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SUPERVISOR’S FOREWORD 

for the PhD thesis 

„ Geostatistics assisted well-logging inversion method developments” 

by Moataz Mohamed Gomaa Abdelrahman 

 

The topic of the Candidate’s thesis – robust inversion of wireline logging data – is in 

the focus of international research. The method developments introduced by the Candidate in 

the thesis belong to the range of modern data processing tools including machine learning and 

advanced inversion approaches applied to in situ geophysical data. The goal of the PhD 

research is to have a more efficient interpretation of well logging data, by creating a fully 

automated inversion workflow. In addition to presenting the theoretical background of 

research, the PhD thesis gives answers to several practical questions and challenges. 

 

The first step of the implementation is the application of the Most Frequent Value 

(MFV) method for automation of zonation and layer boundary detection, which is an important 

pre-requisite for a reliable inversion of well logs. First, the Candidate develops an MFV-based 

robust clustering method and then other approaches for boundary detection as a novel 

application of Hurst exponent and factor analysis. Then, he performs the estimation of 

petrophysical quantities in reservoir rocks, where he applies a new discretization scheme, the 

so-called series expansion-based inversion approach. This improves both the forward and 

inverse problems. In addition to local (depth-by-depth) inversion, traditionally used in the oil 

and gas industry, the Candidate uses the interval inversion technique, too. The MFV method 

and the series expansion-based interval inversion procedure was originally developed at the 

Department of Geophysics of the University of Miskolc by Prof. Ferenc Steiner and Prof. 

Mihály Dobróka, respectively. The Candidate followed the research idea of his predecessors 

and supervisor and further developed them to give new scientific results in practical 

application.  

 

In the framework of the proposed inversion methodology, the Candidate increases the 

stability of the often numerically poorly conditioned inverse problem. He introduces the golden 

section- and singular value decomposition-based inversion method for a more efficient and 
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faster processing of well logging data. He introduces new unknowns such as zone parameters, 

which are traditionally obtained from laboratory measurements or, in the absence thereof, 

arbitrarily selected. The conventional inversion approach treating the zone parameters as fixed 

values can highly increase the uncertainty of the estimation results. In the Candidate’s PhD 

thesis, the harmful effect of modeling errors is reduced by setting the zone parameters as 

unknown, which improves the accuracy of the key parameters of the reserve calculation, 

namely the determination of the volume characteristics such as porosity, clay content, water 

saturation and matrix volumes, too. The new robust inversion technique presented in the PhD 

thesis serves for a more accurate and reliable reservoir characterization in hydrogeophysics, 

geothermal-, conventional and unconventional hydrocarbon exploration providing powerful 

tools of identification and evaluation of the reservoir rocks and a better reserve calculation. 

 

The Candidate’s continuous efforts towards scientific research, his creativity, and the 

results presented in this PhD thesis prove the scientific knowledge and the suitability of the 

Candidate for independent research. In my opinion, the Candidate’s results, especially those 

related to the estimation of layer thicknesses, zone and volumetric parameters in a joint 

inversion procedure, are worth publishing in Scimago ranked international journals. The 

feasibility of the developed inversion method has been tested both on synthetic and real data, 

both in Hungary and Egypt, and validated also by core laboratory measurements. Herewith, I 

certify that the Candidate’s PhD dissertation contains only valid data, and the presented results 

represent the Candidate’s own work. In my opinion, the PhD thesis is fully adequate in scope 

and quality required by the Mikoviny Sámuel Doctoral School of Earth Sciences at the 

University of Miskolc. Based on all the above, I recommend the public defense to be carried 

out to complete a successful process of acquiring the PhD title. 

 

  

11 May 2025, Miskolc 

Prof. Dr. Norbert Péter Szabó 

        supervisor 
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Chapter 1: Introduction 

An accurate understanding of subsurface formations is a cornerstone of geophysical 

and hydrogeological research, with profound implications for resource exploration, 

environmental sustainability, and infrastructure planning. Borehole logging data, which offers 

critical insights into the composition, structure, and fluid content of the Earth’s subsurface, 

serves as a primary tool for unraveling the complexities hidden beneath the surface. However, 

interpreting this data is no simple task (Zhang et al. 2024). Traditional methods, such as the 

widely used K-means clustering technique and conventional inversion approaches, often 

struggle to deliver reliable results when faced with noisy datasets, outliers, or heterogeneous 

geological formations (Jahantigh and Ramazi 2025). These limitations can lead to 

misinterpretations, obscuring important details about lithology, aquifer properties, or reservoir 

characteristics (Mohammed et al. 2025). This thesis seeks to address these challenges by 

introducing innovative methodologies that enhance the precision, robustness, and reliability of 

subsurface characterization, offering a fresh perspective on geophysical data interpretation. 

At the heart of this research lies the recognition that traditional methods for interpreting 

borehole log data often fall short in handling real-world complexities. For instance, the K-

means clustering technique, while widely used, is highly sensitive to outliers and noise, which 

can distort results and lead to misleading classifications (Aliyuda et al. 2022). Similarly, 

conventional inversion techniques, which are employed to estimate reservoir parameters, 

frequently encounter issues with convergence stability and computational efficiency, 

particularly when dealing with noisy or incomplete datasets (Ikhwan et al. 2024). These 

shortcomings highlight the need for more adaptive and resilient approaches that can navigate 

the inherent uncertainties of geophysical data (Okunola 2024). Recent advancements in 

statistical methods and computational techniques have opened new doors for addressing these 

challenges, providing a foundation for the development of more robust and accurate 

interpretation tools (Aversana 2023). 

One such advancement is the development of the Most Frequent Value (MFV) 

algorithm, a statistical method that has been promising tool in mitigating the effects of outliers 

and stabilizing data analysis (Kemp and Steiner 1991). By incorporating the MFV algorithm 

into clustering techniques, it becomes possible to achieve more reliable and consistent results, 

even in the presence of noisy or erratic data. Additionally, interval inversion methods, 

originally developed for oil exploration, have demonstrated superior performance in parameter 
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estimation compared to traditional local inversion techniques. These methods offer greater 

convergence stability and accuracy, making them well-suited for handling the complexities of 

subsurface data. Building on these advancements, this research introduces a series of 

innovative methodologies that integrate robust statistical techniques with advanced inversion 

approaches, creating a cohesive framework for accurate and reliable subsurface 

characterization. 

The central idea driving this work is that the integration of robust statistical methods, 

such as the MFV algorithm, with advanced inversion techniques, can significantly improve the 

interpretation of borehole log data. This approach is grounded in the assumption that the MFV 

algorithm’s ability to suppress outliers and stabilize centroid estimation will enhance clustering 

results, while hybrid inversion methods optimize parameter estimation by combining the 

strengths of different algorithms. Furthermore, it is assumed that these methodologies can be 

applied across a wide range of geological settings, from groundwater formations to 

hydrocarbon reservoirs and geothermal systems, making them versatile tools for subsurface 

exploration. 

The research strategy revolves around the development and validation of three key 

methodologies. The first is an MFV-based clustering algorithm that incorporates Steiner-

Cauchy weights to suppress outliers and stabilize centroid estimation. This algorithm 

introduces a novel distance metric, known as the Steiner distance, which automatically 

identifies the most relevant range of the data while filtering out noise caused by outliers. By 

using the MFV as a centroid update mechanism, the algorithm ensures robust and stable 

clustering results, even when starting with randomly initialized centroids. The second 

methodology is a hybrid inversion approach that combines the Damped Least Squares (DLSQ) 

and Singular Value Decomposition (SVD) methods. This approach dynamically adjusts 

damping factors to optimize convergence, offering a more efficient and accurate alternative to 

traditional inversion techniques. The third methodology is an automated workflow that 

integrates Hurst analysis, interval inversion, and the Csókás method for comprehensive 

formation evaluation. This workflow uses Hurst analysis to estimate the number of layers and 

predict their depth locations, interval inversion to derive petrophysical parameters, and the 

Csókás method to improve hydraulic conductivity estimation. Together, these methodologies 

provide a cohesive framework for accurate and reliable subsurface characterization. 
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What sets this research apart is the seamless integration of these techniques into a 

unified framework that addresses the limitations of traditional methods. For example, the MFV-

based clustering algorithm introduces a novel distance metric and centroid update mechanism, 

significantly improving the robustness and stability of clustering results. The hybrid inversion 

approach dynamically adjusts damping factors to optimize convergence, offering a more 

efficient and accurate alternative to traditional inversion techniques. The automated workflow 

leverages Hurst analysis for lithological boundary detection and interval inversion for high-

resolution parameter estimation, providing a comprehensive solution for subsurface 

characterization.  

The motivation behind this research stems from the growing need for accurate and 

reliable methods to interpret complex geophysical data, particularly in the face of increasing 

environmental and resource challenges. Groundwater depletion, hydrocarbon exploration in 

complex reservoirs, and geothermal energy development all require precise subsurface 

characterization to inform decision-making and resource management. By developing 

methodologies that enhance the accuracy and efficiency of data interpretation, this research 

aims to contribute to the advancement of geophysical and hydrogeological sciences. The 

potential impact of this work extends beyond academic research, offering practical tools for 

industry professionals and policymakers. The proposed methodologies can improve the 

assessment of aquifer properties, enhance hydrocarbon reservoir characterization, and optimize 

geothermal resource evaluation. Furthermore, the automated nature of these workflows reduces 

the reliance on manual interpretation, minimizing subjectivity and increasing reproducibility. 

The PhD thesis presents a series of innovative methodologies that address the 

limitations of traditional borehole logging data interpretation techniques. By integrating robust 

statistical methods, advanced inversion algorithms, and automated workflows, this research 

provides a comprehensive framework for accurate and reliable subsurface characterization. The 

results demonstrate the potential of these methodologies to transform geophysical and 

hydrogeological research, offering new insights into complex geological systems and 

supporting sustainable resource management. The development of these techniques represents 

a significant step forward in the field, with broad applications in groundwater assessment, 

hydrocarbon exploration, and geothermal resource evaluation. Through this work, I aim to 

provide the scientific community and industry professionals with powerful tools for 

understanding and managing the Earth’s subsurface resources. 
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Chapter 2: Advancing Lithological Classification with a Robust 

Clustering Technique 

Geophysical data processing and interpretation involves studying and characterizing 

the Earth’s subsurface using physical measurements and models. In recent years, there has been 

growing interest in using computational techniques like machine learning for more objective 

and consistent lithological classification (Tiab and Donaldson 2004). A common approach is 

to first numerically characterize rock samples based on features like mineral composition, 

texture, etc. extracted from imaging data or spectroscopy. Then, these multivariate feature 

vectors can be input into clustering algorithms to automatically group similar rock types. 

Recently, machine learning has been implemented as a vital and useful tool for many different 

geophysical applications, even in research and industry. The applications of machine learning 

in borehole geophysics include identifying patterns and correlations between various recorded 

well-log data. Therefore, the two main problems of machine learning can be concluded as 

classification and regression (Lima et al. 2020). Furthermore, the application of machine 

learning can be extended to build physics-based models that can simulate oil ang gas reservoirs 

and groundwater aquifers (Terry et al. 2019). This enables faster scenario testing and 

quantification of uncertainty (Ian et al. 2009). Supervised and unsupervised learning are the 

two major categories of machine learning algorithms. The main difference lies in whether the 

algorithm is trained on labeled or unlabeled data. In supervised learning, the training data 

contains example input-output pairs, and the algorithm learns to model the mapping from input 

to output. Common supervised tasks include classification, where the outputs are discrete 

categories and regression, where the outputs are continuous numerical values. Supervised 

methods include linear models such as logistic regression, and nonlinear models such as neural 

networks, and nonparametric models such as decision trees and random forests (Pandey et al. 

2020). Specifically, robustness in this context pertains to the algorithm's insensitivity to 

statistical distribution variations and its capacity to manage outlier data without compromise. 

A robust K-means approach is characterized by its ability to maintain stable and accurate 

clustering outcomes even in the presence of atypical data points or deviations from assumed 

statistical models (Zhang et al. 2024). Furthermore, statistical efficiency is a pivotal component 

of robustness, reflecting the algorithm's proficiency in achieving precise clustering results 

while optimizing computational resources, thereby ensuring their scalability and efficiency. By 

embedding robustness as a foundational feature, the proposed K-means variant can offer 
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enhanced versatility and dependability across diverse datasets and practical applications, 

leading to more consistent and reliable analytical outcomes. 

In this Chapter, I introduce a novel robust clustering technique called MFV clustering, 

which is tailored for lithological classification. MFV clustering incorporates innovative 

statistical metrics of feature variability to overcome the limitations of conventional clustering 

techniques. The common weaknesses of conventional clustering techniques include heavy 

computation, such as hierarchical clustering, or initial location dependency, such as in K-mean 

clustering. 

2.1. K-means cluster analysis 

In the preprocessing step of clustering a dataset with greater than one dimension, the 

data must be standardized. Scale the data to have a mean of zero and a standard deviation of 

one. The aim of this step is to minimize the effect of differences in scales of variables. Without 

normalization, variations in scales have the potential to introduce bias during the clustering 

process because features with greater numerical ranges can dominate the distance calculations 

and lead to biased results. Through normalization, all dimensions contribute equally to the 

outcome, allowing the clustering algorithm to perform optimally and produce more significant 

results. This process allows the underlying patterns in the data to be better detected and 

understood. 

K-means clustering is an exploratory statistical method that is used to separate the 

multidimensional data into a few homogenous groups. It is a widely used technique for 

uncovering hidden patterns in a dataset. K-means clustering algorithms rely on calculating the 

distance between each data object and randomly generated centroids. However, a priori 

knowledge of the number of centroids (which is the number of clusters) is required for the K-

means clustering algorithm (Khan and Ahmad 2004). For initializing the multidimensional 

statistical procedure for clustering well logging data, let A= {𝑑𝑖| 𝑖 = 1,… , 𝐿} be a well-log data 

set of L data types, and c = {𝑐𝑖| 𝑖 = 1,… , 𝐾} be a set of K centroids. Consider a dataset with N 

data points in an L dimensional space. As an example, two points in the L dimensional data 

space can be written as 𝑑(𝑖) = [𝑑1
(𝑖)
 , ⋯ , 𝑑𝐿

(𝑖)
 ]T and 𝑑(𝑗) = [𝑑1

(𝑗)
 , ⋯ , 𝑑𝐿

(𝑗)
 ]T, where 1 ≤ 𝑖, 𝑗 ≤

𝑁. K-means clustering aims to group the points into clusters by minimizing the following 

objective function 
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𝑂 =∑∑𝑑𝑖𝑠(𝑑𝑖, 𝑐𝑘)

𝑁

𝑖=1

𝐾

𝑘=1

, ( 1 ) 

where the measure of similarity can be specified as the distance between the data points and 

the cluster centroids (𝑑𝑖𝑠(𝑑𝑖, 𝑐𝑘)). During the clustering process, we minimize the distance 

given in equation (1). The Minkowski distance assumes that different number of elements 

belong to each cluster. The Lp norm characterizes the distance between the data objects and the 

cluster centroids as follows 

𝐷𝑝 = [∑∑|𝑑𝑖 − 𝑐𝑘|
𝑝

𝑁𝑘

𝑖=1

𝐾

𝑘=1

]

1
𝑝

. 
( 2 ) 

In case of clustering borehole datasets, the most common distances to be used are the 

L1 and L2 norms belonging to p=1 and p=2, respectively (Szabó et al. 2021). Consider data 

objects d(i) and d(j). The L2 norm is the so-called the Euclidean norm or the Euclidean distance, 

it can be represented as follows 

𝐷𝐸𝑢𝑐 = √(𝑑𝑘
(𝑖)
− 𝑐𝑘)T(𝑑𝑘

(𝑗)
− 𝑐𝑘). 

( 3 ) 

The measured data are usually contaminated by noise and outliers, therefore, the 

weighted distance or Mahalanobis distance is preferably used in such cases 

𝐷𝑀𝑎ℎ = √(𝑑𝑘
(𝑖)
− 𝑐𝑘)T𝐖−1(𝑑𝑘

(𝑗)
− 𝑐𝑘), 

( 4 ) 

where W-1 is the inverse of the covariance matrix of standardized observed variables, which 

contains the data variances in its main diagonal. If the variables exhibit interdependence, it is 

imperative to consider the measure of correlation, even in cases where the variables' 

magnitudes differ, making their distances incomparable. The Euclidean norm proves most 

effective when the data noises adhere to a Gaussian distribution. However, in cases of non-

Gaussian distributed data, even when outliers are present in the dataset, the Manhattan distance 

provides a more robust estimation. The location of the centroids is iteratively updated according 

to the mean of the assigned data points as follow 

𝑐𝑘 =
1

𝑁𝑘
∑𝑑𝑖

(𝑘)

𝑁𝑘

𝑖=1

. ( 5 ) 

where Nk represents the total number of elements being averaged in cluster k. The K-

means clustering algorithm begins by randomly initializing K centroids (defined prior to the 
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iterative process). Then, it proceeds to compute the distances between each data point and the 

centroids, followed by grouping the data points based on the minimum distance. Subsequently, 

the algorithm updates the centroid locations and repeats this process until no further changes 

occur in the centroids' locations. K-means clustering does not guarantee to give the same results 

with randomly chosen initial clusters (initial centroid selection dependency), it can give a 

reliable results when the initial centers is close to the final solution (Khan and Ahmad 2004). 

Aside from that, outliers can significantly affect the position of centroids, potentially leading 

to the formation of incorrect clusters. K-means cluster analysis is quite sensitive to outliers and 

may produce suboptimal results in the presence of significant outliers. To overcome such 

weaknesses, much previous research tried to adjust the initial centroid selection step. One of 

these approaches was to take the mean of the entire data and randomly perturbing it K times 

(Qu 2025). Bradley and Fayyad (1998) proposed a procedure that relate the initial location of 

centroids to the joint probability density function of the data (pdf), where the condition is to 

generate centroids near to the mode of the joint pdf. Furthermore, some statistical methods can 

be used to remove the outliers to avoid the second weakness point. 

2.2. MFV-based cluster analysis 

The goal of clustering is to minimize the distance within each cluster and to maximize 

the distance between different clusters. Therefore, the weighted mean of the data can be more 

accurate than the arithmetic mean, especially in case of outlier’s presence. The most frequent 

value method, introduced by Steiner (1991), is an automated method that assigns higher 

weights to data points that are closer to each other and lower weights to those that are farther 

to reduce the influence of outliers in clustering algorithms (Tolner et al. 2023). By emphasizing 

the importance of proximity, the method gives priority to connections between data points that 

fall within ranges of interest, making it less sensitive to outliers that are further away from the 

central groups (Akbar, Szabó, and Dobróka 2021). This approach can contribute to consistent 

outcomes. Additionally, updating the centroid positions will ensure an accurate convergence 

pathway, irrespective of the initially random locations, as the location of the centroids in the 

data space will be determined by the most frequent value (MFV) in the data. The automated 

iterative process calculates the MFV (location parameter) and dihesion, ε (scale parameter) 

simultaneously by a recursion formula. Firstly, MFV is considered as the mean or median of 

the data points, while ε is estimated from the range of the data points. In another words, the 



19 | P a g e  

 

 

greater value of ε means that all the data points take the same (high-value) weights (including 

the outliers) in the beginning (Steiner 1990) 

𝜀 ≤
√3

2
(max(𝑥𝑖) − min(𝑥𝑖)), 

( 6 ) 

and in the j-th iteration MFV and ε are calculated from each other based on equations (7) and 

(8) as follows 

𝜀𝑗+1
2 =

3∑
(𝑥𝑖 −𝑀𝐹𝑉𝑞,𝑗)

2

(𝜀𝑗
2 + (𝑥𝑖 −𝑀𝐹𝑉𝑞,𝑗)

2)2
𝑞
𝑖=1

∑
1

(𝜀𝑗
2 + (𝑥𝑖 −𝑀𝐹𝑉𝑞,𝑗)2)2

𝑞
𝑖=1

, ( 7 ) 

𝑀𝐹𝑉𝑞,𝑗+1 =

∑
𝜀𝑗+1
2

𝜀𝑗+1
2 + (𝑥𝑖 −𝑀𝐹𝑉𝑞,𝑗)2

𝑥𝑖
𝑞
𝑖=1

∑
𝜀𝑗+1
2

𝜀𝑗+1
2 + (𝑥𝑖 −𝑀𝐹𝑉𝑘𝑞,𝑗)2

𝑞
𝑖=1

, ( 8 ) 

in the framework of the MFV algorithm. The weighting function can be used to cluster the 

noisy dataset using the following weight equation using 𝑤𝑘
𝑆𝑡Steiner-weights for giving robust 

parameter estimation (Szabó and Dobróka 2017) 

𝑤𝑘
(𝑆𝑡)

=
𝜀2

𝜀2 + 𝑒𝑘
2. 

( 9 ) 

I modified the traditional K-means clustering method by the MFV algorithm to introduce an 

innovative clustering technique called MFV-based cluster analysis. Figure 1 shows the 

workflow of the proposed algorithm of the MFV clustering. The MFV-based clustering method 

can solve both prementioned weaknesses at the same time. By substituting equation (9) into 

equation (6), Steiner distance can be introduced as follows 

𝐷𝑆𝑡 = √
1

∑ 𝑤𝑞
𝑆𝑡𝑁

𝑞=1

∑𝑤𝑘
𝑆𝑡(𝑑𝑘

(𝑖)
− 𝑑𝑘

(𝑗)
)2

𝑁

𝑘=1

. ( 10 ) 

The MFV-based clustering updates the location of the centroids according to the weighted 

Steiner mean as follows 

𝑐𝑖
𝑆𝑡 =

1

∑ 𝑤𝑞
𝑆𝑡𝑁𝑘

𝑞=1

∑𝑤𝑘
𝑆𝑡𝑑𝑘

(𝑖)

𝑁𝑘

𝑘=1

. ( 11 ) 
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Figure 1. The flowchart of the MFV-based cluster method. 

 Comparative study between K-means and MFV-based clustering using synthetic data  

To study the performance of the MFV-based clustering method, a statistical study was 

carried out using synthetic well-log data. The suggested model consists of four homogenous 

layers with different petrophysical parameters (Table 1). The calculated well-logging data 

reflects the presence of hydrocarbon and water bearing zones. Moreover, the volumetric 

lithological composition encompasses clay, carbonate, kerogen, and quartz constituents within 

the layers. To check the robustness of the MFV-based cluster method, the synthetic data were 

contaminated by 3% Gaussian distributed noise with artificial outliers’ implementation. 

Regarding the geometrical information of the constructed model, the depth increment is 0.1 m, 

and the total depth is 45 m. Therefore, the calculated points are 450 points per well log. Figure 

2 shows the synthetic well-logging data. 

Table 1. The petrophysical model for synthetic data calculation. Denotations: water saturation 

(Sw), clay volume (Vcl), carbonate volume (Vc), and kerogen volume (Vk). 

Layer Thickness Ф Sw Vq Vcl Vc Vk 
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(m) 

1 8 0.02 0.9 0.577 0.4 0.001 0.002 

2 18 0.03 1.0 0.153 0.7 0.1 0.017 

3 8 0.02 0.7 0.46 0.15 0.25 0.12 

4 10 0.01 0.6 0.158 0.3 0.5 0.032 

Denotations are porosity (Ф, [v/v]), water saturation (Sw, [v/v]), clay volume (Vcl, [v/v]), 

carbonate volume (Vc, [v/v]), and kerogen volume (Vk, [v/v]). Quartz volume is derived from 

the material balance equations Vq =1-Ф-Vcl-Vc-Vk. 

 
Figure 2. Synthetic well logging data contaminated with 3% Gaussian distributed noise. 

Denotations: GR [API] is natural gamma-ray log, SGR (%, ppm) is spectral gamma-ray log 

(black curve is potassium, the red curve is uranium, and green is thorium), Δt (s/m) is the 

compressional acoustic slowness log, N [v/v] is neutron log, b [g/cm3] is density log, PE 

[barn/e] is photoelectric absorption index, and RT [Ohm-m] is deep resistivity log.    

The physical relationship between the calculated well-logging data and the predefined 

petrophysical parameters can be expressed through a set of equations known as response 

functions. Equations (12) to (21) represent the tool response functions used for calculating the 

synthetic well-log data (Alberty and Hashmy 1984)    

𝐺𝑅 =  𝜌𝑏
−1 (𝑉𝑘 𝐺𝑅𝑘𝜌𝑘 + 𝑉𝑠ℎ 𝐺𝑅𝑠ℎ𝜌𝑠ℎ +∑𝑉𝑚𝑎,𝑖𝐺𝑅𝑚𝑎,𝑖 𝜌𝑚𝑎,𝑖 

𝑛

𝑖=1

), ( 12 ) 
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𝐾 = 𝜌𝑏
−1 (𝑉𝑘 𝐾𝑘𝜌𝑘 + 𝑉𝑠ℎ 𝐾𝑠ℎ𝜌𝑠ℎ +∑𝑉𝑚𝑎,𝑖𝐾𝑚𝑎,𝑖 𝜌𝑚𝑎,𝑖 

𝑛

𝑖=1

), ( 13 ) 

𝑈 = 𝜌𝑏
−1 (𝑉𝑘 𝑈𝑘𝜌𝑘 + 𝑉𝑠ℎ 𝑈𝑠ℎ𝜌𝑠ℎ +∑𝑉𝑚𝑎,𝑖𝑈𝑚𝑎,𝑖 𝜌𝑚𝑎,𝑖 

𝑛

𝑖=1

), ( 14 ) 

𝑇ℎ =  𝜌𝑏
−1 (𝑉𝑘 𝑇ℎ𝑘𝜌𝑘 + 𝑉𝑠ℎ 𝑇ℎ𝑠ℎ𝜌𝑠ℎ +∑𝑉𝑚𝑎,𝑖𝑇ℎ𝑚𝑎,𝑖 𝜌𝑚𝑎,𝑖 

𝑛

𝑖=1

), ( 15 ) 

𝜌𝑏 = ∅[(𝜌𝑤𝑆𝑤) + 𝜌𝑔(1 − 𝑆𝑤)] + 𝑉𝑘𝜌𝑘 + 𝑉𝑠ℎ𝜌𝑠ℎ +∑𝑉𝑚𝑎,𝑖 𝜌𝑚𝑎,𝑖 ,

𝑛

𝑖=1

 ( 16 ) 

∅𝑁 = ∅[(∅𝑤𝑆𝑤) + ∅𝑔(1 − 𝑆𝑤)] + 𝑉𝑘𝜌𝑘 + 𝑉𝑠ℎ𝜌𝑠ℎ +∑𝑉𝑚𝑎,𝑖 ∅𝑚𝑎,𝑖 ,

𝑛

𝑖=1

 ( 17 ) 

∆𝑡 = ∅[∆𝑡𝑤𝑆𝑤 + (1 − 𝑆𝑤)∆𝑡𝑔] + 𝑉𝑘𝜌𝑘 + 𝑉𝑠ℎ∆𝑡𝑠ℎ +∑𝑉𝑚𝑎,𝑖 ∆𝑡𝑚𝑎,𝑖 ,

𝑛

𝑖=1

 ( 18 ) 

𝑃𝑒 = ∅[𝑆𝑤𝑈𝑤 + (1 − 𝑆𝑤)𝑈𝑔] + 𝑉𝑘𝜌𝑘 + 𝑉𝑠ℎ𝑈𝑠ℎ +∑𝑉𝑚𝑎,𝑖 𝑈𝑚𝑎,𝑖 ,

𝑛

𝑖=1

 ( 19 ) 

1

√𝑅𝑑
= [
𝑉𝑠ℎ

(1−0.5𝑉𝑠ℎ)

√𝑅𝑠ℎ
+
√∅

𝑚

√𝑎𝑅𝑤
]√𝑆𝑤

𝑛
, ( 20 ) 

∅ + 𝑉𝑘 + 𝑉𝑠ℎ +∑𝑉𝑚𝑎,𝑖 = 1.

𝑛

𝑖=1

 ( 21 ) 

The exposition entails an elucidation of pertinent petrophysical properties and their 

relationship to logging data, characterized by a defined nomenclature. Specifically, Vma,i (v/v) 

signifies the fractional volume of the i-th matrix constituent, while Vk denotes the volume of 

kerogen. The count of mineral constituents, n, and the fractional volume of shale-exempt pore 

spaces (∅, v/v) are established parameters. Likewise, the uninvaded zone features a discernible 

water saturation fraction denoted by Sw. The distinctive physicochemical characteristics of mud 

filtrate (mf), hydrocarbon (h), shale (sh), and the rock matrix (ma) are explicated by zone-

specific parameters stipulated in equations (12) to (20). Notably, equation (21), denoted as the 

material balance equation, assumes the pivotal role of a constraint in the resolution of the 

inverse problem, particularly in the determination of quartz volume. 

The comparison between the traditional K-means and MFV-based cluster includes 

testing the results stability and outliers suppress. Figure 3 shows the resulting clusters from 
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both techniques. The deduced clusters based on the Euclidean or Mahalanobis distances show 

a fair separation between different clusters. However, the amount of Gaussian noise and the 

high outliers’ sensitivity causes the presence of false clusters labels. On the other hand, the 

weighted distance, Steiner distance, based clustering shows a high resistance to the outlier’s 

presence and a highly smooth solution. As the purpose of clustering in borehole geophysics is 

to classify the dataset into different lithological rock types, the robustness of the cluster 

technique can be assessed by measuring the degree of perturbation of a data point that can 

suffer, while still being correctly assigned to its respective cluster. 

 
Figure 3. The resulting clusters from the traditional K-means clustering and the MFV-based 

clustering. 

 To assess the stability of the results of both clustering techniques and mitigate potential 

initial location dependency issues inherent to both methods, a comprehensive evaluation is 

carried out. Specifically, the test is repeated 100 times, with random selection of initial 

centroids. The arithmetic average is calculated to show that the convergence of the MFV-based 

cluster technique is more robust and not contingent on the initial location of the centroids. The 

MFV method exhibits a pronounced independence from the initial centroid location. Figure 4a 

vividly illustrates the remarkable stability of the results obtained through the MFV-based 
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approach. Conversely, in the case of the traditional clustering method, Figure 4b showcases a 

marked dependency on the initial centroid placement. Additionally, it underscores the 

considerable impact of outliers on the clustering outcome. 

  
(a) (b) 

Figure 4. The arithmetic means of the results of 100 times-repeated tests (a) using the MFV-

based clustering method, and (b) using the traditional K-means clustering method. 

The descriptive statistics show that the range of Steiner distances is smaller than that of 

Euclidean or Mahalanobis distances. This implies that Steiner distances are less affected by 

outliers, making them more consistent when there are extreme values in the data. in other 

words, the sensitivity to the outliers is reduced in case of MFV-based clustering. Furthermore, 

the mean Steiner distance of 1.6 closely approximates the exact mode of the distance 

distribution function, whereas the Euclidean and Mahalanobis distances have a mean of 3.4 

and 6.1, respectively. Additionally, the standard deviation of the Euclidean and Mahalanobis 

distances surpasses that of the Steiner distance. Finally, the sum of squared error favors the 

results obtained using Steiner distance. Table 2 provides a comprehensive summary of the 

descriptive statistics for both distances. 

Table 2. The descriptive statistical parameters for Euclidean and Steiner distances. 

 Mean Standard 

deviation 
Range SSE 

Euclidean 

distance 
3.4 5.5 40.4 1522.3 

Mahalanobis 

distance 
6.1 11.9 92.9 2741 

Steiner distance 1.6 1.5 9 547.7 
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Figure 5 shows the histogram for both distances, the histogram shows that the Euclidean 

and Mahalanobis distances have heavy tails compared to that of the Steiner distance. To sum 

up, the MFV-based clustering can solve the issue of initial location dependency and decrease 

the outliers’ sensitivity. The findings of MFV-based clustering can delineate the lithological 

change in case of synthetic borehole geophysical data with high resolution and can be used for 

extracting the layer boundary locations. 

 
Figure 5. Frequency plot of the Euclidean and Steiner distances. 

2.3. Field application of the MFV-based clustering technique 

The MFV-based clustering technique has been used to classify the different lithological 

units of a field well-logging data set of hydrogeophysical exploration. The proposed clustering 

method has been applied on the Baktalórátháza-1 well drilled in Szabolcs-Szatmár-Bereg 

County, in northeast Hungary. The well logging dataset shows a response of shaly-sand 

sequence. The drilled well penetrated a sequence of layers fully saturated with water. The upper 

80-100 m of the well was drilled into Pleistocene strata predominantly by sands. Sands of 100-

160 m thickness had been deposited, followed by a shaly formation and 5-15 m thick coarse-

grained beds. At a depth of 240 m, the border between the Pleistocene and Pannonian periods 

was detected (Szűcs et al. 2021). The cluster analysis was performed by three clusters, each 
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intended to delineate discrete categories representing varying levels of aquifer quality, 

specifically categorized as high, intermediate, and low.  

 The study identifies two clusters of aquifers: one with low natural gamma ray intensity, 

indicating high sandstone quality, and the other with high gamma ray intensity, indicating low 

shale content. Both clusters show a decrease in aquifer quality with depth. The MFV-based 

clustering method provides a higher-resolution depiction of layer continuity, particularly in 

deeper sections, whereas the traditional K-means approach erroneously identifies high-quality 

aquifers. The findings align with grain-size analysis of core samples, indicating that grain sizes 

remain relatively uniform within the deeper stratigraphic sequence. This confirms the 

robustness of the proposed clustering methodology. Figure 6 shows a 3D cross-plot 

representing the three clusters with respect to their GR, neutron-neutron, and gamma-gamma 

values. Figure 7 shows the clusters outcome for each depth point in vertical representation to 

show the continuity of the extracted lithological information. The last two tracks from the right 

side in Figure 7 shows the results from the traditional K-means and MFV-based cluster 

analysis, respectively.  

 
Figure 6. 3D cross-plot shows the MFV-based clustering results in a data space partition. 
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Figure 7. The depth distribution of clusters from both the K-means and MFV clustering 

methods. 

2.4. Summary of results 

The application of the K-means clustering technique on borehole log data resulted in 

spurious cluster labels and heightened susceptibility to outliers. To address this limitation, I 

introduced an innovative clustering method that integrates the iterative Most Frequent Value 

(MFV) algorithm with the traditional approach. This algorithm strategically incorporates the 

Steiner-Cauchy weights to assess the distances between data objects and their centroids and 

employs the MFV as a centroid update. The viability of this novel technique was assessed using 

synthetic data augmented with 3% Gaussian distributed noise and artificial outliers. 

The statistical evaluation of the MFV-based clustering method demonstrated robustness 

against outlier sensitivity, as well as a remarkable stability of results even with random 

initialization of centroids. Moreover, the proposed clustering approach was applied to in situ 

borehole geophysical data. The MFV-based method emerged as a highly proficient tool for 

precise characterization of aquifer layers, particularly in deeper strata, surpassing the 

capabilities of the conventional K-means clustering approach. Its capacity to furnish a high-

resolution depiction of layer continuity and to accurately discern regions of low-quality 

aquifers represents a substantial advancement in groundwater assessment. This proficiency was 

further affirmed by the congruence with grain size analysis findings and the consistent 

performance observed with synthetic data. 
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Thesis 1. 

I have developed a robust cluster analysis method that can group well-logging data 

reliably by using the most frequent value (MFV) algorithm. The MFV-CA clustering algorithm 

can give the same cluster results with randomly chosen initial centroids. Besides that, the MFV-

based clustering method effectively suppresses the outlying data during the classification of 

data objects. The optimal locations of the centroids are estimated by the MFV algorithm instead 

of the arithmetic mean of the cluster elements. I applied a weighting distance metric based on 

the Steiner weight function that so-called Steiner distance. I proved that Steiner distance can 

automatically identify the important range of the data, filtering out the noise caused by outliers. 

It retains the full scope of the dataset, ensuring all real data is preserved while minimizing 

distortion from extreme outlying values. In the latter case, I improved the results of rock typing 

in a Hungarian groundwater formation. 
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Chapter 3: A Meta-Algorithmic Framework for Regularization of 

Well Logging Inverse Problem 

To improve the efficiency of the exploration techniques nowadays, advanced and robust 

processing methods should be introduced. The well-logging data interpretation is a vital source 

of information because it gives knowledge about rock characterization surrounding the location 

of drilling (Doveton 2001). The reservoir characterization procedure includes determined 

different types of parameters such as petrophysical parameters (i.e., porosity, rock matrix 

volumes, and fluid saturation), zone parameters (i.e., Archie’s constants, shale parameters, 

matrix and pore-water parameters), and geometrical parameters (i.e., layer-boundary and 

thickness). The traditional methods of reservoir characterization suffer from the uncertainty in 

data interpretation, limited resolution, and difficulty in capturing complex geological features 

(Abordán and Szabó 2021). Besides that, the findings of the traditional methods suffer from 

cumulative errors and high correlation between the model parameters. Traditional well logging 

interpretation faces cumulative errors due to factors like data acquisition quality, calibration 

issues, relying on assumptions, and interpreter experience. These errors, beginning with tool 

malfunctions to variances in expert interpretation, will lead to significant inaccuracies in 

understanding subsurface conditions. This limitation can hinder the reliability of reservoir 

characterization and affect the decision-making procedure. Besides the deterministic 

(traditional) methods, geophysical inversion methods are widely used nowadays for accurate 

and reliable borehole logging interpretation (Dobróka et al. 2009). 

Well-logging inverse problem is an iterative algorithm that is used to predict the 

reservoir parameters using the recorded logging data. Practically, the characterization of the 

reservoir parameters is carried out depth-by-depth point along the logged interval in the so-

called local inversion. The local inversion used the linearized optimization algorithm to address 

the nonlinear relationship between the logging data and petrophysical parameters at certain 

depth point. Therefore, that concept introduces a poorly overdetermined inverse problem, that 

restricted the number of the unknowns to the number of recorded log data (Dobróka and Szabó 

2015). In addition, the layer boundaries are unknown and cannot be estimated by local 

inversion. To overcome the limitations of the local inversion, a series expansion-based 

inversion can be used to estimate the reservoir characteristics within a predefined interval. This 

inversion procedure is called interval inversion (Dobróka et al. 2016). In contrast to the local 

inversion, the unknowns of the interval inversion are the series expansion of the basis functions 
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that represent the change in petrophysical parameters within a certain depth interval. The 

significant overdetermination ratio (as I can set significantly lower number of expansion 

coefficients than data) guarantees high accuracy and reliability in parameters estimation, 

moreover, it allows the implementation of further parameters in the inverse problem. 

In both inversion techniques, the hyper-parameters that control the optimization 

problem are so important to guarantee the stability of the prediction procedure. The damping 

factor of the Damping Least Square (DLSQ) scheme is used to overcome the ill-posed problem 

(Nhu 2022; Levenberg 1944) . An ill-posed problem arises from the high condition number of 

the sensitivity matrix G (Jacobian matrix). In the context of inverse problem solution, a high 

condition number of the matrix GT Covd-1 G indicates that the problem is ill-conditioned, and 

the inverse of the previous matrix product cannot be calculated without regularization (Gavin 

2019).  

The sensitivity matrix's high sensitivity indicates that even minor changes in model parameters 

can cause significant fluctuations in predicted outcomes. This amplification makes it difficult 

to obtain a stable, accurate inverse solution without regularization, which introduces additional 

information or constraints. (Van Rijn and Hutter 2018). When an inversion problem is ill-posed 

due to a high condition number, it can lead to unstable solutions. This instability means that 

small errors or uncertainties in the observed data can result in large errors in the estimated 

model parameters. In practical terms, this can make it very difficult to obtain reliable and 

meaningful results from the inversion process. To address this issue, various techniques are 

employed, including regularization methods. These techniques help stabilize the inversion 

procedure by adding constraints or penalties to the optimization problem, which can mitigate 

the effects of an ill-posed problem (Prabhu 2018). 

3.1. Theoretical overview of linearized inversion methods 

The well-logging data and estimated parameters are connected by the so-called tool 

response functions. These response functions are characterized by their nonlinear nature. The 

linearized inversion procedure involves approximating the nonlinear relationship between the 

observed data and the estimated parameters using Taylor series truncated at the first order 

derivative (Menke 1984). By reducing the problem to sequences of linear problems, one can 

take advantage of well-established numerical methods for solving linear systems. This makes 

the overall process more computationally tractable and facilitates the convergence to a solution 
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(Menke and Eilon 2015). Let �⃗⃗� 0 be the starting model including the petrophysical parameters 

to be determined by inversion  

�⃗⃗� = �⃗⃗� 0 + 𝛿�⃗⃗� , ( 22 ) 

where 𝛿�⃗⃗�  is the model correction vector. The chosen initial model parameters �⃗⃗� 0 will be 

refined iteratively until the stopping criterion is met. In other words, the �⃗⃗�  model vector will 

be calculated by modifying �⃗⃗� 0 with 𝛿�⃗⃗�  in the subsequent iteration step. 

3.1.1. Linearized local (depth-by depth point) inversion 

Depth-point-by depth point inversion in well logging involves analyzing and interpreting 

subsurface properties at each individual depth point, allowing for high-resolution insights into 

local geological variations and characteristics. To formulate the linearized local inversion, the 

vector of M number of model parameters and the N number of data vector can be given as  

�⃗⃗� =  {𝑚1,𝑚2,⋯ ,𝑚𝑀}
T, ( 23 ) 

𝑑 𝑜𝑏𝑠 = {𝑑1
(𝑜𝑏𝑠),𝑑2

(𝑜𝑏𝑠), ⋯ , 𝑑𝑁
(𝑜𝑏𝑠)}

T
, ( 24 ) 

where T denotes the symbol of transpose. By using Taylor series truncated at first order 

derivative, the relationship between the data and model parameters can be approximated in the 

following form 

𝑑𝑒𝑘 = 𝑔𝑘(�⃗⃗� 0) +∑(
𝜕𝑔𝑘
𝜕𝑚𝑗

)

𝑀

𝑗=1

𝛿𝑚𝑗 ,       (𝑘 = 1,2,⋯ , 𝑁) ( 25 ) 

By introducing the Jacobi matrix as  

𝐺𝑘𝑗 = (
𝜕𝑔𝑘
𝜕𝑚𝑗

)

𝑚0
→  

,       ( 26 ) 

equation (26) can be written in vectorial form as  

𝑑 𝑒 = 𝑑 
(0) + 𝐆𝛿�⃗⃗� , ( 27 ) 

This leads to a linear set of equations 

𝛿𝑑 𝑒 = 𝐆𝛿�⃗⃗� , 
( 28 ) 

the objective function of the linearized inversion procedure is to reduce the error between the 

calculated and measured data 

𝑒 = 𝑑 𝑚 − 𝑑 0 − 𝐆𝛿�⃗⃗� , ( 29 ) 
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when having more data than unknowns, in the case of DLSQ scheme, the model update 

equation can be introduced as follows 

δ�⃗⃗� = (𝐆T𝐆 + 𝜆𝐈)−1𝐆Tδ𝑑 𝑚, ( 30 ) 

where 𝜆 is the damping factor (Levenberg 1944). Figure 8 shows the local inversion workflow. 

 

 
Figure 8. Local inversion workflow. 

3.1.2. Linearized interval inversion 

Since the number of the measured well-logs data is usually marginally more than the number 

of predicted model parameters at certain depth point, the local inversion has low 

overdetermination ratio that causes some limitation regarding to the accuracy and reliability of 

the estimated model parameters (Szabó and Dobróka 2020). An approach called interval 

inversion algorithm was introduced by the Geophysical Department of Miskolc University to 

invert data of greater interval simultaneously in one inversion procedure (Dobróka et al. 1991). 

The series expansion-based inversion algorithm interprets the response function as a depth 

dependent function. The relationship between the k-th observed data and model parameters at 

z depth can be written as follows 
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𝑑(𝑜𝑏𝑠)𝑘(𝑧) = 𝑔𝑘(𝑚1(𝑧),𝑚2(𝑧), … ,𝑚𝑀(𝑧)), ( 31 ) 

where petrophysical parameters in equation (31) are modeled using continuous functions that 

necessitate discretization for numerical computation. The discretization of the i-th spatial 

dependent model parameter can be written in the following form (Dobróka 1993) 

𝑚𝑖(𝑧) = ∑𝐵𝑞
(𝑖)𝛹𝑞(𝑧),

𝑄

𝑞=1

 ( 32 ) 

where 𝐵𝑞
(𝑖)

is the q-th discretization coefficient of series expansion polynomial function of Q 

degree of i-th model parameter, while 𝛹𝑞 is the q-th basis function that considered as known 

quantities. The basis function of the homogenous layer-wise model can be represented by the 

combination of two Heaviside functions that define a certain depth interval 

𝛹𝑞(𝑧) = 𝑢(𝑧 − 𝑍𝑞−1) − 𝑢(𝑧 − 𝑍𝑞), ( 33 ) 

where 𝑍𝑞−1 and 𝑍𝑞 are the upper and lower boundaries of the q-th interest interval, respectively. 

This combination of step functions introduces the basis function as zero in whole the depth 

points except the in the q-th layer where the basis function equal to 1. In the upcoming chapters 

I will introduce an innovative inversion algorithm that can predict the layer boundary 

coordinates and provide it as a priori information to the petrophysical parameters inversion 

phase. By substituting equation (32) into equation (31), the well-logging data can be calculated 

along the observed interval 

𝑑(𝑜𝑏𝑠)𝑘(𝑧) = 𝑔𝑘(𝐵1
(1), … , 𝐵𝑄

(1), …… , 𝐵1
(𝑀), … , 𝐵𝑄

(𝑀), 𝑧). ( 34 ) 

 On the contrary to the local inversion, the unknowns of the interval inversion are the 

series expansion coefficients �⃗� . By using the DLSQ algorithm, the initial model can be 

iteratively refined, in case of interval inversion, using equation (35). The interval inversion 

workflow can be seen in Figure 9. 

δ𝐵𝑞
(𝑖)
𝛹𝑞(𝑧) = (𝐆

T𝐆 + 𝜆𝐈)−1𝐆Tδ𝑑𝐵𝑞
(𝑖)

𝛹𝑞(𝑧), ( 35 ) 
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Figure 9. The workflow of the interval inversion. 

3.2. Meta-algorithm assisted regularized interval inversion method 

The inversion process uses hyperparameters like the damping factor to stabilize convergence 

to the optimal solution. The damping factor is a positive number decreased by iterations until 

near zero, as the initial model is affected by data noise. The ill-posed problem can be 

represented mathematically using the condition number 

𝐾 = 
𝜆𝑚𝑎𝑥
𝜆𝑚𝑖𝑛

, ( 36 ) 

The terms λmax and λmin denote the GTG matrix's maximum and minimum eigenvalues. 

An ill-posed problem is characterized by a high condition number, whereas a well-posed 

problem has a small condition number for the system of solving equations. Consequently, 

selecting an appropriate damping factor can mitigate instability and enhance the condition 

number. Abdelrahman et al. (2021) and Heriyanto and Srigutomo (2017) showed the feasibility 

of extracting the damping factor from the decomposition of the inverted matrix, in which the 

damping factor is a function of the eigenvalues of the decomposed sensitivity factor. The 

linearized interval inversion technique was combined with two search strategies—Golden 

Section Search (GSS) and Singular Value Decomposition (SVD)—to develop enhanced 

algorithms that aid in stabilizing the optimization process. This combination assists in finding 

the most suitable damping factor needed to address ill-posed problems, which are marked by a 
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high condition number, unlike well-posed problems that have a low condition number in their 

equations. 

3.2.1. Golden Section Search (GSS) assisted interval inversion  

The one of the unimodal optimization algorithms is the Golden Section Search (GSS) 

method. It can be called an interval reduction optimization process. Furthermore, the unimodal 

can be defined as a continuous function over an interval [a,b], if there is one optimum point 

included in the same interval [a,b] (Noroozi et al. 2022).  

The GSS algorithm serves two primary objectives. The first aims to determine the 

optimal damping factor within a given interval, while the second seeks to achieve this with the 

fewest number of functions call possible. The theoretical foundation of interval reduction 

optimization methods, such as the bisection method or equal interval method, start by selecting 

a midpoint between a and b, denoted as m= (a + b)/2 for the bisection method, and introduce a 

small positive value of d, then, define two points, X1 = (m - d)/2 and X2 = (m + d)/2. If f (X1) < 

f (X2), then the interval is reduced to [a, X1]. Otherwise, the reduced interval becomes [X2, b]. 

Figure 10 shows the intuition of the equal interval method (Davim 2008). 

 
Figure 10. Equal interval method intuition. 

The equal interval method experiencing prolonged computation times to find the 

optimum solution (Chang 2015). On the other hand, the GSS method can overcome this 

problem by choosing three points XL, X1 and Xu (XL < X1 < Xu) along the x-axis with 

corresponding values of the function f (XL), f (X1), and f (Xu), respectively. Since f (X1) > f (XL) 

and f (X1) > f (Xu) (Yazıcı et al. 2021). The maximum must lie between Xl and Xu. Now a fourth 

point denoted by X2 is chosen to be between the larger of the two intervals of [XL, X1] and [X1, 

Xu]. The intermediate points X1 and X2 are chosen such that, the ratio of the distance from these 
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points to the boundaries of the search region is equal to the golden ratio which is computed as 

(√5-1)/2 times the difference between Xu and XL (Pejic and Arsic 2019). Subsequently, the 

integration between the GSS and interval inversion algorithm proceeds to evaluate the 

inversion loop, extracting the data distances associated with the lower, upper, and intermediate 

points. Finally, a quality check is made to see if the difference between Xu and XL falls below a 

specified threshold value. If this condition is met, the damping factor is determined as (Xu + 

XL)/2. At this point, the outer loop is terminated, and the model with the optimal damping factor 

is accepted. This comprehensive algorithm guides the process of conducting the Golden 

Section Search, ultimately leading to the identification of the most suitable damping factor. 

3.2.2. Singular Value decomposition (SVD) assisted interval inversion 

As was mentioned in section 2.2, the ill-posed problem is based on the condition 

number which is function of the minimum and maximum eigenvalues of the GTG matrix. Meju  

(1992) introduced an iterative algorithm based on factorizing the sensitivity matrix (Jacobian matrix) 

into three other matrices as follows: 

𝐆(𝐵𝑖) =  𝐔𝐒𝐕T, ( 37 ) 

where U is (NxQM) data eigenvector, V is (QMxQM) model parameters eigenvector, and S is 

(QMxQM) matrix with eigenvalues in its diagonal. The eigenvalues of 𝐆(𝐵𝑖) are positive 

numbers with i ≤ M (number of parameters). The ill-posed problem will arise in case of small 

eigenvalues of the term 𝐆(𝐵𝑖)𝑇𝐆(𝐵𝑖) of equation (36) in section 2.1.1. Therefore, the SVD 

scheme recommends adding a positive bias to the eigenvalues of that term. By substituting 

equation (38) into Equation (36) 

𝛿𝐵𝑞
(𝑖)
= (𝐕𝐒2𝐕T + 𝜆𝐈)(𝐆T)𝛿𝑑𝐵𝑞

(𝑖)

,  ( 38 ) 

by modifying the diagonal non-zero values using the damped factor (Ekinci and Demirci 2008), 

the first term of equation (38) can be written as 

(𝐕𝐒2𝐕T + 𝜆𝐈) = (𝐕 diag(𝜂𝑖
2)𝐕T) + 𝜆2𝐈 = 𝐕 diag(𝜂𝑖

2 + 𝜆2)𝐕T,  ( 39 ) 

where ηi is the i-th eigenvalue, the following equation shows the inverse of equation (39) 

(𝐕 diag(𝜂𝑖
2 + 𝜆2)𝐕T)−1 =  𝐕 diag {

1

𝜂𝑖
2+𝜆𝑖

2} 𝐕
T,  ( 40 ) 

Consequently, the final equation to update the model parameters provided by can be written as 
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𝐵𝑖+1 = 𝐵𝑖 + 𝐕 diag {
𝜂𝑖

𝜂𝑖
2+𝜆𝑖

2} 𝐔
Tδ𝑑𝐵

𝑖
.  ( 41 ) 

The damping factor is determined through a process of comparing the data misfit of the 

L-th test at any given iteration with that of the (L+1)-th test. If an improvement in misfit is 

observed, the new factor is accepted. This technique is known as the RIDGE method, which 

involves augmenting the eigenvalues of the diagonal matrix with a positively biased value 

(Arneson and Hersir 1988). This adjustment is calculated using the following equation 

𝜆 =  𝜂𝐿 Δ𝑋
1

𝐿,  ( 42 ) 

where ∆X can be given by: 

∆𝑋 =  
 𝑋𝑅−1−𝑋𝑅

𝑋𝑅−1
,  ( 43 ) 

where XR-1 and XR are the previous and present iterations misfit.  

3.3. Reliability and error estimation 

The accuracy and reliability of inversion outcomes are established by examining how 

uncertainties in data that are observed propagate into the estimated model parameters. It is 

accomplished by covariance analysis, which measures variances and correlations among 

variables. Specifically, the model parameter covariance matrix is found from the data 

covariance matrix by using a generalized inverse matrix (Equation 44). This inverse matrix 

represents the structure of the forward model and contains any regularization or damping 

techniques applied during inversion to stabilize solutions and dampen noise. 

cov𝐦 = 𝐆−g ⋅ covd ⋅ 𝐆−gT, (44) 

Uncertainties in data measurements are known, typically represented by the diagonal elements 

of the data covariance matrix and can be propagated through the inversion to provide estimates 

of model parameter uncertainties. These parameter uncertainties are the diagonal terms of the 

model covariance matrix, each of which is the variance of a particular parameter. The standard 

deviation of a parameter, which is the square root of its variance, gives the direct measure of 

confidence in its estimated value (Equation 45). These standard deviations give a measure of 

the degree to which each parameter is responsive to the quality and quantity of input data. In 

order to additionally assess the reliability of inversion results, one can calculate the correlation 

coefficient between pairs of model parameters (Equation 46). The coefficient measures the 
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extent of linear dependency between parameters. Values near +1 or -1 indicate a high 

interdependency, which is often a sign of instability or lower reliability of the solution. 

𝜎𝒎𝒊 = √𝑐𝑜𝑣 (𝐦𝑖𝑖), (45) 

In Singular Value Decomposition (SVD)-based error estimation, the stability and reliability of 

inversion results are enhanced by decomposing the forward modeling operator into its principal 

components. This decomposition isolates the influence of data noise on model parameters by 

distinguishing between well-constrained and poorly resolved features in the solution. Small 

singular values, which amplify noise and destabilize results, are systematically damped through 

regularization, adjusting their contribution to the inverse operator based on their magnitude 

relative to a damping parameter. The SVD framework directly links the data uncertainties to 

model parameter uncertainties via the eigenvectors and damped singular values, allowing the 

calculation of the model covariance matrix. This matrix quantifies both the variance of 

individual parameters (indicating their sensitivity to data noise) and the correlations between 

parameters (highlighting interdependent uncertainties). By adaptively tuning the damping 

during inversion, SVD balances resolution and stability, ensuring robust uncertainty 

quantification while mitigating overfitting to noisy data. 

corr(𝐦)𝑖𝑗 =
𝑐𝑜𝑣(𝐦)𝑖𝑗,

√𝑐𝑜𝑣(𝐦)𝑖𝑗𝑐𝑜𝑣(𝐦)𝑗𝑗

 (46) 

In error estimation using Singular Value Decomposition (SVD), the stability and reliability of 

inversion solutions are enhanced by breaking down the forward modeling operator into its 

dominant components. The breakdown isolates the influence of data noise on model parameters 

by separating well-constrained and poorly resolved features within the solution. Small singular 

values, broadcasting noise and destabilizing the solutions, are consistently damped by 

regularization—scaling their effect on the inverse operator as a function of size compared to a 

damping parameter. The SVD formalism places the data errors in direct relation with the errors 

in the model parameters via the eigenvectors and damped singular values, and thus the model 

covariance matrix can be computed. This matrix quantifies both the variance of single 

parameters (their sensitivity to data noise) and parameter correlations (indicating 

interdependent uncertainties). By adaptive damping tuning during inversion, SVD breaks the 

resolution vs. stability trade-off to generate solid uncertainty quantification without overfitting 

noisy data. 
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cov𝐦 = 𝐕 diag {
𝜂𝑖

𝜂𝑖
2 + 𝜆𝑖

2} 𝐔
𝑇covd Udiag {

𝜂𝑖

𝜂𝑖
2 + 𝜆𝑖

2} 𝐕
𝑇 (47) 

3.4. Synthetic modeling experiments 

To test the feasibility of the inversion meta-algorithm, I generated noise free, and noise 

contaminated synthetic well-logging datasets as quasi measured inputs. The initial forward 

model can be constructed using the following equations (Alberty and Hashmy 1984): 

GR =  𝜌𝑏
−1 (𝑉𝑠ℎ 𝐺𝑅𝑠ℎ𝜌𝑠ℎ +∑𝑉𝑚𝑎,𝑖𝐺𝑅𝑚𝑎,𝑖 𝜌𝑚𝑎,𝑖 

𝑁

𝑖=1

), ( 48 ) 

𝜌𝑏 = ∅[𝜌𝑚𝑓 − 1.07(1 − 𝑆𝑥𝑜)(𝛼0𝜌𝑚𝑓 − 1.24𝜌ℎ)] + 𝑉𝑠ℎ𝜌𝑠ℎ

+∑𝑉𝑚𝑎,𝑖 𝜌𝑚𝑎,𝑖 ,

𝑁

𝑖=1

 
( 49 ) 

∅𝑁 = ∅{

∅𝑁.𝑚𝑓 − (1 − 𝑆𝑥0)𝐶𝑐𝑜𝑟
−2∅(1 − 𝑆𝑥0) − 𝑆ℎ𝑓(1 − 2.2𝜌ℎ)

. [1 − (1 − 𝑆𝑥0)(1 − 2.2𝜌ℎ)]

} + 𝑉𝑠ℎ𝜌𝑠ℎ +∑𝑉𝑚𝑎,𝑖 ∅𝑚𝑎,𝑖 ,

𝑁

𝑖=1

 ( 50 ) 

𝑃𝑒 =
1.07

𝜌𝑏 + 0.19
[∅𝑆𝑥0𝑈𝑚𝑓 + ∅(1 − 𝑆𝑥0)𝑈ℎ + 𝑉𝑠ℎ𝑈𝑠ℎ +∑𝑉𝑚𝑎,𝑖 𝑈𝑚𝑎,𝑖 ],

𝑁

𝑖=1

 ( 51 ) 

1

√𝑅𝑑
= [
𝑉𝑠ℎ

(1−0.5𝑉𝑠ℎ)

√𝑅𝑠ℎ
+
√∅

𝑚

√𝑎𝑅𝑤
]√𝑆𝑤

𝑛
, ( 52 ) 

1

√𝑅𝑠
= [
𝑉𝑠ℎ

(1−0.5𝑉𝑠ℎ)

√𝑅𝑠ℎ
+
√∅

𝑚

√𝑎𝑅𝑚𝑓
]√𝑆𝑥0

𝑛
, ( 53 ) 

∅ + 𝑉𝑠ℎ +∑𝑉𝑚𝑎,𝑖 = 1.

𝑁

𝑖=1

 ( 54 ) 

The zone parameters that are used for creating synthetic well-logging datasets can be 

seen in Table 3. 

Table 3. Zone parameters are used for the forward modeling of borehole geophysics (Szabó 

and Dobróka 2020). 

Well-log Zone Parameter Symbol Value Dimensional 

unit 

Natural gamma-ray 

intensity 

Sand GRsd 10 API 

Shale GRsh 154 API 

Gamma-gamma (bulk 

density) 

Sand ρsd 2.65 g/cm3 

Shale ρsh 2.54 g/cm3 

Mud filtrate ρmf 1.02 g/cm3 

Hydrocarbon (gas) ρh 0.2 g/cm3 



40 | P a g e  

 

 

Neutron-porosity Sand ФN,sd -0.04 v/v 

Shale ФN,sh 0.31 v/v 

Mud filtrate ФN,mf 0.95 v/v 

mf correction coefficients Ccor 0.69 - 

Residual hydrocarbon Shrf 1.2 - 

Deep resistivity Shale Rsh 1 Ohm.m 

Pore water Rw 0.5 Ohm.m 

Mud filtrate Rmf 0.28 Ohm.m 

Cementation exponent m 1.5 - 

Saturation exponent n 1.8 - 

Tortuosity factor a 1 - 

Photo-electric absorption 

index 

Sand Usd 4.8 Barn/cm3 

Shale Ush 9 Barn/cm3 

Mud filtrate Umf 0 Barn/cm3 

Hydrocarbon(gas) Uh 0 Barn/cm3 

 

The synthetic data is calculated based on the three layers suggested model. The 

synthetic data represents well-logs calculated of sandstone layers filled with hydrocarbon and 

water and separated by a shale layer. 20-degree Legendre polynomials were used to fit the 

synthetic model. The calculated well-log data vector consists of natural gamma-ray, bulk 

density, neutron-porosity, compressional sonic transit-time, shallow and deep resistivities, and 

photoelectric absorption logs. The Oil-Water Contact (OWC) suggested being located at 6 m.  

3.4.1. Synthetic data-driven GSS-assisted interval inversion 

The synthetic data was inverted using the combined DLSQ and GSS-based interval 

inversion algorithm. Figure 11 shows the initial model and the synthetic well-logging data 

based on the suggested model parameters. The calculated dataset is contaminated by 5% 

Gaussian distributed noise. Figure 12 shows petrophysical parameters used for calculating both 

the synthetic data (black solid lines) and the initial model (dashed red lines). (porosity, volume 

of sand, volume of shale, water saturation of uninvaded zone, and water saturation of the 

invaded zone). In Figure 13, the fitting between the synthetic data and the predicted data using 

the GSS-based interval inversion is illustrated. Figure 14 shows the fitting of the predicted 

model parameters to the actual model parameters of the synthetic model. The inversion 

procedure is stopped after 40 iterations to check the convergence trends for the conventional 

inversion and GSS-based inversion procedures. 
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Figure 11. 5% Gaussian noise-contaminated synthetic data; the red dashed lines represent the 

data calculated using the initial model, while the solid black lines represent the synthetic data. 

 
Figure 12. The model parameters used for calculating the synthetic data, and the initial model 

parameters; the red dashed lines represent the initial model, while the solid black lines represent 

the synthetic model approximated by Legendre polynomials. 



42 | P a g e  

 

 

 
Figure 13. Fitting between the synthetic data and the calculated data (after 40 iterations); the 

red dashed lines represent the calculated data, while the solid black lines represent the synthetic 

data. 

 
Figure 14. The synthetic and the predicted model parameters (after 40 iterations); the red 

dashed lines represent the predicted model, while the solid black lines represent the synthetic 

(target) model. 

Considering the parameter count and polynomial degree, the discretized model 

parameters involve 105 unknowns, derived from 5 times (20 plus 1). Simultaneously, the 
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overdetermination ratio can be computed by multiplying the logging data per depth (NL), which 

is 7, by the total number of data points (depth points, N), which is 200. This yields 1400 data 

points. Consequently, the overdetermination ratio for the proposed synthetic model is 

approximately 13, calculated as 1400 divided by 105. To quantitively assess how accurate the 

model is, the misfit or discrepancy between measured and calculated data from a model is 

calculated and expressed as data distance. By calculating the data distance, one can assess the 

effectiveness of the inversion process. A smaller data distance indicates a better fit between the 

model and the observed data, suggesting that the inversion process is working well. Conversely, 

a larger data distance points to significant differences between the model predictions and the 

actual measurements, indicating the need for further refinement of the model or inversion 

parameters to achieve a more accurate representation of the underlying phenomenon. The 

choosing of a high damping factor can cause a delay in the convergence patterns of the data 

distance, which represents an increase in the number of iterations. Moreover, the convergence 

of the data distance shows what I can call a plateau effect. This plateau data distance causes no 

change in the optimization process and directly affects the condition number and increases the 

damping effect, therefore, increases the number of the iteration. Comparatively, the GSS-based 

interval inversion exhibits a swift and smooth convergence of data distance, whereas the 

conventional interval inversion demonstrates a more uneven convergence pattern. In Figure 15, 

the data distance for both the noise-free dataset and the dataset contaminated with 5% Gaussian 

distributed noise is presented. Notably, a plateau effect is clearly observed. The convergence 

stability iterations differ notably between the conventional interval inversion applied to the 

noise-free and contaminated datasets, whereas the GSS-based method displays consistent 

convergence stability across both scenarios. Specifically, data distance convergence for the 

conventional interval inversion began to stabilize around the 35th iteration for the 5% Gaussian 

noisy dataset and the 22nd iteration for the noise-free dataset. In contrast, for the GSS-based 

interval inversion, data distance convergence began to stabilize at approximately the 10th 

iteration in both cases. 
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c d 

Figure 15. Data distance resulting from the conventional (a and c) and GSS-based interval 

inversion (b and d) procedures. Subfigures (a) and (b) pertain to the noise-free dataset, while 

(c) and (d) depict the contaminated dataset. 

3.4.2. Synthetic data-driven SVD-assisted interval inversion 

In the case of the SVD-assisted interval inversion, the synthetic data were calculated using the 

zone parameters of Table 3. The Heaviside function and Legendre polynomials were used to 

simulate petrophysical parameters changes within layers, resulting in a layer-wise 

homogeneous model consisting of four layers varying in lithological constituents, porosity, and 

saturation content. Figure 16 and Figure 18 show the fitting between the synthetic data (bold- 

black lines) and the calculated data (dashed-red lines) at iteration 1 and 60, respectively. Figure 

17 and Figure 19 show the actual and the predicted petrophysical parameters at iteration 1 and 

60, respectively. The SVD based inversion procedure shows a smooth convergent pattern, but 

it shows a rapid convergence until the data distance is lower to 5% and too slow convergent 

until reaching the zero data distance (Figure 20). The author suggests using the proposed 

algorithm for higher unknowns, integrating DLSQ and SVD schemes. The synthetic data from 

section 2.3.1 was used, but convergence development was time-consuming. The integration 

aims to automatically determine the optimal damping factor during inversion, using the last 

damping factor as prior information. 
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Figure 16. The synthetic (input) and calculated (output) data using the Heaviside basis 

functions; the red dashed lines represent the data computed using the initial model, while the 

solid black lines represent the synthetic data. 

 
Figure 17. The synthetic and the predicted model parameters (iteration 1); the red dashed lines 

represent the initial model, while the solid black lines represent the synthetic model. 
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Figure 18. Fitting between the synthetic data and the calculated data (at iteration 60); the red 

dashed lines represent the calculated data over the estimated model, while the solid black lines 

represent the synthetic data. 

 
Figure 19. The synthetic (exactly known) and the predicted model parameters (at iteration 60); 

the red dashed lines represent the predicted model, while the solid black lines represent the 

synthetic model. 
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Figure 20. The convergence of data distance (the standalone SVD-based interval inversion). 

As mentioned in section 2.3.1, the number of unknowns is 105, therefore, the product 

of the matrix GTG will exhibit a size of 105-by-105, while in the previous case (Heaviside) the 

size of the same matrix is 3-by-3. It is obvious that the high degree polynomials will consume 

a high CPU time to extract the optimum damping factor by checking 105 eigenvalues. 

Therefore, I start the inversion procedure with SVD-based algorithm that automatically damps 

the inversion procedure by testing the eigenvalues of the inverted matrix. Then, after the 

convergent reaches the 25 % data distance, I change for the fast DLSQ algorithm (Figure 21). 

 
Figure 21. The convergence of data distance for the hybrid SVD-based interval inversion 

procedure. 
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3.5. Field application of the meta-algorithm-based interval inversion 

methods 

The feasibility of both inversion meta-algorithms has been checked using a well-

logging dataset measured from a gas bearing reservoir of an Egyptian field located at the 

northwestern part of the Western desert of Egypt. The reservoir belongs to the Jurassic 

sandstone sequence with high degree of heterogeneity (Abdelrahman 2021; Wahdan et al. 

2013). Figure 22 and Figure 23 show the fitting between the field data and the calculated data 

at iteration 1 and 60, respectively. The thickness of the zone of interest is 37 m. Figure 24 shows 

that the reservoir consists mainly of sandstone layers with some shale laminations that affect 

both the storage and flow capacity.  

 
Figure 22. SVD-DLSQ inversion result. Fitting between the field data and the calculated data 

(iteration 1); the red dashed lines represent initial calculated data, while the solid black lines 

represent the field data. 

The outcomes of the study reveal a noteworthy observation: reservoir parameters 

exhibit variations that are contingent upon the quality of the reservoir. This implies that these 

crucial parameters are not consistently uniform, but rather, they adapt and adjust in response to 

the varying degrees of reservoir quality. This insight underscores the dynamic nature of 

reservoir characteristics, emphasizing the need for tailored assessment strategies that account 

for these fluctuations. 
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Figure 23. SVD-DLSQ inversion result. Fitting between the field data and the calculated data 

(iteration 60); the red dashed lines represent the initial calculated data, while the solid black 

lines represent the field data. 

 

Figure 24. The predicted model parameters from SVD-DLSQ inversion method (iteration 60). 

 The final predicted parameters using the SVD- and GSS-based inversion methods are 

almost the same with a slightly smaller data distance in the case of the DLSQ-SVD-based 
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inversion. However, what stands out is the convergence trajectory of both the data distance and 

the number of iterations required to achieve stabilization. Figure 25a illustrates the data 

distance convergence for the DLSQ algorithm, while Figure 25b depicts the data distance 

convergence for the GSS-based algorithm. Additionally, Figure 25c demonstrates the 

convergence of the SVD-DLSQ-based algorithm. In the case of the standalone DLSQ 

algorithm, the convergence pathway exhibits not a steady convergence, with stability achieved 

at iteration 40. The use of the GSS based algorithm could reduce the number of iterations to 

lower than 25 iterations, moreover, the convergence trajectory shows a smooth convergence. 

Furthermore, employing the SVD-DLSQ method reveals a notably smooth and rapid 

convergence pattern, with stabilization occurring as early as iteration 9, demonstrating a 

consistently regular trajectory. 

  

(a) (b) 

 

(c) 

Figure 25. Data distance convergence curves for (a) DLSQ algorithm, (b) GSS-based 

algorithm, and (c) SVD-DLSQ algorithm. 
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The data distance of the initially calculated data is around 79% for all the inversion 

algorithms. The DLSQ algorithm shows the irregular data distance from 25 to 38 iterations. On 

the other hand, the GSS algorithm could avoid those irregularities, thus it could converge faster, 

but the integration between the SVD method and the DLSQ inversion algorithm could avoid 

the iteration consuming as well as the irregulars. For studying the effect of data variance on the 

solution of the inverse problem, I adopt the following values of standard deviation (data 

accuracy) for the observed well-logs: σd(GR)=0.0484, σd(ρh)=0.0484, σd(N)=0.005, 

σd(Rs)=0.002 and σd(Rs)=0.05. Figures (26 and 27) illustrate the results of both GSS-based 

DLSQ and SVD methods in petrophysical parameter estimation, with notable differences in 

reliability metrics. The SVD approach produced smoother error curves with narrow errors 

margin, compared to the Gss-based algorithm, which exhibits tighter but wider parameter error 

bounds. The correlation matrices reveal fundamental differences in parameter interdependence, 

with SVD showing generally lower correlation values compared to GSS-based algorithm, 

indicating that GSS-based algorithm may underestimate parameter relationships. This 

observation is quantitatively supported by the mean spread values—a scalar reliability measure 

ranging from 0 to 1, with GSS-based DLSQ yielding 0.16 versus SVD's 0.10. The higher mean 

spread in SVD suggests more comprehensive uncertainty quantification, making it potentially 

more suitable for robust reservoir characterization. These differences highlight how algorithm 

selection significantly impacts uncertainty estimation in well log analysis, with SVD based 

algorithm offering a more conservative but potentially more reliable assessment of parameters 

uncertainty. 

3.6. Summary of results 

This chapter is devoted to the investigation of inversion algorithms designed for 

estimating reservoir characteristics. It emphasizes the crucial importance of hyperparameters 

such as the damping factor in maintaining convergence stability during the optimization 

process. A comparison of the GSS-based and traditional interval inversion approaches 

demonstrates that the GSS approach has a noticeably smoother convergence pattern. This 

discrepancy is highlighted further by the studying of a plateau effect in the traditional 

technique, which affects convergence stability and necessitates a higher number of iterations, 

particularly in scenarios involving noisy datasets. 

Furthermore, the research investigates a novel integration of the DLSQ and SVD 

schemes with the goal of improving computational efficiency. This integrated inversion 
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approach strategically leverages the strengths of both methods, using SVD to automatically 

determine an optimal damping factor in the early stages of inversion and DLSQ with the last 

known damping factor value for further refinement as the solution approaches its optimum 

state. These meta-algorithms' practical use is proven using well-logging data from a gas-

bearing reservoir in an Egyptian field. This validation procedure confirms the dynamic 

character of reservoir data, arguing for customized evaluation methodologies to account for 

these intrinsic changes. Results demonstrated that SVD produced smoother error curves with 

narrower error margins compared to GSS-based methods, which exhibited wider parameter 

error bounds. Correlation matrices showed SVD generated lower correlation values than GSS-

based algorithms, suggesting the latter may underestimate parameter relationships. This was 

further supported by mean spread values (a reliability measure from 0-1), with GSS-based 

DLSQ at 0.16 versus SVD's 0.10. The smaller value of mean spread in SVD indicates more 

focused uncertainty quantification, potentially making it more suitable for robust reservoir 

characterization. 

Finally, this study gives essential insights into the complexities of reservoir parameter 

estimation and highlights the efficiency of various inversion approaches in generating 

consistent and accurate findings. 

 

 

Figure 26. Quality check of petrophysical parameters estimated by GSS-based interval 

inversion procedure, separately. Solid Black lines represent the estimated values of porosity Φ, 

volume of sand Vsd, and water saturation Sw. Solid red lines show the error bounds of 
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petrophysical parameters calculated from the standard deviations σ of inversion estimates 

(left), the correlation matrix between the predicted parameters can be seen on the right side of 

the figure. 

 

 

Figure 27. Quality check of petrophysical parameters is estimated by SVD-based 

interval inversion procedure, separately. Solid Black lines represent the estimated values of 

porosity Φ, volume of sand Vsd, and water saturation Sw. Solid red lines show the error bounds 

of petrophysical parameters calculated from the standard deviations σ of inversion estimates 

(left), the correlation matrix between the predicted parameters can be seen on the right side of 

the figure. 

Thesis 2. 

I have developed two combined well logging inversion algorithms to improve reservoir 

parameter estimation. For achieving good convergence, hyperparameters, particularly the 

damping factor, must be accurately estimated. A comparison between GSS-based and DLSQ 

interval inversion methods showed the former has superior convergence smoothness and noise 

resistance. I suggested the first hybrid of DLSQ and SVD methods to achieve optimal 

computational efficiency. This composite inversion method uses SVD for automatic selection 

of the initial damping factor and DLSQ for improving convergence. When applied to the well-

log data of an Egyptian gas reservoir, the algorithms yielded clear information about the 

reservoir. The error estimation showed that SVD gave very good results with smaller 
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confidence intervals and lower values of parameter correlation. These results show the 

importance of having specific techniques for effective reservoir appraisal. 
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Chapter 4: Developments using the Hurst Exponent as Fractal 

Analysis for Unearthing Hidden Patterns 

4.1. Introduction 

Fractal analysis has been commonly utilized in geophysical exploration. For instance, 

it can be used in gravity and magnetic methods to characterize the causative sources. 

Furthermore, it can be used to characterize earthquakes in seismology (Ouadfeul et al. 2012). 

In petrophysics, the fractal analysis can be used to monitor the reservoir properties continuity 

and lithological classification (Lozada-Zumaeta et al. 2012). Nowadays, the use of fractal 

analysis has been included in seismic facies recognition. The wavelet based fractal analysis can 

be used to waveform classifier and facies recognition (López and Aldana 2007). In this chapter, 

from the side of method development, I show a new alternative for data processing by 

integrating the Hurst exponent as a fractal analysis method with interval inversion.  

The proposed methodology uses multivariate statistical methods for dimensionality 

reduction, identifying influential data types and extracting unmeasurable information. Factor 

analysis reduces observed variables to factors reflecting linear combinations of input variables 

factor analysis, as demonstrated by Szabó and Dobróka (2013), can uncover interrelationships 

between statistical variables taken from observed data and some fundamental petrophysical 

features that are valid in diverse geological contexts. In their analysis, they discovered a strong 

association between the first statistical component describing a large portion of the variance of 

the input data and shale volume in Hungarian and North American wells. In groundwater 

investigations, the evaluation of shaly formations has various precedents (Szabó et al. 2014; 

Dennis and Lawrence 1984; Neasham 1977), including the calculation of hydraulic 

conductivity based on near-surface geophysical data (Niwas and Celik 2012). In this work, I 

analyze the fractal properties of the first factor log using Hurst exponent analysis and utilize it 

to determine the depth of layer boundaries. Several ways for recognizing faces using fractal 

analysis have already been described. López and Aldana (2007) enhanced lithofacies 

classification using Wavelet Based Fractal Analysis and Wavelet Classifier. To determine 

depositional patterns and trends, the natural gamma ray and porosity logs were studied. The 

high fractal dimensions were discovered to be related to shales, whereas the low ones were 

shown to relate to sands. Hernandez-Martinez et al. (2013) employed a multifractal Hurst 

analysis to identify electrofacies and highlight the intricacies of well-logging data. Hurst 
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exponent is connected to Hurst (1951) rescaled range analysis (R/S) approach, which was 

responsible for dam construction along the Nile River. Hurst was motivated by Einstein's 

random process description, which is referenced in Milton and Okamoto (2018). 

Hurst examined the variation of water levels around the mean overtime and sought to 

determine if the volatility was random or had a concealed regular pattern. The suggested R/S 

approach can discriminate between entirely random and associated time series. T. Li et al. 

(2021) demonstrated that the analysis of fractals in well-logging data may be extended to 

fracture diagnosis, and he concludes that the degree of fracture development is linked to the 

increase in the acoustic log and dual lateral differential fractal dimensions. The high-frequency 

energy information, according to the proper scale, indicates notably high values in the fractured 

zone.  

The proposed algorithm consists of a sequence of phases, starting with the Hurst exponent to 

identify lithology changes and layer boundaries for reliable petrophysical parameter 

estimation, followed by interval inversion, an indirect interpretation approach (Alberty and 

Hashmy 1984). I use a joint inversion procedure to estimate the petrophysical parameters of 

several layers. The calculation of the scale and depth dependent Hurst exponents using 

instantaneous slope rather than average slope allows for tracking the homogeneity of a 

subinterval and, as a result, recognizing the subinterval borders. This technique aims to develop 

an overarching framework to investigate the inhomogeneity inside each layer and detect an 

accurate location of the layer boundaries using the FA-Hurst exponent integration. An extra 

algorithm aids in the calculation of a hydraulic conductivity log generated from the inversion 

data. Csókás (1995) proposed an assessment approach based on the Kozeny-Carman equation 

that determines hydraulic conductivity solely from well logs. The workflow's practicality was 

validated using both synthetic well logs and field data gathered in East Hungary, and the 

estimation findings were confirmed using core data. 

4.2. Methodology and Workflow Intuition 

4.2.1. Factor analysis of well logs 

As the aim of the Hurst exponent analysis is to extract the geometrical information of 

the layers, the first step aims to collect all the lithological information from the well-logging 

data set in one log to perform the fractal analysis. I used the fact that the first factor is highly 

correlated with the shale volume (Szabó and Dobróka 2018). The components in the input 
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dataset account for most variation, reducing the original issue's dimensionality. Well logs 

provide independent information, and partial correlations with measured logs can reveal input 

parameters significantly affecting generated components. The most significant advantage of 

this technique is that other petrophysical characteristics that are directly unmeasurable in the 

borehole may be connected to and deduced from them based on these linkages. I decompose 

the original data matrix D of size N-by-K into the sum of two matrices 

𝐃 = 𝐅𝐋T + 𝐄,  ( 55 ) 

where F is the N-by-M matrix of factor scores, L is the K-by-M matrix of factor loadings, and 

E is the N-by-K matrix of residuals (N is the number of observed depth points along the 

processed interval, K is the number of measured well-log types, M is the number of extracted 

factors). The factor loadings (or weights) practically indicate the partial correlation coefficients 

between the measured logs and the factor scores; the latter generates a well log showing the 

depth variation of a statistical factor. Given that the factor score matrix is orthogonal (FFT=I, 

where I is the identity matrix), the correlation matrix of the standardized input variables is as 

follows 

𝐑 = N−1𝐃𝐃T = 𝐋𝐋T +𝚿,  ( 56 ) 

where 𝚿 denotes a diagonal matrix of error variances. The primary diagonal of the reduced 

correlation matrix LLT contains the commonalities, which are the variance parts of common 

components. There are numerous techniques for determining factor loadings and scores, such 

as using the spectral decomposition of the reduced correlation matrix, Maximum Likelihood, 

soft computing approaches, etc. For example, the maximum likelihood technique derives both 

the factor scores and loadings in one statistical operation by using the following objective 

function, which expresses a weighted divergence between the measured data matrix and the 

matrix computed by the common factors. Bartlett (1937) developed a linear solution based on 

factor loadings that allows factor scores to be calculated as follows 

𝐅T = (𝐋T𝚿−1𝐋)−1 𝐋T𝚿−1𝐃T,  ( 57 ) 

the first column of matrix F contains the scores of the first factor, which create a well log that 

has been proven to be largely sensitive to lithology features of hydrocarbon formations, i.e., 

shale content, in various oilfields (Szabó et al. 2014). In this work, I assume that the relationship 

between the first component and shale volume may be applied similarly in clastic groundwater 
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formations as well. Jöreskog (2007) proposed a rapid non-iterative approach for estimating 

factor loadings 

𝐋 =  (𝐝𝐢𝐚𝐠𝚺−1 )−
1

2 𝛀(𝚪 −  ϴ𝐈)−
1

2 𝐔,  ( 58 ) 

where 𝚪 is the diagonal matrix of the sample covariance matrix's Σ first R eigenvalues. The 

eigenvalues of the matrix may be in its columns, and U indicates an arbitrarily selected M-by-

M orthogonal matrix. Jöreskog's constant () is used to calculate the number of factors. The 

initial factor loadings are investigated to determine the degree of correlation between the 

relevant factor and all types of well-logs used in this study. In this method, the most significant 

wireline log types in calculating shale volume may be identified. I rotate the extracted factors 

(i.e., orthogonally change the factor loadings) to determine the best correlation between the 

factors and petrophysical attributes (i.e., shale volume) using Kaiser's (1958) varimax 

technique. If the rotated first component is a suitable shale indicator, I may use it to estimate 

the shale volume (for example, out of inversion) or as input for the R/S technique to estimate 

the Hurst exponent. 

4.2.2. Hurst analysis of well logs 

As a specialty, I use the first factor log to focus the lithological information derived jointly 

from all well logs, rather than directly on the measured logs, as indicated by Hernandez-

Martinez et al. (2013). This study results in enhanced lithology identification, which will be 

useful in the subsequent automated inversion technique in our workflow to explain the Hurst 

exponent calculation process. Let us assume that vector d represents one column of data matrix 

D. The data vector's i-th component is di=d(zi), which represents the i-th datum of a particular 

well log. Index i traverses 1, 2, …, N, where N is the total number of measured data points 

down a borehole. Let us partition the original dataset into S equal length L subsets, where L x 

Z | 0 x 1, | N*x is an integer. I compute partial summation datasets 

𝑥𝑗 = ∑ (𝑥𝑘 − �̅�𝑠)
𝑗
𝑘=1 ,  ( 59 ) 

where �̅�𝑠 is the mean of each L-length subgroup. The dataset's range relative to the mean within 

each subseries 𝑥𝑗   is determined as Rs=max(𝑥𝑗)− min(𝑥𝑗), which is then rescaled by the 

associated standard deviation 𝑠, yielding 𝑅𝑠/𝑠 = (𝑅/𝑆)𝑠. The rescaled range must be 

estimated over S randomly chosen subsets of length L with varying sizes, and the average of 

these ranges must be determined. If the stochastic process is associated with the observed 
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variable scales with a specific I (Imin, Imax) (some portion of N), the average of the above ratios 

can be related to I through a power law 

(𝑅/𝑆)̅̅ ̅̅ ̅̅ ̅̅
𝑠 ≅ 𝐼

𝐻,  ( 60 ) 

where H is the Hurst exponent and is the fractal measure of the correlations in the sample.  

Mandelbrot and Wallis (1969) state that parameter H must always be bigger than or equal to 

zero and that a value of H=0.5 indicates a white-noise process. High H values suggest that the 

dataset has more autocorrelation. When H>1.5, the stochastic character of long-range 

autocorrelations is called into doubt, and a deterministic backdrop is assumed. The scale and 

depth-dependent Hurst exponent, derived using the instantaneous slope of the log-log 

relationship between the rescaled range (R/S)s vs. the scale of the subintervals, is used in this 

work to provide a more rigorous description of the scaling behavior. Furthermore, the trends 

of the local Hurst exponents reflect comparable behaviors in the innovative inquiry, which was 

done on the lithological representative factor analysis and statistically analyzed to address the 

distinctions between fluctuation-type and intensity. The Hurst exponent as a function of scale 

and depth H(I,z) is examined to find sub-intervals in rock units. It allows you to investigate the 

fractal properties of the first-factor log. I picked the scale interval between Imin=1 and Imax=100 

with a 5-increment based on test runs. The depth-dependent Hurst exponent highlights the 

various patterns of the first component. In addition to the Hurst exponent, I suggest additional 

statistical computations for more precise sub-zone boundary detection. During the analysis, the 

scale of distinct patterns might change, affecting the extraction of fractal properties. To account 

for it, I add a Z-scoring variable Z(I,z) as a function of scale and depth, which assesses the 

departure of the Hurst exponent from its mean at a given depth. According to the principle of 

superposition, the values of Z(I,z) are very near to each other at the same facies interval but 

rather far apart at separate facies intervals. To emphasize the border contrast between distinct 

lithological units, I propose calculating the cumulative total of the scores Z(I,z) and the mean 

of the Hurst exponent H(I,z), respectively. Finally, geometrical information will be introduced 

to the interval inversion as a priori information. 

4.2.3. Theory of Csókás method 

The predicted parameters from the interval inversion (as described in section 2.2.1) can be used 

to calculate the hydraulic conductivity (Kh) continuously using the Csókás method. The 

hydraulic conductivity is an important parameter to describe the quality of the aquifer, where 

the Kh represents how easily the water flows through the pore spaces of the formation. The 
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Kozeny-Carman model is the most extensively used approach for estimating hydraulic 

conductivity (Amaefule et al. 1993) 

𝐾ℎ =
𝜌𝑤𝑔

𝜇

𝑑2

180

∅3

(1−∅)2
 ,  ( 61 ) 

where ∅ (v/v) is the formation porosity, 𝜌𝑤 (g/cm3) and 𝜇 (Ns/m2) are the pore water density 

and viscosity, d (cm) is the dominant grain diameter, and g (cm/s2) is the normal gravity 

acceleration. Sieve analysis may be used to assess the prevalent grain size 

𝑑 =
𝑑10+𝑑60

2
(
𝑑10

𝑑60
)

1

2
 ,  ( 62 ) 

where d10 (cm) and d60 (cm) are grain diameters measured at 10% and 60% cumulative 

frequencies of the grain-size distribution curve, respectively. Csókás (1995) assumed a 

relationship between the dominant grain size and the resistivity formation factor (F), as 

proposed by (Alger 1971). The formation factor is calculated as F=R0/Rw, where R0 is the 

resistivity of the fully saturated formation and Rw is the resistivity of the pore water in the same 

formation (Archie 1952). Csókás improved equation (61) by incorporating Alger's (Alger 

1971)empirical equation 

𝐾ℎ = 𝐶
∅3

(1−∅)4

(lg
𝑅0
𝑅𝑤
)
2

(
𝑅0
𝑅𝑤
∅)
1.2 ,  ( 63 ) 

where C denotes a site-specific constant. In weakly sorted sediments with a formation factor 

of less than 10, equation (63) is valid. Using just well logs, the Csókás technique provides a 

continuous (in situ) assessment of hydraulic conductivity, transmissivity, critical flow velocity, 

specific surface of grains, and water production. It is limited to evaluating unconsolidated 

groundwater formations (with low formation factor values); however, it is based on relatively 

inexpensive well-logging observations to decrease the expenses of rock collection, pumping 

tests, and laboratory analyses. Figure 28 shows the workflow of the proposed algorithm. 
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Figure 28. The statistical workflow for hydraulic conductivity estimation using the integration 

between fractal characteristics analysis and interval inversion. 

4.3. Synthetic modeling test 

The feasibility of the proposed statistical algorithm has been tested using synthetic data  

contaminated by 5 % Gaussian distributed noise. Equations from 45 to 50 were used to 

calculate the synthetic data according to suggested model parameters (∅, Vsh, Vsd) that consist 

of four homogeneous layers fully saturated with water (Sx0=Sw=1). The water-bearing 

formations consist of alternating sequences of shale sand layers, exhibiting variations in their 

respective thicknesses. The synthetic well-logging data contain readings from GR, b, ∅𝑁, t, 
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Rs, Rd logs over a 20 m (relative) depth interval sampled at 0.1 m distance (Figure 29). Given 

that I have four layers with three petrophysical parameters per layer, in addition to that, the 

geometrical characteristics represent three boundaries separated between the layers. Therefore, 

the total number of unknowns, denoted as Q, is 15. Concurrently, the well logging dataset 

contains a total of N=1200 points. By utilizing the material balance equation, I can drive the 

sand volume, to reduce the number of unknowns to Q*=11. Furthermore, the integration 

between the Hurst exponent method with the interval inversion method for identifying the 

layers’ boundaries can reduce the number of unknowns to Q**=8.  

 
Figure 29. Synthetic wireline logs contaminated with 5 % Gaussian distributed noise (tracks 

1-6) and the exactly known layer parameters (tracks 7-8) as input for testing the proposed well-

log-analysis workflow. 

The proposed workflow involves factor analysis for dimensionality reduction and 

identifying lithological characteristics. The first factor, which accounts for over 90% of data 

variance, has a high correlation with lithological logs, indicating lithological distinctions. The 

wireline logs are sensitive to shale volume variations, making it an effective indicator. 

Table 4. Rotated factor loadings derived by factor analysis of synthetic wireline logs. 
Well-log First factor Second factor Third factor 
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Natural gamma-ray 

intensity 
0.99 0.06 −0.06 

Bulk density 0.04 0.99 610-3 

Neutron porosity 0.97 0.02 −0.23 

Acoustic travel-time 0.96 0.05 −0.11 

Shallow resistivity −0.8 0.04 0.46 

Deep resistivity −0.9 0.03 0.43 

In the second step of the workflow, the Hurst exponent analysis is applied to the first 

factor scores. As depicted in Figure 30, the scale-depth dependent Hurst exponent H(I,z) 

accurately identifies three layers’ boundaries at depths of 7, 10, and 15 m. Notably from left to 

right, the calculated mean of the Hurst exponent, along with the cumulative sum of mean and 

cumulative sum of scoring Z(I,z) show a break pattern in front of the exact boundaries’ location. 

The Hurst exponent's mean fluctuates around 0.5 at layer borders and lower than zero within 

each layer, indicating background noise. The scale range between 10 and 70 ensures a depth 

window of 0.74 m for the depth-dependent Hurst exponent. Circular anomalies have an 

amplitude value of 0.5, causing a distinctive line deflection at various boundaries' depths. 

 
Figure 30. Result of Hurst analysis of the first factor log (F1) extracted by factor analysis of 

synthetic well logs contaminated with 5 % Gaussian distributed noise. Tracks 2-5 show the 

changes of the Hurst exponent and its related quantities at each layer boundary. 

In the third step of the workflow, the noisy synthetic well logs undergo inversion to 

estimate the porosity, shale volume, and sand content of the groundwater formations. To 

characterize the four-layered homogeneous model, I employ a combination of unit step 

(Heaviside) functions for series expansion (refer here to the equation). The basis function for 
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the q-th layer, denoted as Ψq (z), is defined as 𝑢(𝑧 − 𝑍𝑞−1) − 𝑢(𝑧 − 𝑍𝑞). The depth coordinates 

of the layer boundaries are automatically determined from the results of the Hurst analysis: 

Z0=0 m (fixed), Z1=7 m, Z2=10 m, Z3=15 m, Z4=20 m (fixed). The convergence of the inversion 

procedure is stable and quick, as demonstrated by the consistent decrease in data misfit 

calculated by equation (60), which decreases from 76% to 5% (as shown in Figure 31) 

 = [𝑁−1∑ (
𝑑𝑘
(𝑚)−𝑑𝑘

(𝑐)2

𝑑𝑘
(𝑚) )𝑁

𝑘=1 ]

1

2

 .  

 

( 64 ) 

The inversion results are illustrated in Figure 32. A commendable alignment is observed 

between the quasi-measured well logs (illustrated by the black curves) and those computed 

using the estimated model parameters, which are constant within each layer (represented by 

the dashed red lines).  

 

 
Figure 31. Development of convergence during the interval inversion of synthetic data 

contaminated by 5 % Gaussian distributed noise. 

In the last track of figure 32, both the predicted (dashed red lines) and exactly known 

petrophysical parameters (depicted by the black lines) are displayed. The disparity between 

them is small and not discernible on the logs; on average, it amounts to less than 0.001 (v/v). 

This remarkable level of agreement between the target and estimated model is attributed to the 

employed discretization scheme and the large data-to-unknowns ratio. The demonstrated 

feasibility of the interval inversion method in groundwater formations stands as a testament to 

its potential for practical field applications. 
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Figure 32. Result of interval inversion of synthetic well-logs contaminated with 5 % Gaussian 

distributed noise. Tracks 1-6 show the fit between the observed (black line) and calculated (red 

dashed line) data and track 7 includes the known and estimated model parameter distributions 

assuming a petrophysical model of homogeneous layers. 

4.4. Hydrogeophysical Application to Field Data 

The proposed method is applied to Cenozoic aquifers found in the Baktalórántháza-1 

well in Szabolcs-Szatmár-Bereg County in North-East Hungary (Figure 33). The drill-hole 

penetrates fully saturated Pleistocene and Miocene age clastic formations. Surface geophysical 

measurements and well-logging operations did not reveal any indicators of hydrocarbons 

throughout the exploration phase. The borehole, on the other hand, was deemed suitable for 

creating thermal water. The upper 80-100 m of the shallow region are predominantly composed 

of Pleistocene sediments, mostly sands with varied grain sizes, according to vertical electrical 

sounding measurements. Borehole geophysics provided more detailed knowledge of the shaly 

sand sequence's underlying rocks. Sand predominates between depths of 100-160 m, according 

to wireline records, followed by a shaly sequence. A 5-15-meter-thick coarse-grained bed was 

also identified. 
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Figure 33. The map of Hungary including the location of Baktalórántháza-1 well indicated 

with the red circle. 

The observed dataset encompasses typical well logs along with laboratory data obtained 

from 97 rock samples, which were taken at relatively frequent intervals along the investigated 

interval. The interval under consideration spans from 100 to 450 m. Within this range, 

measurements for SP (Spontaneous Potential), GR (Natural Gamma Ray), nеutron-thеrmal 

neutron intensity (NN), gamma-gamma intensity (GG), and Rs (Shallow Resistivity) data were 

collected at 0.1 m intervals along the well. Core data is also available, specifically hydraulic 

conductivity and shale volume, which were derived from grain size analysis conducted on the 

rock specimens. In the initial step of the proposed workflow, I processed the aforementioned 

wireline logs using factor analysis. This analysis yielded two factors extracted from the 

borehole dataset and their respective factor loadings are detailed in Table 5. The factor loading 

matrix indicates that logs are primarily sensitive to lithology, such as SP, GR, and the saturation 

sensitive Rs log shows the strongest influence on the first factor. On the other hand, the second 

factor is correlated with the gamma-gamma tool, providing insights into porosity of 

groundwater formations. 

Table 5. Rotated factor loadings derived by factor analysis of well logs recorded in 

Baktalórántháza 1 well. 

Well-log First factor Second factor 

Spontaneous potential  0.63 0.03 

Natural gamma-ray 

intensity 

0.67 −0.02 

Gamma-gamma intensity −0.2 0.98 

Neutron-neutron intensity −0.09 −0.14 

Shallow resistivity −0.99 −0.11 
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The Hurst exponent is used to quantify the degree of autocorrelation of the calculated 

first factor (F1). The Hurst exponent ranges from 0 to 1.5, with changes in this value 

corresponding to variations in the F1 log. A scale-depth dependent Hurst exponent varies 

between 0 and 0.6, indicating a random walk or Brownian series. Transition zones between two 

intervals in the data often display characteristics of Brownian motion, suggesting a mixed zone 

with properties gradually changing. Intervals with Hurst exponent values higher than 0.5 

suggest persistence, with an increase in the well-log value more likely to be followed by another 

increase in the short term and a decrease followed by another decrease. This is crucial for 

detecting transgression and regression patterns within major sequences. The separation 

between different zones depends on the variation of the mean values of the function H(I,z). The 

results indicate that boundaries between different zones exhibit a consistent value of 

approximately H=0.5, while the pattern may vary within each layer. Five zones (Zone 1 to Zone 

5) are identified, with boundaries situated at depths of 145, 210, 255, and 330 m, respectively. 

The mean of the Hurst exponent presents a mirrored pattern for the F1, which could potentially 

be utilized as a facies identification technique in future analyses (Figure 34). 

 
Figure 34. Hurst analysis of the first-factor log (F1) extracted by factor analysis of well-

logs measured in Baktalórántháza 1 well. Tracks 2-5 show the changes of the Hurst exponent 

and its related quantities at each identified lithological boundary. 

In the third step of the statistical procedure, I invert the borehole logs using the zone 

boundaries indicated by the preceding Hurst analysis. I selected the model parameters for thе 

fivе zonеs (as shown in Table 6) assuming a fully saturatеd formation. The first modеl is built 
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using thе matеrial balancе еquation, which calculatеs thе sand volumе dеpеnding on thе 

previous two paramеtеrs (dеrivеd from invеrsion). In Figure 35, the calculated logs created 

using these model parameters are shown alongside the observed wеll logs. Thе calculatеd data 

for еach prе-dеfinеd zonе is shown by thе red curve. I assume that petrophysical parameters 

stay constant inside each zone during the inversion process. 

Table 6. Starting values of petrophysical parameters and those estimated by interval inversion 

assuming five homogeneous zones in Baktalórántháza 1 well. 

Ordinal 

number of 

zones 

Upper depth 

of zone 

Initial value 

of porosity 

(v/v) 

Initial value 

of shale 

volume (v/v) 

Estimated 

value of 

porosity 

(v/v) 

Estimated 

value of 

shale volume 

(v/v) 

1 100 0.07 0.2 0.16 0.13 

2 145 0.08 0.3 0.14 0.19 

3 210 0.07 0.2 0.19 0.20 

4 255 0.2 0.2 0.11 0.26 

5 330 0.2 0.2 0.12 0.34 

 
Figure 35. Observed wireline logs (black curve) and the calculated logs (red curve) using the 

initial model obtained from Hurst analysis assuming five homogeneous zones along the 

processing interval. 

I use an orthogonal set of polynomials as basis functions to characterize the depth 

variation of petrophysical parameters within the five zones in greater detail. It is possible to 

estimate the petrophysical properties of inhomogeneous strata in a particular zone using this 

method. The basis function of the q-th zone is 𝛹𝑞(𝑧) = 𝑃𝑞−1(𝑧), where Pq-1 is the q-th degree 

Legendre polynomial. I employ Legendre polynomials of 40-th degree for each model 
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parameter and have Q=402 unknowns versus N=3,470 data. The interval inversion has a data-

to-unknowns ratio of 8.6, which is more than the local inversion, which has a ratio of just 5/2. 

Figure 36 verifies the inversion procedure's stability. The data misfit decreases from 24 % to 7 

% in a convergent inversion procedure. 

 
Figure 36. Development of convergence during the interval inversion of borehole logging data 

measured in Baktalórántháza-1 well. 

The inversion results are shown in Figure 37. They consistently indicate a decrease in 

porosity percentage towards the sections of the logs. At the time there is an increase in shale 

content as we go deeper. The differences between the calculated and measured wireline logs 

can be attributed to factors. First, there's the influence of data noise which is inherent to these 

measurements. Additionally, when using series expansion-based interval inversion methods 

with approximations it may be challenging to detect layers due to resolution limitations. Since 

tool response functions approximate equations, there could be modeling errors that I cannot 

precisely determine. Furthermore, during the modeling step zone parameters are set arbitrarily 

which can introduce uncertainties in both data misfit and estimation errors for inverted 

petrophysical parameters. To evaluate how accurate our estimations of porosity and shale 

volume are, I use Equation (60). I adopt the following values of standard deviation (data 

accuracy) for the observed well-logs: σd(SP)=0.0484, σd(GR)=0.0484, σd(GG)=0.005, 

σd(NN)=0.002, and σd(Rs)=0.05. The confidence intervals for estimated model parameters are 

presented in Figure 38. It becomes clear that shale volume can be estimated with accuracy 

within 0.01 (v/v), while our predictions for porosity also have a range between 0.01 to 0.03 

(v/v). Further evidence supporting the accuracy of estimating shale volume can be found 
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through laboratory measurements, Figure 38. In the track of the diagram, a remarkable 

correlation can be seen between the log indicating shale volume and the core data, for each 

zone. 

 
Figure 37. Result of interval inversion of borehole logging data measured in Baktalórántháza 

1 well. Tracks 1-5 show the fit between the observed (black line) and calculated (red dashed 

line) data, track 6 includes the estimated model parameter distributions assuming a 

petrophysical model of 5 inhomogeneous zones. 

 
Figure 38. The porosity and shale content logs estimated by interval inversion of well-logs 

observed in Baktalórántháza 1 well. Black lines demonstrate the estimated petrophysical 

parameter, while the red lines show their error bounds derived from the model covariance 

matrix. Track 3 shows the validation of the predicted shale volume log with core-measured 

shale volume data. 
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The Csókás approach is used in the final phase of the process to estimate the vertical 

distribution of hydraulic conductivity along the wеll. As inputs to equation (63), I use the 

porosity log produced from inversion and the measured resistivity log. Furthermore, I derive 

thе typical grain-sizе valuеs from thе grain-sizе distribution curves presented at thе dеpth levels 

where rock samples wеrе obtained. Thе shalе volumе and hydraulic conductivity logs coincide 

admirably, as shown in Figure 39, with their valuеs fitting closely with those obtained from 

laboratory experiments. 

 
Figure 39. Shale volume (track 1) and hydraulic conductivity (track 2) logs estimated by 

interval inversion of well-logs (solid lines), characteristic grain sizes (tracks 3-5), and the core 

measured values of these parameters (red circles) in the Baktalórántháza 1 well. 

The workflow's accuracy and reliability depend on input data uncertainty, which can be 

limited by instrumentation and ambient sounds. Inversion unknowns are often linked, 

increasing the risk of unstable processes and unclear results. Addressing this can be achieved 

by including credible priori knowledge on the groundwater formation. Determining polynomial 

degree can ensure correct vertical resolution but reduce overdetermination ratio and estimate 

accuracy. A trade-off between data-to-unknowns ratio and estimation accuracy is necessary for 

trustworthy information on petrophysical features of groundwater formations. Setting zone 

parameters is crucial for accurate match between observations and forecasts. 

4.5. Summary of results 

This chapter presents a fully automated formation evaluation procedure based on the 

joint application of all suitable borehole logs recorded in groundwater wells. The workflow 

includes innovative techniques, such as Hurst analysis, which provides an estimation of the 

number of layers and an approximate prediction of their depth location. The Hurst method is 
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based on statistical quantities extracted from raw data by factor analysis, revealing hidden 

information about lithology. The study emphasizes the analysis of the scaling interval, which 

is crucial for achieving better vertical resolution. Interval inversion, adapted from oil 

exploration, is applied for the first time in groundwater formations. Quality check is 

implemented through the application of the depth-dependent covariance matrix, calculating the 

uncertainty of inversion results. The proposed inversion method reliably derives petrophysical 

characteristics and allows fitting any basic function to model parameters. The inversion results 

agree with independent lab analysis. The porosity log as the output of inversion serves as input 

for the Csókás method, improving hydraulic conductivity estimation by determining the local 

relation between dominant grain size and formation factor. The site-specific constant in the 

Csókás formula should be estimated using regression relations. The proposed workflow may 

assist in improved assessment of other types of groundwater systems, providing reliable and 

quality-checked information for hydrogeophysicists and hydrogeologists. 

Thesis 3. 

I have developed a new integrated method based on the Hurst exponent and interval 

inversion for processing well logs. The conducted workflow consists of a series of innovative 

interpretation techniques that are used simultaneously to improve the evaluation of 

groundwater formations. The algorithm first extracts the first factor being a good lithology 

indicator. Then, Hurst analysis is applied to the first factor log to differentiate the lithology 

types. I proved that the scale and depth-dependent Hurst exponent exhibits a mean value of 0.5 

at the exact location of the layers’ boundaries with a decreasing pattern within the layers 

themselves. After the automated determination of the layer boundaries, interval inversion of 

the well logs provides the basic volumetric parameters such as porosity, shale volume and 

matrix volume. I proved the feasibility of the inversion algorithm using synthetic and field 

hydrogeophysical datasets. I extended the proposed algorithm to calculate the hydraulic 

conductivity using the Csókás method. I successfully validated the predicted petrophysical 

parameters using core laboratory measurements. 



73 | P a g e  

 

 

Chapter 5: Fully Automated Algorithm for Petrophysical and 

Zone Parameter, and Layer-Thickness Estimation with Robust 

Clustering and Local Inversion 

5.1. Scientific background 

Well log data offers a plentiful source of information beneficial for the interpretation of 

geometrical properties, such as layer thickness and dip, and petrophysical properties such as 

porosity, water saturation, and rock matrix composition. Traditionally, the reconstruction of 

layer thickness is troublesome, particularly when applying local inversion methods solely. 

Previous discussions had highlighted some of the techniques that were formulated to 

supplement conventional techniques of inversion, including novel algorithms that blend 

optimization with analysis techniques such as fractal analysis. While such techniques succeed 

in predicting necessary parameters, they do so in a step-by-step process and not concurrently. 

This chapter introduces a novel algorithm for the simultaneous prediction of 

geometrical and petrophysical parameters through a combined optimization procedure. 

Through the incorporation of robust clustering approaches, in particular the most frequent value 

(MFV) clustering covered in Chapter 1, and the point-by-point and interval inversion 

techniques covered in Chapter 2, the method enhances the effectiveness of parameter 

estimation. This integration is consistent with the contemporary progress observed in the 

interpretation of geophysical data, where machine learning is applied (Ikhwan, Sastranegara, 

& Anggraini, 2024; Nunes et al., 2020; Terry et al., 2019; Shahriari et al., 2020). Research by 

Li and Sun (2016) and Spichak (2020) used clustering to enhance magnetic data inversion and 

particle swarm method optimization, respectively, illustrating the usefulness and strength of 

these intersections of technology. 

Likewise, geophysical data, such as well logs, display fundamental parameters of zones 

like Archie's constants and physical properties of shale, fluid, and matrix. These constants, 

being constants within layers, but not necessarily between layers, underline the need for 

accurate, layer-specific estimates (Szabó, 2011). The understanding of these parameters relates 

directly to constructing high-resolution static reservoir models, key to successful dynamic 

modeling, reserves estimation, and optimization of well production. The extent to which poorly 

understood variables can be incorporated into the inversion process depends on 
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overdetermination ratios of well logs, clarified through theoretical models established by 

Dobróka et al. (2009b). In the local inversion case, this ratio has a maximum value of 1.5 

(Abdelrahman & Hassan, 2022). 

Following earlier chapters, the integration of MFV clustering with point-to-point 

inversion enables layer boundary definition—this advance now incorporates zone-specific 

parameter calculation, along with petrophysical measurements. Yet, there is an awareness of 

local inversion resolution constraints. Thus, the present algorithm reduces unknown parameters 

from potentially laborious datasets to three fundamental components, utilizing conservation 

principles to represent the storage, influx, and removal of fluids in the reservoir. This strategy 

not only simplifies the model but also increases the analytical accuracy, allowing for precise 

estimations based on both simulated datasets and actual field data. Finally, this advanced 

technique incorporates the vast amount of data held in well logs, using it to refine the inversion 

process and achieve greater precision in interpretation. The efficacy of this integrated method 

is tested by comparing results from synthetic case studies, comparing constant parameter layers 

with variable ones, to prove its suitability for real-world application. 

5.2. Methodology and Inversion Workflow 

The relationship between the data and the unknowns has been stated in chapter 2 as a 

nonlinear relationship between the well logging data and the model parameters such as 

petrophysical (m), zone (O), and layer-boundary coordinates (Z). Mathematically, the 

relationship can be expressed as follows 

𝒅 = 𝒈(𝒎,𝑶) ,  ( 65 ) 

This nonlinear relationship can be approximated using Taylor series truncated at first order, 

where the general form of the Taylor approximation that includes all the unknowns can be 

written as follows: 

∅𝑘 = 𝑔𝑘(𝑚0) + ∑ (
𝜕𝑔𝑘

𝜕𝑚𝑖
)𝑝

𝑖=1 ∆𝑚𝑖 + ∑ (
𝜕𝑔𝑘

𝜕𝑂𝑗
)𝑜

𝑗=1 ∆𝑂𝑗.  ( 66 ) 

where the first term on the right is the theoretical data calculated using the initial model 

parameters (m0), followed by the derivatives of data with respect to the petrophysical, zone, 

and geometrical parameters, respectively. 
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In this chapter, I will introduce two automated algorithms. In the first algorithm, the 

integration between the MFV-clustering and the local (point-by point) inversion can 

automatically determine both the petrophysical and geometrical parameters, and the zone 

parameters will be considered as known constants. In the second algorithm, the previous 

algorithm is improved to calculate zone parameters in addition to petrophysical values. For the 

synthetic data set, I initially estimate seven well log data points, which might include 

parameters such as resistivity, porosity, density, gamma ray response, acoustic speed, neutron 

porosity, and water saturation. Similarly, for the field data, I base my estimates on five well log 

parameters, potentially a subset of those used in the synthetic data case.  

This detailed approach provides leverage the critical information provided by well log 

measurements while simplifying the inversion process to optimize parameter estimation and 

enhance interpretational accuracy. To evaluate the performance of this enhanced approach, 

results are compared across two distinct synthetic cases: Inversion A, where the zone 

parameters remain constant across all layers, and Inversion B, where the parameters vary 

between layers. Besides that, I assumed a constant value of these zone parameters in the whole 

processing interval, while in the other scenario there are different zone parameters of each layer. 

Therefore, the proposed algorithm can be used for analyzing the outcomes of MFV-clustering 

each iteration to determine the continuity and, hence, the borders of the layers. The absolute 

difference between two clusters labeled Li and Lj for two consecutive data points di and dj is 

defined as Δ. I group labels with delta values that are less than or equal to zero based on a 

predetermined threshold value. This grouping results in the formation of a set S, which consists 

of labels Li that meet the criteria (delta=threshold) for some other labels Lj in the vertical well-

logging dataset. A layer is defined as a collection of datapoints di that matches Li labels in S. In 

the inner loop of the meta-algorithm for the gathered data points in each layer to further predict 

layer parameters. Then, the preceding approach will be performed to confine the inversion 

findings to the real layers' coordinates derived from the MFV-clustering convergence. The 

objective function of the cluster analysis is expressed by the data distance between the 

calculated and measured data. Figure 40 shows the workflow of the proposed algorithm. It is 

obvious that the algorithm’s convergence is subjected to the finding of the new petrophysical 

parameters and the zone parameters beside the defined layers boundaries. 
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Figure 40. The schematic diagram shows the workflow of the cluster analysis assisted 

inversion algorithm. 

The inversion meta-algorithm outlined here leverages a fusion of MFV-Clustering and Point-

by-Point Inversion, aimed at automatically identifying key petrophysical and geometrical 

parameters. At the outset, it treats zone parameters as known, unchanging values, which 

streamlines the assessment process as the algorithm evaluates MFV-clustering results to 

pinpoint continuity and determine the edges of layers. The method involves computing the 

absolute difference, termed delta, between clusters (Li and Lj) for each successive data point (di 

and dj). Subsequently, the algorithm groups label by applying a delta rule, specifically joining 

those with deltas not exceeding a set threshold. This process culminates in the creation of set 

S, which comprises labels (Li) that meet the threshold requirements in relation to other labels 

(Lj) in the vertical well-logging records. A layer is then characterized as a set of data points (di) 

matching Li labels within set S. 

5.3. Synthetic Modeling Test Using Local Inversion 

5.3.1. Priori zone parameters 

The feasibility of the proposed meta-algorithm has been proved using synthetic data 

contaminated with 1 % Gaussian distributed noise. The synthetic model consists of three 

inhomogeneous layers. The first and third layers are mainly composed of sandstone; both are 

partially saturated by water and hydrocarbon; the first layer is saturated by hydrocarbon more 

than the last one. The two sandstone layers are separated by a shaly sandstone layer. Figure 41 

shows the fitting between the predicted and measured well logs. It is worth mentioning that the 

choosing for the initial model is constrained to an initial threshold data distance value to 
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guarantee that the initial model will start from anywhere in the model space with a misfit lower 

than 1. Figure 42 shows the initial values of petrophysical parameters. 

 
Figure 41. Fitting between the synthetic data and the calculated data (iteration 1); the red 

dashed lines represent the calculated data, while the solid black lines represent the synthetic 

data. 

 
Figure 42. The predicted (dashed lines) and exactly known (solid lines) petrophysical 

parameters of the gas-bearing reservoir at iteration 1. 



78 | P a g e  

 

 

By splitting each layer into smaller, discrete subzones, the technique is supposed to 

account for variation within each layer. This method enables a more detailed examination of 

the petrophysical and geometrical features inside each layer. The use of subzones shows that 

the algorithm can capture fine-scale fluctuations and heterogeneity in well-logging data, which 

can be critical for correct geological formation characterization. The threshold is set at 10 

points or 1 meter in this context, suggesting that the algorithm considers changes in data values 

less than this threshold to be within the same layer. If the absolute difference (delta) between 

clusters Li and Lj for successive data points di and dj is less than or equal to 10 points or 1 meter, 

they are clustered together and considered part of the same layer. This threshold aids in 

recognizing continuous segments in well-logging data, allowing for more precise layer 

boundary identification. This threshold was most likely chosen based on domain expertise and 

the unique characteristics of the well-logged data being evaluated. It is a significant factor that 

determines the performance and outcomes of the algorithm. Figure 43 shows the fitting 

between the calculated and actual synthetic data, while Figure 44 shows the final prediction 

results. The algorithm converges at 1 % data distance which is proportional to the percentage 

of the data noise (Figure 45). Figure 46 shows the clustering results at iteration 1 and 10. 

 
Figure 43. Fitting between the synthetic data and the calculated data (after 10 iterations); the 

red dashed lines represent the calculated data, while the solid black lines represent the synthetic 

data. 
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Figure 44. The predicted (dashed lines) and actual (solid lines) petrophysical parameters of the 

gas-bearing reservoir at iteration 10. 

 
Figure 45. Development of convergence during the local inversion of synthetic data 

contaminated by 1 % Gaussian distributed noise. 
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(a) 

 

(b) 

  

Figure 46. MFV-clustering results at iteration 1 (a) and iteration 10 (b), black crosses indicate 

the defined cluster centers. 

5.3.2. Estimation of zone parameters  

I used the same synthetic model that was used in chapter 4 for calculating the synthetic data. 

However, I increased the number of unknowns to 7 such as the density of shale and cementation 

exponent. In that case the density of shale and the cementation exponent were the unknown as 

zone parameters. Besides that, I assumed a constant value of these zone parameters in the whole 

processing interval, while in the other scenario there are different zone parameters of each layer. 

Within the context of zone parameters' evaluation alongside petrophysical parameters, the 

organization of the Jacobian matrix in figure (47) outlines the differences between the varying 

parts of the model. 

 

Figure 47. Jacobian matrix structure in case of zone parameters implementation. 

 This matrix contains a choice of non-zero elements indicated in blue color, which represent 

local petrophysical parameters such as (p1(z1)), (p2(z1)), and (p3(z1)). These are the specific 

values that display variation within the respective specified zone. Further, the orange sections 
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represent zone parameters that have a global attribute and therefore influence all layers and are 

symbolized by the parameter (z). The lighter zones of the matrix, represented in gray, represent 

zero elements, revealing areas where the influence of some parameters is minimal or zero. This 

organized method of the Jacobian matrix enables effective computation through the 

concentration of fundamental parameters impacting the well logging data and differentiating 

between locally changing and globally invariable factors. The synthesis of these specialized 

and generalized parameters into the Jacobian matrix provides an overall understanding of 

subsurface properties, elevating the accuracy and reliability of petrophysical and zone 

parameter estimates. 

Figure 48 shows the initial location of the cluster centroids (left), and the final location 

of the centroids (right).  Figures 49 and 50 the fitting between the calculated and measured data 

at iteration 1 and initial guess of the petrophysical and zone parameters, respectively.  

 

 

(a) 

 

 

(b) 

Figure 48. MFV-clustering results (“x” represents the cluster centroids) (a) initial guess 

(b)final location. 
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Figure 49. The fitting between the calculated and measured well log data sets at iteration 1 (1st 

scenario) for inversion A. 

 

 
Figure 50. Initial guess of the petrophysical and zone parameters (1st scenario) for inversion 

A. 

In the light of geological modeling and petrophysical analysis, the threshold of layer 

thickness refers to the minimum thickness a geological layer must have to be considered 

distinct and significant in the model. This threshold is crucial because it directly influences the 
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placement of layer boundaries and consequently, the total number of layers identified in the 

subsurface profile. Determining an appropriate threshold for layer thickness is a nuanced 

process that involves both geological understanding and practical considerations. It is often 

guided by the resolution of the available data and the smallest unit of interest that can be 

confidently distinguished given the measurement accuracy. For instance, a well log tool has a 

specific vertical resolution, typically in the range of tens of centimeters to a few meters, which 

sets a natural limit on the thinnest layers it can resolve. Layers thinner than this resolution may 

appear blended with adjacent layers, potentially obscuring their boundaries. The choice of 

threshold can significantly impact geological interpretation. Selecting a too-low threshold 

might lead to the identification of many thin layers, some of which could reflect noise rather 

than meaningful geological features. Conversely, a too-high threshold might oversimplify the 

model, missing critical thin beds such as those that might act as barriers or conduits to fluid 

flow. Further, geological factors like depositional environment, tectonic activity, and diagenetic 

processes naturally influence layer continuity and variability, which must be considered when 

setting a threshold. Ultimately, the threshold should be chosen to balance detail with clarity, 

ensuring that the model remains both geologically realistic and computationally feasible. This 

balance is essential for constructing models that are not only accurate but also useful for 

predicting subsurface behavior and guiding exploration or production strategies. In this study 

the suitable threshold number is 0.1 meters to be aligned with vertical resolution of logging 

tools. Figures 51 and 52 show the fitting between the calculated and measured data and the 

prediction of petrophysical and zone parameters at iteration 15, respectively. Figure 53 shows 

the convergence of the relative data distance. 
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Figure 51. The fitting between the calculated and measured well log datasets at iteration 15 

(1st scenario) for inversion A. 

 
Figure 52.The predicted petrophysical and zone parameters at iteration 15 (1st scenario) for 

inversion A. 
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Figure 53. Development of convergence during the local inversion of synthetic well logging 

data using inversion A algorithm. 

The following part shows the feasibility of applying inversion B algorithm in the second 

scenario, where the zone parameters are different from layer to layer. Figures 54 and 55 show 

the fitting between the calculated and measured data sets at iteration 1, and the initial guess of 

the petrophysical and zone parameters of each layer. 

 
Figure 54. The fitting between the calculated and measured well log data sets at iteration 1 

(2nd scenario) for inversion B. 
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Figure 55. Initial guess of the petrophysical and zone parameters (2nd scenario) for inversion 

B. 

Figures 56 and 57 show the fitting between the calculated and measured datasets and the 

predicted petrophysical and zone parameters of the (2nd scenario) inversion B algorithm at 

iteration 15. 

 
Figure 56. The fitting between the calculated and measured well log data sets at iteration 15 

(2nd scenario) for inversion B. 
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Figure 57. The predicted petrophysical and zone parameters at iteration 15 (2nd scenario) 

inversion B. 

 

5.4. Hydrocarbon Field Case Study 

5.4.1. Priori zone parameters 

The proposed algorithm was tested using a hydrocarbon field data from Hungary. The 

recorded well-logging dataset depicts a sand-shale sequence response of thickness 25 m. To 

identify lithological units, a lithological analysis was carried out utilizing cross plots between 

well log data. The elbow method revealed that three lithological clusters were the ideal number 

(Figure 58). Within the geological formation under research, these three clusters indicate 

sandstone, shaly-sandstone, and shale strata. The cross plots allowed the well log data to be 

classified into three separate lithological groups based on the graphical correlations between 

different recorded parameters. This lithological categorization can help to understand the 

stratigraphic composition and attributes of the geological strata penetrated by the well, where 

the algorithm divides the sequence into 5 shale-sandstones intervals. Figure 59 illustrates the 

results of MFV-clustering at iteration 1. in a 3D cross-plot (x-axis: GR (API), y-axis: Bulk 
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density (g/cm3), z-axis: Neutron-porosity (v/v)). Figure 60 shows the fitting between the 

calculated (red dashed) and measured (solid lines) data set at iteration 10. Figure 61 shows the 

predicted model parameters. Figure 62 shows the results of MFV-clustering. 

 

Figure 58. Elbow method for identifying the optimal number of clusters (the optimal number 

is three). 

 

 
Figure 59. MFV-clustering results at iteration 1 (“x” represents the cluster centroids). 
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Figure 60. The fitting between actual (solid black line) and predicted (red dashed line) wireline 

logging data in the synthetic case (iteration 10). 

 
Figure 61. The predicted (dashed lines) petrophysical parameters at iteration 10. 
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Figure 62. MFV-clustering results of iteration 1 (“x” represents the cluster centroids). 

The misfit between the measured and calculated data converges from data distance of 0.6 at 

iteration 1 to 0.75 at iteration 10. Figure 63 shows the convergence of inversion algorithm. 

 

 

Figure 63. Development of convergence during the local inversion of real well logging data. 

To check the stability of the inversion algorithm, the workflow was repeated 8 times, 

and the data distance convergence was recorded and plotted (Figure 64). The inversion 

algorithm chooses a different initial model each time, by turn the data distance starts from 

different values, and converges to the same end point. 
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Figure 64. Relative data distance convergence repeated 8 times to check the algorithm stability. 

5.4.2. Estimation of zone parameters 

The estimation of zone parameters within each interval reveals an inverse relationship between 

shale resistivity and the cementation exponent. As the resistivity of shale increases, the 

cementation exponent tends to decrease, suggesting these parameters are indirectly linked in 

influencing petrophysical properties. The predicted reservoir characteristics and fluid 

distribution align with the expected rock types, indicating that hydrocarbon levels tend to 

diminish in regions with higher shale content, and increase in areas with lower shale content. 

Figure 65 shows the predicted petrophysical and zone parameters after 20 iterations. Figure 66 

shows the convergence of the relative data distance at iteration 11 (the algorithm stopped at 

iteration 11 where no additional change happened). The predicted zone parameters show a 

range of cementation exponents between 1.8 to 2.7, while the shale resistivity shows a range 

between 3.8 to 5.9 ohmm. The resulting petrophysical and zone parameters show a proper 

fitting with actual well logging data. The zone parameters show an increase from shallow to 

deep. Specifically, the bulk density log, which shows a better fitting between the calculated and 

the actual data. Figure 67 shows the data distance convergence. 
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Figure 65. Shows the fitting between the calculated and measured data and the prediction of 

petrophysical and zone parameters at iteration 11. 

 

Figure 66.The predicted (dashed lines) petrophysical parameters at iteration 11 using 

integrated different zone parameters inversion scenario (inversion B). 
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Figure 67. Development of convergence during the local inversion of real well logging data 

 

5.5. Summary of results  

In this study, an integration of the MFV clustering method and point-by-point inversion was 

developed and tested using both synthetic and field well logging datasets to evaluate 

petrophysical, zone, and geometrical attributes. The synthetic dataset was generated based on 

a 30 m sequence comprising two hydrocarbon and water-saturated sandstone layers flanking a 

shale layer, with 1% Gaussian noise added for complexity. The inversion algorithm 

demonstrated its efficacy by reducing the relative data distance curve from 52% to 1%, 

highlighting its accuracy in fitting measured and calculated data. For field data application, the 

algorithm analyzed a dataset containing gamma ray, density, neutron, and resistivity logs, 

clustering the data into three groups: sandstone, shale sandstone, and sandy shale layers based 

on shale volume. Petrophysical parameters within each layer revealed different sand layers 

partially saturated with hydrocarbons, which were interspersed with thin shale laminas 

influencing reservoir connectivity. 

 

The automated method facilitated the estimation of volumetric parameters one layer at a time, 

contributing to the construction of a realistic static reservoir model. Validated by synthetic cases 

with constant and varying zones, the method demonstrated high accuracy under both uniform 

and heterogeneous subsurface conditions. Allowing zone parameters to vary improved 

predictions of shale volume and porosity, emphasizing the importance of localized tuning in 

the inversion process. Application of this method to a dataset from a Hungarian hydrocarbon 
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field confirmed its predictive capability regarding petrophysical properties and variations in 

zone parameters. Shale-rich zones exhibited low hydrocarbon content, and predictions for 

lithological patterns were consistent with actual formations. This approach not only enhances 

the estimation of petrophysical properties but also effectively quantifies zone parameters, 

underscoring its utility in reservoir characterization. 

Thesis 4. 

I present an automated inversion scheme utilizing MFV clustering and point-by-point inversion 

to predict geometrical and petrophysical parameters, improving log data interpretation. The 

initial algorithm assumes known zone parameters, while the advanced version handles 

unknown parameters, both constant and varying across layers. Validation with synthetic data 

sets showed robust clustering into lithological groups. Application to a Hungarian dataset, as 

depicted in the figure, demonstrates classification into rock types and parameter estimation, 

with bulk volume around 0.5, fluid volume 0.1, shale resistivity up to 6 ohmm, and cementation 

exponent ranging from 1.8 to 2.6. This approach enhances reservoir characterization by 

integrating layer-specific volumetric and zone parameters, aligning with calculated saturation 

profiles and advancing static reservoir modeling. 
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Chapter 6: Fully Automated Algorithm for Petrophysical, Zone 

Parameters, and Layer-Thickness Estimation with Robust 

Clustering Assisted Interval Inversion 

In this chapter, both clustering and interval inversion play critical roles in interpreting 

well logging data. Clustering helps in discovering meaningful patterns from the complex, 

multidimensional datasets that characterize well logs, allowing for the identification of distinct 

zones and formations based on their unique characteristics. Once these zones are defined, I will 

introduce two distinct methodologies, taking advantage of the interval inversion techniques, 

and anticipate variations in petrophysical parameters, such as porosity and permeability, within 

them in case of known zone parameters and unknown zone parameters. This dual approach not 

only enhances the precision of subsurface characterization but also offers a cohesive 

understanding of how different geological layers interact, ultimately leading to more informed 

decision-making in resource exploration and extraction. The overall convergence of the relative 

data distance is a function of the misfit of the cluster as well as the interval inversion results. 

The newly introduced algorithm addresses the complex challenge of polynomial degree 

and thickness dependency, where variations in polynomial degree correspond to changes in 

petrophysical parameters across defined thicknesses. The algorithm strategically determines 

the appropriate polynomial degree based on interval thickness or the coefficient of variation 

within each zone, enhancing its adaptability and precision. This novel approach integrates 

unsupervised pattern recognition with interval inversion, significantly transforming how 

subsurface data is interpreted. The algorithm can automatically predict the number of sub-

intervals and, furthermore, it can adjust the degree of the polynomial in the homogeneous layer-

wise modeling to ensure the best fit between the calculated and actual well-logging data. 

Thanks to the high data-to-unknown parameter ratio, I could implement all the unknown 

parameters in one optimization phase. The zone parameters include the textural properties of 

rocks, i.e., cementation exponent (m), and tortuosity factor (a), and the shale parameters, i.e., 

resistivity of shale, and natural gamma-ray intensity of shale. These parameters were dealt as 

constant within each subinterval and differ from one another; therefore, the interval inversion 

uses the Heaviside as a basis function to represent the continuity of the zone parameters. 

Finally, the change of the overdetermination ration is a function of the thickness of the defined 

interval, so a coefficient of variation has been calculated each iteration to explain the degree of 

the polynomial. Figure 68 shows the schematic diagram of the workflow of the proposed 
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inversion algorithm. The optimal cluster number is pre-defined from the elbow method in case 

of the real data. 

 
Figure 68. The schematic diagram shows the workflow of the proposed inversion algorithm. 

6.1. Synthetic modeling test 

6.1.1. Prior zone parameters 

In this section, I test the change of the lithology as well as the amount of noise added 

to the inverted data. Therefore, I used the same set of synthetic well logging data but with 

increasing the amount of Gaussian distributed noise to 2, 5 and 7 %. Besides that, I increased 

the amount of shale in case of the data contaminated with 5 and 7 % noise. Figure 69, and 

Figure 70 show the fitting and the initial and estimated model parameters at iteration 1. 
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Figure 69. Synthetic wireline logs (black curve) and the calculated logs (red curve) using the 

initial model obtained from cluster analysis at iteration 1 (7% Gaussian noise). 

 

Figure 70. The predicted (dashed lines) and exactly known (solid lines) petrophysical 

parameters of the synthetic data contaminated by 7% Gaussian distributed noise at iteration 1. 

Figure 71 (a), (b), and (c) show the fitting results in case of the 2, 5, and 7 % Gaussian noise 

contamination, respectively. It’s clear from the Figures the effect of noise specifically on 
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density log, where the boundary between different layers disappears in case of a higher noise 

dataset. 

 

 

(a) 

 

 

(b) 
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(c) 

Figure 71. Fitting between the calculated and synthetic data. (a) 2% noise, (b) 5% noise, and 

(c) 7% Gaussian distributed noise. 

Figure 72 (a) and (b) show the initial location of the centroids of MFV-clustering loop. 

The model under consideration prominently displays a discernible partition into two distinct 

lithological clusters. In scenarios characterized by an increased level of noise contamination, 

there is a noteworthy surge in shale content within the shale layer, reaching a substantial 50%. 

This augmentation in shale content not only exerts an influence on the inversion procedure but 

also accentuates the differentiation between the clusters. Consequently, this amplification 

contributes to a heightened clarity in the demarcation of layer boundaries. The intricate 

interplay between shale content variations and their impact on the clustering dynamics 

underscores the nuanced complexity inherent in the model's lithological composition. 

 

(a) 

 

(b) 



100 | P a g e  

 

 

Figure 72. MFV-clustering results (“x” represents the cluster centroids) (a) initial guess (b)final 

location. 

Figure 73 shows the convergence of data distance. The data distance stabilizes the amount of 

contamination noise. The analysis of convergence patterns reveals an important relationship 

between the iteration counts of the main loop, which manages clustering, and the inner loop, 

which performs inversion, particularly in response to varying levels of noise in the data. 

Convergence patterns indicate how swiftly and efficiently an algorithm reaches stability, and 

these patterns are influenced by the iterations in both loops. The main loop works on organizing 

data into clusters by continually refining centroids and updating cluster assignments, a process 

that can be significantly affected by noise as it tends to obscure data patterns. In contrast, the 

inner loop focuses on adjusting model parameters to align the predictions with observed data, 

requiring precision that is often sensitive to noise levels. Noise acts as random variability within 

the data, potentially complicating both the clustering and inversion processes. When noise 

levels rise, the clusters interference increases. Besides that, iterations might be necessary to 

achieve stable convergence as the algorithm works to distinguish meaningful signals from 

background noise. The observed relationship suggests that for inversion stability, the main loop 

should iterate approximately half as frequently as the inner loop. This balance ensures that 

while the inversion process effectively refines parameters to match expected patterns, the 

clustering process remains efficient in adapting to these adjustments. By understanding and 

applying this interrelationship, the iterative algorithm can be optimized to converge effectively, 

even in the presence of noise, enhancing both the reliability and accuracy of the results 

generated from noisy datasets. 

 

(a) 

 

(b) 
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(c) 

Figure 73. The convergence of the relative data distance. (a) 2% noise, (b) 5% noise, and (c) 

7% Gaussian distributed noise. 

The inversion algorithm could detect the coordinate of the boundary quite accurately until 7 % 

noise but failed for the higher noise percentage. Figure 74a-c shows the predicted parameters 

of each dataset. 

 

(a) 
 

(b) 
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(c) 

Figure 74. The exact known (dashed lines) and predicted (solid lines) petrophysical parameters 

of the gas-bearing reservoir at Iteration 20. (a) 2% noise, (b) 5% noise, and (c) 7% Gaussian 

distributed noise. 

6.1.2. Estimation of zone parameters 

In case of optimize zone parameters, sensitivity study is an important tool to show how the 

change of model parameters can influence the change of the calculated data. Four 

representative layers were modeled: clean hydrocarbon-filled sand (layer 1), tight sand (layer 

2), water-saturated sand (layer 3), and sandy shale (layer 4). This allowed testing of sensitivity 

of both textural and shale parameters across a range of conditions.  

Figure 75 summarizes how the petrophysical properties of each layer were systematically 

varied. Examining the parameter sensitivities for this diverse set of scenarios informs the 

selection of significant terms to include during subsequent optimization workflows by 

revealing those with the most pronounced influence on outcomes given underlying geology. 

The sensitivity metrics quantify the relative response arising from adjustments to textural 

attributes versus shale measures under analogous perturbations. By understanding sensitivities 

for models approximating potential reservoir architectures, parameters most essential for 
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constraining estimates can be identified before calibrating interpretations through history 

matching based on actual well data. The parameter sensitivity function is given as follows: 

𝑆(𝑚𝑖) =
𝜕𝑑𝑙
𝜕𝑚𝑖

∗
𝑚𝑖

𝑑𝑙(𝑚𝑖)
 (62) 

Table 7. Petrophysical model for computing parameter sensitivity functions. 

 Porosity (v/v) Volume of sand 

(v/v) 

Water saturation 

(v/v) 

Layer 1 0.15 0.80 0.20 

Layer 2 0.05 0.90 0.05 

Layer 3 0.10 0.90 0.90 

Layer 4 0.04 0.60 0.10 

The sensitivity plot shows how changes in the various field parameters affect the results 

for the four modeled layers. Several important observations can be made. First, the cementation 

exponent and acoustic damping appear to be significantly affected in all cases. Meanwhile, the 

dense water shows little sensitivity except in the dense sand layer. Moreover, layer 2 exhibits 

unusual behavior compared to the other cases - parameters such as porosity and grain density 

for unconventional tight sands may exhibit different relationships than conventional reservoirs. 

The sensitivity to these heterogeneous constructions may need new investigation. In summary, 

cementation exponent and turbidity are always the most sensitive terms, water hardness always 

has a negligible effect, while unconventional fields reveal their underlying complexities by 

sensitivity discontinuities. The diagnostic power of sensitivity analysis is evident in how it 

reveals contrasts in fundamental parameter dependencies between standard and tight 

framework. A sensitivity study aims to identify parameters that significantly impact 

geophysical model outcomes. Key parameters like cementation exponent, shale density, and 

neutron density are chosen based on their sensitivity profiles. These parameters accurately 

represent subsurface conditions and make the model more robust. The study also evaluates the 

feasibility of the interval inversion method for multi-parameter estimation using synthesized 

well-logging data. Sensitivity analysis and localized inversion allow for the extension of the 

definition to obtain three additional zone parameters simultaneously. 
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Figure 75. Sensitivity study of zone parameters within different four lithological layers, layer 

1 (blue), layer 2 (orange), layer3 (yellow), and layer 4 (purple). 

 

 

(a) 
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(b) 

Figure 76. The fitting between synthetic (solid black line) and predicted (red dashed line) well 

logging data in the synthetic case of iteration 1, (a) inversion A (scenario 1), and (b) inversion 

B (scenario 2). 

 

(a) 
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(b) 

Figure 77. The exactly known (dashed lines) and predicted (solid lines) petrophysical 

parameters of the synthetic data at iteration 1. (a) inversion A (scenario 1), and (b) inversion B 

(scenario 2). 

 

 

(a) 

 

 

(b) 

Figure 78. Location of cluster centroids at iteration 1, (a) scenario 1 (inversion A) and (b) 

scenario 2 (inversion B). 

The inversion algorithm was used to invert the petrophysical parameters (porosity, rock 

constituents, and fluid saturation) and the three zone parameters (cementation exponent, 

density of shale, and neutron of shale) (figure 77) .With two layers interpreted, the total 

unknowns comprise: the 2 interface depths (layer boundary coordinates), plus 5 petrophysical 

properties interpreted per layer (e.g. porosity, saturation), plus 3 additional zone parameters 



107 | P a g e  

 

 

estimated per layer. This totals 10 unknowns. Figure 78 shows the cluster results at iteration 1 

for both scenarios. Both parameter scenarios were run for 10 iterations, respectively. The results 

show that actual logging measurements are consistent with predictions. In addition, interpreted 

formation characteristics and development of the stratigraphic grouping are presented in Figure 

79. The main observation is that the unsupervised clusters start from initial configure rations 

between the two cases. This means that the algorithm automatically determines zone partitions 

without set level boundary restrictions-satisfying one of the basic assumptions of unsupervised 

learning. The constant parameter conditions rapidly converge to the cluster positions in 2-3 

iterations. Meanwhile, in the case of variable parameters, there is a gradual refinement of 

interfaces spanning roughly 5 iterations as specific properties are calibrated per layer (Figure 

80). Finally, allowing different properties for history matching enhances the alignment between 

mathematical models and synthetic true data, improving accuracy. Figure 81 shows the 

convergence of the cluster phase. In summary, the iterative development verifies the continuity 

of the unsupervised multi-parameter inversion. The difference in performance between the 

constant and extreme parameters indicates that the variable formulation effectively implements 

the method for generating geologically reasonable solutions consistent with the synthetic 

model, as demonstrated by the final location of the cluster centroids. 

 

(a) 
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(b) 

Figure 79.The exactly known (dashed lines) and predicted (solid lines) petrophysical 

parameters of the synthetic data at iteration 10. (a) inversion A (scenario 1), and (b) inversion 

B (scenario 2) . 

 

(a) 

 

(b) 

Figure 80. Data distance convergence.(a) inversion A (scenario 1), and (b) inversion B 

(scenario 2. 
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Figure 81. MFV-clustering results (“x” represents the cluster centroids). 

6.2. Field Data Test 

6.2.1. Hydrogeophysical field case study 

For demonstrating the feasibility of the inversion method, I applied the algorithm on the 

hydrogeophysical data in chapter 3. In the case of field data, the cluster numbers were identified 

by using the elbow method. Figure (82) shows that the optimal cluster number is 3. Figure 83) 

shows the fitting between the calculated and actual well-logging data of the Baktalórántháza-1 

well at iteration 1 at each defined zone according to the cluster results. The last track on the 

right side represents the initial results of the MFV-clustering phase. Figure 84 shows the initial 

guess of the petrophysical parameters within each zone. The algorithm successfully identified 

subzones in well-logging data, identifying the boundary between Pleistocene and Miocene 

sequences, and predicting petrophysical parameters, with sand dominating at 100-160 m depths 

and increasing shale content with depth figures (85 and 86). 

 

Figure 82. Elbow method for optimal number of clusters identification, the optimal number is 

3. 
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Figure 83. The fitting between the measured (solid black line) and predicted (red dashed line) 

wireline logging data (iteration 1). 

 

Figure 84. The predicted (dashed lines) petrophysical parameters at iteration 1. 
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Figure 85. The fitting between measured (solid black line) and predicted (red dashed line) 

wireline logging data at the end of the inversion procedure. 

 

Figure 86. The estimated model parameter distributions at iteration 20.  
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6.2.2. Hydrocarbon field case study 

A real well logging dataset from a tight sand gas deposit in northwest Egypt was used 

to evaluate the suggested procedure (the same well-logging dataset used in chapter 3). The 

wireline logging dataset documented a Jurassic sequence's parameter changes. To achieve the 

robust prediction of the predicted parameters, I studied the sedimentological features of the 

core samples that were taken from the Jurassic reservoir. 

6.2.3. Sedimentological investigation 

Core samples from sandstone layers reveal diverse sedimentary structures, reflecting 

the reservoir's heterogeneity (Figure 87). Sedimentological analysis reveals mudstone 

laminated, cross-bedded with drapes, and wavy-bedded patterns. SEM and petrography study 

reveal pore space cementation, with quartz overgrowth filling pore spaces, authigenic kaolinite 

filling inter-granular spaces, and fibrous illite covering quartz overgrowth. Illite suggests 

reduced reservoir permeability due to diagenesis (figure 88). 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 87. Core description of the collected samples. (a) S.S cross-bedded with drapes, (b) S.S 

wavy-bedded, (c) Clast supported conglomerate, and (d) Mudstone laminated. 
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Figure 88. Authigenic kaolinite filling inter-granular pore spaces and QZ overgrowth with illite 

fibrous coating. 

6.2.4. Field application of the automated algorithm 

It was possible to estimate the differences between the data points using MFV-

clustering. In addition, a boundary choice of two meters was made for converting the labels of 

the cluster findings into the bounds of the layers. In other words, count it at the same layer if 

the label change fell within a 2-meter range, and lay the boundary if the label change exceeded 

that range. The fitting between the calculated and measured data is displayed in Figure 89, 

where the predicted petrophysical parameters are displayed in figure 90. The first track displays 

the rescaled depth to represent the reservoir thickness from 0 to 37 m. The last track displays 

the labels that resulted from the cluster loop with the boundaries between different intervals. 

According to the suggested methodology, the reservoir is mostly made up of sandstone 

intervals with a little amount of shale sticks, which may have an impact on the reservoir's 

vertical homogeneity. The reservoir's initial five meters are a shale interval that decreased the 

fluid saturation and porosity. To enhance the fitting between the computed and measured 

datasets, the integration of MFV-clustering and interval inversion might isolate the shale layer 

and carry out a separate interval inversion about this shale layer. 
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Figure 89. The fitting between field (solid black line) and predicted (red dashed line) well 

logging data. 

 
Figure 90. The estimated model parameter distributions using inversion A at iteration 20. 

The data distance vs. iteration steps cross-plot was used to assess the stability of the 

fully automated inversion issue. The suggested interval is more stable in terms of the 

convergence process when compared to the cluster-defined based inversion, which used the 

whole recorded interval as a single layer. In addition, the data distance's stability of 

convergence is demonstrated by the MFV-cluster-assisted interval inversion at 7.5%, which is 
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less than the standard inversion's 10% convergence. The data distance convergence for both 

the traditional interval inversion and the MFV-cluster-assisted interval inversion is displayed 

in figure (91). 

  

Figure 91. Data distance convergence plot. Cluster analysis-assisted interval inversion (left), 

and conventional interval inversion (right). 

Figure (92) shows the error estimation for petrophysical parameters:  (porosity), Vsd (shale 

volume), and Sw (water saturation) against depth. The same data accuracy values of chapter 3 

were used for Quality check calculations of petrophysical. The plots show the prediction 

confidence deviation, as indicated by the red error lines around the estimated value of each 

parameter. Closely grouped error lines at lower depths for  represent high confidence, and 

large deviations around the 20-meter depth are zones of greater uncertainty. Similar patterns 

for Vsd and Sw are seen with different confidence levels at different depths. The correlation 

matrix captures the interrelations among the parameters, where the diagonal entry is a perfect 

self-correlation. Lighter off-diagonal entries correspond to higher correlations or anti-

correlations between different parameters, and these indicate large interdependencies that must 

be considered in modeling exercises. In figure 93, the introduction of the cementation exponent 

as an additional parameter alters the error limits and correlation behavior. Overall, the error 

limits appear tighter in some sections, indicating improved prediction quality with the new 

parameter. This added complexity, however, also introduces uncertainty into some depth 

ranges. The revised correlation matrix indicates variations in parameter interactions, reflecting 

the impact of the cementation exponent on such relationships. This adjustment highlights 

variation in model sensitivities with an emphasis on the intricate relationship between logging 

measurements and geological features. Generally, including this zone parameter enhances 

knowledge and introduces a comprehensive understanding of parameter interactions and 

uncertainties. 
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Figure 92. Quality check of petrophysical parameters is estimated by automatic interval 

inversion procedure, separately. Solid Black lines represent the estimated values of porosity Φ, 

volume of sand Vsd, and water saturation Sw. Solid red lines show the error bounds of 

petrophysical parameters calculated from the standard deviations σ of inversion estimates 

(left), the correlation matrix between the predicted parameters can be seen on the right side of 

the figure. 
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Figure 93. Quality check of petrophysical parameters is estimated by fully automatic interval 

inversion procedure, separately. Solid Black lines represent the estimated values of porosity Φ, 

volume of sand Vsd, and water saturation Sw. Solid red lines show the error bounds of 

petrophysical parameters calculated from the standard deviations σ of inversion estimates 

(left), the correlation matrix between the predicted parameters can be seen on the right side of 

the figure. 

6.3. Summary of results 

This chapter investigates the impact of data noise on lithology determination using synthetic 

borehole logging data from Egypt and Hungary. The study found that noise levels increased 

with increasing noise contamination, affecting the convergence of data distance. The algorithm 

performed accurately in identifying boundary coordinates up to 7% noise but struggled at 

greater noise percentages. A hydrogeophysical dataset from northeast Hungary was used for 

geothermal applications, successfully detecting subzones in well-logging data and identifying 

the boundary between Pleistocene and Miocene sequences. Surface geophysical measurements 

and well-logging operations did not reveal hydrocarbon indicators. 

The chapter describes an automated machine learning-enabled interval inversion system for 

analyzing well logs data to improve petrophysical and zone parameter estimation. Parameter 
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sensitivity studies show that characteristics such as cementation exponent and tortuosity factor 

significantly impact outcomes across lithologies, including clean sands, tight sands, water 

sands, and shaly sands. The integrated machine learning clustering and interval inversion 

approach is illustrated using both simulated data sets and genuine well logs from an Egyptian 

tight sand gas reserve. The approach uses synthetic data to automatically define zone divisions 

across rock units and refine interfaces over numerous optimization rounds. Core sample 

analysis helps understand the intricacies of sedimentary structures and diagenetic changes that 

affect reservoir quality before inversion. The automated procedure separates a shale interval 

and several sandstone intervals, improving convergence stability compared to typical inversion 

procedures without machine learning. The proposed machine learning-powered interval 

inversion strategy enables efficient and consistent characterization of subsurface geological 

formations from conventional well logging data with minimal user intervention. 

Thesis 6. 

The dissertation introduces a novel method in petrophysical parameter prediction using a 

strongly overdetermined interval inversion process where zone parameters such as cementation 

exponent, tortuosity, and shale properties are optimized. It automated layer boundary 

identification and was field tested with synthetic data at noise levels of 2%, 5%, and 7%. 

Applied to northeast Hungarian hydrogeophysics data, it was found to be able to identify six 

distinct subzones and to rightly establish geological boundaries. Validation on an Egyptian 

hydrocarbon dataset showed successful classification of rock interfaces and estimation of 

parameters, with bulk volumes around 0.5, water saturation around 0.5, and fluid volume with 

a peak of 0.2. The machine-learning-based inversion gave a reduced data misfit of 7.5%, with 

improved convergence stability significantly. Zone parameters, including varying cementation 

exponent values, were estimated correctly, providing robust reservoir characterization. 
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Conclusions 

In the first chapter, I outlined the motivation underlying this study, emphasizing the 

transformative potential of integrating inversion techniques and machine learning applications 

in geophysical interpretation. It examines their strengths in pattern recognition and parameter 

estimation, highlighting their potential in enhancing the precision and efficiency of interpreting 

complex well-logging data. 

In the second chapter, I introduce an innovative clustering technique aimed at improving 

lithological classification in geophysical data analysis. This method employs the Most Frequent 

Value (MFV) algorithm, which addresses the shortcomings of traditional clustering like 

susceptibility to noise and initial centroid dependency. The MFV approach uniquely 

incorporates Steiner distances for weighted centroid adjustments, leading to enhanced accuracy 

and consistency. Testing this technique on synthetic well-log data, even with added noise and 

outliers, demonstrated its ability to maintain cluster integrity and offer reliable results. When 

applied to actual field data, this method accurately classified aquifer quality, providing a high-

resolution understanding of subterranean layers. The outcomes were corroborated by core 

sample analyses, signaling a notable advancement in geological data interpretation 

methodologies. 

In the third chapter, I focus on developing advanced techniques for improving the estimation 

of reservoir properties using well-logging data. This involves overcoming limitations in 

traditional methods, such as uncertainty and resolution issues, by introducing sophisticated 

algorithms. Central to these techniques is the management of key parameters, particularly the 

damping factor, which plays a crucial role in ensuring the stability of the estimation process. 

The integration of Golden Section Search (GSS) with interval estimation methods 

demonstrates a more consistent and efficient approach, especially in handling noisy datasets. 

Additionally, the novel combination of Damped Least Squares (DLSQ) and Singular Value 

Decomposition (SVD) methods is presented, aimed at enhancing computational efficiency. 

This hybrid approach initially leverages SVD for optimal parameter setting before transitioning 

to DLSQ for fine-tuning as the solution nears completion. The efficacy of these methods is 

validated through application to data from a gas-bearing reservoir in Egypt, revealing insights 

into the variable quality of reservoir characteristics and supporting the need for tailored 

assessment techniques. 
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In chapter fourth, I introduced a novel methodology for extracting hidden patterns within 

geophysical data by integrating the Hurst exponent, a measure of fractal analysis, with interval 

inversion. This approach begins with factor analysis to reduce dimensionality and highlight 

influential lithology-sensitive factors from well-log data. The Hurst exponent analysis is then 

applied to identify layer boundaries based on a scale and depth-dependent measure, effectively 

capturing lithological changes. The developed algorithm seamlessly integrates these findings 

into the interval inversion process, enhancing the reliability of petrophysical parameter 

estimates. I demonstrated the algorithm's efficacy using synthetic data and real-world 

hydrogeophysical datasets from Hungary. The workflow also extends to calculating hydraulic 

conductivity through the Csókás method, providing high-resolution insights into aquifer 

quality.  

Chapter five introduces an enhanced algorithm for estimating petrophysical, zone, and 

geometrical parameters from well log data. The method integrates the Most Frequent Value 

(MFV) clustering with local inversion, providing detailed insight into reservoirs' static and 

dynamic characteristics. The algorithm's adaptability is demonstrated by increasing the number 

of unknowns to include zone parameters like shale density and cementation exponent. 

Synthetic modeling demonstrates its ability to fit both petrophysical and zone parameters 

simultaneously, proving its effectiveness across diverse geological settings. Field data 

application from a Hungarian petroleum site confirms the algorithm's ability to predict 

petrophysical parameters under varying zone conditions. An innovative approach combines 

unsupervised data pattern recognition with interval analysis for precise boundary detection in 

subsurface geological data. This method addresses polynomial degree and thickness 

dependency, ensuring accurate representation across varying lithological changes. Synthetic 

tests show the algorithm's proficiency in delineating boundaries under diverse noise conditions 

up to 7% contamination. Application to real-world data from Hungarian geothermal 

explorations demonstrates the approach's practical utility, enhancing the reliability of 

subsurface analysis and resource evaluation. 

Chapter six presents an innovative approach that combines unsupervised data pattern 

recognition with interval analysis to achieve precise boundary detection in subsurface 

geological data. This method addresses the challenge of polynomial degree and thickness 

dependency, providing a dual-layered understanding of subsurface characteristics. Synthetic 

tests show the algorithm's proficiency in delineating boundaries under diverse noise conditions 

up to 7% contamination. Application to real-world data from Hungarian geothermal 
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explorations demonstrates the approach's practical utility, enhancing the reliability of 

subsurface analysis and resource evaluation. A novel approach is introduced for interpreting 

well-logging data through the integration of robust clustering and interval inversion techniques, 

leveraging machine learning to improve the estimation of subsurface properties. This 

automated method identifies the number of sub-intervals and dynamically adjusts polynomial 

degrees to enhance the fit between calculated and observed data. A sensitivity study highlights 

the importance of parameters like cementation exponent and tortuosity, influencing the 

algorithm's application in synthetic models and field datasets from an Egyptian gas reservoir. 

The approach successfully delineates distinct geological intervals, enhancing the accuracy of 

petrophysical predictions and demonstrating improved convergence stability. 
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