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1- Introduction 
1.1. Background 
The complex characteristics of the ground's soil layers are fundamental to the safety and success 
of many geotechnical engineering projects (Das, 2017). To do this, precise measurements of the 
properties of the soil that govern the behavior of the ground beneath our feet are crucial 
(Ameratunga, 2016). In the field of geotechnical practice, soil permeability—which is commonly 
evaluated as hydraulic conductivity—and strength characteristics are key components that have a 
major influence on the stability and operation of structures (Han, 2020).  

Critical to many engineering applications, hydraulic conductivity is especially important for 
hydrogeology, geotechnical engineering, and groundwater management. Engineers need to 
understand hydraulic conductivity in order to evaluate the flow of water through soil, which is 
necessary for managing groundwater resources, building efficient drainage systems, and assessing 
the possibility of pollutant transfer (Gao, 2024). For instance, accurate measurement of hydraulic 
conductivity aids in assessing the viability and effectiveness of different remediation methods, 
such as groundwater extraction and treatment, in groundwater remediation projects. Hydraulic 
conductivity is also useful in irrigation management for streamlining water distribution networks 
and guaranteeing correct irrigation of crops while reducing water waste (Gupta, 2024). 

Apart from that, a key soil characteristic that controls the safety and stability of civil engineering 
structures, such as retaining walls, slopes, and foundations, is shear strength (Hu, 2020). Shear 
strength is a crucial factor in the design of geotechnical engineering since it indicates the soil's 
resistance to deformation and failure under applied loads (Vanapalli, 2009). For example, in 
foundation engineering, understanding the parameters of shear strength is crucial to ascertaining 
the soil's carrying capability, which in turn affects the design of both shallow and deep foundations. 
Similar to this, in slope stability analysis, shear strength knowledge aids engineers in determining 
whether naturally occurring and artificially constructed slopes are stable, reducing the possibility 
of landslides and other slope collapses that could jeopardize infrastructure and human life. 

1.2. Problem statement 
Several direct methods exist for measuring hydraulic conductivity and shear strength parameters 
of soil. For hydraulic conductivity, these include the constant head permeability test, falling head 
permeability test, packer test, slug test, and pumping test. Also, for shear strength, the methods 
include the direct shear test, triaxial compression test, vane shear test, and unconfined compression 
test. However, due to the significant dependence on in situ and laboratory testing techniques, 
conventional methods for measuring these parameters frequently prove to be laborious and 
resource-intensive (Hicher, 1996). The installation of monitoring wells for hydraulic conductivity 
testing and the gathering of undisturbed soil samples for shear strength testing are two common 
fieldwork requirements for these technologies (Craig, 2004). While laboratory and in-situ 
measurements provide high safety and accuracy, they can be time-consuming and resource-
intensive. Finding a way to estimate these parameters with an acceptable safety index and reduced 
time requirements would be advantageous, as it would help mitigate delays and lower project costs. 
Furthermore, it can be difficult to get representative samples due to the inherent regional 
heterogeneity in soil properties, which can result in inaccuracies in the measured data 
(Dołęgowska, 2016). Because of this, engineers frequently struggle to precisely describe the 
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behavior of soil and forecast how it will react to various loading scenarios. The challenges in 
obtaining accurate measurements are made more difficult by the dependence on sophisticated 
equipment and specialist knowledge. Accurate performance and interpretation of test findings are 
crucial for in situ methods like cone penetration test and borehole permeability test, which call for 
specialized equipment and experts with advanced training (Elhakim, 2016). Similar to this, in order 
to guarantee accurate results, laboratory tests for determining shear strength—such as direct shear 
tests and triaxial compression tests—require specific equipment and skilled personnel. The 
expense and complexity of testing are increased by the requirement for specialized tools and 
knowledge, which also restricts the methods' applicability in distant or resource-constrained places 
where these resources can be hard to come by or unavailable (Nam, 2011). Additionally, the time-
consuming nature of traditional testing methods poses significant challenges in project planning 
and execution. Delays in obtaining test results can impede decision-making processes, leading to 
uncertainties in design parameters and construction schedules. In fast-paced construction 
environments, where timely decisions are crucial to project success, the prolonged testing 
procedures associated with traditional methods can hinder progress and increase project risks 
(Viana da Fonseca, 2015). As a result, there is a growing demand for alternative approaches that 
offer faster, more cost-effective, and reliable solutions for estimating soil parameters, such as 
hydraulic conductivity and shear strength. 

It is noteworthy to mention that getting soil samples for lab testing might be especially difficult in 
some situations, such as historical sites or places with restricted access. Strict preservation 
guidelines are frequently in place for historical sites, limiting the amount of infrastructure and soil 
disturbance (Prieto-Taboada, 2014). In these situations, typical sample techniques cannot be 
practical, forcing engineers to use non-intrusive approaches to indirectly infer soil parameters, 
including geophysical surveys or remote sensing technology (Cozzolino, 2018). Although these 
techniques provide insightful information on subsurface conditions, they might not be as accurate 
or comprehensive as direct sampling and testing. Moreover, in the preliminary design phase of 
engineering projects, there is often a need for quick and reliable data to inform decision-making 
and design optimization. Laboratory testing methods, which involve sample collection, 
transportation, preparation, and analysis, can be time-consuming and may not align with the fast-
paced nature of preliminary design processes (Sharma, 2021). Engineers face the challenge of 
balancing the need for comprehensive soil characterization with the time constraints of project 
schedules. Consequently, there is a growing demand for innovative techniques that can rapidly 
estimate soil parameters with minimal time and resource requirements, allowing for more efficient 
and informed decision-making during the early stages of project development. 

1.3. Research aims and significance 
To address the limitations of conventional approaches for measuring soil parameters, several 
scientists and researchers have attempted to create new strategies that use easily obtainable soil 
properties for estimation. Grain size distribution is one such feature that is frequently easy to find 
in any engineering project. Grain size distribution is a key indicator of soil's hydraulic conductivity 
and shear strength, offering important details about the composition and structure of the material 
(Belkhatir, 2013). Because of this, scientists have looked into a number of methods for estimating 
these characteristics using information on grain size. 
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For estimating soil characteristics from grain size distribution, empirical approaches have been 
frequently used. Based on trends seen in empirical data, these methods create connections between 
hydraulic conductivity or shear strength and grain size measurements (Meskini-Vishkaee, 2018). 
Although empirical methods are straightforward and simple to apply, they might not be as robust 
and broadly applicable as models built on larger datasets. 

In addition to empirical approaches, researchers have employed statistical methods such as 
regression analysis to estimate soil parameters from grain size data. Regression models are 
developed by fitting mathematical equations to empirical data, allowing for the quantification of 
relationships between independent variables and dependent variables (Nemes, 2004). By analyzing 
large datasets of soil samples with known parameters, regression models can identify statistically 
significant correlations and derive predictive equations for parameter estimation. However, the 
accuracy of regression-based models depends heavily on the quality and representativeness of the 
training data, as well as the appropriateness of the chosen model structure (Klein, 1999). 

The introduction of artificial intelligence (AI) has transformed the estimation of soil parameters 
based on grain size distribution, providing sophisticated methodologies that meet the issues 
associated with older methods (Khalili-Maleki, 2022). Among the many AI techniques, artificial 
neural networks (ANNs) have received a lot of attention due to their capacity to manage the 
complex and nonlinear correlations that exist in soil data. ANNs are computational models based 
on the structure and function of the human brain, with interconnected nodes (neurons) structured 
in layers (Citakoglu, 2017). These networks excel in extracting patterns and correlations from huge 
datasets, making them ideal for predicting soil characteristics based on grain size distributions. 
One of the primary advantages of utilizing ANNs for soil parameter estimation is their ability to 
capture complex correlations between input variables and output parameters. This versatility 
allows ANNs to account for complex soil behavior and environmental influences that simpler 
models may not fully capture. Moreover, ANNs demonstrate resilience and flexibility in the face 
of noisy or imperfect datasets, which are frequent problems in geotechnical engineering research 
(Park, 2011). ANNs are able to produce reliable predictions even in the face of uncertainty by 
adapting over time and learning from past events, which allows them to overcome data constraints 
(Prieto, 2016). Additionally, ANNs are scalable, which makes it possible to include a variety of 
input factors and ambient variables in the modeling process. This adaptability improves soil 
parameter estimations' accuracy and comprehensiveness, enabling researchers and engineers to 
make well-informed decisions in a range of geotechnical applications (Bolón-Canedo, 2011). It is 
noteworthy to mention that the faster estimates provided by ANNs also enhance risk management 
by allowing for earlier identification of potential issues, enabling more proactive and effective 
mitigation strategies, and ultimately supporting project safety and success. 

In this study, I attempted to estimate the hydraulic conductivity of soil and shear strength 
parameters based on grain size distribution using artificial neural networks. Recognizing the 
challenges associated with traditional methods and the potential of ANNs to overcome them, a 
comprehensive dataset comprising laboratory-tested soil samples was collected. Subsequently, the 
collected data were utilized to train and validate ANN models for predicting hydraulic conductivity 
and shear strength parameters. Also, the performance of the ANN models was compared to other 
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indirect methods. By evaluating the accuracy and reliability of ANN-based predictions compared 
to conventional methods, this study aims to highlight the effectiveness of artificial neural networks 
in soil parameter estimation. Additionally, it seeks to demonstrate how ANNs can advance 
geotechnical engineering practices by enhancing safety management and reducing risk levels.
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2- Literature Review 
2.1. Geotechnical and hydrogeological concepts 
This section emphasizes the fundamental geotechnical and hydrogeological concepts needed 
for this study.  

2.1.1. Hydraulic conductivity 
The concept that controls the flow of fluid in a particular substance is stated in Darcy's law. 
Darcy's law equation explains how a liquid can pass through any type of porous material, such 
as a rock. The flow between two points is exactly proportional to the pressure differential, 
distance, and connectivity of flow within rocks between the points, which forms the basis of the 
law. Permeability is the measurement of interconnectivity. Equation 1, Darcy's law, describes 
the flow of a fluid in a porous material (Darcy, 1856). 

𝑄𝑄 = −𝐾𝐾.𝐴𝐴. 𝑑𝑑ℎ
𝑑𝑑𝑑𝑑

       (Eq.1) 
 
Wherein: Q is the rate of water flow [m3/s], K is the hydraulic conductivity [m/s], A is cross-
sectional area perpendicular the flow direction [m2], and dh/dl indicates a hydraulic gradient [-
]. 

The first and most important parameter chosen for investigation in this study is the hydraulic 
conductivity. The ease with which water can permeate rock or soil is known as hydraulic 
conductivity. Hydraulic conductivity is also called coefficient of permeability in geotechnical 
terms which is reduced sometimes to permeability. Water flow across soils can be best 
understood by measuring hydraulic conductivity. A precise determination of hydraulic 
conductivity is necessary for numerous applications in either steady-state or transient scenarios. 
For example, evaluating the spatial and temporal variations in groundwater in response to 
changes in stream elevation is crucial for groundwater storage and recharge (Kamp, 2001). Also, 
in order to better understand slope stability, slopes are being evaluated more often in response 
to rain events or shifting water levels (Dou, 2014). In addition, hydraulic conductivity is 
necessary for the environmental analysis of the movement and removal of hazardous viruses or 
contaminants (Gupta, 2024). The porosity of soil, or the percentage of void space between the 
particles, is directly associated with its permeability. The soil's permeability and porosity 
increase with increasing particle size (Aimrun, 2004). As a result, soil that has a higher 
percentage of coarse particles is more permeable than soil that contains a higher percentage of 
tiny particles.  

The process of measuring hydraulic conductivity is sometimes complex, leading to its frequent 
estimation through various methods. These methods include grain size analysis techniques or 
experimental procedures, both in situ and in laboratory settings. Direct laboratory measurement 
involves tests like the constant head permeability and falling head permeability methods, each 
suited for different soil types. Constant head approach is recommended when there is a large 
amount of liquid discharge through the sample and a coarse granular soil, like sand. Equation 2 
is used to compute hydraulic conductivity via constant head method (European Committee for 
Standardization, 2007). 
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𝐾𝐾 =  𝑄𝑄.𝐿𝐿
𝐴𝐴.𝛥𝛥ℎ.𝛥𝛥𝛥𝛥       (Eq.2) 

 

Where: 

• K = Hydraulic conductivity (cm/s or m/s) 

• Q = Discharge flow rate (cm3/s or m3/s) 

• L = Length of the soil specimen (cm or m) 

• A = Cross-sectional area of the soil specimen (cm2 or m2) 

• Δh = Head loss (cm or m) 

• t = Time duration (s) 

The falling head permeability test is a common laboratory method used to determine the 
hydraulic conductivity of soils, particularly those with low to intermediate permeability, such as 
fine-grained soils including clays and silts. In this test, the flow of water through a soil sample 
is measured as the water level within a standpipe installed on top of the sample gradually 
decreases over time. By monitoring the rate of water flow and the change in water level, the 
hydraulic conductivity of the soil can be calculated using established formulas. This method 
provides valuable insights into the soil's ability to transmit water and is essential for various 
geotechnical and hydrogeological applications. Equation 3 is used for the calculation of 
hydraulic conductivity through falling head method (European Committee for Standardization, 
2007). 

K = α.L
A.t

l𝑛𝑛(h1
h2

)      (Eq.3) 

Where: 

• K = Hydraulic conductivity (cm/s or m/s) 

• L = Length of the soil specimen (cm or m) 

• α = Cross-sectional area of standpipe 

• h1 = Initial head (cm or m) 

• h2 = Final head (cm or m) 

• A = Cross-sectional area of the soil specimen (cm2 or m2) 

• t = Time duration (s) 

 Additionally, indirect methods also are available to estimate hydraulic conductivity.  For 
instance, there is the possibility to calculate hydraulic conductivity through consolidation tests.  
These tests are used, where factors like consolidation coefficient (Cv) are crucial in predicting 
settlement time and soil strength. The e-log t curve method proposed by Casagrande and Fadum 
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is commonly employed to determine Cv as shown in equation 4, which in turn can be used to 
calculate the permeability coefficient numerically at each stage of the consolidation test ( Zeng, 
2020). 

K =  𝑐𝑐𝑣𝑣 . γ𝑤𝑤 . mv        (Eq.4) 
where cv is the consolidation coefficient (m2/s), mv is the coefficient of compressibility (kPa−1), 
γw is the unit weight of water (kN/m3). 
Following laboratory methods, in situ tests like the pumping test and slug test are essential for 
measuring hydraulic conductivity directly in the field. These methods capture the natural soil 
conditions, accounting for heterogeneity and anisotropy that lab tests might miss. The pumping 
test, which involves water extraction from a well and monitoring surrounding water levels, is 
useful for large-scale aquifers. In contrast, the slug test provides a quicker, simpler approach by 
observing water level recovery after a sudden water addition or removal in a well, making it 
ideal for coarse-grained soils and fractured rock. Other in situ methods include the packer test 
(Lugeon test), which is effective in fractured rock environments, and permeameter tests that 
measure permeability in situ, particularly for sands and gravels. The Cone Penetration Test 
(CPT) with Piezocone offers high-resolution profiles of hydraulic conductivity by analyzing 
pore water pressure dissipation during soil penetration, though it requires expert interpretation. 
In situ infiltration tests, such as the double-ring infiltrometer, assess near-surface soils' ability to 
transmit water, although these are generally limited to surface layers. 

Despite their advantages, in situ tests for hydraulic conductivity come with several limitations 
that can impact their applicability and accuracy. One significant challenge is the need for 
specialized equipment and highly trained personnel, which can drive up costs and make these 
methods less accessible, particularly in remote or resource-constrained locations. The logistics 
of setting up and maintaining test sites can also be complex and time-consuming, often requiring 
careful site preparation and monitoring over extended periods. Additionally, in situ tests are 
sensitive to external factors, such as variations in groundwater levels, the influence of nearby 
wells, and boundary conditions that can introduce uncertainties into the results. For example, in 
pumping tests, the presence of impermeable boundaries or other nearby pumping activities can 
skew the observed drawdown, leading to inaccurate estimates of hydraulic conductivity. 
Similarly, slug tests, while quick and convenient, may not provide sufficiently detailed data, 
particularly in heterogeneous or low-permeability soils, where the recovery response might be 
too slow or complex to interpret accurately. Furthermore, environmental factors such as 
temperature fluctuations, seasonal variations, and soil moisture content can affect the test 
results, making it difficult to obtain consistent and reliable data. In some cases, the physical 
disturbance caused by the test itself, such as borehole drilling or water injection, can alter the 
natural soil structure and properties, leading to misleading results. 

So, developing a model that can be continuously updated and refined with new data would 
significantly enhance the ability to obtain critical design parameters for geotechnical projects. 
Such a dynamic model would drastically reduce the time required to acquire accurate soil 
parameters, enabling faster decision-making and project progression. As the model learns from 
an increasing amount of data, its predictions would become more accurate, thereby reducing the 
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uncertainties typically associated with traditional methods. Moreover, by minimizing the need 
for extensive field testing and reducing reliance on costly and time-consuming laboratory tests, 
this approach would lower the overall costs of geotechnical investigations. Ultimately, a model 
that can be continuously reconstructed with new data would streamline the process of obtaining 
design data, leading to safer, more economical, and faster project execution. 

 
2.1.2. Soil classification 
A complex natural material, soil is made up of varied sized and shaped mineral and organic 
particles. A variety of techniques, such as grain size analysis, can be used to ascertain the 
content, structure, and texture of soil in order to establish its physical and chemical qualities. 
The distribution of particle sizes can have a big impact on how soils behave in certain 
applications (Santamarina, 2004). Mineral particles make up soils, and how these particles are 
arranged and sized greatly affects the soil's characteristics. A single soil sample can contain 
particles that vary in size, from very coarse, exceeding 100 millimeters, to very small, less than 
2 microns (Gee, 2002). The permeability, porosity, compressibility, shear strength, and settling 
velocity of soil are among the other qualities that are greatly influenced by the grain size 
distribution of soil particles. Soils comprising larger particles exhibit greater strength attributed 
to heightened inter-particle friction, whereas finer soils demonstrate increased sensitivity to 
variations in water content (Eteraf , 2023). Understanding the particle size distribution of a soil 
enables us to predict its geotechnical and hydrogeological properties to make more informed 
decisions regarding its utilization. As depicted in figure 1, Soils can be classified by reference 
to particle size as follows (Opsal, 2018). 

• Clay – less than 0.002mm 
• Silt – 0.002mm to 0.063mm 
• Sand – 0.063mm to 2mm 
• Gravel –2mm to 63mm 
• Cobbles - 63mm to 200mm 
• Boulders – greater than 200mm 

 
Figure 1. Particle Size Distribution Curve (Source: www.elementaryengineeringlibrary.com) 
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Soil texture was considered the most significant soil attribute in establishing hydraulic 
parameters in the majority of earlier research. But one thing that has been considered recently 
more than it used to be, is the disregard for gravel particles. Many building projects employ 
gravel soils as their basis, particularly fine gravel. Consequently, it is impossible to overlook the 
significance of gravel influence in defining soil qualities (Lu, 2021). 

One of the most common methods for characterizing soils is through their textural 
characteristics. It is common practice to describe the fractional amount of different grain size 
particles in a soil using the relative fractions of sand, silt, and clay content. A texture-based 
classification technique is used to group soils into classes based on their soil texture (Twarakavi, 
2010). Probably the most well-known is the soil texture classification scheme recommended by 
the USDA (Abdelfattah, 2007). The USDA has classified soil textures into 12 categories. A 
helpful tool for categorizing soil texture is the ternary diagram. Figure 2 depicts a ternary 
diagram of the soil texture triangle using soil texture classifications based on the USDA. The 
ternary diagram illustrates the different types of soil texture in relation to the percentages of 
sand, silt, and clay (Barman, 2020). 

 
Figure 2. Soil Texture Triangle (Source: Soil Survey Division Staff, 1993) 
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Another ternary diagram that was presented in 1954 is based on the ratios of silt, sand, and 
particles the size of clay (Shepard, 1954). Ternary diagrams, like the one created by Shepard, 
are useful tools for illustrating a three-component system whose total sum equals 100 percent. 
According to Figure 3, the components stand for the proportions of clay, silt, and sand in a 
sediment sample. Each sediment sample's particle size distribution determines whether it is 
plotted as a point inside the diagram or along its edges. In order to characterize sediment 
samples, Shepard divided the ternary diagram into ten pieces. According to Shepard's standards, 
‘Silty Sands’ and ‘Sandy Silts" have less than 20% clay-sized particles, whereas ‘Clays’ have at 
least 75% clay-sized particles. ‘Sand-Silt-Clays’ has a minimum of 20% of each constituent. For 
every one of the ten categories, there are detailed descriptions available in the metadata linked 
to the dataset that was used to create the sediment distribution map. 

 
Figure 3. Shepard’s Classification System (Source: Shepard, 1954). 

The USDA and Shepard soil classification methods, both widely used in soil analysis, each offer 
distinct approaches but also share common limitations. The USDA method can oversimplify 
soil textures and fail to account for variations in soil properties at different depths or locations, 
and it does not consider gravel content. The Shepard method, which also uses a triangular 
diagram but includes additional categories for specific soil textures, provides a more detailed 
classification. Yet, its complexity and the increased number of categories can make it less 
intuitive and more difficult to apply in field settings. Overall, while both methods offer valuable 
insights into soil texture, their limitations in addressing engineering parameters and their 
complexity in practical applications can restrict their suitability for detailed engineering 
purposes.  

Additional methods that incorporate soil behavior and engineering properties is the Eurocode 7 
method. The Eurocode 7 standard method for soil classification, outlined in EN 1997-2:2007, 
provides a comprehensive framework for assessing soil properties relevant to geotechnical 
engineering. According to figure 4, this method integrates soil texture classification with 
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engineering properties, incorporating not only the fractions of sand, silt, and clay but also 
explicitly accounting for the gravel fraction.  

 
Figure 4.  Triangular Diagram of Withdrawn Standard (Source: EN ISO 14688-2:2004) 

 

2.1.3. Shear strength parameters 
Understanding the shear strength of soil is paramount in geotechnical engineering, as it directly 
influences the stability and performance of various structures and infrastructures (Vanapalli, 
2009). Shear strength represents the soil's resistance to internal friction and cohesion, both 
critical parameters in determining its stability under different loading conditions. Cohesion 
refers to the soil's ability to resist shear stress even in the absence of normal stress, while the 
internal friction angle characterizes the soil's resistance to shear deformation under applied 
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normal stress. These parameters are crucial in assessing the bearing capacity of foundations, the 
stability of slopes and embankments, and the design of retaining structures (Terzaghi, 1943). 

Grain size distribution plays a significant role in determining soil shear strength. Finer-grained 
soils tend to exhibit higher cohesion due to increased surface area and particle bonding, while 
coarser-grained soils typically have higher internal friction angles due to interlocking particle 
arrangements. Therefore, understanding the grain size distribution of soil is essential in 
predicting its shear strength behavior accurately (Saravanan, 2020). 

The Mohr-Coulomb failure criterion, as shown in figure 5, is a fundamental concept in 
geotechnical engineering used to describe the failure behavior of soils and rocks under shear 
stress. It defines the conditions under which a material will fail, based on the relationship 
between shear stress and normal stress. According to the Mohr-Coulomb theory, failure occurs 
when the shear stress on a plane reaches a critical value determined by the cohesion and internal 
friction angle of soil. The criterion is expressed by the equation shown in picture. 

 

 
Figure 5. The Mohr-Coulomb Failure Criteria and Mohr's Circle (Source: www. khaakpey.ir). 

where 𝜏𝜏 is the shear stress, c is the cohesion, 𝜎𝜎 is the normal stress and ϕ is the angle of internal 
friction. This linear relationship is graphically represented by a failure envelope on a Mohr's 
circle diagram, which plots the shear and normal stresses. The Mohr-Coulomb failure envelope 
is a straight line that intersects the shear stress axis at the cohesion value and has a slope equal 
to the tangent of the internal friction angle. 

Two main laboratory tests are commonly used to measure soil shear strength parameters: the 
direct shear test and the triaxial test. In the direct shear test, a soil sample is subjected to shear 
stress along a predefined plane, allowing for the measurement of both cohesion and the internal 
friction angle. Equation 5 is used to calculate shear strength in the direct shear test (European 
Committee for Standardization, 2007). 
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𝜏𝜏 =  𝐹𝐹
𝐴𝐴
       (Eq.5) 

 

where: 

τ is the shear stress (kPa) 

F is the force required to shear the soil sample (N) 

A is the cross-sectional area of the soil sample (mm²) 

In the triaxial test, the soil sample is confined radially and axially while subjected to axial stress, 
allowing for more realistic simulation of field conditions. The triaxial test provides additional 
insights into the stress-strain behavior of soil and is particularly useful for cohesive soils. The 
equation6 and 7 are used in the triaxial test to calculate cohesion (c) and the internal friction 
angle (ϕ) (European Committee for Standardization, 2007). 

 

c =  
σ′3.  tan(

ϕ

2
)

3
      (Eq.6) 

 

tanϕ = σ′1−σ′3   
2⋅σ′3

      (Eq.7) 

where: 

𝜎𝜎′1 is the major principal stress (kPa) 

𝜎𝜎′3 is the minor principal stress (kPa) 

Numerous studies have been conducted to investigate the shear strength parameters of soil and 
the factors influencing them. Researchers have explored various aspects such as grain size 
distribution, mineral composition, soil structure, and environmental conditions to better 
understand soil behavior under different loading conditions. However, despite the wealth of 
research in this field, there remains a gap in studies focusing on estimating shear strength 
parameters quickly and efficiently, especially in situations where experiments are time-
consuming or when rapid data is needed for preliminary design purposes. Thus, in recent years, 
researchers have made attempts to estimate this behavior of soil based on its basic characteristics 
by using AI approaches such as artificial neural networks which will be discussed in next 
sections (Jasim, 2019). 

 

2.2.  Empirical correlations for soil parameter estimations 
In many engineering fields, such as hydrogeology, geotechnical, agricultural, and environmental 
engineering, it is essential to understand and estimate soil properties. To effectively handle a 



14 
 

variety of issues, including evaluating groundwater flow, controlling pollutant transport, 
guaranteeing soil stability, and streamlining irrigation techniques, it is imperative to have a 
precise understanding of soil parameters. Nonetheless, there are a number of difficulties in using 
in situ and laboratory procedures to measure soil characteristics using traditional methods. 
Installing monitoring wells and conducting significant fieldwork are necessary for in situ 
measurements, which can be expensive and time-consuming (Kuang, 2012). Besides, the long 
procedure of in situ measurements becomes unfeasible when fast data is required for early 
design or cost estimation. In the meantime, variations in soil moisture content frequently impede 
laboratory investigations and make it difficult to collect representative soil samples, particularly 
for heterogeneous soil formations. This results in extended testing times (Meyer, 2019). These 
difficulties highlight the need for creating substitute approaches, such as empirical correlations, 
which provide a quicker and more economical way to estimate soil parameters using easily 
accessible soil variables. These creative ideas allow academics and engineers to handle 
important engineering difficulties more effectively and make well-informed judgments by 
getting beyond the constraints of conventional methodologies (Brinkgreve, 2010). Hence, 
scientists have created empirical correlations that use information on grain size distribution to 
estimate hydraulic conductivity. Correlations provide a practical and effective substitute for 
direct measurements by utilizing the connection between hydraulic conductivity and soil particle 
size. A plethora of empirical formulas, each customized to certain soil types and conditions, 
have been offered. So, some formulas are commonly used for coarse-grained soils, while the 
others are suitable for fine-grained soils (Eteraf, 2020).  In the following, some empirical 
formulae for estimating hydraulic conductivity based on grain size distribution will be 
discussed, categorized into coarse and fine grain analyses. 

 For coarse-grained soils, empirical correlations such as the Hazen formula, Zamarin equation, 
United States Bureau of Reclamation (USBR) method, and Chapuis equation are commonly 
utilized (Říha, 2018). The Hazen formula, one of the earliest empirical correlations, relates 
hydraulic conductivity to the effective size of soil particles, providing a straightforward 
estimation approach (Hazen, 1911). The Zamarin equation considers both effective size and 
uniformity coefficient to predict hydraulic conductivity, offering enhanced accuracy for coarse-
grained soils (Singh, 2023). The USBR method incorporates particle size distribution 
parameters to estimate hydraulic conductivity, particularly suited for soils with diverse grain 
sizes (USBR, 1990). Additionally, the Chapuis equation integrates grain size distribution and 
porosity to predict hydraulic conductivity, offering a comprehensive approach for coarse-
grained soil analysis (Chapuis, 2004). 

For fine-grained soils, empirical correlations such as the Seelheim equation, Sivappulaiah 
method, Carrier equation, and Beckman model are commonly employed. The Seelheim equation 
utilizes soil particle size parameters to estimate hydraulic conductivity, focusing on the unique 
characteristics of fine-grained soils (Doury, 2010). The Sivappulaiah method considers both 
particle size distribution and void ratio to predict hydraulic conductivity, offering improved 
accuracy for fine-grained soils with varying degrees of compaction (Sivapullaiah, 1985). The 
Carrier equation incorporates soil particle size distribution and specific surface area to estimate 
hydraulic conductivity, providing a comprehensive approach for analyzing fine-grained soils 
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(Carrier, 2003). Additionally, the Beckman model utilizes soil grain size parameters to predict 
hydraulic conductivity, particularly suited for cohesive soils with complex particle arrangements 
(Bilardi, 2020). It's noteworthy that all of these empirical formulae are fully or partially reliant 
on grain size distribution, highlighting its crucial role in estimating hydraulic conductivity 
across a spectrum of soil types and conditions in geotechnical engineering applications. 

As technology has developed, there has been a noticeable change from using traditional 
empirical and analytical methodologies for estimating soil properties to using artificial 
intelligence (AI) methods. Artificial intelligence (AI) techniques, such as machine learning 
algorithms and neural networks, provide clear benefits over traditional methods by utilizing 
extensive datasets and recognizing complex patterns in soil parameters (Singh, 2020). More 
precise and trustworthy estimates are produced as a result of these AI models' ability to represent 
intricate nonlinear interactions between input variables and soil characteristics. Furthermore, AI 
techniques can learn from fresh data continuously, improving their predicting power over time. 
As a result, in order to address geotechnical difficulties, engineers and researchers are 
increasingly turning to AI-driven solutions, which provide unmatched efficiency and precision 
in calculating soil characteristics for a variety of engineering applications (Onyelowe, 2023). 

2.3.  Regression analysis 
Regression analysis has been used extensively in soil research, in particular to estimate soil 
properties such as hydraulic conductivity (Yoon, 2015). The use of regression methods in this 
context extends back several decades and demonstrates a progression from simple linear models 
to complicated machine learning algorithms, reflecting advances in statistical approaches and 
processing capacity.  

The use of regression analysis in soil science began with simple linear regression models that 
attempted to demonstrate direct correlations between soil characteristics and grain size 
distribution. A linear model was first introduced to predict soil moisture characteristics based on 
particle-size distribution and bulk density data, providing a solid understanding of how soil 
texture influences hydraulic properties (Arya, 1981). Similarly, Similarly, linear regression 
models were developed to estimate soil water retention properties based on particle size 
distribution, organic matter percentage, and bulk density (Gupta, 1979). These early attempts 
helped to demonstrate the power of regression analysis in quantifying soil hydraulic 
characteristics using easily available soil texture data. In order to address particular issues with 
soil property estimate, recent works have further developed linear regression approaches. For a 
more accurate assessment of soil hydraulic characteristics, linear regression was employed, 
demonstrating the importance of incorporating soil structure and organic matter content into 
regression models to improve the precision of hydraulic conductivity forecasts (Vereecken, 
2010). 

As it became clear that linear regression could not capture the complex, researchers began to 
investigate non-linear regression models. For instance, a nonlinear regression approach was 
used to model hydraulic conductivity, recognizing the curvilinear link between grain size 
distribution and soil hydraulic behavior. Nonlinear models provided more accurate predictions 
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by incorporating logarithmic and exponential functions, which better described the complex 
interactions between soil particles and water flow (Ahuja, 1984). 

Multiple regression techniques were established to improve the predictive ability of regression 
models by allowing several independent variables to be considered simultaneously. This method 
allows for the inclusion of additional soil properties, such as bulk density, organic matter 
content, and porosity, in addition to grain size distribution. A comprehensive multiple regression 
model was used to improve estimates of hydraulic conductivity by including several soil factors. 
By incorporating a broader range of influencing factors, multiple regression models provided a 
more holistic and accurate representation of soil hydraulic parameters (Saxton, 1986). 

The concept of pedotransfer functions (PTFs) represents a significant development in the use of 
regression models in soil research. PTFs employ easily available soil data to forecast hydraulic 
parameters, frequently using regression techniques (Zhang, 2019). Wösten was among the 
pioneers in this field, using texture and other soil parameters to forecast unsaturated soil 
hydraulic functions. Their findings demonstrated the effectiveness of PTFs in making hydraulic 
property calculations more accessible and practical for large-scale applications (Wösten, 1988). 
This approach was expanded by predicting the soil moisture retention characteristic from 
texture, bulk density, and carbon content (Vereecken, 1989). 

A notable trend in this century has been the incorporation of machine learning methodologies 
alongside conventional PTFs to improve their precision and relevance. Advanced techniques 
like support vector regression (SVR) and random forest regression have been used to predict the 
intricate interactions between grain size distribution and hydraulic conductivity. Machine 
learning-based regression models have been shown to outperform traditional regression models. 
Studies demonstrated that contemporary algorithms utilize computing power to identify patterns 
and relationships that traditional techniques may miss. For instance, the use of neural network-
based approaches, such as the neuro-m model for fitting parametric pedotransfer functions, has 
significantly enhanced prediction accuracy. Although these methods are grounded in the 
fundamentals of regression, they offer a range of advantages and complexities that extend 
beyond traditional techniques (Schaap, 2000; Minasny, 2002). 

2.4.  Artificial Neural Network in Geotechnical Engineering 
The exceptional problem-solving abilities and high performance of the human brain have 
inspired hardware and software architects to aspire to simulate its capabilities (Park, 2011). For 
the past few decades, computers have enabled the development of computational algorithms 
aimed at mimicking human brain function. This effort has spurred extensive research by 
computer scientists, engineers, and mathematicians, resulting in significant advancements in the 
field of artificial intelligence (AI) (Dong, 2020).  A key branch of AI is computational 
intelligence, which includes “artificial neural networks” (ANNs) (Hanne, 2017). In this field, 
numerous mathematical and software models have been developed to emulate the human brain. 
These models are employed to tackle a wide range of scientific, engineering, and practical 
problems across various domains (Zheng, 2023). The use of intelligent systems, particularly 
ANNs, has become so widespread that they are considered fundamental mathematical tools. 



17 
 

They are commonly used in academic and professional settings for tasks requiring analysis, 
decision-making, estimation, prediction, design, and construction (Gohary, 2017).  

The development of artificial intelligence (AI) and human cognition is reflected in the long and 
complex history of artificial neural networks (ANNs). Over the course of seven decades, they 
have undergone periods of intensive research, notable advancements, and sporadic setbacks 
(Capra, 2020). The 1940s are when the idea for ANNs was first developed. A simplified 
computational model of the neuron was introduced in 1943 by (Pitts, 1943), who proposed that 
networks of these neurons could theoretically execute any calculation that a Turing machine 
could. The McCulloch-Pitts neuron model served as the inspiration for the first artificial neural 
network. In 1949, psychologist Donald Hebb proposed a theory of learning that became a 
cornerstone for neural network learning algorithms. Hebb's rule, often summarized as “cells that 
fire together wire together,” suggested that the synaptic strength between neurons increases 
when they are activated simultaneously (Alghafri, 2021). This idea of synaptic plasticity 
influenced later learning algorithms in neural networks. The 1950s and 1960s were 
characterized by optimism and the development of early neural network models. The perceptron, 
an early type of artificial neural network capable of learning and recognizing patterns, was 
introduced by Rosenblatt (1958). Inspired by biological processes in the human brain, the 
perceptron aimed to mimic the learning abilities of the human mind. Rosenblatt's work attracted 
significant attention and funding, notably from the U.S. Navy, which recognized its potential 
for military applications. The perceptron consisted of a single layer of artificial neurons, called 
“units,” which processed inputs and produced an output. The perceptron learning rule adjusted 
the weights of the inputs based on the error between the predicted and actual outputs. Despite 
its simplicity, the perceptron could solve only linearly separable problems, which limited its 
practical applications (Glorot, 2010). Due to unfulfilled expectations, the first “AI winter,” 
marked by a drop in funding and interest in AI research, started in the 1970s. Research on 
perceptron by (Minsky, 1969), highlighted the drawbacks of single-layer perceptron and caused 
this downturn. They showed that the XOR problem, a simple but non-linearly separable 
problem, was beyond the capabilities of perceptron. This discovery led to a loss of faith in neural 
networks and a notable decline in the amount of research being done in the area. Neural 
networks noticed an increase in attention in the 1980s, partly because of the invention of the 
backpropagation algorithm. Backpropagation offered a way to train “deep” neural networks, or 
multi-layer neural networks. The networks were able to learn intricate, non-linear patterns which 
made it possible to modify the weights in hidden layers. Research demonstrated the practical 
viability of backpropagation and sparked renewed enthusiasm and research in neural networks 
(Rumelhart, 1986). The development of techniques for training deep networks expanded 
possibilities for applications such as pattern recognition, speech processing, and image analysis. 

With the development of backpropagation and increased computational resources, ANNs 
became practical for engineering applications during the 1990s. These networks began to excel 
in tasks such as pattern recognition, signal processing, and control systems (LeCun, 1998). 
Engineers leveraged ANNs to optimize design processes, improve fault detection systems, and 
enhance predictive maintenance. The ability of ANNs to learn from data and adapt to new 
information without explicit programming opened new frontiers in automation and artificial 
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intelligence, embedding themselves as a crucial tool in the engineer's toolkit. This evolution not 
only improved efficiency and innovation within engineering disciplines but also spurred further 
research and development, leading to the sophisticated deep learning models that drive modern 
technological advancements (Abioye, 2021). 

Despite the fact that artificial neural networks (ANNs) were introduced decades ago, they have 
become indispensable tools in estimating soil parameters recently (Pham, 2020). This is due to 
a criticism that has existed in the last ten years that empirical methods are limited to their 
respective domains because they were developed under specific boundary conditions and may 
result in random errors in the hydraulic conductivity values (Chandel, 2022). The capacity of 
this method to capture intricate relationships within datasets makes it more dependable. With 
their networked nodes (neurons) arranged in layers, artificial neural networks (ANNs) imitate 
the composition and operations of the human brain by processing information through 
mathematical calculations. Artificial neural networks (ANNs) have been widely used in the field 
of geotechnical engineering to forecast several soil properties, such as compressibility, shear 
strength, and hydraulic conductivity. These networks are especially well-suited to capture 
complex patterns and correlations associated with soil attributes because they are adept at 
managing nonlinear and multidimensional facts (Bahmed, 2019). In addition, ANNs 
demonstrate resilience while processing noisy or sparse information, which allows them to 
generate trustworthy estimates even when uncertainties are present. ANNs are able to adjust 
their predicting powers over time by learning from prior experiences and utilizing big datasets 
with a variety of soil qualities and environmental circumstances (Jiadong, 2024). Furthermore, 
the adaptability of ANNs permits the incorporation of diverse input parameters, from 
fundamental soil characteristics to intricate environmental elements, consequently augmenting 
the precision and comprehensiveness of soil parameter estimations (Jalal, 2021).  

Considering the hydraulic conductivity parameter, artificial neural networks (ANN), fuzzy 
logic, and adaptive-neuro fuzzy inference system (ANFIS) were utilized to predict hydraulic 
conductivity (K) values of soil samples using measurable parameters like specific gravity, 
porosity, and percentages of gravel, sand, and silt. Statistical analysis demonstrated that the 
ANFIS method exhibited superior performance compared to ANN and fuzzy logic (More, 
2018). The effectiveness of using artificial neural network (ANN) methods to calculate the 
hydraulic conductivity (K) of ninety-five samples of coarse-porous media was investigated by 
(Akbulut, 2005). The K values obtained by ANN, multiple linear regression (MLR), and two 
empirical approaches were compared. The results showed that ANN outperformed the other 
methods in terms of prediction when it came to estimating K values. Three data-driven 
techniques—multiple linear regression (MLR), adaptive-neuro fuzzy inference system 
(ANFIS), and artificial neural network (ANN)—were compared to predict hydraulic 
conductivity (K) in porous media. The study revealed that the ANFIS model outperformed both 
MLR and ANN in terms of predictive accuracy (Arshad, 2013). In a separate study, neural 
computing models were devised to forecast the hydraulic conductivity (K) of coarser porous 
media, incorporating both artificial neural networks (ANN) and adaptive-neuro fuzzy inference 
system (ANFIS). By including various grain sizes (d10, d30, and d60) in the model development 
process, a more robust correlation with K was achieved. The ANFIS model notably 
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demonstrated superior reliability compared to the ANN model in predicting K values (Yilmaz, 
2012). Another study assessed the effectiveness of artificial neural network (ANN), adaptive-
neuro fuzzy inference system (ANFIS), and support vector machine (SVM) techniques in 
estimating the hydraulic conductivity (K) values of porous media. The study concluded that both 
ANN and ANFIS models yielded satisfactory results in predicting K values (More, 2022). In 
another study, the accuracy of multiple linear regression (MLR) and feed-forward neural 
network (FFNN) in calculating the hydraulic conductivity of porous media was compared. 
Based on six input variables for model building, the investigation demonstrated that FFNN 
outperformed MLR in terms of predictive power (Williams, 2021). Despite the remarkable 
prediction capabilities of supervised algorithms, limitations in their application persist.  

Regarding other soil parameters, there are a variety of studies which used artificial neural 
networks for estimation. Artificial neural networks (ANN) were employed to forecast the 
settlement of shallow foundations on coarse-grained soils. A dataset of 79 samples—69 for 
training and 10 for testing—was used to develop the ANN model, which incorporated five input 
parameters: applied net pressure, average standard penetration test (SPT) values, foundation 
width, foundation shape, and foundation depth (Sivakugan, 1998). An artificial neural network 
(ANN) model was used to study the relationship between relative density and average effective 
stress (σ') in typically loaded and over-consolidated sands. The model aimed to estimate Cone 
Penetration Test (CPT) and cone resistance (qc) as output variables. For training and testing, the 
study utilized 93 and 74 data points, respectively. The nonlinear connection demonstrated a high 
correlation coefficient of 0.91 for testing data and 0.97 for training data (Goh, 1995). Neural 
networks were investigated to anticipate displacement in deep foundation pit retaining systems. 
The research demonstrated that employing soft computing techniques, such as neural networks, 
proved to be a valuable and reliable tool for predicting deformation in foundation pits (Wei, 
2023). In another study, shallow settlement near a foundation pit excavation was computed using 
artificial neural networks (ANNs) in an AI prediction model (Chen, R. P., 2019). The majority 
of real-world uses demonstrate that it is possible to estimate slope stability analysis using ANN. 
In this context, a few studies looked into the use of ANNs in slope stability (Lu, 2003). for 
instance, used ANNs and Grey systems to forecast slope stability. Liquefaction resistance, 
considered a crucial component of geotechnical engineering, was modeled using artificial neural 
networks (ANNs) (Abbaszadeh, 2016). ANNs were also used by a number of researchers to 
enhance the site characterization estimate. For instance, a fuzzy set-based model was created to 
infer the subsurface profile and describe data from drilling operations (Huang, 1997). 

While artificial neural networks (ANNs) have garnered significant attention and application in 
geotechnical engineering for estimation and modeling purposes, there remains a considerable 
gap in research when it comes to utilizing soil particles, such as silt, clay, sand, and gravel, as 
input data to estimate crucial soil parameters like hydraulic conductivity. In practical scenarios, 
the available input often boils down to the soil component, or grain size distribution, making it 
imperative to develop models that rely solely on this parameter. Consequently, in this study, the 
focus was precisely on estimating hydraulic conductivity and shear strength parameters 
exclusively through grain size distribution. The aim was to overcome the practical constraints 
encountered in real-world applications, where complete soil component data may not always be 
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easily accessible, by highlighting this technique. This study emphasizes how crucial it is to 
create reliable and useful models that make use of easily available data in order to improve the 
precision and application of soil parameter predictions in geotechnical engineering settings.   

In this chapter, fundamental geotechnical and hydrogeological concepts were reviewed, 
establishing the basis for the estimation of hydraulic conductivity and shear strength parameters. 
Empirical correlations used for parameter estimation were examined, along with their practical 
applications and limitations. The methodology of regression analysis was discussed as a means 
to develop predictive models for soil parameters. Additionally, the application of artificial neural 
networks (ANNs) in geotechnical engineering was explored, highlighting their potential 
advantages over traditional methods in enhancing estimation accuracy. This comprehensive 
review provides the foundation for utilizing advanced techniques, such as ANNs, to improve the 
estimation of geotechnical parameters. 
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3- Methodology 
3.1. Data Collection and Preparation 
The soil samples and materials used in this study were collected from the Hejőpapi area shown in 
Figure 6, situated in Borsod-Abaúj-Zemplén County, Hungary. The geographical coordinates of 
the collection site are 47°54'00" North latitude and 20°55'00" East longitude. In the laboratory, the 
collected soil samples were systematically separated into their constituent particles: gravel, sand, 
silt, and clay. This separation process ensured that each type of particle could be individually 
analyzed and combined in precise proportions to create new soil samples for experimentation. 

The new soil samples were prepared by carefully combining varying quantities of each type of 
particle. The goal of this procedure was to reproduce different soil compositions and investigate 
their characteristics in a controlled environment. To ensure that the experimental results were free 
of biases or mistakes, great care was taken to preserve consistency across all samples, including 
maintaining uniform water content and unit weight. The precise ratios of gravel, sand, silt, and 
clay were adjusted to see how different soil compositions affected the characteristics under study. 
It is noteworthy that for the scope of this study, which focused on specific soil parameters, only 
small-sized gravel particles were used. All prepared samples were subjected to identical 
environmental conditions and handling procedures to ensure uniformity. This standardization was 
crucial for minimizing variability and enhancing the reliability of the experimental results. By 
maintaining these stringent preparation protocols, including consistent water content and unit 
weight, the study aimed to produce accurate and reproducible findings that could contribute 
valuable insights into soil behavior and characteristics. 

 
Figure 6. Collection Site of Soil Sample 

In general, 205 soil compositions were reconstructed in the laboratory. Depending on the type of 
parameter under investigation, all or some of these samples were investigated. The percentages of 
each component were variable and included 0, 10, 15, 20, 25, 30, 40, 50, 75 and 100 percent 
(Annex 1). It should be noted that the naming order of the samples in this research was determined 
after obtaining the results and performing the final analysis, which will be discussed in detail in 
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the next chapter. The desired tests were performed on each reconstructed sample according to the 
standard to obtain the investigated parameters. 

It should be mentioned that the laboratory work for this study was carried out across two 
institutions. The initial phase of the experiments was conducted in the soil mechanics laboratory 
at the University of Miskolc. The subsequent phase of the laboratory work was carried out at the 
Budapest University of Technology. Some laboratory tests conducted in lab is depicted in figure 7  

 
Figure 7. Laboratory Tests Conducted in the Lab 

3.2. Experiments 
3.2.1. Grain size distribution 
Following the creation of the desired soil combinations, the grain size distribution for each new 
soil sample was determined (Annex 2). To achieve this, both the sieve analysis test and the 
hydrometer test were conducted in accordance with the Eurocode 7 standard. The grain size 
distribution analysis was crucial for providing a comprehensive understanding of the sample 
characteristics before conducting further experiments. It allowed for the categorization of samples, 
ensuring that each one was appropriate for specific experimental procedures. Additionally, it 
facilitated the separation of samples into coarse and fine grains, which is essential for tailoring 
experiments to different soil types. The analysis also enabled the determination of key parameters 
such as D10, D30 and D60. These parameters are critical for various aspects of this investigation, 
including the assessment of soil permeability and the mechanical behavior of the soil samples. 

The sieve analysis was employed to determine the particle size distribution of the coarser fractions 
of the soil. According to Eurocode 7, the soil sample was dried and then passed through a series 
of standard sieves arranged in descending order of size. Each sieve's aperture size was selected to 
capture specific ranges of particle sizes. The soil retained on each sieve was weighed, and these 
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weights were used to calculate the percentage of the total sample. This process resulted in a detailed 
profile of the soil's grain size distribution for particles larger than 0.063 mm, providing essential 
data for understanding the soil's physical properties. 

For the finer particles, a hydrometer test was conducted following the Eurocode 7 guidelines. This 
test involved dispersing a known quantity of soil in a liquid and measuring the relative density of 
the suspension at various time intervals using a hydrometer. The hydrometer readings allowed for 
the calculation of particle sizes smaller than 0.063 mm based on the sedimentation rate of the 
particles, as described by Stokes' law. The hydrometer test was essential for accurately 
characterizing the silt and clay fractions of the soil samples, complementing the data obtained from 
the sieve analysis. 

By integrating the results of both the sieve analysis and the hydrometer test, a complete grain size 
distribution curve was obtained for each soil sample. These curves were instrumental in identifying 
the uniformity and gradation of the soil, which in turn informed the design and interpretation of 
subsequent experiments. After drawing the curves, soils were classified according to (European 
Committee for Standardization, 2007). This classification identified a variety of soil types from 
the samples. Table 1 shows the various types of soils identified, as well as the quantity of samples 
for each type. This precise categorization was helpful for understanding the unique properties and 
behaviors of each soil type, resulting in more accurate analysis and implementation of the 
experimental data. 

 

Table 1. Classification of Soil Samples 

Soil name Sample count Soil Name Sample count 

Cl 13 grclSa 16 
siCl 4 grsaSi 5 
Si 1 grSi 3 

grCl 20 siSa 3 
sasiCl 12 clGr 6 
saCl 18 saclGr 11 

sagrCl 11 sasiGr 7 
grsiCl 15 grsiSa 4 
grsaCl 16 Sa 2 

clSi 2 sagrSi 1 
clSa 6 siGr 4 
saSi 3 grSa 5 

saclSi 7 saGr 2 
grclSi 7 Gr 1 
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3.2.2. Hydraulic conductivity 
Hydraulic conductivity, a crucial parameter for understanding water movement in soil, was 
measured for 205 samples based on Eurocode 7 criteria in this study. It was tried to have a similar 
initial condition for all specimens before conducting the tests. Following the concepts outlined in 
Darcy's law in previous chapter, hydraulic conductivity, also known as coefficient of permeability 
or permeability, refers to the ease with which water permeates rock or soil. To capture soil type 
heterogeneity, two different laboratory procedures were used: the constant head permeability test 
for coarse-grained soils and the falling head permeability test for fine-grained soils. The constant 
head permeability test indicates soils with high permeability, such as sand. It involves measuring 
the discharge flow rate (Q) through the soil sample under a constant hydraulic head (Δh) during a 
set duration (t). Conversely, the falling head permeability test, suitable for soils with low to 
intermediate permeability like clays and silts, monitored the gradual decrease in water level (h1 to 
h2) within a standpipe installed on top of the soil sample. By recording the change in water level 
over time (t) and considering sample dimensions, hydraulic conductivity was computed using the 
pertinent equations. 

3.2.3. Shear strength parameters 
The soil's shear strength parameters were determined using direct shear tests on a total of 95 
samples, in accordance with the Eurocode 7 criteria. These tests were critical in determining the 
soil's resistance to internal friction and cohesion, especially for coarse and fine-grained soils. 
Following Eurocode 7 protocols enhanced scientific accuracy and complying with international 
standards, hence increasing the reliability and credibility of the findings. Each direct shear test was 
methodically carried out, with special attention given to sample preparation, loading conditions, 
and testing techniques. To account for variability and assure the correctness of the data, each test 
was performed three times, as is standard practice in geotechnical engineering experiments. 

The direct shear test involves exposing soil samples to controlled shear stress along a designated 
plane to determine cohesion (c) and internal friction angle (ϕ). These characteristics were 
determined after a careful study of the test findings, which included calculations based on the 
measured shear stress and normal stress applied to the samples. The cohesion (c) was calculated 
using the intercept of the shear stress-normal stress plot, while the internal friction angle (ϕ) was 
found using the slope of the linear component of the curve. The complete investigation included 
differences in soil composition, grain size distribution, and other relevant parameters, resulting in 
a comprehensive understanding of the soil's shear strength behavior. 

3.3. Overview of data trend 
In this study, high numbers of laboratory tests were conducted to see the effect of different 
combinations of gravel, sand, silt and clay on hydraulic conductivity, in particular hydraulic 
conductivity. In order to avoid the possibility of error in estimating soil parameters, the traditional 
triangular system for determining soil texture and subsequently using it to determine the hydraulic 
gradient has been upgraded to a 3D tetrahedral system. So, the measured parameters have been 
plotted and charted in a 3D tetrahedral system (gravel, sand, silt and clay content). Based on this 
system the factors affecting the different geotechnical and hydrogeological parameters of soil 
based on particle size distribution can and will be investigate while the parameter chosen for 
investigation in my study was hydraulic conductivity.   
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As the first step, only the soil compositions with a difference of 25% were chosen for this purpose. 
Figure 8 shows the result for one point in pyramid as an example which belongs to bottom level 
where the gravel percentage is zero.  The same procedure was done for all chosen samples and the 
results were gathered to transfer to pyramid model. It is noteworthy to take into account that in 
this work, I employed (-log K), the negative logarithm of hydraulic conductivity, rather than its 
precise value for each composition. The usage of (-logK) is based on the lognormal distribution 
character of K data, and therefore logK values became normally distributed.   

 
Figure 8. Location of a Point in Pyramid (Source: Own Compilation) 

 

Figure 9 schematically shows the pyramid model considered in this study. Also changes in 
composition are shown on each plate of the pyramid. 

 
Figure 9. The Schematic Picture of Pyramid Model (Source: Own Compilation) 

The main goal of this task is to visualize the model in 3D.  So, a tool to do a 3D model was required 
for geological modeling and interpretation. Voxler software was chosen to create the 3D model in 
this investigation. To draw points into the model in Voxler, it was necessary to transfer the 
coordinates in the Cartesian coordinate system. For this purpose, assuming a constant value for 
one soil component (gravel) and considering the sum of 100% of all components, I was able to 
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draw the corresponding points of each type of mixture in Voxler coordinates. Finally, all the points 
in a pyramid were demonstrated which can be seen in figure 10. 

 
Figure 10. Location of all Points in Pyramid (Source: Own Compilation) 

To render 3D volumetric data, Voxler uses a direct volume rendering approach. It's a terrific 
approach to view Earth and atmospheric sciences data, as it allows us to see all elements of the 
data in a 3D volume rather than just the surface (Golden Software, 2015). The VolRender is a very 
useful tool for illustrating the hydraulic conductivity distribution that I wanted to look into for my 
research. Figure 11 shows the volume of the data from gridded data which was made before in 
surfer software. 

 
Figure 11. Hydraulic Conductivity Values Distribution (Source: Own Compilation) 
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By this method I can examine the pyramid from different angles. With the help of it, I am able to 
draw plates in the desired directions and see the distribution of the considered parameter. 
Therefore, by moving the plates in the direction of increasing each soil component, its effect on 
the hydraulic gradient can be observed. A comparison between them will lead to a better 
understanding of soil conditions. For instance, figure 12 shows the different planes of pyramid 
concerning variation in gravel contents. 

 
Figure 12. Different Planes of Pyramid by changing in gravel contents (Source: Own Compilation) 

It was tried to draw contour map for all these sections and analysis the relation between gravel 
content and hydraulic conductivity. The same procedure has been done for the other directions 
regarding increasing in clay, silt and sand percentages in combination. For this purpose, the unit 
vector and the normal vector of the plates were required. The normal vector was determined by 
using 3 points. For example, the following 3 points were used for the normal vector of a plate with 
constant silt. 

P = (0,0,0), Q = (50,86.6,0),  R = (50, 75.7,25) 

By finding the PQ and PR vectors and taking their cross product, the vector perpendicular to them 
was obtained and then by doing some calculation, the equation for a plane was determined. Having 
the equations of the desired plates, it was possible to study the changes of the desired parameter 
from different angles, which means that by doing this, the effect of each variable on the desired 
parameter can be examined separately. Considering the triangle at the base of the pyramid and the 
planes parallel to it, each side of the triangle represents a component (clay, sand or silt). But in 
other sections that are not in the mentioned direction, the sides do not represent the mentioned 
parts. The point to be considered is that at these points the height will indicate the amount of gravel. 

Finally, the desired distributions of hydraulic conductivity changes in different planes of the 
pyramid were extracted from the software. Utilizing the program features, I am able to obtain the 
estimated range of the desired parameter throughout the entire pyramid. This indicates that for 
each soil composition with varying percentages of different soil types, an estimated range for the 
hydraulic conductivity can be considered. Additionally, another noteworthy point that can be 
achieved using this pyramid is that the extent of the impact of each variable on the desired 
parameter can be examined. As mentioned earlier, the Volrender feature shows us the volumetric 
distribution of the desired parameter. According to the following figure, it can be observed that the 
effect of clay on permeability changes is much higher than that of other parameters.  
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3.4. Multiple linear regression 
In this study, Multiple Linear Regression (MLR) is initially utilized to estimate hydraulic 
conductivity based on the percentages of clay, silt, sand, and gravel in soil samples. Based on 
regression analysis, a linear relationship is established between the “response variable” and one or 
more “explanatory variables.” In multiple linear regression, the parameters of a linear model are 
estimated using an objective function and the values of the variables. Thus, if there are n 
observations from the P dimensional independent variable X and it is aimed to establish a 
relationship with the response variable Y, the multiple linear regression model can be used as 
shown in equation 8 (Uyanık, 2013). 

Yi =  β0 + β1𝑥𝑥𝑖𝑖1 + β2𝑥𝑥𝑖𝑖2+. . . +β𝑝𝑝𝑥𝑥𝑖𝑖𝑖𝑖 + ϵ   (8)  

Where Yi is dependent variable, xi is explanatory variables, β0 is y-intercept (constant term), βp is 
the slope coefficients for each explanatory, and variable ϵ is the model’s error term (also known as 
the residuals) 

The coefficients in an MLR model are estimated using the method of least squares. This method 
aims to minimize the sum of the squared differences between the observed values and the values 
predicted by the model. The performance of the Multiple Linear Regression (MLR) model in this 
work was evaluated using several key metrics. One important metric was R-squared (R2), which 
represents the proportion of variance in the dependent variable explained by the independent 
variables. It is calculated as the ratio of the sum of squares due to regression (SSR) to the total sum 
of squares (SST). The coefficient of determination, R2, is interpreted as the proportion of the 
variability in the dependent variable accounted for by the regression model. This value is 
frequently expressed as a percentage, indicating the additional explanation of variability provided 
by the model among the total variability (Nathans, 2012). According to the classification proposed 
by Chin (1998), the range of R-squared values is a significant indicator of a regression model's 
explanatory power. An R-squared value of 0.67 or higher is considered substantial, meaning that 
the independent variables account for a significant portion of the variability in the dependent 
variable. Values between 0.33 and 0.67 are categorized as moderate, indicating a moderate level 
of explanatory power. R-squared values from 0.19 to just below 0.33 are classified as weak, 
reflecting a relatively lower level of explanatory power. This classification provides valuable 
insight into the strength of the relationship between the independent and dependent variables 
captured by the regression model. 

Another crucial metric is the adjusted R-squared, which adjusts for the number of predictors in the 
model, providing a more accurate measure for models with multiple variables. This adjustment 
ensures that the model's explanatory power is not overstated due to the inclusion of more 
predictors. Additionally, I examine the p-values of the coefficients to determine whether each 
independent variable significantly contributes to the model. Variables with low p-values (typically 
less than 0.05) are considered significant predictors, indicating their strong influence on the 
dependent variable. Furthermore, I utilize the Mean Squared Error (MSE) to assess the average of 
the squared differences between observed and predicted values. MSE is a measure of the model's 
accuracy; lower MSE values indicate better fit, signifying that the predicted values are close to the 
actual values. By evaluating these metrics collectively—R-squared, adjusted R-squared, p-values 
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of the coefficients, and MSE—it is possible to validate the robustness and reliability of the MLR 
model for estimating hydraulic conductivity based on grain size distribution. 

To ensure I developed a reliable model, I divided the data into two parts. I used 80% of the 
observations to train the Multiple Linear Regression (MLR) model and kept the remaining 20% 
for validation. This method helps us rigorously assess how well the model performs and how well 
it can generalize to new data. By training the model on the larger portion of the data, I make sure 
it effectively learns the underlying patterns and relationships between the independent variables 
(percentages of clay, silt, sand, and gravel) and the dependent variable (hydraulic conductivity). 
This way, I can be confident that my model isn't just fitting the specific data I have, but can also 
predict outcomes accurately for new, unseen data. 

3.5. Artificial Neural Networks (ANNs) 
3.5.1. Concept of ANNs 
Artificial neural networks contain artificial neurons known as units. These units are organized into 
a succession of layers that collectively form the entire artificial neural network in a system. A layer 
can have a dozen or millions of units, depending on how complicated neural networks are 
necessary to understand the dataset's underlying patterns. An artificial neural network typically 
consists of three layers: input, output, and hidden. The input layer collects inputs from the outside 
world that the neural network must interpret or learn about. The data is then passed through one 
or more hidden layers, which turns it into useful data for the output layer. Lastly, the artificial 
neural networks' reaction to the supplied input data is presented as an output by the output layer. 
Units are connected from one layer to another in most neural networks. The weights assigned to 
each of these relationships indicate how much effect one unit has upon the others (Abdolrasol, 
2021). The neural network gains more and more knowledge about the data as it moves from one 
unit to the next, ultimately producing an output from the output layer. Figure 13 shows a simple 
neural network architecture. 
 

 
Figure 13. A Simple Neural Network Structure (Source: www.mediasoft.ir) 

 
An artificial neural network's first layer, known as the input layer, transfers data from outside 
sources to the second layer, known as the hidden layer. Each neuron in the hidden layer takes in 
information from the neurons in the layer above, calculates the weighted sum, and then relays it to 
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the neurons in the layer below. Because these connections are weighted, the effects of the inputs 
from the preceding layer are essentially maximized by giving each input a unique weight, which 
is then modified during training to improve model performance. These systems are designed to 
recognize patterns, process data, and learn from experience. An ANN consists of interconnected 
groups of artificial neurons (nodes), which work collaboratively to solve specific problems. Each 
neuron processes inputs and generates an output that is transmitted to other neurons in the network. 
Figures 14 and 15 show a biological neuron and a conventional mathematical model of neurons. 
The main components of an artificial neural network are neurons, layers, weights (W), biases (b), 
and activation functions. Neurons (N) are the basic units of an ANN, analogous to biological 
neurons, receiving inputs (x), processing them, and producing outputs (y) using activation 
functions (f). A biological neuron consists of a cell body or soma for processing impulses, dendrites 
for receiving them, and an axon for transmitting them to other neurons.  Artificial neural networks' 
input nodes receive input signals; the hidden layer nodes compute these input signals; and the 
output layer nodes compute the final output by processing the hidden layer's results with activation 
functions. Synapses connect biological neurons and allow impulses to be transmitted from 
dendrites to the cell body. Synapses are the weights that connect one-layer nodes to next-layer 
nodes in artificial neurons. Weight determines the strength of the linkages. Learning in biological 
neurons occurs in the cell body nucleus, also known as the soma, which contains a nucleus that 
aids in impulse processing. If the impulses are strong enough to cross the threshold, an action 
potential is generated and propagates via the axons. This is made possible by synaptic plasticity, 
which is the ability of synapses to strengthen or weaken over time in response to changes in their 
activity. Backpropagation is a learning approach in artificial neural networks that modifies node 
weights based on errors or disparities between expected and actual outcomes. When an impulse is 
strong enough to cross the threshold and cause a neuron to fire, this is known as activation in 
biological neurons. An activation function is a mathematical function that maps input to output 
and performs activations in artificial neural networks (Zou, 2009). 
 
 

 
Figure 14. A Biological Neuron (www. hamruyesh.com) 
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Figure 15. A Conventional Mathematical Model of Neurons (Source: Subhashini, 2020) 

 

The output layer generates the final set of computations, estimates, or classifications based on the 
input data and outcomes processed by the hidden layers. Mathematically, the output of a neuron 
can be represented as equation 9. 

 

𝑌𝑌 =  𝛴𝛴 (𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡 × 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)  + 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏    (Eq.9) 

Weights determine the signal (or strength of the link) between two neurons. In other words, the 
weight determines how much influence the input has on the output. Constant biases are an 
additional input into the following layer with a value of 1. Bias units are unaffected by the previous 
layer (there are no incoming connections), but they do have outbound connections with their own 
weights. The bias unit ensures that even if all inputs are zeros, the neuron will still be activated. 

Activation functions are applied to the weighted sum of inputs to determine the output of a neuron, 
allowing the network to handle non-linear transformations and complex patterns in data. Choosing 
the activation function for the hidden and output layers is an important decision when developing 
a neural network. It means that the activation functions play an important part in determining 
whether a neuron should be activated or not. Neural networks cannot function without activation 
functions; otherwise, the model's output would just be a linear function of the input. Stated 
differently, it would not be able to manage substantial amounts of intricate data. In every forward 
propagation layer, activation functions are an extra yet important step.  Even if the network had 
numerous layers, neurons, or nodes, problems between layers could not be analyzed without 
activation functions. By introducing nonlinearity via activation functions, neural networks may 
mimic more complex functions within each node, allowing the neural network to learn more 
efficiently. Activation functions can be mainly classed into three types: binary step, linear, and 
non-linear, with several subcategories, derivatives, variants, and other calculations being employed 
in neural networks. The simplest sort of activation function is the binary step, which produces a 
binary output based on whether the input is greater than or less than a specific threshold. Linear 
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functions are also generally simple, with the output proportionate to the input. Non-linear 
functions, like sigmoid and tanh functions, are more complex and bring nonlinearity into the 
model.  In each situation, the activation function is chosen based on the individual problem and 
challenge to be solved (Rasamoelina, 2020). It's not always clear which one data scientists and 
machine learning engineers should employ, so trial and error is sometimes necessary.  However, 
that is always the beginning point for selecting the appropriate activation function for a neural 
network or any other complex algorithmic-based model that requires activation functions. In the 
following, some important activation functions of their concepts will be discussed. 

a) The binary step function acts as a door that only opens upon the satisfaction of a predetermined 
threshold. The neuron is active when an input exceeds that threshold and is inhibited otherwise. 
The output from the preceding layer is transferred to the subsequent stage of the neural network's 
hidden layers as soon as a neuron is triggered.  The binary step is only based on thresholds, and 
naturally, it has drawbacks such as not being differentiable and not being able to backpropagate 
signals. When there are numerous outputs, it is unable to give multi-value outputs or multi-class 
classification difficulties. Nonetheless, the binary step is a practical and straightforward activation 
function to include for very modest neural networks (Qin, 2020). The mathematical explanation is 
shown in figure 16. 

 
Figure 16. The Binary Step Function (Source: www.encord.com). 

b) Linear Activation Function: When the output signal is intended to be identical to the input signal, 
linear activation functions are applied. Identity is differentiable, and this activation function doesn't 
alter the signal in any way. In most situations, this may not seem particularly helpful, but it is when  
it is aimed neural network's outputs to be continuous as opposed to discrete or changed. Both a 
reduction and a convergence of data are absent. With this activation function applied to each layer, 
a neural network's layers would combine into one. Therefore, not very helpful unless that's 
precisely what you require or if the hidden layers that follow have distinct activation functions 
(Rasamoelina, 2020). Figure 17 shows the mathematical explanation. 
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Figure 17. Linear Activation Function (Source: www.encord.com). 

c) Sigmoid, Logistic Activation Functions: The sigmoid activation function, also known as the 
logistic activation function, converts inputs into outputs ranging from 0 to 1. Because of this, 
sigmoid is known as the "squashing function" and is differentiable. Larger, more positive inputs 
should result in output values close to 1.0, whereas smaller, more negative inputs should yield 
outputs closer to 0.0. It is particularly useful for classification or probability prediction tasks, 
making it suitable for usage in computer vision and deep learning network training. However, 
using vanishing gradients in hidden layers might be troublesome, causing problems while training 
a model (Pratiwi, 2020). Figure 18 shows the mathematical concept. 

 
Figure 18. Sigmoid, Logistic Activation Functions (Source: www.encord.com). 

d) Hyperbolic Tangent Function: The hyperbolic tangent function (tanh) is a widely used activation 
function. It converts input numbers to a range of -1 to 1. The tanh activation function can be 
beneficial in artificial neural networks because it is zero-centered, which helps to mitigate the 
vanishing gradient problem. Also, the values are more easily transferred to a scale of extremely 
negative, neutral, or positive. Adding to a neuron's output introduces nonlinearity, allowing the 
network to acquire complicated representations. However, it is important to note that Tanh suffers 
from the same saturation problem as the sigmoid function, in which gradients become extremely 
small for large input values. Despite this drawback, tanh is still a good choice for hidden layers in 
neural networks because of its balanced behavior near zero.  Additionally, tanh is sigmoidal (s-
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shaped), as shown in figure 19. It is worth noting that feed-forward networks, which will be 
discussed later, use both the tanh and logistic sigmoid activation functions (Shakiba, 2020). 

 
Figure 19. Hyperbolic Tangent Function (Source: www.ashutoshtripathi.com) 

e) ReLU (Rectified Linear Unit) Activation Function: One of the most frequent activation 
functions used in artificial neural networks is the Rectified Linear Unit. ReLU is a piecewise linear 
function that outputs the input if it is positive; else, it returns zero. However, compared to linear 
functions, the rectified linear unit (ReLU) is more computationally efficient. When applied to a 
neuron's output, ReLU creates nonlinearity, allowing neural networks to learn complex 
representations. ReLU is now the standard option for hidden layers in convolutional neural 
networks (CNNs) and multilayer perceptrons (MLPs), despite its ease of use. It's important to be 
mindful of the “dying ReLU” issue, though, as sluggish convergence can result from some neurons 
going dormant during training. This problem is addressed by variants such as Leaky ReLU and 
Parametric ReLU, which accept small negative values and enhance training stability and 
convergence (Agarap, 2018). The ReLU is partially rectified, as seen in figure 20. When z is less 
than zero, f(z) equals zero; when z is more than or equal to zero, f(z) equals z.   Both the derivative 
and the function are monotonic. However, the problem is that all of the negative values instantly 
become zero, which makes it harder for the model to correctly fit or train on the data. This indicates 
that any negative input to the ReLU activation function immediately causes the value to become 
zero in the graph, which in turn has an impact on the final graph by improperly mapping the 
negative values. 

 
Figure 20. ReLU Activation Function (Source: www.encord.com) 

http://www.ashutoshtripathi.com/
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Nonlinear activation functions address the constraints and challenges of simpler activation 
functions, such as the vanishing gradient problem. Non-linear activation functions have various 
advantages, including the ability to assist backpropagation and stacking. Non-linear combinations 
and functions are employed across a network, which implies that while developing and training a 
model, just the weights and biases need to be adjusted, and the outputs are represented as functional 
computations. In other words, when non-linear activation functions are utilized, everything that 
enters, passes through, and exits a neural network can be measured more efficiently, thus the 
equations are changed until the desired outputs are obtained. There are several other non-linear 
activation functions, as shown in figure 21 and 22.  

 
Figure 21. Non-linear Activation Functions (Source: www.encord.com) 
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Figure 22. Derivative of Activation Functions (Source: www.towardsdatascience.com) 

 

3.5.2. Types of neural network 
The most crucial stage in creating a network is selecting its structure. In this context, the first step 
in identifying network structure is choosing the type of network. Each type of neural network has 
its strengths and weaknesses, making them suitable for different applications and types of data. In 
the following, some of the most dominant artificial neural networks will be discussed briefly. 

a) Perceptron: Perceptron is among the earliest and most basic artificial neural network types. In 
terms of modern deep learning model complexity, the perceptron is extremely simple. However, 
the techniques used in its design are more applicable to advanced deep network topologies.  It is a 
supervised learning binary classification method invented by Frank Rosenblatt (1958). It 
categorizes input data into one of two distinct states using a training technique on previous input 
data. The perceptron attempts to partition the input data using a linear decision boundary. Support 
vector classifiers, another type of supervised learning method, perform a similar technique. It 
assigns weights to a set of scalar input features as well as a constant “bias” term. Figure 23 shows 
a schematic diagram of a perceptron. 

 
Figure 23. Schematic Diagram of a Perceptron (Source: www.medium.com) 

http://www.towardsdatascience.com/
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b) Feedforward Neural Networks (FNNs): One of the most fundamental kinds of artificial neural 
networks developed to date is a feedforward neural network. Information transfers in a single path 
in this network: forward from the input nodes to the output nodes, passing through any hidden 
nodes that may exist. The network is free of loops and cycles. Compared to their more complex 
cousins, such as recurrent and convolutional neural networks, feedforward neural networks are the 
original type of artificial neural network to be created. A feedforward neural network contains two 
phases including feedforward and backpropagation. In the feedforward phase, input data is fed into 
the network and propagated forward through it. At each hidden layer, the weighted total of the 
inputs is computed and processed through an activation function, introducing nonlinearity into the 
model. This procedure will continue until the output layer is reached and a forecast is formed. In 
the Backpropagation Phase, once a prediction is produced, the error (the difference between the 
predicted and actual outputs) is determined. This error is then propagated back through the 
network, with weights changed to reduce it. Weights are frequently adjusted using a gradient 
descent optimization technique (Eldan, 2016). Figure 24 shows a schematic diagram of 
feedforward neural networks 

 
Figure 24. Schematic Diagram of Feedforward Neural Networks (Source: www.oksim.ua) 

 

c) Convolutional Neural Network (CNNs): The developed form of artificial neural networks, 
known as convolutional neural networks (CNNs), is primarily used to extract features from grid-
like matrix datasets. For instance, visual datasets with a lot of data patterns, such pictures or 
movies. Tens or even hundreds of layers can be found in a convolutional neural network, each of 
which is trained to recognize a unique characteristic of an image. Every training image is subjected 
to various resolutions of filters, and the result of every convolved image serves as the input for the 
subsequent layer. The filters can begin with relatively basic criteria, such edges and brightness, 
and progress in sophistication to include features that specifically identify the object (O'shea, 
2015).Figure 25 shows simple CNN architecture. 
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Figure 25. Simple CNN Architecture (Source: www.geeksforgeeks.org) 

d) Recurrent Neural Networks (RNNs): One kind of artificial neural network that makes use of 
sequential or time series data is the recurrent neural network (RNN). These deep learning 
algorithms are integrated into well-known programs like Siri, voice search, and Google Translate. 
They are frequently utilized for ordinal or temporal problems like language translation, natural 
language processing (nlp), speech recognition, and picture captioning. Recurrent neural networks 
(RNNs), like feedforward and convolutional neural networks (CNNs), learn from training data. 
Their ability to use information from previous inputs to affect the present input and output sets 
them apart. Recurrent neural networks rely on the previous parts in the sequence to determine their 
output, in contrast to typical deep neural networks, which presume that inputs and outputs are 
independent of one another (Schmidt, 2019). 

 
Figure 26. Recurrent Neural Network 

e) Modular Neural Network (MNNs): An advanced method of creating neural networks is the 
modular neural network (MNN), which breaks down a large, difficult problem into smaller, easier-
to-manage subproblems. Every one of these sub-issues is managed by an independent module, or 
sub-network, that is task specific. The ultimate output can be formed by combining the outputs of 
these modules, each of which can function independently. Better scalability, simpler training, and 
enhanced interpretability are just a few benefits of this modularity. The architecture of an MNN 
varies greatly depending on the problem being solved and the design decisions taken by the 
network's creators. Common architectural patterns include hierarchical systems, in which higher-
level modules integrate the outputs of lower-level modules, much like the human brain processes 
information in stages. Parallel structures enable modules to function individually, with outputs 
aggregated later, which is beneficial for jobs that can be broken down into discrete sub-tasks. Some 
MNNs may incorporate recurrent connections, in which the output of one module is sent back into 
another, allowing for dynamic information interchange and temporal processing (Chen K. , 2015). 
Figure 27 shows a modular neural network. 



39 
 

 
Figure 27. Modular Neural Network (Source: www.wikidocs.net) 

There are several other types of neural networks, each with its own architecture designed for 
certain tasks and applications. Each type of neural network has distinct benefits in data processing 
and learning, making it appropriate for a variety of applications such as image recognition, natural 
language processing, and time-series prediction. Figure 28 depicts a nearly complete chart of 
different neural network types, displaying their designs and emphasizing the variety of structural 
distinctions that enable their specific functionality. 
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Figure 28. A Mostly Complete Chart of Neural Networks (Source: www.asimovinstitute.org) 



41 
 

3.5.3. Implementation of artificial neural network to estimate soil parameters 
The goal of this study was to use artificial neural networks (ANNs) to estimate hydraulic 
conductivity based on soil component weight percentages. A total of 205 soil samples were 
collected, with each sample's hydraulic conductivity and weight percentages of various soil 
components (such as sand, silt, clay, and gravel) determined. The dataset was divided into two 
subsets: 70% (144 samples) was utilized to train the neural network, and the remaining 30% (61 
samples) was set aside for testing and validation. The data was divided at random to achieve a 
representative distribution of samples across both subsets. This split ratio seeks to offer enough 
data for training while keeping enough samples to assess the network's performance. 

A feedforward neural network was selected because of its simple architecture and its efficacy in 
related applications. FFNs' flexibility enables the integration of many input variables as well as 
model architecture optimization to obtain greater predictive performance when compared to classic 
regression techniques. This neural network is best suited for tabular data, as each input feature 
(soil component) helps estimate a continuous output (hydraulic conductivity). FFNs are also well-
suited to this task because they can capture complex nonlinear relationships between input 
variables (such as soil components) and output variables (such as hydraulic conductivity) without 
requiring prior assumptions about the underlying data distribution. Furthermore, FFNs are very 
versatile and can handle big datasets with a variety of input features, making them ideal for dealing 
with the multidimensional nature of soil properties and interactions. It also was taken into account 
that; previously conducted studies have shown that FFNs have been widely used in soil science 
and hydrology research because of their capacity to accurately predict complicated and nonlinear 
interactions between soil parameters.  

As mentioned earlier, the network's design consists of three layers: input, hidden, and output. 
MATLAB software, notably the Neural Network Toolbox, was utilized in this study to code and 
build the neural network. It offers a user-friendly environment for developing, training, and 
evaluating neural networks, as well as support for function approximation and nonlinear regression 
problems. The input layer contained nodes representing the number of soil components considered 
(e.g., sand, silt, clay, gravel). The output layer contained a single node indicating the estimated 
hydraulic conductivity. The neural network was trained using the Levenberg-Marquardt 
backpropagation algorithm which is a popular method for training FFNNs by MATLAB because 
of its efficiency and speed in convergence to a solution. This method combines the benefits of 
gradient descent and Gauss-Newton methods, making it ideal for training networks on the dataset. 
After choosing the feedforward method for simulating soil hydraulic conductivity based on soil 
components, the investigation progressed to optimizing the neural network architecture by testing 
with different numbers of layers and neurons. This strategy is based on the observation that neural 
network performance can be highly sensitive to the architecture used, and determining the ideal 
configuration is critical for making correct predictions. Each architecture's performance was 
evaluated iteratively using criteria like prediction accuracy. The goal of carefully evaluating a 
variety of designs was to find the configuration that produced the optimal balance of model 
complexity and predictive performance. 

The same approach was used in other neural network models to predict the soil's shear strength 
characteristics, namely cohesion and internal friction angle. For this, values from experimental 
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procedures were applied to a dataset consisting of 95 soil samples for each parameter. An input 
layer representing several soil components (sand, silt, clay, and gravel) and a single output node 
corresponding to the expected Cohesion or internal friction angle were used in the creation of the 
neural networks. To ensure a representative distribution across both subsets, the datasets for each 
parameter were divided into two groups: 70% for training and 30% for testing and validation. The 
feedforward neural network (FFN) technique, which had previously been validated for estimating 
hydraulic conductivity, was used separately to predict cohesion and internal friction angle. Each 
FFN's architecture was adjusted using iterative testing with varying numbers of layers and neurons, 
with the goal of balancing model complexity and prediction accuracy. The construction, training, 
and evaluation procedures were facilitated by MATLAB's Neural Network Toolbox, which 
utilized the Levenberg-Marquardt backpropagation algorithm for its convergence efficiency.  

In this chapter, the methodology employed for the research was outlined. Data collection and 
preparation processes were described, followed by the laboratory experiments conducted to obtain 
relevant soil parameters. An overview of data trends was provided to highlight key patterns 
observed in the dataset. Multiple linear regression was utilized to develop predictive models, while 
artificial neural networks (ANNs) were introduced as an advanced technique. The concept of 
ANNs was explained, along with a discussion of different types of neural networks. Finally, the 
implementation of ANNs for estimating soil parameters was detailed, demonstrating their 
application in improving the accuracy of predictions.
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4- Data analysis and results  
I used several approaches, such as indirect methods, the multiple linear regression (MLR) method, 
and the artificial neural networks method, to create a comprehensive comparison. Empirical 
calculations based on easily measured soil parameters are used in indirect approaches. The MLR 
approach entails creating a statistical model that links several soil properties to hydraulic 
conductivity, improving forecast accuracy by taking into account the combined impact of 
numerous variables. The primary objective was to identify the optimal ANN model architecture 
that provides the most accurate and reliable predictions. The ANNs method is a complex strategy 
that may increase prediction precision. It models complex, nonlinear relationships among soil 
parameters and hydraulic conductivity by utilizing machine learning methods. This section 
compares the ways in which these approaches work in order to assess how well they predict 
hydraulic conductivity. The task of selecting the optimal ANN architecture for predicting hydraulic 
conductivity is inherently challenging due to the numerous possible configurations and the need 
to balance model complexity with generalization ability. Below is a detailed comparison and 
analysis of the results obtained from each method. 

4.1. Hydraulic conductivity values obtained by the experiments 
Figure 29 illustrates the (−LogK) values for 205 soil compositions, sorted in descending order. 
These values were obtained through laboratory experiments as discussed in the previous chapter. 
Each soil composition varied in component percentages, specifically including 0, 10, 15, 20, 25, 
30, 40, 50, 75, and 100 percent, as detailed in Annex 1. The naming order of the samples in the 
result tables was determined post-analysis, ensuring that they are presented in a systematic manner 
based on their (−LogK) values for clearer interpretation and comparison. 

 

 
Figure 29. (−LogK) Values Obtained by Laboratory Tests (Source: Own Compilation) 
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4.2. Estimation of hydraulic conductivity by indirect method 
As it was mentioned in second chapter, Numerous empirical formulas have been proposed by 
scientists to predict hydraulic conductivity for both fine-grained and coarse-grained soils. These 
formulas typically utilize soil properties such as grain size distribution, porosity, void ratio, and 
plasticity characteristics. For coarse-grained soils, formulas often rely on parameters like effective 
grain size and uniformity coefficient, while for fine-grained soils, plasticity index and liquid limit 
are more commonly used. The diversity in empirical approaches reflects the complex nature of 
soil properties and their impact on hydraulic conductivity. To check the validation of the empirical 
formula, I used the Carrier and Beckman method to predict hydraulic conductivity for a range of 
fine-grained soil samples with different compositions. This method was chosen due to its close 
alignment with the initial properties of the samples, ensuring a relevant comparison. This method 
is particularly suitable for remolded or disturbed samples, making it highly applicable in practical 
scenarios where obtaining undisturbed samples is challenging. Its reliance on easily measurable 
soil properties like plasticity index and liquid limit makes it versatile for various types of clays, 
providing a reliable estimate of hydraulic conductivity under different conditions. The Carrier and 
Beckman method, developed in 1984, offers an empirical formula which is mentioned as equation 
10 specifically tailored for fine-grained soils, particularly clays.  

𝐾𝐾 =  0.174 ×  [𝑒𝑒 – 0.027 (𝑃𝑃𝑃𝑃 – 0.242𝑃𝑃𝑃𝑃) /(𝑃𝑃𝑃𝑃)]4.29

(1+𝑒𝑒)
  (𝑚𝑚/𝑠𝑠)    (Eq.10) 

where k is the hydraulic conductivity, PL is the liquid limit, PI is the plasticity index, and e is the 
void ratio.  

Figure 30 presents a comparison between the measured hydraulic conductivity data and the values 
predicted by the Carrier and Beckman method. The plot shows the measured data on the x-axis 
and the predicted data on the y-axis, with a trendline indicating the correlation between the two 
datasets. The coefficient of determination (R²) is 0.5187, suggesting a moderate correlation. While 
an R² value of 0.51 indicates some level of predictive capability, it is not particularly strong, 
suggesting that the empirical formula may not fully capture the variability in the hydraulic 
conductivity of the soil samples. This discrepancy highlights the need for further refinement of 
empirical models or the use of complementary methods to improve the accuracy of hydraulic 
conductivity predictions for fine-grained soils. Furthermore, a significant portion of the data 
points, as shown in Figure 30, fell below the bisector line, demonstrating a persistent 
underestimation of the values predicted by the Carrier and Beckman approach in comparison to 
the measured data. So, the empirical formula might not be completely reliable for some factors 
impacting hydraulic conductivity in the samples, as suggested by this consistent underestimating. 
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Figure 30. Comparison of (−LogK) Values Obtained by Empirical Formulae and Laboratory Tests (Source: Own 

Compilation) 

 

4.3. Estimation of hydraulic conductivity by Multiple linear regression analysis 
To conduct the Multiple linear regression analysis, I used SPSS software. Initially descriptive 
statistics obtained to gain insight into the central tendency and dispersion of the variables, 
providing a comprehensive overview of the data's characteristics. According to Table2, the 
standard deviation for normalized hydraulic conductivity is approximately 1.212. 

 

Table 2. Descriptive statistics 

Variable Observations 
Obs. with 
missing 

data 

Obs. 
without 
missing 

data 

Minimum Maximum Mean Std. 
deviation 

-Log K  205 0 205 2.127 9.462 5.725 1.212 
Clay (%) 205 0 205 0.000 100.000 24.317 17.553 
Gravel (%) 205 0 205 0.000 100.000 24.951 17.836 
Sand (%) 205 0 205 0.000 100.000 25.439 18.486 
Silt (%) 205 0 205 0.000 100.000 25.293 18.522 

 

Before performing the regression analysis, the existence of a linear relationship between each of 
the independent variables and the dependent variable was investigated by using the "Scatter Plot" 
and also calculating the correlation coefficient. At figure 31, a linear relationship can be seen 
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between each of the independent variables and the dependent variable. Notably, there is a positive 
correlation observed for clay and silt, whereas an inverse relationship is evident in the case of sand 
and gravel. 

 
Figure 31. Relationships Between the Independent Variables and the Dependent Variable (Source: Own 

Compilation) 

In the next step, the value of Pearson correlation coefficient between independent and dependent 
variables was examined. The correlation coefficient was calculated according to the “Pearson's 
correlation coefficient” formula.  If the correlation coefficient value between both variables is 
significant in the two-tailed test, they are marked with *. The output can be seen in Table 3. In the 
subtitle of this table, the sign ** indicates the significance of the statistical test (rejecting the null 
hypothesis or the correlation coefficient being meaningless) at the error level of 0.01 or the test 
level of 0.99. According to the table, there is a good linear relationship between the dependent 
variable and all other variables. Additionally, the strong correlations between Clay, Gravel, and (-
log K), suggest that these variables have more weight importance than the others in terms of their 
influence on the hydraulic conductivity parameter. 
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Table 3. Variables Correlations of MLR Model 

Variable Clay Silt Sand Gravel -log K 

-log K 

Pearson 
Correlation .695** .232** -.208** -.709** 1 

Sig. (2-tailed) 0.000 0.001 0.003 0.000   
N 205 205 205 205 205 

**. Correlation is significant at the 0.01 level (2-tailed). 
 

After performing the multiple regression, the desired results were extracted, which I will continue 
to interpret. According to Table 4, since the correlation coefficient (R=0.906) and determination 
coefficient (R Square=0.822) as well as adjusted determination coefficient (Adjusted R 
Square=0.819) were calculated, it seems that the regression model is appropriate. The closer these 
values are to 1, the more the model expresses the relationship between the dependent and 
independent variables. In other words, the regression model was able to cover or express a greater 
percentage of changes in the dependent variable. 

Table 4. MLR Model Summary 

Model R R 
Square 

Adjusted 
R 

Square 

Std. Error of the 
Estimate DW MSE 

1 0.906 0.822 0.819 0.515 1.797 0.266 
 

In Table 6, the variance analysis for the regression model has been done. Considering the size of 
F and the value of Sig=<0.0001, I conclude that the regression model will be appropriate. Because 
most of the changes in the dependent variable have been seen in the regression model. This means 
that the contribution of the model (Regression) in the total changes that can be seen in the last row 
(Total) of the column (Sum of Squares) is much higher than the contribution of error or residuals. 

Table 5. Analysis of variance of MLR Model. 

Source DF Sum of 
squares 

Mean 
squares F Sig 

p-values 
signification 

codes 
Model 3.000 246.050 82.017 308.691 <0.0001 *** 
Error 201.000 53.404 0.266    

Corrected Total 204.000 299.454     

Computed against model Y=Mean(Y)     
Signification codes: 0 < *** < 0.001 < ** < 0.01 < * < 0.05 <. < 0.1 < ° < 1  
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Finally, the scatter plot depicted in figure 32 derived from the multiple linear regression (MLR) 
analysis which represents the relationship between predicted and real data. The coefficient of 
determination (R2) is 0.81, indicating that 82% of the variability in the real data is explained by 
the model. This value suggests that the MLR model has a relatively good fit and effectively 
captures the relationship between the independent variables and the dependent variable. 

Upon closer inspection of the data distribution, both the learning and validation samples align 
closely with the regression line, though some scatter is evident, particularly for higher values of 
the dependent variable. The consistent spread of points around the regression line across both 
samples implies that the model generalizes well to unseen data, as evidenced by the validation 
sample. While the model demonstrates a good fit, I desired a more accurate estimation for 
hydraulic conductivity. Therefore, to improve the predictive performance, I conducted the 
estimation using an artificial neural network (ANN) approach, which will be discussed in the next 
section. 

 
Figure 32. Multiple Linear Regression Analysis Result (Source: Own Compilation) 

 

4.4. Artificial Neural Network model for hydraulic conductivity parameter 
In this section, I present the results of the analysis for estimating hydraulic conductivity based on 
the weight percentages of soil components (clay, silt, sand, and gravel) using artificial neural 
networks. The primary goal was to identify the optimal ANN model architecture that provides the 
most accurate and reliable predictions. The task of selecting the optimal ANN architecture for 
predicting hydraulic conductivity is inherently challenging due to the numerous possible 
configurations and the need to balance model complexity with generalization ability.  I evaluated 
multiple models with varying configurations of hidden layers and neurons. 

I began my exploration with two neurons in a single layer. Subsequently, I expanded my 
investigation by varying the number of neurons within this initial layer. Following this, I 
introduced an additional layer, increasing the depth of the network to two hidden layers. I 
conducted several iterations, adjusting the number of neurons in each layer to discern their impact 
on performance. In pursuit of further insights and more confident outcomes, I conducted a test by 

R² = 0.81

2

3

4

5

6

7

8

9

10

2 3 4 5 6 7 8 9 10

Pr
ed

ic
te

d 
D

at
a

Measured Data



49 
 

introducing a third hidden layer. Despite altering the number of neurons across these layers, my 
efforts did not yield any noticeable improvements in performance. 

All in all, I tested a total of ten different ANN models, each with a unique architecture. The 
architectures varied in terms of the number of hidden layers and the number of neurons within 
those layers. The selection of the optimal artificial neural network structure was guided by key 
performance metrics including the coefficient of determination (R2), Root Mean Square Error 
(RMSE), and Mean Squared Error (MSE). These metrics were employed as indicators of the 
model's predictive accuracy and goodness of fit. R2, also known as the coefficient of determination, 
measures the proportion of the variance in the dependent variable that is predictable from the 
independent variables, thus assessing the model's explanatory power. RMSE represents the square 
root of the average squared differences between predicted and observed values, providing a 
measure of the model's prediction error. Lastly, MSE calculates the average of the squared 
differences between predicted and observed values, offering insight into the variance of the 
prediction errors. In the context of ANN modeling, these metrics serve as crucial evaluation tools 
to iteratively refine and optimize the network architecture, ensuring robust and reliable predictions. 
The equations 11, 12 and 13 which are mentioned below correspond to these metrics. 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  �∑ (𝑦𝑦𝑖𝑖−𝑥𝑥𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

𝑛𝑛
     (Eq.11) 

𝑀𝑀𝑀𝑀𝑀𝑀 = ∑ (𝑦𝑦𝑖𝑖−𝑥𝑥𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

𝑛𝑛
       (Eq.12) 

𝑅𝑅2 =     ∑ (𝑦𝑦𝑖𝑖−𝑥𝑥𝑖𝑖)2𝑛𝑛
𝑖𝑖=1
∑ (𝑦𝑦𝑖𝑖−ŷ)2𝑛𝑛
𝑖𝑖=1

       (Eq.13) 

 

Which, n represents the number of measurements, yi and xi are the observed and predicted values 
of the dependent variable, respectively, and 𝑦𝑦� is the mean of the observed values of the dependent 
variable. 
Table 6 shows the Regression analysis for all ten models across training, validation, testing, and 
overall datasets. Model number 4, highlighted in the table, performed the best across all phases, 
with highest R values. Figure 33 shows regression plots for the best-performing model (Model 4), 
with separate plots for training, validation, testing, and all data combined. The other model’s plot 
is mentioned in Annex3.  The (R2) value for the best model is shown in figure 34 which equals 
0.92. This high value of (R2) indicates that this architecture is particularly well-suited for this 
project.  
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Table 6. ANN Models for Hydraulic Conductivity Prediction. 

 R Values 

Model 
no output 

Number of 
hidden 
layers 

Number of 
neurons  Training Validation Testing All  

1 -Log K 1 2 0.67245 0.7122 0.69542 0.6829 

2 -Log K 1 4 0.7157 0.72214 0.6519 0.70154 

3 -Log K 2 2,2 0.82521 0.8021 0.78025 0.8102 

4 -Log K 2 1,3 0.94939 0.96013 0.9373 0.95471 

5 -Log K 2 4,1 0.77591 0.7928 0.84146 0.79013 

6 -Log K 2 3,4 0.86813 0.84292 0.803 0.8562 

7 -Log K 3 2,5,1 0.88235 0.7452 0.80187 0.84094 

8 -Log K 3 4,1,6 0.8125 0.72491 0.8232 0.80191 

9 -Log K 3 3,2,2 0.87513 0.81793 0.7029 0.85517 

10 -Log K 3 1,4,1 0.88922 0.9032 0.87961 0.89183 

 

 
Figure 33. Regression Plots of the Best-Performing Model for (-Log K) Prediction (Source: Own Compilation) 
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Figure 34.  Coefficient of Determination Value for the Best Model of ANN (Source: Own Compilation)  

In another point of view, the results emphasized that the best validation performance was achieved 
at epoch 4, with a Mean Squared Error (MSE) of 0.27001. Figure 35 illustrates the MSE against 
the number of epochs, ranging from 0 to 10. The MSE for the training, validation, and test sets 
decreased rapidly in the initial epochs and then stabilized, demonstrating that the network quickly 
learned and subsequently fine-tuned its parameters. The validation error, which is crucial for 
assessing the network's generalization ability, was lowest at epoch 4, indicating the optimal 
performance of the network on unseen data at this point. 

 

 
Figure 35. Mean Squared Error for all Models (Source: Own Compilation) 

Figure 36 shows the error histogram, displaying the distribution of residuals (errors) across the 
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centered around zero, indicating that the model's predictions are, on average, close to the actual 
values. The presence of a small number of larger residuals suggests occasional deviations, but 
these are relatively infrequent. The histogram is color-coded, with blue, green, and red bars 
representing training, validation, and testing errors, respectively, and the presence of zero error 
instances is also highlighted. 

 

 
Figure 36. Distribution of residuals (errors) (Source: Own Compilation) 

Thus, the analysis shows that ANN model number 4 with two hidden layers correspondence 
number of neurons is the most effective for predicting hydraulic conductivity based on soil 
component weight percentages. 

To begin the coding, I called measured data from an Excel file containing the experimental data 
according to figure 37. I specified the first sheet and the range ‘A2’ to import the data into 
MATLAB using the ‘xlsread’ function. The inputs, which are the soil component percentages, were 
stored in the variable ‘inputs’ by selecting the first four columns of the data. The target output 
parameter (-Log K) was stored in the variable ‘targets’ by selecting the fifth column. 

 
Figure 37. MATLAB Code for Importing Experimental Data from an Excel File (Source: Own Compilation) 

The neural network architecture used for estimating the hydraulic conductivity of soil is depicted 
in figure 38. The network consists of an input layer with four nodes representing the weight 
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percentages of clay, silt, sand, and gravel, followed by two hidden layers, each with different 
numbers of neurons, and a single-node output layer that estimates -Log K. As it was mentioned 
earlier, the design with [1 3] neurons achieved the optimal balance of underfitting and overfitting 
for the data.  

 
Figure 38. Neural Network Structure for (-Log K) Prediction (Source: Own Compilation) 

Hence, I defined the structure of the neural network using the ‘feedforwardnet’ function. According 
to figure 39, I set the training parameters to display the training window ‘(showWindow = true)’, 
with a maximum of 1000 epochs and a performance goal of 0.001. I then trained the network using 
the ‘train’ function, passing the network, inputs, and targets as arguments.  

 
Figure 39. MATLAB Code for Defining and Training the Neural Network Using the Feedforward Function (Source: 

Own Compilation) 

The neural network model includes specific weights and biases between layers, with activation 
functions applied at each layer. biases, and activation functions used in the neural network to 
predict hydraulic conductivity were derived by the code as show in figure37. These elements are 
essential because they describe how the network makes predictions based on incoming data 
processing. Through training, the network learns parameters called weights and biases that enable 
efficient mappings of inputs to outputs. The model gains non-linearity from the activation 
functions, which allows it to recognize intricate patterns in the data. Understanding and 
interpreting the behavior of the model, improving debugging, optimizing model performance, and 
ensuring that the network's predictions are founded on significant modifications of the input data 
are all made possible by being aware of these components. Additionally, reconstructing the 
program in the future depends on having an extensive understanding of the weights, biases, and 
activation functions. Mathematical explanations will be discussed in the following. 

Starting from the input layer to the first hidden layer, the weights and bias were: 

𝑊𝑊1 = [−1.6529     − 0.38346     0.27885     1.3238] 

𝑏𝑏1 = [0.33056] 



54 
 

 

The input to the first hidden layer, 𝑍𝑍1, was computed using the equation 14. 

𝑧𝑧1 = 𝑊𝑊1. 𝑥𝑥 + 𝑏𝑏1       (Eq.14) 

Where 𝑊𝑊1 is the weight matrix and 𝑏𝑏1 is the bias vector. The used activation function for the first 
hidden layer was ‘tansig’ which is hyperbolic tangent sigmoid. It applied to 𝑧𝑧1 according to 
equation 15. 

ℎ1 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑧𝑧1) = 2
1+𝑒𝑒−2𝑧𝑧1

− 1     (Eq.15) 

 

Next, for the second hidden layer, the weights and biases were: 

𝑊𝑊2 = �
4.3343
9.2543
−6.8083

� ,  𝑏𝑏2 = �
−4.9807
−2.3088
−5.8666

� 

 

The input to the second hidden layer, 𝑍𝑍2,𝑖𝑖, was computed using the equation 16. 

𝑧𝑧2,𝑖𝑖 = 𝑊𝑊2,𝑖𝑖 .ℎ1 + 𝑏𝑏2,𝑖𝑖       (Eq.16) 

  

Where 𝑊𝑊2,𝑖𝑖  and 𝑏𝑏2,𝑖𝑖 are the weights and biases for the i-th neuron in the second hidden layer. 
According to equation 17, the tansig activation function was again applied to each 𝑧𝑧2,𝑖𝑖  to obtain 
the outputs ℎ2,𝑖𝑖 . 

ℎ2,𝑖𝑖 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑧𝑧2,𝑖𝑖) = 2
1+𝑒𝑒−2𝑧𝑧2,𝑖𝑖 − 1     (Eq.17) 

Finally, in the output layer, the weights and bias were: 

𝑊𝑊3 = [−1.5828     − 0.16039     0.39496] 

𝑏𝑏3 = [−1.0544] 

 

The input to the output layer, 𝑍𝑍3, was computed using the equation 18. 

𝑧𝑧3 = 𝑊𝑊3.ℎ2 + 𝑏𝑏3      (Eq.18) 

where 𝑊𝑊3 is the weight matrix and 𝑏𝑏3 is the bias vector. The used activation function to obtain 
the final output (𝑦𝑦) was ‘purelin’ which is the identity function and applied to 𝑧𝑧3 according to 
equation 19. 

𝑦𝑦 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑧𝑧3) = 𝑧𝑧3     (Eq.19) 
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This process involves sequential matrix multiplications and the application of activation functions 
to propagate inputs through the network layers, transforming them into the final predicted output. 
 

 
Figure 40. MATLAB Code for Deriving Weights, Biases and Activation Functions. (Source: Own Compilation) 
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The program continued with defining the output as it is shown in figure 41. I wrote a section of 
the script that prompts the user to input the percentages of clay, silt, sand, and gravel. I included a 
check to ensure the sum of these percentages equals 100. If the condition is met, the script forms 
an array ‘Percentage_composition’ from the input values. The trained neural network then 
estimates the output parameter (-log K) based on these input percentages, and the estimated value 
is displayed. If the sum of the percentages is not 100, an error message is shown. 

 
Figure 41. MATLAB Code for Defining User Input and Estimating the Output Parameter. (Source: Own 

Compilation) 

As it was mentioned earlier, the model was executed using a dataset split where 70% of the data 
was allocated for training and the remaining 30% was reserved for validation and testing. 
Following this, estimations were conducted to evaluate the predictive accuracy and generalization 
capability of the ANN model, confirming its efficacy in practical applications. For visualizing the 
results, a new code was written. According to figure 42, I assigned each soil component percentage 
column from the data to separate variables (C1, C2, C3, C4). I plotted the actual and predicted 
values of the output parameter (-log K) in different figures using the ‘plot’ function. The ‘hold on’ 
command was used to overlay multiple plots on the same figure for easy comparison. 

 

 
Figure 42. MATLAB Code for Visualizing the Results of the ANN Model (Source: Own Compilation) 
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Figure 43 compares the actual (-log K) values with the neural network's predictions for the testing 
dataset. To better visualize the model's performance, the data was sorted in descending order. This 
sorting allows for a clearer comparison and helps highlight the extent of the fitting between the 
predicted and actual values. According to the figure, except for a few outliers, the neural network's 
predictions are very close to the actual values. The close alignment of the predicted values (red 
line) with the actual values (blue line) demonstrates the model's ability to accurately predict 
hydraulic conductivity based on soil composition. It indicates that the model has learned the 
complex relationships between soil components (clay, silt, sand, and gravel) and hydraulic 
conductivity. This high level of agreement between predicted and actual values confirms the 
accuracy of the ANN model.  

 
Figure 43. Comparison of (- Log K) Values Obtained by ANN and Experiments (Source: Own Compilation) 

As a next step of coding, I evaluated the performance of the neural network by calculating the 
Root Mean Squared Error (RMSE). I computed the ‘RMSE’ value by taking the square root of the 
mean of the squared differences between the predicted values  and the measured values which is 
shown in figure 44. It is noteworthy to mention that the RMSE value obtained by the model was 
0.0768, indicating a high level of accuracy in the model's predictions. This low root mean square 
error suggests that the differences between the predicted values and the actual values are minimal, 
thereby validating the model's effectiveness in capturing the underlying patterns of the dataset. 

 
Figure 44. MATLAB Code to Calculate the Root Mean Squared Error (RMSE). (Source: Own Compilation) 

Another important point obtained from the model was the importance of each parameter in 
estimation. It was found that the importance of the clay and gravel components is evident from the 
importance weight assigned to each variable. As mentioned earlier, the data was sorted in 
descending order to help understand the performance of the model; this means that as the number 
of tests increases, the values of -Log K drop. According to figures 45 to 47, there is a visible trend 
between these parameters and the output parameter, and they have less deviation of data in 
comparison to the silt and sand. So, the results indicate the weight percentages of clay and gravel 
have a significant and meaningful effect on hydraulic conductivity, more so than silt and sand. It 
means that they are critical factors influencing the model's predictions. The high importance 
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weight of these variables underscores their significant role in the underlying processes modeled 
by the ANN, demonstrating that accurate measurement and inclusion of these components are 
essential for reliable model performance. 

 
Figure 45. Relationship Between the Weight Percentage of Sand and Hydraulic Conductivity Value (Source: Own 

Compilation). 

 
Figure 46. Relationship Between the Weight Percentage of Silt and Hydraulic Conductivity Value (Source: Own 

Compilation). 

 

 
Figure 47.  Relationship Between Weight Percentage of clay and Gravel and Hydraulic Conductivity Value (Source: 

Own Compilation). 
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These steps illustrate the process of using MATLAB to model an artificial neural network for 
estimating an output parameter from soil component percentages, including data extraction, 
network training, input handling, output visualization, and performance evaluation. Figure 48 
shows the program with a specific test where the input percentages were 50% clay, 30% silt, 10% 
sand, and 10% gravel. After running the program, the estimated value of (-logK) was 7.2607e+00. 
This demonstrated the capability of the neural network model to accurately predict the output 
parameter based on the given soil composition. 

 
Figure 48. Example output of the MATLAB program for (-Log K) Prediction (Source: Own Compilation). 

Notably, it should be mentioned that I could not find any similar work in the past where the input 
data to predict the K value was the same as what I chose for this study. However, there were a 
variety of modeling approaches that predicted K from different sets of input data. Table 7 shows 
the comparison of the results for estimation of K which were obtained from some previous research 
using various ANN model and findings from this work. According to the table, the results of this 
study are among the few ones with R2 > 0.90, demonstrating superior predictive accuracy with 
higher R² values compared to those reported in previous studies. This underscores the effectiveness 
of the optimized ANN model developed in this research, highlighting its reliability in accurately 
modeling hydraulic conductivity. 

Table 7. Comparison Between Several Studies for Obtaining Hydraulic Conductivity. 

Model Year Method R2 
This study 2024 ANN 0.92 
More et al 2018 ANN 0.85 
Zheng et al 2021 ANN 0.60 

Asif Khaja et al 2022 ANN 0.78 
Mozaffari et al 2024 ANN 0.80 

Yilmaz et al 2012 ANN 0.89 
Williams et al 2021 ANN 0.95 
Merdun et al. 2006 ANN 0.52 

Azarhoosh et al 2023 ANN  0.95 
Azadmard et al 2020 ANN 0.40 
Cahyadi et al 2021 ANN 0.86 
Faloye et al 2022 ANN 0.92 

Zuo et al 2021 ANN 0.76 
Arshad et al 2013 ANN 0.68 
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In summary, I presented an analysis of estimating hydraulic conductivity based on the weight 
percentages of soil components (clay, silt, sand, and gravel) using artificial neural networks. I 
aimed to identify the optimal ANN model architecture that provides the most accurate and reliable 
predictions. I evaluated multiple models and found out the most effective, achieving R² values of 
0.92. This high level of accuracy, with an RMSE value of 0.0768, underscores the model's 
effectiveness in capturing the underlying patterns in the data. Notably, I could not find any previous 
studies using the same input data to predict the K value, though various other modeling approaches 
exist. Comparison of these results with those from similar studies showed that my model achieved 
superior predictive accuracy with R² values consistently above 0.90, positioning it among the best-
performing models. The analysis also highlighted the significant impact of clay and gravel on 
hydraulic conductivity, more so than silt and sand highlighting their essential role in the model's 
predictions.  

Regarding complexity, the MLR method is the least complex and easy to interpret, but it is limited 
in handling non-linear relationships. The empirical formula is simple to use but offers limited 
accuracy and flexibility. On the other hand, the ANN model is the most complex and 
computationally intensive, but it is highly flexible and capable of capturing intricate patterns in 
the data. The ANN approach has the best accuracy R2 value of 0.92, indicating better predictive 
accuracy. With an R2 value of 0.81, the MLR approach demonstrated moderate accuracy; this is a 
better fit but less precise than the ANN model. With an R2 value of 0.52 and the lowest accuracy 
of all investigated methods, the empirical formula proposed by Carrier and Beckman clearly 
needed improvement.  

4.5. Artificial Neural Network model for cohesion parameter 
While extensive research has been conducted on estimating hydraulic conductivity, studies 
focusing on predicting the mechanical behavior of soil based on its characteristics are relatively 
rare. This scarcity highlights the significance and value of this work, which aims to fill this gap by 
leveraging artificial neural networks to estimate soil's shear strength parameters, namely cohesion 
and internal friction angle. 
In this section, I extend the application of artificial neural networks to predict the shear strength 
characteristics of soil, specifically cohesion and internal friction angle. Following the methodology 
used in previous neural network models for hydraulic conductivity, I employed a dataset 
comprising 95 soil samples for each shear strength parameter. Each sample included the weight 
percentages of soil components (sand, silt, clay, and gravel) as input features. The datasets for both 
cohesion and internal friction angle were divided into training (70%) and testing/validation (30%) 
groups to ensure a representative distribution across both phases. Figure.49 and 50 show the 
experimental results for cohesion and internal friction angle. Similar to previous sections, the 
naming order of the samples in graphs and tables was chosen after the results were obtained and 
sorted in the order of descending. 
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Figure 49. Cohesion Values Obtained by Laboratory Tests (Source: Own Compilation). 

 
 
 

 
Figure 50. Internal Friction Angle Values Obtained by Laboratory Tests (Source: Own Compilation). 

The Feedforward Neural Network (FFN) technique, validated in the hydraulic conductivity study, 
was applied to predict cohesion and internal friction angle independently. Iterative testing with 
varying architectures was conducted to identify the optimal balance between model complexity 
and prediction accuracy. The construction, training, and evaluation of the neural networks were 
performed using MATLAB's Neural Network Toolbox, utilizing the Levenberg-Marquardt 
backpropagation algorithm for its efficient convergence properties. 
The neural network architecture for estimating soil cohesion is illustrated in figure 51. It comprises 
an input layer with four nodes corresponding to the weight percentages of clay, silt, sand, and 
gravel. This is followed by three hidden layers, each with 3, 1 and 4 neurons respectively, and a 
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single-node output layer that estimates cohesion. Through iterative testing, the mentioned structure 
was identified as optimal, achieving a balance between underfitting and overfitting. 
The model's performance was evaluated using key metrics. According to figure 52, the correlation 
coefficient (R) for cohesion was approximately 0.90 which indicates a relatively good correlation 
between the predicted and actual values. Additionally, the Root Mean Square Error (RMSE) value 
for cohesion was found to be 0.53, presenting the model's predictive accuracy. 
 

 
Figure 51. Neural Network Structure for cohesion Prediction (Source: Own Compilation). 

 

 
Figure 52. Regression Plots of the Best-Performing Model for Cohesion Prediction (Source: Own Compilation). 

 
Similar to the work done for the prediction of hydraulic conductivity, the same procedure was 
followed for extracting the weights, biases, and activation functions used in the neural network 
model. As a result, the mathematical statements were defined. For the first hidden layer 𝑧𝑧1 can be 
calculated as equation 20. The obtained weights and bias were as follows. 
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𝑧𝑧1 = 𝑊𝑊1. 𝑥𝑥 + 𝑏𝑏1      (Eq.20) 

 

𝑊𝑊1 = �
1.2559
1.6120
−1.6767

     
−0.12284
−1.3428     

0.29718

0.098879
−1.6726     

0.35914

0.34655
−1.8099
0.20731

�  

 
 

𝑏𝑏1 = �
−1.1025
1.2018
−1.5530

�,                               𝑥𝑥 = �

𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
𝑥𝑥4

� 

 
 

Substituting the values: 
 

𝑧𝑧1 = �
1.2559 ⋅ 𝑥𝑥1 + (−0.12284) ⋅ 𝑥𝑥2 + 0.098879 ⋅ 𝑥𝑥3 + 0.34655 ⋅ 𝑥𝑥4 − 1.1025

1.6120 ⋅ 𝑥𝑥1 + (−1.3428) ⋅ 𝑥𝑥2 + (−1.6726) ⋅ 𝑥𝑥3 + (−1.8099) ⋅ 𝑥𝑥4 + 1.2018
−1.6767 ⋅ 𝑥𝑥1 + 0.29718 ⋅ 𝑥𝑥2 + 0.35914 ⋅ 𝑥𝑥3 + 0.20731 ⋅ 𝑥𝑥4 − 1.5530

� 

 

Then, hyperbolic tangent sigmoid activation function applied to z1 and the output named h1 . For 
the second hidden layer, 𝑧𝑧2 was computed based on equation 21. 

𝑧𝑧2 = 𝑊𝑊2. h1 + 𝑏𝑏2      (Eq.21) 
 

 
𝑊𝑊2 = [−1.2909     − 1.1013    0.27013] 

 
𝑏𝑏2 = [0.31217] 

 
Substituting the values: 
 

𝑧𝑧2 = �−1.2909 ⋅ ℎ1,1 + (−1.1013) ⋅ ℎ1,2 + 0.27013 ⋅ ℎ1,3 + 0.31217� 
 

The same activation function applied to z2 and the output named h2 . For the third hidden layer, 𝑧𝑧3 
was calculated based on equation 22. 

𝑧𝑧3 = 𝑊𝑊3. h2 + 𝑏𝑏3      (Eq.22) 

𝑊𝑊3 = �
−6.5676
−5.7014
5.6391
−5.5933

� 
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𝑏𝑏3 = �
4.7544
1.4064
1.6923
−5.6070

� 

Substituting the values: 

 

𝑧𝑧3 = �

−6.5676 ⋅ ℎ2 + 4.7544
−5.7014 ⋅ ℎ2 + 1.4064
5.6391 ⋅ ℎ2 + 1.6923
−5.5933 ⋅ ℎ2 − 5.6070

� 

The tansig activation function applied to 𝑧𝑧3 and the output named h3 . Ultimately, For the final 
output layer, 𝑧𝑧4 was determined through equation 23. 

𝑧𝑧4 = 𝑊𝑊4. h3 + 𝑏𝑏3      (Eq.23) 

 

𝑊𝑊4 = [1.5689     0.53742    − 0.12731     − 0.29467] 

𝑏𝑏4 = −1.5038      

Substituting the values: 

 

𝑧𝑧4 = 1.5689 .  ℎ3,1 +  0.53742 .  ℎ3,2  + (−0.12731) .  ℎ3,3  +  (−0.29467) .ℎ3,4 − 1.5038 

As a final step, the purelin activation function applied to 𝑧𝑧4. 

The model performance is evaluated by comparing the ANN's predictions with the actual values 
as shown in figure 53. The provided graph illustrates the results, where the blue line represents the 
actual cohesion values, and the red line represents the predicted values by the ANN. Both series 
data show a general downward trend, indicating that the ANN model captures the overall trend of 
the actual cohesion values effectively. However, the ANN predictions show more short-term 
fluctuations compared to the actual values, suggesting the model's sensitivity to minor variations 
in the input data, which may lead to overfitting. In the first 35 samples, the predicted values closely 
follow the actual values, demonstrating a good fit. This indicates that the ANN model performs 
better with samples that have a high amount of clay, where the soil cohesion is more consistent 
and less variable. However, from Test Numbers 36 to 100, the model's performance starts to 
diverge. This divergence can be attributed to the increased presence of coarse particles in the soil 
samples during this segment, which introduces additional variability and complexity that the ANN 
model may not fully capture. 
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Figure 53. Comparison of Cohesion Values Obtained by ANN and Experiments (Source: Own Compilation). 

I conducted the ANN modeling using MATLAB, which allowed us to efficiently code and 
implement the model. Figure 54 shows the Command Window of a MATLAB program designed 
to estimate soil cohesion using an artificial neural network. This example demonstrates how the 
program accepts user inputs and processes them to generate an output estimation. In this instance, 
the user inputs the weight percentages of various soil components, specifically: 50% Clay, 30% 
Silt, 10% Sand, and 10% Gravel. These inputs represent the composition of the soil sample in 
terms of its constituent particles and should sum up to 100% to accurately describe the soil's 
composition. After entering the input components, the program calculates the percentage 
composition of the soil sample and confirms the correct processing of the inputs. Subsequently, 
the ANN model processes these inputs to estimate the soil cohesion. The output represents the 
estimated cohesion value, in kilopascals (kPa), based on the given soil composition. 
 
 

 
Figure 54. Example output of the MATLAB program for Cohesion Prediction (Source: Own Compilation). 
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4.6. Artificial Neural Network model for internal friction angle parameter 

The same procedure was followed to estimate the other shear strength parameter, the internal 
friction angle, using the ANN model. The neural network architecture for predicting the internal 
friction angle is depicted in figure 55. It consists of an input layer with four nodes representing the 
weight percentages of clay, silt, sand, and gravel. This is followed by two hidden layers, each with 
different numbers of neurons, and a single-node output layer that estimates the internal friction 
angle. The optimal network architecture was determined to have [3 2] neurons, which provided a 
suitable balance between underfitting and overfitting for the data. The model's effectiveness in 
predicting the internal friction angle was similarly assessed using performance metrics. The 
correlation coefficient (R) for the internal friction angle was approximately 0.91 that shows a good 
correlation between the predicted and actual values as shown in figure 56. Furthermore, the 
obtained RMSE value for the internal friction angle was 0.39, demonstrating the model's accuracy 
in prediction.  

 
Figure 55. Neural Network Structure for Prediction of Internal Friction Angle (Source: Own Compilation). 

 
Figure 56. Regression Plots of the Best-Performing Model for Prediction of Internal friction Angle (Source: Own 

Compilation). 
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The process of extracting weights and mathematical relationships for the internal friction angle 
parameter is exactly the same as the same process done for cohesion. However, it should be kept 
in mind that the structure of the artificial neural network was different for this parameter. Also, the 
chosen activation function was similar to ones used for cohesion. Therefore, here only the weights 
and biases related to the first, second and final layers are mentioned. 
 

𝑊𝑊1 = �
−1.1545
−0.46195
−1.5385

     
−0.87914   
−0.35259     

0.81031

 −0.086417
−0.21482
−0.82653

        0.81092
        0.13076
     −0.35283

�    𝑏𝑏1 = �
  2.1058
−0.1074
−1.4499

� 

 
𝑊𝑊2 = � − 1.9914   − 0.88889 0.014035

       0.87937 −0.80969 −0.66601�    𝑏𝑏2 = �1.3215
1.8575� 

 
 
𝑊𝑊3 = [ −2.8072  −0.71874]      𝑏𝑏3 = [−0.76291] 
 
 
Like the procedure for cohesion estimation, the model performance for estimating the internal 
friction angle is evaluated by comparing the ANN's predictions with the actual values as shown in 
figure 57. In the provided graph, the blue line represents the actual internal friction angle values 
measured in the lab, while the red line represents the values predicted by the ANN. It can be found 
out that the ANN model effectively captures the overall trend of the actual internal friction angle 
values. Between Test Numbers 30 and 60, the predicted values closely follow the actual values, 
demonstrating a good fit. This indicates that the ANN model performs better with samples that 
have a well-distributed mixture of all soil components (e.g., sand, silt, clay, and gravel), where the 
internal friction angle is more consistent and less variable. Moreover, the model's performance 
starts to diverge after Test Number 80. This divergence can be attributed to the lack of coarse 
material and the predominance of fine grains in the soil samples during this segment.  
 

 
Figure 57. Comparison of Internal friction angle Values Obtained by ANN and Experiments (Source: Own 

Compilation). 
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Similar to the work done for cohesion, I conducted ANN modeling for the internal friction angle 
using MATLAB. This allowed us to efficiently code and implement the model. The figure 58 
shows the MATLAB Command Window estimating the internal friction angle of soil using an 
ANN. The program accepts user inputs for soil composition, such as 50% Clay, 30% Silt, 10% 
Sand, and 10% Gravel, which should total 100%. After confirming the correct processing of these 
inputs, the ANN model estimates the soil's internal friction angle in degrees (°) based on the given 
composition. 
 

 

 
Figure 58. Example output of the MATLAB program for Prediction of Internal Friction Angle (Source: Own 

Compilation). 

4.7. Simultaneous modeling of shear strength parameters 
One powerful application of ANNs is the creation of joint models. Joint models in artificial neural 
networks represent a sophisticated approach to predictive modeling by simultaneously predicting 
multiple output variables from a shared set of input features. Unlike traditional models that handle 
each output independently, joint models capture interdependencies and correlations between 
outputs, enhancing predictive accuracy and computational efficiency. This approach is particularly 
advantageous in fields where outputs are inherently related, such as geotechnical engineering, 
where predicting both cohesion and friction angle together improves the understanding of soil 
behavior. The design of a joint model involves configuring the neural network architecture with 
multiple output neurons corresponding to each variable of interest and utilizing a multi-output loss 
function during training to optimize predictions across all outputs simultaneously. 

The decision to opt for a joint model was primarily driven by the understanding that cohesion and 
friction angle exhibit correlated behavior in soil mechanics. As friction angle increases, cohesion 
typically decreases, and vice versa. By modeling cohesion and friction angle together, rather than 
separately, the jointly model can capture synergistic effects and dependencies that affect both 
parameters simultaneously. This approach leads to more accurate predictions of soil behavior 
across a wide range of scenarios. Engineers and researchers can optimize geotechnical designs and 
analyses more effectively when they have a comprehensive understanding of both these 
parameters. This includes designing foundations, slopes, excavations, and other structures that rely 
on accurate soil parameter predictions. 
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In traditional neural networks, each output corresponds to a single neuron in the output layer, 
predicting a single target variable. However, to model the parameters simultaneously, the output 
layer was configured to have multiple neurons, each representing a different output (cohesion and 
friction angle). By having multiple neurons in the output layer, the neural network learns to 
optimize weights and biases across all outputs simultaneously.  The shared input features (Weight 
percentage of clay, silt, sand and gravel) are processed through hidden layers that extract relevant 
patterns and relationships. These hidden layers act as shared representations, contributing to the 
prediction of both shear parameters and leveraging correlations between them. The network 
architecture comprises hidden layers with sizes [3, 2, 4] as shown in figure 59, utilizing hyperbolic 
tangent sigmoid ('tansig') functions for activation in the hidden layers and a linear ('purelin') 
function for the output layer. 

 
Figure 59. Neural Network Structure for Simultaneous Model of shear strength parameters (Source: Own 

Compilation). 

The process of extracting weights and mathematical relationships of this model is the same as the 
process done for previous models. This involves accessing the neural network's weights and biases, 
which are critical for understanding the transformations applied to the input data at each layer of 
the network. These weights and biases are determined during the training phase and are used to 
predict the output values from the given input features. By analyzing these parameters, I can gain 
insights into how the neural network processes the data. Below, I present the weights and biases 
related to the first, second, third, and final layers of the network. Additionally, the activation 
functions applied at each layer were consistent with those used in previous models, ensuring a 
comparable non-linear transformation of the data through the network. 
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It was aimed to assess the predictive performance of the new joint model for the shear strength 
parameters, cohesion, and friction angle. To evaluate the effectiveness of the new model and to 
make comparisons with the previous separate models, the Root Mean Squared Error (RMSE) and 
the Coefficient of Determination (R2) were calculated. The RMSE quantifies the average 
magnitude of the errors between the predicted values and the actual values of cohesion and friction 
angle. Figure shows the parts of code related to this matter. Additionally, I plotted regression curves 
to visually depict the relationship between the actual and predicted values for both cohesion and 
friction angle. These plots include trendlines that highlight the degree of alignment between the 
predicted and actual values. Figure 60 illustrates the evaluation of the ANN model's predictive 
performance. 

 
Figure 60. Performance Evaluation of ANN Model (Source: Own Compilation). 

Upon implementation, the joint neural network achieved significant improvements in predictive 
performance compared to previous independent modeling efforts. The new Root Mean Squared 
Error (RMSE) values were notably reduced: RMSE for cohesion was 0.41 and for friction angle 
was 0.25, indicating enhanced accuracy in predicting these soil parameters based on the input 
features. Moreover, the new R2 values exhibited substantial increases, with R2 value of 0.97 for 
cohesion and 0.90 for friction angle. These R2 values signify a marked improvement over the 
previous independent models, where R2 for cohesion was 0.81 and for friction angle was 0.82. 
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To visualize the model's performance, the regression curves were plotted for both cohesion and 
friction angle by comparing actual values against predicted values which are shown in figure 61 
and 62. This is done using scatter plots, where each point represents an actual-predicted pair. 
Additionally, I incorporate trendlines to better illustrate the correlation between actual and 
predicted values. Specifically, for each subplot, I use the ‘polyfit’ function to compute the 
coefficients of a linear fit for the data points, and the ‘polyval’ function to evaluate this linear fit 
across the range of actual values.  

The reduction in RMSE and increase in R2 values directly contribute to the reduction in the 
standard deviation of the errors. RMSE quantifies the average magnitude of prediction errors, 
where lower values indicate that predictions are closer to actual values, thus reducing the 
variability in prediction errors. Similarly, R2 measures the proportion of variance in the dependent 
variable that is predictable from the independent variables; higher R2 values indicate a better fit of 
the model to the data, thereby reducing the overall spread of errors around the fitted line. By 
achieving lower RMSE and higher R2 values, the joint neural network effectively minimizes the 
variability and standard deviation of prediction errors. This enhancement underscores the model's 
capability to leverage shared representations and correlations between outputs, thereby refining 
predictions and supporting more accurate and reliable decision-making in geotechnical 
engineering applications. Consequently, this joint neural network model stands out as the preferred 
choice for predicting both cohesion and friction angle due to its superior performance metrics and 
comprehensive approach to capturing soil behavior characteristics. 

 
Figure 61. Comparison of Cohesion Values Obtained by ANN and Laboratory Tests (Source: Own Compilation). 
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Figure 62. Comparison of Friction Angle Values Obtained by ANN and Laboratory Tests (Source: Own 

Compilation). 

I specifically chose to compare this study with previous research that estimated shear strength 
parameters based on easily measurable soil properties, particularly grain size distribution. It is 
noteworthy that no prior research used the same input variables as this study. A key feature of the 
input variables is their ease and speed of measurement, encompassing both fine grain and coarse 
grain sizes. In contrast, previous studies mostly focused on one of these grain sizes. 
The table provided highlights a comparison of methods used in current study with those employed 
in previous research for estimating cohesion (c) and internal friction angle (φ). The focus is on 
various models and their performance, measured by Root Mean Square Error (RMSE) values. In 
this study, I utilized a feedforward artificial neural network, achieving RMSE values of 0.53 for 
cohesion and 0.39 for internal friction angle. These values indicate high accuracy and are among 
the best when compared to previous research methods. The methods used in earlier studies include 
ANN, Multiple Linear Regression (MLR), Random Forest (RF), Gradient Boosting Machine 
(GBM), and Adaptive Neuro-Fuzzy Inference System (ANFIS). This study stands out due to the 
high accuracy of the ANN model, as demonstrated by the significantly lower RMSE values for 
both cohesion and internal friction angle. This suggests that my model is a more accurate and 
reliable prediction tool for soil properties compared to those used in many previous studies. 

 
Table 8. Comparison Between Several Studies for Obtaining Shear Strength Parameters. 

Model Year Method RMSE-c RMSE- φ 
This study 2024 ANN 0.41 0.25 
 Zhu et al. 2022 ANN 3.39 4.08 
 Bala et al 2022 MLR 1.19 3.33 

 Mohammadi et al 2022 ANN 8.59 2.29 
Ghoreishi et al 2021 ANN 0.04 4.43 

 Ly et al 2021 RF 3.323 - 
Rezaee et al 2021 GBM 2.30 1.52 
Pham et al 2021 ANFIS 0.07 0.08 

Falamaki et al. 2018 ANN 4.70 2.3 
Iyeke et al 2016 ANN 8.33 4.77 
Roy et al 2014 MLR - 0.82 
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In this chapter, the analysis and results of the research were detailed. Hydraulic conductivity values 
were first obtained through experiments. These values were then estimated using indirect methods, 
followed by multiple linear regression analysis to further refine the estimates. Artificial Neural 
Network (ANN) models were developed for predicting hydraulic conductivity, cohesion, and 
internal friction angle parameters. Additionally, a simultaneous modeling approach for shear 
strength parameters was implemented using ANNs, demonstrating their effectiveness in accurately 
estimating multiple soil parameters concurrently. 
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5- Theses 
In this chapter, the main achievements of this research have been highlighted and explained in a 
general context. To provide a clearer understanding, some of the visualized graphs and plots 
presented in previous chapters as well as some new ones are revisited here. 

 Thesis 1 
It is proven that artificial neural network (ANN) models can estimate the most important hydraulic 
and geotechnical parameters, hydraulic conductivity, cohesion and angle of internal friction, with 
an accuracy worth for preliminary phases of planning based on weight percentages of soil 
particles (clay, silt, sand and gravel). 
 
 My ANN models which employed feedforward method predicts values with higher accuracy than 
the other known and published methods. Based on my analysis, the ANN model for hydraulic 
conductivity, which has two hidden layers with 1 and 3 neurons respectively, and the joint model 
for cohesion and internal friction angle, which has three hidden layers with 3, 2, and 4 neurons 
respectively as well as an output layer with 2 neurons, demonstrated the highest accuracy. 

 

 
Figure 63 Comparison of results Obtained by ANN and Laboratory Tests (Source: Own Compilation). 

My innovative programs utilize artificial neural networks (ANNs) to predict soil parameters, 
employing a specific function for neuron activation.  The designed Programs for predicting both 
hydraulic conductivity and shear strength parameters follow the below fundamental mathematical 
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Where: 

• 𝒚𝒚𝒌𝒌 is the output of the k-th neuron in the output layer,  
•  𝒂𝒂𝒋𝒋 is the output of the j-th neuron in the hidden layer, computed using the tanh activation function,  
•  𝒘𝒘𝒋𝒋𝒋𝒋 is the weight connecting the i-th input to the j-th neuron, 
•  𝒙𝒙𝒊𝒊 is the i-th input to the network, 
•  𝒃𝒃𝒋𝒋 is the bias of the j-th neuron,  
• 𝒘𝒘𝒌𝒌𝒌𝒌 is the weight connecting the j-th neuron in the hidden layer to the k-th neuron in the output layer,  
• and 𝒃𝒃𝒌𝒌 is the bias of the k-th neuron in the output layer. 

 

Thesis 2  
The accuracy of the ANN model I developed and suggested for use is independent of grain size, 
unlike most other models and developed methods that are typically suitable only for fine-grain or 
coarse-grain soils. 

 

My ANN model has been designed to effectively predict soil parameters regardless of whether the 
soil is predominantly fine-grained or coarse-grained. This capability ensures that my model 
provides reliable results across a wide range of soil types. Importantly, my approach simplifies the 
initial assessment of site soils for preliminary design by focusing solely on essential soil 
components. This streamlined methodology not only enhances efficiency but also ensures that my 
model can swiftly provide reliable insights into soil behavior across diverse environmental 
conditions. Thus, my ANN-based approach represents a practical and effective tool for engineers 
and researchers seeking rapid and insightful soil assessments during early project phases. Figure 
64 shows simplified input and output box of the program. 

 
Figure 64. Simplified Input and Output Box of the Program (Source: Own Compilation). 

The scatter plots for hydraulic conductivity, cohesion, and internal friction angle display residuals 
that are randomly distributed around the horizontal axis as shown in figure 65. This random 
distribution indicates that the residuals do not show any systematic pattern or trend. In other words, 
the errors in the predictions do not vary with the magnitude of the predicted values. This lack of 
systematic bias across the predicted values suggests that the model's performance is consistent and 
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unbiased across different samples. The absence of such patterns confirms that the ANN model is 
robust, and its predictions are not dependent on the grain size of the soil. 

 

 

 
Figure 65. Plot of Residuals vs. Predicted Values (Source: Own Compilation). 

Thesis 3  
It was proven that artificial neural network method provides more reliable and accurate predicted 
hydraulic conductivity values independently form grainsize distribution than multiple linear 
regression or any known empirical correlation or pedotransfer function. 

 

According to figure 66, the results showed that artificial neural network model is more reliable 
than the others as it presented higher accuracy. I utilized laboratory measurements to evaluate the 

-1.00

-0.50

0.00

0.50

1.00

0 2 4 6 8 10 12

R
es

id
ua

l

Predicted Value

Hydraulic Conductivity

-2.00

-1.00

0.00

1.00

2.00

0 5 10 15 20 25 30

R
es

id
ua

l

Predicted Value

Cohesion

-2.50

-1.50

-0.50

0.50

1.50

2.50

0.00 10.00 20.00 30.00 40.00 50.00

R
es

id
ua

l

Predicted Value

Internal friction Angle



77 
 

performance of various methods and models in predicting hydraulic conductivity. The indirect 
method, specifically the Carrier and Beckman approach, showed a moderate correlation with an 
R² value of 0.5187. However, this method consistently underestimated hydraulic conductivity 
values, highlighting the need for refinement or complementary methods. Multiple linear regression 
analysis demonstrated a better fit with an R² value of 0.81, indicating that 82% of the variability 
in the real data was explained by the model. My artificial neural network (ANN) models achieved 
superior accuracy with an R² value of 0.92 and an RMSE of 0.0768. This high level of accuracy 
underscores the effectiveness of ANNs in capturing the underlying patterns in the data.   

 
 Multiple linear Regression Method

 

 

Figure 66. Estimation Accuracy of Different Models (Source: Own Compilation). 
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Thesis 4  
It is statistically proven by using the artificial neural network model that the extremities in 
grainsize (gravel and clay content) indicate a higher effect on the hydraulic conductivity of the 
material than weight percentages of silt and sand. 

By examining the effect of each parameter in the compositions and the amount of hydraulic 
conductivity changes, as shown in the figure 67, it becomes evident that clay and gravel exhibit a 
considerable slope as well as less deviation, indicating their substantial influence. In contrast, silt 
and sand do not display a noticeable slope, suggesting their lesser impact on the hydraulic gradient 
parameter. This highlights the critical importance of gravel and clay, where even minor variations 
significantly affect the hydraulic conductivity predictions. To plot the figures, the data was sorted 
in descending order to help understand the performance of the model; this means that as the number 
of tests increases, the values of -Log K drop. 

 
Figure 67. Effect of Each Component on Output (Source: Own Compilation). 

Thesis 5  
Simultaneous ANN model of cohesion and internal friction proved that contrary to separate ANN 
models, it achieved statistically significant improvements in predictive performance and accuracy. 

 

The joint approach not only delivered higher accuracy but also demonstrated greater consistency 
in predictions. This model effectively captures the complex interactions between cohesion and 
internal friction. Unlike traditional models that handle each output independently, my joint model 
captures interdependencies and correlations between outputs, enhancing predictive accuracy and 
computational efficiency. The design of a joint model involves configuring the neural network 
architecture with multiple output neurons corresponding to each variable of interest and utilizing 
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a multi-output loss function during training to optimize predictions across all outputs 
simultaneously. The decision to opt for a joint model was primarily driven by the understanding 
that cohesion and friction angle exhibit correlated behavior in soil mechanics.  By having multiple 
neurons in the output layer, the neural network learned to optimize weights and biases across both 
outputs simultaneously.  The shared input features (Weight percentage of clay, silt, sand and gravel) 
are processed through hidden layers that extract relevant patterns and relationships. These hidden 
layers act as shared representations, contributing to the prediction of both shear parameters and 
leveraging correlations between them. The network architecture comprises hidden layers with 
sizes [3, 2, 4], utilizing hyperbolic tangent sigmoid ('tansig') functions for activation in the hidden 
layers and a linear ('purelin') function for the output layer. 

 
Figure 68. Neural Network Structure for Simultaneous Model of shear strength parameters (Source: Own 

Compilation). 

Comparison of Simultaneous Model and Separate Models statistically demonstrated higher 
accuracy as mentioned in table1.  

Table 9. Comparison of Simultaneous Model and Separate Models  

Model Year Method RMSE-c RMSE- φ R2-c R2 - φ 

Simultaneous Model 2024 ANN 0.41 0.25 0.97 0.90 
Separate Model- φ 2024 ANN - 0.39  0.82 
Separate Model- c 2024 ANN 0.53 - 0.81  
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6- Summary 
In this study, I aimed to estimate geotechnical and hydrogeological parameters of soil based on 
grain size distribution using artificial neural networks (ANNs). Recognizing the limitations of 
traditional methods and the potential of ANNs to offer more accurate predictions, I collected a 
comprehensive dataset of laboratory-tested soil samples. This data was used to train and validate 
ANN models, with a focus on predicting hydraulic conductivity and shear strength parameters. My 
goal was to demonstrate the efficacy of ANN in soil parameter estimation and its potential to 
enhance geotechnical engineering practices. 

Regarding the hydraulic conductivity estimation, this study involved extensive laboratory testing 
to observe the effects of different combinations of gravel, sand, silt, and clay on hydraulic 
conductivity. I employed several approaches for comparison, including indirect methods, Multiple 
Linear Regression (MLR), and ANN. Indirect methods relied on empirical calculations based on 
easily measurable soil parameters. The MLR approach created a statistical model linking several 
soil properties to hydraulic conductivity, while ANN utilized machine learning to model complex, 
nonlinear relationships among soil parameters. The indirect method, specifically the Carrier and 
Beckman approach, showed a moderate correlation with an R² value of 0.5187. However, the 
method consistently underestimated hydraulic conductivity values, highlighting the need for 
refinement or complementary methods. MLR analysis demonstrated a relatively good fit with an 
R² value of 0.81, indicating that 82% of the variability in the real data was explained by the model. 
Although MLR provided better accuracy, it still fell short of my desired predictive performance. 
My ANN models achieved superior accuracy with R² value of 0.92 and an RMSE of 0.0768. This 
high level of accuracy underscores the effectiveness of ANNs in capturing the underlying patterns 
in the data. Notably, I could not find any previous studies using the same input variables to predict 
hydraulic conductivity, making this study unique. However, the comparison with similar studies 
showed that my model outperformed others, highlighting the significant impact of clay and gravel 
on hydraulic conductivity. 

In this study, I also modeled the shear strength parameters, cohesion and internal friction angle, 
using artificial neural networks in two distinct approaches: separately and simultaneously. Initially, 
I developed separate ANN models for each parameter, achieving good accuracy with R² values of 
0.81 for cohesion and 0.82 for the internal friction angle. These values indicate a relatively good 
degree of precision. However, considering the interrelation between cohesion and internal friction 
angle, I also developed a simultaneous ANN model to predict both parameters concurrently. This 
joint modeling approach leveraged the inherent relationship between the parameters, leading to an 
improved predictive performance. The simultaneous ANN model not only presented higher 
accuracy than what achieved by the separate models but also demonstrated enhanced consistency 
and robustness in the predictions. The new R2 values exhibited substantial increases, with R2 value 
of 0.97 for cohesion and 0.90 for friction angle. Moreover, The RMSE values for the joint model 
were better than those obtained from the separate models, further validating the effectiveness of 
this approach and placing the separate models among the best compared to previous research 
methods. The simultaneous model thus provided a more comprehensive understanding of soil 
behavior, achieving a high degree of precision and placing my model among the best compared to 
previous research methods. 
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The results of this study hold significant practical implications for the field of geotechnical 
engineering. By leveraging artificial neural networks to estimate hydraulic conductivity and shear 
strength parameters from grain size distribution, I offer a method that is both time-efficient and 
cost-effective compared to traditional in situ and laboratory testing methods. This advancement is 
particularly valuable in scenarios where rapid decision-making is crucial, such as during the 
preliminary design phase of engineering projects. The ability to quickly and reliably predict soil 
parameters can streamline project planning and execution, reducing delays and associated costs. 
Moreover, the high accuracy of my ANN models, as demonstrated by superior RMSE values 
compared to conventional methods, underscores the potential for these models to provide more 
precise assessments of soil behavior, thereby enhancing the safety and reliability of geotechnical 
structures. 

The key feature of my input variables is their ease and speed of measurement as well as 
encompassing both fine grain and coarse grain sizes. This comprehensive approach contrasts with 
previous studies that mostly focused on one grain size. This research makes a substantial 
contribution to the field of estimating soil properties by showing how artificial neural networks 
(ANNs) can improve the precision and dependability of predictions made in geotechnical 
engineering. According to the research, using machine learning models, such as artificial neural 
networks (ANNs), can result in more informed choices and effective engineering techniques. By 
leveraging easily measurable soil properties and advanced machine learning techniques, I have 
developed models that offer superior predictive performance. Future research could explore further 
refinement of ANN models and the inclusion of additional soil properties to enhance prediction 
accuracy even further. This study sets a precedent for integrating advanced computational methods 
in geotechnical engineering, paving the way for more accurate and reliable soil property 
estimation. 

It is important to recognize the limits of the neural network model established in this study, even 
though it offers useful insights into the assessment of soil properties such as hydraulic conductivity, 
cohesion, and internal friction angle. Significant obstacles include the data's regional specificity, 
possible laboratory errors, the omission of pertinent variables, model sensitivity, and the dangers 
of extrapolation. Future studies could address these constraints by increasing the dataset size, 
adding more input variables, and enhancing the model's interpretability and resilience. These 
efforts would improve the model's applicability in many circumstances and lead to a more thorough 
understanding of soil qualities. 
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Annex 1. The percentage of soil components in each sample 

 

Number Clay Silt Sand Gravel Number Clay Silt Sand Gravel
1 100 0 0 0 51 40 25 25 10
2 75 25 0 0 52 50 0 40 10
3 50 50 0 0 53 40 50 0 10
4 75 0 25 0 54 40 40 10 10
5 50 40 10 0 55 40 30 30 0
6 25 75 0 0 56 50 10 20 20
7 0 100 0 0 57 50 25 0 25
8 50 30 20 0 58 40 20 30 10
9 50 25 25 0 59 30 50 20 0

10 50 40 0 10 60 40 40 0 20
11 40 30 10 20 61 50 0 10 40
12 25 50 25 0 62 40 20 40 0
13 40 10 40 10 63 30 25 20 25
14 40 25 10 25 64 25 25 50 0
15 40 10 50 0 65 0 75 25 0
16 50 0 20 30 66 10 50 30 10
17 50 30 10 10 67 30 20 30 20
18 30 30 40 0 68 20 30 30 20
19 30 50 0 20 69 40 10 10 40
20 40 10 30 20 70 20 50 0 30
21 30 30 30 10 71 25 20 30 25
22 15 75 10 0 72 15 50 10 25
23 40 30 0 30 73 25 25 20 30
24 30 40 10 20 74 30 10 30 30
25 25 40 25 10 75 20 30 25 25
26 20 40 40 0 76 20 40 10 30
27 20 50 30 0 77 20 20 50 10
28 40 10 25 25 78 10 40 50 0
29 40 20 10 30 79 10 50 20 20
30 40 10 20 30 80 30 0 50 20
31 40 0 40 20 81 40 0 20 40
32 50 10 0 40 82 25 20 25 30
33 30 20 40 10 83 10 40 40 10
34 30 20 50 0 84 25 50 0 25
35 20 50 20 10 85 15 40 20 25
36 15 75 0 10 86 30 40 20 10
37 40 0 50 10 87 25 25 25 25
38 30 30 20 20 88 30 20 20 30
39 50 20 30 0 89 10 50 40 0
40 75 0 0 25 90 20 20 30 30
41 50 20 0 30 91 10 50 10 30
42 20 40 30 10 92 10 40 25 25
43 40 50 10 0 93 10 30 50 10
44 50 30 0 20 94 30 10 40 20
45 50 0 50 0 95 0 50 50 0
46 50 0 30 20 96 40 20 0 40
47 40 40 20 0 97 20 25 30 25
48 50 10 40 0 98 30 50 10 10
49 50 10 30 10 99 20 30 40 10
50 50 20 10 20 100 0 75 0 25



II 
 

 

Number Clay Silt Sand Gravel Number Clay Silt Sand Gravel
101 25 30 20 25 153 0 30 50 20
102 40 20 20 20 154 0 50 20 30
103 50 10 10 30 155 15 0 75 10
104 20 30 50 0 156 20 0 50 30
105 25 25 30 20 157 50 0 0 50
106 20 40 20 20 158 0 40 30 30
107 30 40 30 0 159 15 20 25 40
108 30 30 0 40 160 10 40 10 40
109 50 0 25 25 161 10 20 40 30
110 20 20 40 20 162 20 10 30 40
111 30 10 50 10 163 30 10 10 50
112 25 0 75 0 164 25 25 0 50
113 20 10 50 20 165 40 10 0 50
114 40 0 30 30 166 10 30 40 20
115 0 50 40 10 167 20 40 0 40
116 30 30 10 30 168 25 0 50 25
117 30 0 40 30 169 10 25 25 40
118 30 20 25 25 170 20 0 40 40
119 30 10 20 40 171 10 10 50 30
120 30 40 0 30 172 0 50 10 40
121 30 20 10 40 173 0 30 40 30
122 10 40 30 20 174 0 0 100 0
123 25 30 25 20 175 15 10 25 50
124 25 40 10 25 176 0 25 50 25
125 25 25 10 40 177 10 20 30 40
126 20 50 10 20 178 20 20 10 50
127 0 25 75 0 179 10 0 50 40
128 25 25 40 10 180 10 20 20 50
129 20 30 0 50 181 0 50 0 50
130 30 0 20 50 182 20 0 30 50
131 0 50 25 25 183 10 30 10 50
132 0 40 50 10 184 0 20 40 40
133 25 10 25 40 185 0 30 30 40
134 40 0 10 50 186 0 20 50 30
135 30 0 30 40 187 10 10 40 40
136 20 10 40 30 188 20 10 20 50
137 20 30 10 40 189 10 40 0 50
138 10 25 40 25 190 0 40 20 40
139 0 50 30 20 191 25 0 25 50
140 15 20 40 25 192 0 40 10 50
141 10 30 30 30 193 10 10 30 50
142 15 10 75 0 194 10 0 40 50
143 10 20 50 20 195 0 0 75 25
144 10 30 20 40 196 0 10 50 40
145 20 20 20 40 197 0 30 20 50
146 25 10 40 25 198 0 25 25 50
147 10 50 0 40 199 0 20 30 50
148 0 40 40 20 200 25 0 0 75
149 15 10 50 25 201 0 10 40 50
150 20 30 20 30 202 0 0 50 50
151 10 40 20 30 203 0 25 0 75

152 30 20 0 50 204 0 0 25 75

205 0 0 0 100
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Annex 2. Grain size distributions for all samples  

 

 

 

 

0

20

40

60

80

100

0.0001 0.001 0.01 0.1 1 10

Pe
rc

en
t f

in
er

 (%
)

Particle size (mm)
S1 S2 S3 S4 S5

0

20

40

60

80

100

0.0001 0.001 0.01 0.1 1 10

Pe
rc

en
t f

in
er

 (%
)

Particle size (mm)
S6 S7 S8 S9 S10



IV 
 

 

 

 

 

 

0

20

40

60

80

100

0.0001 0.001 0.01 0.1 1 10

Pe
rc

en
t f

in
er

 (%
)

Particle size (mm)

S11 S12 S13 S14 S15

0

20

40

60

80

100

0.0001 0.001 0.01 0.1 1 10

Pe
rc

en
t f

in
er

 (%
)

Particle size (mm)
S16 S17 S18 S19 S20



V 
 

 

 

 

 

 

0

20

40

60

80

100

0.0001 0.001 0.01 0.1 1 10

Pe
rc

en
t f

in
er

 (%
)

Particle size (mm)
S21 S22 S23 S24 S25

0

20

40

60

80

100

0.0001 0.001 0.01 0.1 1 10

Pe
rc

en
t f

in
er

 (%
)

Particle size (mm)
S26 S27 S28 S29 S30



VI 
 

 

 

 

 

 

0

20

40

60

80

100

0.0001 0.001 0.01 0.1 1 10

Pe
rc

en
t f

in
er

 (%
)

Particle size (mm)
S31 S32 S33 S34 S35

0

20

40

60

80

100

0.0001 0.001 0.01 0.1 1 10

Pe
rc

en
t f

in
er

 (%
)

Particle size (mm)
S36 S37 S38 S39 S40



VII 
 

 

 

 

 

 

0

20

40

60

80

100

0.0001 0.001 0.01 0.1 1 10

Pe
rc

en
t f

in
er

 (%
)

Particle size (mm)
S41 S42 S43 S44 S45

0

20

40

60

80

100

0.0001 0.001 0.01 0.1 1 10

Pe
rc

en
t f

in
er

 (%
)

Particle size (mm)
S46 S47 S48 S49 S50



VIII 
 

 

 

 

 

 

0

20

40

60

80

100

0.0001 0.001 0.01 0.1 1 10

Pe
rc

en
t f

in
er

 (%
)

Particle size (mm)

S51 S52 S53 S54 S55

0

20

40

60

80

100

0.0001 0.001 0.01 0.1 1 10

Pe
rc

en
t f

in
er

 (%
)

Particle size (mm)

S56 S57 S58 S59 S60



IX 
 

 

 

 

 

 

0

20

40

60

80

100

0.0001 0.001 0.01 0.1 1 10

Pe
rc

en
t f

in
er

 (%
)

Particle size (mm)
S61 S62 S63 S64 S65

0

20

40

60

80

100

0.0001 0.001 0.01 0.1 1 10

Pe
rc

en
t f

in
er

 (%
)

Particle size (mm)
S66 S67 S68 S69 S70



X 
 

 

 

 

 

 

0

20

40

60

80

100

0.0001 0.001 0.01 0.1 1 10

Pe
rc

en
t f

in
er

 (%
)

Particle size (mm)
S71 S72 S73 S74 S75

0

20

40

60

80

100

0.0001 0.001 0.01 0.1 1 10

Pe
rc

en
t f

in
er

 (%
)

Particle size (mm)
S76 S77 S78 S79 S80



XI 
 

 

 

 

 

 

0

20

40

60

80

100

0.0001 0.001 0.01 0.1 1 10

Pe
rc

en
t f

in
er

 (%
)

Particle size (mm)
S81 S82 S83 S84 S85

0

20

40

60

80

100

0.0001 0.001 0.01 0.1 1 10

Pe
rc

en
t f

in
er

 (%
)

Particle size (mm)

S86 S87 S88 S89 S90



XII 
 

 

 

 

 

 

0

20

40

60

80

100

0.0001 0.001 0.01 0.1 1 10

Pe
rc

en
t f

in
er

 (%
)

Particle size (mm)
S91 S92 S93 S94 S95

0

20

40

60

80

100

0.0001 0.001 0.01 0.1 1 10

Pe
rc

en
t f

in
er

 (%
)

Particle size (mm)

S96 S97 S98 S99 S100



XIII 
 

 

 

 

 

 

0

20

40

60

80

100

0.0001 0.001 0.01 0.1 1 10

Pe
rc

en
t f

in
er

 (%
)

Particle size (mm)
S101 S102 S103 S104 S105

0

20

40

60

80

100

0.0001 0.001 0.01 0.1 1 10

Pe
rc

en
t f

in
er

 (%
)

Particle size (mm)

S106 S107 S108 S109 S110



XIV 
 

 

 

 

 

 

0

20

40

60

80

100

0.0001 0.001 0.01 0.1 1 10

Pe
rc

en
t f

in
er

 (%
)

Particle size (mm)

S111 S112 S113 S114 S115

0

20

40

60

80

100

0.0001 0.001 0.01 0.1 1 10

Pe
rc

en
t f

in
er

 (%
)

Particle size (mm)
S116 S117 S118 S119 S120



XV 
 

 

 

 

 

 

0

20

40

60

80

100

0.0001 0.001 0.01 0.1 1 10

Pe
rc

en
t f

in
er

 (%
)

Particle size (mm)

S121 S122 S123 S124 S125

0

20

40

60

80

100

0.0001 0.001 0.01 0.1 1 10

Pe
rc

en
t f

in
er

 (%
)

Particle size (mm)
S126 S127 S128 S129 S130



XVI 
 

 

 

 

 

 

0

20

40

60

80

100

0.0001 0.001 0.01 0.1 1 10

Pe
rc

en
t f

in
er

 (%
)

Particle size (mm)

S131 S132 S133 S134 S135

0

20

40

60

80

100

0.0001 0.001 0.01 0.1 1 10

Pe
rc

en
t f

in
er

 (%
)

Particle size (mm)
S136 S137 S138 S139 S140



XVII 
 

 

 

 

 

 

0

20

40

60

80

100

0.0001 0.001 0.01 0.1 1 10

Pe
rc

en
t f

in
er

 (%
)

Particle size (mm)
S141 S142 S143 S144 S145

0

20

40

60

80

100

0.0001 0.001 0.01 0.1 1 10

Pe
rc

en
t f

in
er

 (%
)

Particle size (mm)
S146 S147 S148 S149 S150



XVIII 
 

 

 

 

 

 

0

20

40

60

80

100

0.0001 0.001 0.01 0.1 1 10

Pe
rc

en
t f

in
er

 (%
)

Particle size (mm)
S151 S152 S153 S154 S155

0

20

40

60

80

100

0.0001 0.001 0.01 0.1 1 10

Pe
rc

en
t f

in
er

 (%
)

Particle size (mm)

S156 S157 S158 S159 S160



XIX 
 

 

 

 

 

 

0

20

40

60

80

100

0.0001 0.001 0.01 0.1 1 10

Pe
rc

en
t f

in
er

 (%
)

Particle size (mm)
S161 S162 S163 S164 S165

0

20

40

60

80

100

0.0001 0.001 0.01 0.1 1 10

Pe
rc

en
t f

in
er

 (%
)

Particle size (mm)
S166 S167 S168 S169 S170



XX 
 

 

 

 

 

 

0

20

40

60

80

100

0.0001 0.001 0.01 0.1 1 10

Pe
rc

en
t f

in
er

 (%
)

Particle size (mm)
S171 S172 S173 S174 S175

0

20

40

60

80

100

0.0001 0.001 0.01 0.1 1 10

Pe
rc

en
t f

in
er

 (%
)

Particle size (mm)

S176 S177 S178 S179 S180



XXI 
 

 

 

 

 

 

0

20

40

60

80

100

0.0001 0.001 0.01 0.1 1 10

Pe
rc

en
t f

in
er

 (%
)

Particle size (mm)
S181 S182 S183 S184 S185

0

20

40

60

80

100

0.0001 0.001 0.01 0.1 1 10

Pe
rc

en
t f

in
er

 (%
)

Particle size (mm)
S186 S187 S188 S189 S190



XXII 
 

 

 

 

 

 

0

20

40

60

80

100

0.0001 0.001 0.01 0.1 1 10

Pe
rc

en
t f

in
er

 (%
)

Particle size (mm)

S191 S192 S193 S194 S195

0

20

40

60

80

100

0.0001 0.001 0.01 0.1 1 10

Pe
rc

en
t f

in
er

 (%
)

Particle size (mm)
S196 S197 S198 S199 S200



XXIII 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

20

40

60

80

100

0.0001 0.001 0.01 0.1 1 10

Pe
rc

en
t f

in
er

 (%
)

Particle size (mm)
S201 S202 S203 S204 S205



XXIV 
 

Annex 3. Regression analysis results for purpose of choosing best ANN model for K 
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Model Number 10 

 

 

 

 

 

 

 

 

 

 

 

 

4 6 8

3

4

5

6

7

8

9

Target

O
ut

pu
t ~

= 
0.

82
*T

ar
ge

t +
 1

.1

Training: R=0.88922

 

 
Data
Fit
Y = T

4 6 8

3

4

5

6

7

8

9

Target

O
ut

pu
t ~

= 
0.

71
*T

ar
ge

t +
 1

.7

Validation: R=0.9032

 

 
Data
Fit
Y = T

4 6 8

3

4

5

6

7

8

9

Target

O
ut

pu
t ~

= 
0.

81
*T

ar
ge

t +
 1

.1

Test: R=0.87961

 

 
Data
Fit
Y = T

4 6 8

3

4

5

6

7

8

9

Target

O
ut

pu
t ~

= 
0.

8*
Ta

rg
et

 +
 1

.2

All: R=0.89183

 

 
Data
Fit
Y = T



XXXIII 
 

Annex 4: Source Codes for Artificial Neural Network Modeling 

a) Code for hydraulic conductivity estimation 
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b) Code for cohesion estimation (separate model) 
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C) Code for internal friction angle estimation (separate model) 
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D) Code for simultaneous Model to estimate cohesion  and friction angle 
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