat, 
thereby preventing its ingress into indoor spaces. In contrast, PCM2, characterized by 
higher melting temperature and lower latent heat, exhibits diminished efficiency in heat 
retention. PCM1, notably, achieves a significant reduction in heat transfer into interior 
spaces, approaching near-elimination due to its high latent heat and appropriate melting 
temperature range. 

5. Impact on Interior Temperature Regulation: PCM1, especially when coupled with brick 
or concrete, sustains indoor temperatures near initial values, exemplifying its adeptness in 
efficient heat storage. Conversely, PCM2, while providing insulation, exerts a 
comparatively lesser influence on indoor thermal conditions. 

In conclusion, this study accentuates the pivotal role of PCMs in mitigating cooling loads, 
preserving indoor temperatures, and impeding external heat intrusion. The judicious selection of 
PCMs, influenced by latent heat properties and melting temperature considerations, emerges as a 
critical factor in optimizing energy efficiency and elevating thermal comfort within architectural 
frameworks. For climates characterized by cold conditions, PCM2 is recommended, particularly 
when augmented by solar panels to harness and store daytime solar energy as latent heat for 
nocturnal cold periods. These discernments bear substantive implications for the formulation of 
energy-efficient structures, underscoring the strategic importance of PCM selection in building 
materials and construction methodologies. 
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5.THESIS POINTS – NEW SCIENTIFIC RESULTS 

T1. I constructed and tested the Shifted-Hopscotch algorithms, which were fully explicit time-
integrators obtained by applying half- and full-time steps in the odd-even hopscotch 
structure. I applied the conventional theta method with nine different values, and the non-
conventional CNe method to construct 105 combinations and I chose the top five of them 
via numerical experiments. These experiments suggest that the proposed methods are, 
indeed, competitive, as they can give fairly accurate results orders of magnitude faster than 
the well-optimized MATLAB routines or the Crank–Nicolson method, and they are also 
significantly more accurate for stiff systems than the UPFD, the Dufort–Frankel, or the 
original odd-even hopscotch method. If high accuracy is required, the S4 (0, ½, ½, ½, 1) 
combination can be proposed; however, when preserving positivity is crucial, the S1 (C, C, 
C, C, C) algorithm should be used. 

T2. As an application of the efficient elaborated methods, I investigated 13 of the new methods 
to solve the linear heat conduction equation in building walls. Eight of these methods are 
recently invented explicit algorithms that are unconditionally stable, including the SH 
method. Verification tests were first performed in a 2D case by comparing them to 
analytical solutions, using both equidistant and non-equidistant grids. Space-dependent 
boundary conditions were applied on the brick side, and time-dependent boundary 
conditions on the insulation side. Results indicate that the original Odd-Even Hopscotch 
method is usually the best algorithm for uniform cases, while the Leapfrog-Hopscotch 
algorithm performs best for non-uniform cases, but the Shifted-Hopscotch algorithm is also 
competitive. 

T3. I also examined 11 of the new methods to solve heat conduction, convection, radiation, and 
heat generation inside building walls' elements. These methods were tested on real-life 
applications involving surface area (one-layer brick) and cross-sectional area (two-layer 
brick and insulator) walls, with and without thermal bridging, to determine accuracy 
dependence on material properties, mesh type, and time step size. Neumann boundary 
conditions were applied to all boundaries, for surface area cases, the heat source, 
convection, and radiation inside all elements were considered, while for cross-sectional 
area cases only the right and left boundary elements containing heat source, convection, 
and radiation. The results indicate that the Original Odd-Even Hopscotch method is usually 
the best for uniform cases, while the Leapfrog-Hopscotch algorithm performs best for non-
uniform cases. 

T4. In addition to Cartesian coordinates, I developed 9 of the new methods to solve heat 
transfer problems in cylindrical and spherical geometries. I reproduced novel and nontrivial 
analytical solutions for the heat-conduction PDE with high accuracy. Furthermore, I 
verified the numerical methods in cylindrical and spherical coordinates, incorporating 
convection and radiation terms, by reproducing real experimental data of a heated cylinder 
and comparing it with Finite Element Methods (FEM) ANSYS workbench. Convection and 
nonlinear radiation were considered on the boundary of the cylinder. Verification results 
demonstrated the high accuracy of the numerical methods in dealing with cylindrical and 
spherical bodies. Additionally, temperature comparisons across all approaches revealed that 
explicit methods are more accurate than finite element software in all cases, with the 
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Leapfrog-Hopscotch algorithm typically being the most accurate among the studied 
methods. 

T5. I investigated the heat transfer through building walls, considering different wall 
geometries and heat load scenarios, encompassing both cooling and heating. My objective 
was to analyze how heat transfer depends on the wall materials and evaluate algorithm 
performance in cases involving heat transfer between solid surfaces and fluid (convection) 
on the outdoor surface, particularly across an air gap between the insulation and 
Photovoltaic Cells (PVC). The results of the study reveal that insulation prevents heat from 
entering the building, maintaining a comfortable indoor environment. Forced convection 
significantly enhances heat dissipation, especially during cooling operations to protect PVC 
with limited working temperature. Furthermore, the simulations highlight the air gap’s 
efficiency in cooling PVC and reducing maximum temperatures on the insulation’s outer 
surface, especially under forced convection conditions. The test results show that the 
Leapfrog Hopscotch algorithm offers the best solution for this highly stiff system, followed 
by the Asymmetric and Shifted-Hopscotch algorithms.  

T6. I alsosimulated a multilayer wall integrated with PCMs using an effective heat capacity 
model and I employed the Leapfrog-Hopscotch methods for that. I validated my approach 
against established mathematical expressions and models in the literature, investigating 
various building wall geometries, two types of PCMs used in this investigation, and 
boundary conditions. The objective was to maintain interior temperatures within comfort 
zones. Regardless of the wall material, whether brick or concrete, my simulations 
consistently demonstrated the PCM’s effectiveness in minimizing heat transfer into indoor 
environment.  
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